National Library of Energy BETA

Sample records for brn addressed catalysis

  1. Address:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing: Pursuing the Promise Additive Manufacturing: Pursuing the Promise Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise (1.42 MB) More Documents & Publications Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Fiber Reinforced Polymer Composite Manufacturing Workshop A National Strategic Plan For Advanced Manufacturing

    Address:

  2. Catalysis Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities in Catalysis Research Using Synchrotron Radiation Stanford Synchrotron Radiation Laboratory October 8-9, 2002 Organizer: Anders Nilsson Chemical catalysis is one of the research areas of enormous importance for the industrial society. There are important challenges to be met in the near future where development of new processes and catalysts are a necessity. We need to find a way to make methanol from methane, split water into hydrogen using sunlight, find replacement of platinum

  3. EMSL and Institute for Integrated Catalysis (IIC) Catalysis Workshop

    SciTech Connect (OSTI)

    Campbell, Charles T.; Datye, Abhaya K.; Henkelman, Graeme A.; Lobo, Raul F.; Schneider, William F.; Spicer, Leonard D.; Tysoe, Wilfred T.; Vohs, John M.; Baer, Donald R.; Hoyt, David W.; Thevuthasan, Suntharampillai; Mueller, Karl T.; Wang, Chong M.; Washton, Nancy M.; Lyubinetsky, Igor; Teller, Raymond G.; Andersen, Amity; Govind, Niranjan; Kowalski, Karol; Kabius, Bernd C.; Wang, Hongfei; Campbell, Allison A.; Shelton, William A.; Bylaska, Eric J.; Peden, Charles HF; Wang, Yong; King, David L.; Henderson, Michael A.; Rousseau, Roger J.; Szanyi, Janos; Dohnalek, Zdenek; Mei, Donghai; Garrett, Bruce C.; Ray, Douglas; Futrell, Jean H.; Laskin, Julia; DuBois, Daniel L.; Kuprat, Laura R.; Plata, Charity

    2011-05-24

    Within the context of significantly accelerating scientific progress in research areas that address important societal problems, a workshop was held in November 2010 at EMSL to identify specific and topically important areas of research and capability needs in catalysis-related science.

  4. Advanced Resources for Catalysis Science; Recommendations for a National Catalysis Research Institute

    SciTech Connect (OSTI)

    Peden, Charles HF.; Ray, Douglas

    2005-10-05

    Catalysis is one of the most valuable contributors to our economy and historically an area where the United States has enjoyed, but is now losing, international leadership. While other countries are stepping up their work in this area, support for advanced catalysis research and development in the U.S. has diminished. Yet, more than ever, innovative and improved catalyst technologies are imperative for new energy production processes to ease our dependence on imported resources, for new energy-efficient and environmentally benign chemical production processes, and for new emission reduction technologies to minimize the environmental impact of an active and growing economy. Addressing growing concerns about the future direction of U.S. catalysis science, experts from the catalysis community met at a workshop to determine and recommend advanced resources needed to address the grand challenges for catalysis research and development. The workshop's primary conclusion: To recapture our position as the leader in catalysis innovation and practice, and promote crucial breakthroughs, the U.S. must establish one or more well-funded and well-equipped National Catalysis Research Institutes competitively selected, centered in the national laboratories and, by charter, networked to other national laboratories, universities, and industry. The Institute(s) will be the center of a national collaboratory that gives catalysis researchers access to the most advanced techniques available in the scientific enterprise. The importance of catalysis to our energy, economic, and environmental security cannot be overemphasized. Catalysis is a vital part of our core industrial infrastructure, as it is integral to chemical processing and petroleum refining, and is critical to proposed advances needed to secure a sustainable energy future. Advances in catalysis could reduce our need for foreign oil by making better use of domestic carbon resources, for example, allowing cost-effective and zero

  5. 2012 Catalysis Lectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weckhuysen is since 2000 full professor Inorganic Chemistry and Catalysis at Utrecht University (The Netherlands). He is also scientific director of the Netherlands Institute of ...

  6. 2012 Catalysis Lectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Lectures May 21-24 2012 Bert Weckhuysen Bert Weckhuysen, who holds the chair of Inorganic Chemistry and Catalysis at Utrecht University, will give a series of catalysis lectures during his sabbatical period at Stanford University and SLAC. (1) "Characterization of Heterogeneous Catalysts: Possibilities and Limitations of In-situ Spectroscopy" (Part I) Monday, May 21, 2012, 4.30-6 p.m. Location: SLAC Redwood Conference Room C&D (2) "Characterization of Heterogeneous

  7. Virtual special issue on catalysis at the U.S. Department of Energy's National Laboratories

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.; Marshall, Christopher L.; Stair, Peter; Rodriguez, Jose; Harris, Alex; Somorjai, Gabor A.; Biener, Juergen; Matranga, Christopher; et al

    2016-04-21

    Here the catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.

  8. Zeolite catalysis: technology

    SciTech Connect (OSTI)

    Heinemann, H.

    1980-07-01

    Zeolites have been used as catalysts in industry since the early nineteen sixties. The great majority of commercial applications employ one of three zeolite types: zeolite Y; Mordenite; ZSM-5. By far the largest use of zeolites is in catalytic cracking, and to a lesser extent in hydrocracking. This paper reviews the rapid development of zeolite catalysis and its application in industries such as: the production of gasoline by catalytic cracking of petroleum; isomerization of C/sub 5/ and C/sub 6/ paraffin hydrocarbons; alkylation of aromatics with olefins; xylene isomerization; and conversion of methanol to gasoline.

  9. Electron Microscopy Catalysis Projects: Success Stories from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electron Microscopy Catalysis Projects: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Electron Microscopy Catalysis Projects: Success Stories ...

  10. Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and Chemicals Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make ...

  11. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    SciTech Connect (OSTI)

    Chen, Jingguang; Frenkel, Anatoly; Rodriguez, Jose; Adzic, Radoslav; Bare, Simon R.; Hulbert, Steve L.; Karim, Ayman; Mullins, David R.; Overbury, Steve

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  12. Catalysis Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Research Areas Facilities and Equipment Intellectual Property Publications Staff Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Research Areas Facilities and Equipment Intellectual Property

  13. Keynote Address

    Broader source: Energy.gov [DOE]

    Wednesday's keynote address by Dr. David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy, U.S. Department of Energy.

  14. Enhanced Micellar Catalysis LDRD.

    SciTech Connect (OSTI)

    Betty, Rita G.; Tucker, Mark David; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael

    2012-12-01

    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesota's Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  15. Biomimetic Chalcogels for Solar Fuel Catalysis | ANSER Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Chalcogels for Solar Fuel Catalysis Home > Research > ANSER Research Highlights > Biomimetic Chalcogels for Solar Fuel Catalysis...

  16. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect (OSTI)

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  17. 2013 DOE Catalysis Working Group Meeting Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13 DOE Catalysis Working Group Meeting Agenda 2013 DOE Catalysis Working Group Meeting Agenda Agenda for the 2013 DOE Catalysis Working Group Meeting on May 15, 2013. cwg_may2013_agenda.pdf (89.11 KB) More Documents & Publications Catalysis Working Group Kick-Off Meeting Agenda DOE Durability Working Group June 2014 Meeting Agenda Catalysis Working Group Meeting: June 2015

  18. Catalysis Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis Working Group Catalysis Working Group The Catalysis Working Group (CWG) meets twice per year to exchange information, create synergies, and collaboratively develop both an understanding of and tools for studying electrocatalysis for polymer electrolyte fuel cells (PEFCs) and other low- and intermediate-temperature fuel cell systems, including direct methanol fuel cells (DMFCs), alkaline fuel cells (AFCs), alkaline membrane fuel cells (AMFCs), and phosphoric acid fuel cells (PAFCs). The

  19. Basic Research Needs: Catalysis for Energy

    SciTech Connect (OSTI)

    Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

    2008-03-11

    The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

  20. Workshop: Synchrotron Applications in Chemical Catalysis | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications in Chemical Catalysis Tuesday, October 25, 2011 - 8:00am 2011 SSRLLCLS Annual Users Conference This workshop, part of the 2011 SSRLLCLS Annual Users...

  1. Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... D2. Chemical Conversion: Alternatively, the sugars can be converted to fuels or an entire suite of other useful products using chemical catalysis. E. Product Recovery: Products are ...

  2. DOE Catalysis Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16, 2014 Marriott Wardman Park Hotel 2660 Woodley Road NM, Washington, D.C. 8:30 - 9:00 Continental breakfast: breads, coffee, tea Joint Durability and Catalysis Working Groups Meeting Delaware A 9:00 - 9:05 Welcome & introductory comments DWG co-chairs - Debbie Myers (ANL), Rod Borup (LANL), Donna Ho (DOE); CWG co-chairs - Piotr Zelenay (LANL), Nancy Garland (DOE) 9:05 - 9:25 Are We There Yet? Pt-Alloy Catalyst - Anu Kongkanand (GM) 9:25 - 9:45 Pt-Co/C Catalysts: PEMFC Performance and

  3. Pre-Competitive Catalysis Research: Fundamental Sulfation/Desulfation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pre-Competitive Catalysis Research: Fundamental SulfationDesulfation Studies of Lean NOx Traps Pre-Competitive Catalysis Research: Fundamental SulfationDesulfation Studies of...

  4. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in Support ...

  5. The energy landscape of ;#8203;adenylate kinase during catalysis...

    Office of Scientific and Technical Information (OSTI)

    The energy landscape of ;8203;adenylate kinase during catalysis Citation Details In-Document Search Title: The energy landscape of ;8203;adenylate kinase during catalysis ...

  6. Catalysis | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Heterogeneous Catalysis - J. K. Norskov Homogeneous and Single-Site Heterogeneous Catalysis - Tobin Marks Thursday, May 16, 2002 - Breakout Summary Reports Catalysts Design Driven ...

  7. Materials Design and Discovery: Catalysis and Energy Storage...

    Office of Scientific and Technical Information (OSTI)

    Materials Design and Discovery: Catalysis and Energy Storage (Mira Early Science Program ... Citation Details In-Document Search Title: Materials Design and Discovery: Catalysis and ...

  8. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy ...

  9. Catalysis by Design - Theoretical and Experimental Studies of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis by Design - Theoretical and Experimental Studies of Model Catalysts for Lean NOx ... Lean NOx Traps - Microstructural Studies of Real World and Model Catalysts Catalysis by ...

  10. EERE Success Story-Fundamental Studies in Catalysis Enabled the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fundamental Studies in Catalysis Enabled the use of Efficient "Lean-Burn" Engines for Vehicle Transportation EERE Success Story-Fundamental Studies in Catalysis Enabled the use of ...

  11. Transmural Catalysis - High Efficiency Catalyst Systems for NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation ...

  12. Biomimetic Chalcogels for Solar Fuel Catalysis | ANSER Center |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne-Northwestern National Laboratory Biomimetic Chalcogels for Solar Fuel Catalysis Home > Research > ANSER Research Highlights > Biomimetic Chalcogels for Solar Fuel Catalysis

  13. Molecular-Level Design of Heterogeneous Chiral Catalysis

    SciTech Connect (OSTI)

    Francisco Zaera

    2012-03-21

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration

  14. DOE Laboratory Catalysis Research Symposium - Abstracts

    SciTech Connect (OSTI)

    Dunham, T.

    1999-02-01

    The conference consisted of two sessions with the following subtopics: (1) Heterogeneous Session: Novel Catalytic Materials; Photocatalysis; Novel Processing Conditions; Metals and Sulfides; Nuclear Magnetic Resonance; Metal Oxides and Partial Oxidation; Electrocatalysis; and Automotive Catalysis. (2) Homogeneous Catalysis: H-Transfer and Alkane Functionalization; Biocatalysis; Oxidation and Photocatalysis; and Novel Medical, Methods, and Catalyzed Reactions.

  15. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect (OSTI)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  16. Nanocrystal assembly for tandem catalysis

    DOE Patents [OSTI]

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  17. Workshop: Synchrotron Applications in Chemical Catalysis | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Synchrotron Applications in Chemical Catalysis Tuesday, October 25, 2011 - 8:00am 2011 SSRL/LCLS Annual Users Conference This workshop, part of the 2011 SSRL/LCLS Annual Users Conference, will focus on understanding processes in homogeneous (both biological and small molecule) and heterogeneous catalysis, using synchrotron-based methods. The workshop will cover more traditional applications (using XANES and EXAFS), as well as applications of XES, RIXS and

  18. Heterogeneous Catalysis and Surface Science - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heterogeneous Catalysis and Surface Science / Part I: Surface Science in JCAP Laboratories Heterogeneous Catalysis and Surface Science research in JCAP focuses on the basic understanding of the relationships among the structure, composition, and reactivity of electrocatalysts. Knowledge gained from surface science experimentation can be implemented toward the discovery of better heterogeneous catalysts for solar-fuel production from carbon dioxide and water. REFERENCE Soriaga, M. P. et al.

  19. Catalysis and Synthesis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis and Synthesis Catalysis and Synthesis Many different types of chemical reactions depend on catalysts in order to work, and the hunt for better catalysts has deep connections to our nation's economy. From biofuels to plastics, the majority of the products we depend on in our everyday lives rely on catalysts. An estimate from the American Chemical Society found that catalysts and catalytic processes are responsible for more than 20 percent of America's gross domestic product. The

  20. Synergistic Catalysis between Pd and Fe in Gas Phase Hydrodeoxygenatio...

    Office of Scientific and Technical Information (OSTI)

    Synergistic Catalysis between Pd and Fe in Gas Phase Hydrodeoxygenation of m-Cresol Citation Details In-Document Search Title: Synergistic Catalysis between Pd and Fe in Gas Phase ...

  1. Shining Light on Catalysis | Stanford Synchrotron Radiation Lightsourc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shining Light on Catalysis Tuesday, July 19, 2011 - 4:38pm SSRL Conference Room 137-322 Jeroen A. van Bokhoven, Professor for Heterogeneous Catalysis Institute for Chemical and...

  2. Study of catalysis of coal gasification at elevated pressures...

    Office of Scientific and Technical Information (OSTI)

    Study of catalysis of coal gasification at elevated pressures. Evaluation of 20 compounds at 850sup 0C Citation Details In-Document Search Title: Study of catalysis of coal ...

  3. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis ALS X-Rays Shine a New Light on Catalysis Print Thursday, 21 May 2015 11:16 Electrocatalysts are responsible for expediting reactions in...

  4. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Lean ...

  5. Opportunities in Catalysis Research Using Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Catalysis Research Using Synchrotron Radiation Tuesday 10/8/02 Chair: Lars Pettersson 1:30-1:40 Anders Nilsson Welcome 1:40-2:30 Gabor Somorjai University of California, Berkeley and LBLN Need for New Directions of Research at the Frontiers of Catalysis Science 2:30-3:00 Geoff Thornton University of Manchester Influence of defects on the reactivity of ZnO 3:00-3:30 Anders Nilsson Stanford Synchrotron Radiation Laboratory Soft X-ray Spectroscopy of Surfaces and Reactions 3:30-3:45 Break Chair:

  6. Plasma Assisted Catalysis System for NOx Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma Assisted Catalysis System for NOx Reduction Plasma Assisted Catalysis System for NOx Reduction 2002 DEER Conference Presentation: Noxtech, Inc. 2002_deer_slone.pdf (595.6 KB) More Documents & Publications Noxtechs PAC System Development and Demonstration Lean NOx Catalysis Research and Development

  7. change_address_111609

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHANGE OF ADDRESS and EMERGENCY NOTIFICATION TO: HUMAN RESOURCES DATE: Z# Social Security # Print First Name Print Middle Name or Initial Print Last Name (Currently in Payroll System) Complete appropriate changes: NAME CHANGE: Print Name Change to ADDRESS CHANGE: Mailing Address City State Zip TELEPHONE NUMBER CHANGE: FROM Area Code and # TO Area Code and # Cell Area Code and # Home phone Message phone EMERGENCY NOTIFICATION CHANGE: Name Relationship Day Phone Evening Phone Address City State

  8. ISHHC XIII International Symposium on the Relations betweenHomogeneous and Heterogeneous Catalysis

    SciTech Connect (OSTI)

    Somorjai , G.A.

    2007-06-11

    The International Symposium on Relations between Homogeneous and Heterogeneous Catalysis (ISHHC) has a long and distinguished history. Since 1974, in Brussels, this event has been held in Lyon, France (1977), Groeningen, The Netherlands (1981); Asilomar, California (1983); Novosibirsk, Russia (1986); Pisa, Italy (1989); Tokyo, Japan (1992); Balatonfuered, Hungary (1995); Southampton, United Kingdom (1999); Lyon, France (2001); Evanston, Illinois (2001) and Florence, Italy (2005). The aim of this international conference in Berkeley is to bring together practitioners in the three fields of catalysis, heterogeneous, homogeneous and enzyme, which utilize mostly nanosize particles. Recent advances in instrumentation, synthesis and reaction studies permit the nanoscale characterization of the catalyst systems, often for the same reaction, under similar experimental conditions. It is hoped that this circumstance will permit the development of correlations of these three different fields of catalysis on the molecular level. To further this goal we aim to uncover and focus on common concepts that emerge from nanoscale studies of structures and dynamics of the three types of catalysts. Another area of focus that will be addressed is the impact on and correlation of nanosciences with catalysis. There is information on the electronic and atomic structures of nanoparticles and their dynamics that should have importance in catalyst design and catalytic activity and selectivity.

  9. Nanoscale Advances in Catalysis and Energy Applications

    SciTech Connect (OSTI)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  10. USD Catalysis Group for Alternative Energy

    SciTech Connect (OSTI)

    Hoefelmeyer, James D.; Koodali, Ranjit; Sereda, Grigoriy; Engebretson, Dan; Fong, Hao; Puszynski, Jan; Shende, Rajesh; Ahrenkiel, Phil

    2012-03-13

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  11. Heterogeneous Catalysis for Thermochemical Conversion | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heterogeneous Catalysis for Thermochemical Conversion Our mission is to transform thermal biomass deconstruction products (syngas and pyrolysis oil) into the fuels and chemicals that keep society moving forward. Illustration of a stacked series of red and grey spheres in a square shape, where red spheres represent oxygen and grey spheres represent titanium) with a stack of orange and small white spheres, where orange spheres represent platinum and white spheres represent hydrogen, in a square

  12. CNEEC - TRG3: Nanoscale Control in Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRG3: Nanoscale control in catalysis TRG3 Leader: Thomas F. Jaramillo Participating CNEEC PI’s: Stacey Bent, Bruce Clemens, Arthur Grossman, Thomas F. Jaramillo, Jens Nørskov, Friedrich Prinz, Jennifer Wilcox The grand challenge in TRG3 is the manipulation of catalyst materials at the nanoscale to significantly improve activity and selectivity for energy conversion reactions. A number of promising renewable energy technologies such as fuel cells and solar fuel reactors depend upon the

  13. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect (OSTI)

    Overbury, Steven {Steve} H; Coates, Leighton; Herwig, Kenneth W; Kidder, Michelle

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  14. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic, non-food biomass into gasoline, jet fuel, and other products. thermochemical_four_pager.pdf (4.64 MB) More Documents & Publications 2013 Peer Review

  15. Shining Light on Catalysis | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shining Light on Catalysis Tuesday, July 19, 2011 - 4:38pm SSRL Conference Room 137-322 Jeroen A. van Bokhoven, Professor for Heterogeneous Catalysis Institute for Chemical and Bioengineering ETH Zurich Head of Laboratory for Catalysis and Sustainable Chemistry (LSK) Swiss Light Source Paul Scherrer Institute Understanding a functioning catalyst requires understanding at the atomic scales in a time-resolved manner. X-rays can be readily used to accomplish that task, because of the large

  16. Catalysis Working Group Meeting: January 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2015 Catalysis Working Group Meeting: January 2015 The Catalysis Working Group held a meeting on January 21, 2015, in Los Alamos, New Mexico. Meeting Agenda and Presentations Catalysis Working Group January 2015 Meeting Agenda (22.89 KB) Electrocatalysts with Ultra-Low PGM Loadings-Vojislav Stamenkovic, Argonne National Laboratory (15.95 MB) Improving Stability and Activity of Pt Monolayer in Non-Pt Core-Shell Electrocatalysts-Radoslav Adzic, Brookhaven National Laboratory (3.33 MB)

  17. Catalysis Working Group Meeting: June 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Catalysis Working Group Meeting: June 2015 The Catalysis Working Group held a meeting on June 8, 2015, in Arlington, Virginia, in conjunction with the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting. Meeting Agenda and Presentations Catalysis Working Group June 2015 Meeting Agenda (97.68 KB) Non-PGM Catalyst Targets: Summary-Piotr Zelenay, Los Alamos National Laboratory (657.07 KB) Alternative Metal Oxide Supports for Cathode Catalyst Powder in Automotive

  18. Catalysis Working Group Meeting: May 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting: May 2013 Catalysis Working Group Meeting: May 2013 The Catalysis Working Group held a meeting on May 15, 2013, in Arlington, Virginia, in conjunction with the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting. Agenda Catalysis Working Group Meeting Agenda Presentations Electrocatalysts for Automotive Fuel Cells: Status and Challenges, Nilesh Dale, Nissan Technical Center North America Challenges for PEMFC Catalysts in Automotive Applications, Stephen

  19. Catalysis Science | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Science Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Catalysis Science Print Text Size: A A A FeedbackShare Page Notice: NOVEMBER 16, 2015 is the Catalysis Science target date for submission of proposals to be considered for funding within fiscal year 2016. Proposals

  20. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Broader source: Energy.gov (indexed) [DOE]

    Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Vehicle Technologies Office Merit Review 2016: Metal Oxide Nano-Array Catalysts for Low ...

  1. Control Heterogeneous Catalysis at Atomic and Electronic-level...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Heterogeneous Catalysis at Atomic and Electronic-level Using Intermetallic Compounds Precious metals and metal alloys are important heterogeneous catalysts for renewable...

  2. Catalysis by Design: Bridging the Gap Between Theory and Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Catalysis by Design: Bridging the Gap between Theory and Experiments Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel ...

  3. Visualizing Group II Intron Catalysis through the Stages of Splicing...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Visualizing Group II Intron Catalysis through the Stages of Splicing Citation Details In-Document Search Title: Visualizing Group II ...

  4. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis Print Electrocatalysts are responsible for expediting reactions in many promising renewable energy technologies. However, the extreme...

  5. Catalysis by Design: Bridging the Gap between Theory and Experiments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between Theory and Experiments Catalysis by Design: Bridging the Gap between Theory and Experiments Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research ...

  6. Materials Design and Discovery: Catalysis and Energy Storage...

    Office of Scientific and Technical Information (OSTI)

    Materials Design and Discovery: Catalysis and Energy Storage (Mira Early Science Program Final Technical Report): ALCF-2 Early Science Program Technical Report Citation Details ...

  7. Computational catalyst screening: Scaling, bond-order and catalysis...

    Office of Scientific and Technical Information (OSTI)

    Computational catalyst screening: Scaling, bond-order and catalysis This content will become publicly available on December 29, 2017 Prev Next Title: Computational catalyst ...

  8. University of Delaware | Catalysis Center for Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Activity map produced from the new high-throughput computational engine. Example for ethylene glycol catalysis. Reforming, hydrodeoxygenation, dehydrogenation, and ...

  9. Lean NOx Catalysis Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Catalysis Research and Development Lean NOx Catalysis Research and Development 2003 DEER Conference Presentation: Caterpillar, Inc. 2003_deer_park.pdf (588.44 KB) More Documents & Publications Lean-NOx Catalyst Development for Diesel Engine Applications Fuel Effects on Emissions Control Technologies

  10. Catalysis Working Group Meeting: June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Catalysis Working Group Meeting: June 2014 The Catalysis Working Group held a meeting on June 16, 2014, in Washington, D.C., in conjunction with the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting. Meeting Agenda and Presentations Catalysis Working Group June 2014 Meeting Agenda (100.38 KB) Are We There Yet? Pt-Alloy Catalysts-Anu Kongkanand, GM (1.05 MB) Pt-Co/C Catalysts: PEMFC Performance and Durability-Jim Waldecker, Ford (2.3 MB) Successes and

  11. Catalysis Working Group Kick-Off Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arlington, VA - May 14, 2012 Catalysis Working Group Kick-off Meeting Co-Chairs: Piotr Zelenay Los Alamos National Laboratory Nancy L. Garland U.S. Department of Energy 2 2...

  12. Catalysis Center for Energy Innovation: University of Delaware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAT'LS TRANSFER FORM In The Spotlight Tweets by @CCEIUD Fueling the Quest for Green Energy August 24, 2016 -- Watch an introduction to the University of Delaware's Catalysis ...

  13. Theoretical Study on Catalysis by Protein Enzymes and Ribozyme

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theoretical Study on Catalysis by Protein Enzymes and Ribozyme Theoretical Study on Catalysis by Protein Enzymes and Ribozyme 2000 NERSC Annual Report 17shkarplus.jpg The energetics were determined for three mechanisms proposed for TIM catalyzed reactions. Results from reaction path calculations suggest that the two mechanisms that involve an enediol intermediate are likely to occur, while the direct intra-substrate proton transfer mechanism (in green) is energetically unfavorable due to the

  14. Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC) | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC) Print Text Size: A A A FeedbackShare Page IMASC Header Director Cynthia Friend Lead Institution Harvard University Year Established 2014 Mission To drive

  15. Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Make Fuels and Chemicals | Department of Energy Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and Chemicals Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and Chemicals BETO works with the emerging U.S. bioindustry to sustainably convert non-food biomass resources into cost-competitive biofuels, biopower, and bioproducts. biochemical_four_pager.pdf (2.61 MB) More Documents & Publications Replacing the Whole

  16. Homogeneous and Interfacial Catalysis in 3D Controlled Environment | The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Homogeneous and Interfacial Catalysis in 3D Controlled Environment FWP/Project Description: Project Leader(s): Marek Pruski Principal Investigators: Marek Pruski, Aaron Sadow, Igor Slowing Key Scientific Personnel: Takeshi Kobayashi This collaborative research effort is geared toward bringing together the best features of homogeneous and heterogeneous catalysis for developing new catalytic principles. Novel silica-based, single-site mesoporous catalysts with controlled,

  17. Temperature Transient Effects in Plasma-Catalysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Transient Effects in Plasma-Catalysis Temperature Transient Effects in Plasma-Catalysis 2002 DEER Conference Presentation: Ford Motor Company 2002_deer_hoard.pdf (481.22 KB) More Documents & Publications Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction A Parametric Study of the Effect of Temperature and Hydrocarbon Species on the Product Distribution from a Non-Thermal Plasma Reactor Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck

  18. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis ALS X-Rays Shine a New Light on Catalysis Print Thursday, 21 May 2015 11:16 Electrocatalysts are responsible for expediting reactions in many promising renewable energy technologies. However, the extreme sensitivity of their surface redox states to temperatures, to gas pressures, and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Recently a team of Stanford and Berkeley Lab

  19. Brinkman Addresses JLab | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brinkman Addresses JLab Brinkman Addresses JLab Brinkman Addresses JLab Dr. William F. Brinkman, Director of the Department of Energy's Office of Science, addressed Jefferson Lab staff on the Office of Science perspective during his visit Monday. Dr. William F. Brinkman, Director of the Department of Energy's Office of Science, addressed Jefferson Lab staff on the Office of Science perspective during his visit Monday. "There is still a lot of interesting nuclear physics that we want to do

  20. Some General Themes in Catalysis at LANL

    SciTech Connect (OSTI)

    Gordon, John C.

    2012-07-19

    Some general themes in catalysis at LANL are: (1) Storage and release of energy within chemical bonds (e.g. H{sub 2} storage in and release from covalent bonds, N{sub 2} functionalization, CO{sub 2} functionalization, H{sub 2} oxidation/evolution, O{sub 2} reduction/evolution); (2) Can we control the chemistry of reactive substrates to effect energy relevant transformations in non-traditional media (e.g. can we promote C-C couplings, dehydrations, or hydrogenations in water under relatively mild conditions)? (3) Can we supplant precious metal or rare earth catalysts to effect these transformations, by using earth abundant metals/elements instead? Can we use organocatalysis and circumvent the use of metals completely? (4) Can we improve upon existing rare earth catalyst systems (e.g. in rare earth oxides pertinent to fluid cracking or polymerization) and reduce amounts required for catalytic efficacy? Carbohydrates can be accessed from non-food based biomass sources such as woody residues and switchgrass. After extracted from the plant source, our goal is to upgrade these classes of molecules into useful fuels.

  1. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect (OSTI)

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial

  2. Keynote Address | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keynote Address Keynote Address An overview and update on Environmental Management given by Alice Williams, Associate Principal Deputy Assistant Secretary of the Office of Environmental Management. Keynote Address (2.53 MB) More Documents & Publications EIS-0337-SA-01: Supplement Analysis West Valley Demonstration Project Low-Level Waste Shipment Chairs Meeting - October 2012

  3. Center for Catalysis at Iowa State University

    SciTech Connect (OSTI)

    Kraus, George A.

    2006-10-17

    The overall objective of this proposal is to enable Iowa State University to establish a Center that enjoys world-class stature and eventually enhances the economy through the transfer of innovation from the laboratory to the marketplace. The funds have been used to support experimental proposals from interdisciplinary research teams in areas related to catalysis and green chemistry. Specific focus areas included: Catalytic conversion of renewable natural resources to industrial materials Development of new catalysts for the oxidation or reduction of commodity chemicals Use of enzymes and microorganisms in biocatalysis Development of new, environmentally friendly reactions of industrial importance These focus areas intersect with barriers from the MYTP draft document. Specifically, section 2.4.3.1 Processing and Conversion has a list of bulleted items under Improved Chemical Conversions that includes new hydrogenation catalysts, milder oxidation catalysts, new catalysts for dehydration and selective bond cleavage catalysts. Specifically, the four sections are: 1. Catalyst development (7.4.12.A) 2. Conversion of glycerol (7.4.12.B) 3. Conversion of biodiesel (7.4.12.C) 4. Glucose from starch (7.4.12.D) All funded projects are part of a soybean or corn biorefinery. Two funded projects that have made significant progress toward goals of the MYTP draft document are: Catalysts to convert feedstocks with high fatty acid content to biodiesel (Kraus, Lin, Verkade) and Conversion of Glycerol into 1,3-Propanediol (Lin, Kraus). Currently, biodiesel is prepared using homogeneous base catalysis. However, as producers look for feedstocks other than soybean oil, such as waste restaurant oils and rendered animal fats, they have observed a large amount of free fatty acids contained in the feedstocks. Free fatty acids cannot be converted into biodiesel using homogeneous base-mediated processes. The CCAT catalyst system offers an integrated and cooperative catalytic system

  4. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control 2002deeraardahl.pdf (7.98 ...

  5. Catalysis Working Group Kick-Off Meeting Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis Working Group Kick-Off Meeting Agenda Catalysis Working Group Kick-Off Meeting Agenda Agenda for the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia. 1_cwg_may2012_agenda.pdf (34.13 KB) More Documents & Publications Operando Raman and Theoretical Vibration Spectroscopy of Non-PGM Catalysts 2013 DOE Catalysis Working Group Meeting Agenda Advanced Cathode Catalysts

  6. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control 2002_deer_aardahl.pdf (7.98 MB) More Documents & Publications Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies

  7. Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and SCR | Department of Energy Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_atkinson.pdf (327.1 KB) More Documents & Publications Reductant Utilization in a LNT + SCR System Lean NOx Trap

  8. Keynote Address | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    40PM to 2:05PM PDT Pacific Ballroom Wednesday keynote address by Dan Arvizu, Director, National Renewable Energy Laboratory

  9. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  10. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2

    SciTech Connect (OSTI)

    Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.; Dobbek, Holger; DuBois, Daniel L.; Dupuis, Michel; Ferry, James G.; Fujita, Etsuko; Hille, Russ; Kenis, Paul; Kerfeld, Cheryl A.; Morris, Robert H.; Peden, Charles HF; Portis, Archie; Ragsdale, Steve; Rauchfuss, Thomas B.; Reek, Joost; Seefeldt, Lance C.; Thauer, Rudolf K.; Waldrop, Grover L.

    2013-08-14

    Our central premise is that catalytic scientists can learn by studying how these important metabolic processes occur in nature. Complementarily, biochemists can learn by studying how catalytic scientists view these same chemical transformations promoted by synthetic catalysts. From these studies, hypotheses can be developed and tested through manipulation of enzyme structure and by synthesizing simple molecular catalysts to incorporate different structural features of the enzymes. It is hoped that these studies will lead to new and useful concepts in catalyst design for fuel production and utilization. This paper describes the results of a workshop held to explore these concepts in regard to the development of new and more efficient catalytic processes for the conversion of CO2 to a variety of carbon-based fuels. The organization of this overview/review is as follows: 1) The first section briefly explores how interactions between the catalysis and biological communities have been fruitful in developing new catalysts for the reduction of protons to hydrogen, the simplest fuel generation reaction. 2) The second section assesses the state of the art in both biological and chemical reduction of CO2 by two electrons to form either carbon monoxide (CO) or formate (HCOO-). It also attempts to identify common principles between biological and synthetic catalysts and productive areas for future research. 3) The third section explores both biological and chemical processes that result in the reduction of CO2 beyond the level of CO and formate, again seeking to identify common principles and productive areas of future research. 4) The fourth section explores the formation of carbon-carbon bonds in biological and chemical systems in the same vein as the other sections. 5) A fifth section addresses the role of non-redox reactions of CO2 in biological systems and their role in carbon metabolism, with a parallel discussion of chemical systems. 6) In section 6, the topics of

  11. Recent advances of lanthanum-based perovskite oxides for catalysis

    SciTech Connect (OSTI)

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.

  12. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  13. Catalysis by Design: Bridging the Gap between Theory and Experiments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy between Theory and Experiments Catalysis by Design: Bridging the Gap between Theory and Experiments Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_narula.pdf (372.33 KB) More Documents & Publications Catalysts via First Principles Catalysts via First

  14. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis Print Electrocatalysts are responsible for expediting reactions in many promising renewable energy technologies. However, the extreme sensitivity of their surface redox states to temperatures, to gas pressures, and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Recently a team of Stanford and Berkeley Lab researchers used x-rays at the ALS in a novel way to observe the behavior of

  15. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis Print Electrocatalysts are responsible for expediting reactions in many promising renewable energy technologies. However, the extreme sensitivity of their surface redox states to temperatures, to gas pressures, and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Recently a team of Stanford and Berkeley Lab researchers used x-rays at the ALS in a novel way to observe the behavior of

  16. Advanced Electronic Structure Methods for Heterogeneous Catalysis and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Separation of Heavy Metals | Argonne Leadership Computing Facility The research team is also using GAMESS in an INCITE project entitled State-of-the-Art Simulations of Liquid Phenomena. As part of the INCITE work, they predicted that the turning point between surface and interior solvation in a nitrate ion occurs at a cluster size of around 64 water molecules. Spencer Pruitt, Argonne National Laboratory Advanced Electronic Structure Methods for Heterogeneous Catalysis and Separation of Heavy

  17. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis Print Electrocatalysts are responsible for expediting reactions in many promising renewable energy technologies. However, the extreme sensitivity of their surface redox states to temperatures, to gas pressures, and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Recently a team of Stanford and Berkeley Lab researchers used x-rays at the ALS in a novel way to observe the behavior of

  18. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis Print Electrocatalysts are responsible for expediting reactions in many promising renewable energy technologies. However, the extreme sensitivity of their surface redox states to temperatures, to gas pressures, and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Recently a team of Stanford and Berkeley Lab researchers used x-rays at the ALS in a novel way to observe the behavior of

  19. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis Print Electrocatalysts are responsible for expediting reactions in many promising renewable energy technologies. However, the extreme sensitivity of their surface redox states to temperatures, to gas pressures, and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Recently a team of Stanford and Berkeley Lab researchers used x-rays at the ALS in a novel way to observe the behavior of

  20. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis Print Electrocatalysts are responsible for expediting reactions in many promising renewable energy technologies. However, the extreme sensitivity of their surface redox states to temperatures, to gas pressures, and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Recently a team of Stanford and Berkeley Lab researchers used x-rays at the ALS in a novel way to observe the behavior of

  1. Iron Catalysis in Oxidations by Ozone - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Iron Catalysis in Oxidations by Ozone Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ozone is used commercially for treatment of potable and non-potable water, and as an industrial oxidant. ISU and Ames Laboratory researchers have developed a method for using iron in ozone oxidation that significantly improves the speed of oxidation reactions. Description Ozone is recognized as potent and effective oxidizing agent, and has a

  2. State of the Lab Address

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  3. Addressing Deferred Maintenance, Infrastructure Costs, and Excess...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities ...

  4. Agenda: Enhancing Energy Infrastructure Resiliency and Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities A Public Meeting ...

  5. EERE Success Story-Fundamental Studies in Catalysis Enabled the use of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient "Lean-Burn" Engines for Vehicle Transportation | Department of Energy Fundamental Studies in Catalysis Enabled the use of Efficient "Lean-Burn" Engines for Vehicle Transportation EERE Success Story-Fundamental Studies in Catalysis Enabled the use of Efficient "Lean-Burn" Engines for Vehicle Transportation May 7, 2015 - 1:29pm Addthis Building on a catalysis research program sponsored by EERE's Vehicles Technology Office (VTO) and DOE's Office of

  6. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites...

    Office of Scientific and Technical Information (OSTI)

    low temperature oxygen electro catalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and Metal-air batteries. ...

  7. Addressing the workforce pipeline challenge

    SciTech Connect (OSTI)

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  8. Catalysis by Design - Theoretical and Experimental Studies of Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts for Lean NOx Treatment | Department of Energy Design - Theoretical and Experimental Studies of Model Catalysts for Lean NOx Treatment Catalysis by Design - Theoretical and Experimental Studies of Model Catalysts for Lean NOx Treatment Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_narula.pdf (277.05 KB) More Documents & Publications Lean NOx Traps

  9. USD Catalysis Group for Alternative Energy - Final report

    SciTech Connect (OSTI)

    Hoefelmeyer, James

    2014-10-03

    I. Project Summary Catalytic processes are a major technological underpinning of modern society, and are essential to the energy sector in the processing of chemical fuels from natural resources, fine chemicals synthesis, and energy conversion. Advances in catalyst technology are enormously valuable since these lead to reduced chemical waste, reduced energy loss, and reduced costs. New energy technologies, which are critical to future economic growth, are also heavily reliant on catalysts, including fuel cells and photo-electrochemical cells. Currently, the state of South Dakota is underdeveloped in terms of research infrastructure related to catalysis. If South Dakota intends to participate in significant economic growth opportunities that result from advances in catalyst technology, then this area of research needs to be made a high priority for investment. To this end, a focused research effort is proposed in which investigators from The University of South Dakota (USD) and The South Dakota School of Mines and Technology (SDSMT) will contribute to form the South Dakota Catalysis Group (SDCG). The multidisciplinary team of the (SDCG) include: (USD) Dan Engebretson, James Hoefelmeyer, Ranjit Koodali, and Grigoriy Sereda; (SDSMT) Phil Scott Ahrenkiel, Hao Fong, Jan Puszynski, Rajesh Shende, and Jacek Swiatkiewicz. The group is well suited to engage in a collaborative project due to the resources available within the existing programs. Activities within the SDCG will be monitored through an external committee consisting of three distinguished professors in chemistry. The committee will provide expert advice and recommendations to the SDCG. Advisory meetings in which committee members interact with South Dakota investigators will be accompanied by individual oral and poster presentations in a materials and catalysis symposium. The symposium will attract prominent scientists, and will enhance the visibility of research in the state of South Dakota. The SDCG requests

  10. Hydrogen catalysis and scavenging action of Pd-POSS nanoparticles

    SciTech Connect (OSTI)

    Maiti, A; Gee, R H; Maxwell, R; Saab, A

    2007-02-01

    Prompted by the need for a self-supported, chemically stable, and functionally flexible catalytic nanoparticle system, we explore a system involving Pd clusters coated with a monolayer of polyhedral oligomeric silsesquioxane (POSS) cages. With an initial theoretical focus on hydrogen catalysis and sequestration in the Pd-POSS system, we report Density Functional Theory (DFT) results on POSS binding energies to the Pd(110) surface, hydrogen storing ability of POSS, and possible pathways of hydrogen radicals from the catalyst surface to unsaturated bonds away from the surface.

  11. Fuels and energy for the future: The role of catalysis

    SciTech Connect (OSTI)

    Rostrup-Nielsen, J.R.; Nielsen, R.

    2004-07-01

    There are many reasons to decrease the dependency on oil and to increase the use of other energy sources than fossil fuels. The wish for energy security is balanced by a wish for sustainable growth. Catalysis plays an important role in creating new routes and flexibility in the network of energy sources, energy carriers, and energy conversion. The process technologies resemble those applied in the large scale manufacture of commodities. This is illustrated by examples from refinery fuels, synfuels, and hydrogen and the future role of fossil fuels is discussed.

  12. Charge Transfer and Catalysis at the Metal Support Interface

    SciTech Connect (OSTI)

    Baker, Lawrence Robert

    2012-07-31

    Kinetic, electronic, and spectroscopic characterization of model Pt–support systems are used to demonstrate the relationship between charge transfer and catalytic activity and selectivity. The results show that charge flow controls the activity and selectivity of supported metal catalysts. This dissertation builds on extensive existing knowledge of metal–support interactions in heterogeneous catalysis. The results show the prominent role of charge transfer at catalytic interfaces to determine catalytic activity and selectivity. Further, this research demonstrates the possibility of selectively driving catalytic chemistry by controlling charge flow and presents solid-state devices and doped supports as novel methods for obtaining electronic control over catalytic reaction kinetics.

  13. Addressing Failures in Exascale Computing

    SciTech Connect (OSTI)

    Snir, Marc; Wisniewski, Robert; Abraham, Jacob; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, J.; Bose, Pradip; Cappello, Franck; Carlson, Bill; Chien, Andrew; Coteus, Paul; DeBardeleben, Nathan; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Fazzari, Saverio; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Rob; Stearley, Jon; Van Hensbergen, Eric

    2014-01-01

    We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  14. Addressing failures in exascale computing

    SciTech Connect (OSTI)

    Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, Jim; Bose, Pradip; Cappello, Franck; Carlson, William; Chien, Andrew A.; Coteus, Paul; Debardeleben, Nathan A.; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Saverio, Fazzari; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Robert; Stearly, Jon; Van Hensbergen, Eric

    2014-05-01

    We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  15. Final technical report, Symposium on New Theoretical Concepts and Directions in Catalysis

    SciTech Connect (OSTI)

    Metiu, Horia

    2014-08-22

    We organized in August 2013 a “Symposium on New Theoretical Concepts and Directions in Catalysis” with the participation of 20 invited distinguished quantum chemists and other researchers who use computations to study catalysis. Symposium website; http://catalysis.cnsi.ucsb.edu/

  16. JLab Test Public Address System | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Public Address System May 18 at 5:30 p.m.: JLab Will Test its Public Address System On Wednesday, May 18, Jefferson Lab will conduct the monthly test of its Public Address ...

  17. Surface Catalysis of Water Oxidation by the Blue Ruthenium Dimer

    SciTech Connect (OSTI)

    Jurss, Jonah W.; Concepcion, Javier C.; Norris, Michael R.; Templeton, Joseph L.; Meyer, Thomas J.

    2010-04-08

    Single-electron activation of multielectron catalysis has been shown to be viable in catalytic water oxidation with stepwise proton-coupled electron transfer, leading to high-energy catalytic precursors. For the blue dimer, cis,cis-[(bpy)2(H2O)RuIIIORuIII(H2O)(bpy)2]4+, the first well-defined molecular catalyst for water oxidation, stepwise 4e-/4H+ oxidation occurs to give the reactive precursor [(O)RuVORuV(O)]4+. This key intermediate is kinetically inaccessible at an unmodified metal oxide surface, where the only available redox pathway is electron transfer. We report here a remarkable surface activation of indium-tin oxide (In2O3:Sn) electrodes toward catalytic water oxidation by the blue dimer at electrodes derivatized by surface phosphonate binding of [Ru(4,4'-((HO)2P(O)CH2)2bpy)2(bpy)]2+. Surface binding dramatically improves the rate of surface oxidation of the blue dimer and induces water oxidation catalysis.

  18. Deputy Secretary Poneman Addresses Nuclear Deterrence Summit...

    Office of Environmental Management (EM)

    Addresses Nuclear Deterrence Summit Deputy Secretary Poneman Addresses Nuclear Deterrence Summit February 17, 2010 - 12:00am Addthis Alexandria, VA - U.S. Deputy Secretary of ...

  19. EPA -- Addressing Children's Health through Reviews Conducted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA -- Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act EPA -- Addressing Children's ...

  20. Keynote Address: Update on Environmental Management | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Address: Update on Environmental Management Keynote Address: Update on Environmental Management Keynote presentation made by David G. Huizenga for the NTSF annual meeting held from ...

  1. Symbiosis: Addressing Biomass Production Challenges and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening ...

  2. Theoretical approach to heterogeneous catalysis using large finite crystals

    SciTech Connect (OSTI)

    Salem, L.

    1985-12-19

    A theoretical-approach is described for heterogeneous catalysis using large finite crystals and an exactly soluble model. First, reviews of some themes which are well-known to physicists but need a translation into chemical language: wave vectors, the tight-binding model, and energy bands. Next a description of the finite simple cubic crystal and its analytical wave functions and energies in the Hueckel scheme is given. Also the analytical Hueckel wave functions for a finite face-centered cubic (FCC) crystal cut along square, (100)-type faces is described. Then the calculation of the perturbation interaction energy between H/sub 2/ and large finite (simple cubic or FCC) crystals of Ni atoms, having up to 13,824 atoms is described. The interaction energy is shown to be independent of crystal size, whatever the position of attack of the H/sub 2/ molecule. 28 references, 9 figures, 8 tables.

  3. Address conversion unit for multiprocessor system

    SciTech Connect (OSTI)

    Fava, T.F.; Lary, R.F.; Blackledge, R.

    1987-03-03

    An address conversion unit is described for use in one processor in a multi-processor data processing system including a common memory, the processors and common memory being interconnected by a common bus including means for transferring address signals defining a common address space. The processor includes private bus means including means for transferring signals including address signals defining a private address space. A processor unit means is connected to the private bus means and includes means for transmitting and receiving signals including address signals over the private bus means for engaging in data transfers thereover. The address conversion unit is connected to the private bus means and common bus means for receiving address signals over the private bus means from the processor unit means in the private address space. The unit comprises: A. pointer storage means for storing a pointer identifying a portion of the common bus memory space; B. pointer generation means connected to receive a common bus address and for generating a pointer in response thereto for storage in the pointer storage means; and C. common bus address generation means connected to the private bus and the pointer storage means for receiving an address from the processor unit means and for generating a common bus address in response thereto. The common bus address is used to initiate transfers between the processor unit means and the common memory over the common bus.

  4. Catalysis Working Group Kick-Off Meeting: May 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kick-Off Meeting: May 2012 Catalysis Working Group Kick-Off Meeting: May 2012 The Catalysis Working Group held a kick-off meeting May 14, 2012, in Arlington, Virginia, in conjunction with the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting. Agenda Catalysis Working Group Kick-off Meeting Agenda Presentations DOE's Fuel Cell Catalyst R&D Activities, Nancy Garland, U.S. Department of Energy Fuel Cells: Just a Dream - or Future Reality, Nenad Markovic,

  5. POLICY GUIDANCE MEMORANDUM #03 Addressing Missclassified Positions

    Broader source: Energy.gov [DOE]

    This memorandum provides policy guidance on how to consistently address misclassified positions within the Department and is effective immediately. There are several different circumstances that affect how a misclassified position will be addressed.

  6. Fundamental Studies in Catalysis Enabled the use of Efficient Lean-Burn Engines for Vehicle Transportation

    Broader source: Energy.gov [DOE]

    Building on a catalysis research program sponsored by EEREs Vehicles Technology Office (VTO) and DOEs Office of Science, researchers at Cummins, Inc. and Pacific Northwest National Laboratory ...

  7. Catalysis by Design: Bridging the Gap Between Theory and Experiments at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoscale Level | Department of Energy Between Theory and Experiments at Nanoscale Level Catalysis by Design: Bridging the Gap Between Theory and Experiments at Nanoscale Level Studies on a simple platinum-alumina system constitute a first step toward a "catalyst by design" approach. deer08_narula.pdf (273.18 KB) More Documents & Publications Catalysis by Design: Bridging the Gap between Theory and Experiments Catalyst by Design - Theoretical, Nanostructural, and Experimental

  8. Catalysis Center for Energy Innovation (CCEI) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Catalysis Center for Energy Innovation (CCEI) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Catalysis Center for Energy Innovation (CCEI) Print Text Size: A A A FeedbackShare Page CCEI Header Director Dionisios Vlachos Lead Institution University of Delaware Year Established 2009 Mission To focus on developing innovative, transformational heterogeneous

  9. Center for Biological Electron Transfer and Catalysis (BETCy) | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Center for Biological Electron Transfer and Catalysis (BETCy) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Biological Electron Transfer and Catalysis (BETCy) Print Text Size: A A A FeedbackShare Page BETCy Header Director John Peters Lead Institution Montana State University Year Established 2014 Mission To investigate the

  10. The Catalysis Center for Energy Innovation is an Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Friday, September 2, 2016 11:00 AM  322 ISE Yong Wang The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University Institute for Integrated Catalysis, Pacific Northwest National Laboratory College of Chemistry and Chemical Engineering, Xiamen University Biography: Dr. Wang joined PNNL in 1994 and was promoted to Laboratory Fellow (highest scientific rank in national labs) in 2005. He led the Catalysis and Reaction Engineering Team from 2000 to

  11. Improving Catalysis by Putting the Best Face Forward | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Improving Catalysis by Putting the Best Face Forward Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 04.01.12 Improving Catalysis by

  12. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS

    SciTech Connect (OSTI)

    Bhatt, B.

    2000-08-20

    Currently CARB estimates on road diesel vehicles contribute 50% of the NOX and 78% of the particulates being discharged from mobile sources. Diesel emissions obviously must be reduced if future air quality targets are to be met. A critical technological barrier exists because there are no commercial technologies available, which can reduce NOX from diesel (lean), exhaust containing 5-15% O2 concentration. One promising approach to reducing NOX and particulates from diesel exhaust is to use a combination of plasma with catalyst. Plasma can be generated thermally or non-thermally. Thermal plasma is formed by heating the system to an exceedingly high temperature (>2000 C). High temperature requirements for plasma makes thermal plasma inefficient and requires skillful thermal management and hence is considered impractical for mobile applications. Non-thermal plasma directs electrical energy into the creation of free electrons, which in turn react with gaseous species thus creating plasma. A combination of non-thermal plasma with catalysts can be referred to Plasma Assisted Catalysts or PAC. PAC technology has been demonstrated in stationary sources where non-thermal plasma catalysis is carried out in presence of NH3 as a reductant. In stationary applications NO is oxidized to HNO3 and then into ammonium nitrate where it is condensed and removed. This approach is impractical for mobile application because of the ammonia requirement and the ultimate mechanism by which NOX is removed. However, if a suitable catalyst can be found which can use onboard fuel as reductant then the technology holds a considerable promise. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS Ralph Slone, B. Bhatt and Victor Puchkarev NOXTECH INC. In addition to the development of an effective catalyst, a non-thermal plasma reactor needs be scaled and demonstrated along with a reliable and cost effective plasma power source and onboard HC source needs to be proven. Under the work

  13. Application of solid ash based catalysts in heterogeneous catalysis

    SciTech Connect (OSTI)

    Shaobin Wang

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe{sub 2}O{sub 3} could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H{sub 2} production, deSOx, deNOx, hydrocarbon oxidation, and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. 107 refs., 4 figs., 2 tabs.

  14. Research Projects Addressing Technical Challenges to Environmentally

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acceptable Shale Gas Development Selected by DOE | Department of Energy Addressing Technical Challenges to Environmentally Acceptable Shale Gas Development Selected by DOE Research Projects Addressing Technical Challenges to Environmentally Acceptable Shale Gas Development Selected by DOE November 28, 2012 - 12:00pm Addthis Washington, DC - Fifteen research projects aimed at addressing the technical challenges of producing natural gas from shales and tight sands, while simultaneously

  15. Keynote Address: Future Vision | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    0, 2014 1:00PM to 1:30PM PDT Pacific Ballroom Tuesday's keynote address by Raffi Garabedian, Chief Technology Officer, First Solar

  16. Addressing Challenges of Identifying Geometrically Diverse Sets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials Previous Next List R. L. Martin, B. Smit, and M. Haranczyk, J. Chem Inf. Model. 52...

  17. Recommendations to Address Power Reliability Concerns Raised...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability Concerns Raised as a Result of Pending Environmental Regulations for Electric Generation Stations Recommendations to Address Power Reliability Concerns Raised as a ...

  18. State of Supported Nickel Nanoparticles during Catalysis in Aqueous Media

    SciTech Connect (OSTI)

    Chase, Zizwe; Kasakov, Stanislav; Shi, Hui; Vjunov, Aleksei; Fulton, John L.; Camaioni, Donald M.; Balasubramanian, Mahalingam; Zhao, Chen; Wang, Yong; Lercher, Johannes A.

    2015-11-09

    The state of Ni supported on HZSM-5 zeolite, silica, and sulfonated carbon was determined during aqueous phase catalysis of phenol hydrodeoxygenation using in situ extended X-ray absorption fine structure spectroscopy (EXAFS). On sulfonated carbon and HZSM-5 supports, the NiO and Ni(OH)2 were readily reduced to Ni(0) under reaction conditions (~35 bar H2 in aqueous phenol solutions containing up to 0.5 wt. % phosphoric acid at 473 K). On the silica support, less than 70% of the Ni was converted to Ni(0) under reaction conditions, which is attributed to the formation of Ni phyllosilicates. Over a broad range of reaction conditions there was no leaching of Ni from the supports. In contrast, rapid leaching of the Ni(II) from HZSM-5 was observed, when 15 wt. % aqueous acetic acid was substituted for the aqueous phenol solution. Once the metallic state of Ni was established there was no leaching in 15 wt. % acetic acid at 473 K and 35 bar H2. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences & Biosciences. The STEM was supported under the Laboratory Directed Research and Development Program: Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. STEM was performed at EMSL, a DOE Office of Science user facility sponsored by the Office of Biological and Environmental Research and located at PNNL.

  19. Shape-selective catalysis in dimethyl ether conversion

    SciTech Connect (OSTI)

    Sardesai, A.; Lee, S.

    1999-07-01

    Coal-derived syngas can be effectively converted to dimethyl ether (DME) in a single-stage, liquid-phase process. This Liquid Phase Dimethyl Ether (LPDME) process utilizes a dual catalytic system, which comprises of a physical blend between the methanol synthesis and the methanol dehydration catalyst slurried in an inert mineral oil. Such produced DME has vast potential as a building block chemical in the petrochemical industry to produce value-added specialty chemicals. The current research efforts are made to exploit the utilization of shape-selective catalysis using zeolites to produce targeted petrochemicals, including lower olefinic hydrocarbons. The catalysts probed in this investigation include zeolites of different physical, morphological, and chemical configurations. The effect of acidity of ZSM-5 type zeolites as well as the effect of the different channel size and orientation of the zeolites on product selectivity and catalyst deactivation are examined. Results obtained from experimentation of this study show that ZSM-5 type zeolite with low acidity (high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, in this case 150) exhibits the highest selectivity towards lower (C{sub 2}-C{sub 4}) olefins in general. Controlled selectivity toward targeted olefinic species can be accomplished via devising catalytic reaction systems in such a way that the structural property of the catalyst and reactive interaction between molecules in the pores are geared toward formation of targeted molecular species which also at the same time prevent the formation of less desirable products. The internal morphology of the catalyst also has a pronounced effect on the deactivation phenomenon, where it is observed that zeolites possessing high acidity and a unidimensional channel structure are prone towards catalyst deactivation by coking and pore blockage.

  20. Structural Insights into the Mechanism of PEPCK Catalysis

    SciTech Connect (OSTI)

    Holyoak,T.; Sullivan, S.; Nowak, T.

    2006-01-01

    Phosphoenolpyruvate carboxykinase catalyzes the reversible decarboxylation of oxaloacetic acid with the concomitant transfer of the {gamma}-phosphate of GTP to form PEP and GDP as the first committed step of gluconeogenesis and glyceroneogenesis. The three structures of the mitochondrial isoform of PEPCK reported are complexed with Mn{sup 2+}, Mn{sup 2+}-PEP, or Mn{sup 2+}-malonate-Mn{sup 2+}GDP and provide the first observations of the structure of the mitochondrial isoform and insight into the mechanism of catalysis mediated by this enzyme. The structures show the involvement of the hyper-reactive cysteine (C307) in the coordination of the active site Mn{sup 2+}. Upon formation of the PEPCK-Mn{sup 2+}-PEP or PEPCK-Mn{sup 2+}-malonate-Mn{sup 2+}GDP complexes, C307 coordination is lost as the P-loop in which it resides adopts a different conformation. The structures suggest that stabilization of the cysteine-coordinated metal geometry holds the enzyme as a catalytically incompetent metal complex and may represent a previously unappreciated mechanism of regulation. A third conformation of the mobile P-loop in the PEPCK-Mn{sup 2+}-malonate-Mn{sup 2+}GDP complex demonstrates the participation of a previously unrecognized, conserved serine residue (S305) in mediating phosphoryl transfer. The ordering of the mobile active site lid in the PEPCK-Mn{sup 2+}-malonate-Mn{sup 2+}GDP complex yields the first observation of this structural feature and provides additional insight into the mechanism of phosphoryl transfer.

  1. 2015 State of Indian Nations Address

    Broader source: Energy.gov [DOE]

    The President of the National Congress of American Indians will deliver his annual State of the Indian Nations address to Member of Congress, government officials, tribal leaders and citizens, and...

  2. Converting Homogeneous to Heterogeneous in Electrophilic Catalysis using Monodisperse Metal Nanoparticles

    SciTech Connect (OSTI)

    Witham, Cole A.; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N.; Somorjai, Gabor A.; Toste, F. Dean

    2009-10-15

    A continuing goal in catalysis is the transformation of processes from homogeneous to heterogeneous. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this conversion is supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl{sub 2}, and catalyze a range of {pi}-bond activation reactions previously only homogeneously catalyzed. Multiple experimental methods are utilized to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, our size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared to larger, polymer-capped analogues.

  3. Rio Arriba Leadership Summit addresses challenges, opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » Rio Arriba Leadership Summit addresses challenges, opportunities Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Rio Arriba Leadership Summit addresses challenges, opportunities Community leaders gather in Española for a round-table discussion. July 6, 2016 DOE's Office of Small and Disadvantaged Business Utilization presented Mentor and Protégé of the Year awards to LANS and RG

  4. 2010 CATALYSIS GORDON RESEARCH CONFERENCE, JUNE 27 - JULY 2, 2010, NEW LONDON, NEW HAMPSHIRE

    SciTech Connect (OSTI)

    Abhaya Datye

    2010-07-02

    Catalysis is a key technology for improving the quality of life while simultaneously reducing the adverse impact of human activities on the environment. The discovery of new catalytic processes and the improvement of existing ones are also critically important for securing the nation's energy supply. The GRC on Catalysis is considered one the most prestigious conference for catalysis research, bringing together leading researchers from both academia, industry and national labs to discuss the latest, most exciting research in catalysis and the future directions for the field. The 2010 GRC on Catalysis will follow time-honored traditions and feature invited talks from the world's leading experts in the fundamentals and applications of catalytic science and technology. We plan to have increased participation from industry. The extended discussions in the company of outstanding thinkers will stimulate and foster new science. The conference will include talks in the following areas: Alternative feedstocks for chemicals and fuels, Imaging and spectroscopy, Design of novel catalysts, Catalyst preparation fundamentals, Molecular insights through theory, Surface Science, Catalyst stability and dynamics. In 2010, the Catalysis conference will move to a larger conference room with a new poster session area that will allow 40 posters per session. The dorm rooms provide single and double accommodations, free WiFi and the registration fee includes all meals and the famous lobster dinner on Thursday night. Afternoons are open to enjoy the New England ambiance with opportunities for hiking, sailing, golf and tennis to create an outstanding conference that will help you network with colleagues, and make long lasting connections.

  5. Geek-Up[3.11.2011]: Energy Efficiency, Catalysis and Open Source Tools |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 11.2011]: Energy Efficiency, Catalysis and Open Source Tools Geek-Up[3.11.2011]: Energy Efficiency, Catalysis and Open Source Tools March 11, 2011 - 4:37pm Addthis L. Keith Woo | Photo courtesy of Ames National Laboratory L. Keith Woo | Photo courtesy of Ames National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Ames Laboratory researcher and Iowa State University professor L. Keith Woo is on the search for catalysts that lead

  6. Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation

    SciTech Connect (OSTI)

    Sun, Jie Lindvall, Niclas; Yurgens, August; Nam, Youngwoo; Cole, Matthew T.; Teo, Kenneth B. K.; Woo Park, Yung

    2014-04-14

    A model of the graphene growth mechanism of chemical vapor deposition on platinum is proposed and verified by experiments. Surface catalysis and carbon segregation occur, respectively, at high and low temperatures in the process, representing the so-called balance and segregation regimes. Catalysis leads to self-limiting formation of large area monolayer graphene, whereas segregation results in multilayers, which evidently grow from below. By controlling kinetic factors, dominantly monolayer graphene whose high quality has been confirmed by quantum Hall measurement can be deposited on platinum with hydrogen-rich environment, quench cooling, tiny but continuous methane flow and about 1000?C growth temperature.

  7. Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis Details progress on non-zeolitic zirconia-based mixed oxides as promising new SCR catalyst materials and results of engine bench testing of full-size SCR prototype confirms Details progress on non-zeolitic zirconia-based mixed oxides as promising new SCR catalyst materials and results of engine bench testing of full-size SCR prototype

  8. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect (OSTI)

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge

  9. Cheaper Adjoints by Reversing Address Computations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hascoët, L.; Utke, J.; Naumann, U.

    2008-01-01

    The reverse mode of automatic differentiation is widely used in science and engineering. A severe bottleneck for the performance of the reverse mode, however, is the necessity to recover certain intermediate values of the program in reverse order. Among these values are computed addresses, which traditionally are recovered through forward recomputation and storage in memory. We propose an alternative approach for recovery that uses inverse computation based on dependency information. Address storage constitutes a significant portion of the overall storage requirements. An example illustrates substantial gains that the proposed approach yields, and we show use cases in practical applications.

  10. Shared address collectives using counter mechanisms

    DOE Patents [OSTI]

    Blocksome, Michael; Dozsa, Gabor; Gooding, Thomas M; Heidelberger, Philip; Kumar, Sameer; Mamidala, Amith R; Miller, Douglas

    2014-02-18

    A shared address space on a compute node stores data received from a network and data to transmit to the network. The shared address space includes an application buffer that can be directly operated upon by a plurality of processes, for instance, running on different cores on the compute node. A shared counter is used for one or more of signaling arrival of the data across the plurality of processes running on the compute node, signaling completion of an operation performed by one or more of the plurality of processes, obtaining reservation slots by one or more of the plurality of processes, or combinations thereof.

  11. Enzyme-Like Catalysis of the Nazarov Cyclization by Supramolecular Encapsulation

    SciTech Connect (OSTI)

    Hastings, Courtney; Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2010-03-29

    A primary goal in the design and synthesis of molecular hosts has been the selective recognition and binding of a variety of guests using non-covalent interactions. Supramolecular catalysis, which is the application of such hosts towards catalysis, has much in common with many enzymatic reactions, chiefly the use of both spatially appropriate binding pockets and precisely oriented functional groups to recognize and activate specific substrate molecules. Although there are now many examples which demonstrate how selective encapsulation in a host cavity can enhance the reactivity of a bound guest, all have failed to reach the degree of increased reactivity typical of enzymes. We now report the catalysis of the Nazarov cyclization by a self-assembled coordination cage, a carbon-carbon bond-forming reaction which proceeds under mild, aqueous conditions. The acceleration in this system is over a million-fold, and represents the first example of supramolecular catalysis that achieves the level of rate enhancement comparable to that observed in several enzymes. We explain the unprecedented degree of rate increase as due to the combination of (a) preorganization of the encapsulated substrate molecule, (b) stabilization of the transition state of the cyclization by constrictive binding, and (c) increase in the basicity of the complexed alcohol functionality.

  12. Chemistry - Oxygen Vacancies and Catalysis on Ceria Surfaces

    SciTech Connect (OSTI)

    Campbell, Charles T.; Peden, Charles HF.

    2005-07-29

    Chemistry occurring at the surface of metal oxides is critical in a variety of industrial applications including catalysis and photocatalysis, optical display technology, solar energy devices and corrosion prevention. Defects have long been recognized to be the most reactive sites on the surfaces of many oxide materials. The most common types of defects present on the surfaces of metal oxides are oxygen vacancies and step edges. The nature of surface oxygen vacancies, and their number, distribution and diffusion across the surface of oxides, are thus issues of major scientific importance. One of the most interesting oxides in this respect is CeO2, since oxygen vacancies play the key role in giving this material it's industrially important ''oxygen-storage capacity''. This capacity makes modern automotive exhaust treatment catalysts containing CeO2 much more effective than their predecessors without CeO2. Ceria is also well known as a support which enhances the performance of transition metal catalysts, relative to other oxide supports, in a variety of other reactions including water-gas shift, steam reforming of oxygenates and PROX 1-7, all of which hold promise for enabling a hydrogen economy 1. Related to ceria's facile redox capacity (ability to rapidly form and eliminate oxygen vacancy defects) is the poorly understood observation that some less reducible oxides, such as zirconia (ZrO2), are used as additives that actually enhance this ''oxygen storage'' property of CeO2. In this issue, Esch and coworkers in Trieste, Italy report an exciting study that for the first time clearly elucidates the structure, distribution and formation of oxygen vacancies on a cerium oxide surface 8. They have elegantly combined beautiful, atomic-resolution imaging using scanning-tunneling microscopy (STM) on a ceria surface with state-of-the-art quantum mechanical calculations using Density Functional Theory (DFT) to raise our understanding of CeO2 surfaces to a much higher level

  13. Solvation and Acid Strength Effects on Catalysis by Faujasite Zeolites

    SciTech Connect (OSTI)

    Gounder, Rajamani P.; Jones, Andrew J.; Carr, Robert T.; Iglesia, Enrique

    2012-02-01

    Kinetic, spectroscopic, and chemical titration data indicate that differences in monomolecular isobutane cracking and dehydrogenation and methanol dehydration turnover rates (per H+) among FAU zeolites treated thermally with steam (H-USY) and then chemically with ammonium hexafluorosilicate (CDHUSY) predominantly reflect differences in the size and solvating properties of their supercage voids rather than differences in acid strength. The number of protons on a given sample was measured consistently by titrations with Na+, with CH3 groups via reactions of dimethyl ether, and with 2,6-di-tert-butylpyridine during methanol dehydration catalysis; these titration values were also supported by commensurate changes in acidic OH infrared band areas upon exposure to titrant molecules. The number of protons, taken as the average of the three titration methods, was significantly smaller than the number of framework Al atoms (Alf) obtained from X-ray diffraction and 27Al magic angle spinning nuclear magnetic resonance spectroscopy on H-USY (0.35 H+/Alf) and CD-HUSY (0.69 H+/Alf). These data demonstrate that the ubiquitous use of Alf sites as structural proxies for active H+ sites in zeolites can be imprecise, apparently because distorted Al structures that are not associated with acidic protons are sometimes detected as Alf sites. Monomolecular isobutane cracking and dehydrogenation rate constants, normalized non-rigorously by the number of Alf species, decreased with increasing Na+ content on both H-USY and CD-HUSY samples and became undetectable at sub-stoichiometric exchange levels (0.32 and 0.72 Na+/Alf ratios, respectively), an unexpected finding attributed incorrectly in previous studies to the presence of minority ‘‘super-acidic’’ sites. These rate constants, when normalized rigorously by the number of residual H+ sites were independent of Na+ content on both H-USY and CD-HUSY samples, reflecting the stoichiometric replacement of protons that are uniform in

  14. Mapping virtual addresses to different physical addresses for value disambiguation for thread memory access requests

    SciTech Connect (OSTI)

    Gala, Alan; Ohmacht, Martin

    2014-09-02

    A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memory access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.

  15. Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities

    Broader source: Energy.gov [DOE]

    Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy (DOE) Public Meeting on “Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities” On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nation’s energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session. The meeting will be livestreamed at energy.gov/live

  16. Global-Address Space Networking (GASNet) Library

    Energy Science and Technology Software Center (OSTI)

    2011-04-06

    GASNet (Global-Address Space Networking) is a language-independent, low-level networking layer that provides network-independent, high-performance communication primitives tailored for implementing parallel global address space SPMD languages such as UPC and Titanium. The interface is primarily intended as a compilation target and for use by runtime library writers (as opposed to end users), and the primary goals are high performance, interface portability, and expressiveness. GASNet is designed specifically to support high-performance, portable implementations of global address spacemore » languages on modern high-end communication networks. The interface provides the flexibility and extensibility required to express a wide variety of communication patterns without sacrificing performance by imposing large computational overheads in the interface. The design of the GASNet interface is partitioned into two layers to maximize porting ease without sacrificing performance: the lower level is a narrow but very general interface called the GASNet core API - the design is basedheavily on Active Messages, and is implemented directly on top of each individual network architecture. The upper level is a wider and more expressive interface called GASNet extended API, which provides high-level operations such as remote memory access and various collective operations. This release implements GASNet over MPI, the Quadrics "elan" API, the Myrinet "GM" API and the "LAPI" interface to the IBM SP switch. A template is provided for adding support for additional network interfaces.« less

  17. Framework for Address Cooperative Extended Transactions

    Energy Science and Technology Software Center (OSTI)

    1997-12-01

    The Framework for Addressing Cooperative Extended Transactions (FACET) is an object-oriented software framework for building models of complex, cooperative behaviors of agents. it can be used to implement simulation models of societal processes such as the complex interplay of participating individuals and organizations engaged in multiple concurrent transactions in pursuit of their various goals. These transactions can be patterned on, for example, clinical guidelines and procedures, business practices, government and corporate policies, etc. FACET canmore » also address other complex behaviors such as biological life cycles or manufacturing processes. FACET includes generic software objects representing the fundamental classes of agent -- Person and Organization - with mechanisms for resource management, including resolution of conflicting requests for participation and/or use of the agent's resources. The FACET infrastructure supports stochastic behavioral elements and coping mechanisms by which specified special conditions and events can cause an active cooperative process to be preempted, diverting the participants onto appropriate alternative behavioral pathways.« less

  18. Kokes Awards for the 22nd North American Catalysis Society Meeting, June 5-10, 2011

    SciTech Connect (OSTI)

    Fabio H. Ribeiro

    2011-06-05

    The biennial North American Catalysis Society (NACS) Meetings are the premiere conferences in the area of catalysis, surface science, and reaction engineering. The 22nd meeting will be held the week of June 5-10, 2011 in Detroit, Michigan. The objective of the Meetings is to bring together leading researchers for intensive scientific exchange and interactions. Financial support that offsets some of the associated costs (specifically, registration fee, airline tickets, and hotel accommodations) would encourage graduate students, and for the first time undergraduate students, to attend and participate meaningfully in this conference. The funds sought in this proposal will help support the Richard J. Kokes Travel Award program. Graduate students eligible for these merit-based Awards are those who study at a North American university and who will present at the Meeting. We have currently 209 applications and we expect to be able to fund about half of them. The NACS has traditionally sought to encourage graduate student, and this year for the first time undergraduate studies, participation at the National Meetings and providing financial support is the most effective means to do so. Their attendance would contribute significantly to their scientific training and communication and presentation skills. They would be exposed to the leading researchers from the US and abroad; they would meet their peers from other universities; they would learn about cutting-edge results that could benefit their research projects; and they may become interested in becoming active participants in the catalysis community. These young investigators represent the next generation of scientists and engineers, and their proper training will lead to future scientific breakthroughs and technological innovations that benefit the US economy. Advances in catalysis can come in the form of more energy-efficient and environmentally-friendly chemical processes, improved fuel cell performance, efficient

  19. Kokes Awards for the 23rd North American Catalysis Society Meeting

    SciTech Connect (OSTI)

    Jacobs, Gary

    2014-01-31

    The Tri-State Catalysis Society awarded 107 Kokes Travel Awards. The program was very successful and to date this was the most Kokes Travel Awards ever awarded at a North American Catalysis Society Meeting. It provided students who merited an award the opportunity to attend the meeting, present a paper in the form of either an oral presentation or a poster presentation, and to serve the North American Catalysis Society by participating in the organization of the meeting. Students worked very hard during the week of the meeting to make it a success. Financial support for the Kokes awards was provided by DOE, NSF, NACS, as well as the Tri-State Catalysis Society, the latter through fund raising activities, and other donations. AT the meeting, each student received over $1050 in kind to offset the costs of registration fees ($260), hotel accommodations ($295.7), transportation ($400 travel allowance), as well as T-shirts ($20), and banquet tickets ($95 provided by donations from society members). In addition, for the first time, students received certificates that were signed by the President of NACS, Professor Enrique Iglesia, and by the Kokes Awards Chair, Gary Jacobs (see last page). A list of meeting co-chairs (i.e., Uschi M. Graham, Umit S. Ozkan, and Madan Bhassin) and the honorary chair (Burtron H. Davis) was also included on the certificate, along with the name of the recipient. The awardees were chosen on a merit-based guideline which also included the requirements of having a presentation accepted at the meeting and being a student at a North American University. The Richard J. Kokes Student Travel Award Committee (Gary Jacobs, Rodney Andrews, and Peter Smirniotis) with help from the Organizing Committee were able to secure money from four sources as detailed in Table 1. As detailed by our Treasurer, Dr. Helge Toufar of Clariant, the total amount spent was $105,000.

  20. NMR Computational Studies of Solid Acidity/Fundamental Studies of Catalysis by Solid Acids

    SciTech Connect (OSTI)

    James F. Haw

    2008-06-28

    This project focused on catalysis by zeolites and the synergy of spectroscopic characterization and theoretical modeling. In collaboration with the Waroquier group in Belgium we used state-of-the-art quantum chemical simulations on a supramolecular model of both the HZSM-5 zeolite and the co-catalytic hydrocarbon pool species and calculated a full catalytic cycle (including all rate constants) for methanol-to-olefin (MTO) catalysis involving a hydrocarbon pool species. This work not only represents the most robust computational analysis of a successful MTO route to date, but it also succeeds in tying together the many experimental clues. That work was featured on the cover of Angewandte Chemie. More recently we elucidated several unsuspected roles for formaldehyde in methanol to olefin catalysis. Formaldehyde proves to be a key species responsible for both the growth of the catalytically active hydrocarbon pool and its inevitable aging into deactivated polycyclic aromatic species. The apparent inevitability of formaldehyde formation at high temperatures, in particular in contact with active metal or metal oxide surfaces, may put some fundamental limitations on the economic potential of conversion of methanol to olefins.

  1. DOE Convenes Multi-stakeholder Process to Address Privacy for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Convenes Multi-stakeholder Process to Address Privacy for Data Enabled by Smart Grid Technologies DOE Convenes Multi-stakeholder Process to Address Privacy for Data Enabled by ...

  2. DOE Action Plan Addressing the Electricity Transmission System

    Broader source: Energy.gov (indexed) [DOE]

    U.S. DEPARTMENT OF ENERGY ACTION PLAN ADDRESSING THE ELECTRICITY TRANSMISSION SYSTEM DRAFT DOE Action Plan Addressing the Electricity Transmission System 1 Table of Contents * ...

  3. NERSC Implements Organizational Changes to Better Address Evolving...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizational Changes to Better Address Evolving Data Environment NERSC Implements Organizational Changes to Better Address Evolving Data Environment February 23, 2015 Contact: ...

  4. Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation ...

  5. Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. ...

  6. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and ...

  7. Opportunities for Building America Research to Address Energy...

    Energy Savers [EERE]

    Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope and IAQ (301) Opportunities for Building America Research to Address...

  8. Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges ...

  9. Addressing Uncertainties in Design Inputs: A Case Study of Probabilist...

    Office of Environmental Management (EM)

    Addressing Uncertainties in Design Inputs: A Case Study of Probabilistic Settlement Evaluations for Soft Zone Collapse at SWPF Addressing Uncertainties in Design Inputs: A Case ...

  10. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. ...

  11. Addressable morphology control of silica structures by manipulating...

    Office of Scientific and Technical Information (OSTI)

    Addressable morphology control of silica structures by manipulating the reagent addition time Citation Details In-Document Search Title: Addressable morphology control of silica ...

  12. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and...

    Energy Savers [EERE]

    ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges The American ...

  13. Strategies to Address Split Incentives in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Address Split Incentives in Multifamily Buildings Strategies to Address Split Incentives in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Low-Income ...

  14. Policy Agenda for Addressing Climate Change in Bangladesh: Copenhagen...

    Open Energy Info (EERE)

    Agenda for Addressing Climate Change in Bangladesh: Copenhagen and Beyond Jump to: navigation, search Name Policy Agenda for Addressing Climate Change in Bangladesh: Copenhagen and...

  15. Indonesia National Action Plan Addressing Climate Change | Open...

    Open Energy Info (EERE)

    National Action Plan Addressing Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Indonesia National Action Plan Addressing Climate Change AgencyCompany...

  16. Bush Administration Plays Leading Role in Studying and Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bush Administration Plays Leading Role in Studying and Addressing Global Climate Change Bush Administration Plays Leading Role in Studying and Addressing Global Climate Change...

  17. Protocol for Addressing Induced Seismicity Associated with Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS) Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems...

  18. Smart Grid RFI: Addressing Policy and Logistical Challenges....

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the Alliance to Save Energy. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the...

  19. Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and ...

  20. Energy Department Addresses Largest Gathering of Geothermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addresses Largest Gathering of Geothermal Energy Stakeholders Energy Department Addresses Largest Gathering of Geothermal Energy Stakeholders October 4, 2012 - 1:00pm Addthis Photo ...

  1. Cynthia J. Jenks Work Address: Home Address: Ames Laboratory 3101 Greenwood Rd.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyclotron Road at Berkeley Lab Cyclotron Road at Berkeley Lab Addthis The Department of Energy is testing a new model for clean energy research and development (R&D) through a program called Cyclotron Road. The goal is to support scientific R&D that is still too risky for private-sector investment, and too applied for academia

    J. Jenks Work Address: Home Address: Ames Laboratory 3101 Greenwood Rd. 311 TASF Ames, IA 50014 2408 Pammel Drive Cell: (515) 451-4663 Iowa State University

  2. Final Report on Internet Addressable Lightswitch

    SciTech Connect (OSTI)

    Rubinstein, Francis; Pettler, Peter

    2001-08-27

    This report describes the work performed to develop and test a new switching system and communications network that is useful for economically switching lighting circuits in existing commercial buildings. The first section of the report provides the general background of the IBECS (Integrated Building Environmental Communications System) research and development work as well as the context for the development of the new switching system. The research and development effort that went into producing the first proof-of-concept (the IBECS Addressable Power Switch or APS) and the physical prototype of that concept is detailed in the second section. In the third section of the report, we detail the refined Powerline Carrier Based IBECS Title 24 Wall Switch system that evolved from the APS prototype. The refined system provided a path for installing IBECS switching technology in existing buildings that may not be already wired for light level switching control. The final section of the report describes the performance of the IBECS Title 24 Switch system as applied to a small demonstration in two offices at LBNL's Building 90. We learned that the new Powerline Carrier control systems (A-10 technology) that have evolved from the early X-10 systems have solved most of the noise problems that dogged the successful application of X-10 technologies in commercial buildings. We found that the new A-10 powerline carrier control technology can be reliable and effective for switching lighting circuits even in electrically noisy office environments like LBNL. Thus we successfully completed the task objectives by designing, building and demonstrating a new switching system that can provide multiple levels of light which can be triggered either from specially designed wall switches or from a digital communications network. By applying commercially available powerline carrier based technologies that communicate over the in-place lighting wiring system, this type of control can be

  3. Electric-field enhanced performance in catalysis and solid-state devices involving gases

    DOE Patents [OSTI]

    Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin

    2015-05-19

    Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.

  4. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide.

    SciTech Connect (OSTI)

    Chou, Stanley Shihyao; Sai, Na; Lu, Ping; Coker, Eric Nicholas; Liu, Sheng; Artyushkova, Kateryna; Luk, Ting S.; Kaehr, Bryan James; Brinker, C. Jeffrey

    2015-10-07

    Establishing processing–structure–property relationships for monolayer materials is crucial for a range of applications spanning optics, catalysis, electronics and energy. Presently, for molybdenum disulfide, a promising catalyst for artificial photosynthesis, considerable debate surrounds the structure/property relationships of its various allotropes. Here we unambiguously solve the structure of molybdenum disulfide monolayers using high-resolution transmission electron microscopy supported by density functional theory and show lithium intercalation to direct a preferential transformation of the basal plane from 2H (trigonal prismatic) to 1T' (clustered Mo). These changes alter the energetics of molybdenum disulfide interactions with hydrogen (ΔGH), and, with respect to catalysis, the 1T' transformation renders the normally inert basal plane amenable towards hydrogen adsorption and hydrogen evolution. Furthermore, we show basal plane activation of 1T' molybdenum disulfide and a lowering of ΔGH from +1.6 eV for 2H to +0.18 eV for 1T', comparable to 2H molybdenum disulfide edges on Au(111), one of the most active hydrogen evolution catalysts known.

  5. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chou, Stanley Shihyao; Sai, Na; Lu, Ping; Coker, Eric Nicholas; Liu, Sheng; Artyushkova, Kateryna; Luk, Ting S.; Kaehr, Bryan James; Brinker, C. Jeffrey

    2015-10-07

    Establishing processing–structure–property relationships for monolayer materials is crucial for a range of applications spanning optics, catalysis, electronics and energy. Presently, for molybdenum disulfide, a promising catalyst for artificial photosynthesis, considerable debate surrounds the structure/property relationships of its various allotropes. Here we unambiguously solve the structure of molybdenum disulfide monolayers using high-resolution transmission electron microscopy supported by density functional theory and show lithium intercalation to direct a preferential transformation of the basal plane from 2H (trigonal prismatic) to 1T' (clustered Mo). These changes alter the energetics of molybdenum disulfide interactions with hydrogen (ΔGH), and, with respect to catalysis, the 1T' transformationmore » renders the normally inert basal plane amenable towards hydrogen adsorption and hydrogen evolution. Furthermore, we show basal plane activation of 1T' molybdenum disulfide and a lowering of ΔGH from +1.6 eV for 2H to +0.18 eV for 1T', comparable to 2H molybdenum disulfide edges on Au(111), one of the most active hydrogen evolution catalysts known.« less

  6. ASER Web Addresses and Points of Contact at DOE Sites

    Broader source: Energy.gov (indexed) [DOE]

    ASER Web Addresses and Points of Contact at DOE Sites March 29, 2013 Site and Web Address ASER Contact Name Phone E-mail Ames Laboratory http:www.ameslab.govoperationsesha...

  7. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    SciTech Connect (OSTI)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization

  8. Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges | Department of Energy Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges. Pepco Holdings, Inc. (PHI) is pleased to respond to the US Department of Energy (DOE) request for information regarding addressing policy and logistical challenges to smart grid implementation. This follows on the heels of

  9. Progress Energy draft regarding Smart Grid RFI: Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logistical Challenges | Department of Energy Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges (549.44 KB) More Documents & Publications Comments of DRSG to DOE Smart Grid

  10. Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges | Department of Energy Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges. Southern recognizes that many policy and logistical concerns must be addressed for the promises of smart grid technologies and applications to be fully realized in ways that are beneficial, secure, and cost-effective

  11. 2016 Annual Merit Review and Peer Evaluation Plenary - Keynote Address

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Text Version) | Department of Energy Plenary - Keynote Address (Text Version) 2016 Annual Merit Review and Peer Evaluation Plenary - Keynote Address (Text Version) This is the text version of the 2016 Annual Merit Review and Peer Evaluation Meeting Plenary - Keynote Address video. The Honorable Byron Dorgan, U.S. Senate (retired) presented the keynote address at the 2016 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting.

  12. Financing Innovation to Address Global Climate Change | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Financing Innovation to Address Global Climate Change Financing Innovation to Address Global Climate Change DOE-LPO_Report_Financing-Innovation-Climate-Change.pdf (1.97 MB) More Documents & Publications LPO Financial Performance Report PORTFOLIO PERFORMANCE Financing Innovation to Address Global Climate Change Powering New Markets: Utility-scale Photovoltaic Solar

  13. Addressing Climate Change with Next Generation Energy Storage Technology -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research March 19, 2015, Videos Addressing Climate Change with Next Generation Energy Storage Technology George Crabtree gives keynote at Loyola University In March 2015, George Crabtree gave the keynote address, "Addressing Climate Change with Next Generation Energy Storage Technology" at the Institute of Environmental Sustainability Climate Change Conference at Loyola University

  14. Individually addressable cathodes with integrated focusing stack or detectors

    DOE Patents [OSTI]

    Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas; Whealton, John; Whitson, John C.; Wilgen, John B.

    2005-07-12

    Systems and method are described for addressable field emission array (AFEA) chips. A plurality of individually addressable cathodes are integrated with an electrostatic focusing stack and/or a plurality of detectors on the addressable field emission array. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  15. DESIGN, SYNTHESIS, AND MECHANISTIC EVALUATION OF IRON-BASED CATALYSIS FOR SYNTHESIS GAS CONVERSION TO FUELS AND CHEMICALS

    SciTech Connect (OSTI)

    Akio Ishikawa; Manuel Ojeda; Enrique Iglesia

    2005-03-31

    This project explores the extension of previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have previously shown unprecedented Fischer-Tropsch synthesis rate, selectivity with synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic performance previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During this third reporting period, we have prepared a large number of Fe-based catalyst compositions using precipitation and impregnations methods with both supercritical and subcritical drying and with the systematic use of surface active agents to prevent pore collapse during drying steps required in synthetic protocols. These samples were characterized during this period using X-ray diffraction, surface area, and temperature-programmed reduction measurements. These studies have shown that these synthesis methods lead to even higher surface areas than in our previous studies and confirm the crystalline structures of these materials and their reactivity in both oxide-carbide interconversions and in Fischer-Tropsch synthesis catalysis. Fischer-Tropsch synthesis reaction rates and selectivities with low H{sub 2}/CO ratio feeds (H{sub 2}/CO = 1) were the highest reported in the literature at the low-temperature and relatively low pressure in our measurements. Current studies are exploring the optimization of the sequence of impregnation of Cu, K, and Ru promoters, of the activation and reaction conditions, and of the co-addition of light hydrocarbons to increase diffusion rates of primary olefin products so as to increase the selectivity to unsaturated products. Finally, we are also addressing

  16. Acid Catalysis in Basic Solution: A Supramolecular Host PromotesOrthoformate Hydrolysis

    SciTech Connect (OSTI)

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-12-12

    Though many enzymes can promote chemical reactions by tuning substrate properties purely through the electrostatic environment of a docking cavity, this strategy has proven challenging to mimic in synthetic host-guest systems. Here we report a highly-charged, water soluble, metal-ligand assembly with a hydrophobic interior cavity that thermodynamically stabilizes protonated substrates and consequently catalyzes the normally acidic hydrolysis of orthoformates in basic solution, with rate accelerations of up to 890-fold. The catalysis reaction obeys Michaelis-Menten kinetics, exhibits competitive inhibition, and the substrate scope displays size selectivity consistent with the constrained binding environment of the molecular host. Synthetic chemists have long endeavored to design host molecules capable of selectively binding slow-reacting substrates and catalyzing their chemical reactions. While synthetic catalysts are often site-specific and require certain properties of the substrate to insure catalysis, enzymes are often able to modify basic properties of the bound substrate such as pK{sub a} in order to enhance reactivity. Two common motifs used by nature to activate otherwise unreactive compounds are the precise arrangement of hydrogen-bonding networks and electrostatic interactions between the substrate and adjacent residues of the protein. Precise arrangement of hydrogen bonding networks near the active sites of proteins can lead to well-tuned pK{sub a}-matching, and can result in pK{sub a} shifts of up to eight units, as shown in bacteriorhodopsin. Similarly, purely electrostatic interactions can greatly favor charged states and have been responsible for pK{sub a} shifts of up to five units for acetoacetate decarboxylase. Attempts have been made to isolate the contributions of electrostatic versus covalent interactions to such pK{sub a} shifts; however this remains a difficult challenge experimentally. This challenge emphasizes the importance of synthesizing

  17. Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang; Gur, Sourav; Danielson, Thomas L.; Hin, Celine N.; Pannala, Sreekanth; Frantziskonis, George N.

    2016-01-28

    We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which canmore » be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.« less

  18. Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walker, Johnnie A.; Takasuka, Taichi E.; Deng, Kai; Bianchetti, Christopher M.; Udell, Hannah S.; Prom, Ben M.; Kim, Hyunkee; Adams, Paul D.; Northen, Trent R.; Fox, Brian G.

    2015-12-21

    Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed. CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolyticmore » activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass. In conclusion, we have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.« less

  19. Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules

    SciTech Connect (OSTI)

    Walker, Johnnie A.; Takasuka, Taichi E.; Deng, Kai; Bianchetti, Christopher M.; Udell, Hannah S.; Prom, Ben M.; Kim, Hyunkee; Adams, Paul D.; Northen, Trent R.; Fox, Brian G.

    2015-12-21

    Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed. CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolytic activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass. In conclusion, we have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.

  20. Secretary Chu Addresses the International Atomic Energy Agency General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference | Department of Energy Addresses the International Atomic Energy Agency General Conference Secretary Chu Addresses the International Atomic Energy Agency General Conference September 20, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's 54th General Conference today in Vienna. His prepared remarks are below: Thank you, Ambassador Enkhsaikhan. Congratulations on your election as President of this Conference.

  1. Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges | Department of Energy Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges. The Department of Energy is seeking comments on policy and logistical challenges that confront smart grid implementation, as well as recommendations on how to best overcome those challenges. Steffes Corporation Smart Grid

  2. Strategies to Address Split Incentives in Multifamily Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy to Address Split Incentives in Multifamily Buildings Strategies to Address Split Incentives in Multifamily Buildings Better Buildings Neighborhood Program Multifamily / Low-Income Peer Exchange Call: Strategies to Address Split Incentives in Multifamily Buildings, Call Slides and Discussion Summary, April 26, 2012. Call Slides and Discussion Summary (546.02 KB) More Documents & Publications Outreach to Multifamily Landlords and Tenants Stewards of Affordable Housing

  3. Expanding Opportunity and Addressing Unique Challenges Facing Women and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Girls of Color | Department of Energy Expanding Opportunity and Addressing Unique Challenges Facing Women and Girls of Color Expanding Opportunity and Addressing Unique Challenges Facing Women and Girls of Color November 17, 2014 - 11:35am Addthis When President Obama founded the White House Council on Women and Girls (CWG) within the first two months of taking office, he charged us with working to address inequalities and barriers facing women and girls in our schools, workplaces, and

  4. Working Together to Address Natural Gas Storage Safety | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Address Natural Gas Storage Safety Working Together to Address Natural Gas Storage Safety April 1, 2016 - 11:15am Addthis Working Together to Address Natural Gas Storage Safety Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for Science and Energy Marie Therese Dominguez Marie Therese Dominguez Administrator, U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration As a part of the Administration's ongoing commitment to support state and

  5. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Across U.S. Industry | Department of Energy Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry eip_report_pg9.pdf (2.52 MB) More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology Solutions Energy Technology Solutions: Public-Private

  6. Addressing Barriers to Upgrade Projects at Affordable Multifamily

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Properties (201) | Department of Energy Addressing Barriers to Upgrade Projects at Affordable Multifamily Properties (201) Addressing Barriers to Upgrade Projects at Affordable Multifamily Properties (201) Better Buildings Residential Network Peer Exchange Call Series: Addressing Barriers to Upgrade Projects at Affordable Multifamily Properties (201), call slides and discussion summary. Call Slides and Discussion Summary (1.83 MB) More Documents & Publications Incorporating Energy

  7. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Plenary IV: Advances in Bioenergy Feedstocks-From Field to Fuel Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Allen Julian, Chief Business Officer, MBI julian_biomass_2014.pdf (1.66 MB) More Documents & Publications 2015 Peer Review Presentations-Biochemical Conversion 2015 Peer Review Report Process Design and

  8. Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Logistical Challenges | Department of Energy Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative is a generation and transmission cooperative (G&T) that provides the wholesale electrical requirements and other services for 25 electric distribution cooperatives and 16 municipal utilities in the Upper Midwest. Smart Grid RFI: Addressing

  9. Utility Regulation and Business Model Reforms for Addressing the Financial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Distributed Solar on Utilities | Department of Energy Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Implementing a range of alternative utility-rate reforms could minimize solar

  10. Bush Administration Plays Leading Role in Studying and Addressing Global

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change | Department of Energy Plays Leading Role in Studying and Addressing Global Climate Change Bush Administration Plays Leading Role in Studying and Addressing Global Climate Change February 27, 2007 - 3:49pm Addthis Washington, DC - Continuing to take the lead in addressing global climate change, Energy Secretary Samuel Bodman, Environmental Protection Agency (EPA) Administrator Stephen Johnson, and National Oceanic and Atmospheric Administration (NOAA) Administrator Vice

  11. Energy Saver RSS Subscribers: Update Your Feed Address | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy RSS Subscribers: Update Your Feed Address Energy Saver RSS Subscribers: Update Your Feed Address September 28, 2015 - 12:46pm Addthis Just a short administrative note for Energy Saver RSS subscribers: our feed address is changing. To continue reading the Energy Saver Blog through your RSS feed reader, please update the link in your reader to http://energy.gov/rss/energysaver/1280681. Thanks for reading and subscribing to Energy Saver! Addthis Related Articles The Energy Savers Blog

  12. DOE Seeks Input On Addressing Contractor Pension and Medical Benefits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liabilities | Department of Energy Input On Addressing Contractor Pension and Medical Benefits Liabilities DOE Seeks Input On Addressing Contractor Pension and Medical Benefits Liabilities March 27, 2007 - 12:10pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced in the Federal Register that it is seeking public comment on how to address the increasing costs and liabilities of contractor employee pension and medical benefits. Under the Department of Energy's unique

  13. Headquarters Program & Staff Office Mailing Addresses | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Headquarters Program & Staff Office Mailing Addresses Headquarters Program & Staff Office Mailing Addresses The following addresses are for delivery of regular mail and small packages: Delivery to the Headquarters buildings in Washington, DC: Name of Individual Title Routing Symbol/Forrestal Building U.S. Department of Energy 1000 Independence Ave., S.W. Washington, DC 20585 Name of Individual Title Routing Symbol/L'Enfant Plaza Building U.S. Department of Energy 1000

  14. Towards Addressing Surface Effects in Ordinary Isotropic Peridynamic...

    Office of Scientific and Technical Information (OSTI)

    Towards Addressing Surface Effects in Ordinary Isotropic Peridynamic Models Position Aware ... Resource Relation: Conference: SIAM Conference on 'Analysis of Partial Differential ...

  15. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plenary IV: Advances in Bioenergy Feedstocks-From Field to Fuel Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Allen Julian, Chief Business Officer, MBI ...

  16. Method for the electro-addressable functionalization of electrode...

    Office of Scientific and Technical Information (OSTI)

    Title: Method for the electro-addressable functionalization of electrode arrays A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium ...

  17. Method for the electro-addressable functionalization of electrode...

    Office of Scientific and Technical Information (OSTI)

    A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium molecules on an electrode array followed by post-assembly electro-addressable ...

  18. Ambient Corporation's Reply comments to DOE RFI: Addressing Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation's ... to deploy cost-effective long-term smart grid benefits. ...

  19. Smart Grid RFI: Addressing Policy and Logistical Challenges,...

    Broader source: Energy.gov (indexed) [DOE]

    Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Smart Grid Consortium, Response of New York State Smart Grid Addressing ...

  20. Smart Grid RFI: Addressing Policy and Logistical Challenges....

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges. Comments of the Alliance to Save Energy. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the Alliance to Save Energy. The Alliance to Save ...

  1. Addressing Challenging Materials at Oak Ridge National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    Title: Addressing Challenging Materials at Oak Ridge National Laboratory No abstract prepared. Authors: Jubin, Robert Thomas 1 ; Patton, Bradley D 1 ; Robinson, Sharon M 1 ; ...

  2. Ames Laboratory to Lead New Research Effort to Address Shortages...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ames Laboratory to Lead New Research Effort to Address Shortages in Rare Earth and Other ... These critical materials, including many rare earth elements, are essential for ...

  3. Keynote Address: Billy Parish of Mosaic | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    0, 2014 3:00PM to 3:30PM PDT Pacific Ballroom Billy Parish, President and Founder of Mosaic, will address Summit attendees

  4. Method for the electro-addressable functionalization of electrode...

    Office of Scientific and Technical Information (OSTI)

    Electro-addressable functionalization of electrode arrays enables the multi-target electrochemical sensing of biological and chemical analytes. Authors: Harper, Jason C. ; Polsky, ...

  5. Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turkmenistan Industrial Oil and Gas Exhibition Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition November 16, 2007 - 4:31pm Addthis Holds Bilateral ...

  6. Research Projects to Address Technical Challenges Facing Small...

    Energy Savers [EERE]

    Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development Research Projects to Address Technical Challenges Facing Small Oil and Natural Gas ...

  7. Africa - Technical Potential of Solar Energy to Address Energy...

    Open Energy Info (EERE)

    - Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technical Potential of Solar...

  8. Pensacola Smart Grid RFI Addressing Policy and Logistical Challenges...

    Energy Savers [EERE]

    Pensacola Smart Grid RFI Addressing Policy and Logistical Challenges. Providing comment on: Consumer facing programs such as feedback, demandresponse, energy efficiency, and ...

  9. Addressing Policy and Logistical Challenges to Smart Grid Implementati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DRAFT EIS PUBLIC HEARINGS- Addressing Policy and Logistical Challenges to Smart Grid Implementation ... and Notice of Public Hearing Implementing the National Broadband Plan by ...

  10. Address (Smart Grid Project) (France) | Open Energy Information

    Open Energy Info (EERE)

    France) Jump to: navigation, search Project Name Address Country France Coordinates 46.073231, 2.427979 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  11. New partnership uses advanced computer science modeling to address...

    National Nuclear Security Administration (NNSA)

    New partnership uses advanced computer science modeling to address climate change Friday, August 29, 2014 - 10:26am Several national laboratories and institutions have joined ...

  12. Addressing Policy and Logistical Challenges to Smart Grid Implementati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplemental Comments by The Office of the Ohio Consumers Counsel ("OCC") City Utilities of Springfield Missouri Comments on Smart Grid RFI: Addressing Policy and Logistical ...

  13. Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Studies on Lithium Manganese Rich MNC Composite Cathodes ... Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials

  14. Synthetic Biology for Advanced Fuels (Opening Keynote Address...

    Office of Scientific and Technical Information (OSTI)

    Synthetic Biology for Advanced Fuels (Opening Keynote Address - 2010 JGI User Meeting) Citation Details In-Document Search Title: Synthetic Biology for Advanced Fuels (Opening ...

  15. Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  16. New York Independent System Operator, Smart Grid RFI: Addressing...

    Office of Environmental Management (EM)

    New York Independent System Operator, Smart Grid RFI: Addressing Policy and Logistical ... September 17, 2010 Federal Register, the New York Independent System Operator, Inc. ...

  17. Microsoft Word - Actions to address lessons learned.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Actions to address Work Planning and Scheduling System lessons learned Action Executive owner Staff assigned Due date Understand the business environment of vendor references....

  18. Is It Homogeneous or Heterogeneous Catalysis Derived from [RhCp*Cl2]2? In Operando-XAFS, Kinetic and Crucial Kinetic Poisoning Evidence for Subnanometer Rh4 Cluster-Based Benzene Hydrogenation Catalysis

    SciTech Connect (OSTI)

    Bayram, Ercan; Linehan, John C.; Fulton, John L.; Roberts, John A.; Szymczak, Nathaniel; Smurthwaite, Tricia D.; Ozkar, Saim; Balasubramanian, Mahalingam; Finke, Richard G.

    2011-11-23

    Determining the true, kinetically dominant catalytically active species, in the classic benzene hydrogenation system pioneered by Maitlis and co-workers 34 years ago starting with [RhCp*Cl2]2 (Cp* = [{eta}5-C5(CH3)5]), has proven to be one of the most challenging case studies in the quest to distinguish single-metal-based 'homogeneous' from polymetallic, 'heterogeneous' catalysis. The reason, this study will show, is the previous failure to use the proper combination of (i) operando spectroscopy to determine the dominant form(s) of the precatalyst's mass under catalysis (i.e., operating) conditions, plus then and crucially also (ii) the previous lack of the necessary kinetic studies, catalysis being a 'wholly kinetic phenomenon' as J. Halpern long ago noted. An important contribution from this study will be to reveal the power of quantitiative kinetic poisoning experiments for distinguishing single-metal, or in this case subnanometer Rh4 cluster-based catalysis from larger, polymetallic Rh(0)n nanoparticle catalysis, at least under favorable conditions. The combined operando-XAFS (X-ray absorption fine structure) spectroscopy and kinetic evidences provide a compelling case for Rh4-based, with average stoichiometry 'Rh4Cp*2.4Cl4Hc', benzene hydrogenation catalysis in 2-propanol with added Et3N and at 100 C and 50 atm initial H2 pressure. The results also reveal, however, that if even ca. 1.4% of the total soluble Rh(0)n had formed nanoparticles, then those Rh(0)n nanoparticles would have been able to account for all the observed benzene hydrogenation catalytic rate (using commercial, ca. 2 nm, polyethyleneglycol-dodecylether hydrosol stabilized Rh(0)n nanoparticles as a model system). The results 'especially the poisoning methodology developed and employed' are of significant, broader interest since determining the nature of the true catalyst continues to be a central, often vexing issue in any and all catalytic reactions. The results are also of fundamental

  19. Method for the electro-addressable functionalization of electrode arrays

    DOE Patents [OSTI]

    Harper, Jason C.; Polsky, Ronen; Dirk, Shawn M.; Wheeler, David R.; Arango, Dulce C.; Brozik, Susan M.

    2015-12-15

    A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium molecules on an electrode array followed by post-assembly electro-addressable conversion of the unreactive group to a chemical or biological recognition group. Electro-addressable functionalization of electrode arrays enables the multi-target electrochemical sensing of biological and chemical analytes.

  20. Symbiosis: Addressing Biomass Production Challenges and Climate Change |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening keynote of the Symbiosis Conference. symbiosis_conference_hamilton.pdf (1.4 MB) More Documents & Publications The Future of Bioenergy Feedstock Production Symbiosis Biofeedstock Conference: Expanding Commercialization of Mutualistic Microbes to Increase Feedstock Production Symbiosis

  1. IP address management : augmenting Sandia's capabilities through open source tools.

    SciTech Connect (OSTI)

    Nayar, R. Daniel

    2005-08-01

    Internet Protocol (IP) address management is an increasingly growing concern at Sandia National Laboratories (SNL) and the networking community as a whole. The current state of the available IP addresses indicates that they are nearly exhausted. Currently SNL doesn't have the justification to obtain more IP address space from Internet Assigned Numbers Authority (IANA). There must exist a local entity to manage and allocate IP assignments efficiently. Ongoing efforts at Sandia have been in the form of a multifunctional database application notably known as Network Information System (NWIS). NWIS is a database responsible for a multitude of network administrative services including IP address management. This study will explore the feasibility of augmenting NWIS's IP management capabilities utilizing open source tools. Modifications of existing capabilities to better allocate available IP address space are studied.

  2. JLab Will Test its Public Address System | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 22 at 5:30 p.m.: JLab Will Test its Public Address System On Wednesday, June 22, Emergency Management Team staff will conduct the monthly test of Jefferson Lab's Public Address (PA) System - the live audible announcement feature - available through the lab's Cisco phones. This monthly operational test of the system occurs at 5:30 p.m. on the third or fourth Wednesday of each month. No actions are required or expected from members of the lab community with this test. The Public Address

  3. JLab Will Test its Public Address System | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 20 at 5:30 p.m.: JLab Will Test its Public Address System On Wednesday, July 20, Emergency Management Team staff will conduct the monthly test of Jefferson Lab's Public Address (PA) System - the live audible announcement feature - available through the lab's Cisco phones. This monthly operational test of the system occurs at 5:30 p.m. on the third Wednesday of each month. No actions are required or expected from members of the lab community with this test. The Public Address System may be

  4. Molecular-scale, Three-dimensional Non-Platinum Group Metal Electrodes for Catalysis of Fuel Cell Reactions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molecular-scale, Three-dimensional Non-Platinum Group Metal Electrodes for Catalysis of Fuel Cell Reactions John B. Kerr Lawrence Berkeley National Laboratory (LBNL) September 30, 2009 Team Members: Adam Weber, Rachel Segalman, Robert Kostecki, Jeff Reimer, John Arnold, Martin Head-Gordon (LBNL). Piotr Zelenay, James Boncella, Yu Seung Kim, Neil Henson, Jerzy Chlistunoff (LANL). Steve Hamrock, Radoslav Atanasoski (3M) Budget: DOE share - $9.58MM over four years; 3M share - in-kind over four

  5. Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol

    SciTech Connect (OSTI)

    Deshlahra, Prashant; Carr, Robert T.; Chai, Song-Hai; Iglesia, Enrique

    2015-02-06

    Acid and redox reaction rates of CH₃OH-O₂ mixtures on polyoxometalate (POM) clusters, together with isotopic, spectroscopic, and theoretical assessments of catalyst properties and reaction pathways, were used to define rigorous descriptors of reactivity and to probe the compositional effects for oxidative dehydrogenation (ODH) and dehydration reactions. ³¹P-MAS NMR, transmission electron microscopy and titrations of protons with di-tert-butylpyridine during catalysis showed that POM clusters retained their Keggin structure upon dispersion on SiO₂ and after use in CH₃OH reactions. The effects of CH₃OH and O₂ pressures and of D-substitution on ODH rates show that C-H activation in molecularly adsorbed CH₃OH is the sole kinetically relevant step and leads to reduced centers as intermediates present at low coverages; their concentrations, measured from UV-vis spectra obtained during catalysis, are consistent with the effects of CH₃OH/O₂ ratios predicted from the elementary steps proposed. First-order ODH rate constants depend strongly on the addenda atoms (Mo vs W) but weakly on the central atom (P vs Si) in POM clusters, because C-H activation steps inject electrons into the lowest unoccupied molecular orbitals (LUMO) of the clusters, which are the d-orbitals at Mo⁶⁺ and W⁶⁺ centers. H-atom addition energies (HAE) at O-atoms in POM clusters represent the relevant theoretical probe of the LUMO energies and of ODH reactivity. The calculated energies of ODH transition states at each O-atom depend linearly on their HAE values with slopes near unity, as predicted for late transition states in which electron transfer and C-H cleavage are essentially complete. HAE values averaged over all accessible O-atoms in POM clusters provide the appropriate reactivity descriptor for oxides whose known structures allow accurate HAE calculations. CH₃OH dehydration proceeds via parallel pathways mediated by late carbenium-ion transition states; effects of

  6. Keynote Address: Cristin Dorgelo, White House Office of Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cristin Dorgelo, White House Office of Science and Technology Policy Keynote Address: Cristin Dorgelo, White House Office of Science and Technology Policy May 21, 2014 2:20PM to ...

  7. The State of the Ames Laboratory Address 2011

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01

    Alex King, director of The Ames Laboratory, discusses the budget situation, improvements at Ames Lab and infrastructure improvements during the State of the Lab address on Tuesday, May 24, 2011.

  8. Keynote Address: Ali Zaidi, the White House Domestic Policy Council...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ali Zaidi, the White House Domestic Policy Council Keynote Address: Ali Zaidi, the White House Domestic Policy Council May 21, 2014 2:05PM to 2:30PM PDT Pacific Ballroom Keynote...

  9. Department of Energy Releases Strategic Plan to Address Energy...

    Energy Savers [EERE]

    Department of Energy Releases Strategic Plan to Address Energy Challenges October 2, 2006 - 9:01am Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today released the ...

  10. The INL Seismic Risk Assessment Project: Requirements for Addressing...

    Office of Environmental Management (EM)

    The INL Seismic Risk Assessment Project: Requirements for Addressing DOE Order 420.1C & A Proposed Generic Methodology Presentation from the May 2015 Seismic Lessons-Learned Panel ...