Powered by Deep Web Technologies
Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Brookhaven Graphite Research Reactor | Environmental Restoration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Graphite Research Reactor(BGRR) BGRR Overview BGRR Complex Description Decommissioning Decision BGRR Complex Cleanup Actions BGRR Documents BGRR Science &...

2

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Graphite Research Reactor Documents Brookhaven Graphite Research Reactor Documents Feasibility Study (PDF) Proposed Remedial Action Plan (PDF) Record of Decision (PDF) RD/RA Work Plan for the BGRR Pile (PDF) RD/RA Work Plan for the Bioshield (PDF) RD/RA Work Plan for the BGRR Cap (PDF) Brookhaven Graphite Research Reactor Explanation of Significant Differences (PDF) (4/12) NYSDEC Approval Letter for BGRR ESD (PDF) (5/12) USEPA Approval Letter for BGRR ESD (PDF) (6/12) DOE BGRR ESD Transmittal Letter (PDF) (7/12) Remedial Design Implementation Report (PDF) (12/11) Completion Reports Removal of the Above-Ground Ducts and Preparation of the Instrument House (708) for Removal (PDF) - April 2002 Below-Ground Duct Outlet Air Coolers, Filters and Primary Liner Removal (PDF) - April 2005 Canal and Deep Soil Pockets Excavation and Removal (PDF) - August

3

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Was the BGRR Decommissioned? Why Was the BGRR Decommissioned? BGRR The Brookhaven Graphite Research Reactor (BGRR) at Brookhaven National Laboratory (BNL) was decommissioned to ensure the complex is in a safe and stable condition and to reduce sources of groundwater contamination. The BGRR contained over 8,000 Curies of radioactive contaminants from past operations consisting of primarily nuclear activation products such as hydrogen-3 (tritium) and carbon-14 and fission products cesium-137 and strontium-90. The nature and extent of contamination varied by location depending on historic uses of the systems and components and releases, however, the majority of the contamination (over 99 percent) was bound within the graphite pile and biological shield. Radioactive contamination was identified in the fuel handling system deep

4

Brookhaven Lab Completes Decommissioning of Graphite Research Reactor:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Lab Completes Decommissioning of Graphite Research Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal September 1, 2012 - 12:00pm Addthis The Brookhaven Graphite Research Reactor’s bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. The Brookhaven Graphite Research Reactor's bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. Pictured here is the Brookhaven Graphite Research Reactor, where major decommissioning milestones were recently reached after the remaining radioactive materials from the facility’s bioshield were shipped to a licensed offsite disposal facility.

5

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

NLE Websites -- All DOE Office Websites (Extended Search)

- Cleanup Actions - Cleanup Actions Since the Brookhaven Graphite Research Reactor (BGRR) was shut down in 1968, many actions have been taken as part of the complex decommissioning. The actions undertaken throughout the BGRR complex ensure that the structures that remain are in a safe and stable condition and prepared it for long-term surveillance and maintenance. Regulatory Requirements The decommissioning of the BGRR was conducted under the federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1992, an Interagency Agreement (PDF) among the DOE, the U.S. Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC) became effective. The IAG provided the overall framework for conducting environmental restoration activities at

6

Cleanup at the Brookhaven Graphite Research Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphite Research Reactor placeholder Remotely operated robot known as a BROKK manipulator In April 2005, the Department of Energy (DOE), the Lab, and the regulatory agencies...

7

Brookhaven Graphite Research Reactor Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Brookhaven Graphite Research Reactor Workshop Brookhaven Graphite Research Reactor Workshop The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II. Construction began in 1947 and the reactor started operating in August 1950. In the next 18 years, an estimated 25,000 scientific experiments were carried out at the BGRR using neutrons produced in the facility's 700-ton graphite core, made up of more than 60,000 individual graphite blocks. The BGRR was placed on standby in 1968 and then permanently shut down as the next-generation reactor, the High Flux Beam Reactor (HFBR), was

8

Brookhaven Medical Research Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Research Reactor BMRR The last of the Lab's reactors, the Brookhaven Medical Research Reactor (BMRR), was shut down in December 2000. The BMRR was a three megawatt...

9

History of Research Reactors at Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

History of Research Reactors at Brookhaven History of Research Reactors at Brookhaven Brookhaven National Laboratory has three nuclear reactors on its site that were used for scientific research. The reactors are all shut down, and the Laboratory is addressing environmental issues associated with their operations. photo of BGRR Brookhaven Graphite Research Reactor - Beginning operations in 1950, the graphite reactor was used for research in medicine, biology, chemistry, physics and nuclear engineering. One of the most significant achievements at this facility was the development of technetium-99m, a radiopharmaceutical widely used to image almost any organ in the body. The graphite reactor was shut down in 1969. Parts of it have been decommissioned, with the remainder to be addressed by 2011. More history

10

A History of Physics Research at Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

A History of Physics Research at Brookhaven Brookhaven physics history banner Begin your tour of physics discoveries made at Brookhaven >> From its inception Brookhaven has had a...

11

Environmental Cleanup, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab campus Cleanup Project Details Groundwater Peconic River Surface and Soil Brookhaven Graphite Research Reactor High Flux Beam Reactor Brookhaven Medical Reactor...

12

Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Volver Principal ESTOY PERDIDO Brookhaven El Laboratorio Nacional de Brookhaven (BNL) est ubicado en Long Island, Nueva York. El quark "charm" (encanto) fue...

13

Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report  

SciTech Connect

This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed.

Hauptman, H.M.; Petro, J.N.; Jacobi, O. [and others

1995-04-01T23:59:59.000Z

14

Reactor Decommissioning Projects | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Graphite Research Reactor(BGRR) BGRR Overview BGRR Complex Description Decommissioning Decision BGRR Complex Cleanup Actions BGRR Documents BGRR Science &...

15

Brookhaven Graphite Research Reactor | Environmental Restoration...  

NLE Websites -- All DOE Office Websites (Extended Search)

of multiple structures and systems that were necessary to operate and maintain the reactor. The most recognizable features of the complex include the Building 701 officeshigh...

16

Short bunch research at Brookhaven National Laboratory  

SciTech Connect

Research into the production and utilization of short electron bunches at Brookhaven National Laboratory is underway at the Source Development Laboratory (SDL) and Accelerator Test Facility (ATF). Projects planned for the SDL facility include a 210 MeV electron linac with a dipole chicane that is designed to produce 100 {mu}m long bunches and a compact electron storage ring that will use superconducting RF to produce sub-millimeter bunches.The ATF has a 30-70 MeV linac that will serve as the injector for laser accelerators that will bunch the beam into to micron-length bunches. Coherent transition and synchrotron radiation from the short bunches will be used for beam diagnostics and infrared experiments.

Blum, E.B.

1995-12-31T23:59:59.000Z

17

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, June 1995  

Science Conference Proceedings (OSTI)

Part one of this report gives the operating history of the Brookhaven Medical Research Reactor for the month of June. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories of the Brookhaven High Flux Beam Reactor and the Cold Neutron Facility at HFBR for June. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

NONE

1995-06-01T23:59:59.000Z

18

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, July 1995  

Science Conference Proceedings (OSTI)

Part one of this report gives the operating history for the Brookhaven Medical Research Reactor for the month of July. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories for the Brookhaven High Flux Beam Reactor and the Cold Neutron Source Facility for the month of July. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

NONE

1995-07-01T23:59:59.000Z

19

Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Das "Brookhaven National Laboratory" (BNL) liegt inLong Island, New York. Das "Brookhaven National Laboratory" (BNL) liegt inLong Island, New York. In dieser Anlage wurde - gleichzeitig mit SLAC - das Charm-Quark entdeckt. Der Ring des Hauptbeschleunigers (RHIC) hat einen Durchmesser von 1.2 km. Mehr Information: Linac Der 145 m lange Linearbeschleuniger (Linac) beschleunigt Protonen auf eine Energie von 0.2 GeV. Die Protonen werden dann zum "Booster" und weiter ins AGS geleitet. Im Targetbereich werden u.a. Kaonen und Neutrinos produziert und untersucht. Ein Kaon ist ein Meson, welches ein "Strange" Quark und ein "anti-Up" oder Down) Quark enthält. Van de Graaff Der 0.016 GeV Tandem Van de Graaff Beschleuniger wird zur Produktion schwerer Ionen gebraucht, welche dann in den Booster eingespiesen werden. Der Tandem Beschleuniger wird auch für den RHIC

20

Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory (BNL) is located on Long Island, New York. Brookhaven National Laboratory (BNL) is located on Long Island, New York. Charm quark was discovered there, simultaneously with SLAC. The main ring (RHIC) is 0.6 km in radius. For more information: Linac The 145 m-linear accelerator, or Linac, accelerates protons to an energy of 0.2 GeV. The protons then go into the booster and then into the AGS. In the target area kaons and neutrinos are among the particles produced and studied. A kaon is a meson containing a strange quark and an anti-up (or an anti-down) quark, or an anti-strange quark and an up (or down) quark. Van de Graaff The 0.016 GeV Tandem Van de Graaff is used to produce heavy ions and to inject them into the Booster. It will also be used for the RHIC. Booster The 50 m-diameter Booster further accelerates the protons (to 1.5

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NASA Space Radiobiology Research Takes Off at New Brookhaven Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA Space Radiobiology Research Takes Off NASA Space Radiobiology Research Takes Off at New Brookhaven Facility Because astronauts are spending more and more time in space, the National Aeronautics and Space Administration is working with Brookhaven and others here on Earth to learn about the possible risks to human beings exposed to space radiation. To study the radiobiological effects using proton and ion beams that simulate the cosmic rays found in space, a new $34-million NASA Space Radiation Laboratory was commissioned at Brookhaven this summer. --by Karen McNulty Walsh and Marsha Belford "TO BOLDLY GO WHERE NO ONE HAS GONE BEFORE"- the motto of the science-fiction saga Star Trek - could just as easily be the motto of America's real-life space explorers. Despite the recent Columbia shuttle tragedy, officials of the National Aeronautics and Space Administration (NASA) have a bold vision for future manned space exploration, which includes the completion of the International Space Station now under construction, and possible future missions to build a Moon outpost, explore near-Earth asteroids, and send astronauts to Mars.

22

Recovery Act Workers Clear Reactor Shields from Brookhaven Lab | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Clear Reactor Shields from Brookhaven Lab Workers Clear Reactor Shields from Brookhaven Lab Recovery Act Workers Clear Reactor Shields from Brookhaven Lab American Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once used to absorb neutrons produced for research. The Brookhaven National Laboratory is using $39 million from the Recovery Act to decommission the Brookhaven Graphite Research Reactor, the world's first reactor built solely for peaceful research purposes. Recovery Act Workers Clear Reactor Shields from Brookhaven Lab More Documents & Publications Brookhaven Graphite Research Reactor Workshop 2011 ARRA Newsletters Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell

23

Brookhaven Lab Chemists Win R&D 100 Award for Fuel Cell Research  

Fuel cell research at Brookhaven National Lab was recently recognized by R&D Magazine as one of the top technological achievements ...

24

Brookhaven National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven National Laboratory Brookhaven National Laboratory Brookhaven National Laboratory Site Overview The Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S. Army installation site, Brookhaven is located on 5,263-acre site on Long Island in Upton, New York, approximately 60 miles east of New York City. Historically, BNL was involved in the construction of accelerators and research reactors such as the Cosmotron, the High Flux Beam Reactor (HFBR) and the Brookhaven Graphite Research Reactor (BGRR). These accelerators and reactors lead the way in high-energy physics experiments and subsequent discoveries. To complete the EM BNL mission the following must be completed, all

25

Brookhaven Teaching Fellows Program  

Energy.gov (U.S. Department of Energy (DOE))

The Brookhaven Teaching Fellows Program is a six-week special training and research summer experience for in-service science and mathematics teachers at Brookhaven National Laboratory....

26

Epithermal beam development at the BMRR (Brookhaven Medical Research Reactor): Dosimetric evaluation  

SciTech Connect

The utilization of an epithermal neutron beam for neutron capture therapy (NCT) is desirable because of the increased tissue penetration relative to a thermal neutron beam. Over the past few years, modifications have been and continue to be made at the Brookhaven Medical Research Reactor (BMRR) by changing its filter components to produce an optimal epithermal beam. An optimal epithermal beam should contain a low fast neutron contamination and no thermal neutrons in the incident beam. Recently a new moderator for the epithermal beam has been installed at the epithermal port of the BMRR and has accomplished this task. This new moderator is a combination of alumina (Al{sub 2}O{sub 3}) bricks and aluminum (Al) plates. A 0.51 mm thick cadmium (Cd) sheet has reduced the thermal neutron intensity drastically. Furthermore, an 11.5 cm thick bismuth (Bi) plate installed at the port surface has reduced the gamma dose component to negligible levels. Foil activation techniques have been employed by using bare gold and cadmium-covered gold foil to determine thermal as well as epithermal neutron fluence. Fast neutron fluence has been determined by indium foil counting. Fast neutron and gamma dose in soft tissue, free in air, is being determined by the paired ionization chamber technique, using tissue equivalent (TE) and graphite chambers. Thermoluminescent dosimeters (TLD-700) have also been used to determine the gamma dose independently. This paper describes the methods involved in the measurements of the above mentioned parameters. Formulations have been developed and the various corrections involved have been detailed. 12 refs.

Saraf, S.K.; Fairchild, R.G.; Kalef-Ezra, J.; Laster, B.H.; Fiarman, S.; Ramsey, E. (Brookhaven National Lab., Upton, NY (USA); Ioannina Univ. (Greece); Brookhaven National Lab., Upton, NY (USA); State Univ. of New York, Stony Brook, NY (USA). Health Science Center)

1989-08-24T23:59:59.000Z

27

Preliminary Notice of Violation, Brookhaven Science Associates, LLC -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Notice of Violation, Brookhaven Science Associates, LLC Preliminary Notice of Violation, Brookhaven Science Associates, LLC - WEA-2013-01 Preliminary Notice of Violation, Brookhaven Science Associates, LLC - WEA-2013-01 This letter refers to the Office of Health, Safety and Security's Office of Enforcement and Oversight investigation into the facts and circumstances associated with a fall injury event that occurred on November 29, 2011, while workers were torch-cutting the steel walls of the decommissioned Brookhaven Graphite Research Reactor in building 701 at the Brookhaven National Laboratory. The results of the U.S. Department of Energy (DOE) investigation were provided to Brookhaven Science Associates, LLC (BSA) in an investigation report dated November 28, 2012. DOE convened an enforcement conference on March 14, 2013, with you and members of your

28

Preliminary Notice of Violation - Brookhaven Science Associates, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 29, 2013 CERTIFIED MAIL RETURN RECEIPT REQUESTED Dr. Doon Gibbs President Brookhaven Science Associates, LLC Brookhaven National Laboratory 40 Brookhaven Avenue Upton, New York 11973-5000 WEA-2013-01 Dear Dr. Gibbs: This letter refers to the Office of Health, Safety and Security's Office of Enforcement and Oversight investigation into the facts and circumstances associated with a fall injury event that occurred on November 29, 2011, while workers were torch-cutting the steel walls of the decommissioned Brookhaven Graphite Research Reactor in building 701 at the Brookhaven National Laboratory. The results of the U.S. Department of Energy (DOE) investigation were provided to Brookhaven Science Associates, LLC (BSA) in an investigation report dated

29

Staff Services | Brookhaven National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

services that support and assist the world-class scientific research performed at Brookhaven National Laboratory. Our services are available to all Brookhaven Departments,...

30

Community Relations, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tour group Tour Program Meet the scientists who make the research at Brookhaven National Laboratory happen Brookhaven National Laboratory offers the unique opportunity for...

31

Comparability of Isocs instrument in radionuclide characterization at Brookhaven National Laboratory  

E-Print Network (OSTI)

This report describes a DOE Accelerated Site Technology Deployment project being conducted at Brookhaven National Laboratory to deploy innovative, radiological, in situ analytical techniques. The technologies are being deployed in support of efforts to characterize the Brookhaven Graphite Research Reactor (BGRR) facility, which is currently undergoing decontamination and decommissioning.

Brookhaven National; Paul Kalb; Larry Luckett; Kevin Miller; Carl Gogolak; Larry Milian; Paul D. Kalb; Larry W. Luckett; Kevin M. Miller; Carl V. Gogolak; Laurence W. Milian

2000-01-01T23:59:59.000Z

32

Brookhaven National Laboratory is home to world-class research facilities and sc  

NLE Websites -- All DOE Office Websites (Extended Search)

is home to world-class research facilities and scientific is home to world-class research facilities and scientific departments which attract resident and visiting scientists in many fields. This outstanding mix of machine- and mind-power has on seven occasions produced research deemed worthy of the greatest honor in science: the Nobel Prize. 2009 Nobel Prize in Chemistry Venkatraman Ramakrishnan, of the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK, a former employee in Brookhaven's Biology Department, and a long-time user of Brookhaven's National Synchrotron Light Source (NSLS), and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the Weizmann Institute of Science for studying the structure and function of the ribosome.

33

A neutronic feasibility study for LEU conversion of the Brookhaven Medical Research Reactor (BMRR).  

SciTech Connect

A neutronic feasibility study for converting the Brookhaven Medical Research Reactor from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with Brookhaven National Laboratory. Two possible LEU cores were identified that would provide nearly the same neutron flux and spectrum as the present HEU core at irradiation facilities that are used for Boron Neutron Capture Therapy and for animal research. One core has 17 and the other has 18 LEU MTR-type fuel assemblies with uranium densities of 2.5g U/cm{sup 3} or less in the fuel meat. This LEU fuel is fully-qualified for routine use. Thermal hydraulics and safety analyses need to be performed to complete the feasibility study.

Hanan, N. A.

1998-01-14T23:59:59.000Z

34

Brookhaven highlights. Report on research, October 1, 1992--September 30, 1993  

SciTech Connect

This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications.

Rowe, M.S.; Belford, M.; Cohen, A.; Greenberg, D.; Seubert, L. [eds.

1993-12-31T23:59:59.000Z

35

Brookhaven Council  

NLE Websites -- All DOE Office Websites (Extended Search)

padlock icon Internal Documents Brookhaven Council The Brookhaven Council is an elected body that advises the Director on matters affecting the scientific staff. The Council is...

36

Brookhaven National Laboratory: Technology Commercialization ...  

Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies.

37

Recovery Act Workers Clear Reactor Shields from Brookhaven Lab  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UPTON, N.Y. - American Recovery and Reinvestment Act UPTON, N.Y. - American Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once used to absorb neutrons produced for research. The Brookhaven National Laboratory is using $39 million from the Recovery Act to decommission the Brookhaven Graphite Research Reactor, the world's first reactor built solely for peaceful research purposes. The decommissioning is slated for completion later this year and will end Office of Environmental Management legacy cleanup activities at the Lab. The neutron shields were located on the north and south sides of a 700-ton graphite pile. The three-inch-thick shields absorbed neutrons that escaped from the graphite pile. The shields also limited movement of the pile when the reactor was in opera-

38

Brookhaven highlights  

SciTech Connect

This publication provides a broad overview of the research programs and efforts being conducted, built, designed, and planned at Brookhaven National Laboratory. This work covers a broad range of scientific disciplines. Major facilities include the Alternating Gradient Synchrotron (AGS), with its newly completed booster, the National Synchrotron Light Source (NSLS), the High Flux Beam Reactor (HFBR), and the RHIC, which is under construction. Departments within the laboratory include the AGS department, accelerator development, physics, chemistry, biology, NSLS, medical, nuclear energy, and interdepartmental research efforts. Research ranges from the pure sciences, in nuclear physics and high energy physics as one example, to environmental work in applied science to study climatic effects, from efforts in biology which are a component of the human genome project to the study, production, and characterization of new materials. The paper provides an overview of the laboratory operations during 1992, including staffing, research, honors, funding, and general laboratory plans for the future.

Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L. (eds.)

1992-01-01T23:59:59.000Z

39

BNL | Brookhaven Science Associates  

NLE Websites -- All DOE Office Websites (Extended Search)

> Prime Contract > Prime Contract Brookhaven Science Associates Brookhaven Science Associates (BSA) was established for the sole purpose of managing and operating Brookhaven National Laboratory (BNL) for DOE's Office of Science. BSA, a limited-liability company, was formed as a 50-50 partnership between Battelle, a nonprofit applied science and technology organization, and The Research Foundation of State University of New York (SUNY) on behalf of Stony Brook University (SBU), the largest academic user of Laboratory facilities. BSA is the legal entity responsible for leading BNL successfully through the 21st century. Both SBU and Battelle are strongly motivated to ensure Brookhaven's success. Being Brookhaven's closest university neighbor, SBU is the single largest user of BNL facilities; BNL facilities and scientific staff are

40

Brookhaven Council  

NLE Websites -- All DOE Office Websites (Extended Search)

Council By-Laws as Amended January 2013 Council By-Laws as Amended January 2013 Brookhaven Council Introduction The BNL Council (Council) is a body elected by the scientific staff that advises and makes recommendations to the Director about Laboratory policies affecting the scientific staff. The Council is particularly concerned with the maintenance of an atmosphere conducive to excellence in scientific research at BNL. The Council reports to the Director. Membership The Council currently consists of 17 members elected from the tenured scientific staff and apportioned as indicated among the following groups: Biosciences Department 2 Collider-Accelerator Department / Superconducting Magnet Division 2 Chemistry Department 2 Nuclear Science and Technology Department / Nonproliferation and National Security Department / Sustainable Energy Technologies Department / Environmental Sciences Department / Computational Science Center 3

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Burr Brookhaven National Laboratory From: Frances 4676- 93005, Ben 10176-32905 Past BNL Research Interests We have developed two recombinant inbred families to facilitate...

42

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Van't Hof Brookhaven National Laboratory From: 1962-1999 Research Interests The cell biology and cytogenetics of higher plants; specifically the development of commercial fiber in...

43

Community Relations, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental, energy, and basic research. Speakers Bureau Contact: Robyn McKay Brookhaven National Laboratory Community Relations Office Bldg. 400C - P.O. Box 5000 Upton, NY...

44

Technology Search Results | Brookhaven Technology ...  

BSA 09-12 & 13-11: Radiolabeled Vorozole for Breast Cancer Monitoring; ... Brookhaven National Laboratory conducts research in the physical, ...

45

1 BROOKHAVEN SCIENCE ASSOCIATES Brookhaven National Lab  

E-Print Network (OSTI)

Target R&D Simulations #12;2 BROOKHAVEN SCIENCE ASSOCIATES Exploring Eulerian-Lagrangian Formulation;8 BROOKHAVEN SCIENCE ASSOCIATES Superbeam Target Concept #12;9 BROOKHAVEN SCIENCE ASSOCIATES Overview of R1 BROOKHAVEN SCIENCE ASSOCIATES N. Simos Brookhaven National Lab May 1-2, Oxford U., UK High Power

McDonald, Kirk

46

Educational Programs at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

NY 11973-5000 www.bnl.gov Adventures in Learning A View of Brookhaven Brookhaven National Laboratory is a multipurpose research laboratory funded by the U.S. Department of...

47

Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics  

Science Conference Proceedings (OSTI)

Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the second one following the Berkeley Summer Program taken place in June of 2009. This program at BNL focused on theory and had many presentations on a wide range of theoretical aspects on nucleon spin, from perturbative-QCD calculations to models, and to the first principle lattice calculation. It also had a good number of summary talks from all major experimental collaborations on spin physics. The program facilitated many discussions between theorists as well as experimentalists. With five transparencies from each presentation at the Summer Program, this proceedings provides a valuable summary on the status and progress, as well as the future prospects of spin physics.

Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.

2011-08-02T23:59:59.000Z

48

About Brookhaven Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

passion passion for discover y Cover photo: Map showing magnetic flux lines for nickel nanoparticles passion for discover y About Brookhaven Mission Brookhaven National Laboratory's primary mission is to deliver science-based solutions to the nation's energy, environmental, and security needs. The Laboratory is noted for the design, construction, and operation of large-scale, cutting-edge research facilities that support thousands of scientists worldwide, its fundamental research into the nature of matter and materials and for biomedical and climate studies. Location Upton, New York (on Long Island, 60 miles east of New York City) Funding About $500 million, primarily from the U.S. Department of Energy (DOE) Management Brookhaven National Laboratory is operated and managed for the U.S. Department

49

Brookhaven Retired Employee's Association (BERA), Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to Brookhaven Retired Employees' Association (BREA) The purpose of the Brookhaven Retired Employee's Association (BREA) is to further retiree interests and benefits; to...

50

Experimental results from the first year of operation of the solar ground coupling research facility at Brookhaven National Laboratory  

DOE Green Energy (OSTI)

Results from the first year of operation of the solar ground coupling research facility at Brookhaven National Laboratory (BNL) are presented. Nine experiments which are first generation ground coupled heat transfer and storage devices for a solar source heat pump system have been operated since December 1978. A computer program called GROCS which models the heat transfer between these devices and the earth has been written (and subsequently integrated with the solar energy system simulation program TRNSYS by John W. Andrews). In this paper the ground coupling research program, the first generation experiments, and the underground heat flow model GROCS are described. Experimental results from December 1978 to September 1979 are presented and compared to model directions.

Meta, P D

1979-01-01T23:59:59.000Z

51

STORED ENERGY: GROWTH AND ANNEALING STATUS OF GRAPHITE MODERATOR IN THE BNL RESEARCH REACTOR. Final Report  

SciTech Connect

The present sthtus, past annealing procedures and experiences, future annealing procedures, annealing sehedule, revised annealing procedure (1958), procedure for combating a graphite fire in fuel channel, high-temperature stored energy, and graphite burning experiments are reportcd for the BNL Research Reactor. The following subjccts are discussed in the appendixes: control of radiation damage in a graphitc reactor; annealing of graphite moderator structure in the BNL; annealing operation in BNL graphite reactor; effect of pile radiation on mechanical and other properties of graphite; neutron sensing instrumentation; instrumentation for sensing fuel failures; thermocouple pattern for enriched fuel loading; environmental hazard from a molten fuel element; retention of volatile flssion products on filters; retention of volatile fission products on water tube coolers; retention of volatile fission products in molten fuel plates; and release of the lowtemperature stored energy in the BEPO Pile. (W.L.H.)

1959-10-31T23:59:59.000Z

52

In accounts of seminal neutron research at ORNL's Graphite Reactor,  

E-Print Network (OSTI)

requested permission to set up an X-ray diffractometer he had brought from the University of Chicago for his of the Graphite Reactor. "I was a student at the University of Chicago in 1942 when Enrico Fermi was doing his. 25 Scrooge (OR Playhouse) Nov. 27 Football: UT vs. Kentucky Dec. 4 Fiddler on the Roof Dec. 11 Best

53

Brookhaven National Lab Economic Impact Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Lab spans a wide range of basic and applied research in fundamental physics, basic energy sciences and energy technology, the life sciences, nanoscience and...

54

Brookhaven Highlights, January 1982-March 1983  

SciTech Connect

Research at Brookhaven National Laboratory is summarized. Major headings are high energy physics, physics and chemistry, life sciences, applied energy science, support activities and administration. (GHT)

Kuper, J.B.H.; Rustad, M.C. (eds.)

1983-01-01T23:59:59.000Z

55

Brookhaven Lecture Series | Archives | 1-100  

NLE Websites -- All DOE Office Websites (Extended Search)

1961 Neutron Physics of and with the High Flux Beam Research Reactor Herbert Kouts, Nuclear Engineering 6th Brookhaven Lecture April 12, 1961 High Energy Accelerators Ernest...

56

Brookhaven Women Engineers' Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Mission | Other links BWEN Brookhaven Women Engineers' Network BNLlogo Brookhaven Women Engineers' Network Network for professionals in engineering, computing and...

57

BNL | Visiting Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaining Site Access Access to Brookhaven is available to those who have official business with the Laboratory, are properly sponsored by a Brookhaven employee, or are attending an...

58

BNL | About Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

About Brookhaven National Laboratory About Brookhaven National Laboratory BNL aerial photo Brookhaven National Laboratory is a multipurpose research institution funded primarily by the U.S. Department of Energy's Office of Science. Located on the center of Long Island, New York, Brookhaven Lab brings world-class facilities and expertise to the most exciting and important questions in basic and applied science-from the birth of our universe to the sustainable energy technology of tomorrow. We operate cutting-edge large-scale facilities for studies in physics, chemistry, biology, medicine, applied science, and a wide range of advanced technologies. The Laboratory's almost 3,000 scientists, engineers, and support staff are joined each year by more than 4,000 visiting researchers from around the world. Our award-winning history stretches back to 1947,

59

YOUNG RESEARCHER SYMPOSIUM  

NLE Websites -- All DOE Office Websites (Extended Search)

2 BROOKHAVEN NATIONAL LABORATORY CALL FOR PAPERS YOUNG RESEARCHER SYMPOSIUM 2012 BROOKHAVEN NATIONAL LABORATORY YOUNG RESEARCHER SYMPOSIUM 2012 BROOKHAVEN NATIONAL LABORATORY YOUNG...

60

YOUNG RESEARCHER SYMPOSIUM  

NLE Websites -- All DOE Office Websites (Extended Search)

3 BROOKHAVEN NATIONAL LABORATORY CALL FOR PAPERS YOUNG RESEARCHER SYMPOSIUM 2012 BROOKHAVEN NATIONAL LABORATORY YOUNG RESEARCHER SYMPOSIUM 2012 BROOKHAVEN NATIONAL LABORATORY YOUNG...

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Family Programs | Careers at Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers at Brookhaven Home For Job Seekers Job List Life at Brookhaven Benefits Family Programs Recreation & Fitness Why Brookhaven? For New Hires For Employees Family Programs...

62

Careers at Brookhaven Lab | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers at Brookhaven Home For Job Seekers Job List Life at Brookhaven Benefits Family Programs Recreation & Fitness Why Brookhaven? For New Hires For Employees Challenge Yourself...

63

Brookhaven Lecture Series | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Next Brookhaven Lecture Next Brookhaven Lecture JAN 22 Wednesday Brookhaven Lecture "491st Brookhaven Lecture: Juergen Thieme of Photon Sciences Directorate" Presented by Juergen Thieme, Brookhaven Lab's Photon Sciences Directorate 4 pm, Berkner Hall Auditorium Wednesday, January 22, 2014, 4:00 pm Hosted by: Allen Orville Refreshments will be served before and after the lecture. Brookhaven Lectures are free and open to the Public. Visitors to the Laboratory age 16 and older must bring photo ID. About the Brookhaven Lecture Series Gertrude Scharff-Goldhaber Gertrude Scharff-Goldhaber The Brookhaven Lectures, held by and for the Brookhaven staff, are meant to provide an intellectual meeting ground for all scientists of the Laboratory. In this role they serve a double purpose: they are to acquaint

64

Nobel Prize | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nobel Prize Nobel Prize Nobel Prize Home 2009 2003 2002 1988 1980 1976 1957 Other Prizes Brookhaven National Laboratory is home to world-class research facilities and scientific departments which attract resident and visiting scientists in many fields. This outstanding mix of machine- and mind-power has on seven occasions produced research deemed worthy of the greatest honor in science: the Nobel Prize. placeholder 2009 Steitz, Ramakrishnan 2009 Nobel Prize in Chemistry Venkatraman Ramakrishnan, of the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK, a former employee in Brookhaven's biology department, and a long-time user of Brookhaven's National Synchrotron Light Source (NSLS), and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the

65

Brookhaven Retired Employee's Association (BERA), Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009; here is a PDF of the article, "Getting the 'Scoop' on Lab Happenings". (The Brookhaven Bulletin article was the source of the information in this posting.) More...

66

2012 CHEMISTRY & PHYSICS OF GRAPHITIC CARBON MATERIALS GORDON RESEARCH CONFERENCE, JUNE 17-22, 2012  

Science Conference Proceedings (OSTI)

This conference will highlight the urgency for research on graphitic carbon materials and gather scientists in physics, chemistry, and engineering to tackle the challenges in this field. The conference will focus on scalable synthesis, characterization, novel physical and electronic properties, structure-properties relationship studies, and new applications of the carbon materials. Contributors

Fertig, Herbert

2012-06-22T23:59:59.000Z

67

Staff Services | Brookhaven National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Our mission is to provide services that support and assist the world-class Our mission is to provide services that support and assist the world-class scientific research performed at Brookhaven National Laboratory. Our services are available to all Brookhaven Departments, Divisions, guests, users, and visiting researchers. The Staff Services office is located in Building 400, 20 Brookhaven Avenue. Get maps and directions. Food Services food services Food services are an integral part of life at BNL. We offer an on-site cafeteria, full service restaurant, a cafe serving Starbuck's coffee and vending machines. Housing Services housing services BNL attracts more than 4,500 visiting scientists from all over the world each year. To support our guests, 333 on-site housing units are available for rent. Mail Services mail services The BNL Mail Room handles all official U.S. mail, through our on-site U.S.

68

CHARACTERIZATION OF LEAK PATHWAYS IN THE BELOW GRADE DUCTS OF THE BROOKHAVEN GRAPHITE RESEARCH REACTOR USING PERFLUOROCARBON TRACERS.  

SciTech Connect

The focus of this program was the characterization of the soils beneath the main air ducts connecting the exhaust plenums with the Fan House. The air plenums experienced water intrusion during BGRR operations and after shutdown. The water intrusions were attributed to rainwater leaks into degraded parts of the system and to internal cooling water system leaks. As part of the overall characterization efforts, a state-of-the-art gaseous perfluorocarbon tracer technology was utilized to characterize leak pathways from the ducts. This in turn suggests what soil regions under or adjacent to the ductwork should be emphasized in the characterization process. Knowledge of where gaseous tracers leak from the ducts yields a conservative picture of where water transport, out of or into, the ducts might have occurred.

HEISER,J.; SULLIVAN,T.; KALB,P.; MILIAN,L.; WILKE,R.; NEWSON,C.; LILIMPAKIS,M.

2001-04-01T23:59:59.000Z

69

Download the Brookhaven Logo  

NLE Websites -- All DOE Office Websites (Extended Search)

the Brookhaven Logo Brookhaven Logo Usage Guide Select a file by clicking on the appropriate link below. Once the logo opens, click and hold to save it to your computer. If you...

70

Brookhaven Nanoscience and Nanomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscience and Nanomaterials Nanoscience and Nanomaterials The study of nanomaterials-materials on the scale of a nanometer, or a billionth of a meter-is a burgeoning area of study in physics, as well as materials science, chemistry, and biology. This research is an important because many physical and chemical properties of a material change dramatically at the nanoscale. At Brookhaven, physicists collaborate with materials scientists, biologists, and chemists on various nanomaterial research projects. One object under study is the carbon nanotube, a cylindrical carbon structure that is typically a few nanometers wide and can be up to millions of nanometers long. Carbon nanotubes possess exceptional electric and structural properties for their size, making them attractive for many applications. Now, Brookhaven scientists have found one more interesting property: A single nanotube can emit infrared light when a voltage is applied across it, which makes it the world's first electrically controllable light emitter. This research is ongoing, and the scientists hope to find a way to make the nanotube emit visible light.

71

Brookhaven Physics: Into the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics: Into the Future Physics: Into the Future To remain at the frontier of science, Brookhaven is continually evaluating its research programs and planning new or revised investigations in areas that the U.S. Department of Energy identifies as national science priorities and that make use of Brookhaven scientists' interests and strengths. STAR detector (L) and PHENIX detector After discovering quark-gluon plasma, physicists will proceed to measure details of its many intriguing characteristics and properties, and continue to investigate many other aspects of heavy ion physics and spin physics. To undertake these tasks, Brookhaven is planning to upgrade RHIC to RHIC-II by increasing the facility's luminosity, or collision rate, by a factor of ten, thereby increasing the rate of plasma production and the ability to

72

Brookhaven Highlights, October 1, 1987--September 30, 1988  

SciTech Connect

This report highlights Brookhaven National Laboratory's research activities for fiscal year 1988. Research programs range from physics and chemistry to medical and biology. (JF)

Rowe, M.S.; Cohen, A.; Seubert, L.; Horner Kuper, J.B. (eds.)

1988-01-01T23:59:59.000Z

73

Radiological environmental monitoring report for Brookhaven National Laboratory 1967--1970  

Science Conference Proceedings (OSTI)

Brookhaven National Laboratory (BNL) was established in 1947 on the former Army Camp Upton site located in central Long Island, New York. From the very beginning, BNL has monitored the environment on and around the Laboratory site to assess the effects of its operations on the environment. This document summarizes the environmental data collected for the years 1967, 1968, 1969, and 1970. Thus, it fills a gap in the series of BNL annual environmental reports beginning in 1962. The data in this document reflect measurements for those four years of concentrations and/or amounts of airborne radioactivity, radioactivity in streams and ground water, and external radiation levels in the vicinity of BNL. Also included are estimates, made at that time, of BNL`s contribution to radioactivity in the environment. Among the major scientific facilities operated at BNL are the High Flux Beam Reactor, Medical Research Reactor, Brookhaven Graphite Research Reactor, Alternating Gradient Synchrotron, and the 60-inch Cyclotron.

Meinhold, C.B.; Hull, A.P.

1998-10-01T23:59:59.000Z

74

Categorical Exclusion Determinations: Brookhaven Site Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Site Office Categorical Exclusion Determinations: Brookhaven Site Office Categorical Exclusion Determinations issued by Brookhaven Site Office. DOCUMENTS AVAILABLE FOR...

75

Brookhaven Retired Employee's Association (BERA), Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletter Editor: Mona Rowe mrowe@bnl.gov 631-344-5862 Contact us by U.S. Mail: Brookhaven National Laboratory Attention: BREA Building 421, Room 115B Upton, NY 11973...

76

Fast Physics Project, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

User Forum Report Problems FAQ Contact Us Other Links Can't View PDFs? FASTER (FAst-physics System TEstbed and Research) Project Brookhaven Climate Consortium The FASTER project...

77

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences TECH PROC LN2 Manual Fill...

78

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

reminder to persons whose area will be inspected (i.e. Cognizant Space Managers) Brookhaven National Laboratory Photon Sciences Directorate Subject: ENVIRONMENTAL, SAFETY AND...

79

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

current version by checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences ELEC PPE -...

80

BROOKHAVEN COUNCIL COMMENTARY  

NLE Websites -- All DOE Office Websites (Extended Search)

February 2004 The Brookhaven Council is a group of tenured scientists elected by the scientific staff that advises and makes recommendations to the Director about the Laboratory...

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

BROOKHAVEN NATIONAL LABORATORY - Energy  

Laboratory Plan FY 2010-2019 June2,2010 BROOKHAVEN NATIONAL LABORATORY Accelerating Innovation Alane for Hydrogen Storage and Delivery June 2012

82

Brookhaven Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Nuclear Physics Historically, nuclear physicists have studied the structure, characteristics, and behavior of the atomic nucleus and the nature of the nuclear force....

83

Brookhaven National Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

of Stradivari Violins: Fact or Myth? What Can Science Tell Us? Bonita London Brookhaven Lab and Stony Brook University Launch Program to Increase Underrepresented Minority Faculty...

84

Brookhaven Council 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

2000-2001 annual report The Brookhaven Council (the Council) consists of representatives from various Departments and Divisions of the Laboratory, elected by the Tenured and Senior...

85

title Brookhaven National Laboratory Inside RHIC News Features...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inside RHIC News Features title description Brookhaven National Laboratory conducts research in the physical biomedical and environmental sciences as well as in energy technologies...

86

Brookhaven highlights, October 1, 1989--September 30, 1990  

SciTech Connect

This report discusses research being conducted at Brookhaven National Laboratory. Highlights from all the department are illustrated. The main topics are on accelerator development and applications. (LSP)

Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.; Kuper, J.B.H. (eds.)

1990-01-01T23:59:59.000Z

87

Brookhaven and ATLAS | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven and ATLAS Brookhaven and ATLAS BNL scientists install cathode strip chambers BNL scientists install cathode strip chambers - designed and built at the Laboratory - and monitored drift tubes into the ATLAS small wheel. Image credit: CERN. Brookhaven physicists and engineers are participating in one of the most ambitious scientific projects in the world - constructing, operating, doing physics analysis of the data, and upgrading a machine the size of a seven-story building that will open up new frontiers in the human pursuit of knowledge about elementary particles and their interactions. The machine, dubbed ATLAS, is one of four facilities located at the LHC near Geneva, in Switzerland. The LHC consists of two circular vacuum pipes in which protons travel in opposite directions and collide at nearly the

88

Brookhaven Retired Employee's Association (BERA), Brookhaven Employees  

NLE Websites -- All DOE Office Websites (Extended Search)

Constitution & By-Laws Constitution & By-Laws Homepage Adopted July 8, 2008 CONSTITUTION AND BYLAWS BROOKHAVEN RETIRED EMPLOYEES' ASSOCIATION Article I - Name The name of this organization shall be the Brookhaven National Laboratory Retired Employees Association, hereinafter referred to as BREA. Article II - Purpose The purpose of BREA shall be to further retiree interests and benefits, to build closer community ties between Brookhaven National Laboratory (hereinafter referred to as BNL) and its neighbors, to publish a newsletter providing communication with retired employees, and to encourage activities for social interaction within the retirement community. Article III - Membership Section 1. Eligibility of membership Membership of BREA shall be open to the following: A. Regular members, consisting of retired employees and employees out on long-term disability.

89

Historical Photographs: Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory 1. Positron emitter detector (circa 1962) used to detect brain tumors at Brookhaven National Laboratory (252Kbytes) 2. Medical activities at...

90

Brookhaven Women In Science (BWIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Women In Science (BWIS) News Can Women Scientists Balance Family and Successful Careers? A Talk at Brookhaven Lab, September 18 'Incentives for Innovation' - A talk at...

91

Brookhaven Women In Science (BWIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory on Thursday, May 30. The talk was sponsored by Brookhaven Women in Science (BWIS) and Brookhaven Science Associates (the company that manages the Lab). 374...

92

Surface and Soil Cleanup at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface and Soil Projects Surface and Soil Projects placeholder Aerial view of capped landfills A major part of the overall site cleanup involved addressing contaminated soils, underground tanks, and waste storage areas. All of the major soil projects have now been completed, with the exception of some soils that will need to be cleaned up during the decommissioning of the Brookhaven Graphite Research Reactor and High Flux Beam Reactor. Following are a list of major surface and soil cleanup projects that have been completed since 1994: Three out-of-service 100,000 gallon aboveground waste tanks were removed and disposed of at a licensed off-site disposal facility. Sixteen underground storage tanks (USTs) were removed between 1988 and 2005 under the cleanup program. The project included the removal, transportation, and disposal of the tanks and approximately 4,000 cubic yards of soil and debris.

93

The Guide to Brookhaven National Laboratory (BNL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to Brookhaven National Laboratory (BNL) Guide to Brookhaven National Laboratory (BNL) Print Friendly Document Because you are not running javascript or allowing active scripting, some features on this page my not work. >> Enable Javascript << Welcome to Brookhaven National Laboratory. Established in 1947 on Long Island, at Upton, N.Y., BNL is a multi-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy (DOE). Seven Nobel Prizes have been awarded for discoveries made at the Lab. BNL has a staff of approximately 3,000 scientists, engineers, technicians, and support staff and more than 4,000 guest researchers annually. To support DOE's missions, BNL carries out forefront basic and applied research with the cooperation and appropriate involvement of our scientific

94

BNL | Our History: Reactors as Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

> See also: Accelerators > See also: Accelerators Brookhaven History: Using Reactors as Research Tools BGRR Brookhaven Graphite Research Reactor The Brookhaven Graphite Research Reactor (BGRR) was the Laboratory's first big machine and the first peace-time reactor built in the United States following World War II. The reactor's primary mission was to produce neutrons for scientific experimentation and to refine reactor technology. At the time, the BGRR could accommodate more simultaneous experiments than any other reactor. Scientists and engineers from every corner of the U.S. came to use the reactor, which was not only a source of neutrons for experiments, but also an excellent training facility. Researchers used the BGRR's neutrons as tools for studying atomic nuclei and the structure of solids, and to investigate many physical, chemical and

95

Brazing graphite to graphite  

DOE Patents (OSTI)

Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.

Peterson, George R. (Andersonville, TN)

1976-01-01T23:59:59.000Z

96

Video Games - Did They Begin at Brookhaven  

Office of Scientific and Technical Information (OSTI)

Video Games – Did They Begin at Brookhaven? Video Games – Did They Begin at Brookhaven? Additional Web Pages The following account, written in 1981, tells how a Department of Energy research and development program led to the pioneering development of video games. William Higinbotham William Higinbotham First Pong, now Space Invaders, next Star Castle – video games have mesmerized children of at all ages across the country and around the world. Where did it all begin? Possibly at Brookhaven National Laboratory. In 1958, William Higinbotham, then head of BNL's Instrumentation Division, designed what may have been one of the first video games. Back then, Brookhaven had visitors days in the fall, and thousands of people came to tour the Lab and see exhibits set up in the gymnasium. Higinbotham's game was an illustration of what the Instrumentation Division could design and build.

97

Brookhaven National Laboratory, Office  

NLE Websites -- All DOE Office Websites (Extended Search)

of 2006 the Office of Educational Programs (OEP) at the U.S. Department of Energy's Brookhaven National Laboratory launched the Open Space Stewardship Program as part of its Green...

98

Enforcement Letter, Brookhaven Science Associates - January 16...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Science Associates - January 16, 2002 Enforcement Letter, Brookhaven Science Associates - January 16, 2002 January 16, 2002 Enforcement Letter issued to Brookhaven...

99

March 23, 2009: Chu at Brookhaven | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009: Chu at Brookhaven 2009: Chu at Brookhaven March 23, 2009: Chu at Brookhaven March 23, 2009: Chu at Brookhaven March 23, 2009 Secretary Chu, during a visit to DOE's Brookhaven National Laboratory, announces $1.2 billion in new science funding under the American Recovery and Reinvestment Act for major construction, laboratory infrastructure, and research efforts sponsored across the nation by the DOE Office of Science. Among the approved projects (pdf) are: $150 million to accelerate ongoing construction on the National Synchrotron Light Source-II at the Brookhaven lab, $123 million for major construction, modernization, and needed decommissioning of laboratory facilities at various DOE national laboratories, $65 million to accelerate construction of the 12-Billion Electron Volt Upgrade of the Continuous Electron Beam Accelerator Facility

100

Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions  

Science Conference Proceedings (OSTI)

Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the formation of quarkonium in nuclear medium as well as the strong interacting quark-gluon matter produced in heavy ion collisions; and heavy quarkonium properties from the first principle lattice calculations. The heavy quarkonium production at a future Electron-Ion Collider (EIC) was also discussed at the meeting. The highlight of the meeting was the apparent success of the NRQCD approach at next-to-leading order in the description of the quarkonium production in proton-proton, electron-proton and electron positron collisions. Still many questions remain open in lattice calculations of in-medium quarkonium properties and in the area of cold nuclear matter effects.

Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J., Ruan, L.

2011-08-03T23:59:59.000Z

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DOE Removes Brookhaven Contractor  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Removes DOE Removes Brookhaven Contractor Peña sends a message to DOE facilities nationwide INSIDE 2 Accelerator Rx 4 FermiKids 6 Spring at Fermilab Photos courtesy of Brookhaven National Laboratory by Judy Jackson, Office of Public Affairs Secretary of Energy Federico Peña announced on Thursday, May 1, that the Department of Energy would immediately terminate the current management contract with Associated Universities, Inc. at Brookhaven National Laboratory in Upton, New York. Peña said that he made the decision after receiving the results of a laboratory safety management review conducted by the independent oversight arm of DOE's Office of Environment, Safety and Health. In addition, the Secretary said he found unacceptable "the continued on page 8 Volume 20 Friday, May 16, 1997

102

BNL-52351-2003 Brookhaven National Laboratory's  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Brookhaven National Laboratory's Annual Report of Laboratory Directed Research & Development Program Activities For FY 2003 Director's Office BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES UNITED STATES DEPARTMENT OF ENERGY UPTON, NEW YORK 1 1973-5000 UNDER CONTRACT NO. DE-AC02-98CH10886 December 2003 Acknowledgments The Laboratory Directed Research and Development (LDRD) Program is managed by Leonard Newman, who serves as the Scientific Director, and by Kevin Fox, Special Assistant to the Assistant Laboratory Director for Finance (ALDF). Preparation of the FY 2003 report was coordinated and edited by Leonard Newman and Kevin Fox, who wish to thank D.J. Greco, Regina Paquette, and Maria Ohlsen for their assistance in organizing, typing, and proofing

103

BNL-52351-2004 Brookhaven National Laboratory's  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Brookhaven National Laboratory's Annual Report of Laboratory Directed Research & Development Program Activities For FY 2004 Director's Office BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES UNITED STATES DEPARTMENT OF ENERGY UPTON, NEW YORK 11973-5000 UNDER CONTRACT NO. DE-AC02-98CH10886 December 2004 Acknowledgments The Laboratory Directed Research and Development (LDRD) Program is managed by Leonard Newman, who serves as the Scientific Director, and by Kevin Fox, Special Assistant to the Assistant Laboratory Director for Finance (ALDF). Preparation of the FY 2004 report was coordinated and edited by Leonard Newman and Kevin Fox, who wish to thank D.J. Greco, Regina Paquette, and Maria Ohlsen for their assistance in organizing, typing, and proofing

104

Brookhaven National Laboratory Technology Marketing ...  

Brookhaven National Laboratory Technology Marketing ... a critical reaction in a number of growing energy generation and utilization ... Energy Analys ...

105

Brookhaven Veterans Association, Brookhaven Employees Recreation  

NLE Websites -- All DOE Office Websites (Extended Search)

BVA Sgt. at Arms: Dennis Ryan May 25, 2012 Memorial Ceremony @ Brookhaven Center TAPS played by Thomas Butterfield FSO US Coast Guard Auxiliary Band Fort Salonga, NY Flotilla 22-7 "Building Arches of Honor for Fallen Firefighters and Soldiers", article from The Bulletin. Taps... Photos below are from the wreath laying at Calverton National Cemetery on Dec 12, 2009. We had 50 volunteers including the Civil Air patrol who presented the colors. The wreaths were laid in Section 3 which was opened in the 1980's. Approximately 1500 wreaths were distributed in about 40 minutes. Taps... View Event: PDF Version | PowerPoint 10th Mountain Division Soldier dies after roll-over incident in Afghanistan FORT DRUM, NY -- A 10th Mountain Division Soldier from Fort Drum died of injuries sustained during a vehicle roll-over on Aug. 22 in Logar Province, Afghanistan.

106

The Brookhaven Advocacy Council (BAC), Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Chart Organization Chart BNL Prime Contract Other Information BNL Site Index Can't View PDFs? Brookhaven Advocacy Council The Brookhaven Advocacy Council (BAC) advises and makes recommendations to the Laboratory Director on the resolution of employee, guest, and user concerns or issues that are brought to the attention of the BAC. A key component of the Laboratory's system of justice, the BAC is charged with the authority to receive and respond to employee, guest, and user concerns or issues; analyze and research data; and propose resolutions. The BAC shall have access to all pertinent, uncensored information, within the Laboratory's guidelines regarding confidentiality, to assist them in the resolution of concerns or issues. Contacting the BAC Concerns or issues may be brought to the Council's attention by contacting any member of the Council directly, or by calling the BAC hotline, ext. 4200. In addition, the Council will hold monthly meetings, generally the third Thursday of each month at 11:30 a.m., in one of the Berkner Hall meeting rooms. The BAC invites employees, guests, and users to meet with them during the open session of their monthly meetings at Berkner Hall to share with the Council any concern or issue they may have.

107

Graphite Leaching  

Science Conference Proceedings (OSTI)

The graphite moderators of retired gas-cooled nuclear reactors present a difficult challenge during demolition activities. As part of the EPRI graphite initiative on the technical issues involved in the management and disposal of irradiated nuclear graphite, this report examines the international data on leaching of radioactive isotopes from graphite, relevant to the decommissioning of graphite-moderated reactors.

2008-05-21T23:59:59.000Z

108

National Synchrotron Light Source A View of Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

managed for the U.S. Department of Energy managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle National Synchrotron Light Source A View of Brookhaven Brookhaven National Laboratory is a multipurpose re- search laboratory funded by the U.S. Department of En- ergy. Located on a 5,300-acre site on Long Island, New York, the Laboratory operates large-scale facilities for studies in physics, chemistry, biology, medicine, applied science, and advanced technology. Brookhaven's 2,600 scientists, engineers, and support staff are joined each year by more than 5,000 visiting research- ers from around the world.

109

Brookhaven National Laboratory - a passion for discovery  

NLE Websites -- All DOE Office Websites

BNL People BNL People a passion for discovery 2013 Young Researcher Symposium Celebrating Brookhaven Lab's Up-and-Coming Scientists at 2013 Young Researcher Symposium Approximately 300 up-and-coming young researchers collaborating on groundbreaking research at Brookhaven Lab gathered in Berkner last month for the second-annual Young Researcher Symposium. More... Newsroom Video & Live Streaming Receive our weekly newsletter See all Latest News Adopt A Family BNLers Help Brighten Holidays for Local Families atomic-scale microscopy Opposing Phenomena Possible Key to High-Efficiency Electricity Delivery Steven Ritz Physicists Look Toward the High-Energy Horizon Our Mission We advance fundamental research in nuclear and particle physics to gain a deeper understanding of matter, energy, space, and time; apply photon

110

Brookhaven High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy Physics High-Energy Physics High-energy physicists probe the properties and behavior of the most elementary particles in the universe. At the Alternating Gradient Synchrotron (AGS), they perform experiments of unique sensitivity using high-intensity, intermediate-energy beams. The AGS currently provides the world's most intense high-energy proton beam. It is also the world's most versatile accelerator, accelerating protons, polarized protons, and heavy ions to near the speed of light. Magnet system at Brookhaven used to measure the magnetic moment of the muon. Important discoveries in high-energy physics were made at the AGS within the last decade. An international collaboration, including key physicists from Brookhaven, performed a very high-precision measurement of a property

111

Betsy Sutherland - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Betsy M. Sutherland (Deceased) Brookhaven National Laboratory From: 07/01/1977 - 10/7/2009 Passed Areas of Interest Betsy Sutherland heads the Biology Department's User Support Team for the NASA Space Radiation Laboratory (NSRL) at BNL. The NSRL project, carried out jointly with BNL's Collider-Accelerator and Medical Departments, provides the only source in the US of high energy heavy charged particles, used in assessing the effects of space radiation on biological systems, materials and instruments. The Biology Department NSRL support team consists of eight scientific, professional and administrative staffers. They provide scientific and facilities support to over 200 User groups from all over the world, and collaborate in development and maintenance of the NSRL. Betsy Sutherland also chairs the BNL Scientific Advisory Committee for Radiation Research, advisory to NASA and to the BNL Associate Laboratory Director for Nuclear and Particle Physics on research at the NSRL.

112

Brookhaven Employees' Recreation Association (BERA)  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to BERA Brookhaven Employees' Recreation Association The BERA Store will be CLOSED next Wednesday & Thursday, Oct 9 & 10. BNL Facilities are not open to the Public...

113

Brookhaven Landlord Description of Property  

NLE Websites -- All DOE Office Websites (Extended Search)

to this system understands that offsite housing availability CANNOT be listed by Brookhaven National Laboratory unless available for occupancy without regard to race, creed,...

114

Brookhaven Women In Science (BWIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Upcoming Events SEP 18 Wednesday Brookhaven Women In Science (BWIS) Event "Wife, Mother, Scientist or is it the other way around?" Presented by Mina Bissell, Lawrence Berkley...

115

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Deborah Stoner-Ma Brookhaven National Laboratory From: -5132011 Currently at: Stony Brook University Director of Chemical Laboratories Department of Chemistry Stony Brook...

116

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology Department Bus: (631) 344 3415 Building 463 Fax: (631) 344 6398 (Administration) Brookhaven Natl. Lab. Fax: (631) 344 3407 (Department) Upton NY 11973-5000 Email:...

117

Wildlife at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildlife at Brookhaven Wildlife Protection The Laboratory has precautions in place to protect on-site habitats and natural resources. Activities to eliminate or minimize negative...

118

Technology Search Results | Brookhaven Technology ...  

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory ...

119

Technology Search Results | Brookhaven Technology ...  

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National ...

120

Lab Spotlight: Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Pet Scans Show Brain Responses to Light, Electrical Stimulation A study measuring metabolic changes in the brains of sighted people is showing...

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Preliminary Notice of Violation, Brookhaven Science Associates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Notice of Violation, Brookhaven Science Associates, LLC - WEA-2013-01 Preliminary Notice of Violation, Brookhaven Science Associates, LLC - WEA-2013-01 This letter...

122

Community Advisory Council, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The Community Advisory Council Council Members > Don Garber Affiliated Brookhaven Civic Organizations Margaret Malloy American Physical Society Arnie Peskin Brookhaven Retired...

123

Brookhaven National Laboratory Technologies Available for ...  

Brookhaven National Laboratory Technologies Available for Licensing Brookhaven National Laboratory (BNL), located sixty miles east of New York City, is home to seven ...

124

Brookhaven National Laboratory Federal Facility Agreement, February...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven National Laboratory Agreement Name Brookhaven National Laboratory Federal Facility Agreement Under CERCLA Section 120, February 28, 1992 State New York Agreement Type...

125

Brookhaven Lecture Series | Archives | 201-300  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Lecture October 14, 1987 The Cosmotron, BNL 52107 John Blewett, Director's Office 238th Brookhaven Lecture November 18, 1987 Landmarks in Particle Physics at...

126

Enforcement Letter, Brookhaven Science Associates - January 16...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Associates - January 16, 2002 Enforcement Letter, Brookhaven Science Associates - January 16, 2002 January 16, 2002 Enforcement Letter issued to Brookhaven Science...

127

Brookhaven National Lab Economic Impact Report  

NLE Websites -- All DOE Office Websites (Extended Search)

New York State economy Brookhaven National Laboratory and the Future of New York State's Economy Brookhaven National Laboratory's impact on New York State's (and Long Island's)...

128

Environmental Stewardship, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven & the Environment Past operations at Brookhaven National Laboratory resulted in environmental contamination dating back to the early 1940s, when the site was Camp Upton,...

129

Flickr: Brookhaven National Laboratory's Photostream  

NLE Websites -- All DOE Office Websites (Extended Search)

Mail Mail News Sports Finance Weather Games Groups Answers Screen Flickr Mobile More Celebrity Shine Movies Music TV Health Shopping Travel Autos Homes Flickr logo. If you click it, you'll go home Sign Up Explore Recent Photos The Commons Getty Collection Galleries World Map App Garden Camera Finder Flickr Blog Upload Search Sign In Brookhaven National Laboratory 679 Photos December 2008 Member Since Photostream Sets Favorites Map Galleries Collections Archives Tags Photos of Profile Studying Quantum Dots Studying Quantum Dots Brookhaven National Laboratory [★] 0 High-Speed X-Ray 'Camera' High-Speed X-Ray 'Camera' Brookhaven National Laboratory [★] 0 Björn Schenke Björn Schenke Brookhaven National Laboratory [★] 0 eRHIC Schematic eRHIC Schematic Brookhaven National Laboratory [★] 2 0 Nanoscale Catalysts

130

Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991  

SciTech Connect

This report highlights Brookhaven National Laboratory's activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.; Kuper, J.B.H.

1991-01-01T23:59:59.000Z

131

Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991  

SciTech Connect

This report highlights Brookhaven National Laboratory`s activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.; Kuper, J.B.H.

1991-12-31T23:59:59.000Z

132

Database activities at Brookhaven National Laboratory  

SciTech Connect

Brookhaven National Laboratory is a multi-disciplinary lab in the DOE system of research laboratories. Database activities are correspondingly diverse within the restrictions imposed by the dominant relational database paradigm. The authors discuss related activities and tools used in RHIC and in the other major projects at BNL. The others are the Protein Data Bank being maintained by the Chemistry department, and a Geographical Information System (GIS)--a Superfund sponsored environmental monitoring project under development in the Office of Environmental Restoration.

Trahern, C.G.

1995-12-01T23:59:59.000Z

133

Brookhaven Pre-Service Teachers Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Pre-Service Teachers Program Brookhaven Pre-Service Teachers Program Brookhaven Pre-Service Teachers Program June 3, 2013 4:30PM EDT to August 9, 2013 4:30PM EDT Brookhaven National Laboratory This is an internship and is intended to support the intellectual and professional development of students who have a sincere desire to be fully involved in a program which offers an intensive, mentored scientific research experience. Junior and Senior Undergraduate college students who intend to become K-12 teachers with a specialty in science, mathematics or technology, and students who have graduated and are in the process of becoming certified to teach in these areas. Participants will be placed with members of the scientific and professional staff (master teachers) in an educational program developed to give

134

Adopt-A-Platoon, Brookhaven Veterans Association, Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

my platoon, I'd like to say thank you and we appreciate it very much Thanks to the Brookhaven BVA. You all do a great job Please pass this along and give my personal give my...

135

Future Upgrades | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Upgrades Future Upgrades Magnetic field inside a Nb3Sn quadropole magnet Magnetic field inside a Nb3Sn quadropole magnet. Brookhaven leads various technical coordination efforts for the upgrade of the ATLAS detector, including constructing the new silicon tracker, liquid argon electronics, and the new muon chambers. Brookhaven also contributes to the commissioning and future upgrade of the LHC itself in two areas: accelerator physics and superconducting magnets. This work is carried out as part of the U.S. LHC Accelerator Research Program (LARP) in collaboration with Fermilab, Lawrence Berkeley National Lab, and the Stanford Linear Accelerator Center. The ultimate goal of the upgrade program is to increase the rate and efficiency of particle collisions, a measure known as luminosity.

136

BNL | Environmental Sciences Department | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Sciences Department Environmental Sciences Department Home Atmospheric System Group Overview Research Areas Aerosol Life Cycle Cloud Life Cycle Cloud-Aerosol-Precipitation Interactions ARM Group Overview Facilities MAOS External Data Center Cloud Life Cycle Infrastructure Field Campaigns MAGIC Biomass Burns (BBOP) TCAP Aerosol Life Cycle IOP RACORO MC3E FASTER Tracer Tech Environmental Tech Carbon Cycle Group Overview Research Areas Climate Change Experimental Facility Design and Management Plant Physiology and High Throughput Biochemical Phenotyping Soil Carbon Monitoring Publications Staff EBC Environmental, Biological, and Computational Sciences Directorate Environmental Sciences Image Sampling equipment BATS II ARM SGP Facility meteorology data MAGIC program Environmental Sciences Environmental research at Brookhaven focuses on atmospheric physics and

137

Brookhaven Soft Condensed Matter Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

surface freezing are still unresolved. One objective of the soft matter program at Brookhaven is to understand the behavior of ultra-thin organic films on solid and liquid...

138

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Deborah Stoner-Ma Brookhaven National Laboratory Bldg. 463 - P.O. Box 5000 Upton, NY 11973-5000 Phone: (631) 344-6388 Lab Phone: (631) 344-5726 Fax: (631) 344-2741 email:...

139

Brookhaven Employees Recreation Association (BERA)  

NLE Websites -- All DOE Office Websites (Extended Search)

Court Jesters during a Mixed 2 League volleyball match. 77th Regional Readiness Command (RRC) takes the field for the Casing of the Colors Ceremony - 7 September 2008 - Brookhaven...

140

Brookhaven Symposium Biology 32  

NLE Websites -- All DOE Office Websites (Extended Search)

Symposium Biology 32 Symposium Biology 32 Brookhaven National Laboratory, June 1-4, 1982 NEUTRONS IN BIOLOGY, B. Schoenborn, Plenum Press N Y BNL--34681 DE84 012174 NOTICE p _ THIS R£PORT IS l £ - T . l - : T = "-T-**: TO A DEGHES THAT PRECLUDES SA u^.-.iA OKV REPRODUCTION NEUTRON SCATTERING AND THE 3 0 S RI3CS0MAL SUBUNIT OF j ^ . COLI P.B. Moore, a D.M. Enselmsn, b J.A. Langer, b V.R. Ramaicrishnan,^ _.G« Schindler, 3 B.P. Schoenborn, c I-Y. Sillers, a and S. Yabuki a a Uept. of Chemistry and ^Molecular Biophysics and Biochemistry Yale University. Nev Haven, CT 06511 c BicIogy Dapc, Srookhavse National Lab., Upton, NY 11973 INTRODUCTION Siboscmes ara nueleoprotein enzyaes which catalyze the for- mation of polypeptide chains under inRNA control, using aminoacyl tENAs as substrates-for reviawo see Nomura et al. (22) and

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

2013 Annual Planning Summary for the Brookhaven Site Office ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Site Office 2013 Annual Planning Summary for the Brookhaven Site Office 2013 Annual Planning Summary for the Brookhaven Site Office The ongoing and projected...

142

Brookhaven Condensed Matter Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Matter Physics Condensed Matter Physics Condensed matter physicists study the properties of bulk matter-solids and liquids-as well as the properties exhibited at surfaces and interfaces, with a view to obtaining a fundamental understanding of the unusual properties that materials can exhibit. These problems are some of the most challenging in physics today, but have the huge pay-off in that such an understanding may ultimately lead to improved materials for use in applications as diverse as computing, memory storage, electric motors, and energy storage and transport. At Brookhaven Lab, this work includes both experimental and theoretical studies. Much of the experimental work carried out today uses the National Synchrotron Light Source (NSLS, shown at right)-one of the premiere synchrotron light sources of the last two decades. Commissioned in the 1980s, the NSLS is host to more than 2,200 users per year and produces copious amounts of light, from the infrared to the ultraviolet to the x-ray. By using this light as a probe, scientists can learn about the arrangement of the atoms and electrons in the materials and how they behave under various conditions. Among other projects, BNL scientists have played leading roles in the development and application of resonant and inelastic x-ray scattering techniques to the study of magnetic and other materials, have pioneered the use of photoemission techniques (based on the photoelectric effect that Einstein first understood 100 years ago) for looking at electronic and magnetic materials, and have carried out some of the seminal experiments to understand the atomic and magnetic structure at surfaces.

143

Graphite Decommissioning  

Science Conference Proceedings (OSTI)

Many of the international participants in the EPRI Decommissioning Technology Program use graphite as a moderator material in their gas cooled reactors. This report reviews the current options for the management and disposal of irradiated nuclear graphite following the decommissioning of these nuclear installations. It also discusses specific issues associated with the disposal of graphite, and outlines innovative options for recycling or reusing products formed from the irradiated material.

2006-03-03T23:59:59.000Z

144

GRAPHITE EXTRUSIONS  

DOE Patents (OSTI)

A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

Benziger, T.M.

1959-01-20T23:59:59.000Z

145

Review of Brookhaven National Laboratory superconducting power transmission program  

SciTech Connect

ABS>Research is being conducted at Brookhaven National Laboratory to develop a superconducting ac cable system leading to the construction of a 1/2 mile model cable of 200 MVA capacity at Brookhaven and a cable of larger (>2000 MVA) capacity for test at a utility testing site. It is a coaxial cable of flexible design using Nb/sub 3/Sn superconductor, and a tape wound dielectric, helium impregnated, of a material yet to be determined. The research development is reported on the dielectric materials, cryogenic enclosure, refrigeration, and superconducting materials. (MCW)

Jensen, J.E.

1973-10-11T23:59:59.000Z

146

Managed by Brookhaven Science Associates  

NLE Websites -- All DOE Office Websites (Extended Search)

Managed by Brookhaven Science Associates Managed by Brookhaven Science Associates for the U.S. Department of Energy Updated 12/17/13 www.bnl.gov To Open a General User or Technical Service Project (account) at BNL: 1. Purchase Order from your organization authorizing charges (in US dollars) up to the maximum amount. Send to the Business Development & Analysis Office contact below. (aschwarz@bnl.gov) 2. Check for the total estimated amount, including overheads, made out to "Brookhaven National Laboratory." 3. Wire Transfer or Credit Card for the total estimated amount, including overheads. Email Ms. von Gerichten (Gerichten@bnl.gov) for Wire Transfer information. To pay by Credit Card, call Ms. von Gerichten directly at 631-344-7433. The return of any unused cash balance must be requested in writing, giving the recipient's name and delivery

147

Brookhaven's Drinking-Water Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Quality Water Quality The Lab's finished drinking water is produced with pride by the staff of BNL's Water Treatment Facility Home Groundwater Consumer Confidence Reports Water Treatment Process Resources Tap Water Recommendations Water Cooler Cleaning Additional Resources Brookhaven Lab Drinking Water Brookhaven produces its own drinking water for all employees, facility-users, guests, residents, and visitors on site at its Water Treatment Facility (WTF). BNL's drinking water is pumped from groundwater by five active wells and processed at the WTF which can handle up to 6 million gallons per day. The "finished" water is sent to the Lab's two storage towers and then distributed around the site via 45 miles of pipeline. To ensure that Brookhaven's water meets all applicable local, state, and

148

HEALTH PHYSICS TECHNICIAN SUBCONTRACTS AT BROOKHAVEN NATIONAL...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HEALTH PHYSICS TECHNICIAN SUBCONTRACTS AT BROOKHAVEN NATIONAL LABORATORY, ER-B-99-08 HEALTH PHYSICS TECHNICIAN SUBCONTRACTS AT BROOKHAVEN NATIONAL LABORATORY, ER-B-99-08 To...

149

1 BROOKHAVEN SCIENCE ASSOCIATES N. Simos, BNL  

E-Print Network (OSTI)

. 6-7, 2008 High Power Target R&D #12;2 BROOKHAVEN SCIENCE ASSOCIATES Superbeam Target Concept #12 #12;4 BROOKHAVEN SCIENCE ASSOCIATES Overview of R&D Realized to-date on Solid Targets · Target Shock1 BROOKHAVEN SCIENCE ASSOCIATES N. Simos, BNL 2nd Princeton-Oxford High Power Targetry Workshop Nov

McDonald, Kirk

150

Brookhaven Lecture Series | Archives | 301-400  

NLE Websites -- All DOE Office Websites (Extended Search)

301 - 400 301 - 400 301st Brookhaven Lecture Dec. 21, 1994 Looking Inside the Proton With Scattered Laser Light Andrew Sandorfi, Physics 302nd Brookhaven Lecture January 18, 1995 2001 - An Inner Space Odyssey: High Energy Physics in the Next Millenium William Marciano, Physics 303rd Brookhaven Lecture February 15, 1995 Is the Sky Falling? Measuring Ultraviolet Radiation Damage of DNA John Sutherland, Biology 304th Brookhaven Lecture March 15, 1995 DNA Sequencing for the Human Genome Project William Studier, Biology 305th Brookhaven Lecture April 19, 1995 Spinning Protons and Siberian Snakes Tom Roser, AGS 306th Brookhaven Lecture May 17, 1995 AChE in 3-D: Mysteries Revealed from the Crystal Structure Joel Sussman, Chemistry and Biology 307th Brookhaven Lecture June 28, 1995 Radiation Protection: Then and Now

151

Brookhaven and the Large Hadron Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven & the Large Hadron Collider Brookhaven & the Large Hadron Collider Home News Brookhaven & ATLAS ATLAS ATLAS Calorimeter ATLAS Muon Spectrometer Construction Computing Upgrades RHIC & LHC Education LHC tunnel ATLAS detector ATLAS detector RACF BNL built superconducting magnets Brookhaven & the LHC The world's most powerful particle accelerator, the Large Hadron Collider (LHC) in Switzerland, powers unprecedented explorations of the deepest mysteries of the universe. In addition to serving as the U.S. host laboratory for the ATLAS experiment at the LHC, Brookhaven National Lab plays multiple roles in this international collaboration, from construction and project management to data storage and distribution. ATLAS rendering Brookhaven and ATLAS Brookhaven physicists and engineers are participating in one of the most

152

Brookhaven Lecture Series | Archives | 101-200  

NLE Websites -- All DOE Office Websites (Extended Search)

01 - 200 01 - 200 101st Brookhaven Lecture April 21, 1971 Science and the Federal Government Leland J. Haworth, Special Consultant to the Director 102nd Brookhaven Lecture May 19, 1971 Meristematic Mystique or the Mysteries of Mitosis Jack Van't Hof, Biology 103rd Brookhaven Lecture June 23, 1971 Nuclear Methods in the Service of Archaeology: Brookhaven Studies in Ancient Mesoamerica Garman Harbottle, Chemistry 104th Brookhaven Lecture September 15, 1971 Defending the Environment - A Case History, BNL 50309 Dennis Puleston, Environmental Defense Fund 105th Brookhaven Lecture October 6, 1971 Concrete-Polymer Materials Development, A Goal Oriented Program, BNL 50313 Meyer Steinberg, Applied Science 106th Brookhaven Lecture November 10, 1971 The Triple Helix Edwin A. Popenoe, Medical

153

Brookhaven Science Associates U.S. Department of Energy  

E-Print Network (OSTI)

generationDynamic finite element grid generation #12;Brookhaven Science Associates U.S. Department of Energy of Energy Future Research Improve the robustness of the dynamic grid generator and implement new elliptic of discontinuities in a medium such as shock waves in gas dynamics, boundaries between fluid-gas states, different

McDonald, Kirk

154

International Services, Human Resources, Brookhaven National Laboratory,  

NLE Websites -- All DOE Office Websites (Extended Search)

H1B Status H1B Status Definition: H-1B classification applies to persons in a specialty occupation which requires the theoretical and practical application of a body of highly specialized knowledge requiring completion of a specific course of higher education. This classification requires a labor attestation issued by the Secretary of Labor. This classification also applies to Government-to-Government research and development, or production projects administered by the Department of Defense. The Petition In order to be considered as a nonimmigrant under the above H1B classification Brookhaven National Laboratory must file Form I-129, Petition for Nonimmigrant Worker, with the United States Citizenship and Immigration Services (USCIS) in the Department of Homeland Security. Once approved, Brookhaven sends a notice of approval, Form I-797. It should be noted that the approval of a petition shall not guarantee visa issuance to an applicant found to be ineligible under provisions of the Immigration and Nationality Act. The petition and the visa are two separate items and controlled by two separate agencies. The visa process while in consultation with USCIS, is controlled by the United States Department of State.

155

Radiotracers currently produced at Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiotracers currently produced at Brookhaven. Note that other radiotracers that are described in the literature can Radiotracers currently produced at Brookhaven. Note that other radiotracers that are described in the literature can also be transferred to our laboratory. Molecular Target/use Radiotracer Name Structure Chemical Name Hexokinase/glucose metabolism, cancer, brain function 18 FDG 2-deoxy-2-[ 18 F]fluoro-D-glucose Dopamine D2/D3 receptors/addiction, psychiatric disorders [ 11 C]raclopride 3,5-dichloro-N-{[(2S)-1-ethylpyrrolidin- 2-yl]methyl}-2-hydroxy-6- [ 11 C]methoxybenzamide Dopamine transporters / cocaine pharmacokinetics, addiction, neurological disorders [ 11 C]cocaine methyl (1R,2R,3S,5S)-3-s(benzoyloxy)- 8-[ 11 C]methyl-8-azabicyclo[3.2.1] octane-2-carboxylate Blood flow/nicotine pharmacokinetics [ 11 C]nicotine 3-[(2S)-1-[ 11 C]methylpyrrolidin-2-

156

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

An Outside User Facility at the Biology Department An Outside User Facility at the Biology Department News Releases: Simultaneous Nanoscale Imaging of Surface and Bulk Atoms Details of Bacterial 'Injection' System Revealed Structures of Important Plant Viruses Determined Contacts: Joseph S. Wall James F. Hainfeld Martha N. Simon Frank E. Kito Beth Yu Lin wall@bnl.gov hainfeld@bnl.gov msimon@bnl.gov fkito@bnl.gov bylin@bnl.gov tel: (631) 344-2912 tel: (631) 344-3367 tel: (631) 344-3372 tel: (631) 344-3372 tel: (631) 344-3372 BNL STEM Group (click to enlarge) Biology Department, Bldg 463 Brookhaven National Lab Upton, NY 11973-5000 fax: (631) 344-3407 DOE BER Logo Facility: STEM is a custom-built electron microscope optimized for imaging unstained biological molecules with minimal radiation damage. The group at Brookhaven operates

157

Young Researcher Symposium 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Young Researcher Symposium 2013 Homepage Registration Talks Program Abstract Submission Sponsors Feedback Contact Us Symposium Information pulldown...

158

Brookhaven highlights 1994  

SciTech Connect

Established in 1947 on Long Island, New York, on the site of the former army Camp Upton, BNL is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated Universities, Inc., under contract to the US Department of Energy. BNL`s annual budget is about $400 million, and the Laboratory`s facilities are valued at replacements cost in excess of over $2.8 billion. Employees number around 3,300,and over 4,000 guests, collaborators and students come each year to use the Laboratory`s facilities and work with the staff. Scientific and technical achievements at BNL have made their way into daily life in areas as varied as health care, construction materials and video games. The backbone of these developments is fundamental research, which is and always will be an investment in the future.

NONE

1994-12-31T23:59:59.000Z

159

Visiting Brookhaven National Laboratory | Dark Interactions: Perspectives  

NLE Websites -- All DOE Office Websites (Extended Search)

Visiting Brookhaven Visiting Brookhaven Brookhaven National Laboratory (BNL) is located in Suffolk County on Long Island, a 120-mile-long island directly east of New York City. The Lab's 5,265-acre site is near the island's geographic center. The Lab is located in the township of Brookhaven, and has its own post office designation, Upton. The zip code is 11973-5000. From above, Long Island looks like a giant fish, with a forked tail on the "East End" -- the North Fork is rural, and the South Fork has many famous "Hamptons" resort towns. The Peconic Bay and Shelter Island are between the forks. Brookhaven is 15 miles to the west of the forks, and about 60 miles east of New York City. Aerial view of BNL - The Relativistic Heavy Ion Collider (top, center) is 2.4 miles in circumference, and dominates Brookhaven's

160

The Midwest Analytical Team for Research Instrumentation of X-Rays (MATRIX) Beamline X-18A at the National Synchrotron Light Source of Brookhaven National Laboratory  

Science Conference Proceedings (OSTI)

During six years of funding, the MATRIX beamline was successful in the production of research on identification of transformation and transitions in materials.

Bowman, Keith J.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

BROOKHAVEN NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

Global and Regional Solutions ( GARS ) Directorate TRAVEL SAFETY This brochure contains helpful hints and ideas to improve your safety while on official travel, especially foreign travel. Several of the topics addressed have their own requirements for approval. It is your responsibility to fulfill them. July 2013 Cover Image Credit: NASA images by Reto Stöckli, based on data from NASA and NOAA. High resolution version at: http://visibleearth.nasa.gov/view.php?id=8108 Before the trip * Make travel arrangements through BNL Travel and verify their accuracy. * If performing work at non-DOE facilities, contact GARS Research Operations (x4265) to determine if Work Planning and/or a Radiation Work Permit are required. * Through BNL Travel, obtain a credit card for travel expenses. This is mandatory

162

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS User Access Procedures NSLS User Access Procedures Number: LS-UA-0002 Revision: D Effective: 8-24-2009 Page 1 of 23 Prepared By: Kathleen Nasta Approved By: Chi-Chang Kao Approved By: *Approval signatures on file with master copy. 1. Modes of Access 1.1 General Users (GUs) Much of the research performed at the NSLS is conducted by general users who are scientists interested in using the NSLS for experimental programs under the General User Program. All facility beamlines at the NSLS reserve at least 50% of their available beam time for general users and PRT beamlines reserve at least 25% of their available beam time for general users. Requests for beam time at the NSLS are made by submitting a General User Proposal or Rapid Access Proposal (on applicable beamlines) through a web-based system. General user proposals are peer

163

Independent Oversight Inspection, Brookhaven National Laboratory - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2007 November 2007 Independent Oversight Inspection, Brookhaven National Laboratory - November 2007 November 2007 Inspection of Environment, Safety, and Health Programs at the Brookhaven National Laboratory The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE Brookhaven Site Office (BHSO) and Brookhaven National Laboratory (BNL) during August and September 2007. The ES&H inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. BHSO has established mechanisms to gather performance data and provide feedback to laboratory management, which is resulting in improvements

164

Independent Oversight Inspection, Brookhaven National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2008 September 2008 Independent Oversight Inspection, Brookhaven National Laboratory - September 2008 September 2008 Inspection of Emergency Management at the Brookhaven Site Office and Brookhaven National Laboratory The U.S. Department of Energy (DOE) Office of Independent Oversight inspected the emergency management program at DOE's Brookhaven National Laboratory (BNL) in June/July 2008. The inspection was performed by Independent Oversight's Office of Emergency Management Oversight (HS-63). This 2008 inspection found that hazardous material inventories remain low, and the program has been significantly improved by the issuance of a hazards survey, EPHAs, and revised emergency plan, as well as other upgraded program plans and procedures. Additionally, the EOC is better

165

Community Advisory Council, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The Community Advisory Council The Community Advisory Council Council Members > Don Garber Affiliated Brookhaven Civic Organizations Margaret Malloy American Physical Society Arnie Peskin Brookhaven Retired Employee Association Jim Heil Brookhaven Senior Citizens Office Adrienne Esposito Citizens Campaign for the Environment Christine Birben Colonial Woods / Whispering Pines Paul Ziems Coram Civic Association Michael Giacomaro East Yaphank Civic Association Jean Mannhaupt Emeritus Ed Kaplan Friends of Brookhaven Mary Joan Shea Huntington Breast Cancer Coalition Karen Blumer Individual Greg Bush Individual Iqbal Chaudhry Individual Jane Corrarino Individual Scott Krsnak Int'l Brotherhood of Electrical Workers Rita Biss Lake Panamoka Civic Association Richard Amper Long Island Pine Barrens Society David Sprintzen

166

Brookhaven National Laboratory/Photon Sciences Subject:  

NLE Websites -- All DOE Office Websites (Extended Search)

materials not returned to the home institution shall be disposed as hazardous waste. Brookhaven National LaboratoryPhoton Sciences Subject: NSLS Explosives Training (de minimis...

167

BERA Activities, Brookhaven Employees Recreation Association...  

NLE Websites -- All DOE Office Websites (Extended Search)

Club Vinita Ghosh 197D 6226 Meets on Wednesday evenings in the North Room at the Brookhaven Center for ballroom dance lessons given by a professional instructor. Basketball...

168

FACE Program, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

dioxide (and in some cases, other gases), without using chambers or walls. The Brookhaven FACE team operates the Duke Forest FACE experiment, provides engineering and...

169

Brookhaven Women In Science (BWIS) | Scholarships & Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Women In Science Home News Events Videos Membersip Scholarships & Awards Meetings Milestones Mission & Charter Scholarships & Awards Renate W. Chasman Scholarship...

170

ASP Historic Site 2011 | Brookhaven National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL Home APS Historic Site 2011 The American Physical Society (APS) will commemorate Brookhaven National Laboratory as a historic site in the advancement of the field of physics....

171

ATLAS Muon Spectrometer | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

ATLAS Muon Spectrometer small wheels Brookhaven National Laboratory led the development of the 32 muon detectors in the inner ring of the ATLAS detector's "small wheels." (A small...

172

Budget Office, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Directorate. The mission of the Business Development & Analysis Office (formerly the Budget Office) at Brookhaven is to provide the Laboratory an efficient, cost-effective, and...

173

Earth Day at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven's celebration of Earth Day 2013 is all about sustainability as part of our commitment to Operational Excellence. Sustainable goals help us choose our direction as a...

174

Brookhaven National Laboratory, Former Production Workers Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Workers Screening Projects Brookhaven National Laboratory, Former Production Workers Screening Projects Project Name: Worker Health Protection Program Covered DOE Site:...

175

Former Worker Medical Screening Program - Brookhaven National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Brookhaven National Laboratory...

176

Entrepreneurs' Network at Brookhaven National Laboratory | Up...  

NLE Websites -- All DOE Office Websites (Extended Search)

at these locations. Detailed information about the Cafeteria, Brookhaven Center Club Restaurant, Vending Machines and other on-site services can be found in the online Guide to...

177

Information Services Division (ISD), Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Find People ISD Homepage Site Details ISD Staff Remote Access Other Information BNL Site Index Can't View PDFs? Welcome to the... Information Services Division (ISD) Brookhaven's...

178

Business Operations Directorate, Brookhaven National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university,...

179

Monitoring Environmental Cleanup at Brookhaven National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Compensation, and Liability Act environmental cleanup activities at Brookhaven National Laboratory comply with the Record of Decision (ROD) for each project. (A ROD...

180

Brookhaven National Lab Economic Impact Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Inc., located in Schenectady. Collaborative Efforts Addressing Major National Needs Brookhaven Lab is also working with public agencies and industry partners in a variety of...

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Session Cookie Error, Brookhaven National Laboratory (BNL)  

NLE Websites -- All DOE Office Websites (Extended Search)

and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university,...

182

Andrew R. Cook, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Ph.D. 1994 Massachusetts Institute of Technology Chemistry Department, Brookhaven National Laboratory 1998 - Present Associate Chemist Argonne National Laboratory, Argonne,...

183

Groundwater Protection Group, Brookhaven National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Long Term Surveillance & Maintenance High Flux Beam Reactor Long Term Surveillance & Maintenance The High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL)...

184

Safety Day at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

simultaneous excellence in science, operations, and safety, we make Brookhaven the provider of choice for world-class scientific discovery. photo of coffee Coffee &...

185

Brookhaven Women In Science (BWIS) | Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Event "Positron Emission Tomography and Diseases of Addiction" Presented by Joanna Fowler, Medical Department, Brookhaven National Laboratory Thursday, October 27, 2011, 4 pm...

186

Employee Assistance Program | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Employee Assistance Program Brookhaven's Employee Assistance Program (EAP) is a free confidential service available to help all BNL employees and their family members solve...

187

Standard Rates, Budget Office, Brookhaven National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Rates Standard Rates for Brookhaven National Laboratory is available in PDF file formats. This file contains rates for Distributed Technical Services, Scientific Devices...

188

Search Property Records | Brookhaven Landlord Description of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Property Database Disclaimer: The Brookhaven National Laboratory Off-site Housing Office does not inspect, approve or supervise any interested parties andor premises listed...

189

Preliminary Notice of Violation - Brookhaven Science Associates...  

NLE Websites -- All DOE Office Websites (Extended Search)

were provided to Brookhaven Science Associates, LLC (BSA) in an investigation report dated November 28, 2012. DOE convened an enforcement conference on March 14, 2013,...

190

Electrical Resistance of Graphitic and Graphitized Cathode ...  

Science Conference Proceedings (OSTI)

The electrical resistance of graphitic and graphitized cathode materials before and after electrolysis was also measured at temperatures from 30C to 965C. An ...

191

James F. Hainfeld - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

James F. Hainfeld James F. Hainfeld Brookhaven National Laboratory From: 1976-2009 Phone: (631) 344-3367 Fax: (631) 344-3407 email: hainfeld@bnl.gov Currently at Nanoprobes Research Interests James Hainfeld develops organometallic cluster compounds to be used as high resolution molecular labels. These heavy metal clusters are covalently attached to peptides, antibodies, other proteins, nucleic acids, carbohydrates or lipids to map sites of macromolecules or complexes for visualization in the Scanning Transmission Electron Microscope (STEM). Such clusters have been useful in studying the proteasome, pyruvate dehydrogenase enzyme complex, actin filaments, viruses, blood clotting components, nuclear proteins, and other structures. Use of clusters in anomalous X-ray scattering or for isomorphous replacements is being

192

DOE - Office of Legacy Management -- Brookhaven National Laboratory...  

Office of Legacy Management (LM)

Brookhaven National Laboratory Buildings 353 354 467 and 468 - NY 14 FUSRAP Considered Sites Site: Brookhaven National Laboratory Buildings 353 354 467 and 468 (NY.14 ) Designated...

193

Annual Planning Summaries: Brookhaven Site Office (BHSO) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Site Office (BHSO) Annual Planning Summaries: Brookhaven Site Office (BHSO) Document(s) Available For Download January 18, 2012 2012 Annual Planning Summary for...

194

Department of Energy Cites Brookhaven Science Associates, LLC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations...

195

PROCEEDINGS OF THE 2001 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY CONFERENCE HELD AT BROOKHAVEN NATIONAL LABORATORY, UPTON, N.Y., APRIL 30 - MAY 1, 2001.  

SciTech Connect

BNL is proud to acknowledge all of our 2001 sponsors, with their help and support this has correctly become an oilheat industry conference. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole and to celebrate the beginning of the National Oilheat Research Alliance. This meeting is the fourteenth oil heat industry technology conference to be held since 1984 and the first under a new name, NORA, the National Oilheat research Alliance, and the very first in the new century. The conference is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Program. The Oilheat Research Program at BNL is under the newly assigned program management at the Office of Power Technology within the US DOE. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation. Seventeen technical presentations will be made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Europe, including: (1) High-flow Fan Atomization Burner (HFAB) Development and Field Trials; (2) Field Test of the Flame Quality Monitor; (3) NORA/DOE/ BNL Oilheat Five-Year Research Plan; (4) US Department of Energy's Building Cooling Heating and Power for Buildings Program; (5) NORA Education Committee Report; (6) Marketing Oil Heat in Europe: A study in contrasts; (7) Diagnosing Burner Problems with Recorded Data ''The solution to any problem is obvious.. . once it is found''; (8) Variable Firing Rate Oil Burner Using Pulse Fuel Flow Control; (9) Oil-Fired Hydronic Heating Appliances with Reduced Electric Power Consumption and Battery Backup; (10) Peep Into The Nozzle Using Computational Fluid Dynamics; (11) Results of a Parametric Investigation of Spray Characteristics Using a HFAB Type Atomizer; (12) Progression and Improvements in the Design of Blue-flame Oil Burners; (13) Biodiesel as a Heating Oil Blend Stock; (14) Lab Tests of Biodiesel Blends in Residential Heating Equipment; (15) Alternative Fuel Oils and the Effect of Selected Properties in Combustion; (16) New York State Premium Low-Sulfur Heating Fuel Marketplace Demonstration; and (17)The Need for a New Fuel Oil Stability Specification.

MCDONALD, R.J.

2001-04-30T23:59:59.000Z

196

SLAC National Accelerator Laboratory - LCLS Graphite Experiment...  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS Graphite Experiment Poses New Questions for Researchers By Glenn Roberts Jr. May 21, 2012 In experiments at SLAC National Accelerator Laboratory, a powerful X-ray laser...

197

Independent Oversight Inspection, Brookhaven National Laboratory - April  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven National Laboratory - Brookhaven National Laboratory - April 2004 Independent Oversight Inspection, Brookhaven National Laboratory - April 2004 April 2004 Inspection of Emergency Management at the Brookhaven National Laboratory The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA), within the newly created Office of Security and Safety Performance Assurance, conducted an inspection of the emergency management program at the U.S. Department of Energy (DOE) Brookhaven National Laboratory (BNL) in March 2004. The inspection was performed by the OA Office of Emergency Management Oversight. A number of positive attributes were identified during this review. Most significant is the aggressive program for reducing hazardous material inventories, minimizing hazardous waste, and evaluating chemical use to

198

Brookhaven Lecture Series | Archives | 401 - Current Year  

NLE Websites -- All DOE Office Websites (Extended Search)

401 - Current Year 401 - Current Year Brookhaven Lecture "488th Brookhaven Lecture: Magic Lenses for RHIC: Compensating beam-beam interaction" Wednesday, July 17, 2013, 4 pm Berkner Hall Auditorium Hosted by: Allen Orville During this lecture, Luo will start by discussing some collider fundamentals and the challenges of increasing rates of particle collisions, or luminosity, at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab. He will then introduce the electron lens system he helped develop at the Lab as he explains how this tool could help double the luminosity at RHIC and prepare the machine for physicists' future endeavors. Brookhaven Lecture "487th Brookhaven Lecture: 'Why Has Earth NOT Warmed as Much as Expected? And Why Is This So Important?'"

199

Living on Long Island | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers at Brookhaven Careers at Brookhaven Home For Job Seekers Job List Life at Brookhaven Benefits Family Programs Recreation & Fitness Why Brookhaven? For New Hires For Employees Living on Long Island Stretching 118 miles from end to end and measuring no more than 20 miles at its widest point, Long Island was aptly named by Dutch traders who circum-navigated it in the early 1600s. Those early Dutchmen discovered what the native Indians had known for centuries: The temperate climate, the bountiful seas and the fertile land made Long Island a most hospitable home. Local Area Information Long Island Schools Parks Beaches Wineries New York City Today, Brookhaven National Laboratory sits in the geographical center of Long Island. To the west, New York City boasts Broadway shows, museums,

200

Photon Sciences Directorate at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Directorate at Directorate at Brookhaven National Laboratory 2010 ANNUAL REPORT DISCOVERY 2010 AnnuAl RepoRt Photon Sciences Directorate at Brookhaven National Laboratory Photon Sciences Directorate at Brookhaven National Laboratory 2010 ANNUAL REPORT Kendra Snyder Editor Laura Mgrdichian Science Writer Mona S. Rowe Science Writer Tiffany Bowman Graphic Designer Office of Science the photon Sciences Directorate at Brookhaven national laboratory operates the national Synchrotron light Source (nSlS) and is constructing the national Synchrotron light Source II (nSlS-II). nSlS and nSlS-II are offi ce of Science user Facilities supported by the u.S. Department of energy offi ce of Science. 2010 AnnuAl RepoRt Photon Sciences Directorate at Brookhaven National Laboratory Disclaimer

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Vital Legacy - Biological and Environmental Research in the Atomic Age  

E-Print Network (OSTI)

In the cell. 1956 At Brookhaven W. L. (Pete) Hughes syn-research today. N w at Brookhaven, he is o shown here withone strand of their 1956 at Brookhaven, when W. L double-

Vaughan editor, Douglas

2010-01-01T23:59:59.000Z

202

Adopt-A-Platoon, Brookhaven Veterans Association, Brookhaven Employees  

NLE Websites -- All DOE Office Websites (Extended Search)

Home BNL Home Home BNL Home BNL: Departments | Science | ESS&H | Newsroom | Administration | Visitors | Directory search Go Find People BERA Home BVA Home Site Details AAP Home About Us Donations Fundraisers Supporters BNL Active Duty Adopted Units Morale & Welfare Seasonal Projects Taps Other Information Can't View PDFs? BVA / Adopt-A-Platoon Team There are approximately 34 Soldiers in our US Army Platoon including 3 females and they are deployed from Ohio to Afghanistan until sometime in April 2014. Some background information on them and requested items. We always need supplies to send. In addition, we are always in need of funds for postage. Please send your monetary donations to: Brookhaven Veterans Association or BVA, in memo put "support troops", POB 671, Upton, NY 11973

203

Adopt-A-Platoon, Brookhaven Veterans Association, Brookhaven Employees  

NLE Websites -- All DOE Office Websites (Extended Search)

Morale, Welfare, and Relaxation Units (MWRs) Morale, Welfare, and Relaxation Units (MWRs) We support a MWR unit (Morale Welfare and Relaxation), known as the "Soldiers' Truck Stop". It is a place where convoys of trucks stop on their way to refuel and rest before continuing on with their mission. Many times they arrive late at night and the chow hall will be closed. They are able to get something to eat here and also take a shower and get some rest. They would prefer to have travel size supplies for both male and female Soldiers. These places are similar to a USO or Red Cross Canteen but are now called MWRs. They are run by Chaplains in the Army are very sparse and do not have a lot of resources. Brookhaven's AaP has shipped 29 boxes of supplies and requested items totaling 890lbs.

204

Baseline Graphite Characterization: First Billet  

SciTech Connect

The Next Generation Nuclear Plant Project Graphite Research and Development program is currently establishing the safe operating envelope of graphite core components for a very high temperature reactor design. To meet this goal, the program is generating the extensive amount of quantitative data necessary for predicting the behavior and operating performance of the available nuclear graphite grades. In order determine the in-service behavior of the graphite for the latest proposed designs, two main programs are underway. The first, the Advanced Graphite Creep (AGC) program, is a set of experiments that are designed to evaluate the irradiated properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences, and compressive loads. Despite the aggressive experimental matrix that comprises the set of AGC test runs, a limited amount of data can be generated based upon the availability of space within the Advanced Test Reactor and the geometric constraints placed on the AGC specimens that will be inserted. In order to supplement the AGC data set, the Baseline Graphite Characterization program will endeavor to provide supplemental data that will characterize the inherent property variability in nuclear-grade graphite without the testing constraints of the AGC program. This variability in properties is a natural artifact of graphite due to the geologic raw materials that are utilized in its production. This variability will be quantified not only within a single billet of as-produced graphite, but also from billets within a single lot, billets from different lots of the same grade, and across different billets of the numerous grades of nuclear graphite that are presently available. The thorough understanding of this variability will provide added detail to the irradiated property data, and provide a more thorough understanding of the behavior of graphite that will be used in reactor design and licensing. This report covers the development of the Baseline Graphite Characterization program from a testing and data collection standpoint through the completion of characterization on the first billet of nuclear-grade graphite. This data set is the starting point for all future evaluations and comparisons of material properties.

Mark C. Carroll; Joe Lords; David Rohrbaugh

2010-09-01T23:59:59.000Z

205

Groundwater Protection, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Groundwater Groundwater placeholder DOE, BNL, elected officials, and community leaders mark the opening of the first off-site groundwater treatment system. From the outset, the Department of Energy (DOE) and the Brookhaven National Laboratory (BNL) considered the protection of human health to be the most important goal of the cleanup program. Because exposure to groundwater contamination had the greatest potential to impact human health, the focus was to ensure that local drinking water supplies were clean and safe. Early efforts concentrated on determining the locations of the contamination, installing treatment systems to clean up the groundwater, and remediating sources of contamination like landfills and underground tanks. DOE and the Lab are committed to protecting Long Island's sole-source aquifer, a vital natural resource.

206

Environmental Protection Division (EPD), Brookhaven National Laboratory,  

NLE Websites -- All DOE Office Websites (Extended Search)

EMS Home EMS Home ESSH Policy Environmental Protection Division Other Information BNL Site Index Can't View PDFs? Brookhaven National Laboratory ISO 14001 Environmental Management System OHSAS 18001 Occupational Health & Safety Assessment Series One of Brookhaven National Laboratory's highest priorities is ensuring that the Laboratory's environmental, safety and health (ESH) performance measures up to its world class status in science. Brookhaven Science Associates (BSA), the contractor operating the Laboratory on behalf of the U.S. Department of Energy, takes ESH performance very seriously. As part of their commitment to responsible ESH operations, they have established an Environmental Management System (EMS) and Occupational Safety and Health (OSH) Management System.

207

Enforcement Letter, Brookhaven National Laboratory- December 18, 1996  

Energy.gov (U.S. Department of Energy (DOE))

Issued to Associated Universities, Inc., related to Multiple Radiological Control Deficiencies at Brookhaven National Laboratory

208

Condensed Matter Physics & Materials Science Department, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Presetations Presetations Homepage | Contacts "How can we make an isotropic high-temperature superconductor?," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, November 27 2007). PDF "Enhancement of Jc in thick MOD and BaF2 coatings through the structure improvement " DOE "Superconductivity for Power Systems" Annual Peer Review, (Arlington, VA, August 7-9 2007). PDF "Texture Development in 2-3 μm Thick YBCO Films Synthesized by BaF2 and MOD Processes on Metal RABiTS(tm) " Materials Research Society Spring Meeting, (San Francisco, CA, April 20 2007). PDF "Films and Crystals: Search for the Perfect Structure. ," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, March 12 2007). PDF

209

BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.  

SciTech Connect

This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and the nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.

2003-06-10T23:59:59.000Z

210

BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.  

SciTech Connect

This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and the nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.

NONE

2003-06-10T23:59:59.000Z

211

Visiting Brookhaven National Laboratory | Young Researcher Symposium...  

NLE Websites -- All DOE Office Websites (Extended Search)

looks like a giant fish, with a forked tail on the "East End" -- the North Fork is rural, and the South Fork has many famous "Hamptons" resort towns. The Peconic Bay and...

212

Researchers at Oak Ridge, Brookhaven, and Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

contribute to the development of new materials, such as ceramic superconductors. Social Impact: Neutron studies lead to new and improved products, such as powerful magnets for...

213

Introductory Remarks - Maurice Goldhaber, Director, Brookhaven National  

NLE Websites -- All DOE Office Websites (Extended Search)

contents as they appeared in the original proceedings contents as they appeared in the original proceedings Return to 1968 Proceedings Home Page Directly Jump to 1st Week 2nd Week 3rd Week 4th Week 5th Week 6th Week Author Index Introductory Remarks - Maurice Goldhaber, Director, Brookhaven National Laboratory iii Editor's Preface - Albert G. Prodell, Brookhaven National Laboratory iv Introduction - John P. Blewett, Brookhaven National Laboratory v FIRST WEEK - SUPERCONDUCTING RF CAVITIES AND LINACS Chairman: H.A. Schwettman, Stanford University (Photos) The Development of Low Temperature Technology at Stanford and its Relevance to High Energy Physics 1 H. Alan Schwettman, Stanford University Q Measurements on Superconducting Cavities at S-Band 13 H. Hahn, H.J. Halama, and E.H. Foster, Brookhaven National Laboratory

214

Brookhaven Women In Science (BWIS) | Milestones  

NLE Websites -- All DOE Office Websites (Extended Search)

Milestones When Brookhaven Women in Science (BWIS) first met in 1979, the group could not have foreseen that, in 25 years, their network would have accomplished so much at and for...

215

Brookhaven Women In Science (BWIS) | Memorials  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zealand -5th September 2010, Middle Island, NY, USA Women in Science - The Brookhaven Women in Science organization was created while Gail was the Manager of the Office...

216

Brookhaven National Lab Economic Impact Report  

NLE Websites -- All DOE Office Websites (Extended Search)

national labs funded by DOE's Office of Science. Established in 1947, Brookhaven Lab is the only national lab located in the Northeast. It is also one of New York State's...

217

Visiting Brookhaven National Laboratory | Identifying and Predicting...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the township of Brookhaven, and has its own post office designation, Upton. The zip code is 11973-5000. From above, Long Island looks like a giant fish, with a forked tail...

218

Visiting Brookhaven National Laboratory | Entrepreneurs' Network...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the township of Brookhaven, and has its own post office designation, Upton. The zip code is 11973-5000. From above, Long Island looks like a giant fish, with a forked tail...

219

Visiting Brookhaven National Laboratory | Lattice Meets Experiment...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the township of Brookhaven, and has its own post office designation, Upton. The zip code is 11973-5000. From above, Long Island looks like a giant fish, with a forked tail...

220

Visiting Brookhaven National Laboratory | 2014 International...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the township of Brookhaven, and has its own post office designation, Upton. The zip code is 11973-5000. From above, Long Island looks like a giant fish, with a forked tail...

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brookhaven Facility Biomass Facility Brookhaven Facility Biomass Facility Jump to: navigation, search Name Brookhaven Facility Biomass Facility Facility Brookhaven Facility Sector Biomass Facility Type Landfill Gas Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Condensed Matter Physics & Materials Science Department, Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov Education: Iowa State...

223

Brookhaven National Laboratory site environmental report for calendar year 1990  

SciTech Connect

Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

1992-01-01T23:59:59.000Z

224

Graphite Dust Deflagration  

Science Conference Proceedings (OSTI)

The graphite moderators of retired gas-cooled nuclear reactors present a difficult challenge during demolition activities. As part of the EPRI graphite initiative on the technical issues involved in the management and disposal of irradiated nuclear graphite, this report examines the international data on dust deflagration relevant to the decommissioning of graphite-moderated reactors. The report concludes that the risk of an explosion involving graphite dust during decommissioning is extremely low, and s...

2007-03-27T23:59:59.000Z

225

Graphite Dust Deflagration  

Science Conference Proceedings (OSTI)

The graphite moderators of retired gas-cooled nuclear reactors present a difficult challenge during demolition activities. As part of the EPRI graphite initiative on the technical issues involved in the management and disposal of irradiated nuclear graphite, EPRI Report 1014797 Graphite Dust Deflagration: A Review of International Data with Particular Reference to the Decommissioning of Graphite Moderated Reactors (March 2007) examined the international data on dust deflagration relevant to the decommiss...

2007-10-03T23:59:59.000Z

226

THE NEXT GENERATION NUCLEAR PLANT GRAPHITE PROGRAM  

Science Conference Proceedings (OSTI)

Developing new nuclear grades of graphite used in the core of a High Temperature Gas-cooled Reactor (HTGR) is one of the critical development activities being pursued within the Next Generation Nuclear Plant (NGNP) program. Graphites thermal stability (in an inert gas environment), high compressive strength, fabricability, and cost effective price make it an ideal core structural material for the HTGR reactor design. While the general characteristics necessary for producing nuclear grade graphite are understood, historical nuclear grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermo-mechanical design of the structural graphite in NGNP is based. The NGNP graphite R&D program has selected a handful of commercially available types for research and development activities necessary to qualify this nuclear grade graphite for use within the NGNP reactor. These activities fall within five primary areas; 1) material property characterization, 2) irradiated material property characterization, 3) modeling, and 4) ASTM test development, and 5) ASME code development efforts. Individual research and development activities within each area are being pursued with the ultimate goal of obtaining a commercial operating license for the nuclear graphite from the US NRC.

William E. Windes; Timothy D. Burchell; Robert L. Bratton

2008-09-01T23:59:59.000Z

227

FACE Program, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven FACE Publications Brookhaven FACE Publications Homepage This listing includes publications by authors during their affiliation with the Brookhaven National Laboratory FACE Team. Only peer reviewed published articles are listed. 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007| 2008 | 2009 2009 Lewin KF, Nagy J, Nettles WR, Cooley DM, Rogers A (2009) Comparison of gas use efficiency and treatment uniformity in a forest ecosystem exposed to elevated [CO2] using pure and pre-diluted Free Air CO2 Enrichment technology. Global Change Biology. 15, 388-395. Cseke LJ, Tsai C-J, Rogers A, Nelson MP, White HL, Karnosky DF, Podila GK (2009) Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different allocation patterns under elevated CO2. New Phytologist. 182, 891-911.

228

The Omega Group, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Details Site Details Homepage Current Experiments Past Projects Publications (pdf) Group Links Foreign & Domestic Travel Calendars (Omega\PAS) Staff Members Other Information PAS Group Brookhaven Links BNL Site Index Can't View PDFs? Omega Group Brookhaven National Laboratory Brookhaven National Laboratory Physics Department Building 510A Upton, Long Island, NY 11973 U.S.A. Current Experiments Omega Group members are collaborators on the following experiments. ATLAS Experiment (CERN: Geneva, Switzerland) - US ATLAS Collaboration - ATLAS Upgrade D0 (Fermilab: Batavia, Illinois) Proton and Deuteron EDM Experiments at the Deep Underground Science and Engineering Laboratory MicroBooNE - an experiment at Fermilab with a large Liquid Argon Time Projection Chamber (LArTPC) to be exposed to the Booster neutrino beam

229

Emergency Management Program, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Management Homepage Emergency Management Mike Venegoni, Manager Brookhaven National Laboratory Bldg. 860 - P.O. Box 5000 Upton, NY 11973-5000 (631) 344-7280 E-mail: mvenegoni@bnl.gov Emergency Management Program Brookhaven National Laboratory :: Fire Danger Index - LOW The Fire Danger Index level takes into account current and antecedent weather, fuel types, and both live and dead fuel moisture. ▪ Index Description (pdf) ▪ NWS Fire Weather Forecast :: Important Information EMERGENCY Numbers Offsite: 631-344-2222 ▪ Emergency Services ▪ Hurricane Awareness :: Be Alert, Be Aware! Watch out for unattended bags/packages and report any unusual or suspicious incidents immediately to Police Headquarters by calling: 631-344-2222 The mission of the Emergency Management Program at Brookhaven National Laboratory is provide the framework for development, coordination, control, and direction of all emergency planning, preparedness, readiness assurance, response, and recovery actions.

230

Brookhaven National Laboratory Institutional Plan FY2001--FY2005  

SciTech Connect

Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

Davis, S.

2000-10-01T23:59:59.000Z

231

Condensed Matter Physics & Materials Science Department, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

People People Facilities Publications Presentations Organizational Chart Other Information Basic Energy Sciences Directorate BNL Site Index Can't View PDFs? :: Next CMPMS Seminar There are no seminars scheduled at this time. Advanced Energy Materials Group We study both the microscopic and macroscopic properties of complex and nano-structured materials with a view to understanding and developing their application in different energy related technologies Group Leader: Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov AEM group news: Current research topics include: Superconducting Materials Nano-scale Materials (S. Wong) Applied Superconductivity Thermoelectric Materials

232

Brookhaven National Laboratory site report for calendar year 1988  

SciTech Connect

Brookhaven National Laboratory (BNL) is managed by Associated Universities Inc. (AUI). AUI was formed in 1946 by a group of nine universities whose purpose was to create and manage a laboratory in the Northeast in order to advance scientific research in areas of interest to universities, industry, and government. On January 31, 1947, the contract for BNL was approved by the Manhattan District of the Army Corps of Engineers and BNL was established on the former Camp Upton army camp. 54 refs., 21 figs., 78 tabs.

Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

1989-06-01T23:59:59.000Z

233

Image Library of Brookhaven National Laboratory on Flickr  

DOE Data Explorer (OSTI)

Brookhaven National Laboratory joined Flickr in December of 2008. More than 600 photographs are organized into fourteen sets.

234

2012 Annual Planning Summary for Brookhaven Site Office  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Brookhaven Site Office.

235

John J. Dunn - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

John J. Dunn John J. Dunn (Deceased) Brookhaven National Laboratory From: 05/01/1973 - 07/13/2012 Past Research Interests Genome Signature Tags: It is well established that interactions between transcription factors and their cognate DNA binding sites form fundamental combinatorial networks within cells that control critical steps in gene expression. Currently, our understanding of how cells encode the diversity of information about where and when genes will be expressed is very limited. Cracking this 'regulatory code' by computational analysis and functional assays is a major problem in biology. The Dunn lab has combined Genomic Signature Tags (GSTs) technology, a method for identifying and quantitatively analyzing genomic DNAs originally devised in our lab, with chromatin immunoprecipitation (ChIP) assays to develop several whole genome, high-throughput, sequence-based approaches for delimiting the positions of bound regulatory proteins in living cells. In one protocol, pairs of 20-21 bp long GST's, derived from both ends of ChIP precipitated DNA fragments, are sequenced en masse to identify the genomic segments originally present in these complexes. Prior to sequencing, short bar-coding oligonucleotides are inserted between the GST pairs from each ChIP sample. The bar-codes allow different samples to be mixed and then sequenced in a multiplex format. We are also developing methods that will use antibodies biotinylated in vitro for ChIP to permit more stringent washing of the pulled-down samples. This should result in a higher signal to noise ration which would be advantageous for direct Solexa-based sequencing of the recovered ChIP DNA fragments.

236

Rebuilding the Brookhaven high flux beam reactor: A feasibility study  

SciTech Connect

After nearly thirty years of operation, Brookhaven`s High Flux Beam Reactor (HFBR) is still one of the world`s premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR`s value as a national scientific resource, members of the Laboratory`s scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor`s research capabilities.

Brynda, W.J.; Passell, L.; Rorer, D.C.

1995-01-01T23:59:59.000Z

237

2013 Young Researcher Symposium PROGRAM YOUNG RESEARCHER SYMPOSIUM  

NLE Websites -- All DOE Office Websites (Extended Search)

Young Researcher Symposium PROGRAM YOUNG RESEARCHER SYMPOSIUM 2013 BROOKHAVEN NATIONAL LABORATORY NOVEMBER 15, 2013 YRS LETTER FROM THE ORGANIZERS 2013 Dear Guest, Welcome...

238

Geoffrey Hind - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

email: hind@bnl.gov Research Interests Molecular mechanisms protect higher plants and algae against cellular damage during stress arising from excessive light collection by the...

239

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Interests The protein folding problem is a fundamental question in molecular biology. We have initiated studies to examine the pathway of protein folding as it occurs in...

240

Technology Search Results | Brookhaven Technology ...  

There are 9 technologies tagged "cancer". BSA 01-02: ... a limited-liability company founded by the Research Foundation for the State University of ...

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Brookhaven National Laboratory Committee Membership  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Management Forum OPSEC Policy Group Policy Council Project ManagementProject Controls Committee Quality of Life Steering Committee Research Library Advisory Committee...

242

Computing | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

ATLAS Grid The ATLAS grid computing system comprises a complex structure analogous to the power grid that allows researchers and students around the world to analyze ATLAS data....

243

Brookhaven highlights, fiscal year 1985, October 1, 1984-September 30, 1985  

Science Conference Proceedings (OSTI)

Activities at Brookhaven National Laboratory are briefly discussed. These include work at the National Synchrotron Light Source, the High Flux Beam Reactor, and the Alternating Gradient Synchrotron. Areas of research include heavy ion reactions, neutrino oscillations, low-level waste, nuclear data, medicine, biology, chemistry, parallel computing, optics. Also provided are general and administrative news, a financial report. (LEW)

Not Available

1985-01-01T23:59:59.000Z

244

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory From: 1599- 61400 Past BNL Research Interests I am the biology beamline scientist at x-ray beamline X25 at the National Synchrotron Light Source and...

245

Remote Access to Brookhaven, Information Services Division (ISD),  

NLE Websites -- All DOE Office Websites (Extended Search)

ISD Homepage ISD Homepage Site Details ISD Staff Remote Access Other Information BNL Site Index Can't View PDFs? Remote Access to Brookhaven External BNL users who need internet access to the internal ISD website which includes the Research Library, Records Management, Publications and Technical Editing must have a Virtual Private Network (VPN) account to connect to the BNL Internal Campus Network. This account can be setup by the Accounts Management Office. Available Options Remote Access Policy Broad-Band Connection: must use VPN with a CryptoCard Token Anti-Virus Procedures All Windows PCs should be running one of Brookhaven's official anti-virus software packages when connecting remotely to the BNL Internal Campus Network. Anti-Virus procedures are an important component of BNL's host-based security architecture. Anti-Virus software is the component of this architecture that provides a protection mechanism against malicious code. Malicious codes are programs, such as Trojan horses or viruses, that run on a host system without the authorization of the system user. These codes typically come from e-mail attachments, or can be downloaded along with programs from the Internet, or through an infected floppy disk. Properly installed anti-virus software can minimize these vulnerabilities.

246

Enforcement Letter - Brookhaven-12/18/1996  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nicholas Samios Nicholas Samios [ ] Brookhaven National Laboratory Post Office Box 5000 Building 460 Upton, New York 11973-5000 Subject: Noncompliance Number NTS-CH-BH-BNL-PE-1996-0001 Dear Dr. Samios: This letter refers to the Department of Energy's (DOE) evaluation of Brookhaven National Laboratory's (BNL) report of potential noncompliances with the requirements of 10 CFR Part 835 (Occupational Radiation Protection Rule). These potential noncompliances involved a number of instances of contractor or subcontractor failure to: (1) comply with area radiological warning signs, (2) use protective clothing and equipment, (3) maintain radiation exposures as low as reasonably achievable (ALARA), or (4) complete radiological worker training. On May 22, 1996, BNL reported

247

Security Operations, Laboratory Protection Division, Brookhaven National  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Operations Security Operations Homepage Brookhaven ID Badges, Passes, & Vehicle Stickers Hours of Operation Points of Contact Unclassified Foreign Visits and Assignments: FAQs BNL Site Access Main Gate Access Forms Security Operations L. Butera, Manager Brookhaven National Laboratory Bldg. 50 - P.O. Box 5000 Upton, NY 11973-5000 (631) 344-4691 E-mail: lbutera@bnl.gov Security Operations Mission Statement: To protect DOE special nuclear materials, classified matter, sensitive information, and certain sensitive property against theft, diversion, or destruction; to prevent the sabotage of programs that could result in significant scientific or financial impact; to prevent the malevolent release of hazardous materials including radiological, chemical, and infectious agents or other criminal acts that would endanger employees, the public, and the environment.

248

Brookhaven National Laboratory | Open Energy Information  

Open Energy Info (EERE)

National Laboratory National Laboratory Jump to: navigation, search Logo: Brookhaven National Laboratory (BNL) Name Brookhaven National Laboratory (BNL) Address William Floyd Parkway Place Upton, New York Zip 11973-5000 Region Northeast - NY NJ CT PA Area Number of employees 1001-5000 Phone number 631-344-3333 Coordinates 40.869543°, -72.8867697° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.869543,"lon":-72.8867697,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Brookhaven Patents | BNL Technology Commercialization and Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Patents Brookhaven Patents Electrocatalyst for alcohol oxidation in fuel cells Patent Number: 6,183,894 Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate. Patent Number: 8 Synthesis of macrocyclic polyaminocarboxylates and their use for preparing stable radiometal antibody immunoconjugates for therapy, spect and pet

250

Scientific Applications: BRAD: the brookhaven raster display  

Science Conference Proceedings (OSTI)

A multiconsole computer display system has been designed that provides very rich displays at low unit cost. Each BRAD (Brookhaven RAster Display) console can plot tens of thousands of points, or up to 4000 characters at 30 frames per second. After an ... Keywords: TV display console, TV graphics terminal, computer display, computer graphics, computer raster display, digital TV display, inexpensive graphic terminal, multiconsole computer graphics, swept raster TV computer display, swept raster computer display

D. Ophir; S. Rankowitz; B. J. Shepherd; R. J. Spinrad

1968-06-01T23:59:59.000Z

251

Small Business Standouts at Brookhaven National Laboratory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standouts at Brookhaven National Laboratory Standouts at Brookhaven National Laboratory Small Business Standouts at Brookhaven National Laboratory November 1, 2013 - 11:43am Addthis P.W. Grosser P.W Grosser is a small business that has been providing Brookhaven Science Associates with high-quality environmental engineering services since 1993. This photo shows ongoing removal of the below grade ducts beneath Bldg. 704, used to exhaust cooling air. Photo by P.W. Grosser. Read more M.S. Hi-Tech M.S. Hi-Tech is is a small business that supplies electronic components and various other electronic products to BSA. This photo shows a new warehouse at Brookhaven National Laboratory. Photo by M.S. Hi-Tech. Read more Array Array Jill Clough-Johnston Brookhaven Science Associates Small Business Liaison Officer The country's national laboratories have large spending power, with

252

Visiting Brookhaven National Laboratory | The Approach to Equilibrium in  

NLE Websites -- All DOE Office Websites (Extended Search)

Visiting Brookhaven Visiting Brookhaven Brookhaven National Laboratory (BNL) is located in Suffolk County on Long Island, a 120-mile-long island directly east of New York City. The Lab's 5,265-acre site is near the island's geographic center. The Lab is located in the township of Brookhaven, and has its own post office designation, Upton. The zip code is 11973-5000. From above, Long Island looks like a giant fish, with a forked tail on the "East End" -- the North Fork is rural, and the South Fork has many famous "Hamptons" resort towns. The Peconic Bay and Shelter Island are between the forks. Brookhaven is 15 miles to the west of the forks, and about 60 miles east of New York City. Aerial view of BNL - The Relativistic Heavy Ion Collider (top, center) is 2.4 miles in circumference, and dominates Brookhaven's

253

Brookhaven National Laboratory site environmental report for calendar year 1994  

SciTech Connect

This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

Naidu, J.R.; Royce, B.A. [eds.

1995-05-01T23:59:59.000Z

254

Thermally Conductive Graphite Foam  

oriented graphite planes, similar to high performance carbon fibers, which have been estimated to exhibit a thermal conductivity greater than 1700 ...

255

Brookhaven Center (Bldg. 30), Science Education Center (Bldg...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Center (Bldg. 30), Science Education Center (Bldg. 438) & Berkner Hall (Bldg.488) Click the building photos to view a larger image. Download Map of BNL Central Campus...

256

Site Navigation - Brookhaven National Laboratory a passion for ...  

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory ...

257

Recovery Act Workers Clear Reactor Shields from Brookhaven Lab...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Lab American Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once...

258

Brookhaven National Laboratory Industrial Hygiene Group Environment, Safety, Health Directorate  

E-Print Network (OSTI)

Safety & Health Services Division Industrial Hygiene Laboratory R. Wilson (0.8) __________________ 06Brookhaven National Laboratory Industrial Hygiene Group Environment, Safety, Health Directorate

Homes, Christopher C.

259

Brookhaven National Laboratory Industrial Hygiene Group Environment, Safety, Health Directorate  

E-Print Network (OSTI)

Safety & Health Services Division Industrial Hygiene Laboratory/ HEPA Filter Surveillance TestingBrookhaven National Laboratory Industrial Hygiene Group Environment, Safety, Health Directorate

Homes, Christopher C.

260

Emergency Medical Coordination Memorandum of Agreement at Brookhaven...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and effective response, including specific procedures for receipt of victims of radiation accidents. Emergency Medical Coordination Memorandum of Agreement at Brookhaven...

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

RECIPIENT:Town of Brookhaven STATE: NY PROJECT  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE legislation. Rational for determination: The Town of Brookhaven will be performing an energy audit and associated recommended retrofit work (possibly including some renewables...

262

Brookhaven National Laboratory Consent Order, November 30, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Associate's (BSA) investigation and response to the October 13, 2008, propane gas explosion that destroyed building 637, well house number 12, at the Brookhaven...

263

BNL | TCP News | The Entrepreneurs' Network Hosted at Brookhaven ...  

Located on Long Island, NY, Brookhaven operates large-scale facilities for studies in physics, chemistry, biology, medicine, applied science, and ...

264

BNL | TCP News | Brookhaven Lab Physicist Receives Technological ...  

Located on Long Island, NY, Brookhaven operates large-scale facilities for studies in physics, chemistry, biology, medicine, applied science, and ...

265

BNL | TCP News | Brookhaven Lab Approved to Offer New Partnerships ...  

Located on Long Island, NY, Brookhaven operates large-scale facilities for studies in physics, chemistry, biology, medicine, applied science, and ...

266

2011 Annual Planning Summary for Brookhaven Site Office (BHSO)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Brookhaven Site Office (BHSO) (See Science APS).

267

Baseline Graphite Initial Mechanical Test Report  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) Project is tasked with selecting a high temperature gas reactor technology that will be capable of generating electricity and supplying large amounts of process heat. The NGNP is presently being designed as a helium-cooled high temperature gas reactor (HTGR) with a large graphite core. The graphite baseline characterization project is conducting the research and development (R&D) activities deemed necessary to fully qualify nuclear-grade graphite for use in the NGNP reactor. One of the major fundamental objectives of the project is establishing nonirradiated thermomechanical and thermophysical properties by characterizing lot-to-lot and billet-to-billet variations (for probabilistic baseline data needs) through extensive data collection and statistical analysis. The reactor core will be made up of stacks of graphite moderator blocks. In order to gain a more comprehensive understanding of the varying characteristics in a wide range of suitable graphites, any of which can be classified as nuclear grade, an experimental program has been initiated to develop an extensive database of the baseline characteristics of numerous candidate graphites. Various factors known to affect the properties of graphite will be investigated, including specimen size, spatial location within a graphite billet, specimen orientation within a billet (either parallel to [P] or transverse to [T] the long axis of the as-produced billet), and billet-to-billet variations within a lot or across different production lots. Because each data point is based on a certain position within a given billet of graphite, particular attention must be paid to the traceability of each specimen and its spatial location and orientation within each billet. The evaluation of these properties is discussed in the Graphite Technology Development Plan (Windes et. al 2007). One of the key components in the evaluation of these graphite types will be mechanical testing of specimens drawn from carefully controlled sections of each billet. This report is confirmation that the test procedures are in place and approved, and that mechanical testing of graphite under the Baseline Graphite Characterization program has commenced.

Mark Carroll; Randy Lloyd

2009-09-01T23:59:59.000Z

268

BNL | Accelerators for Scientific Research  

NLE Websites -- All DOE Office Websites (Extended Search)

for Basic Research Brookhaven National Lab excels at the design, construction, and operation of large-scale accelerator facilities, a tradition that started with the Cosmotron and...

269

Energy Programs | Energy & Environmental Programs at Brookhaven National  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Research at Brookhaven National Laboratory (BNL) is leading to advances that can transcend the limitations of current technologies and may enable completely new and vastly more efficient energy systems. The strategy being employed at BNL is described in this brochure. (pdf) How to Contact Us Directory Listing | Feedback Form The Energy Challenge Our nation faces a grand challenge: finding alternatives to fossil fuels and improving energy efficiency to meet our exponentially growing energy needs over the next century and beyond. Biofuels Harnessing the power of plants to fuel our future - Plants are efficient energy scavengers, using sunlight to convert carbon dioxide and water into carbohydrates and other products that fuel every living thing on Earth.

270

Pollution Prevention at Brookhaven - Environmental Protection Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollution Prevention Pollution Prevention at Brookhaven National Laboratory BNL Pollution Prevention Program Description Pollution Prevention Regulations and Policies Cost Savings from Pollution Prevention & Recycling Initiatives Recycling Program Information BNL Recycles by the TON...recycling statistics BNL Energy Challenge Executive Order 13514 and Site Sustainability Plans Federal Leadership in Environmental, Energy, and Economic Performance Pollution Prevention Funding Opportunities P2 Proposal Form Pollution Prevention Awards Program DOE, BNL, and external Buying "Green" Products Information on Environmentally Preferable Purchasing Other P2 Resources/Databases Other P2 websites of interest How Do I Manage This Waste Stream? How-to advice on long list of common wastes

271

Coating method for graphite  

DOE Patents (OSTI)

A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided. The graphite surface is coated with a suspension of Y/sub 2/O/sub 3/ particles in water containing about 1.5 to 4 percent by weight sodium carboxymethylcellulose.

Banker, J.G.; Holcombe, C.E. Jr.

1975-11-06T23:59:59.000Z

272

FACTS The U.S. Department of Energy's Brookhaven National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

of adenovirus proteinase Computing Power for Scientific Discovery At Brookhaven National Laboratory With the huge amount of data involved in many experiments at Brookhaven...

273

Brookhaven National Laboratory's Science Videos on YouTube  

DOE Data Explorer (OSTI)

Brookhaven National Laboratory has posted more than seventy lab-produced videos on YouTube. Most are short clips that provide pithy insights into BNL's science, facilities, and community outreach activities. Visit Brookhaven's website to view lecture and seminar videos.

274

Small Modular Reactors (468th Brookhaven Lecture)  

SciTech Connect

With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

Bari, Robert

2011-04-20T23:59:59.000Z

275

NEW METHOD OF GRAPHITE PREPARATION  

DOE Patents (OSTI)

BS>A method is described for producing graphite objects comprising mixing coal tar pitch, carbon black, and a material selected from the class comprising raw coke, calcined coke, and graphite flour. The mixture is placed in a graphite mold, pressurized to at least 1200 psi, and baked and graphitized by heating to about 2500 deg C while maintaining such pressure. (AEC)

Stoddard, S.D.; Harper, W.T.

1961-08-29T23:59:59.000Z

276

NON-PROPRIETARY RESEARCH  

NLE Websites -- All DOE Office Websites (Extended Search)

NON-PROPRIETARY RESEARCH NON-PROPRIETARY RESEARCH Facility use costs are not paid (sample) PROPRIETARY RESEARCH Full cost recovery for facility use is paid (sample) OPEN DATA RESEARCH Full cost recovery for facility use is paid (sample) * Users ARE NOT charged for "machine time" or potential agreed upon collaborative effort of Brookhaven researchers; users may be charged for ancillary materials, supplies, and services obtained from the User Facility. * Users ARE charged for "machine time" and limited support services (non-collaborative) from Brookhaven personnel on a full- cost recovery basis. * Users ARE charged for "machine time" and limited support services (non-collaborative) from Brookhaven personnel on a full- cost recovery basis.

277

ATLAS Calorimeter | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

ATLAS Calorimeter ATLAS Calorimeter liquid argon calorimeter Brookhaven physicist Denis Damazio controls the front end crate of the barrel liquid argon calorimeter in ATLAS with his laptop. The ATLAS calorimeter measures the energies of charged and neutral particles. It consists of metal plates (absorbers) and sensing elements. Interactions in the absorbers transform the energy into a "shower" of particles that are detected by the sensing elements. In the inner sections of the calorimeter, the sensing element is liquid argon. This piece of the detector, called the liquid argon calorimeter, consists of radial layers of accordion-shaped lead plates separated by thin layers of liquid argon and electrodes. The accordion geometry has the advantage of reducing the time needed for the signals to reach the

278

Long Island Solar Farm | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Long Island Solar Farm Long Island Solar Farm Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt solar photovoltaic power plant built through a collaboration including BP Solar, the Long Island Power Authority (LIPA), and the Department of Energy. The LISF, located on the Brookhaven National Laboratory site, began delivering power to the LIPA grid in November 2011, and is currently the largest solar photovoltaic power plant in the Eastern United States. It is generating enough renewable energy to power approximately 4,500 homes, and is helping New York State meet its clean energy and carbon reduction goals. Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power: Long Island Power Authority (LIPA) purchases 100

279

Superconducting Magnet Division | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Magnet Division Superconducting Magnet Division Home Production & Testing LHC Dipole Acceptance APUL Schedule (pdf) Projects Main Projects HTS Magnet Program High Field Magnet R&D Linear Collider Final Focus e Lens Solenoid Correctors for J-PARC Correctors for SuperKEKB IR Magnets LARP APUL Past Projects BEPC-II IR Quadrupoles Bio-Med Variable Field MRI GSI Rapid Cycling Magnets Helical Magnets HERA upgrade LHC IR Dipoles RHIC Publications Search Publications Selected Cryogenic Data Notebook Proceedings of the 1968 Summer Study on Superconducting Devices and Accelerators Meetings & Workshops Safety Environmental, Safety & Health ES&H Documents Lockout-Tagout Personnel Staff Pages Ramesh Gupta Brett Parker Peter Wanderer Pe ter Wanderer, head of Brookhaven's Superconducting Magnet Division,

280

BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

6328 6328 CRISP 71-57 BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc. Upton, New York ACCELERATOR DEPARTMENT Informal Report Mi m HIGH ENERGY ELECTROMAGNETIC AND WEAK INTERACTION PROCESSES T.D. Lee January 11, 1972 N O T I C E This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employeear,^\,nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, complete- ness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Laboratory Protection Division, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Points of Contact Points of Contact Organization Chart (pdf) Groups Emergency Services Emergency Management Security Operations BNL Site Access Main Gate Access Forms Welcome to the... Laboratory Protection Division (LP) Mission Statement: To serve and protect Brookhaven National Laboratory's staff, guests, and interests from the undesirable consequences of unwanted events by providing preparedness, assessment, engineering, and immediate response services for all types of security and non-security related emergencies. Protect DOE special nuclear materials, classified matter, sensitive information, and property against theft, diversion, or destruction; prevent the sabotage of programs that could result in significant scientific or financial impact; prevent the malevolent release of hazardous materials including radiological, chemical, and infectious agents or other criminal acts protecting people, property, and national security, providing a safe and secure environment for employees, the public, and the environment.

282

HIGH INTENSITY PERFORMANCE OF THE BROOKHAVEN AGS.  

SciTech Connect

The Brookhaven AGS provides 24 GeV protons for a multi-user program of fixed-target high energy physics experiments, such as the study of extremely rare Kaon decays. Up to 7 x 10{sup 13} protons are slowly extracted over 2.2 seconds each 5.1 seconds. The muon storage ring of the g-2 experiment is supplied with bunches of 7 x 10{sup 12} protons. Since the completion of the a 1.9 GeV Booster synchrotron and installation of a new high-power rf system and transition jump system in the AGS various modes of operation have been explored to overcome space charge limits and beam instabilities at these extreme beam intensities. Experiments have been done using barrier cavities to enable accumulation of debunched beam in the AGS as a potential path to significantly higher intensities. We report on the present understanding of intensity limitations and prospects for overcoming them.

AHRENS,L.A.; ALESSI,J.; BLASKIEWICZ,M.; BRENNAN,J.M.; BROWN,K.; GARDNER,C.; GLENN,J.W.; ROSER,T.; SMITH,K.S.; VAN ASSELT,W.; ZHANG,S.Y.

1999-03-29T23:59:59.000Z

283

High intensity performance of the Brookhaven AGS  

SciTech Connect

Experience and results from recent high intensity proton running periods of the Brookhaven AGS, during which a record intensity for a proton synchrotron of 6.3 x 10{sup 13} protons/pulse was reached, is presented. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

Brennan, J.M.; Roser, T.

1996-07-01T23:59:59.000Z

284

Graphite design handbook  

Science Conference Proceedings (OSTI)

The objectives of the Graphite Design Handbook (GDH) are to provide and maintain a single source of graphite properties and phenomenological model of mechanical behavior to be used for design of MHTGR graphite components of the Reactor System, namely, core support, permanent side reflector, hexagonal reflector elements, and prismatic fuel elements; to provide a single source of data and material models for use in MHTGR graphite component design, performance, and safety analyses; to present properties and equations representing material models in a form which can be directly used by the designer or analyst without the need for interpretation and is compatible with analytical methods and structural criteria used in the MHTGR project, and to control the properties and material models used in the MHTGR design and analysis to proper Quality Assurance standards and project requirements. The reference graphite in the reactor internal components is the nuclear grade 2020. There are two subgrades of interest, the cylinder nuclear grade and the large rectangular nuclear grade. The large rectangular nuclear grade is molded in large rectangular blocks. It is the reference material for the permanent side reflector and the central column support structure. The cylindrical nuclear grade is isostatically pressed and is intended for use as the core support component. This report gives the design properties for both H-451 and 2020 graphite as they apply to their respective criteria. The properties are presented in a form for design, performance, and safety calculations that define or validate the component design. 103 refs., 20 figs., 19 tabs.

Ho, F.H.

1988-09-01T23:59:59.000Z

285

Carbon Characterization Laboratory Readiness to Receive Irradiated Graphite Samples  

SciTech Connect

The Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center. The CCL was established under the Next Generation Nuclear Plant Project to support graphite and ceramic composite research and development activities. The research conducted in this laboratory will support the Advanced Graphite Creep experimentsa major series of material irradiation experiments within the Next Generation Nuclear Plant Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, silicon-carbide composite, and ceramic materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials. Major infrastructural modifications were undertaken to support this new radiological facility at Idaho National Laboratory. Facility modifications are complete, equipment has been installed, radiological controls and operating procedures have been established and work management documents have been created to place the CCL in readiness to receive irradiated graphite samples.

Karen A. Moore

2011-05-01T23:59:59.000Z

286

Brookhaven National Laboratory site environmental report for calendar year 1996  

SciTech Connect

This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

1998-01-01T23:59:59.000Z

287

Neuroimaging Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Neuroimaging Research Neuroimaging Research (NIAAA Intramural & NIH) Neuroimaging research at Brookhaven is a prime example of transdisciplinary research where the expertise of chemists, physicists, and biological and medical scientists blend to apply new imaging tools to problems in human health. Brookhaven has a network of complementary brain-imaging tools: PET Positron Emission Tomography (PET) Micro MRI MicroMRI Awake Animal Imaging Awake Animal Imaging Using these imaging tools, human neuroscience research has focused on understanding how the brain effects, and is affected by: obesity and eating disorders ADHD depression Behavioral Pharmacology and Neuroimaging, and Neuropsychoimaging enrich investigations of the relationships between brain chemistry and behavior. Top of Page

288

BNL Center for Radiation Chemistry Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Department | Photo- and Radiation Chemistry | Group Members Welcome to the Brookhaven National Laboratory Center for Radiation Chemistry Research LEAF Logo CRCR Logo Graphic Pop-up...

289

Brookhaven National Laboratory Consent Order, November 30, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington DC 20585 Washington DC 20585 November 30, 2009 Dr. Samuel Aronson Director Brookhaven National Laboratory 40 Brookhaven Avenue Upton, New York 11973-5000 WCO-2009-01 Dear Dr. Aronson: This letter refers to the U.S. Department of Energy's (DOE) Office of Health, Safety and Security's, Office of Enforcement evaluation of Brookhaven Science Associate's (BSA) investigation and response to the October 13, 2008, propane gas explosion that destroyed building 637, well house number 12, at the Brookhaven National Laboratory. By letter dated May 26, 2009, BSA requested DOE consideration of a Consent Order with respect to the safety issues associated with this event. Fortunately, no injuries resulted from this catastrophic event. Following the event, BSA promptly secured the incident scene and initiated an investigation.

290

Department of Energy Cites Brookhaven Science Associates, LLC for Worker  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Cites Brookhaven Science Associates, LLC for Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations August 29, 2013 - 3:30pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Department of Energy (DOE) has issued a Preliminary Notice of Violation (PNOV) to Brookhaven Science Associates, LLC (BSA) for two violations of the Department's worker safety and health regulations. As part of the Energy Department's commitment to worker safety, DOE's enforcement program holds contractors accountable for meeting regulatory requirements and maintaining a safe and healthy workplace. The violations are associated with a November 29, 2011, fall injury event

291

Visiting Brookhaven National Laboratory | P5 Workshop on the...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the township of Brookhaven, and has its own post office designation, Upton. The zip code is 11973-5000. From above, Long Island looks like a giant fish, with a forked tail...

292

Kelly McMasters, Brookhaven Statement on Shirley Memoir, Welcome...  

NLE Websites -- All DOE Office Websites (Extended Search)

Statement on 'Shirley' Memoir Kelly McMasters has published a book about growing up in Shirley, New York, in a neighborhood about 6 miles south of Brookhaven National Laboratory....

293

Recompressed exfoliated graphite articles  

DOE Patents (OSTI)

This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

2013-08-06T23:59:59.000Z

294

Innovative Graphite Removal Technology for Graphite Moderated Reactor Decommissioning  

Science Conference Proceedings (OSTI)

This report defines a trial program to support the development of a new concept for the removal of reactor graphite by remote in-situ size reduction and vacuum transfer, known as nibble-and-vacuum. This new approach to graphite retrieval has significant potential for simplifying the decommissioning process of graphite moderated reactors. It produces graphite gravel, which has potential as feedstock for processes such as gasification/steam reforming. This report includes definition of the trial program, t...

2010-09-28T23:59:59.000Z

295

Facility Operations Office, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Operations Office Facility Operations Office Safely supporting the missions of the laboratory... The Facility Operations Office addresses key issues in work planning, maintenance engineering, service-delivery models, and annual facility-work plans. Facility Operations Center: The Facility Operations Center provides computer programs designed to assist in the planning, management and administrative procedures required for an effective maintenance and asset management process. As an information technology tool for managing the maintenance process, a Computerized Maintenance Management System (CMMS) is a mission-essential part of any organization, and a tool for success. Infrastructure Management: IM's goal is to ensure Brookhaven National Laboratory real property assets are planned for, managed, tracked, and upgraded as required in order to meet BNL's current and future programmatic needs. To accomplish this IM performs site and utilities master planning, manages BNL's new project request and prioritization system (3PBP), maintains utilities maps, manages BNL's space and facilities data base, and provides program management for BNL's GPP, Line Item and Operating Funded Project programs.

296

Emergency Services, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency Services Emergency Services at Brookhaven National Laboratory :: Fire Danger Index LOW ▪ Index Description (pdf) ▪ NWS Fire Weather Forecast ▪ What is the Fire Danger Index ? The Fire Danger Index level takes into account current and antecedent weather, fuel types, and both live and dead fuel moisture. Hide :: Important Links EMERGENCY Numbers Lab Phone: 911 or 2222 Cell Phone/Offsite: 631-344-2222 OHSAS 18001 :: Contact Links ▪ Email LP Division Manager ▪ Email Fire Chief ▪ Email Fire Captains ▪ Email Fire Protection Engineer The mission of the Emergency Services Division is to provide preparedness, assessment, engineering and response services for all types of non-security related emergencies. The Division develops policies and programs for fire safety and fire risk management; provides emergency services for fire suppression, emergency medical services, hazardous material incidents, rescue, salvage, and property protection. As well as maintains the mechanical components of certain fire safety systems.

297

Geothermal materials development at Brookhaven National Laboratory  

DOE Green Energy (OSTI)

As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R and D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O and M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R and D, most of which is performed as cost-shared efforts with US geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

Kukacka, L.E.

1997-06-01T23:59:59.000Z

298

WILDLAND FIRE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.  

SciTech Connect

This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) and the Upton Ecological and Research Reserve (Upton Reserve) is based on the U.S. Fish & Wildlife Service (FWS) fire management planning procedures and was developed in cooperation with the Department of Energy (DOE) by Brookhaven Science Associates. As the Upton Reserve is contained within the BNL 5,265-acre site, it is logical that the plan applies to both the Upton Reserve and BNL. The Department of the Interior policy for managing wildland fires requires that all areas managed by FWS that can sustain fire must have an FMP that details fire management guidelines for operational procedures and specifies values to be protected or enhanced. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL/Upton Reserve Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered and threatened species and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL and the Upton Reserve. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of FWS, BNL, and the Upton Reserve. This Fire Management Plan is a modified version of the Long Island National Wildlife Refuge Complex Fire plan (updated in 2000), which contains all FWS fire plan requirements and is presented in the format specified by the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. FWS shall be, through an Interagency Agreement dated November 2000 (Appendix C), responsible for coordinating and implementing prescribed burns and fuel reduction projects in the Upton Reserve. Prescribed fire and fuel reduction in locations outside the Upton Reserve will be coordinated through the Natural Resource Management Program at BNL, and done in consultation with FWS. This FMP is to be used and implemented for the entire BNL site including the Upton Reserve and has been reviewed by FWS, The Nature Conservancy, New York State Department of Environmental Conservation Forest Rangers, and DOE, as well as appropriate BNL emergency services personnel.

ENVIRONMENTAL AND WASTE MANAGEMENT SERVICES DIVISION

2003-09-01T23:59:59.000Z

299

WILDLAND FIRE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.  

SciTech Connect

This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) and the Upton Ecological and Research Reserve (Upton Reserve) is based on the U.S. Fish & Wildlife Service (FWS) fire management planning procedures and was developed in cooperation with the Department of Energy (DOE) by Brookhaven Science Associates. As the Upton Reserve is contained within the BNL 5,265-acre site, it is logical that the plan applies to both the Upton Reserve and BNL. The Department of the Interior policy for managing wildland fires requires that all areas managed by FWS that can sustain fire must have an FMP that details fire management guidelines for operational procedures and specifies values to be protected or enhanced. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL/Upton Reserve Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered and threatened species and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL and the Upton Reserve. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of FWS, BNL, and the Upton Reserve. This Fire Management Plan is a modified version of the Long Island National Wildlife Refuge Complex Fire plan (updated in 2000), which contains all FWS fire plan requirements and is presented in the format specified by the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. FWS shall be, through an Interagency Agreement dated November 2000 (Appendix C), responsible for coordinating and implementing prescribed burns and fuel reduction projects in the Upton Reserve. Prescribed fire and fuel reduction in locations outside the Upton Reserve will be coordinated through the Natural Resource Management Program at BNL, and done in consultation with FWS. This FMP is to be used and implemented for the entire BNL site including the Upton Reserve and has been reviewed by FWS, The Nature Conservancy, New York State Department of Environmental Conservation Forest Rangers, and DOE, as well as appropriate BNL emergency services personnel.

ENVIRONMENTAL AND WASTE MANAGEMENT SERVICES DIVISION

2003-09-01T23:59:59.000Z

300

Diamond-graphite field emitters  

DOE Patents (OSTI)

A field emission electron emitter comprising an electrode of diamond and a conductive carbon, e.g., graphite, is provided.

Valone, Steven M. (Santa Fe, NM)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Graphite-based photovoltaic cells  

DOE Patents (OSTI)

The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

Lagally, Max (Madison, WI); Liu, Feng (Salt Lake City, UT)

2010-12-28T23:59:59.000Z

302

Record Series Descriptions: Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope Administration to Patients Bibliography of Medical Department Researchers Human Medical Research Study Protocols Human Subjects Research Policies Isotope Index Cards...

303

Graphite technology development plan  

Science Conference Proceedings (OSTI)

This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

NONE

1986-07-01T23:59:59.000Z

304

Graphitization in C and C-Mo Steels  

Science Conference Proceedings (OSTI)

Following the recent carbon (C) and carbon-molybdenum (C-Mo) steel graphitization experience reported by several Electric Power Research Institute (EPRI) members, it became apparent that the industry could benefit from better predictive guidance to prioritize component inspections and examinations for graphitization. This research effort collected and analyzed the additional experience gained since the last EPRI project on the subject and focused on developing suitably conservative time-temperature predi...

2010-12-23T23:59:59.000Z

305

Labs at-a-Glance: Brookhaven National Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Brookhaven Brookhaven National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Brookhaven National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Brookhaven National Laboratory Logo Visit the Brookhaven National Laboratory

306

BNL | Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven's Research Facilities Brookhaven's Research Facilities Tools of Discovery Brookhaven National Lab excels at the design, construction, and operation of large-scale, cutting-edge research facilities-some available nowhere else in the world. Each year, thousands of scientists from laboratories, universities, and industries around the world use these facilities to delve into the basic mysteries of physics, chemistry, biology, materials science, energy, and the environment-and develop innovative applications that arise, sometimes at the intersections of these disciplines. construction Brookhaven Lab is noted for the design, construction and operation of large-scale, cutting-edge research facilities that support thousands of scientists worldwide. RHIC tunnel Relativistic Heavy Ion Collider

307

Brookhaven National Laboratory Smarter Grid Centers  

E-Print Network (OSTI)

Distribution Infrastructure - How does Smarter Electric Grid Research, Innovation, Development, Demonstration Electric Grid Data & Modeling with Orange & Rockland Utility (ORU) Data model includes all grid research Smarter Electric Grid Research, Innovation, Development, Demonstration, Deployment Center ­ SGRID3

Homes, Christopher C.

308

RECIPIENT:Town of Brookhaven STATE: NY PROJECT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Town of Brookhaven STATE: NY Town of Brookhaven STATE: NY PROJECT EECBG (S) - Brookhaven (NY): Henrietta Acampora Recreation Center TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-FOA-0000013 DE-EE0000688 GFO-0000688-002 Based on my review of the information concerning tbe proposed action, as NEPA Compliance Officer (autborized under DOE Order 4St.tA), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy. demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders, owners, consultants, designers), organizations (such as utilities), and state

309

LHC Design & Construction | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

LHC Design & Construction LHC Design & Construction BNL-built superconducting magnet BNL engineers with the first of 20 BNL-built superconducting magnets for the LHC. Starting in 1996, Brookhaven scientists and engineers designed and constructed 20 of the total 1,200 superconducting magnets for the LHC. Now in place, these specialized dipole magnets, each weighing more than 25 tons, will guide the LHC's two counter-rotating beams of protons into collision. Tied to this effort, Brookhaven scientists also tested much of the associated superconducting wires and cables for the machine. In addition, Brookhaven scientists and engineers designed and built key parts of the ATLAS detector, including: pieces of the liquid argon calorimeter - a device that pinpoints electrons and photons emerging from

310

REPORT ON TKE BROOKHAVEN SOLAR M%UTRINO E  

NLE Websites -- All DOE Office Websites (Extended Search)

1837 1837 74 o$y?z3- REPORT ON TKE BROOKHAVEN SOLAR M%UTRINO E -* ha R. Davis Jr. and J . C . Evans Jr. Chemistry Department, Brookhaven National Laboratory, Upton, New Pork 11973 Introduction This report is intended as a brief statement of the recent developments and results of the Brookhaven Solar Neutrino- Experiment communicated through Professor G . Kocharov to the Leningrad conference on active processes on the sun and the solar neutrino problem. The report summarizes the results of experiments performed over a period of 6 years, from April 1970 to January 1976, Neutrino detection depends upon the neutrino capture reaction - 37 37Cl(v,e ) Ar producing the isotope 37Ar (half life of 35 days). The 5 detector contains 3 . 8 x 10 liters of C2C14 c2.2 x lo3*

311

Benefits Office, Human Resources, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

search Go search Go Brookhaven Benefits Office HR Homepage | Feedback Form Denise DiMeglio (Manager, 631.344.2881) Melissa Bittrolff (Sr. HR Rep., 631.344.2877) Barbara Soeyadi (Sr. HR Rep., 631.344.7516) Monique Armann (HR Rep., 631.344.5126) IMPORTANT UPDATES TO YOUR RETIREMENT PROGRAM Brookhaven Science Associates, LLC knows that benefits are an important and meaningful part of your employment at Brookhaven. Our benefit programs address both the immediate needs of your family, such as insurance coverage, and your long-term needs, such as retirement savings. You'll find this website will provide you with plan information, telephone numbers, claim forms and much more. Benefits Program Other Services at BNL BSA Benefits Program Booklet (2014)* Accidental Death & Dismemberment Insurance

312

HAPO GRAPHITE IRRADIATION CAPSULES  

SciTech Connect

A summary is presented of the broad field of graphite irradiation capsules. The various capsule designs are considered; they include temperature- controlled and temperature-monitored capsules. The components and materials of the capsules are described. Finally, methods are given for carrying out heat trandsfer calculations in capsule design and neutron spectra calculations for correlation of radiation data from different reactors. (D.L.C.)

Helm, J.W.

1963-09-18T23:59:59.000Z

313

Progressive Application Decommissioning Models for U.S. Power and Research Reactors  

SciTech Connect

This paper presents progressive engineering techniques and experiences in decommissioning projects performed by Bums and Roe Enterprises within the last fifteen years. Specifically, engineering decommissioning technical methods and lessons learned are discussed related to the Trojan Large Component Removal Project, San Onofre Nuclear Generating Station (SONGS) Decommissioning Project and the Brookhaven Graphite Research Reactor (BGRR) Decommissioning Project Study. The 25 years since the 1979 TMI accident and the events following 9/11 have driven the nuclear industry away from excessive, closed/elitist conservative methods towards more pragmatic results-oriented and open processes. This includes the essential recognition that codes, standards and regulatory procedures must be efficient, effective and fit for purpose. Financial and open-interactive stakeholder pressures also force adherence to aggressive risk reduction posture in the area of a safety, security and operations. The engineering methods and techniques applied to each project presented unique technical solutions. The decommissioning design for each project had to adopt existing design rules applicable to construction of new nuclear power plants and systems. It was found that the existing ASME, NRC, and DOE codes and regulations for deconstruction were, at best, limited or extremely conservative in their applicability to decommissioning. This paper also suggests some practical modification to design code rules in application for decommissioning and deconstruction. The representative decommissioning projects, Trojan, SONGS and Brookhaven, are discussed separately and the uniqueness of each project, in terms of engineering processes and individual deconstruction steps, is discussed. Trojan Decommissioning. The project included removal of entire NSSS system. The engineering complexity was mainly related to the 1200 MW Reactor. The approach, process of removal, engineering method related to protect the worker against excessive radiation exposure, transportation, and satisfying applicable rules and regulations, were the major problems to overcome. The project's successful completed earned a patent award. SONGS Decommissioning. The reactor's spherical containment and weakened integrity was the scope of this decommissioning effort. The aspects of structure stability and method of deconstruction is the major part of the presentation. The economical process of deconstruction, aspects of structural stability, worker safety, and the protection of the surrounding environment from contamination is highlighted in this section. BGRR Decommissioning Study. BREI was commissioned by Brookhaven National Laboratory (BNL) to evaluate and analyze the stability, and progressive decommissioning, and removal of BGRR components. This analysis took the form of several detailed decommissioning studies that range from disassembly and removal of the unit's graphite pile to the complete environmental restoration of the reactor site. While most of the facility's decommissioning effort is conventional, the graphite pile and its biological shield present the greatest challenge. The studies develop a unique method of removing high-activity waste trapped in the graphite joints. (authors)

Studnicka, Z.; Lacy, N.H.; Nicholas, R.G.; Campagna, M.; Morgan, R.D. [Bums and Roe Enterprises, Inc., 800 Kinderkamack Road, Oradell, NJ 07649 (United States); Sawruk, W. [ABS Consulting, Inc., 5 Birdsong Court, Shillington, PA 19607 (United States)

2006-07-01T23:59:59.000Z

314

Independent Verification Survey Report for the Long Island Solar Farm, Brookhaven National Laboratory, Upton, New York  

DOE Green Energy (OSTI)

5119-SR-01-0 INDEPENDENT VERIFICATION SURVEY REPORT FOR THE LONG ISLAND SOLAR FARM, BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-11-15T23:59:59.000Z

315

Research Operations Office, Global and Regional Solutions, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Training Supervisors/Sponsors will identify required training/qualifications in compliance with the Training & Qualification Subject Area. These requirements are to be updated as responsibilities/assignments change. Required training/qualifications are typically documented via the New Employee/Guest Orientation Form, and/or Work Planning & Control documents, such as Experimental Safety Reviews (ESRs) or Work Permits. Requirements must be communicated to the Training Coordinator, who assigns Job Training Assessments (JTAs) which are entered into the BNL Training Database. It is the responsibility of all employees/guests to maintain their training/qualifications. For Required Training, Class Schedules, and the Job Hazard/Training Assessment Tool - Go to: BNL Training Web Page.

316

RESEARCH FOR OUR ENERGY FUTURE BROOKHAVEN NATIONAL LABORATORY  

E-Print Network (OSTI)

, hydro, or biofuel/biomass, among others. The primary reason we use so much energy is the inherent -- to power our cars, support industry, and light and heat our homes and businesses -- nearly 60 percent

Ohta, Shigemi

317

Research Operations Office, Global and Regional Solutions, Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

before it can begin. In GARS, this is accomplished primarily through the Experimental Safety Review (ESR) process. The ESR describes the objectives of the experiment or project...

318

Research Operations Office, Global and Regional Solutions, Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Management System The GARS Directorate manages the environmental impact of their operations and activities at BNL by maintaining an Environmental Management System...

319

Why Do People Smoke? Research at Brookhaven Looks Beyond Nicotine  

NLE Websites -- All DOE Office Websites (Extended Search)

Committee. "Nicotine is known to elevate brain dopamine," said BNL chemist Joanna Fowler. "But the markedly lower MAO B levels in the smokers' brains suggest that whatever is...

320

BNL Website Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Index Site Index A B C D E F G H I J L M N O P Q R S T U V W A About Brookhaven Accelerator-based Science Accelerator Test Facility Addiction Research Adopt-a-Platoon AGS Booster Alternating Gradient Synchrotron Association of Students and Post-docs (ASAP) ATLAS Awards B Badging Office Basic Energy Sciences Directorate Bike/Bicycles Biofuel Research Biosciences Department BRAHMS Brookhaven Advocacy Council Brookhaven Council Brookhaven Employees Recreation Association (BERA) Brookhaven Graphite Research Reactor (environmental cleanup) Brookhaven Graphite Research Reactor (history) Brookhaven Lectures Brookhaven Medical Research Reactor Brookhaven Retired Employees' Association (BREA) Brookhaven Science Associates Brookhaven This Week (Weekly News Summary) Brookhaven Women in Science

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Heat exchanger using graphite foam  

DOE Patents (OSTI)

A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

Campagna, Michael Joseph; Callas, James John

2012-09-25T23:59:59.000Z

322

Lithium Diffusion in Graphitic Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Volume 1 Start Page 1176 Issue 8 Pagination 1176-1180 Keywords anode, diffusion, graphene, lithium ion battery, transport Abstract Graphitic carbon is currently considered the...

323

Brookhaven National Laboratory site environmental report for calendar year 1995  

SciTech Connect

This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

Naidu, J.R.; Paquette, D.E.; Schroeder, G.L. [eds.] [and others

1996-12-01T23:59:59.000Z

324

Brookhaven Science Associates U.S. Department of Energy  

E-Print Network (OSTI)

generationDynamic finite element grid generation #12;Brookhaven Science Associates U.S. Department of Energy different types of discontinuities in a medium such as shock waves in gas dynamics, boundaries between fluid-gas states, different fluids or their phases in fluid dynamics, component boundaries in solid dynamics etc

McDonald, Kirk

325

Brookhaven highlights. [Fiscal year 1992, October 1, 1991--September 30, 1992  

SciTech Connect

This publication provides a broad overview of the research programs and efforts being conducted, built, designed, and planned at Brookhaven National Laboratory. This work covers a broad range of scientific disciplines. Major facilities include the Alternating Gradient Synchrotron (AGS), with its newly completed booster, the National Synchrotron Light Source (NSLS), the High Flux Beam Reactor (HFBR), and the RHIC, which is under construction. Departments within the laboratory include the AGS department, accelerator development, physics, chemistry, biology, NSLS, medical, nuclear energy, and interdepartmental research efforts. Research ranges from the pure sciences, in nuclear physics and high energy physics as one example, to environmental work in applied science to study climatic effects, from efforts in biology which are a component of the human genome project to the study, production, and characterization of new materials. The paper provides an overview of the laboratory operations during 1992, including staffing, research, honors, funding, and general laboratory plans for the future.

Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L. [eds.

1992-12-31T23:59:59.000Z

326

Graphitic packing removal tool  

DOE Patents (OSTI)

Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

Meyers, K.E.; Kolsun, G.J.

1996-12-31T23:59:59.000Z

327

Brookhaven National Laboratory The National Synchrotron Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

is one of five nanoscale science research centers (NSRCs) that DOE's Office of Basic Energy Sciences is operating at national laboratories around the country. These centers...

328

Consent Order, Brookhaven Science Associates - WCO-2009-01 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Science Associates - WCO-2009-01 Brookhaven Science Associates - WCO-2009-01 Consent Order, Brookhaven Science Associates - WCO-2009-01 November 30, 2009 Worker Safety and Health Enforcement Consent Order issued to Brookhaven Science Associates related to a Propane Explosion in a Well House at Brookhaven National Laboratory, (WCO-2009-01) This letter refers to the U.S. Department of Energy's (DOE) Office of Health, Safety and Security's, Office of Enforcement evaluation of Brookhaven Science Associate's (BSA) investigation and response to the October 13, 2008, propane gas explosion that destroyed building 637, well house number 12, at the Brookhaven National Laboratory. By letter dated May 26, 2009, BSA requested DOE consideration of a Consent Order with respect to the safety issues associated with this event.

329

Brookhaven Essay Contest Science and Society  

Energy.gov (U.S. Department of Energy (DOE))

The Science and Society Essay Contest aims to challenge high school students to question and deliberate the purposes and social implications of scientific research. All high school students (9th...

330

Meeting National Needs, Creating Opportunities for Growth Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

National Needs, Creating Opportunities for Growth National Needs, Creating Opportunities for Growth Brookhaven National Laboratory Economic Impact Report This report was prepared by Appleseed, a New York City-based economic development consulting firm that works with government, corporations, and nonprofit institutions to promote economic growth and opportunity. 80 Broad Street 13th Floor New York, NY 10004 www.appleseedinc.com Fiscal Year 2009 Highlights By the numbers... State & Local Impacts National Influence Global Reach $704 Million in economic output generated by Brookhaven Lab and its visitors $573 Million in total funding 5,400 jobs created throughout New York State 3,000 employees, 98% living on Long Island 12% growth in employment from 2006 to 2009 $74.7 Million invested in new facilities and renovations

331

Natural Resource Management Plan for Brookhaven National Laboratory  

SciTech Connect

This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in significant changes to this plan warranting the delay. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL in a sustainable manner. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B, respectively), and lists of actions in tabular format - including completed items as well as ongoing and new action items (Appendices C and D, respectively).

green, T.

2011-08-15T23:59:59.000Z

332

Natural Resource Management Plan for Brookhaven National Laboratory  

SciTech Connect

This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in significant changes to this plan warranting the delay. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL in a sustainable manner. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B, respectively), and lists of actions in tabular format - including completed items as well as ongoing and new action items (Appendices C and D, respectively).

green, T.

2011-08-15T23:59:59.000Z

333

Site Environmental Report BROOKHAVEN NATIONAL LABORATORY  

E-Print Network (OSTI)

lower operating costs, reduced waste going into landfills, conservation of energy and water, reduction of greenhouse gas emissions, and a healthier, safer workplace. FUTURE NSLS-II RESEARCH SUPPORT BUILDING CENTER operations. In 2008, we received a DOE P2 STAR Honorable Mention Award, a Federal Environmental Executive

Johnson, Peter D.

334

HIGH INTENSITY BEAM OPERATION OF THE BROOKHAVEN AGS  

SciTech Connect

For the last few years the Brookhaven AGS has operated at record proton intensities. This high beam intensity allowed for the simultaneous operation of several high precision rare kaon decay experiments. The record beam intensities were achieved after the AGS Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. The intensity is presently limited by space charge effects at both Booster and AGS injection and transverse instabilities in the AGS.

ROSER,T.

1999-06-28T23:59:59.000Z

335

Brookhaven Reactor Experiment Control Facility, a distributed function computer network  

SciTech Connect

A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented. (auth)

Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

1975-11-01T23:59:59.000Z

336

Spent graphite fuel element processing  

SciTech Connect

The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

Holder, N.D.; Olsen, C.W.

1981-07-01T23:59:59.000Z

337

Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979  

SciTech Connect

These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the National Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)

1979-01-01T23:59:59.000Z

338

Using Graphite to view network data  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphite Graphite to Visualize Network Data Jon Dugan Summer ESCC 2010, Columbus, OH Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science ESnet Statistics Overview ESxSNMP (Data Collection) ESxSNMP (Data Collection) Graphite (Visualization) Graphite (Visualization) Analytics (Custom Reports) Analytics (Custom Reports) Net Almanac (Metadata) Net Almanac (Metadata) Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science What is Graphite? "Enterprise scalable realtime graphing" * Developed by Orbitz for visualizing internal performance data * Open source: https://launchpad.net/graphite * Has own RRD like database called Carbon * RRD Compatible ESxSNMP Integration * via REST interface * Easy integration, Graphite is well written

339

Program on Technology Innovation: Graphite Waste Separation  

Science Conference Proceedings (OSTI)

The graphite moderators of retired gas-cooled nuclear reactors present a difficult challenge during demolition activities. There is a widespread view that disposal would be greatly facilitated if carbon-14 could be removed from the graphite blocks. As part of the EPRI graphite initiative on the technical issues involved in the management and disposal of irradiated nuclear graphite, this report describes an engineering feasibility study of graphite radioisotope separation technology. The report evaluates ...

2008-03-10T23:59:59.000Z

340

BROOKHAVEN NATIONAL LABORATORY SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 1994.  

SciTech Connect

This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment were evaluated. Among the permitted facilities, two instances of pH exceedances were observed at recharge basins, possibly related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant to the Peconic River exceeded. on ten occasions, one each for fecal coliform and 5-day Biochemical Oxygen Demand (avg.) and eight for ammonia nitrogen. The ammonia and Biochemical Oxygen Demand exceedances were attributed to the cold winter and the routine cultivation of the sand filter beds which resulted in the hydraulic overloading of the filter beds and the possible destruction of nitrifying bacteria. The on-set of warm weather and increased aeration of the filter beds via cultivation helped to alleviate this condition. The discharge of fecal coliform may also be linked to this occurrence, in that the increase in fecal coliform coincided with the increased cultivation of the sand filter beds. The environmental monitoring data has identified site-specific contamination of groundwater and soil. These areas are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement. Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public or to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

NAIDU,J.R.; ROYCE,B.A.

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

WBNL Streaming Video, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

WBNL Video WBNL Video Newsroom Photos Image Library Historic Images Photo Permissions Videos Fact Sheets Lab History News Categories Contacts Categories All Videos General Lab Overviews Lectures & Seminars Workshops & Colloquia Health & Wellness Talks Keywords accelerators addiction ARRA ATLAS award BERA biochemistry biology biosciences blueprint BNL lecture brown bag lunches BSA BSA distinguished lecture BWIS BWIS lecture cancer research celebrations CFN chemistry commercial community computing dignitary diversity DOE earth science education elected official Employee Assistance Program employee feature energy environment environmental science event facility users funding health and wellness history human resources IFM instrumentation lab infrastructure lecture lessons LHC magnets materials science medical

342

Brookhaven Site Office Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Home Home Brookhaven Site Office (BHSO) BHSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Brookhaven Site Office U.S. Department of Energy PO Box 5000 Upton, NY 11973 P: (631) 344-3425 E: TellDOE@bnl.gov Brookhaven Site Office Pictured Right: Ariel view of Brookhaven National Laboratory BHSO 1 of 2 Print Text Size: A A A RSS Feeds FeedbackShare Page The Brookhaven Site Office (BHSO) is an organization within the U.S. Department of Energy's Office of Science with responsibility to oversee and manage the Management and Operating (M&O) contract for the Brookhaven National Laboratory (BNL) in Upton, New York. BNL is one of ten Office of Science Laboratories and is a multi-program laboratory with a primary mission on delivering breakthrough science and

343

EA-1928: White-Tailed Deer Management at Brookhaven National Lab, Upton,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: White-Tailed Deer Management at Brookhaven National Lab, 8: White-Tailed Deer Management at Brookhaven National Lab, Upton, New York EA-1928: White-Tailed Deer Management at Brookhaven National Lab, Upton, New York SUMMARY This EA evaluates the potential environmental impacts of a proposal to lower, then maintain the deer herd on the 5,265 acre Brookhaven National Laboratory to levels protective of the ecosystem (estimated to be between 80 and 250 animals) using one or more methods for population growth. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 6, 2013 EA-1928: Finding of No Significant Impact White-Tailed Deer Management at Brookhaven National Lab, Upton, New York March 6, 2013 EA-1928: Final Environmental Assessment White-Tailed Deer Management at Brookhaven National Lab, Upton, New York

344

Preliminary Notice of Violation, Brookhaven Science Associates - EA-1999-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Science Associates - Brookhaven Science Associates - EA-1999-02 Preliminary Notice of Violation, Brookhaven Science Associates - EA-1999-02 April 15, 1999 Preliminary Notice of Violation issued to Brookhaven Science Associates related to Radiological Protection and Work Control Deficiencies at the Brookhaven National Laboratory, (EA-1999-0) This letter refers to the Department of Energy's (DOE) evaluation of a number of incidents that occurred throughout 1998 at the Brookhaven National Laboratory (BNL) revealing deficiencies in radiological protection and work process controls. The deficiencies involved the following: (1) apparent intentional violations of radiation protection requirements related to activities at the High Flux Beam Reactor (HFBR), (2) failure to maintain proper access controls at the Alternating Gradient Synchrotron

345

Artificial Photosynthesis Group | Chemistry Department | Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Program Research Program We study light absorption and charge separation by band-gap narrowed semiconductors (BGNSCs) and transition metal complexes as chromophores replacing chlorophylls and the natural light-collecting and charge separation system in PS I and II. We investigate electron transfer from photosensitizers to catalysts for carrying out proton-coupled fuel generation reactions. We study how the holes produced by these charge separation events can oxidize water using molecular and heterogeneous catalysts to produce oxygen and protons. We also design and characterize systems for incorporating the electrons from the charge separation events into metal- and carbon-based hydrides analogous to NAPDH for carrying out reduction reactions, and design catalysts for carrying out fuel forming half-reactions analogous to the formation of carbohydrates in the Calvin cycle of PS I. The target reduction product might be either H2 or a reduced CO2 product. While reduced metal catalysts we are investigating can carry out two-electron reduction of CO2 to CO or formate, another promising route to a carbon-based fuel is to first produce H2 by a solar driven process involving a non-precious-metal-based hydrogen evolution catalyst (e.g., NiMoNx nanosheets on a carbon electrode support), and then using a catalyst such as [Cp*Ir(OH2)]2(THBPM) to reversibly convert the H2 and CO2 into an aqueous formate solution for use either in a formic acid fuel cell or as an efficient hydrogen storage and transport system.

346

REVISED INDEPENDENT VERIFICATION SURVEY OF A AND B RADIOACTIVE WASTE TRANSFER LINES TRENCH BROOKHAVEN NATIONAL LABORATORY  

SciTech Connect

REVISED INDEPENDENT VERIFICATION SURVEY OF THE A AND B RADIOACTIVE WASTE TRANSFER LINES TRENCH, BROOKHAVEN NATIONAL LABORATORY 5062-SR-01-1

P.C. Weaver

2010-02-10T23:59:59.000Z

347

Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory  

Science Conference Proceedings (OSTI)

The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron microscopy techniques in strongly correlated electron systems and nanostructured materials. As a first step, with the support of Materials Science Division, Office of Basic Energy Science, US Department of Energy, and the New York State Office of Science, Technology, and Academic Research, recently we acquired three aberration-corrected electron microscopes from the three major microscope manufacturers, i.e., JEOL, Hitachi, and FEI. The Hitachi HD2700C is equipped with a probe corrector, the FEI Titan 80-300 has an imaging corrector, while the JEOL2200MCO has both. All the correctors are of the dual-hexapole type, designed and manufactured by CEOS GmbH based on the design due to Rose and Haider [3, 18]. All these three are one-of-a-kind in the US, designed for specialized capabilities in characterizing nanoscale structure. In this chapter, we review the performance of these state-of-the art instruments and the new challenges associated with the improved spatial resolution, including the environment requirements of the laboratory that hosts these instruments. Although each instrument we describe here has its own strengths and drawbacks, it is not our intention to rank them in terms of their performance, especially their spatial resolution in imaging.

Zhu,Y.; Wall, J.

2008-04-01T23:59:59.000Z

348

Groundwater Protection Group (GPG), Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

EPD Home EPD Home Site Details GPG Home Groundwater Projects Surface Projects Land Use & Institutional Controls Mapping Administrative Record Contacts Reports Other Information Reactor Projects (HFBR & BGRR) Groundwater Protection Group The Groundwater Protection Group (formerly know as the Long Term Response Action (LTRA) Group) was formed in 2004 as part of the Environmental Protection Division. The GPG Group is responsible for the long-term surveillance, monitoring, maintenance, operating, reporting, and community involvement activities required to complete the CERCLA environmental cleanup activities at Brookhaven National Laboratory. Ongoing Projects: g-2 Record of Decision Groundwater Projects Surface Projects Land Use and Institutional Control Five Year Review

349

High intensity performance and upgrades at the Brookhaven AGS  

SciTech Connect

For the last two years the Brookhaven AGS has operated the slow extracted beam program at record proton intensities. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

Roser, T.

1996-12-31T23:59:59.000Z

350

Proceedings of Brookhaven National Laboratory's fusion/synfuel workshop  

DOE Green Energy (OSTI)

The fusion synfuels workshop held at Brookhaven National Laboratory (BNL) on August 27-29, 1979 examined the current status of candidate synfuel processes and the R and D required to develop the capability for fusion synfuel production. Participants divided into five working groups, covering the following areas: (1) economics and applications; (2) high-temperature electrolysis; (3) thermochemical processes (including hybrid thermo-electrochemical); (4) blanket and materials; and (5) high-efficiency power cycles. Each working group presented a summary of their conclusions and recommendations to all participants during the third day of the Workshop. These summaries are given.

Fillo, J.A.; Powell, J.R. (eds.)

1979-01-01T23:59:59.000Z

351

Brookhaven National Laboratory site environmental report for calendar year 1991  

Science Conference Proceedings (OSTI)

This publication presents the results of BNL`s environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

1992-09-01T23:59:59.000Z

352

Brookhaven National Laboratory site environmental report for calendar year 1991  

Science Conference Proceedings (OSTI)

This publication presents the results of BNL's environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

1992-09-01T23:59:59.000Z

353

Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture)  

DOE Green Energy (OSTI)

Catalysts have been used to speed up chemical reactions as long as yeast has been used to make bread rise. Today, catalysts are used everywhere from home kitchens to industrial chemical factories. In the near future, new catalysts being developed at Brookhaven Lab may be used to speed us along our roads and highways as they play a major role in solving the worlds energy challenges. During the lecture, Liu will discuss how theorists and experimentalists at BNL are working together to formulate and test new catalysts that could be used in real-life applications, such as hydrogen-fuel cells that may one day power our cars and trucks.

Liu, Ping (BNL Chemistry Dept)

2010-12-15T23:59:59.000Z

354

1995 Annual epidemiologic surveillance report for Brookhaven National Laboratory  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from Brookhaven National Laboratory (BNL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at BNL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

NONE

1995-12-31T23:59:59.000Z

355

First Direct Evidence of Dirac Fermions in Graphite  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Evidence of Dirac Direct Evidence of Dirac Fermions in Graphite First Direct Evidence of Dirac Fermions in Graphite Print Wednesday, 27 June 2007 00:00 The recent surge of interest in the electronic properties of graphene-that is, isolated layers of graphite just one atomic layer thick-has largely been driven by the discovery that electron mobility in graphene is ten times higher than in commercial-grade silicon, raising the possibility of high-efficiency, low-power, carbon-based electronics. Scientists attribute graphene's surprising current capacity (as well as a number of even stranger phenomena) to the presence of charge carriers that behave as if they are massless, "relativistic" quasiparticles called Dirac fermions. Harnessing these quasiparticles in real-world carbon-based devices, however, requires a deeper knowledge of their behavior under less-than-ideal circumstances, such as around defects, at edges, or in three dimensions-in other words, in graphite. At the ALS, a team of researchers using angle-resolved photoemission spectroscopy (ARPES) have now produced the first direct evidence of massless Dirac fermions in graphite coexisting with quasiparticles of finite effective mass and defect-induced localized states.

356

First Direct Evidence of Dirac Fermions in Graphite  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Evidence of Dirac Fermions in Graphite Print Direct Evidence of Dirac Fermions in Graphite Print The recent surge of interest in the electronic properties of graphene-that is, isolated layers of graphite just one atomic layer thick-has largely been driven by the discovery that electron mobility in graphene is ten times higher than in commercial-grade silicon, raising the possibility of high-efficiency, low-power, carbon-based electronics. Scientists attribute graphene's surprising current capacity (as well as a number of even stranger phenomena) to the presence of charge carriers that behave as if they are massless, "relativistic" quasiparticles called Dirac fermions. Harnessing these quasiparticles in real-world carbon-based devices, however, requires a deeper knowledge of their behavior under less-than-ideal circumstances, such as around defects, at edges, or in three dimensions-in other words, in graphite. At the ALS, a team of researchers using angle-resolved photoemission spectroscopy (ARPES) have now produced the first direct evidence of massless Dirac fermions in graphite coexisting with quasiparticles of finite effective mass and defect-induced localized states.

357

First Direct Evidence of Dirac Fermions in Graphite  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Evidence of Dirac Fermions in Graphite Print Direct Evidence of Dirac Fermions in Graphite Print The recent surge of interest in the electronic properties of graphene-that is, isolated layers of graphite just one atomic layer thick-has largely been driven by the discovery that electron mobility in graphene is ten times higher than in commercial-grade silicon, raising the possibility of high-efficiency, low-power, carbon-based electronics. Scientists attribute graphene's surprising current capacity (as well as a number of even stranger phenomena) to the presence of charge carriers that behave as if they are massless, "relativistic" quasiparticles called Dirac fermions. Harnessing these quasiparticles in real-world carbon-based devices, however, requires a deeper knowledge of their behavior under less-than-ideal circumstances, such as around defects, at edges, or in three dimensions-in other words, in graphite. At the ALS, a team of researchers using angle-resolved photoemission spectroscopy (ARPES) have now produced the first direct evidence of massless Dirac fermions in graphite coexisting with quasiparticles of finite effective mass and defect-induced localized states.

358

Is Graphite a Diamonds Best Friend? New Information on Material  

NLE Websites -- All DOE Office Websites (Extended Search)

November 18th, 2003 November 18th, 2003 Is Graphite a Diamond's Best Friend? New Information on Material Transformation Science has yet to achieve the alchemist's dream of turning lead into gold. But a group of re-searchers using the GeoSoilEn-viroCARS (GSECARS) and High-Pressure Collaborative Access Team (HP-CAT) facilities at the Department of Energy's Advanced Photon Source (APS) at Argonne National Laboratory, may have found a way to turn ordinary soft graphite (source of the "lead" found in pencils) into a new, super-hard material that "looks" just like diamond. Using the high-brilliance x-ray beams from the APS, the group discovered that, under extreme pressure, graphite (among the softest of materials and the source of the lead found in pencils) becomes as hard as diamond, the

359

DOE/EA-1663: Environmental Assessment for BP Solar Array Project Brookhaven National Laboratory (December 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP SOLAR ARRAY PROJECT BP SOLAR ARRAY PROJECT BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK Brookhaven Site Office December 2009 DOE/EA-1663 i Table of Contents 1.0 PREFACE ........................................................................................................................... 1 2.0 SUMMARY.......................................................................................................................... 2 3.0 PURPOSE AND NEED .................................................................................................... 12

360

FACE Engineering & Operations, FACE Program, Brookhaven National  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering & Operations Engineering & Operations FACE Program | Homepage Brookhaven provides engineering and operations support to the DOE/BER FACE Facility and other FACE and climate change experiments [ see our support page ]. Brookhaven will provide support for facility design and equipment specification. Once operational, we can provide monitoring of system performance and offer management and operations guidance. We also provide and maintain the control software for the FACE system, monitor performance and maintenance issues at affiliated FACE sites, and distribute solutions, work-arounds and lessons learned as appropriate. History The use of open-air gas releases to treat large scale plots has been undertaken since the 1970's. Hartwell Allen coined the name Free Air Carbon Dioxide Enrichment and the acronym FACE to describe a range of experiments that used open air releases to study the ecological effects of increasing atmospheric concentrations of carbon dioxide (Allen, 1992). Early designs used line source releases, and depended on consistent wind speed and direction or long term averaging to obtain a uniform treatment. In the 1980's circular systems with computer aided feedback control were designed to allow open-air exposures to sulfur dioxide, nitrogen oxides, and ozone (Mooi and van der Zalm 1985; McLeod et al 1985; Hendrey & Miglietta, 2006).

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Composition and method for brazing graphite to graphite  

DOE Patents (OSTI)

The present invention is directed to a brazing material for joining graphite structures that can be used at temperatures up to about 2800.degree. C. The brazing material formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600.degree. C. with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800.degree. C. so as to provide a brazed joint consisting essentially of hafnium carbide. This brazing temperature for hafnium carbide is considerably less than the eutectic temperature of hafnium carbide of about 3150.degree. C. The brazing composition also incorporates the thermosetting resin so that during the brazing operation the graphite structures may be temporarily bonded together by thermosetting the resin so that machining of the structures to final dimensions may be completed prior to the completion of the brazing operation. The resulting brazed joint is chemically and thermally compatible with the graphite structures joined thereby and also provides a joint of sufficient integrity so as to at least correspond with the strength and other properties of the graphite.

Taylor, Albert J. (Ten Mile, TN); Dykes, Norman L. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

362

Preliminary Notice of Violation, Brookhaven National Laboratory - EA-97-13  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven National Laboratory - Brookhaven National Laboratory - EA-97-13 Preliminary Notice of Violation, Brookhaven National Laboratory - EA-97-13 December 18, 1997 Preliminary Notice of Violation issued to Associated Universities, Inc., related to Radiological Control Deficiencies at the Brookhaven National Laboratory, (EA-97-13) This letter refers to the Department of Energy's (DOE's) evaluation of the facts and circumstances surrounding a number of radiological control deficiencies at the Brookhaven National Laboratory (BNL) identified in 1997. Specifically, on March 5, 1997, DOE found that a large number of BNL Radiological Control Technicians (RCTs) did not meet established qualifications yet were performing the same duties as qualified RCTs. Additionally, in May and June 1997 radiological events occurred at BNL

363

BNL | Accelerators for Applied Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators for Applied Research Accelerators for Applied Research Brookhaven National Lab operates several accelerator facilities dedicated to applied research. These facilities directly address questions and concerns on a tremendous range of fields, including medical imaging, cancer therapy, computation, and space exploration. Leading scientists lend their expertise to these accelerators and offer crucial assistant to collaborating researchers, pushing the limits of science and technology. Interested in gaining access to these facilities for research? See the contact number listed for each facility. RHIC tunnel Brookhaven Linac Isotope Producer The Brookhaven Linac Isoptope Producer (BLIP)-positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis-produces commercially unavailable radioisotopes for use by the

364

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Entrainment Rate in Shallow Cumuli: Probabilistic Distribution and Entrainment Rate in Shallow Cumuli: Probabilistic Distribution and Dependence on Dry Air Sources Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lu C, Y Liu, S Niu, and AM Vogelmann. 2012. "Lateral entrainment rate in shallow cumuli: Dependence on dry air sources and probability density functions." Geophysical Research Letters, 39, L20812, doi:10.1029/2012GL053646. Probability density functions (PDFs) of entrainment rate (λ) for different dry air sources in eight cumulus flights. The rate at which cloud engulfs dry air (entrainment rate) has proven to be one of the strongest controls on the climate sensitivity of climate models;

365

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Strong Impacts of Vertical Velocity on Cloud Microphysics and Implications Strong Impacts of Vertical Velocity on Cloud Microphysics and Implications for Aerosol Indirect Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Brookhaven National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Lu C, Y Liu, S Niu, and AM Vogelmann. 2012. "Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects." Geophysical Research Letters, 39, L21808, doi:10.1029/2012GL053599. Joint probability density functions (PDF) of relative dispersion (ε) versus vertical velocity (w) along horizontal aircraft legs for each cumulus flight (date given in legend). The red lines denote weighted least

366

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring Parameterization for Turbulent Entrainment-Mixing Processes in Exploring Parameterization for Turbulent Entrainment-Mixing Processes in Clouds Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Brookhaven National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Lu C, S Niu, S Krueger, and T Wagner. 2013. "Exploring parameterization for turbulent entrainment-mixing processes in clouds." Journal of Geophysical Research - Atmospheres, 118(1), doi:10.1029/2012JD018464. Relationships between the three microphysical measures of homogeneous mixing degree (ψ1, ψ2, ψ3) and the two transition scale numbers (NLa, NL0), respectively. The results shown here are from the EMPM simulations.

367

AGC-2 Graphite Preirradiation Data Package  

SciTech Connect

The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

David Swank; Joseph Lord; David Rohrbaugh; William Windes

2012-10-01T23:59:59.000Z

368

Graphite in Science and Nuclear Technique  

E-Print Network (OSTI)

The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original results, and concentrated on the actual problems of application and testing of graphite materials in modern nuclear physics, in scientific and technical applications. For scientists and engineers specializing in nuclear physics and engineering, physics of nuclear reactors, condensed matter, for undergraduate, graduate and post-graduate students of universities physical specialties.

Zhmurikov, E I; Pokrovsky, A S; Harkov, D V; Dremov, V V; Samarin, S I

2013-01-01T23:59:59.000Z

369

Graphite in Science and Nuclear Technique  

E-Print Network (OSTI)

The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original results, and concentrated on the actual problems of application and testing of graphite materials in modern nuclear physics, in scientific and technical applications. For scientists and engineers specializing in nuclear physics and engineering, physics of nuclear reactors, condensed matter, for undergraduate, graduate and post-graduate students of universities physical specialties.

E. I. Zhmurikov; I. A. Bubnenkov; A. S. Pokrovsky; D. V. Harkov; V. V. Dremov; S. I. Samarin

2013-07-07T23:59:59.000Z

370

Brookhaven National Laboratory The Relativistic Heavy Ion Collider (RHIC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider (RHIC) Relativistic Heavy Ion Collider (RHIC) An Exciting Beginning and a Compelling Future At the Relativistic Heavy Ion Collider (RHIC), a world-class particle accelerator at Brookhaven National Laboratory, physicists are exploring the most fundamental forces and properties of matter and the early universe, with important implications for our understanding of the world around us. Operated with funding from the U.S. Department of Energy's Office of Science, the Relativistic Heavy Ion Collider (RHIC), was designed to recreate a state of matter thought to have existed immediately after the Big Bang some 13 billion years ago, and to investigate how the proton gets its spin and intrinsic magnetism from its quark and gluon constituents. Large detectors located

371

Interpreting the New Brookhaven g_mu - 2 Result  

E-Print Network (OSTI)

The latest g_mu - 2 measurement by Brookhaven confirms the earlier measurement with twice the precision. However, interpretation of the result requires specific assumptions regarding the errors in the hadronic light by light (LbL) correction and in the hadronic vacuum polarization correction. Under the assumption that the analysis on LbL correction of Knecht and Nyffeler and the revised analysis of Hayakawa and Kinoshita are valid the new BNL result implies a deviation between experiment and the standard model of 1.6 sigma -2.6 sigma depending on the estimate of the hadronic vacuum polarization correction. We revisit the g_mu - 2 constraint for mSUGRA and its implications for the direct detection of sparticles at colliders and for the search for supersymmetric dark matter in view of the new evaluation.

Utpal Chattopadhyay; Pran Nath

2002-08-01T23:59:59.000Z

372

Summary of failure analysis activities at Brookhaven National Laboratory  

Science Conference Proceedings (OSTI)

Brookhaven National Laboratory has for many years conducted examinations related to the failures of nuclear materials and components. These examinations included the confirmation of root cause analyses, the determination of the causes of failure, identification of the species that accelerate corrosion, and comparison of the results of nondestructive examinations with those obtained by destructive examination. The results of those examinations, which had previously appeared in various formats (formal and informal reports, journal articles, etc.), have been collected together and summarized in the present report. The report is divided into sections according to the general subject matter (for example, corrosion, fatigue, etc.). Each section presents summaries of the information contained in specific reports and publications, all of which are fully identified as to title, authors, report number or journal reference, date of publication, and FIN number under which the work was performed.

Cowgill, M.G.; Czajkowski, C.J.; Franz, E.M.

1996-10-01T23:59:59.000Z

373

Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory  

Science Conference Proceedings (OSTI)

Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed.

Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

1997-01-01T23:59:59.000Z

374

Thermal performance of the Brookhaven natural thermal storage house  

DOE Green Energy (OSTI)

In the Brookhaven natural thermal storage house, an energy-efficient envelope, passive solar collectors, and a variety of energy conservation methods are incorporated. The thermal characteristics of the house during the tested heating season are evaluated. Temperature distributions at different zones are displayed, and the effects of extending heating supply ducts only to the main floor and heating return ducts only from the second floor are discussed. The thermal retrievals from the structure and the passive collectors are assessed, and the total conservation and passive solar contributions are outlined. Several correlation factors relating these thermal behaviors are introduced, and their diurnal variations are displayed. Finally, the annual energy requirements, and the average load factors are analyzed and discussed.

Ghaffari, H.T.; Jones, R.F.

1981-01-01T23:59:59.000Z

375

Composition and method for brazing graphite to graphite  

DOE Patents (OSTI)

A brazing material is described for joining graphite structures that can be used up to 2800/sup 0/C. The brazing material is formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600/sup 0/C with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800/sup 0/C so as to provide a brazed joint consisting essentially of hafnium carbide. The resulting brazed joint is chemically and thermally compatible with the graphite structures.

Taylor, A.J.; Dykes, N.L.

1982-08-10T23:59:59.000Z

376

Graphite Reactor | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphite Reactor Graphite Reactor 'In the early, desperate days of World War II, the United States launched the top-secret, top-priority Manhattan Project...' In the early, desperate days of U.S. involvement in World War II, American scientists began to fear that the German discovery of uranium fission in 1939 might enable the Nazis to develop a super bomb. Afraid of losing this crucial race, the United States launched the top-secret, top-priority Manhattan Project. The plan was to create two atomic weapons-one fueled by plutonium, the other by enriched uranium. Hanford, Washington, was selected as the site for plutonium production, but before large reactors could be built there, a pilot plant was necessary to prove the feasibility of scaling up from laboratory experiments. A secluded, rural area near Clinton, Tennessee, was

377

AGC-3 Graphite Preirradiation Data Analysis Report  

SciTech Connect

This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersens 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to provide specimens with similar neutron dose levels.

William Windes; David Swank; David Rohrbaugh; Joseph Lord

2013-09-01T23:59:59.000Z

378

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

The Role of Microphysics Parameterization in Simulating Tropical Mesoscale The Role of Microphysics Parameterization in Simulating Tropical Mesoscale Convective Systems Download a printable PDF Submitter: Van Weverberg, K., Brookhaven National Laboratory Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, AM Vogelmann, W Lin, EP Luke, AT Cialella, P Minnis, MM Khaiyer, ER Boer, and MP Jensen. 2013. "The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the Tropical Western Pacific." Journal of the Atmospheric Sciences, 70(4), doi:10.1175/JAS-D-12-0104.1. The spatial distribution of cloud types at 3 UTC on 27 December 2003 as observed by GOES-9 and as simulated by the three commonly used microphysics

379

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Vertical Air Motion Measurements in Large-Scale Precipitation Vertical Air Motion Measurements in Large-Scale Precipitation Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Luke, E., Brookhaven National Laboratory Kollias, P., McGill University Area of Research: Vertical Velocity Working Group(s): Cloud Properties Journal Reference: Giangrande SE, EP Luke, and P Kollias. 2010. "Automated retrievals of precipitation parameters using non-Rayleigh scattering at 95-GHz." Journal of Atmospheric and Oceanic Technology, 27(9), 10.1175/2010JTECHA1343.1. Time-height mapping of the retrieved vertical air motion for the 1 May 2007 event at SGP. Simultaneous measurements of vertical air motion and raindrop size distribution parameters in precipitation are challenging. The ARM W-band radars (95-GHz), despite being used primarily for cloud sensing, offer

380

One Hundred Years of Superconductivity: Superconducting Materials and Electric Power Applications (465th Brookhaven Lecture)  

SciTech Connect

It was one hundred years ago this year that Dutch physicist Heike Kamerlingh Onnes discovered that by lowering the temperature of mercury to a blistering cold four degrees Kelvin, the metal became a superconductor and allowed electricity to flow through it with very little, if any, resistance. Fast forward one hundred years: now we are looking for new ways to store and transport energy energy we can use to get from one place to another, stay comfortable when the weather outside is not, grow enough healthy food to feed the population, and sustain our ways of life all while trying to protect the planet. Superconductors, with their potential to be ber-energy efficient, are likely to play a crucial role in solving these challenges, and researchers at Brookhaven Lab are figuring out just how it can be done. Li will begin his talk with an overview of the first one hundred years of exploring superconductivity. He will also discuss the challenges of developing new superconductors and improving their performance for real-world energy applications, and then explain how basic science researchers at BNL are addressing those challenges.

Li, Qiang (BNL Condensed Matter Physics and Materials Science Department)

2011-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Preliminary Notice of Violation, Brookhaven Science Associates - EA-1999-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Associates - Science Associates - EA-1999-02 Preliminary Notice of Violation, Brookhaven Science Associates - EA-1999-02 April 15, 1999 Preliminary Notice of Violation issued to Brookhaven Science Associates related to Radiological Protection and Work Control Deficiencies at the Brookhaven National Laboratory, (EA-1999-0) This letter refers to the Department of Energy's (DOE) evaluation of a number of incidents that occurred throughout 1998 at the Brookhaven National Laboratory (BNL) revealing deficiencies in radiological protection and work process controls. The deficiencies involved the following: (1) apparent intentional violations of radiation protection requirements related to activities at the High Flux Beam Reactor (HFBR), (2) failure to maintain proper access controls at the Alternating Gradient Synchrotron

382

Brookhaven Site Office CX Determinations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Brookhaven Site Office CX Determinations Brookhaven Site Office CX Determinations Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Categorical Exclusion (CX) Determinations Brookhaven Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page Categorical Exclusion Determination Documents (CX Determinations): * Determination Date Name of Action: Description Categorical Exclusion Number External link 04/29/2013 This generic CX covers removal and transfer of beamlines from Brookhaven National Laboratory to other federal agencies or scientific laboratories. This activity will involve disassembly of beamlines and transport via tractor trailers over public roads. .pdf file (14KB) B1.30

383

Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy has issued a Preliminary Notice of Violation to Brookhaven Science Associates, LLC for two violations of the Departments worker safety and health regulations.

384

Brookhaven Lab Captures E. coli's Sticky Fingers on Film | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Lab Captures E. coli's Sticky Fingers on Film Brookhaven Lab Captures E. coli's Sticky Fingers on Film Brookhaven Lab Captures E. coli's Sticky Fingers on Film June 7, 2011 - 2:33pm Addthis The bacterial protein transport channel in its resting closed state (green) and the activated open state (blue). The channel is sealed by a plug structure that is shown in red. Note the change of the channel shape from oval to near circular and displacement of the plug when open. Some parts of the protein molecule are omitted for simplicity. | Courtesy of: Brookhaven National Laboratory The bacterial protein transport channel in its resting closed state (green) and the activated open state (blue). The channel is sealed by a plug structure that is shown in red. Note the change of the channel shape from oval to near circular and displacement of the plug when open. Some parts of

385

X-10 Graphite Reactor | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-10 Graphite Reactor X-10 Graphite Reactor X-10 Graphite Reactor X-10 Graphite Reactor When President Roosevelt in December 1942 authorized the Manhattan Project, the Oak Ridge site in eastern Tennessee had already been obtained and plans laid for an air-cooled experimental pile, a pilot chemical separation plant, and support facilities. The X-10 Graphite Reactor, designed and built in ten months, went into operation on November 4, 1943. The X-10 used neutrons emitted in the fission of uranium-235 to convert uranium-238 into a new element, plutonium-239. The reactor consists of a huge block of graphite, measuring 24 feet on each side, surrounded by several feet of high-density concrete as a radiation shield. The block is pierced by 1,248 horizontal diamond-shaped channels in

386

Uranium Oxide Aerosol Transport in Porous Graphite  

Science Conference Proceedings (OSTI)

The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactors lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

2012-01-23T23:59:59.000Z

387

A safety assessment of the use of graphite in nuclear reactors licensed by the US NRC  

DOE Green Energy (OSTI)

This report reviews existing literature and knowledge on graphite burning and on stored energy accumulation and releases in order to assess what role, if any, a stored energy release can have in initiating or contributing to hypothetical graphite burning scenarios in research reactors. It also addresses the question of graphite ignition and self-sustained combustion in the event of a loss-of-coolant accident (LOCA). The conditions necessary to initiate and maintain graphite burning are summarized and discussed. From analyses of existing information it is concluded that only stored energy accumulations and releases below the burning temperature (650/sup 0/C) are pertinent. After reviewing the existing knowledge on stored energy it is possible to show that stored energy releases do not occur spontaneously, and that the maximum stored energy that can be released from any reactor containing graphite is a very small fraction of the energy produced during the first few minutes of a burning incident. The conclusions from these analyses are that the potential to initiate or maintain a graphite burning incident is essentially independent of the stored energy in the graphite, and depends on other factors that are unique for these reactors, research reactors, and for Fort St. Vrain. In order to have self-sustained rapid graphite oxidation in any of these reactors, certain necessary conditions of geometry, temperature, oxygen supply, reaction product removal, and a favorable heat balance must be maintained. There is no new evidence associated with either the Windscale Accident or the Chernobyl Accident that indicates a credible potential for a graphite burning accident in any of the reactors considered in this review.

Schweitzer, D.G.; Gurinsky, D.H.; Kaplan, E.; Sastre, C.

1987-09-01T23:59:59.000Z

388

Environmental Assessment for the National Synchrotron Light Source II at Brookhaven National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NATIONAL SYNCHROTRON LIGHT SOURCE-II NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II) BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK U. S. Department Of Energy Brookhaven Site Office September 2006 DOE/EA-1558 i TABLE OF CONTENTS 1.0 PREFACE....................................................................................................................1 2.0 SUMMARY .................................................................................................................2 3.0 PURPOSE AND NEED ............................................................................................10 4.0 DESCRIPTION OF ALTERNATIVES, INCLUDING THE PROPOSED ACTION.....................................................................................................................11

389

Toughened Graphite Electrodes for Electric Arc Furnaces  

Benefits of Fiber Toughened Electrode Summary: Technology Description A method to more uniformly distribute graphite/carbon fibers into the electrode matrix by ...

390

Behavior of Chlorine-36 and Tritium in Irradiated Graphite Wastes  

Science Conference Proceedings (OSTI)

This report examines the international data on the formation and distribution of 36Cl and 3H in graphite moderators in the context of the treatment and/or disposal of the material upon reactor decommissioning. Organizations in France have made major contributions to work in the field of 36Cl, and the review also considers work from the UK, USA and Ukraine.BackgroundThe Electric Power Research Institute (EPRI) has conducted a ...

2012-11-30T23:59:59.000Z

391

Decommissioning of the high flux beam reactor at Brookhaven Lab  

Science Conference Proceedings (OSTI)

The high-flux beam reactor (HFBR) at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on Oct. 31, 1965. It operated at a power level of 40 megawatts. An equipment upgrade in 1982 allowed operations at 60 megawatts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 megawatts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of groundwater from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost three years for safety and environmental reviews. In November 1999 the United States Dept. of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel, is presently under 24/7 surveillance for safety. Detailed dosimetry performed for the HFBR decommissioning during 1996-2009 is described in the paper. (authors)

Hu, J.P. [National Synchrotron Light Source, Brookhaven Laboratory, Upton, NY 11973 (United States); Reciniello, R.N. [Radiological Control Div., Brookhaven Laboratory, Upton, NY 11973 (United States); Holden, N.E. [National Nuclear Data Center, Brookhaven Laboratory, Upton, NY 11973 (United States)

2011-07-01T23:59:59.000Z

392

CULTURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.  

Science Conference Proceedings (OSTI)

The Cultural Resource Management Plan (CRMP) for Brookhaven National Laboratory (BNL) provides an organized guide that describes or references all facets and interrelationships of cultural resources at BNL. This document specifically follows, where applicable, the format of the U.S. Department of Energy (DOE) Environmental Guidelines for Development of Cultural Resource Management Plans, DOE G 450.1-3 (9-22-04[m1]). Management strategies included within this CRMP are designed to adequately identify the cultural resources that BNL and DOE consider significant and to acknowledge associated management actions. A principal objective of the CRMP is to reduce the need for additional regulatory documents and to serve as the basis for a formal agreement between the DOE and the New York State Historic Preservation Officer (NYSHPO). The BNL CRMP is designed to be a ''living document.'' Each section includes identified gaps in the management plan, with proposed goals and actions for addressing each gap. The plan will be periodically revised to incorporate new documentation.

DAVIS, M.

2005-04-01T23:59:59.000Z

393

Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York  

Science Conference Proceedings (OSTI)

This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs.

Not Available

1988-06-01T23:59:59.000Z

394

Brookhaven National Laboratory 2008 Site Environment Report Volume 1  

Science Conference Proceedings (OSTI)

Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in this volume in Chapter 7, Groundwater Protection. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report.

Brookhaven National Laboratory

2009-10-01T23:59:59.000Z

395

Tiger Team assessment of the Brookhaven National Laboratory  

SciTech Connect

This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL. This volume contains appendices.

Not Available

1990-06-01T23:59:59.000Z

396

Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency  

E-Print Network (OSTI)

shift" (8). HydroQuebec's SNG-12 anode graphite was chosenElectrode laminates with SNG-12 graphite as the activePrevious experiments with SNG-12 graphite in coin cells with

Ridgway, Paul

2010-01-01T23:59:59.000Z

397

Graphitized-carbon fiber/carbon char fuel  

DOE Patents (OSTI)

A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.

Cooper, John F. (Oakland, CA)

2007-08-28T23:59:59.000Z

398

Construction and operation of an improved radiation calibration facility at Brookhaven National Laboratory. Environmental assessment  

Science Conference Proceedings (OSTI)

Calibration of instruments used to detect and measure ionizing radiation has been conducted over the last 20 years at Brookhaven National Laboratory`s (BNL) Radiation Calibration Facility, Building 348. Growth of research facilities, projects in progress, and more stringent Department of Energy (DOE) orders which involve exposure to nuclear radiation have placed substantial burdens on the existing radiation calibration facility. The facility currently does not meet the requirements of DOE Order 5480.4 or American National Standards Institute (ANSI) N323-1978, which establish calibration methods for portable radiation protection instruments used in the detection and measurement of levels of ionizing radiation fields or levels of radioactive surface contaminations. Failure to comply with this standard could mean instrumentation is not being calibrated to necessary levels of sensitivity. The Laboratory has also recently obtained a new neutron source and gamma beam irradiator which can not be made operational at existing facilities because of geometry and shielding inadequacies. These sources are needed to perform routine periodic calibrations of radiation detecting instruments used by scientific and technical personnel and to meet BNL`s substantial increase in demand for radiation monitoring capabilities. To place these new sources into operation, it is proposed to construct an addition to the existing radiation calibration facility that would house all calibration sources and bring BNL calibration activities into compliance with DOE and ANSI standards. The purpose of this assessment is to identify potential significant environmental impacts associated with the construction and operation of an improved radiation calibration facility at BNL.

NONE

1994-10-01T23:59:59.000Z

399

Doses delivered to normal brain under different treatment protocols at Brookhaven National Laboratory  

SciTech Connect

As of October 31, 1996, 23 glioblastoma multiforme patients underwent BNCT under several treatment protocols at the Brookhaven Medical Research Reactor. For treatment planning and dosimetry purposes, these protocols may be divided into four groups. The first group comprises protocols that used an 8-cm collimator and allowed a peak normal brain dose of 10.5 Gy-Eq to avolume of 1 cm{sup 3} were the thermal neutron flux was maximal (even if it happened to be in the tumor volume). The second group differs from the first in that it allowed a peak normal brain dose of 12.6 Gy-Eq. The protocols of the third and fourth groups allowed the prescribed peak normal brain dose of 12.6 Gy-Eq to be outside of the tumor volume, used a 12-cm collimator and, respectively, uni- or bilateral irradiations. We describe the treatment planning procedures and report the doses delivered to various structures of the brain.

Capala, J.; Coderre, J.A.; Liu, H.B. [and others

1996-12-31T23:59:59.000Z

400

PIA - 10th International Nuclear Graphite Specialists Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10th International Nuclear Graphite Specialists Meeting registration web site PIA - 10th International Nuclear Graphite Specialists Meeting registration web site PIA - 10th...

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Graphite/Copper Composites from Natural Wood Precursors  

Science Conference Proceedings (OSTI)

Graphite derived from natural wood precursors provides a uniquely anisotropic porous scaffold for the fabrication of graphite/copper composites. The wettability...

402

Microstructural Characterization of Next Generation Nuclear Graphites  

Science Conference Proceedings (OSTI)

This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

2012-04-01T23:59:59.000Z

403

INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect

5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-12-15T23:59:59.000Z

404

NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.  

SciTech Connect

Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

GREEN,T.ET AL.

2003-12-31T23:59:59.000Z

405

Brookhaven National Laboratory site environmental report for calendar year 1993  

Science Conference Proceedings (OSTI)

This report documents the results of the Environmental Monitoring Program at BNL and presents summary information about environmental compliance for 1993. To evaluate the effect of BNL operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, ground water and vegetation were made at the BNL site and at sites adjacent to the Laboratory. Brookhaven National Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment were evaluated. Among the permitted facilities, two instances, of pH exceedances were observed at recharge basins, possible related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant (STP) to the Peconic River exceeded on five occasions, three for residual chlorine and one each for iron and ammonia nitrogen. The chlorine exceedances were related to a malfunctioning hypochlorite dosing pump and ceased when the pump was repaired. While the iron and ammonia-nitrogen could be the result of disturbances to the sand filter beds during maintenance. The environmental monitoring data has identified site-specific contamination of ground water and soil. These areas are subject to Remedial Investigation/Feasibility Studies (RI/FS) under the Inter Agency Agreement (IAG). Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at BNL are minimal and pose no threat to the public or to the environment. This report meets the requirements of DOE Orders 5484. 1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

Naidu, J.R.; Royce, B.A. [eds.

1994-05-01T23:59:59.000Z

406

Modeling Fission Product Sorption in Graphite Structures  

SciTech Connect

The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).

Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

2013-04-08T23:59:59.000Z

407

AGC-2 Graphite Preirradiation Data Analysis Report  

SciTech Connect

This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires matched pair creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce matched pairs of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

2013-08-01T23:59:59.000Z

408

Retention of hydrogen in graphite  

DOE Green Energy (OSTI)

The retention of hydrogen in POCO AXF-5Q graphite has been measured at room temperature as a function of fluence and flux for H/sub 2//sup +/ ions at energies from 250 to 500 eV provided by a glow discharge. More than 2 x 10/sup 18/ H/cm/sup 2/ has been retained, and no indication of saturation has been observed to a fluence of 5 x 10/sup 19/ H/cm/sup 2/. In this experiment, retention was found to increase linearly with fluence for constant flux. A flux dependence was observed; that is, the retention rate was observed to decrease monotonically as the flux increased. A change-over experiment, deuterium to hydrogen, was conducted; the results show that significant change-over occurs (i.e., about 30% change-over for a fluence of 5 x 10/sup 17/ D/cm/sup 2/).

Langley, R.A.

1986-10-01T23:59:59.000Z

409

Graphite Oxidation Thermodynamics/Reactions  

Science Conference Proceedings (OSTI)

The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study.

Propp, W.A.

1998-09-01T23:59:59.000Z

410

Brookhaven National Lab Regional Middle School Science Bowl | U.S. DOE  

Office of Science (SC) Website

Brookhaven National Lab Brookhaven National Lab Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Brookhaven National Lab Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Catherine Osiecki Email: Osiecki@bnl.gov Regional Event Information Date: Saturday, March 1, 2014

411

Brookhaven National Lab Regional High School Science Bowl | U.S. DOE Office  

Office of Science (SC) Website

Brookhaven National Lab Brookhaven National Lab Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Brookhaven National Lab Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Catherine Osiecki Email: Osiecki@bnl.gov Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 20

412

Brookhaven Site Office CX Determinations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Brookhaven Site Office CX Determinations Brookhaven Site Office CX Determinations Safety, Security and Infrastructure (SSI) SSI Home Facilities and Infrastructure Safeguards & Security Environment, Safety and Health (ES&H) Organization Chart .pdf file (82KB) Phone Listing .pdf file (129KB) SC HQ Continuity of Operations (COOP) Implementation Plan .pdf file (307KB) Categorical Exclusion Determinations SLI & SS Budget Contact Information Safety, Security and Infrastructure U.S. Department of Energy SC-31/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4097 F: (301) 903-7047 Categorical Exclusion (CX) Determinations Brookhaven Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page Categorical Exclusion Determination Documents (CX Determinations): *

413

Constraining Anomaly Mediated Supersymmetry Breaking Framework via Ongoing Muon g-2 Experiment at Brookhaven  

E-Print Network (OSTI)

The ongoing high precision E821 Brookhaven National Laboratory experiment on muon g-2 is promising to probe a theory involving supersymmetry. We have studied the constraints on the minimal Anomaly Mediated Supersymmetry Breaking (AMSB) model using the current data of muon g-2 from Brookhaven. A scenario of seeing no deviation from the Standard Model is also considered, within a $2\\sigma$ limit of the combined error from the Standard Model result and the Brookhaven predicted uncertainty level. The resulting constraint is found to be complementary to what one obtains from $b \\to s+ \\gamma$ bounds within the AMSB scenario, since only a definite sign of $\\mu$ is effectively probed via $b \\to s+ \\gamma$. A few relevant generic features of the model are also described for disallowed regions of parameter space.

Utpal Chattopadhyay; Dilip Kumar Ghosh; Sourov Roy

2000-06-05T23:59:59.000Z

414

Method for molding threads in graphite panels  

DOE Patents (OSTI)

A graphite panel (10) with a hole (11) having a damaged thread (12) is repaired by drilling the hole (11) to remove all of the thread and make a new hole (13) of larger diameter. A bolt (14) with a lubricated thread (17) is placed in the new hole (13) and the hole (13) is packed with graphite cement (16) to fill the hole and the thread on the bolt. The graphite cement (16) is cured, and the bolt is unscrewed therefrom to leave a thread (20) in the cement (16) which is at least as strong as that of the original thread (12).

Short, William W. (Livermore, CA); Spencer, Cecil (Silverton, OR)

1994-01-01T23:59:59.000Z

415

Method for molding threads in graphite panels  

DOE Patents (OSTI)

A graphite panel with a hole having a damaged thread is repaired by drilling the hole to remove all of the thread and making a new hole of larger diameter. A bolt with a lubricated thread is placed in the new hole and the hole is packed with graphite cement to fill the hole and the thread on the bolt. The graphite cement is cured, and the bolt is unscrewed therefrom to leave a thread in the cement which is at least as strong as that of the original thread. 8 figures.

Short, W.W.; Spencer, C.

1994-11-29T23:59:59.000Z

416

Wildland Fire Management Plan for Brookhaven National Laboratory  

SciTech Connect

This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policy for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the entire BNL site including the Upton Reserve and has been reviewed by, The Nature Conservancy, New York State Department of Environmental Conservation Forest Rangers, and DOE, as well as appropriate BNL emergency services personnel. The BNL Fire Department is the lead on wildfire suppression. However, the BNL Natural Resource Manager will be assigned to all wildland fires as technical resource advisor.

Green,T.

2009-10-23T23:59:59.000Z

417

Wildland Fire Management Plan for Brookhaven National Laboratory  

SciTech Connect

This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policy for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the entire BNL site including the Upton Reserve and has been reviewed by, The Nature Conservancy, New York State Department of Environmental Conservation Forest Rangers, and DOE, as well as appropriate BNL emergency services personnel. The BNL Fire Department is the lead on wildfire suppression. However, the BNL Natural Resource Manager will be assigned to all wildland fires as technical resource advisor.

Green,T.

2009-10-23T23:59:59.000Z

418

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

personnel from Brookhaven National Lab (BNL), ThomasIon Collider at Brookhaven National Lab. Participation in

Gerber, Richard A.

2012-01-01T23:59:59.000Z

419

Electrolytic Infiltration into Laser Sintered Porous Graphite  

Science Conference Proceedings (OSTI)

Symposium, Green Technologies for Materials Manufacturing and Processing V. Presentation Title, Electrolytic Infiltration into Laser Sintered Porous Graphite ... Tensile and Fatigue Testing of 304 Stainless Steel after Gaseous Hydrogen...

420

Immobilization of Rocky Flats Graphite Fines Residue  

Science Conference Proceedings (OSTI)

The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report.

Rudisill, T.S.

1999-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

GRAPHITE PRODUCTION UTILIZING URANYL NITRATE HEXAHYDRATE CATALYST  

DOE Patents (OSTI)

ABS>The graphitizing of a mixture composed of furfuryl alcohol binder and uranyl nitrate hexahydrate hardener and the subsequent curing, baking, and graphitizing with pressure being initially applied prior to curing are described. The pressure step may be carried out by extrusion, methyl cellulose being added to the mixture before the completion of extrusion. Uranium oxide may be added to the graphitizable mixture prior to the heating and pressure steps. The graphitizable mixture may consist of discrete layers of different compositions. (AEC)

Sheinberg, H.; Armstrong, J.R.; Schell, D.H.

1964-03-10T23:59:59.000Z

422

Carbon-14 in Irradiated Graphite Waste  

Science Conference Proceedings (OSTI)

This report examines the international data on the formation and distribution of 14C in graphite moderators in the context of the treatment and/or disposal of the material upon reactor decommissioning. International organizations from the United States, France, Germany, Italy, Lithuania, and the United Kingdom collaborated in this program. This report provides an informed and improved understanding of the formation and behavior of 14C in irradiated graphite to determine where agreement or residual differ...

2010-12-20T23:59:59.000Z

423

Adsorption potential of alkanes on graphite  

SciTech Connect

In the framework of the extended Hueckel theory, the short-range repulsive interaction of alkanes with graphite is determined with band structure calculations from the difference between the total energy of the system (adsorbate + graphite) and the energy of the separated species. This theoretical approach enables one to determine the coefficients of the repulsive exponential term in the atom-atom potential simplified expression. The adsorption potential of alkanes on graphite is obtained when the dispersion atom-atom potential, which takes into account the high anisotropic polarizability of graphite, is added to the repulsive term. The equilibrium distance of methane on graphite and its vibrational frequency perpendicular to the surface are in good agreement with the experimental ones measured at low temperatures by neutron scattering techniques. The van der Waals radii of carbon and hydrogen atoms are obtained from the equilibrium distance of the atom-atom potential simplified expression. They are compared with those used in the literature to establish the semiempirical potential expressions. The molecular statistical theory of adsorption based on the atom-atom potential function enables one to predict the second adsorbate/surface virial coefficient and the thermodynamic characteristics of adsorption, measured for methane, ethane, and propane on graphitized carbon black at zero surface coverage by static and gas chromatographic methods.

Vidal-Madjar, C.; Minot, C.

1987-07-16T23:59:59.000Z

424

BNL | NSERC, the Northeast Solar Energy Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Northeast Solar Energy Research Center Northeast Solar Energy Research Center A multi-purpose research facility on the BNL campus Home Map of the Research Array Project Updates solar array NSERC, a multi-purpose research facility on the Brookhaven campus Brookhaven National Laboratory is developing a new Northeast Solar Energy Research Center (NSERC) on its campus that will serve as a solar energy research and test facility for the solar industry. The NSERC will include laboratories for standardized testing in accordance with industry standards, along with a solar PV research array for field testing existing or innovative new technologies under actual northeastern weather conditions. The NSERC will also include access to unique high-resolution data sets from the 32MW Long Island Solar Farm located at Brookhaven. Our vision is to

425

What to Do In an Emergency, Emergency Management Program, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Because you are not running javascript or allowing active scripting, some features on this page my not work. >> Enable Javascript << Because you are not running javascript or allowing active scripting, some features on this page my not work. >> Enable Javascript << What to Do In an Emergency OEM Home In an EMERGENCY call Ext. 2222 or 911 from a lab phone. If you are using a cell phone or off-site, call (631) 344-2222. Evacuation Zone Information Select Building 30 50 51 87 96 97 98 100 120 129 130 130M 134 134A 134C 153 170 179A 179B 197A 197B 197C 197D 180 185 197 211 244 257 258 302 303 304 306 307 317 321 325 326 327 328 330 331 334 335 348 349 350 351 355 356 359 360 361 362 363 364 365 366 367 368-1 368-10 368-11 368-12 368-13 368-14 368-15 368-16 368-17 368-18 368-19 368-2 368-20 368-21 368-22 368-23 368-24 368-25 368-26 368-27 368-28 368-29 368-3 368-30 368-31 368-4 368-5 368-6 368-7 368-8 368-9 370 371 373 388 400 405 412 421 422 423 438 449 452 455 459 460 461 462 463 464 473 475 477 478 479 479W 480 485 487 488 490 490A 490D 491 493 494 496 496A 510 515 521 522 526 528 535 535A 535M 537 555 560 570 573 575 580 591 593 594 595 596 597 599 600 610 618 624 630 638 639 641 646 650T 651 652 659 670 701 703 725 725A 725B 726 727 728 729 734 735 740 741 742 743 744 745 746 750 750A 750A 754 801 802 810 811 815 817 817A 820 820M 830 832 835 836 855 860 865 870 899 901 901A 902 902A 904 905 906 907 908 911A 911B 912 912A 913 918 919 919A 919B 919C 919H 919I 920 921 922 923 924 925 926 927 928 929 930 931 931A 931B 933 933A 935 936 938 939 940 941 943 944 945 946 948 949 951 951 952 952 956 957 958 966 974 975 1002 1006 1006 1101 1000A 1000P 1002A 1002B 1002C 1002D 1004A 1004B 1005E 1005H 1005P 1005R 1005S 1006B 1006C 1006D 1007W 1008A 1008B 1008C 1008D 1008E 1008F 1010A 1010B 1012A Apartment APT Brookhaven_House CAT-N CAT-W Compton Cottage Curie Danish Gazebo Guest Main_Gate NOAA_Forecast_Office North_Gate North_St NWS1 NWS2 NWS3 OKX Range RHIC_Ring TR120 TR129 TR151 TR325 TR525 TR533 TR535 TR783 TR847 TR848 TR869 Visitor_Trailer Evacuation Zone:

426

BNL | TCP News | Showcasing Brookhaven Science to Industry  

Superconducting Magnet; Photon Sciences; Support Organizations ... Ford Motor Company; Graco Inc. Hallmark Cards; Illume; NASA Glenn Research Center; ...

427

BNL | Neutrino Research History  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Neutrino Research Brookhaven Neutrino Research image of neutrinos Tens of billions of neutrinos are passing through every square centimeter of the Earth's surface right now. A Ghost-Particle Retrospective Neutrinos, ghostlike particles that flooded the universe just moments after the Big Bang, are born in the hearts of stars and other nuclear reactions. Untouched by electromagnetism and nearly as fast as light, neutrinos pass practically unhindered through everything from planets to people, only rarely responding to the weak nuclear force and the even weaker gravity. In fact, at any given moment, tens of billions of neutrinos are passing through every square centimeter of the Earth's surface. Neutrino Research News photomultiplier tubes New Results from Daya Bay: Tracking the Disappearance of Ghostlike

428

Preparations for a high gradient inverse free electron laser experiment at Brookhaven national laboratory  

SciTech Connect

Preparations for an inverse free electron laser experiment at Brookhaven National Laboratory's Accelerator Test Facilty are presented. Details of the experimental setup including beam and laser transport optics are first discussed. Next, the driving laser pulse structure is investigated and initial diagnostics are explored and compared to simulations. Finally, planned improvements to the experimental setup are discussed.

Duris, J.; Li, R. K.; Musumeci, P.; Sakai, Y.; Threlkeld, E.; Williams, O.; Fedurin, M.; Kusche, K.; Pogorelsky, I.; Polyanskiy, M.; Yakimenko, V. [UCLA Department of Physics and Astronomy, Los Angeles, CA 90095 (United States); Accelerator Test Facility, Brookhaven National Laboratory, Upton, NY, 11973 (United States)

2012-12-21T23:59:59.000Z

429

managed for the U.S. Department of Energy by Brookhaven Science Associates, a company  

E-Print Network (OSTI)

.bnl.gov/education/nnss Questions can be sent to nnss@bnl.gov Nuclear Nonproliferation, Safeguards, and Security (NNSS) in the 21st, travel to the Laboratory, and other expenses BROOKHAVEN NATIONAL LABORATORY Nuclear Nonproliferation in the Physical Sciences, Engineering, and International Relations 2011 ENERGY U.S. DEPARTMENT OF Nonproliferation

430

managed for the U.S. Department of Energy by Brookhaven Science Associates, a company  

E-Print Network (OSTI)

.bnl.gov/education/nnss Questions can be sent to nnss@bnl.gov Nuclear Nonproliferation, Safeguards, and Security (NNSS) in the 21st to the Laboratory, and other expenses Brookhaven national laBoratory Nuclear Nonproliferation, Safeguards in the Physical Sciences, Engineering, and International Relations 2012 ENERGY U.S. DEPARTMENT OF Nonproliferation

Ohta, Shigemi

431

T.D. LEE: RELATIVISTIC HEAVY ION COLLISIONS AND THE RIKEN BROOKHAVEN CENTER.  

SciTech Connect

This paper presents the history of Professor T. D. Lee's seminal work on the theory of relativistic heavy ion collisions, and the founding and development of the Riken Brookhaven Center. A number of anecdotes are given about Prof. Lee, and his strong positive effect on his colleagues, particularly young physicists.

MCLERRAN,L.; SAMIOS, N.

2006-11-24T23:59:59.000Z

432

Graphite matrix materials for nuclear waste isolation  

SciTech Connect

At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

Morgan, W.C.

1981-06-01T23:59:59.000Z

433

Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets  

DOE Patents (OSTI)

The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

Zhamu, Aruna (Centerville, OH); Shi, Jinjun (Columbus, OH); Guo, Jiusheng (Centerville, OH); Jang, Bor Z. (Centerville, OH)

2010-11-02T23:59:59.000Z

434

Experimental Determination of the Effect of Reactor Radiation on the Thermal Conductivity of Uranium-Impregnated Graphite  

SciTech Connect

Experiments are described in which the change in thermal conductivity of U-impregnated graphite under neutron irradiation was measured. Thermal resistivities relative to the thermal resistivity of undamaged impregnated graphite are reorted as functions of exposure. From applications of the expermental results to the North American Aviation low-power research reactor the peak tem. of the core is determined for a given reactor power and time of operation.

Hetrick, D.L.; McCarty, W.K.; Steele, G.N.; Brown, M.S.; Clark, E.V.; Holmes, F.R.; Howard, D.F.; McElroy, W.N.; Shields, B.L.

1953-01-06T23:59:59.000Z

435

FACE Program, Free Air CO2 Enrichment (FACE), Brookhaven National...  

NLE Websites -- All DOE Office Websites (Extended Search)

The FACE Program Science | Engineering | Research Sites | DOEBER FACE Program The atmospheric carbon dioxide concentration (CO2) has risen by 35% since the start of the...

436

Graphite oxidation modeling for application in MELCOR.  

SciTech Connect

The Arrhenius parameters for graphite oxidation in air are reviewed and compared. One-dimensional models of graphite oxidation coupled with mass transfer of oxidant are presented in dimensionless form for rectangular and spherical geometries. A single dimensionless group is shown to encapsulate the coupled phenomena, and is used to determine the effective reaction rate when mass transfer can impede the oxidation process. For integer reaction order kinetics, analytical expressions are presented for the effective reaction rate. For noninteger reaction orders, a numerical solution is developed and compared to data for oxidation of a graphite sphere in air. Very good agreement is obtained with the data without any adjustable parameters. An analytical model for surface burn-off is also presented, and results from the model are within an order of magnitude of the measurements of burn-off in air and in steam.

Gelbard, Fred

2009-01-01T23:59:59.000Z

437

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Knyazikhin, Y., Boston University Chiu, J., University of Reading Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak A, Y Knyazikhin, JC Chiu, and WJ Wiscombe. 2009. "Spectral invariant behavior of zenith radiance around cloud edges observed by ARM SWS." Geophysical Research Letters, 36, L16802, doi:10.1029/2009GL039366. (top) Time-wavelength color contour plot of ARM shortwave spectrometer (SWS) spectra measured from 21:35:24 to 21:40:24 UTC on 18 May 2007 at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) site in

438

Method of making segmented pyrolytic graphite sputtering targets  

DOE Patents (OSTI)

Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface.

McKernan, Mark A. (Livermore, CA); Alford, Craig S. (Tracy, CA); Makowiecki, Daniel M. (Livermore, CA); Chen, Chih-Wen (Livermore, CA)

1994-01-01T23:59:59.000Z

439

Collaborating for a "Perfect" Scan of Nuclear Matter | Brookhaven and the  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborating for a "Perfect" Scan of Nuclear Matter Collaborating for a "Perfect" Scan of Nuclear Matter RHIC & LHC The Perfect Liquid The Critical Point superconducting magnets Superconducting magnets of the Large Hadron Collider (left) and Brookhaven's Relativistic Heavy Ion Collider (right). As the finishing touches are put on the world's most powerful particle accelerator in Switzerland, and plans for others pop up across the globe, Brookhaven's Relativistic Heavy Ion Collider (RHIC) continues to exploit its unique ability to explore the surprising features of matter bound by the strongest of Nature&'s forces. Although RHIC's overall mission is quite different from other machines on the horizon, new scientific facilities are incorporating heavy ion capabilities similar to RHIC. This healthy

440

Slepton Flavor Nonuniversality, the Muon EDM and its Proposed sensitive Search at Brookhaven  

E-Print Network (OSTI)

We analyze the electric dipole moment of the electron ($d_e$), of the neutron ($d_n$) and of the muon ($d_{\\mu}$) using the cancellation mechanism in the presence of nonuniversalities of the soft breaking parameters. It is shown that the nonuniversalities in the slepton sector produce a strong violation of the scaling relation $d_{\\mu}/d_e\\simeq m_{\\mu}/m_e$ in the cancellation region. An analysis of $d_e, d_n$ and $d_{\\mu}$ under the constraints of the current experimental limits on $d_e$ and $d_n$ and under the constraints of the recent Brookhaven result on $g_{\\mu}-2$ shows that in the non-scaling region $d_{\\mu}$ can be as large as ($10^{-24}-10^{-23}$)ecm and thus within reach of the recently proposed Brookhaven experiment for a sensitive search for $d_{\\mu}$ at the level of $10^{-24}$ ecm.

Tarek Ibrahim; Pran Nath

2001-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Slepton Flavor Nonuniversality, the Muon EDM and its Proposed Sensitive Search at Brookhaven  

E-Print Network (OSTI)

We analyze the electric dipole moment of the electron (de), of the neutron (dn) and of the muon (d) using the cancellation mechanism in the presence of nonuniversalities of the soft breaking parameters. It is shown that the nonuniversalities in the slepton sector produce a strong violation of the scaling relation d/de ? m/me in the cancellation region. An analysis of de,dn and d under the constraints of the current experimental limits on de and dn and under the constraints of the recent Brookhaven result on g ?2 shows that in the non-scaling region d can be as large as (10?24 ? 10?23)ecm and thus within reach of the recently proposed Brookhaven experiment for a sensitive search for d at the level of 10?24 ecm. 1 Permanent address

Tarek Ibrahim (a; Pran Nath (b

2001-01-01T23:59:59.000Z

442

ENGINEERING EXPERIENCE AT BROOKHAVEN NATIONAL LABORATORY IN HANDLING FUSED CHLORIDE SALTS  

SciTech Connect

Two fused chloride salt eutectics, binary LiCl-KCl and ternary NaCl- KCl- MgCl/sub 2/, were used in fuel processing studies as part of the Liquid Metal Fuel Reactor research and development program. Results of engineering work done at Brookhaven since 1950 are summarized. It was demonstrated that fused chloride salt technology is sufficiently developed so that loops and other experimental equipment can be designed and operated at 500 deg C with a high degree of confidence. The equipment, which was operated for many hours, included a large forced-circulation loop and many thermal-convection loops and tanks. The specifications used for the fabrication, cleaning, and testing of equipment for salt service are described. All welded systems, welded by the usual inert-arc procedures, are preferred, but ring type joint stainless-steel flanged connections were found satisfactory, mainly for connecting melt tanks to experimental equipment and for mounting orifice flowmeters. The surfaces of equipment to be used with fused salts were cleaned satisfactorily prior to assembly by several different methods, but sandblasting was found applicable to all types of equipment. Radiography was used to check all welds in contact with fused salt for flaws and, during operation, to locate and determine the cause of any malfunction. Components tested at the normal operating temperature of 500 deg C included pumps, valves, agitators, sightports, samplers, and filtens. Salt samples were usually taken by the thief method. Both stationary and movable resistance type, liquid-level probes were used and were reliable so long as the salt surface remained quiescent; otherwise, splashing and short-circuiting occurred. Nullmatic, pilot-operated pressure transmitters gave good service in conjunction with both orifice and Venturi flowmeters. A procedure is described for preparing pound quantities of pure eutectics, which, in the case of the ternary eutectic, differs from that used in preparing gram quantities. Both eutectics were pretreated with a Bi- Mg-U solution to remove oxidizing impurities before use in corrosion and processing experiments. The results of physical property measurements on the two eutectics are included. (auth)

Raseman, C.J.; Susskind, H.; Farber, G.; McNulty, W.E.; Salzano, F.J.

1960-06-01T23:59:59.000Z

443

Refurbishment of the vacuum system of the Brookhaven Alternating Gradient Synchrotron  

SciTech Connect

Three years ago a program was initiated at Brookhaven National Laboratory to upgrade the Alternating Gradient Synchrotron (AGS) vacuum system. The three objectives of this work were to: (1) improve the vacuum system reliability; (2) improve its maintainability; and (3) improve its operating pressure from the present 2-3 /times/ 10/sup /minus/7/ Torr to < 10/sup /minus/8/ Torr. This paper discusses how these objectives can be met. 9 refs., 8 figs., 1 tab.

Welch, K.M.; Tuozzolo, J.E.; McIntyre, G.T.; Skelton, R.; Brown, J.M.; Gill, S.M.; Barry, J.

1989-01-01T23:59:59.000Z

444

2003 Brookhaven National Laboratory Annual Illness and Injury Surveillance Report, Revised September 2007  

SciTech Connect

Annual Illness and Injury Surveillance Program report for 2003 for Brookhaven National Lab. The U.S. Department of Energys (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

2007-10-02T23:59:59.000Z

445

US graphite reactor D&D experience  

Science Conference Proceedings (OSTI)

This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

Garrett, S.M.K.; Williams, N.C.

1997-02-01T23:59:59.000Z

446

ADMINISTRATION OF ORNL RESEARCH REACTORS  

SciTech Connect

Organization of the ORNL Operations division for administration of the Oak Ridge Research Reactor, the Low Intensity Testing Reactor, and the Oak Ridge Graphite Reactor is described. (J.R.D.)

Casto, W.R.

1962-08-20T23:59:59.000Z

447

Benchmarking of Graphite Reflected Critical Assemblies of UO2  

Science Conference Proceedings (OSTI)

A series of experiments were carried out in 1963 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for use in space reactor research programs. A core containing 93.2% enriched UO2 fuel rods was used in these experiments. The first part of the experimental series consisted of 253 tightly-packed fuel rods (1.27 cm triangular pitch) with graphite reflectors [1], the second part used 253 graphite-reflected fuel rods organized in a 1.506 cm triangular pitch [2], and the final part of the experimental series consisted of 253 beryllium-reflected fuel rods with a 1.506 cm triangular pitch. [3] Fission rate distribution and cadmium ratio measurements were taken for all three parts of the experimental series. Reactivity coefficient measurements were taken for various materials placed in the beryllium reflected core. The first part of this experimental series has been evaluated for inclusion in the International Reactor Physics Experiment Evaluation Project (IRPhEP) [4] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbooks, [5] and is discussed below. These experiments are of interest as benchmarks because they support the validation of compact reactor designs with similar characteristics to the design parameters for a space nuclear fission surface power systems. [6

Margaret A. Marshall; John D. Bess

2011-11-01T23:59:59.000Z

448

PRELIMINARY HAZARDS SUMMARY REPORT ON THE BROOKHAVEN HIGH FLUX BEAM RESEARCH REACTOR  

SciTech Connect

The High Flux Beam Reactor, HFBR, is cooled, moderated, and reflected by heavy water and designed to produce 40 Mw with a total epithermal flux of ~1.6 X 10/sup 15/cm/sup -2/ sec/sup -1/ and a flector thermal maximum flux of 7 X 10/sup 14/ cm/sup -2/ sec/sup -1/, using a core formed by ETR plate-type fuel elements in a close-packed array. The hazards summary is given in terms of site description, reactor design, building design, plant operation, disposal of radioactive wastes and effluents, and safety analysis. (B.O.G.)

Hendrie, J.M.; Kouts, H.J.C.

1961-05-01T23:59:59.000Z

449

Dose measurements and calculations in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)  

SciTech Connect

The characteristics of the epithermal neutron beam at BMRR were measured, calculated, and reported. This beam has already been used for animal irradiations. We anticipate that it will be used for clinical trials. Thermal and epithermal neutron flux densities distributions, and dose rate distributions, as a function of depth were measured in a lucite dog-head phantom. Monte Carlo calculations were performed and compared with the measured values. 2 refs., 4 figs., 1 tab.

Fairchild, R.G.; Greenberg, D.; Kamen, Y.; Fiarman, S. (Brookhaven National Lab., Upton, NY (USA). Medical Dept.); Benary, V. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. Tel Aviv Univ. (Israel)); Kalef-Ezra, J. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. Ioannina Univ. (Greece)); Wielopolski, L. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. State Univ. of New

1990-01-01T23:59:59.000Z

450

THE RADIATION PROCESSING RESEARCH AND DEVELOPMENT PROGRAM AT BROOKHAVEN NATIONAL LABORATORY  

SciTech Connect

A review of various ways in which nuclear energy can be used in the chemical process industry is presented. Data are included on aspects of radioinduced polymerization of ethylene. Flowsheets are included for radiochemonuclear, thermochemonuclear, electrochemonuclear, and photochemonuclear reactors. Other information is included on irradiation loops. (J.R.D.)

Steinberg, M.; Manowitz, B.

1963-02-01T23:59:59.000Z

451

Analysis of Natural Graphite, Synthetic Graphite, and Thermosetting Resin Candidates for Use in Fuel Compact Matrix  

Science Conference Proceedings (OSTI)

The AGR-1 and AGR-2 compacting process involved overcoating TRISO particles and compacting them in a steel die. The overcoating step is the process of applying matrix to the OPyC layer of TRISO particles in a rotating drum in order to build up an overcoat layer of desired thickness. The matrix used in overcoating is a mixture of natural graphite, synthetic graphite, and thermosetting resin in the ratio, by weight, of 64:16:20. A wet mixing process was used for AGR-1 and AGR-2, in that the graphites and resin were mixed in the presence of ethyl alcohol. The goal of the wet mixing process was to 'resinate' the graphite particles, or coat each individual graphite particle with a thin layer of resin. This matrix production process was similar to the German, Chinese, Japanese, and South African methods, which also use various amount of solvent during mixing. See Appendix 1 for information on these countries matrix production techniques. The resin used for AGR-1 and AGR-2 was provided by Hexion, specifically Hexion grade Durite SC1008. Durite SC1008 is a solvated (liquid) resole phenolic resin. A resole resin does not typically have a hardening agent added. The major constituent of SC1008 is phenol, with minor amounts of formaldehyde. Durite SC1008 is high viscosity, so additional ethyl alcohol was added during matrix production in order to reduce its viscosity and enhance graphite particle resination. The current compacting scale up plan departs from a wet mixing process. The matrix production method specified in the scale up plan is a co-grinding jet mill process where powdered phenolic resin and graphite are all fed into a jet mill at the same time. Because of the change in matrix production style, SC1008 cannot be used in the jet milling process because it is a liquid. The jet milling/mixing process requires that a suite of solid or powdered resins be investigated. The synthetic graphite used in AGR-1 and AGR-2 was provided by SGL Carbon, grade KRB2000. KRB2000 is a graphitized petroleum coke. The availability of KRB2000 is perhaps in question, so a replacement synthetic graphite may need to be identified. This report presents data on potential replacements for KRB2000.

Trammell, Michael P [ORNL; Pappano, Peter J [ORNL

2011-09-01T23:59:59.000Z

452

NEUTRAL BEAM INJECTOR RESEARCH AND DEVELOPMENT WORK IN THE USA  

E-Print Network (OSTI)

and development at the Brookhaven National Laboratory,Development of H" Sources at Brookhaven National Labora­Hydrogen Ions and Beams, Brookhaven National Labora­ tory,

Pyle, R.V.

2011-01-01T23:59:59.000Z

453

InSynC | Photon Sciences | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL People BNL People Photon SciencesIntroducing Synchrotrons into the Classroom (InSynC) InSynC: Introducing Synchrotrons into the Classroom Goal High school science teachers frequently say that students learn science best in the laboratory, recreating the experiments that defined modern scientific knowledge and conducting new, original research. Unfortunately, many of the most interesting experiments require equipment that is simply too costly to provide in a classroom laboratory, with price tags that can reach into the millions of dollars. The goal of the InSynC program is to enable high school teachers and students to gain remote access to experimenting with synchrotron beamtime through a competitive, peer-reviewed proposal process. The program will train both teachers and students to formulate a hypothesis-driven

454

Brookhaven National Laboratory technology transfer report, fiscal year 1986  

SciTech Connect

An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

Not Available

1986-01-01T23:59:59.000Z

455

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

Science Conference Proceedings (OSTI)

5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-11-03T23:59:59.000Z

456

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect

5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-12-15T23:59:59.000Z

457

Nanovision: Nanotubes, Nanowires, and Nanoparticles (404th Brookhaven Lecture)  

DOE Green Energy (OSTI)

A very few years ago, the field of nanoscience the science of materials at the nanometer (nm), or billionth-of-a-meter scale was relatively unexplored. Today, it is one of the hottest areas of research, with new techniques and new tools to probe the structure and function of materials at the atomic and molecular level. Once scientists had found that, at this ultra-small scale, the chemical and physical properties of materials often differ from the properties they have in bulk form, the rush was on: first to determine the new structural and chemical characteristics of each material, then, to try and use this knowledge to improve products and processes needed in everyday life. Just some of the possible benefits from nanotechnology, for example, are better electronics, stronger and lighter materials, and more efficient catalysts to speed up chemical processes. Wongs nanovision, as he will explain, emerges from how the study of carbon and non-carbon forms of materials at the nanoscale reveals different morphological structures: some are tiny tubes, others are like wires, and others are in particle form. These minute nanostructures yield different properties as they are treated in different ways. For example, if a carbon nanotube, which might be as small as 1.4 nm in diameter (a human hair is about 10,000 nm wide), is subjected to ozone, its sidewall structure becomes filled with holes, and the modified nanotube can thus be used for gas intercalation, critical for energy storage considerations.

Wong, Stanislaus (Materials Science)

2005-05-18T23:59:59.000Z

458

Removal of iron from impure graphites  

DOE Green Energy (OSTI)

Iron-impregnated and ash-rich graphites have been purified by leaching with gaseous I/sub 2/ at 900/sup 0/C. With addition of H/sub 2/, the rate of removal of impurity iron can be markedly increased and becomes comparable to that obtained with Cl/sub 2/. I/sub 2/ has an advantage in that it can also volatilize Ca and perhaps Ba and Sr.

Growcock, F.B.; Heiser, J.

1979-01-01T23:59:59.000Z

459

Nondestructive Evaluation of Nuclear-Grade Graphite  

Science Conference Proceedings (OSTI)

Nondestructive Evaluation of Nuclear Grade Graphite Dennis C. Kunerth and Timothy R. McJunkin Idaho National Laboratory Idaho Falls, ID, 83415 This paper discusses the nondestructive evaluation of nuclear grade graphite performed at the Idaho National Laboratory. Graphite is a composite material highly dependent on the base material and manufacturing methods. As a result, material variations are expected within individual billets as well billet to billet and lot to lot. Several methods of evaluating the material have been explored. Particular technologies each provide a subset of information about the material. This paper focuses on techniques that are applicable to in-service inspection of nuclear energy plant components. Eddy current examination of the available surfaces provides information on potential near surface structural defects and although limited, ultrasonics can be utilized in conventional volumetric inspection. Material condition (e.g. micro-cracking and porosity induced by radiation and stress) can be derived from backscatter or acousto-ultrasound (AU) methods. Novel approaches utilizing phased array ultrasonics have been attempted to expand the abilities of AU techniques. By combining variable placement of apertures, angle and depth of focus, the techniques provide the potential to obtain parameters at various depths in the material. Initial results of the study and possible procedures for application of the techniques are discussed.

Dennis C. Kunerth; Timothy R. McJunkin

2011-07-01T23:59:59.000Z

460

Probe of SUSY and Extra Dimensions by the Brookhaven g-2 Experiment  

E-Print Network (OSTI)

A brief review is given of $a_{\\mu}=(g_{\\mu}-2)/2$ as a probe of supersymmetry and of extra dimensions. It is known since the early to mid nineteen eightees that the supersymmetric electro-weak correction to $a_{\\mu}$ can be as large or larger than the Standard Model electro-weak correction and thus any experiment that proposes to test the Standard Model electro-weak correction will also test the supersymmetric correction and constrain supersymmetric models. The new physics effect seen in the Brookhaven (BNL) experiment is consistent with these early expectations. Detailed analyses within the well motivated supergravity unified model show that the size of the observed difference ($a_{\\mu}^{exp}-a_{\\mu}^{SM}$) seen at Brookhaven implies upper limits on sparticle masses in a mass range accessible to the direct observation of these particles at the Large Hadron Collider. Further, analyses also show that the BNL data is favorable for the detection of supersymmeteric dark matter in direct dark matter searches. The effect of large extra dimensions on $a_{\\mu}$ is also discussed. It is shown that with the current limits on the size of extra dimensions, which imply that the inverse size of such dimensions lies in the TeV region, their effects on $a_{\\mu}$ relative to the supersymmetric contribution is small and thus extra dimensions do not produce a serious background to the supersymmetric contribution. It is concluded that the analysis of the additional data currently underway at Brookhaven as well as a reduction of the hadronic error will help pin down the scale of weak scale supersymmetry even more precisely.

Pran Nath

2001-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Excitation functions in central Au+Au collisions from SIS/GSI to AGS/Brookhaven  

E-Print Network (OSTI)

Using the relativistic transport model (ART), we predict the energy dependence of the stopping power, maximum baryon and energy densities, the population of resonance matter as well as the strength of the transverse and radial flow for central Au+Au reactions at beam momentum from 2 to 12 GeV/c available at Brookhaven's AGS. The maximum baryon and energy densities are further compared to the predictions of relativistic hydrodynamics assuming the formation of shock waves. We also discuss the Fermi-Landau scaling of the pion multiplicity in these reactions.

Bao-An Li; Che Ming Ko

1996-01-26T23:59:59.000Z

462

Summary of proposed approach for deriving cleanup guidelines for radionuclides in soil at Brookhaven National Laboratory  

Science Conference Proceedings (OSTI)

Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory, carried out under an Interagency Agreement (IAG) with the United States Department of Energy (DOE), the United States Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC). The objective of this paper is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL.

Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

1996-11-01T23:59:59.000Z

463

QCDOC - Gauge field configurations/Lattice Archives at Brookhaven National Laboratory (BNL)  

DOE Data Explorer (OSTI)

While many of the QCD lattice configurations developed by the various DOE groups working in this arena may be stored in the Gauge Connection at NERSC (see http://qcd.nersc.gov/), there are still small collections to be found elsewhere. The collection at Brookhaven National Laboratory is one of these, a small collection of configurations generated specifically by the QCDOC Collaboration. There is a small collection of publicly available configurations that can be accessed without registration. Group downloads require registration for a password.

None

464

Risk-based priority scoring for Brookhaven National Laboratory environmental restoration programs  

Science Conference Proceedings (OSTI)

This report describes the process of estimating the risk associated with environmental restoration programs under the Brookhaven National Laboratory Office of Environmental Restoration. The process was part of an effort across all Department of Energy facilities to provide a consistent framework to communicate risk information about the facilities to senior managers in the DOE Office of Environmental Management to foster understanding of risk activities across programs. the risk evaluation was a qualitative exercise. Categories considered included: Public health and safety; site personnel safety and health; compliance; mission impact; cost-effective risk management; environmental protection; inherent worker risk; environmental effects of clean-up; and social, cultural, political, and economic impacts.

Morris, S.C.; Meinhold, A.F.

1995-05-01T23:59:59.000Z

465

Overview of the principal Brookhaven energy system optimization models. [BESOM, three variants, and two applications  

Science Conference Proceedings (OSTI)

The Brookhaven Energy System Optimization Model (BESOM), three of its variants, and two examples of characteristic applications are described. BESOM is a linear-programming model that was developed for the quantitative evaluation of energy technologies and policies within a systems framework. The model is designed to examine interfuel substitutions in the context of constraints on the availability of competing resources and technologies. BESOM provides a snapshot of the national energy system configuration, while MARKAL and TESOM provide, respectively, a farsighted time dimension and a simulation capability for the examination of the evolution of a national energy system over a time horizon.

Kydes, A S

1980-11-01T23:59:59.000Z

466

Immobilization of Rocky Flats Graphite Fines Residues  

SciTech Connect

The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt percent graphite, 15 wt percent calcium fluoride (CaF2), and 12 wt percent plutonium oxide (PuO2). Approximately 950 kilograms of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 degrees C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt percent, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the recovery of cerium from the full-scale waste forms was higher than for smaller scale experiments. The presence of CaF2 also caused a dramatic increase in cerium recovery not seen in the small-scale experiments. However, the results from experiments with actual graphite fines were encouraging. A 4:1 frit to residue ratio, a temperature of 700 degrees C, and a 2 hr heating time produced waste forms with plutonium recoveries of 4 plus/minus 1 g/kg. With an increase in the frit to residue ratio, waste forms fabricated at this scale should meet the Rocky Flats product specification. The scale-up of the waste form fabrication process to nominally 3 kg is expected to require a 5:1 to 6:1 frit to residue ratio and maintaining the waste form centerline temperature at 700 degrees C for 2 hr.

Rudisill, T. S.

1998-11-06T23:59:59.000Z

467

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Flux of Sea-Spray Aerosol Production Flux of Sea-Spray Aerosol Download a printable PDF Submitter: Schwartz, S. E., Brookhaven National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: de Leeuw G, EL Andreas, MD Anguelova, ER Lewis, C O'Dowd, M Schulz, and SE Schwartz. 2011. "Production flux of sea-spray aerosol." Reviews of Geophysics, 49, RG2001, doi:10.1029/2010RG000349. Lewis ER and SE Schwartz. 2004. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models-A Critical Review. Washington DC: American Geophysical Union. Parameterizations of size-dependent SSA production flux evaluated for wind speed U10 = 8 m s-1. Also, central values (curves) and associated uncertainty ranges (bands) from Lewis and Schwartz (2004). Abscissa denotes

468

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

New Insights Into Deep Convective Core Vertical Velocities Using ARM UHF New Insights Into Deep Convective Core Vertical Velocities Using ARM UHF Wind Profilers Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, S Collis, J Straka, A Protat, C Williams, and S Krueger. 2013. "A summary of convective core vertical velocity properties using ARM UHF wind profilers in Oklahoma." Journal of Applied Meteorology and Climatology, , . ACCEPTED. ARM UHF profiler observations of reflectivity Z (top) and retrieved storm vertical velocity (bottom); overlaid contours bound regions of updrafts greater than 1.5 m/s. Summary median (diamond), 90th (triangle), and 95th (star) percentile data set properties of Oklahoma convective core updrafts including: (A)

469

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Characterization Data for the ARM SGP CART Site Surface Characterization Data for the ARM SGP CART Site Submitter: Cialella, A. T., Brookhaven National Laboratory Area of Research: Surface Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 The ARM External Data Center (XDC) is continually searching for surface characterization data for the ARM CART sites. These data can provide a better understanding of geophysical parameters, allowing for more accurate parameterization within General Circulation Models (GCMs), thus improving their preditive power. Below are a sample of surface characterization data available and their sources: The land use/land cover map above was provided by Oklahoma State University (Figure 1). Eighty-eight covertypes, interpreted from county orthophotos, were generalized to 25 cover types. The resolution of the data is 200m by

470

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Anthropogenic Aerosols: a Clearer Understanding Anthropogenic Aerosols: a Clearer Understanding Submitter: Daum, P., Brookhaven National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Liu, Y., and P. H. Daum, 2002: "Indirect warming effect from dispersion forcing," Nature 419(6872):580-581. Figure 1. Key = Green symbols: triangle - FIRE, northeastern Pacific; Crossed circles - SOCEX, Southern Ocean; Filled circle - ACE1, Southern Ocean; Blue symbols: Filled circles - ASTEX 8, northeastern Atlantic; Diamonds - SCMS 8, Florida coast; Filled triangles - Sounding 9, ASTEX; Filled squares - horizontal 9, ASTEX; Open inverted triangles - level 1; Open upright triangles - level 2; Open circles - level 3, all from southwest of San Diego 10; open diamonds - SCMS 11; stars - vertical, ASTEX

471

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Biases in Column Absorption for Fractal Clouds Biases in Column Absorption for Fractal Clouds Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak, Alexander; Davis, Anthony; Wiscombe, Warren; Ridgway, William; Cahalan, Robert; 1998: "Biases in Shortwave Column Absorption in the Presence of Fractal Clouds," J. Climate 11(3):431-446. Figure 1: Water vapor transmission spectra for solar zenith angle of 60 degree. From the top: from TOA to 5 km, from TOA to 1 km, from TOA to 0.5 km and, finally, from TOA to surface. Figure 2: Fractional cloudiness N = 0.777. (a) Horizontal distribution of optical depth, the same for both models. (b) Horizontal distribution of cloud height for optical model. Constant cloud top and cloud base; thus

472

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeled Vs. Measured Direct-Normal Solar Irradiance Modeled Vs. Measured Direct-Normal Solar Irradiance Submitter: Schwartz, S. E., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Halthore R. N., Schwartz, S. E., Michalsky, J. J., Anderson, G. P., Ferrare R. A., Holben B. N., and ten Brink H. M. 1997. "Comparison of Model Estimated and Measured Direct-Normal Solar Irradiance," J. Geophys. Res. 102(D25): 29991-30002 Figure 1 Figure 2 Figure 3 Figure 4 Direct-normal solar irradiance (DNSI), the total energy in the solar spectrum incident in unit time on a unit area at the earth's surface perpendicular to the direction to the Sun, Figure 1, depends only on atmospheric extinction of solar energy without regard to the details of the

473

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

An Application of Linear Programming Techniques to ARM Polarimetric Radar An Application of Linear Programming Techniques to ARM Polarimetric Radar Processing Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, R McGraw, and L Lei. 2013. "An application of linear programming to polarimetric radar differential phase processing." Journal of Atmospheric and Oceanic Technology, , . ACCEPTED. C-band scanning ARM precipitation radar fields of radar reflectivity factor Z and processed specific differential phase KDP for a section of a Midlatitude Continental Convective Clouds Experiment (MC3E) convective event as output from LP methods implemented for the ARM PyART processing suite. Detailed microphysical insights from weather radar systems are in demand

474

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Water Vapor Absorption in Microwave Radiative Transfer Models Improving Water Vapor Absorption in Microwave Radiative Transfer Models Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Loehnert, U., University of Cologne Cadeddu, M. P., Argonne National Laboratory Crewell, S., University of Cologne Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Turner DD, MP Cadeddu, U Loehnert, S Crewell, and A Vogelmann. 2009. "Modifications to the water vapor continuum in the microwave suggested by ground-based 150 GHz observations." IEEE Transactions on Geoscience and Remote Sensing, 47(10), 3326-3337. Figure 1: The top panel shows downwelling microwave brightness temperature

475

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Tomography: a Novel Method for Determining 3D Cloud Liquid Water Cloud Tomography: a Novel Method for Determining 3D Cloud Liquid Water Distribution Download a printable PDF Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Huang, D., Y. Liu, and W. Wiscombe, 2007a: Determination of cloud liquid water distribution using 3D cloud tomography. J. Geophys. Res., submitted. Cloud tomography is a novel method for determining cloud water distribution by measuring cloud microwave emission from multiple directions. The upper plot shows a 2D cross-sectional snapshot of the liquid water structure of a stratocumulus cloud simulated by a large-eddy model. It also shows the four scanning microwave radiometers used to retrieve the cloud liquid water

476

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

General Formulation for Representing Cloud-to-Rain Transition in General Formulation for Representing Cloud-to-Rain Transition in Atmospheric Models Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol, Cloud Modeling, Cloud Properties Journal Reference: Liu, Y., P. H. Daum, R. McGraw, M. Miller, and S. Niu, 2007: Theoretical formulation for autoconversion rate of cloud droplet concentration. Geophys. Res. Lett., 34, L116821, doi:10.1029/2007GL030389 Figure 1. The typical drop radius r* as a function of the volume-mean radius r3 derived from the new theoretical formulation. Note that a constant r* corresponds to the commonly used assumption that the autoconversion rate for droplet concentration is linearly proportional to

477

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Using the ACRF Shortwave Spectrometer to Study the Transition Between Clear Using the ACRF Shortwave Spectrometer to Study the Transition Between Clear and Cloudy Regions Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Chiu, J., University of Reading Knyazikhin, Y., Boston University Pilewskie, P., University of Colorado Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Chiu C, A Marshak, Y Knyazikhin, P Pilewskie, and W Wiscombe. 2009. "Physical interpretation of the spectral radiative signature in the transition zone between cloud-free and cloudy regions." Atmospheric Chemistry and Physics, 9(4), 1419-1430. (a) Total sky images on 18 May 2007, and (b) plot of SWS normalized zenith radiances. In (b), arrows pointed at the time axis correspond to the times

478

Irradiation Induced Dimensional Changes in Bulk Graphite; The theory  

E-Print Network (OSTI)

Basing on experimental data on irradiation-induced deformation of graphite we introduced a concept of diffuse domain structure developed in reactor graphite produced by extrusion. Such domains are considered as random continuous deviations of local graphite texture from the global one. We elucidate the origin of domain structure and estimate the size and the degree of orientational ordering of its domains. Using this concept we explain the well known radiation-induced size effect observed in reactor graphite. We also propose a method for converting the experimental data on shape-change of finite-size samples to bulk graphite. This method gives a more accurate evaluation of corresponding data used in estimations of reactor graphite components lifetime under irradiation.

Panyukov, S V; Arjakov, M V

2012-01-01T23:59:59.000Z

479

Irradiation Induced Dimensional Changes in Bulk Graphite; The theory  

E-Print Network (OSTI)

Basing on experimental data on irradiation-induced deformation of graphite we introduced a concept of diffuse domain structure developed in reactor graphite produced by extrusion. Such domains are considered as random continuous deviations of local graphite texture from the global one. We elucidate the origin of domain structure and estimate the size and the degree of orientational ordering of its domains. Using this concept we explain the well known radiation-induced size effect observed in reactor graphite. We also propose a method for converting the experimental data on shape-change of finite-size samples to bulk graphite. This method gives a more accurate evaluation of corresponding data used in estimations of reactor graphite components lifetime under irradiation.

S. V. Panyukov; A. V. Subbotin; M. V. Arjakov

2012-10-14T23:59:59.000Z

480

Striving Toward Energy Sustainability: How Plants Will Play a Role in Our Future (453rd Brookhaven Lecture)  

DOE Green Energy (OSTI)

Edible biomass includes sugars from sugar cane or sugar beets, starches from corn kernels or other grains, and vegetable oils. The fibrous, woody and generally inedible portions of plants contain cellulose, hemicellulose and lignin, three key cell-wall components that make up roughly 70 percent of total plant biomass. At present, starch can readily be degraded from corn grain into glucose sugar, which is then fermented into ethanol, and an acre of corn can yield roughly 400 gallons of ethanol. In tapping into the food supply to solve the energy crisis, however, corn and other crops have become more expensive as food. One solution lies in breaking down other structural tissues of plants, including the stalks and leaves of corn, grasses and trees. However, the complex carbohydrates in cellulose-containing biomass are more difficult to break down and convert to ethanol. So researchers are trying to engineer plants having optimal sugars for maximizing fuel yield. This is a challenge because only a handful of enzymes associated with the more than 1,000 genes responsible for cell-wall synthesis have had their roles in controlling plant metabolism defined. As Richard Ferrieri, Ph.D., a leader of a biofuel research initiative within the Medical Department, will discuss during the 453rd Brookhaven Lecture, he and his colleagues use short-lived radioisotopes, positron emission tomography and biomarkers that they have developed to perform non-invasive, real time imaging of whole plants. He will explain how the resulting metabolic flux analysis gives insight into engineering plant metabolism further.

Ferrieri, Richard A. (Ph.D., Medical Department)

2009-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "brookhaven graphite research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Thermal Conductivity of Wood-Derived Graphite and Copper-Graphite  

SciTech Connect

The thermal conductivity of wood-derived graphite and graphite/copper composites was studied both experimentally and using finite element analysis. The unique, naturally-derived, anisotropic porosity inherent to wood-derived carbon makes standard porosity-based approximations for thermal conductivity poor estimators. For this reason, a finite element technique which uses sample microstructure as model input was utilized to determine the conductivity of the carbon phase independent of porosity. Similar modeling techniques were also applied to carbon/copper composite microstructures and predicted conductivities were compared to those determined via experiment.

Johnson, M. T. [Northwestern University, Evanston; Childers, Amanda [Northwestern University, Evanston; Ramrez-Rico, J. [Universidad de Sevilla-CSIC, Spain; Wang, Hsin [ORNL; Faber, K. T. [Northwestern University, Evanston

2013-01-01T23:59:59.000Z

482

Method of making segmented pyrolytic graphite sputtering targets  

DOE Patents (OSTI)

Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface. 2 figures.

McKernan, M.A.; Alford, C.S.; Makowiecki, D.M.; Chen, C.W.

1994-02-08T23:59:59.000Z

483

Lithium Diffusion in Graphitic Carbon and Implications for the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon and Implications for the Rate Capability of Anodes Title Lithium Diffusion in Graphitic Carbon and Implications for the Rate Capability of Anodes Publication Type Journal...

484

Carbon or Graphite Foam Heating Element for Regulating Engine ...  

ORNL 2010-G00640/es UT-B ID 200000861 Carbon or Graphite Foam Heating Element for Regulating Engine Fluids Technology Summary Automotive engines need ...

485

Interaction of sodium vapor and graphite studied by ...  

Science Conference Proceedings (OSTI)

The kinetics of the reaction between graphite and sodium vapor is analyzed with support ... High temperature compression test to determine the anode paste...

486

The Effect of Graphitization Heat Treatment Temperature on Thermal ...  

Science Conference Proceedings (OSTI)

Presentation Title, The Effect of Graphitization Heat Treatment Temperature on Thermal Properties of PAN-Based Carbon Fiber Carbon-Carbon Composites in...

487

PROCESS OF PREPARING URANIUM-IMPREGNATED GRAPHITE BODY  

DOE Patents (OSTI)

A method for the fabrication of graphite bodies containing uniformly distributed uranium is described. It consists of impregnating a body of graphite having uniform porosity and low density with an aqueous solution of uranyl nitrate hexahydrate preferably by a vacuum technique, thereafter removing excess aqueous solution from the surface of the graphite, then removing the solvent water from the body under substantially normal atmospheric conditions of temperature and pressure in the presence of a stream of dry inert gas, and finally heating the dry impregnated graphite body in the presence of inert gas at a temperature between 800 and 1400 d C to convert the uranyl nitrate hexahydrate to an oxide of uranium.

Kanter, M.A.

1958-05-20T23:59:59.000Z

488

Characterization of Graphite from PAN Aerogels - Programmaster.org  

Science Conference Proceedings (OSTI)

PAN aerogels were aromatized oxidatively at 240C and further treated pyrolytically to graphite under helium atmosphere at 2300C for 24 hours. Properties of...

489

Silicon/Graphite Tin Nano-structured Composites Synthesized by ...  

Science Conference Proceedings (OSTI)

Presentation Title, Silicon/Graphite Tin Nano-structured Composites Synthesized by High Energy Mechanical Milling for Lithium-ion Rechargeable Batteries...

490

Final report on graphite irradiation test OG-2  

SciTech Connect

Results are presented of dimensional, thermal expansivity, thermal conductivity, Young's modulus, and tensile strength measurements on specimens of nuclear graphites irradiated in capsule OG-2. About half the irradiation space was allocated to H-451 near-isotropic petroleum-coke-based graphite or its subsized prototype grade H-429. Most of these specimens had been previously irradiated. Virgin specimens of another near-isotropic graphite, grade TS-1240, were irradiated. Some previously irradiated specimens of needle-coke-based H-327 graphite and pitch-coke-based P$sub 3$JHAN were also included.

Price, R.J.; Beavan, L.A.

1975-12-15T23:59:59.000Z

491

Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion  

SciTech Connect

ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.

Trammell, Michael P [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Qualls, A L [ORNL; Harrison, Thomas J [ORNL

2013-01-01T23:59:59.000Z

492

BNL Environmental Management Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Projects Brookhaven Graphite Research Reactor High Flux Beam Reactor Waste Management Division OU IV Five-Year Review The five-year review of the Operable Unit IV...

493

2012 DOE Facility Representatives Workshop Lessons Learned Presentatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

cutting the outer south wall of the Brookhaven Graphite Research Reactor biological shield. The accident occurred as the D&D worker had just finished cutting a section of wall...

494

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov Office of Technology Commercialization  

E-Print Network (OSTI)

Laboratory See the complete catalog of Brookhaven technologies available for licensing: www.bnl.gov/techtransfer Radiation Laboratory Brookhaven Facilities Available to Industry www.bnl.gov/techtransfer #12;

Ohta, Shigemi

495

Report on the Scope of the Accident Investigation of the Tristan Fire at the DOE Brookhaven National Laboratory, IG-0386  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4/93) 4/93) United States Government Department of Energy memorandum DATE: MARCH 15, 1996 REPLY TO ATTN OF: IG-1 SUBJECT: INFORMATION: Report on lSummary Results of the Inspection of Issues Regarding the Scope of the Accident Investigation of the TRISTAN Fire at the Brookhaven National Laboratoryn TO: The Secretary BACKGROUND: The subject final report is provided to inform you of our findings and recommendations concerning our review of issues regarding the scope of the accident investigation of a March 31, 1994, fire at the Terrific Reactor Isotope Separator To Analyze Nuclides (TRISTAN) experiment at the Department of Energy (DOE) Brookhaven National Laboratory

496

Constraints on Explicit CP Violation from the Brookhaven Muon g-2 Experiment  

E-Print Network (OSTI)

We use the recently derived CP phase dependent analytic results for the supersymmetric electro-weak correction to $g_{\\mu}-2$ to constrain the explicit CP phases in softly broken supersymmetry using the new physics effect seen in the g-2 Brookhaven measurement. It is shown that the BNL data strongly constrains the CP violating phase $\\theta_{\\mu}$ (the phase of the Higgs mixing parameter $\\mu$) and $\\xi_2$ (the phase of the SU(2) gaugino mass $\\tilde m_2$) and as much as 60-90% of the region in the $\\xi_2-\\theta_{\\mu}$ plane is eliminated over a significant region of the MSSM parameter space by the BNL constraint. The region of CP phases not excluded by the BNL experiment allows for large phases and for a satisfaction of the EDM constraints via the cancellation mechanism. We find several models with large CP violation which satisfy the EDM constraint via the cancellation mechanism and produce an $a_{\\mu}^{SUSY}$ consistent with the new physics signal seen by the Brookhaven experiment. The sparticle spectrum of these models lies within reach of the planned accelerator experiments.

Tarek Ibrahim; Utpal Chattopadhyay; Pran Nath

2001-02-27T23:59:59.000Z

497

Analysis of capsule HFR-B1 graphite-corrosion data  

SciTech Connect

The recently completed irradiation of capsule HFR-B1 in the high-flux reactor at the Pitten Establishment in The Netherlands provided some excellent data for fission-product release. The data were obtained under irradiation and temperature conditions close to those expected during normal operation of the Modular High-Temperature Gas-cooled Reactor (MHTGR). Some of the tests at Petten were designed to measure release of fission gases during hydrolysis of failed fuel. Hydrolysis was initiated by injecting known amounts of water vapor into the capsule sweep gas. The measured concentrations of CO and CO{sub 2} in the capsule sweep gas indicated that a non-negligible amount of graphite corrosion was also occurring during the hydrolysis tests. Hence, these measurements provide some unique data for in-pile corrosion of grade H-4541 graphite by steam. In the present report, an analysis of graphite corrosion during the Petten hydrolysis tests is described. The calculations were performed using the REACT program, which is based on an improved corrosion model. The REACT program was developed as part of a research program at the University of California, San Diego, and is in operational status in the General Atomics (GA) Production Code Library. Predictions obtained with REACT show excellent agreement with the Petten graphite-corrosion data. This good agreement indicates that the currently used correlation for the steam-graphite reaction rate, which was obtained from out-of-pile measurements, may also be used to predict in-pile corrosion with good accuracy. 8 refs., 19 figs., 2 tabs.

Richards, M.B.; Gillespie, A.G.

1991-01-01T23:59:59.000Z

498

Discover Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Serves as World's First & Only Collider RHIC Serves as World's First & Only Collider of Polarized Protons for 'Spin' Physics As the world's first and only collider of spin-polarized protons, the Relativistic Heavy Ion Collider is being employed to investigate a fundamental question about an important particle and a universal property: What is responsible for the "spin," or intrinsic angular momentum, of the proton? While data from this spring's run are being analyzed, unexpected results from RHIC's first spin-physics run are generating great interest. by Marsha Belford FOR THE SECOND TIME SINCE ITS COMMISSIONING IN 2000 as the world's highest energy, heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) took a break from colliding gold ions in the attempt to recreate the conditions of the early universe - to serve again as the world's first and only collider of spin-polarized protons.

499

Graphite and its Hidden Superconductivity | Stanford Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphite and its Hidden Superconductivity Graphite and its Hidden Superconductivity Wednesday, November 20, 2013 - 2:00pm SLAC, Conference Room 137-322 Pablo Esquinazi, University of Leipzig We review different experimental results that indicate the existence of granular superconductivity at high temperatures at graphite interfaces. In particular we will discuss the following experimental results: The temperature and magnetic field dependence of the electrical resistance of bulk and thin graphite samples and its relation with the existence of two-dimensional (2D) interfaces. The anomalous hysteresis in the magnetoresistance observed in graphite thin samples as well as its enhancement restricting the current path within the sample. The Josephson behavior of the current-voltage characteristics with

500

Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory  

SciTech Connect

Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications.

DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

1993-09-01T23:59:59.000Z