National Library of Energy BETA

Sample records for broadband total downwelling

  1. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  2. ARM - Measurement - Longwave broadband downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband downwelling irradiance The total diffuse and direct radiant energy, at wavelengths longer than approximately 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  3. ARM - Measurement - Shortwave broadband direct downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband direct downwelling irradiance Radiant energy, across the wavelength range of 0.4 and 4 {mu}m, that is transferred directly from the sun to the receiver. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream

  4. ARM - Measurement - Shortwave broadband diffuse downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband diffuse downwelling irradiance All of the solar radiation, across the wavelength range of 0.4 and 4 {mu}m, coming directly from the sky except for solar radiation coming directly from the sun and the circumsolar irradiance within approximately three degrees of the sun. Categories Radiometric Instruments

  5. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  6. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 {mu}m, is being emitted upwards and downwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments

  7. ARM - Measurement - Net broadband total irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  8. ARM - Measurement - Shortwave broadband total net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total net irradiance The difference between upwelling and downwelling broadband shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  9. ARM: GRAMS: data from the total solar broadband radiometer (TBBR...

    Office of Scientific and Technical Information (OSTI)

    solar broadband radiometer (TBBR) Title: ARM: GRAMS: data from the total solar broadband radiometer (TBBR) GRAMS: data from the total solar broadband radiometer (TBBR) Authors: ...

  10. ARM: GRAMS: calibration information for the total solar broadband...

    Office of Scientific and Technical Information (OSTI)

    solar broadband radiometer (TBBR) Title: ARM: GRAMS: calibration information for the total solar broadband radiometer (TBBR) GRAMS: calibration information for the total solar ...

  11. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 {mu}m, is being emitted upwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments The above measurement is considered

  12. ARM - Datastreams - noaaradbrw

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    broadband total downwelling irradiance downshorthemispnearIR Shortwave broadband direct downwelling irradiance shortdirectnormal Shortwave broadband total downwelling...

  13. ARM - Campaign Instrument - island-guest-instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    broadband diffuse downwelling irradiance Shortwave broadband direct downwelling irradiance Shortwave broadband total downwelling irradiance Radar Doppler Radar reflectivity...

  14. ARM - Instrument - noaarad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    irradiance Shortwave broadband diffuse downwelling irradiance Shortwave broadband direct downwelling irradiance Shortwave broadband total downwelling irradiance Shortwave...

  15. Final report (Grant No. DOE DE-FG02-97ER62366) [Retrieval of cloud fraction and type using broadband diffuse and total shortwave irradiance measurements

    SciTech Connect (OSTI)

    Clothiaux, Eugene

    2001-05-17

    The primary research effort supported by Grant No. DOE DEFG02-97ER62366 titled ''Retrieval of Cloud Fraction and Type Using Broadband Diffuse and Total Shortwave Irradiance Measurements'' was application of clear-sky identification and cloud fraction estimation algorithms developed by Charles N. Long and Thomas P. Ackerman to the downwelling total, direct and diffuse shortwave irradiance measurements made at all of the central, boundary, and extended facilities of the DOE Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SOP) site. Goals of the research were finalization and publication of the two algorithms in the peer-reviewed literature and operational application of them to all of aforementioned data streams from the ARM SGP site. The clear-sky identification algorithm was published as Long and Ackerman (2000) in the Journal of Geophysical Research, while a description of the cloud fraction estimation algorithm made it to the scientific literature as Long et al. (1999) in the Proceedings of the 10th American Meteorological Association Conference on Atmospheric Radiation held in Madison, Wisconsin. The cloud fraction estimation algorithm relies on empirical relationships between the outputs of the clear-sky identification algorithm and cloud fraction; as such, the cloud fraction estimation algorithm requires significant amounts of data both to properly develop the empirical relationships and to thoroughly test them. With this perspective in mind the major focus of our research efforts in the later half of the project became the operational implementation of the clear-sky identification algorithm on DOE ARM SGP data so that we could develop the data set necessary for final tuning of the cloud fraction estimation algorithm in research extending beyond the lifetime of the project.

  16. ARM - Measurement - Shortwave narrowband diffuse downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband diffuse downwelling irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is

  17. ARM - Measurement - Shortwave narrowband direct downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband direct downwelling irradiance The direct unscattered radiant energy from the Sun, in a narrow band of wavelengths shorter than approximately 4 {mu}m, passing through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for

  18. ARM - Measurement - Shortwave spectral diffuse downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral diffuse downwelling irradiance The rate at which spectrally resolved radiant energy at wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above

  19. ARM - Measurement - Longwave broadband net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband net irradiance The difference between upwelling and downwelling broadband longwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  20. ARM: SIRS: derived, correction of downwelling shortwave diffuse hemispheric measurements using Dutton and full algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Laura Riihimaki

    1997-03-21

    SIRS: derived, correction of downwelling shortwave diffuse hemispheric measurements using Dutton and full algorithm

  1. Evidence for Stratospheric Downwelling Associated with High-Elevation Topography

    SciTech Connect (OSTI)

    Finkel, R

    2009-01-28

    The continued presence of elevated chlorine-36 in Sierra Nevada streams is commonly interpreted as residual nuclear fallout, but this prolonged storage contradicts accepted hydrologic models, which indicate much less short-term groundwater storage. Our hypothesis is that the chlorine-36 source is stratospheric downwelling during high-intensity storms by measuring beryllium-7 and -10, sodium-22, and chlorium-36 in precipitation, lake, and soil samples. These nuclides are produced in abundance in the stratosphere and, except for chlorine-36, did not occur as nuclear fallout. This project will either substantially change hydrologic models or reveal an unrecognized pathway for stratosphere-troposphere exchange. Either result will have substantial scientific impact. The test of the hypothesis is straightforward. If stratospheric downwelling occurs to the extent indicated by observed Sierran chlorine-36 levels, it should be detectable by elevated levels of beryllium-7 and -10, sodium-22, and chlorine-36 in storm precipitation. Samples will be collected from an established array of sampling locations. If elevated levels of these nuclides are not found, it would cast severe doubt on the hypothesis. In this case, Sierran hydrologic models will have to take into account high levels of long-term groundwater storage. If elevated levels of these nuclides are found in Sierran precipitation, it could only be from stratospheric input, both because nuclear fallout is no longer occurring and because beryllium-7 and -10 and sodium-22 are not produced by atmospheric nuclear tests.

  2. A Method of Correcting for Tilt From Horizontal in Downwelling Shortwave Irradiance Measurements on Moving Platforms

    SciTech Connect (OSTI)

    Long, Charles N.; Bucholtz, Anthony; Jonsson, Haf; Schmid, Beat; Vogelmann, A. M.; Wood, John

    2010-04-14

    Significant errors occur in downwelling shortwave irradiance measurements made on moving platforms due to tilt from horizontal because, when the sun is not completely blocked by overhead cloud, the downwelling shortwave irradiance has a prominent directional component from the direct sun. A-priori knowledge of the partitioning between the direct and diffuse components of the total shortwave irradiance is needed to properly apply a correction for tilt. This partitioning information can be adequately provided using a newly available commercial radiometer that produces reasonable measurements of the total and diffuse shortwave irradiance, and by subtraction the direct shortwave irradiance, with no moving parts and regardless of azimuthal orientation. We have developed methodologies for determining the constant pitch and roll offsets of the radiometers for aircraft applications, and for applying a tilt correction to the total shortwave irradiance data. Results suggest that the methodology is for tilt up to +/-10°, with 90% of the data corrected to within 10 Wm-2 at least for clear-sky data. Without a proper tilt correction, even data limited to 5° of tilt as is typical current practice still exhibits large errors, greater than 100 Wm-2 in some cases. Given the low cost, low weight, and low power consumption of the SPN1 total and diffuse radiometer, opportunities previously excluded for moving platform measurements such as small Unmanned Aerial Vehicles and solar powered buoys now become feasible using our methodology. The increase in measurement accuracy is important, given current concerns over long-term climate variability and change especially over the 70% of the Earth’s surface covered by ocean where long-term records of these measurements are sorely needed and must be made on ships and buoys.

  3. Broadband radiometer

    DOE Patents [OSTI]

    Cannon, Theodore W.

    1994-01-01

    A broadband radiometer including (a) an optical integrating sphere having a enerally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample.

  4. Broadband radiometer

    DOE Patents [OSTI]

    Cannon, T.W.

    1994-07-26

    A broadband radiometer is disclosed including (a) an optical integrating sphere having generally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample. 8 figs.

  5. Total

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other ...

  6. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  7. ARM - Datastreams - ecmwfsfce

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    irradiance downlr Shortwave broadband total downwelling irradiance downsr Surface skin temperature skintemp Atmospheric moisture spechumidity Horizontal wind windu...

  8. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  10. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  11. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  12. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  13. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  15. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  16. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  17. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  18. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  19. ARM - Datastreams - prpfrsr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ( time ) Shortwave broadband total downwelling irradiance No-shadow record, mean signal from the broadband channel when no shadow is detected mV signalbroadband ( time )...

  20. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  1. Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction The shape of the diurnal cycle of atmospheric downwelling radiation is an important climatic feature of cloud-radiation interactions and atmospheric properties. Adequate characterization of this diurnal cycle is critical for accurate determination of monthly and seasonal radiation budgets from a

  2. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to find visible c ; lots of computation total broadband downwelling irradiance Simple empirical method (look right) Simple empirical method: From Barnard and Long...

  3. ARM: Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Laura Riihimaki

    1993-09-01

    Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

  4. ARM: Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Laura Riihimaki

    Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

  5. NSA Broadband Instrument Study: Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Instrument Study: Update PI: Scott Richardson, NSA SST Co-Is: Chuck Long, Tom Stoffel, Ells Dutton, Joe Michalsky, Jeff Zirzow... Background * NSA last site where Diffuse ...

  6. Metasurface Broadband Solar Absorber

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  7. ARM - Measurement - Shortwave broadband radiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    broadband radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband radiance A measure of the intrinsic radiant energy flux intensity, at wavelengths between 0.4 and 4 {mu}, emitted by a radiator in a given direction, expressed in units of energy per unit time per unit solid angle. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  8. Evaluation of Arctic Broadband Surface Radiation Measurements

    SciTech Connect (OSTI)

    Matsui, N.; Long, Charles N.; Augustine, J. A.; Halliwell, D.; Uttal, Taneil; Longenecker, D.; Niebergale, J.; Wendell, J.; Albee, R.

    2012-02-24

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  9. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  10. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  11. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, David A.; Flood, William S.; Arthur, Allan A.; Voelker, Ferdinand

    1986-01-01

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  12. Broadband Energy Networks Inc | Open Energy Information

    Open Energy Info (EERE)

    Darby, Pennsylvania Zip: 19082 Product: Provides automated equipment and usage monitoring systems for energy management. References: Broadband Energy Networks Inc1 This article...

  13. Direct and quantitative broadband absorptance spectroscopy with...

    Office of Scientific and Technical Information (OSTI)

    Patent: Direct and quantitative broadband absorptance spectroscopy with multilayer ... DOE Contract Number: FG02-02ER45977 Resource Type: Patent Research Org: Massachusetts ...

  14. SRRL: Broadband Outdoor Radiometer CALibrations (BORCAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Outdoor Radiometer Calibrations Accurate measurements of solar radiation require regular recalibration of the radiometers used to make the irradiance measurement. NREL has developed the Broadband Outdoor Radiometer Calibration (BORCAL) approach for the annual calibration of pyranometers, pyrheliometers, and pyrgeometers used by the Department of Energy. BORCALs are conducted at the Solar Radiation Research Laboratory (SRRL) and at the Atmospheric Radiation Measurement (ARM) Program's

  15. Broadband Particle Filtering in a Noisy Littoral Ocean (Conference...

    Office of Scientific and Technical Information (OSTI)

    Broadband Particle Filtering in a Noisy Littoral Ocean Citation Details In-Document Search Title: Broadband Particle Filtering in a Noisy Littoral Ocean You are accessing a ...

  16. Broadband Particle Filtering in a Noisy Littoral Ocean (Conference...

    Office of Scientific and Technical Information (OSTI)

    Broadband Particle Filtering in a Noisy Littoral Ocean Citation Details In-Document Search Title: Broadband Particle Filtering in a Noisy Littoral Ocean Authors: Candy, J V ...

  17. Re: DOE Request for Information - Implementing the National Broadband...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Broadband Plan by Studying the Communications Requirements of Electric Utilities To ... Broadband Plan by Studying the Communications Requirements of Electric Utilities to ...

  18. Re: DOE Request for Information - Implementing the National Broadband...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Broadband Plan by Studying the Communications Requirements of Electric Utilities to ... Broadband Plan by Studying the Communications Requirements of Electric Utilities to ...

  19. A Broadband Tensorial Magnetotelluric Study In The Travale Geothermal...

    Open Energy Info (EERE)

    Broadband Tensorial Magnetotelluric Study In The Travale Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Broadband Tensorial...

  20. Nanophotonic Design for Broadband Light Management

    SciTech Connect (OSTI)

    Kosten, Emily; Callahan, Dennis; Horowitz, Kelsey; Pala, Ragip; Atwater, Harry

    2014-10-13

    We describe nanophotonic design approaches for broadband light management including i) crossed-trapezoidal Si structures ii) Si photonic crystal superlattices, and iii) tapered and inhomogeneous diameter III-V/Si nanowire arrays.

  1. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  2. Nauru Island Effect Detection Data Set (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Nauru ACRF downwelling SW, wind direction, and air temperature data are used, along with ... fraction; Cloud optical depth; Horizontal wind; Longwave broadband downwelling ...

  3. ARM - VAP Product - beflux1long

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Epoch seconds since 1970-1-1 0:00:00 0:00 basetime Longwave broadband downwelling irradiance Downwelling Longwave Hemisperic Irradiance Wm2 downlonghemisp ( time )...

  4. Broadband diffractive lens or imaging element

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA); London, Richard A. (Oakland, CA); Seppala, Lynn G. (Livermore, CA)

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  5. Broadband diffractive lens or imaging element

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA); London, Richard A. (Oakland, CA); Seppala, Lynn G. (Livermore, CA)

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  6. Broadband diffractive lens or imaging element

    DOE Patents [OSTI]

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  7. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  8. Multiple cup downwell gas separator

    SciTech Connect (OSTI)

    Brennan, J. R.

    1980-12-30

    A gas separator for a well pump for pumping well fluid. The gas separator includes a plurality of upwardly opening retention cups which are disposed in vertical spaced relationship one above the other above a reservoir chamber. Each retention cup has a retention chamber which provides a fluid retaining capacity sufficient to momentarily retain well fluid flowing from the well so as to permit gas to escape from the fluid so retained and returned to the well. The difference in specific gravity between gassy well fluid and well fluid with gas removed creases circulation of well fluid through the retention cups and into the reservoir chamber, with each retention cup catching down falling well fluid that has been partially freed of entrained gas. Second stage separation of gas from well fluid is achieved by providing at least one opening or passageway from the reservoir chamber adapted to provide a gas exit between the well and the reservoir chamber.

  9. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: Direct normal shortwave (solar beam) Diffuse horizontal shortwave (sky) Global horizontal shortwave (total hemispheric) Upwelling shortwave (reflected) Downwelling longwave (atmospheric infrared) Upwelling longwave (surface infrared)

  10. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total Canada 61,078 1% China 3,323,297 57% Germany 154,800 3% Japan 12,593 0% India 47,192 1% South Korea 251,105 4% All Others 2,008,612 34% Total 5,858,677 100% Table 7 . Photovoltaic module import shipments by country, 2014 (peak kilowatts) Note: All Others includes Cambodia, Czech Republic, Hong Kong, Malaysia, Mexico, Netherlands, Philippines, Singapore, Taiwan and Turkey Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic

  11. Calculated secondary yields for proton broadband using DECAY TURTLE

    SciTech Connect (OSTI)

    Sondgeroth, A.

    1995-02-01

    The calculations for the yields were done by Al Sondgeroth and Anthony Malensek. The authors used the DECAY deck called PBSEC{_}E.DAT from the CMS DECKS library. After obtaining the run modes and calibration modes from the liaison physicist, they made individual decay runs, using DECAY TURTLE from the CMS libraries and a production spectrum subroutine which was modified by Anthony, for each particle and decay mode for all particle types coming out of the target box. Results were weighted according to branching ratios for particles with more than one decay mode. The production spectra were produced assuming beryllium as the target. The optional deuterium target available to broadband will produce slightly higher yields. It should be noted that they did not include pion yields from klong decays because they could not simulate three body decays. Pions from klongs would add a very small fraction to the total yield.

  12. ARM - Measurement - Longwave broadband upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband upwelling irradiance The rate at which radiant energy, at a wavelength longer than approximately 4 {mu}m, is being emitted upwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments The above measurement is considered

  13. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 482 0.0% Alaska 81 0.0% Arizona 194,476 3.3% Arkansas 336 0.0% California 3,163,120 53.0% Colorado 47,240 0.8% Connecticut 50,745 0.9% Delaware 6,600 0.1% District of Columbia 751 0.0% Florida 18,593 0.3% Georgia 47,660 0.8% Hawaii 78,329 1.3% Illinois 5,795 0.1% Indiana 37,016 0.6% Iowa 14,281 0.2% Kansas 1,809 0.0% Kentucky 520 0.0% Louisiana 12,147 0.2% Maine 1,296 0.0% Maryland 63,077 1.1% Massachusetts 157,415 2.6% Michigan 4,210 0.1% Minnesota

  14. Implementing the National Broadband Plan by Empowering Consumers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Privacy Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy The United States Telecom Association ...

  15. ARM: Portable Radiation Package: Broadband Radiometers, 1 second...

    Office of Scientific and Technical Information (OSTI)

    Portable Radiation Package: Broadband Radiometers, 1 second resolution Authors: Annette Koontz ; R. Reynolds Publication Date: 2012-11-02 OSTI Identifier: 1095574 DOE Contract ...

  16. DOE Request for Information - Implementing the National Broadband...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Request for Information - Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Idaho Power Company ...

  17. In the Matter of National Broadband Plan Request for Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The American Public Power Association ("APPA") appreciates ... Information ("RFI") on Implementing the National Broadband ... of Electric Utilities to Inform Federal Smart Grid Policy. ...

  18. Re: DOE Request for Information - Implementing the National Broadband...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    regarding the current and future communications requirements of utilities, including, ... Broadband Plan by Studying the Communications Requirements of Electric Utilities to ...

  19. Re: DOE Request for Information - Implementing the National Broadband...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Broadband Plan by Studying the Communications Requirements of Electric Utilities To ... regarding the current and future communications requirements of utilities, including, ...

  20. ARM - Datastreams - rss

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Variable Shortwave spectral diffuse downwelling irradiance diffuse Shortwave spectral direct normal irradiance directnormal Shortwave spectral total downwelling irradiance...

  1. ARM - Measurement - Shortwave broadband direct normal irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband direct normal irradiance The rate at which radiant energy in broad bands of wavelengths shorter than approximately 4{mu}m, that comes directly from the Sun without being scattered or absorbed in the atmosphere, passes through a unit area perpendicular to the direction from the Sun. Categories Radiometric Instruments

  2. Review Article: The weak interactive characteristic of resonance cells and broadband effect of metamaterials

    SciTech Connect (OSTI)

    Zhao, Xiaopeng Song, Kun

    2014-10-15

    Metamaterials are artificial media designed to control electromagnetic wave propagation. Due to resonance, most present-day metamaterials inevitably suffer from narrow bandwidth, extremely limiting their practical applications. On the basis of tailored properties, a metamaterial within which each distinct unit cell resonates at its inherent frequency and has almost no coupling effect with the other ones, termed as weak interaction system, can be formulated. The total response of a weak interaction system can be treated as an overlap of the single resonance spectrum of each type of different unit cells. This intriguing feature therefore makes it possible to accomplish multiband or broadband metamaterials in a simple way. By introducing defects into metamaterials to form a weak interaction system, multiband and broadband electromagnetic metamaterials have first been experimentally demonstrated by our group. The similar concept can also be readily extended to acoustic and seismic metamaterials.

  3. Radiative Flux Analysis (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Science (SC), Biological and Environmental Research (BER) ... irradiance; Shortwave broadband direct downwelling irradiance; Shortwave ...

  4. A broadband multimedia TeleLearning system

    SciTech Connect (OSTI)

    Wang, Ruiping; Karmouch, A.

    1996-12-31

    In this paper we discuss a broadband multimedia TeleLearning system under development in the Multimedia Information Research Laboratory at the University of Ottawa. The system aims at providing a seamless environment for TeleLearning using the latest telecommunication and multimedia information processing technology. It basically consists of a media production center, a courseware author site, a courseware database, a courseware user site, and an on-line facilitator site. All these components are distributed over an ATM network and work together to offer a multimedia interactive courseware service. An MHEG-based model is exploited in designing the system architecture to achieve the real-time, interactive, and reusable information interchange through heterogeneous platforms. The system architecture, courseware processing strategies, courseware document models are presented.

  5. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    DOE Patents [OSTI]

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  6. Broadband Outdoor Radiometer Calibration Process for the Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program (Technical Report) | SciTech Connect Technical Report: Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program Citation Details In-Document Search Title: Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related

  7. In the Matter of National Broadband Plan Request for Information:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communications Requirements | Department of Energy In the Matter of National Broadband Plan Request for Information: Communications Requirements In the Matter of National Broadband Plan Request for Information: Communications Requirements The American Public Power Association ("APPA") appreciates this opportunity to respond to the Department of Energy ("the Department" or "DOE") regarding its Request for Information ("RFI") on Implementing the National

  8. DOE Request for Information - Implementing the National Broadband Plan by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy | Department of Energy Request for Information - Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy DOE Request for Information - Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Idaho Power Company ("Idaho Power") hereby submits the following

  9. EIS-0527: Nationwide Public Safety Broadband Network Programmatic

    Energy Savers [EERE]

    Environmental Impact Statement for the Central United States | Department of Energy 7: Nationwide Public Safety Broadband Network Programmatic Environmental Impact Statement for the Central United States EIS-0527: Nationwide Public Safety Broadband Network Programmatic Environmental Impact Statement for the Central United States The First Responder Network Authority (FirstNet) in the U.S. Department of Commerce is preparing, with DOE as a cooperating agency, a Programmatic Environmental

  10. System and method for detection of dispersed broadband signals

    DOE Patents [OSTI]

    Qian, Shie; Dunham, Mark E.

    1999-06-08

    A system and method for detecting the presence of dispersed broadband signals in real time. The present invention utilizes a bank of matched filters for detecting the received dispersed broadband signals. Each matched filter uses a respective robust time template that has been designed to approximate the dispersed broadband signals of interest, and each time template varies across a spectrum of possible dispersed broadband signal time templates. The received dispersed broadband signal x(t) is received by each of the matched filters, and if one or more matches occurs, then the received data is determined to have signal data of interest. This signal data can then be analyzed and/or transmitted to Earth for analysis, as desired. The system and method of the present invention will prove extremely useful in many fields, including satellite communications, plasma physics, and interstellar research. The varying time templates used in the bank of matched filters are determined as follows. The robust time domain template is assumed to take the form w(t)=A(t)cos{2.phi.(t)}. Since the instantaneous frequency f(t) is known to be equal to the derivative of the phase .phi.(t), the trajectory of a joint time-frequency representation of x(t) is used as an approximation of .phi.'(t).

  11. System and method for detection of dispersed broadband signals

    DOE Patents [OSTI]

    Qian, S.; Dunham, M.E.

    1999-06-08

    A system and method for detecting the presence of dispersed broadband signals in real time are disclosed. The present invention utilizes a bank of matched filters for detecting the received dispersed broadband signals. Each matched filter uses a respective robust time template that has been designed to approximate the dispersed broadband signals of interest, and each time template varies across a spectrum of possible dispersed broadband signal time templates. The received dispersed broadband signal x(t) is received by each of the matched filters, and if one or more matches occurs, then the received data is determined to have signal data of interest. This signal data can then be analyzed and/or transmitted to Earth for analysis, as desired. The system and method of the present invention will prove extremely useful in many fields, including satellite communications, plasma physics, and interstellar research. The varying time templates used in the bank of matched filters are determined as follows. The robust time domain template is assumed to take the form w(t)=A(t)cos[l brace]2[phi](t)[r brace]. Since the instantaneous frequency f(t) is known to be equal to the derivative of the phase [phi](t), the trajectory of a joint time-frequency representation of x(t) is used as an approximation of [phi][prime](t). 10 figs.

  12. Broadband enhancement of infrared absorption in microbolometers using Ag nanocrystals

    SciTech Connect (OSTI)

    Hyun, Jerome K.; Ahn, Chi Won; Kim, Woo Choong; Kim, Tae Hyun; Hyun, Moon Seop; Kim, Hee Yeoun E-mail: jhpark@nnfc.re.kr; Park, Jae Hong E-mail: jhpark@nnfc.re.kr; Lee, Won-Oh

    2015-12-21

    High performance microbolometers are widely sought for thermal imaging applications. In order to increase the performance limits of microbolometers, the responsivity of the device to broadband infrared (IR) radiation needs to be improved. In this work, we report a simple, quick, and cost-effective approach to modestly enhance the broadband IR response of the device by evaporating Ag nanocrystals onto the light entrance surface of the device. When irradiated with IR light, strong fields are built up within the gaps between adjacent Ag nanocrystals. These fields resistively generate heat in the nanocrystals and underlying substrate, which is transduced into an electrical signal via a resistive sensing element in the device. Through this method, we are able to enhance the IR absorption over a broadband spectrum and improve the responsivity of the device by ∼11%.

  13. Re: National Broadband Plan (NBP) Request for Information: Data Access |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Broadband Plan (NBP) Request for Information: Data Access Re: National Broadband Plan (NBP) Request for Information: Data Access Whirlpool Corporation is honored to have been chosen as a recipient of a U.S. Department of Energy's (DOE) Smart Grid Investment Grant program grant of $19.3 million over a two year period - which the company will match with its own investments. Whirlpool Corporation recently announced that in 2011 it would deliver one million U.S.

  14. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  15. Section 42

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Rotating Shadow Arm for Broadband Hemispheric Radiometers: Instrument Design and Concept Verification Using Atmospheric Radiation Measurement Southern Great Plains Radiometer Measurements C.N. Long, C.F. Pavloski, and T.P. Ackerman Department of Meteorology Pennsylvania State University University Park, Pennsylvania Measurement of the components of downwelling broadband The total and diffuse irradiance measurements are output shortwave (SW) irradiance at the surface can be difficult to every

  16. High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report...

    Open Energy Info (EERE)

    Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test...

  17. Microsoft Word - Broadband Over Power Lines_FINAL.06.01.10.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband over Powerlines Can Accelerate the Transmission Smart Grid May 25, 2010 DOE/NETL-2010/1418 Broadband Over Power Lines Could Accelerate the Transmission Smart Grid Broadband Over Power Lines Could Accelerate the Transmission Smart Grid 1 Prepared by: Booz Allen Hamilton (BAH) Bruce Renz Renz Consulting, LLC DOE Contract number: DE-FE000400 Broadband Over Power Lines Could Accelerate the Transmission Smart Grid 2 Acknowledgements This report was prepared by Booz Allen Hamilton, Inc.

  18. Status of the Broadband Heating Rate Profile (BBHRP) VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of the Broadband Heating Rate Profile (BBHRP) VAP Mlawer, Eli Atmospheric & Environmental Research, Inc. Clough, Shepard Atmospheric and Environmental Research Delamere, Jennifer Atmospheric and Environmental Research, Inc. Miller, Mark Brookhaven National Laboratory Johnson, Karen Brookhaven National Laboratory Troyan, David Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Shippert, Timothy Pacific Northwest National Laboratory Long, Chuck Pacific

  19. Methods and devices for generation of broadband pulsed radiation

    DOE Patents [OSTI]

    Borguet, Eric; Isaienko, Oleksandr

    2013-05-14

    Methods and apparatus for non-collinear optical parametric ampliffication (NOPA) are provided. Broadband phase matching is achieved with a non-collinear geometry and a divergent signal seed to provide bandwidth gain. A chirp may be introduced into the pump pulse such that the white light seed is amplified in a broad spectral region.

  20. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    SciTech Connect (OSTI)

    Reda, I.; Konings, J.; Xie, Y.; Dooraghi, M.; Sengupta, M.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  1. Measuring Broadband IR Irradiance in the Direct Solar Beam (Presentation)

    SciTech Connect (OSTI)

    Reda, I.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 um and 50 um, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and are calibrated with traceability to consensus reference, yet are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degrees to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  2. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  3. Metallic stereostructured layer: An approach for broadband polarization state manipulation

    SciTech Connect (OSTI)

    Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu

    2014-11-17

    In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincar sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light.

  4. Re: DOE Request for Information - Implementing the National Broadband

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy | Department of Energy To Inform Federal Smart Grid Policy Re: DOE Request for Information - Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy The Edison Electric Institute ("EEI"), on behalf of its member companies, hereby submits the following comments in response to the Request for

  5. Re: DOE Request for Information - Implementing the National Broadband

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy | Department of Energy FPL hereby respectfully submits the following comments in response to the request by the Department of Energy for comments to Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy (Federal Register/Vol.75, No.90/Tuesday May 11, 2010). Re: DOE Request for Information -

  6. Re: DOE Request for Information - Implementing the National Broadband

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy | Department of Energy DTE Energy Company appreciates the opportunity to respond to the Department of Energy's (DOE) Request for Information on the subject of Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy, which was published at 75 Federal Register 26206 on May 11, 2010. Re: DOE Request for

  7. Re: Implementing the National Broadband Plan by Empowering Consumers and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Smart Grid: Data Access, Third Party Use, and Privacy | Department of Energy Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Re: Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Exelon Corporation (Exelon) hereby submits the following comments in response to the request by the Department of Energy ("DOE" or "Department") for information on state efforts to

  8. Re: Implementing the National Broadband Plan by Studying the Communications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements of Electric Utilities to Inform Federal Smart Grid Policy | Department of Energy Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy Re: Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy Alcatel-Lucent ("ALU") appreciates the opportunity to contribute to the Department of Energy's ("Department") Request for Information

  9. Implementing the National Broadband Plan by Empowering Consumers and the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid: Data Access, Third Party Use, and Privacy | Department of Energy Privacy Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy The United States Telecom Association (USTelecom)1 is pleased to comment on the Request for Information (RFI) of the Department of Energy (DOE) in its proceeding requesting input from the public regarding current and potential practices and policies to empower consumers through

  10. Implementing the National Broadband Plan by Empowering Consumers and the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid: Data Access, Third Party Use, and Privacy- Request for Information | Department of Energy Privacy- Request for Information Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy- Request for Information The Department of Energy (DOE) is seeking comments and information from interested parties to assist DOE in understanding current and potential practices and policies for the states and other entities 1 to

  11. Implementing the National Broadband Plan by Studying the Communications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements of Electric Utilities To Inform Federal Smart Grid Policy | Department of Energy Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy The Department of Energy (DOE) is seeking comments and information from interested parties to assist DOE in understanding the communications requirements of

  12. Broadband Longwave Radiative Cooling Rates in Inhomogeneous Stratocumulus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Longwave Radiative Cooling Rates in Inhomogeneous Stratocumulus Clouds M. Ovtchinnikov and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma R. F. Cahalan National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland A. B. Davis Los Alamos National Laboratory Los Alamos, New Mexico R. G. Ellingson and E.

  13. Broad Band Intra-Cavity Total Reflection Chemical Sensor

    DOE Patents [OSTI]

    Pipino, Andrew C. R.

    1998-11-10

    A broadband, ultrahigh-sensitivity chemical sensor is provided that allows etection through utilization of a small, extremely low-loss, monolithic optical cavity. The cavity is fabricated from highly transparent optical material in the shape of a regular polygon with one or more convex facets to form a stable resonator for ray trajectories sustained by total internal reflection. Optical radiation enters and exits the monolithic cavity by photon tunneling in which two totally reflecting surfaces are brought into close proximity. In the presence of absorbing material, the loss per pass is increased since the evanescent waves that exist exterior to the cavity at points where the circulating pulse is totally reflected, are absorbed. The decay rate of an injected pulse is determined by coupling out an infinitesimal fraction of the pulse to produce an intensity-versus-time decay curve. Since the change in the decay rate resulting from absorption is inversely proportional to the magnitude of absorption, a quantitative sensor of concentration or absorption cross-section with 1 part-per-million/pass or better sensitivity is obtained. The broadband nature of total internal reflection permits a single device to be used over a broad wavelength range. The absorption spectrum of the surrounding medium can thereby be obtained as a measurement of inverse decay time as a function of wavelength.

  14. DOE Takes Steps to Implement the National Broadband Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Takes Steps to Implement the National Broadband Plan DOE Takes Steps to Implement the National Broadband Plan May 11, 2010 - 12:54pm Addthis The Department of Energy has announced that it is taking steps to implement energy-related recommendations included in the National Broadband Plan, released by the Federal Communications Commission (FCC) in March. The plan included recommendations on a wide range of topics from expanding internet access to modernizing health information to

  15. Microsoft Word - Broadband Over Power Lines_FINAL.06.01.10.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband over Powerlines Can Accelerate the Transmission Smart Grid May 25, 2010 DOENETL-2010... the United States Department of Energy's National Energy Technology Laboratory. ...

  16. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    SciTech Connect (OSTI)

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  17. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sistrunk, Emily; Lawrence Livermore National Lab.; Grilj, Jakob; Ecole Polytechnique Federal de Lausanne; Jeong, Jaewoo; Samant, Mahesh G.; Gray, Alexander X.; Temple Univ. Philadelphia, PA; Drr, Hermann A.; Parkin, Stuart S. P.; et al

    2015-02-11

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO? film with EUV diffraction from the optically excited sample. The VO? exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.

  18. Feasibility study of broadband efficient ''water window'' source

    SciTech Connect (OSTI)

    Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang Weihua; Endo, Akira; Li Bowen; Dunne, Padraig; O'Sullivan, Gerry

    2012-01-02

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2-4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics.

  19. Design and demonstration of broadband thin planar diffractive acoustic lenses

    SciTech Connect (OSTI)

    Wang, Wenqi; Xie, Yangbo; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-09-08

    We present here two diffractive acoustic lenses with subwavelength thickness, planar profile, and broad operation bandwidth. Tapered labyrinthine unit cells with their inherently broadband effective material properties are exploited in our design. Both the measured and the simulated results are showcased to demonstrate the lensing effect over more than 40% of the central frequency. The focusing of a propagating Gaussian modulated sinusoidal pulse is also demonstrated. This work paves the way for designing diffractive acoustic lenses and more generalized phase engineering diffractive elements with labyrinthine acoustic metamaterials.

  20. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  1. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  2. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  3. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  5. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  6. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  7. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  8. Hybrid metasurface for ultra-broadband terahertz modulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heyes, Jane E.; Withayachumnankul, Withawat; Grady, Nathaniel K.; Chowdhury, Dibakar Roy; Azad, Abul K.; Chen, Hou-Tong

    2014-11-05

    We demonstrate an ultra-broadband free-space terahertz modulator based on a semiconductor-integrated metasurface. The modulator is made of a planar array of metal cut-wires on a silicon-on-sapphire substrate, where the silicon layer functions as photoconductive switches. Without external excitation, the cut-wire array exhibits a Lorentzian resonant response with a transmission passband spanning dc up to the fundamental dipole resonance above 2 THz. Under photoexcitation with 1.55 eV near-infrared light, the silicon regions in the cut-wire gaps become highly conductive, causing a transition of the resonant metasurface to a wire grating with a Drude response. In effect, the low-frequency passband below 2more » THz evolves into a stopband for the incident terahertz waves. Experimental validations confirm a bandwidth of at least 100%, spanning 0.5 to 1.5 THz with -10 dB modulation depth. This modulation depth is far superior to -5 dB achievable from a plain silicon-on-sapphire substrate with effectively 25 times higher pumping energy. The proposed concept of ultra-broadband metasurface modulator can be readily extended to electrically controlled terahertz wave modulation.« less

  9. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  10. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  11. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  12. U.S. Total Exports

    Gasoline and Diesel Fuel Update (EIA)

    Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt ... Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total ...

  13. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  14. ARM - Publications: Science Team Meeting Documents: Using ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    climate change, and must therefore be represented correctly in models. We consider the functional relationships between the down-welling broadband longwave radiative flux at the...

  15. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  16. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  17. Broadband-antireflective hybrid nanopillar array for photovoltaic application

    SciTech Connect (OSTI)

    Watanabe, Keiji Yamamoto, Jiro; Tsuchiya, Ryuta

    2015-08-28

    Subwavelength structures such as nanopillars, nanoholes, and nanodomes have recently attracted considerable attention as antireflective structures for solar cells. Recent studies on the optical property of nanopillar array revealed that the reflection minimum is related to the diameter, the pitch, and the height of nanopillars. Here, we investigate the “hybrid” nanopillar array, which is composed of different diameters of nanopillars. Finite differential time domain simulations revealed that the photogeneration in a hybrid nanopillar array is spatially heterogeneous: carriers are generated mainly in the narrower pillars for short-wavelength incident light and in the thicker pillars for long-wavelength light, respectively. Hybrid silicon nanopillar arrays fabricated by using electron beam lithography and dry etching show excellent broadband antireflection property. Hybrid nanopillar array is thus highly promising for next-generation antireflection for photovoltaic applications.

  18. Simulation of free-electron lasers seeded with broadband radiation

    SciTech Connect (OSTI)

    Bajlekov, Svetoslav; Fawley, William; Schroeder, Carl; Bartolini, Riccardo; Hooker, Simon

    2011-03-10

    The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FEL process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds.

  19. Broad-band characteristics of circular button pickups

    SciTech Connect (OSTI)

    Barry, W.C.

    1992-10-01

    A broad-band.theory of the circular button pickup is presented. Expressions for the longitudinal and transverse transfer impedance of a pair of such pickups are derived in the frequency domain. The broad-band expressions are shown to reduce to the standard electrostatic transfer functions for wavelengths large compared to the button diameter. The theory is shown to be in reasonable agreement with measurements performed on standard LEP button electrodes. In particular, the theory explains a resonance in the response of the LEP buttons which made them unsuitable, in standard form, for their intended application as pickups in the LBL Advanced Light Source feedback system. The buttons were modified to suppress the resonance and subsequently incorporated into the feedback system.

  20. On-demand hypermedia/multimedia service over broadband networks

    SciTech Connect (OSTI)

    Bouras, C.; Kapoulas, V.; Spirakis, P.

    1996-12-31

    In this paper we present a unified approach for delivering hypermedia/multimedia objects over broadband networks. Documents are stored in various multimedia servers, while the inline data may reside in their own media servers, attached to the multimedia servers. The described service consists of several multimedia servers and a set of functions that intend to present to the end user interactive information in real-time. Users interact with the service requesting multimedia documents on demand. Various media streams are transmitted over different parallel connections according lo their transmission requirements. The hypermedia documents are structured using a hypermedia markup language that keeps information of the spatiotemporal relationships among document`s media components. In order to deal with the variant network behavior, buffering manipulation mechanisms and grading of the transmitted media quality techniques are proposed to smooth presentation and synchronization anomalies.

  1. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  2. Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber

    SciTech Connect (OSTI)

    Khaleque, Abdul Hattori, Haroldo T.

    2015-10-14

    A polarization splitter based on gold filled dual-core photonic crystal fiber (DC-PCF) that can work from 1420 nm to 1980 nm (560 nm bandwidth) is proposed in this work. The splitter has an extinction ratio lower than −20 dB over a large bandwidth with a total length of 254.6 μm. The key principle of operation of the splitter is the induced change in the refractive index of the y-odd mode when it is coupled to the second order plasmonic mode, while other supermodes are weakly affected by the plasmonic mode. The proposed broadband and compact polarization splitter may find applications in communications and sensing, being capable of working in the infrared and mid-infrared wavelength ranges.

  3. Development of a TIM-based, flexible, broadband two-crystal spectromet...

    Office of Scientific and Technical Information (OSTI)

    Title: Development of a TIM-based, flexible, broadband two-crystal spectrometer Authors: Steel, A B ; Dunn, J ; Emig, J ; Beiersdorfer, P ; Brown, G V ; Shepherd, R ; Marley, E V ; ...

  4. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    76 Females Male Female Male Female Male Female Male Female Male Female 27 24 86 134 65 24 192 171 1189 423 PAY PLAN SES 96 EX 4 EJ/EK 60 EN 05 39 EN 04 159 EN 03 21 EN 00 8 NN (Engineering) 398 NQ (Prof/Tech/Admin) 1165 NU (Tech/Admin Support) 54 NV (Nuc Mat Courier) 325 GS 15 3 GS 14 1 GS 13 1 GS 10 1 Total includes 2318 permanent and 17 temporary employees. DIVERSITY 2335 1559 66.8% American Indian Alaska Native African American Asian American Pacific Islander Hispanic White 33.2% National

  5. Astigmatism-corrected Czerny-Turner imaging spectrometer for broadband spectral simultaneity

    SciTech Connect (OSTI)

    Xue Qingsheng

    2011-04-01

    A low-cost, broadband, astigmatism-corrected Czerny-Turner arrangement with a fixed plane grating is proposed. A wedge cylindrical lens is used to correct astigmatism over a broadband spectral range. The principle and method of astigmatism correction are described in detail. We compare the performance of this modified Czerny-Turner arrangement with that of the traditional Czerny-Turner arrangement by using a practical Czerny-Turner imaging spectrometer example.

  6. Michalsky-JJ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accuracy of Broadband Shortwave Irradiance Measurements Using the Open Silicon Channel of the MFRSR J. J. Michalsky State University of New York Albany, New York Introduction The best routine Atmospheric Radiation Measurement (ARM) Program measurement of downwelling irradiance in the total shortwave band is a sum of diffuse horizontal irradiance and the direct normal irradiance component that is incident horizontally (diffuse horizontal). The latter is obtained by multiplying the direct normal

  7. Evaluation of Improved Pyrgeometer Calibration Method

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Pyrgeometer Calibration Method I. Reda, P. A. Gotseff, T. L. Stoffel, and C. Webb National Renewable Energy Laboratory Golden, Colorado Abstract Broadband longwave (atmospheric) irradiance measurements are important for determining the earth's total energy balance. The Atmospheric Radiation Measurement (ARM) Program has deployed more than 50 pyrgeometers for measuring the upwelling and downwelling longwave irradiance as part of Solar Infrared Station (SIRS), SKYRAD, and GNDRAD

  8. Broadband turbulent spectra in gamma-ray burst light curves

    SciTech Connect (OSTI)

    Van Putten, Maurice H. P. M.; Guidorzi, Cristiano; Frontera, Filippo

    2014-05-10

    Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is one order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.

  9. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  10. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India

  11. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOE Patents [OSTI]

    Thompson, Donald O.; Hsu, David K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.

  12. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOE Patents [OSTI]

    Thompson, D.O.; Hsu, D.K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.

  13. The Broad-band X-ray Spectrum of IC 4329A from a Joint NuSTAR...

    Office of Scientific and Technical Information (OSTI)

    The Broad-band X-ray Spectrum of IC 4329A from a Joint NuSTARSuzaku Observation Citation Details In-Document Search Title: The Broad-band X-ray Spectrum of IC 4329A from a Joint ...

  14. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  15. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  16. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  17. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  18. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  19. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  20. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  1. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  2. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  3. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  4. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  5. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  6. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  7. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  8. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  9. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  10. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  11. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  12. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  13. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  14. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  15. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  16. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  17. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  18. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  19. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  20. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  1. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  2. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  3. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  4. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  5. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  6. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  7. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  8. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  9. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  10. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  11. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  12. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  13. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  14. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  15. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  16. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  17. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Basements Basement in Single-Family Homes and Apartments in 2-4 Unit Buildings ... Attics Attic in Single-Family Homes and Apartments in 2-4 Unit Buildings ...

  18. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Climate region 3 Very coldCold 31,898 30,469 28,057 28,228 21,019 30,542 25,067 Mixed-humid 27,873 26,716 24,044 26,365 21,026 27,096 22,812 Mixed-dryHot-dry 12,037 10,484 7,628 ...

  19. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Air-Conditioning Equipment 1, 2 Central System......Central Air-Conditioning...... 65.9 1.1 6.4 6.4 ...

  20. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Income Relative to Poverty Line Below 100 Percent......1.3 1.2 0.8 0.4 1. Below 150 percent of poverty line or 60 percent of median State ...

  1. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ...

  2. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Table HC7.4 Space Heating Characteristics by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Space Heating ...

  3. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ...

  4. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ...

  5. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ...

  6. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 ...

  7. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  8. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  9. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  10. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Median square feet per building (thousand) Median square feet per worker Median operating hours per week Median age of buildings (years) All buildings 5,557 87,093 88,182 5.0 1,029 50 32 Building floorspace (square feet) 1,001 to 5,000 2,777 8,041 10,232 2.8 821 49 37 5,001 to 10,000 1,229 8,900 9,225 7.0 1,167 50 31 10,001 to 25,000 884 14,105 14,189 15.0 1,444 56 32 25,001 to 50,000 332 11,917 11,327 35.0 1,461 60 29 50,001 to 100,000 199 13,918 12,345 67.0 1,442 60 26 100,001 to 200,000 90

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Renter-Occupied Housing Unit Housing Units (millions) Single-Family Units ... At Home Behavior Home Used for Business Yes......

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Owner-Occupied Housing Unit U.S. Housing Units (millions) Single-Family Units ... At Home Behavior Home Used for Business Yes......

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table ... At Home Behavior Home Used for Business Yes......

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ...

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ...

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 41.8 2,603 2,199 1,654 941 795 598 1-Car Garage...... 9.5 2,064 1,664 1,039 775 624 390 2-Car Garage......

  17. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Average Square Feet per Apartment in a -- Apartments (millions) Major Outside Wall Construction Siding (Aluminum, Vinyl, Steel)...... 35.3 3.5 1,286 1,090 325 852 786 461 ...

  18. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 ...

  19. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy ...

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Per Household Member Average Square Feet Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC1.2.2 ...

  1. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  2. Broadband Processing in a Noisy Shallow Ocean Environment: A Particle Filtering Approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Candy, J. V.

    2016-04-14

    Here we report that when a broadband source propagates sound in a shallow ocean the received data can become quite complicated due to temperature-related sound-speed variations and therefore a highly dispersive environment. Noise and uncertainties disrupt this already chaotic environment even further because disturbances propagate through the same inherent acoustic channel. The broadband (signal) estimation/detection problem can be decomposed into a set of narrowband solutions that are processed separately and then combined to achieve more enhancement of signal levels than that available from a single frequency, thereby allowing more information to be extracted leading to a more reliable source detection.more » A Bayesian solution to the broadband modal function tracking, pressure-field enhancement, and source detection problem is developed that leads to nonparametric estimates of desired posterior distributions enabling the estimation of useful statistics and an improved processor/detector. In conclusion, to investigate the processor capabilities, we synthesize an ensemble of noisy, broadband, shallow-ocean measurements to evaluate its overall performance using an information theoretical metric for the preprocessor and the receiver operating characteristic curve for the detector.« less

  3. Preliminary Analysis of ARM SGP Area Sky Cover and Downwelling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clarifying and Implementing a Stricter DOD Definition Across Datastreams C. Sivaraman, B. Ermold, M. Macduff Pacific Northwest National Laboratory Definition of DOD: All dimension, ...

  4. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  5. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  6. Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions

    SciTech Connect (OSTI)

    Tang, Linlong; Du, Jinglei; Shi, Haofei Wei, Dongshan; Du, Chunlei

    2014-10-15

    We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

  7. Re: NBP RFI-Implementing the National Broadband Plan by Empowering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumers and the Smart Grid: Data Access, Third Party Use and Privacy | Department of Energy Empowering Consumers and the Smart Grid: Data Access, Third Party Use and Privacy Re: NBP RFI-Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use and Privacy Smart grid provides consumers with unprecedented access and control of their electricity usage, and it provides utilities with the ability to manage the electric grid with

  8. Re: NBP RFI-Implementing the National Broadband Plan by Studying the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy | Department of Energy Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy Re: NBP RFI-Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy The Telecommunications Industry Association (TIA) is pleased to provide comments on the communications requirements of electric

  9. EIS-0525: Nationwide Public Safety Broadband Network Programmatic Environmental Impact Statement for the Eastern United States

    Broader source: Energy.gov [DOE]

    The First Responder Network Authority (FirstNet) in the U.S. Department of Commerce is preparing, with DOE as a cooperating agency, a Programmatic Environmental Impact Statement (PEIS) that will analyze the potential environmental impacts of a proposal to design, deploy and operate the Nationwide Public Safety Broadband Network. This PEIS covers the Eastern United States. More information about FirstNet and the PEIS is available at: http://www.firstnet.gov/.

  10. Recent Developments on the Broadband Heating Rate Profile Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Developments on the Broadband Heating Rate Profile Value-Added Product E. J. Mlawer, J. S. Delamere, and S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts M. A. Miller and K. L. Johnson Brookhaven National Laboratory Upton, New York T. R. Shippert and C. N. Long Pacific Northwest National Laboratory Richland, Washington R. G. Ellingson Florida State University Tallahassee, Florida M. H. Zhang State University of New York - Stony Brook Albany, New York R.

  11. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.

    2015-01-15

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less

  12. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    SciTech Connect (OSTI)

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.

    2015-01-15

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.

  13. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle ...

  15. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  16. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Performance Period Total Fee Paid FY2008 $134,832 FY2009 $142,578 FY2010 $299,878 FY2011 $169,878 Cumulative Fee Paid $747,166 Contract Period: September 2007 - October 2012 $31,885,815 C/P/E Environmental Services, LLC DE-AM09-05SR22405/DE-AT30-07CC60011/SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee $357,223 $597,797 $894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 $1,516,646 Fee

  17. Design Storm for Total Retention.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: Design Storm for "Total Retention" under Individual Permit, Poster, Individual ... International. Environmental Programs Design Storm for "Total Retention" under ...

  18. Comparative study of broadband electrodynamic properties of single-crystal and thin-film strontium titanate

    SciTech Connect (OSTI)

    Findikoglu, A. T.; Jia, Q. X.; Kwon, C.; Reagor, D. W.; Kaduchak, G.; Rasmussen, K. Oe.; Bishop, A. R.

    1999-12-27

    We have used a coplanar waveguide structure to study broadband electrodynamic properties of single-crystal and thin-film strontium titanate. We have incorporated both time- and frequency-domain measurements to determine small-signal effective refractive index and loss tangent as functions of frequency (up to 4 GHz), dc bias (up to 10{sup 6} V/m), and cryogenic temperature (17 and 60 K). The large-signal impulse response of the devices and the associated phenomenological nonlinear wave equation illustrate how dissipation and nonlinearity combine to produce the overall response in the large-signal regime. (c) 1999 American Institute of Physics.

  19. All-dielectric three-dimensional broadband Eaton lens with large refractive index range

    SciTech Connect (OSTI)

    Yin, Ming; Yong Tian, Xiao, E-mail: leoxyt@mail.xjtu.edu.cn; Ling Wu, Ling; Chen Li, Di [State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

    2014-03-03

    We proposed a method to realize three-dimensional (3D) gradient index (GRIN) devices requiring large refractive index (RI) range with broadband performance. By combining non-resonant GRIN woodpile photonic crystals structure in the metamaterial regime with a compound liquid medium, a wide RI range (16.32) was fulfilled flexibly. As a proof-of-principle for the low-loss and non-dispersive method, a 3D Eaton lens was designed and fabricated based on 3D printing process. Full-wave simulation and experiment validated its omnidirectional wave bending effects in a broad bandwidth covering Ku band (12?GHz18?GHz)

  20. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    St. Clair, MI International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake

  1. Total quality management implementation guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

  2. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. Total 9,010 5,030 8,596 6,340 4,707 8,092 1936-2016 PAD District 1 3,127 2,664 2,694 1,250 1,327 2,980 1981-2016 Connecticut 1995-2015 Delaware 280 1995-2016 Florida 858 649 800 200 531 499 1995-2016 Georgia 210 262 149 106 1995-2016 Maine 1995-2015 Maryland 84 1995-2016 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,283 843 1,073 734 355 1,984 1995-2016 New York 234 824 210 196 175 1995-2016 North Carolina 1995-2011

  3. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 68,265 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 33,789 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,013 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 539 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  4. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  5. Total quality management program planning

    SciTech Connect (OSTI)

    Thornton, P.T.; Spence, K.

    1994-05-01

    As government funding grows scarce, competition between the national laboratories is increasing dramatically. In this era of tougher competition, there is no for resistance to change. There must instead be a uniform commitment to improving the overall quality of our products (research and technology) and an increased focus on our customers` needs. There has been an ongoing effort to bring the principles of total quality management (TQM) to all Energy Systems employees to help them better prepare for future changes while responding to the pressures on federal budgets. The need exists for instituting a vigorous program of education and training to an understanding of the techniques needed to improve and initiate a change in organizational culture. The TQM facilitator is responsible for educating the work force on the benefits of self-managed work teams, designing a program of instruction for implementation, and thus getting TQM off the ground at the worker and first-line supervisory levels so that the benefits can flow back up. This program plan presents a conceptual model for TQM in the form of a hot air balloon. In this model, there are numerous factors which can individually and collectively impede the progress of TQM within the division and the Laboratory. When these factors are addressed and corrected, the benefits of TQM become more visible. As this occurs, it is hoped that workers and management alike will grasp the ``total quality`` concept as an acceptable agent for change and continual improvement. TQM can then rise to the occasion and take its rightful place as an integral and valid step in the Laboratory`s formula for survival.

  6. Broadband wide-angle dispersion measurements: Instrumental setup, alignment, and pitfalls

    SciTech Connect (OSTI)

    Farhang, A.; Abasahl, B.; Dutta-Gupta, S.; Lovera, A.; Martin, O. J. F.; Mandracci, P.; Descrovi, E.

    2013-03-15

    The construction, alignment, and performance of a setup for broadband wide-angle dispersion measurements, with emphasis on surface plasmon resonance (SPR) measurements, are presented in comprehensive detail. In contrast with most SPR instruments working with a monochromatic source, this setup takes advantage of a broadband/white light source and has full capability for automated angle vs. wavelength dispersion measurements for any arbitrary nanostructure array. A cylindrical prism is used rather than a triangular one in order to mitigate refraction induced effects and allow for such measurements. Although seemingly simple, this instrument requires use of many non-trivial methods in order to achieve proper alignment over all angles of incidence. Here we describe the alignment procedure for such a setup, the pitfalls introduced from the finite beam width incident onto the cylindrical prism, and deviations in the reflected/transmitted beam resulting from the finite thickness of the sample substrate. We address every one of these issues and provide experimental evidences on the success of this instrument and the alignment procedure used.

  7. BRIGHT BROADBAND AFTERGLOWS OF GRAVITATIONAL WAVE BURSTS FROM MERGERS OF BINARY NEUTRON STARS

    SciTech Connect (OSTI)

    Gao He; Ding Xuan; Wu Xuefeng; Zhang Bing; Dai Zigao E-mail: zhang@physics.unlv.edu

    2013-07-10

    If double neutron star mergers leave behind a massive magnetar rather than a black hole, then a bright early afterglow can follow the gravitational wave burst (GWB) even if there is no short gamma-ray burst (SGRB)-GWB association or if there is an association but the SGRB does not beam toward Earth. Besides directly dissipating the proto-magnetar wind, as suggested by Zhang, here we suggest that the magnetar wind could push the ejecta launched during the merger process and, under certain conditions, would reach a relativistic speed. Such a magnetar-powered ejecta, when interacting with the ambient medium, would develop a bright broadband afterglow due to synchrotron radiation. We study this physical scenario in detail and present the predicted X-ray, optical, and radio light curves for a range of magnetar and ejecta parameters. We show that the X-ray and optical light curves usually peak around the magnetar spin-down timescale ({approx}10{sup 3}-10{sup 5} s), reaching brightnesses readily detectable by wide-field X-ray and optical telescopes, and remain detectable for an extended period. The radio afterglow peaks later, but is much brighter than the case without a magnetar energy injection. Therefore, such bright broadband afterglows, if detected and combined with GWBs in the future, would be a probe of massive millisecond magnetars and stiff equations of state for nuclear matter.

  8. Hyperbolic-metamaterial antennas for broadband enhancement of dipole emission to free space

    SciTech Connect (OSTI)

    Valagiannopoulos, C. A.; Mirmoosa, M. S.; Nefedov, I. S.; Tretyakov, S. A.; Simovski, C. R.

    2014-10-28

    Dipole emitters used in nano optics and nanophotonics (e.g., fluorescent molecules or quantum dots) are weak radiators and thus detecting the radiation of a single emitter gets possible only if it is significantly enhanced. For this enhancement, one often utilizes resonant nanoantennas (Purcell's effect); this method, however, requires the exact knowledge of source location and radiation frequency which constitute a significant drawback. One known possibility for broadband location-insensitive radiation enhancement is to use a layer of the so-called hyperbolic metamaterial. However, the enhanced radiated energy is mainly directed into the volume of the lossy medium, where it is lost to heating. In this work, we suggest specific shapes of macroscopic hyperbolic metamaterial samples to open radiation windows for enhanced radiation to free space. We show that hyperbolic media slabs with properly shaped macroscopic grooves convert the evanescent waves produced by a dipole into waves traveling in free space, which results in the enhancement of useful radiation by one to two orders of magnitude. That level of enhancement of radiation into free-space which is also wideband and of non-resonant nature has not been reported up to now. These results may open possibilities for realization of broadband and directive antennas, where the primary radiators are randomly positioned fluorescent molecules or quantum dots.

  9. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    SciTech Connect (OSTI)

    Huang, Xianjun; Hu, Zhirun; Liu, Peiguo

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  10. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.