National Library of Energy BETA

Sample records for brittle material failure

  1. Brittle failure kinetics model for concrete

    SciTech Connect (OSTI)

    Silling, S.A.

    1997-03-01

    A new constitutive model is proposed for the modeling of penetration and large stress waves in concrete. Rate effects are incorporated explicitly into the damage evolution law, hence the term brittle failure kinetics. The damage variable parameterizes a family of Mohr-Coulomb strength curves. The model, which has been implemented in the CTH code, has been shown to reproduce some distinctive phenomena that occur in penetration of concrete targets. Among these are the sharp spike in deceleration of a rigid penetrator immediately after impact. Another is the size scale effect, which leads to a nonlinear scaling of penetration depth with penetrator size. This paper discusses the theory of the model and some results of an extensive validation effort.

  2. Measurements and Observations on Adhesion to Brittle Materials...

    Office of Scientific and Technical Information (OSTI)

    Measurements and Observations on Adhesion to Brittle Materials. Citation Details In-Document Search Title: Measurements and Observations on Adhesion to Brittle Materials. Abstract ...

  3. Fabrication of brittle materials -- current status

    SciTech Connect (OSTI)

    Scattergood, R.O.

    1988-12-01

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  4. Fracture mechanics applied to the machining of brittle materials

    SciTech Connect (OSTI)

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  5. Simulations of ductile flow in brittle material processing

    SciTech Connect (OSTI)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  6. Micromechanics of failure in brittle geomaterials. Final technical report (for 7/1/1994 - 8/31/2000)

    SciTech Connect (OSTI)

    Wong, Teng-fong

    2000-12-01

    The overall objective was to provide a fundamental understanding of brittle failure processes in porous and compact geomaterials. This information is central to energy-related programs such as oil and gas exploration/production, reservoir engineering, drilling technology, geothermal energy recovery, nuclear waste isolation, and environmental remediation. The effects of key parameters such as grain boundary structure and cementation, damage state, and load path on the deformation and failure model of brittle geomaterials are still largely unknown. The research methodology emphasized the integration of experimental rock mechanical testing, quantitative microscopy, and detailed analysis using fracture mechanics, continuum plasticity theory, and numerical methods. Significant progress was made in elucidating the micromechanics of brittle failure in compact crystalline rocks, as well as high-porosity siliciclastic and carbonate rocks. Substantial effort was expended toward applying a new quantitative three-dimensional imaging technique to geomaterials and for developing enhanced image analysis capabilities. The research is presented under the following topics: technique for imaging the 3-D pore structure of geomaterials; mechanics of compressive failure in sandstone; effect of water on compressive failure of sandstone; micromechanics of compressive failure: observation and model; and the brittle-ductile transition in porous carbonate rocks.

  7. Material brittle fracture owing to thermoelastic effect of high energy nuclear particle

    SciTech Connect (OSTI)

    Kalinichenko, A.I.

    1996-12-31

    Rapid arising of the overheated domain near very heavy ion path (near fast neutron collision point) in solid results in generation of cylinder (spherical) thermoelastic stress wave. The latter can exceed the material strength and cause brittle fracture at going out on the free body interface. Size and shape of an erosion zone as well as erosion rate for both sorts of primary nuclear particles are found. The role of wave attenuation is discussed. The products of erosion are of macroscopic scaly particles having the typical thickness (1 {divided_by} 5) {center_dot} 10{sup -7} cm and mass 10{sup -18} {divided_by} 10{sup -17} g. Such ion (neutron)-stimulated thermoacoustic grinding can take place in radioactive materials with fissionable addenda. The consideration of the brittle destruction under cosmic ray bombardment may be essential for equipment of deep space missions.

  8. Large-Scale Atomistic Simulations of Material Failure

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Abraham, Farid [IBM Almaden Research; Duchaineau, Mark [LLNL; Wirth, Brian [LLNL; Heidelberg,; Seager, Mark [LLNL; De La Rubia, Diaz [LLNL

    These simulations from 2000 examine the supersonic propagation of cracks and the formation of complex junction structures in metals. Eight simulations concerning brittle fracture, ductile failure, and shockless compression are available.

  9. A micromechanical basis for partitioning the evolution of grainbridging in brittle materials

    SciTech Connect (OSTI)

    Foulk III, J.W.; Cannon, R.M.; Johnson, G.C.; Klein, P.A.; Ritchie, R.O.

    2006-10-09

    A micromechanical model is developed for grain bridging inmonolithic ceramics. Specifically, bridge formation of a single,non-equiaxed grain spanning adjacent grains is addressed. A cohesive zoneframework enables crack initiation and propagation along grainboundaries. The evolution of the bridge is investigated through avariance in both grain angle and aspect ratio. We propose that thebridging process can be partitioned into five distinct regimes ofresistance: propagate, kink, arrest, stall, and bridge. Although crackpropagation and kinking are well understood, crack arrest and subsequent"stall" have been largely overlooked. Resistance during the stall regimeexposes large volumes of microstructure to stresses well in excess of thegrain boundary strength. Bridging can occur through continued propagationor reinitiation ahead of the stalled crack tip. The driving forcerequired to reinitiate is substantially greater than the driving forcerequired to kink. In addition, the critical driving force to reinitiateis sensitive to grain aspect ratio but relatively insensitive to grainangle. The marked increase in crack resistance occurs prior to bridgeformation and provides an interpretation for the rapidly risingresistance curves which govern the strength of many brittle materials atrealistically small flaw sizes.

  10. Failure Stress and Apparent Elastic Modulus of Diesel Particulate...

    Broader source: Energy.gov (indexed) [DOE]

    Three established mechanical test specimen geometries and test methods for brittle materials are adapted to DPF architecture to evaluate failure initiation stress and apparent ...

  11. Dynamic failure in two-phase materials

    SciTech Connect (OSTI)

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.

  12. Strengthening, Crack Arrest And Multiple Cracking In Brittle Materials Using Residual Stresses.

    DOE Patents [OSTI]

    Green, David J.; Sglavo, Vincenzo M.; Tandon, Rajan

    2003-02-11

    Embodiments include a method for forming a glass which displays visible cracking prior to failure when subjected to predetermined stress level that is greater than a predetermined minimum stress level and less than a failure stress level. The method includes determining a critical flaw size in the glass and introducing a residual stress profile to the glass so that a plurality of visible cracks are formed prior to failure when the glass is subjected to a stress that is greater than the minimum stress level and lower than the critical stress. One method for forming the residual stress profile includes performing a first ion exchange so that a first plurality of ions of a first element in the glass are exchanged with a second plurality of ions of a second element that have a larger volume than the first ions. A second ion exchange is also performed so that a plurality of the second ions in the glass are exchanged back to ions of the first element.

  13. Real-Time Quantitative Imaging of Failure Events in Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Quantitative Imaging of Failure Events in Materials Under Load at Temperatures Above 1,600 C Real-Time Quantitative Imaging of Failure Events in Materials Under Load at ...

  14. Dynamic failure in two-phase materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial resultsmore » suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.« less

  15. Failure of materials. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Failure of materials. No abstract prepared. Authors: Boyce, Brad Lee Publication Date: 2010-08-01 OSTI Identifier: 1024457 Report ...

  16. Failure Stress and Apparent Elastic Modulus of Diesel Particulate Filter Ceramics

    Broader source: Energy.gov [DOE]

    Three established mechanical test specimen geometries and test methods for brittle materials are adapted to DPF architecture to evaluate failure initiation stress and apparent elastic modulus of the ceramics.

  17. In-vessel ITER tubing failure rates for selected materials and coolants

    SciTech Connect (OSTI)

    Marshall, T.D.; Cadwallader, L.C.

    1994-03-01

    Several materials have been suggested for fabrication of ITER in-vessel coolant tubing: beryllium, copper, Inconel, niobium, stainless steel, titanium, and vanadium. This report generates failure rates for the materials to identify the best performer from an operational safety and availability perspective. Coolant types considered in this report are helium gas, liquid lithium, liquid sodium, and water. Failure rates for the materials are generated by including the influence of ITER`s operating environment and anticipated tubing failure mechanisms with industrial operating experience failure rates. The analyses define tubing failure mechanisms for ITER as: intergranular attack, flow erosion, helium induced swelling, hydrogen damage, neutron irradiation embrittlement, cyclic fatigue, and thermal cycling. K-factors, multipliers, are developed to model each failure mechanism and are applied to industrial operating experience failure rates to generate tubing failure rates for ITER. The generated failure rates identify the best performer by its expected reliability. With an average leakage failure rate of 3.1e-10(m-hr){sup {minus}1}and an average rupture failure rate of 3.1e-11(m-hr){sup {minus}1}, titanium proved to be the best performer of the tubing materials. The failure rates generated in this report are intended to serve as comparison references for design safety and optimization studies. Actual material testing and analyses are required to validate the failure rates.

  18. Method for preparing surfaces of metal composites having a brittle phase for plating. [Patent application

    DOE Patents [OSTI]

    Coates, C.W.; Wilson, T.J.

    1982-05-19

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composite are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  19. Real-Time Quantitative Imaging of Failure Events in Materials Under Load at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Above 1,600 °C Real-Time Quantitative Imaging of Failure Events in Materials Under Load at Temperatures Above 1,600 °C Real-Time Quantitative Imaging of Failure Events in Materials Under Load at Temperatures Above 1,600 °C Print Monday, 25 March 2013 00:00 Gathering information on the evolution of small cracks in ceramic matrix composites used in hostile environments such as in gas turbines and hypersonic flights has been a challenge. It is now shown that sequences of

  20. Atomistic simulations of brittle crack growth.

    SciTech Connect (OSTI)

    Hoyt, Jeffrey John

    2007-04-01

    Ceramic materials such as lead zirconium titanates (PZT), low temperature co-fired ceramics and silica glasses are used in several of Sandia's mission critical components. Brittle fracture, either during machining and processing or after many years in service, remains a serious reliability and cost issue. Despite its technological importance, brittle fracture remains poorly understand, especially the onset and propagation of sub-critical cracks. However, some insights into the onset of fracture can be gleaned from the atomic scale structure of the amorphous material. In silica for example, it is well known [1] that the Si-O-Si bonds are relatively weak and, in angle distribution functions determined from scattering experiments, the bonds exhibit a wide spread around a peak at 150. By contrast the O-Si-O bonds are strong with a narrow peak in the distribution around the 109 dictated by the SiO{sub 4} tetrahedron. In addition, slow energy release in silica, as deduced from dissolution experiments, depends on the distribution of 3-fold and higher rings in the amorphous structure. The purpose of this four month LDRD project was to investigate the atomic structure of silica in the bulk and in the vicinity of a crack tip using molecular dynamics simulations. Changes in the amorphous structure in the neighborhood of an atomically sharp tip may provide important clues as to the initiation sites and the stress intensity required to propagate a sub-critical crack.

  1. Failure by fracture and fatigue in 'NANO' and 'BIO'materials

    SciTech Connect (OSTI)

    Ritchie, R.O.; Muhlstein, C.L.; Nalla, R.K.

    2003-12-19

    The behavior of nanostructured materials/small-volumestructures and biologi-cal/bio-implantable materials, so-called "nano"and "bio" materials, is currently much in vogue in materials science. Oneaspect of this field, which to date has received only limited attention,is their fracture and fatigue properties. In this paper, we examine twotopics in this area, namely the premature fatigue failure ofsilicon-based micron-scale structures for microelectromechanical systems(MEMS), and the fracture properties of mineralized tissue, specificallyhuman bone.

  2. Modeling Thermally Induced Failure of Brittle Geomaterials (Technical...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: W-7405-ENG-48 Resource Type: Technical Report Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE Country of ...

  3. Method for preparing surfaces of metal composites having a brittle phase for plating

    DOE Patents [OSTI]

    Coates, Cameron W.; Wilson, Thomas J.

    1984-01-01

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composites are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component so as to provide a surface of essentially the malleable component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  4. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect (OSTI)

    Huang, X.; Ling, Z.; Dai, L. H.

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  5. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  6. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    SciTech Connect (OSTI)

    Anggraeni, Novia Antika

    2015-04-24

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano’s inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 – 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between −2.86 up to 5.49 days.

  7. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    SciTech Connect (OSTI)

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gas causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production

  8. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design

  9. Brittleness and Bayesian Inference (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Brittleness and Bayesian Inference Citation Details In-Document Search Title: Brittleness and Bayesian Inference Authors: Wallstrom, Timothy C. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-08-15 OSTI Identifier: 1090691 Report Number(s): LA-UR-13-25883 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: DOE/LANL Country of Publication: United States Language: English

  10. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    SciTech Connect (OSTI)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO2 and comparing the predictions with experiments.

  11. Brittle Failure Design Criteria for Ductile Cast Iron Spent-Fuel

    Office of Scientific and Technical Information (OSTI)

    ... . 8 4.1 DropTest . . . . . . . . . . . . . . . . 8 4.2 Test Conditions . . . . . . . . . . . . . . 8 4.3 Location of Test Flaws . . . . . . . . . . . . 8 4.4 Flaw Configuration . ...

  12. Brittle Failure Design Criteria for Ductile Cast Iron Spent-Fuel

    Office of Scientific and Technical Information (OSTI)

    Am. SOC. of Mech. Engineers, (1980). 3. "Pressure Vessel Codes: Their Application to Nuclear Reactor Systems," Technical Reports Series No. 56, International Atomic Energy...

  13. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO2 and comparing themore » predictions with experiments.« less

  14. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    SciTech Connect (OSTI)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  15. Definition of the Brittle-Ductile Transition in the Coso Geothermal...

    Open Energy Info (EERE)

    the Brittle-Ductile Transition in the Coso Geothermal Field East-Central California USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  16. BIOASSAY VESSEL FAILURE ANALYSIS

    SciTech Connect (OSTI)

    Vormelker, P

    2008-09-22

    Two high-pressure bioassay vessels failed at the Savannah River Site during a microwave heating process for biosample testing. Improper installation of the thermal shield in the first failure caused the vessel to burst during microwave heating. The second vessel failure is attributed to overpressurization during a test run. Vessel failure appeared to initiate in the mold parting line, the thinnest cross-section of the octagonal vessel. No material flaws were found in the vessel that would impair its structural performance. Content weight should be minimized to reduce operating temperature and pressure. Outer vessel life is dependent on actual temperature exposure. Since thermal aging of the vessels can be detrimental to their performance, it was recommended that the vessels be used for a limited number of cycles to be determined by additional testing.

  17. Collaborative Research. Damage and Burst Dynamics in Failure of Complex Geomaterials. A Statistical Physics Approach to Understanding the Complex Emergent Dynamics in Near Mean-Field Geological Materials

    SciTech Connect (OSTI)

    Rundle, John B.; Klein, William

    2015-09-29

    We have carried out research to determine the dynamics of failure in complex geomaterials, specifically focusing on the role of defects, damage and asperities in the catastrophic failure processes (now popularly termed “Black Swan events”). We have examined fracture branching and flow processes using models for invasion percolation, focusing particularly on the dynamics of bursts in the branching process. We have achieved a fundamental understanding of the dynamics of nucleation in complex geomaterials, specifically in the presence of inhomogeneous structures.

  18. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  19. Arrest of propagating brittle cracks in low toughness pipe with clock spring reinforcements. Topical report, December 1992-November 1995

    SciTech Connect (OSTI)

    Block, N.; Kishel, J.; Stephens, D.R.

    1995-12-01

    Results obtained in this project generally correlated with work earlier by NCF Industries in 1990, although a greater number of brittle cracks were generated in most of the tests in this project. They verified that design of an external arrest section is much more stringent for termination of multiple brittle cracks at temperatures providing lower shelf toughness of the pipe steel. Arrest of brittle cracks appears feasible with tightly applied external fiberglass wraps of proper design. According, additional work to define design needed for reproducible arrests of multiple brittle cracks by Clock Spring is warranted.

  20. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Understanding and manipulating the most fundamental properties of materials can lead to major breakthroughs in solar power, reactor fuels, optical computing, telecommunications. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Yu Seung Kim (left) and Kwan-Soo Lee (right) New class of fuel cells offer increased flexibility, lower cost A new class of fuel cells based on a newly discovered polymer-based material could bridge

  1. Is Bayesian inference "brittle"? (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Is Bayesian inference "brittle"? Citation Details In-Document Search Title: Is Bayesian inference "brittle"? Authors: Wallstrom, Timothy C. [1] ; Higdon, David M. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-08-15 OSTI Identifier: 1090693 Report Number(s): LA-UR-13-26482 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: DOE/LANL Country of Publication:

  2. Carbon deposition during brittle rock deformation: Changes in electrical properties of fault zones and potential geoelectric phenomena during earthquakes

    SciTech Connect (OSTI)

    Mathez, E A; Roberts, J J; Duba, A G; Kronenberg, A K; Karner, S L

    2008-05-16

    To investigate potential mechanisms for geoelectric phenomena accompanying earthquakes, we have deformed hollow cylinders of Sioux quartzite to failure in the presence of carbonaceous pore fluids and investigated the resulting changes in electrical conductivity and carbon distribution. Samples were loaded at room temperature or 400 C by a hydrostatic pressure at their outer diameter, increasing pressure at a constant rate to {approx}290 MPa. Pore fluids consisted of pure CO, CO{sub 2}, CH{sub 4} and a 1:1 mixture of CO{sub 2} and CH{sub 4}, each with pore pressures of 2.0 to 4.1 MPa. Failure occurred by the formation of mode II shear fractures transecting the hollow cylinder walls. Radial resistivities of the cylinders fell to 2.9 to 3.1 M{Omega}-m for CO tests and 15.2 to 16.5 M{Omega}-m for CO{sub 2}:CH{sub 4} tests, compared with >23 M{Omega}-m for dry, undeformed cylinders. Carbonaceous fluids had no discernable influence on rock strength. Based on mapping using electron microprobe techniques, carbon occurs preferentially as quasi-continuous films on newly-formed fracture surfaces, but these films are absent from pre-existing surfaces in those same experiments. The observations support the hypothesis that electrical conductivity of rocks is enhanced by the deposition of carbon on fracture surfaces and imply that electrical properties may change in direct response to brittle deformation. They also suggest that the carbon films formed nearly instantaneously as the cracks formed. Carbon film deposition may accompany the development of microfracture arrays prior to and during fault rupture and thus may be capable of explaining precursory and coseismic geoelectric phenomena.

  3. Measurement of the ductile to brittle transition temperature for waste tank cooling coils

    SciTech Connect (OSTI)

    Wiersma, B.J.

    1992-09-01

    Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was {minus}5{degree}F and, with the addition of a 30{degree}F safety factor, the minimum safe operating temperature was determined to be 25{degree}F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50{degree}F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack.

  4. Measurement of the ductile to brittle transition temperature for waste tank cooling coils

    SciTech Connect (OSTI)

    Wiersma, B.J.

    1992-09-01

    Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was [minus]5[degree]F and, with the addition of a 30[degree]F safety factor, the minimum safe operating temperature was determined to be 25[degree]F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50[degree]F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack.

  5. Balanced-activity improved inverse emulsion to inhibit brittle lutite hydration in oil fields

    SciTech Connect (OSTI)

    Olmedo, E. P.; de J. Hernandez Alvarez, R.; Barrera, C. D.; Ramos, J. D. G.

    1984-10-02

    An improved inverse emulsion for use as a drilling fluid that inhibits brittle lutite hydration. The emulsion includes a heavy oil; brine; a viscosity agent with thermostabilizing properties; an emulsifying agent; a thickening agent; a gelatinizing additive; and an alkaline earth metal hydroxide. The emulsion avoids hole collapsing and improves well gage stability.

  6. Mechanical Response of Thermoelectric Materials

    SciTech Connect (OSTI)

    Wereszczak, Andrew A.; Case, Eldon D.

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  7. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOE Patents [OSTI]

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  8. Service water system failures and degradations

    SciTech Connect (OSTI)

    Lam, P.; Leeds, E.

    1989-01-01

    The Office for Analysis and Evaluation of Operational Data (AEOD) of the U.S. Nuclear Regulatory Commission (NRC) has completed a comprehensive review and evaluation of service water system failures and degradations observed in operating events in light water reactors from 1980 to 1987. The review and evaluation focused on the identification of causes of system failures and degradations, the adequacy of corrective actions implemented and planned, and the safety significance of the operating events. The results of this review and evaluation indicate that service water system failures and degradations have significant safety implications. These system failures and degradations are attributable to a great variety of causes and have adverse impact on a large number of safety-related systems and components that are required to mitigate reactor accidents. Specifically, the causes of failures and degradations include various fouling mechanisms (sediment deposition, biofouling, corrosion and erosion, pipe coating failure, calcium carbonate, foreign material and debris intrusion); single failures and other design deficiencies; flooding; multiple equipment failures; personnel and procedural errors; and seismic deficiencies. Systems and components adversely impacted by a service water system failure or degradation include the component cooling water system, emergency diesel generators, emergency core-cooling system pumps and heat exchangers, the residual heat removal system, containment spray and fan coolers, control room chillers, and reactor building cooling units.

  9. Fracture initiation by local brittle zones in weldments of quenched and tempered structural alloy steel plate

    SciTech Connect (OSTI)

    Kenney, K.L.; Reuter, W.G.; Reemsnyder, H.S.; Matlock, D.K.

    1997-12-31

    The heat-affected zone (HAZ) embrittlement of an API 2Y Grade 50T quenched and tempered offshore structural steel plate, welded by the submerged-arc process at a heat input of 4.5 kJ/mm, was investigated from the viewpoint of identifying the local brittle zone (LBZ) microstructure and the metallurgical factors associated with its formation. Microstructural and fractographic analysis showed the LBZ microstructure to be dual phase martensite-austenite (M-A) constituent. The formation of M-A constituent was found to be related to microstructural banding of the hot-rolled base plate. When the banded base plate was welded, M-A constituent formed only within the band microstructure which penetrated the intercritically-reheated coarse-grain HAZ (IRCGHAZ). The chemistry of the band microstructure in conjunction with the thermal cycle of the IRCGHAZ provided the critical conditions for the formation of M-A constituent in the API 2Y Grade 50T steel investigated. The influence of local brittle zones (i.e., M-A constituent) on the HAZ fracture toughness was evaluated by means of Crack-Tip Opening Displacement (CTOD) tests. These tests showed the steel to suffer embrittlement when the fatigue precrack sampled an intercritically-reheated coarse-grain HAZ which contained M-A constituent, confirming that M-A constituent is the major microstructural factor controlling the HAZ toughness of this particular steel.

  10. SYNTHETIC SLING FAILURE - EVALUATIONS & RECOMMENDATIONS

    SciTech Connect (OSTI)

    MACKEY TC; HENDERSON CS

    2009-10-26

    The information and evaluations provided in this report were compiled to address the recurring problem of synthetic sling failure. As safety is the number one priority in all work aspects, a solution must be devised to prevent accidents from occurring. A total of thirteen cases regarding synthetic sling failure were evaluated in order to determine their causes, effects, and preventative measures. From the collected data, it was found that all cases in which the synthetic sling contacted the edge of its load resulted in sling failure. It is required that adequate synthetic sling protection devices be used to protect slings in any lift where the sling comes in direct contact with the edge or corner of its load. However, there are no consensus codes or standards stating the type, material, or purpose of the type of protective device used to protect the sling from being cut. Numerous industry standards and codes provide vague descriptions on how to protect synthetic slings. Without a clear, concise statement of how to protect synthetic slings, it is common for inadequate materials and sling protection devices to be used in an attempt to meet the intent of these requirements. The use of an inadequate sling protection device is the main cause of synthetic sling failure in all researched cases. Commercial sling protection devices come in many shapes and sizes, and have a variety of names, as well as advertised uses. 'Abrasion pads' and 'wear protectors' are two different names for products with the same intended purpose. There is no distinguishable way to determine the extent of sling protection which these devices will provide, or what specific scenarios they are made for. This creates room for error in a field where error is unacceptable. This report provides a recommended action for hoisting and rigging activities which require synthetic slings to contact a load, as well as recommended changes to industry standards which will benefit overall industry safety.

  11. Tensile cracking of a brittle conformal coating on a rough substrate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reedy, Jr., E. D.

    2016-04-07

    This note examines the effect of interfacial roughness on the initiation and growth of channel cracks in a brittle film. A conformal film with cusp-like surface flaws that replicate the substrate roughness is investigated. This type of surface flaw is relatively severe in the sense that stress diverges as the cusp-tip is approached (i.e., there is a power-law stress singularity). For the geometry and range of film properties considered, the analysis suggests that smoothing the substrate could substantially increase the film’s resistance to the formation of the through-the-thickness cracks that precede channel cracking. Furthermore, smoothing the substrate’s surface has amore » relatively modest effect on the film stress needed to propagate a channel crack.« less

  12. Failure mechanisms in MEMS.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen

    2003-07-01

    MEMS components by their very nature have different and unique failure mechanisms than their macroscopic counterparts. This paper discusses failure mechanisms observed in various MEMS components and technologies. MEMS devices fabricated using bulk and surface micromachining process technologies are emphasized. MEMS devices offer uniqueness in their application, fabrication, and functionality. Their uniqueness creates various failure mechanisms not typically found in their bulk or IC counterparts. In ICs, electrical precautions are taken to mitigate failure. In MEMS, both electrical and mechanical precautions must be enacted to reduce the risk of failure and increased reliability. Unlike ICs, many MEMS components are designed to interact with their environment, making the fabrication, testing, and packaging processes critical for the success of the device.

  13. Corrosion failures of austenitic stainless steel piping

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1993-10-01

    The safe and efficient operation of many chemical/industrial systems requires the continued integrity of the process piping; this is achieved through a complex series of interactions influenced by design, fabrication, construction, operation, inspection and lay-up requirements. Potential material-enviroment interactions are frequently, if evaluated at all, relegated to secondary considerations. This tendency virtually assures corrosion induced degradation of the process piping systems. Pitting, crevice attack, stress cracking, microbiologically influenced corrosion, intergranular attack and corrosion fatigue have caused leaks, cracks, failures and shutdown of numerous process systems. This paper uses the lessons learned from failure analysis to emphasize the importance of an integrated material program to system success. The necessity of continuing evaluation if also emphasized through examples of failures which were associated with materials-environment interactions caused by slight alterations of processes and/or systems.

  14. Technical basis for the aboveground structure failure and associated represented hazardous conditions

    SciTech Connect (OSTI)

    MANGAN, D.

    2003-03-20

    The purpose of the Technical Basis Document is to determine the consequences and frequency of aboveground structure failures. These failures include drops of contained equipment, such as a pump, from a SST or DST, a crane failure resulting in a load drop onto a HEPA filter. These failures can result in an uncontrolled release of radiological and toxicological material.

  15. Failures in sour services of southwestern China

    SciTech Connect (OSTI)

    Yang, B.; Xia, D.; Wang, Q.; Wang, Y.; Xian, A.; Shan, Y.

    1995-12-31

    There were several catastrophes that occurred because of material failures in sour services during the past decades, from the 1960s to the 1980s, in the Sichuan natural gas fields. The factors which induced these destructive accidents are summarized. The remedial measures and effects are reviewed. The work of anticorrosion and failure in sour service is a comprehensive study -- a systematic engineering. There are quite different failure mechanisms in sour service from the drilling, production, gathering, desulfurization, and transportation procedures. Therefore, the counter measures also should be diversified; i.e., the material and techniques selection, instruments, inhibitors, coating, the technique of construction, and the structure design, etc. All the above-listed factors could influence the anticorrosion ability of the equipment or apparatus. It is one of the major concerns for the exploitation of natural gas.

  16. Deformation and Failure Mechanisms of Shape Memory Alloys (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: Deformation and Failure Mechanisms of Shape Memory Alloys Citation Details In-Document Search Title: Deformation and Failure Mechanisms of Shape Memory Alloys The goal of this research was to understand the fundamental mechanics that drive the deformation and failure of shape memory alloys (SMAs). SMAs are difficult materials to characterize because of the complex phase transformations that give rise to their unique properties, including shape

  17. Weld failure detection

    DOE Patents [OSTI]

    Pennell, William E.; Sutton, Jr., Harry G.

    1981-01-01

    Method and apparatus for detecting failure in a welded connection, particrly applicable to not readily accessible welds such as those joining components within the reactor vessel of a nuclear reactor system. A preselected tag gas is sealed within a chamber which extends through selected portions of the base metal and weld deposit. In the event of a failure, such as development of a crack extending from the chamber to an outer surface, the tag gas is released. The environment about the welded area is directed to an analyzer which, in the event of presence of the tag gas, evidences the failure. A trigger gas can be included with the tag gas to actuate the analyzer.

  18. Fatigue failure in thin-film polysilicon is due to subcriticalcracking within the oxide layer

    SciTech Connect (OSTI)

    Alsem, D.H.; Muhlstein, C.L.; Stach, E.A.; Ritchie, R.O.

    2005-01-11

    It has been established that microelectromechanical systems (MEMS) created from polycrystalline silicon thin-films are subject to cyclic fatigue. Prior work by the authors has suggested that although bulk silicon is not susceptible to fatigue failure in ambient air, fatigue in micron-scale silicon is a result of a ''reaction-layer'' process, whereby high stresses induce a thickening of the post-release oxide at stress concentrations such as notches, which subsequently undergoes moisture-assisted cracking. However, there exists some controversy regarding the post-release oxide thickness of the samples used in the prior study. In this Letter, we present data from devices from a more recent fabrication run that confirm our prior observations. Additionally, new data from tests in high vacuum show that these devices do not fatigue when oxidation and moisture are suppressed. Each of these observations lends credence to the '''reaction-layer'' mechanism. Recent advances in the design of microelectromechanical systems (MEMS) have increased the demand for more reliable microscale structures. Although silicon is an effective and widely used structural material at the microscale, it is very brittle. Consequently, reliability is a limiting factor for commercial and defense applications. Since the surface to volume ratio of these structural films is very large, classical models for failure modes in bulk materials cannot always be applied. For example, whereas bulk silicon is immune to cyclic fatigue failure thin micron-scale structural films of silicon appear to be highly susceptible. It is clear that at these size scales, surface effects may become dominant in controlling mechanical properties. The main reliability issues for MEMS are stiction, fatigue and wear. Fatigue is important in cases where devices are subjected to a large number of loading cycles with amplitudes below their (single-cycle) fracture stress, which may arise due to vibrations intentionally induced in the

  19. Apparatus and method for prevention of cracking in welded brittle alloys

    DOE Patents [OSTI]

    Kronberg, James W.; Younkins, Robert M.

    2000-01-01

    An apparatus and method for reducing cracking in a heated material as the material cools. The apparatus includes a variable frequency electric signal generator that is coupled to a transducer. The transducer produces a variable frequency acoustic signal in response to the variable frequency electric signal, which is applied to the heated material to reduce cracking as the material cools.

  20. Synergistic failure of BWR internals

    SciTech Connect (OSTI)

    A. G. Ware; T. Y. Chang

    1999-10-25

    Boiling Water Reactor (BWR) core shrouds and other reactor internals important to safety are experiencing intergranular stress corrosion cracking (IGSCC). The United States Nuclear Regulatory Commission has followed the problem, and as part of its investigations, contracted with the Idaho National Engineering and Environmental Laboratory to conduct a risk assessment. The overall project objective is to assess the potential consequences and risks associated with the failure of IGSCC-susceptible BWR vessel internals, with specific consideration given to potential cascading and common mode effects. An initial phase has been completed in which background material was gathered and evaluated, and potential accident sequences were identified. A second phase is underway to perform a simplified, quantitative probabilistic risk assessment on a representative high-power BWR/4. Results of the initial study conducted on the jet pumps show that any cascading failures would not result in a significant increase in the core damage frequency. The methodology is currently being extended to other major reactor internals components.

  1. Synergistic Failure of BWR Internals

    SciTech Connect (OSTI)

    Ware, Arthur Gates; Chang, T-Y

    1999-10-01

    Boiling Water Reactor (BWR) core shrouds and other reactor internals important to safety are experiencing intergranular stress corrosion cracking (IGSCC). The United States Nuclear Regulatory Commission has followed the problem, and as part of its investigations, contracted with the Idaho National Engineering and Environmental Laboratory to conduct a risk assessment. The overall project objective is to assess the potential consequences and risks associated with the failure of IGSCC-susceptible BWR vessel internals, with specific consideration given to potential cascading and common mode effects. An initial phase has been completed in which background material was gathered and evaluated, and potential accident sequences were identified. A second phase is underway to perform a simplified, quantitative probabilistic risk assessment on a representative high-power BWR/4. Results of the initial study conducted on the jet pumps show that any cascading failures would not result in a significant increase in the core damage frequency. The methodology is currently being extended to other major reactor internals components.

  2. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  3. DOE fundamentals handbook: Material science. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum).

  4. Characterization and Failure Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Failure Analysis - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  5. Corrosion-related failures in feedwater heaters. Final report

    SciTech Connect (OSTI)

    Beavers, J.A.; Agrawal, A.K.; Berry, W.E.

    1983-07-01

    A survey of the literature was performed for the Electric Power Research Institute on corrosion-related failures in feedwater heaters. The survey was directed toward failures in fossil and in pressurized water reactor (PWR) nuclear power plants, but includes some pertinent information related to failures in boiling water reactor (BWR) power plants. The survey was organized into sections on the commonly used feedwater heater materials; C steel, brasses, Cu-Ni alloys, MONEL Alloy 400, and Type 304 Stainless Steel. A section on Ti as a potential feedwater heater material also is given in the appendices. Each section is divided into subsections on field experience and laboratory studies tat relate to the field failures that have been observed. Appendices are given on a feedwater heater description, water quality in power plants, forms of corrosion, and failure analysis techniques.

  6. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  7. Modeling brittle fracture, slip weakening, and variable friction in geomaterials with an embedded strong discontinuity finite element.

    SciTech Connect (OSTI)

    Regueiro, Richard A.; Borja, R. I.; Foster, C. D.

    2006-10-01

    Localized shear deformation plays an important role in a number of geotechnical and geological processes. Slope failures, the formation and propagation of faults, cracking in concrete dams, and shear fractures in subsiding hydrocarbon reservoirs are examples of important effects of shear localization. Traditional engineering analyses of these phenomena, such as limit equilibrium techniques, make certain assumptions on the shape of the failure surface as well as other simplifications. While these methods may be adequate for the applications for which they were designed, it is difficult to extrapolate the results to more general scenarios. An alternative approach is to use a numerical modeling technique, such as the finite element method, to predict localization. While standard finite elements can model a wide variety of loading situations and geometries quite well, for numerical reasons they have difficulty capturing the softening and anisotropic damage that accompanies localization. By introducing an enhancement to the element in the form of a fracture surface at an arbitrary position and orientation in the element, we can regularize the solution, model the weakening response, and track the relative motion of the surfaces. To properly model the slip along these surfaces, the traction-displacement response must be properly captured. This report focuses on the development of a constitutive model appropriate to localizing geomaterials, and the embedding of this model into the enhanced finite element framework. This modeling covers two distinct phases. The first, usually brief, phase is the weakening response as the material transitions from intact continuum to a body with a cohesionless fractured surface. Once the cohesion has been eliminated, the response along the surface is completely frictional. We have focused on a rate- and state-dependent frictional model that captures stable and unstable slip along the surface. This model is embedded numerically into the

  8. COMPRESSION SEAL AND SEALING MATERIAL THEREFOR

    DOE Patents [OSTI]

    Branin, T.G.

    1962-05-29

    This patent relates to compression seal and more particularly to a seaiing material therefor. The sealing surface is a coating consisting of alternate layers of gold and of a non-gold metal having similar plastic flow properties under pressure as gold. The coating is substantially free from oxidation effects when exposed to ambient atmosphere and does not become brittle when worked, as in a valve. (AEC)

  9. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    SciTech Connect (OSTI)

    Beygi, Morteza H.A.; Kazemi, Mohammad Taghi; Nikbin, Iman M.; Vaseghi Amiri, Javad; Rabbanifar, Saeed; Rahmani, Ebrahim

    2014-12-15

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly. It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G{sub F}) and the value measured through SEM (G{sub f}) (G{sub F} = 3.11G{sub f})

  10. Component failure data handbook

    SciTech Connect (OSTI)

    Gentillon, C.D.

    1991-04-01

    This report presents generic component failure rates that are used in reliability and risk studies of commercial nuclear power plants. The rates are computed using plant-specific data from published probabilistic risk assessments supplemented by selected other sources. Each data source is described. For rates with four or more separate estimates among the sources, plots show the data that are combined. The method for combining data from different sources is presented. The resulting aggregated rates are listed with upper bounds that reflect the variability observed in each rate across the nuclear power plant industry. Thus, the rates are generic. Both per hour and per demand rates are included. They may be used for screening in risk assessments or for forming distributions to be updated with plant-specific data.

  11. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  12. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  13. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  14. Experimental aspects of an investigation of macroscopic ductile failure criteria

    SciTech Connect (OSTI)

    Soo Hoo, M.S.; Benzley, S.E.; Priddy, T.G.

    1981-03-01

    Experimental results for the ductile failure of 7075-T651 aluminum are presented. Four separate shapes were tested to investigate the importance that macroscopic effective shear stress, hydrostatic stress, and plastic strain play in describing ductile failure of materials. The specimens used were: thin wall torsion tubes to create a state of pure shear, uniform hollow tubes to create a state of uniaxial stress; hour-glass shaped hollow tubes to create a state of biaxial stress; and notched round bars to create a state of triaxial stress. Two proposed ductile failure criteria are discussed in conjunction with the experimental results presented.

  15. Failure Atlas for Rolling Bearings in Wind Turbines

    SciTech Connect (OSTI)

    Tallian, T. E.

    2006-01-01

    systems used, and by several indexes. The present Atlas is intended as a supplement to the book. It has the same structure but contains only Plate pages, arranged in chapters, each with a chapter heading page giving a short definition of the failure mode illustrated. Each Plate page is self contained, with images, bearing and application data, and descriptions of the failure mode, the images and the suspected causes. Images are provided in two resolutions: The text page includes 6 by 9 cm images. In addition, high resolution image files are attached, to be retrieved by clicking on their 'push pin' icon. While the material in the present Atlas is self-contained, it is nonetheless a supplement to the book and the complete interpretation of the terse image descriptions and of the system underlying the failure code presupposes familiarity with the book. Since this Atlas is a supplement to the book, its chapter numbering follows that of the book. Not all failure modes covered in the book have been found among the observed wind turbines. For that reason, and because of the omission of introductory matter, the chapter numbers in this Atlas are not a continuous sequence.

  16. FRACTURE FAILURE CRITERIA OF SOFC PEN STRUCTURE

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2007-04-30

    Thermal stresses and warpage of the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature and mismatch of the coefficients of thermal expansion (CTE) of various layers in the PEN structures of solid oxide fuel cells (SOFC) during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. The porous nature of anode and cathode in the PEN structures determines presence of the initial flaws and crack on the interfaces of anode/electrolyte/cathode and in the interior of the materials. The sintering/assembling induced stresses may cause the fracture failure of PEN structure. Therefore, fracture failure criteria for SOFC PEN structures is developed in order to ensure the structural integrity of the cell and stack of SOFC. In this paper, the fracture criteria based on the relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

  17. Thermal Cycling on Fatigue Failure of the Plutonium Vitrification Melter

    SciTech Connect (OSTI)

    Jordan, Jeffrey; Gorczyca, Jennifer

    2009-02-11

    One method for disposition of excess plutonium is vitrification into cylindrical wasteforms. Due to the hazards of working with plutonium, the vitrification process must be carried out remotely in a shielded environment. Thus, the equipment must be easily maintained. With their simple design, induction melters satisfy this criterion, making them ideal candidates for plutonium vitrification. However, due to repeated heating and cooling cycles and differences in coefficients of thermal expansion of contacting materials fatigue failure of the induction melter is of concern. Due to the cost of the melter, the number of cycles to failure is critical. This paper presents a method for determining the cycles to failure for an induction melter by using the results from thermal and structural analyses as input to a fatigue failure model.

  18. An Estimator of Propagation of Cascading Failure

    SciTech Connect (OSTI)

    Dobson, Ian; Wierzbicki, Kevin; Carreras, Benjamin A; Lynch, Vickie E; Newman, David E

    2006-01-01

    The authors suggest a statistical estimator to measure the extent to which failures propagate in cascading failures such as large blackouts.

  19. Failure analysis issues in microelectromechanical systems (MEMS...

    Office of Scientific and Technical Information (OSTI)

    Title: Failure analysis issues in microelectromechanical systems (MEMS). Failure analysis and device characterization of MEMS components are critical steps in understanding the ...

  20. Effect of confinement on failure in 95 TATB/5 KEL-F

    SciTech Connect (OSTI)

    Ramsay, J.B.

    1985-01-01

    A modification of the usual wedge test for measuring the failure thickness has been developed that eliminates the effect of the confinement provided by the witness plate. The new test uses a prism of the explosive with a line initiator to start a detonation along the trapezoidal face of the prism. Experiments using PBX 9502 have shown that the failure thickness measured using the prism test is 1/2 the failure diameter measured in long cyclindrical charges, provided the wave can propagate 15 to 25 times the failure width. No significant effects of confinement is observed for low impedance confinement, whereas high impedance materials reduce the failure thickness. Thin layers of confinement reduce the failure thickness significantly. Copper, 0.025 mm thick, and 0.25-mm aluminum each reduce the failure thickness of PBX 9502 by 35%. 6 refs., 7 figs.

  1. Integrated Circuit Failure Analysis Hypertext Help System

    Energy Science and Technology Software Center (OSTI)

    1995-02-23

    This software assists a failure analyst performing failure analysis on integrated circuits. The software can also be used to train inexperienced failure analysts. The software also provides a method for storing information and making it easily available to experienced failure analysts.

  2. Integrated Circuit Failure Analysis Expert System

    Energy Science and Technology Software Center (OSTI)

    1995-10-03

    The software assists a failure analyst performing failure anaysis on intergrated circuits. The software can also be used to train inexperienced failure analysts. The software also provides a method for storing information and making it easily available to experienced failure analysts.

  3. A simple approach to modeling ductile failure.

    SciTech Connect (OSTI)

    Wellman, Gerald William

    2012-06-01

    Sandia National Laboratories has the need to predict the behavior of structures after the occurrence of an initial failure. In some cases determining the extent of failure, beyond initiation, is required, while in a few cases the initial failure is a design feature used to tailor the subsequent load paths. In either case, the ability to numerically simulate the initiation and propagation of failures is a highly desired capability. This document describes one approach to the simulation of failure initiation and propagation.

  4. Radiation Damage/Materials Modification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation damage materials modification Radiation Damage/Materials Modification High-energy ion irradiation is an important tool for studying radiation damage effects Materials in a nuclear reactor are exposed to extreme temperature and radiation conditions that degrade their physical properties to the point of failure. For example, alpha-decay in nuclear fuels results in dislocation damage to and accumulation of helium and fission gasses in the material. Similarly, neutrons interacting with

  5. Role of microbial induced corrosion in subsea water pipeline failure

    SciTech Connect (OSTI)

    Samant, A.K.; Singh, S.K.

    1998-12-31

    Premature failure of subsea water injection pipelines due to rupture was observed in Indian offshore facilities. In this connection various contributing factors like metallurgy of pipeline, operating conditions and corrosion related parameters have been examined. Material defects that can lead to premature failure of pipelines like microstructural anomalies, variation in hardness and elemental composition and tensile strength etc. have been found within the specified limits of material specification. Analysis of various operating parameters and water quality data indicated failure due to microbial induced internal corrosion. Due to low flow velocities, suspended insoluble corrosion products, bacteria and other microbes, present in the water, accumulated inside the pipeline surface mostly in low areas. Deposit provided hiding place for bacteria and shielded them from effective treatment by bactericide. Deposits also resulted in the formation of oxygen concentration cells resulting in localized corrosion. Non-pigging of pipe lines, even after long shut down, also resulted in accumulation of deposits. During this period, microbial activities dominated resulting in the formation of acidic metabolizes which ultimately led to internal corrosion. In this paper, all above aspects have been examined with special reference to the role of microbiologically induced corrosion for failure of subsea water injection pipe lines.

  6. Scientists use world's fastest computer to simulate nanoscale material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    failure Nanoscale material failure Scientists use world's fastest computer to simulate nanoscale material failure With this new tool, scientists can better study what nanowires do under stress. October 29, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  7. Winning the fight against boiler tube failure

    SciTech Connect (OSTI)

    Cohen, J.; Dooley, B.

    1986-12-01

    Eliminating boiler tube failures could be worth $5 billion a year to the electric power industry. The causes and cures for the great majority of these ubiquitous failures are now known, with implications for change ranging from senior management to the maintenance crew. Methods for preventing boiler tube failure are discussed.

  8. Materials prediction via classification learning

    SciTech Connect (OSTI)

    Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; Lookman, Turab

    2015-08-25

    In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturally uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. In conclusion, our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle.

  9. Materials prediction via classification learning

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; Lookman, Turab

    2015-08-25

    In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturallymore » uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. In conclusion, our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle.« less

  10. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material

  11. Operating experience feedback report: Service water system failures and degradations: Volume 3

    SciTech Connect (OSTI)

    Lam, P.; Leeds, E.

    1988-11-01

    A comprehensive review and evaluation of service water system failures and degradations observed in operating events in light water reactors from 1980 to 1987 has been conducted. The review and evaluation focused on the identification of causes of system failures and degradations, the adequacy of corrective actions implemented and planned, and the safety significance of the operating events. The results of this review and evaluation indicate that the service water system failures and degradations have significant safety implications. These system failures and degradations are attributable to a great variety of causes, and have adverse impact on a large number of safety-related systems and components which are required to mitigate reactor accidents. Specifically, the causes of failures and degradations include various fouling mechanisms (sediment deposition, biofouling, corrosion and erosion, pipe coating failure, calcium carbonate, foreign material and debris intrusion); single failures and other design deficiencies; flooding; multiple equipment failures; personnel and procedural errors; and seismic deficiencies. Systems and components adversely impacted by a service water system failure or degradation include the component cooling water system, emergency diesel generators, emergency core cooling system pumps and heat exchangers, the residual heat removal system, containment spray and fan coolers, control room chillers, and reactor building cooling units. 44 refs., 10 figs., 5 tabs.

  12. Addressing Failures in Exascale Computing

    SciTech Connect (OSTI)

    Snir, Marc; Wisniewski, Robert; Abraham, Jacob; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, J.; Bose, Pradip; Cappello, Franck; Carlson, Bill; Chien, Andrew; Coteus, Paul; DeBardeleben, Nathan; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Fazzari, Saverio; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Rob; Stearley, Jon; Van Hensbergen, Eric

    2014-01-01

    We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  13. Addressing failures in exascale computing

    SciTech Connect (OSTI)

    Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, Jim; Bose, Pradip; Cappello, Franck; Carlson, William; Chien, Andrew A.; Coteus, Paul; Debardeleben, Nathan A.; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Saverio, Fazzari; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Robert; Stearly, Jon; Van Hensbergen, Eric

    2014-05-01

    We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  14. Global Failure Criteria for SOFC Positive/Electrolyte/Negative (PEN) Structure

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2007-04-01

    Due to the mismatch of thermal expansion coefficients (TEC) of the various layer materials in SOFC, the internal stresses are unavoidable under temperature differential. In order to create the reliable cell and stack of solid oxide fuel cell (SOFC), it is necessary to develop a failure criterion for SOFC PEN structures for the initial failures occurred during cell/stack assembly. In this paper, a global failure criterion is developed for the initial design against mechanical failure of the PEN structure in high temperature SOFCs. The relationship of the critical energy release rate and critical curvature and maximum displacement of the warpage of the cells caused by the temperature differential is established so that the failure reliability of SOFC PEN structures may be determined by the measurement of the curvature and displacement of the warpaged cells.

  15. The unifying role of dissipative action in the dynamic failure of solids

    SciTech Connect (OSTI)

    Grady, Dennis

    2015-05-19

    Dissipative action, the product of dissipation energy and transport time, is fundamental to the dynamic failure of solids. Invariance of the dissipative action underlies the fourth-power nature of structured shock waves observed in selected solid metals and compounds. Dynamic failure through shock compaction, tensile spall and adiabatic shear are also governed by a constancy of the dissipative action. This commonality underlying the various modes of dynamic failure is described and leads to deeper insights into failure of solids in the intense shock wave event. These insights are in turn leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. As a result, calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale energetics and spatial scales in the structured shock wave.

  16. Failure analysis issues in microelectromechanical systems (MEMS).

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen

    2005-07-01

    Failure analysis and device characterization of MEMS components are critical steps in understanding the root causes of failure and improving device performance. At the wafer and die level these tasks can be performed with little or no sample preparation. Larger challenges occur after fabrication when the device is packaged, capped, sealed, or otherwise obstructed from view. The challenges and issues of MEMS failure analysis lie in identifying the root cause of failure for these packaged, capped, and sealed devices without perturbing the device or its immediate environment. Novel methods of gaining access to the device or preparing the device for analysis are crucial to accurately determining the root cause of failure. This paper will discuss issues identified in performing root cause failure analysis of packaged MEMS devices, as well as the methods employed to analyze them.

  17. A review of macroscopic ductile failure criteria.

    SciTech Connect (OSTI)

    Corona, Edmundo; Reedlunn, Benjamin

    2013-09-01

    The objective of this work was to describe several of the ductile failure criteria com- monly used to solve practical problems. The following failure models were considered: equivalent plastic strain, equivalent plastic strain in tension, maximum shear, Mohr- Coulomb, Wellman's tearing parameter, Johnson-Cook and BCJ MEM. The document presents the main characteristics of each failure model as well as sample failure predic- tions for simple proportional loading stress histories in three dimensions and in plane stress. Plasticity calculations prior to failure were conducted with a simple, linear hardening, J2 plasticity model. The resulting failure envelopes were plotted in prin- cipal stress space and plastic strain space, where the dependence on stress triaxiality and Lode angle are clearly visible. This information may help analysts select a ductile fracture model for a practical problem and help interpret analysis results.

  18. Argonne National Laboratory Investigates Premature Bearing Failures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Investigates Premature Bearing Failures Argonne National Laboratory Investigates Premature Bearing Failures August 1, 2013 - 4:13pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. Researchers at Argonne National Laboratory (ANL) are investigating a leading cause of premature bearing failures in wind turbine gearboxes that can occur within the first 2 years of a gearbox's intended design life (20 years). The bearing

  19. Failure modes in surface micromachined microelectromechanical actuators

    SciTech Connect (OSTI)

    Miller, S.L.; Rodgers, M.S.; LaVigne, G.; Sniegowski, J.J.; Clews, P.; Tanner, D.M.; Peterson, K.A.

    1998-03-01

    In order for the rapidly emerging field of MicroElectroMechanical Systems (MEMS) to meet its extraordinary expectations regarding commercial impact, issues pertaining to how they fail must be understood. The authors identify failure modes common to a broad range of MEMS actuators, including adhesion (stiction) and friction induced failures caused by improper operational methods, mechanical instabilities, and electrical instabilities. Demonstrated methods to mitigate these failure modes include implementing optimized designs, model based operational methods, and chemical surface treatments.

  20. Quantifying effectiveness of failure prediction and response...

    Office of Scientific and Technical Information (OSTI)

    These gains would come from prediction-directed process migration and resource servicing, intelligent resource allocation, and checkpointing driven by failure predictors rather ...

  1. Contact method to allow benign failure in ceramic capacitor having self-clearing feature

    DOE Patents [OSTI]

    Myers, John D.; Taylor, Ralph S.

    2012-06-26

    A capacitor exhibiting a benign failure mode has a first electrode layer, a first ceramic dielectric layer deposited on a surface of the first electrode, and a second electrode layer disposed on the ceramic dielectric layer, wherein selected areas of the ceramic dielectric layer have additional dielectric material of sufficient thickness to exhibit a higher dielectric breakdown voltage than the remaining majority of the dielectric layer. The added thickness of the dielectric layer in selected areas allows lead connections to be made at the selected areas of greater dielectric thickness while substantially eliminating a risk of dielectric breakdown and failure at the lead connections, whereby the benign failure mode is preserved.

  2. Transport and Failure in Li-ion Batteries | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Transport and Failure in Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the macrohomogeneous model of Newman and co-workers, predicting degradation and failure remains a challenge. It may be that, like most materials, failure depends on local imperfections and inhomogeneities. We use tomographic data to evaluate the homogeneity of the tortuosity of the

  3. STUDY OF THE RHIC BPM SMA CONNECTOR FAILURE PROBLEM

    SciTech Connect (OSTI)

    LIAW,C.; SIKORA, R.; SCHROEDER, R.

    2007-06-25

    About 730 BPMs are mounted on the RHIC CQS and Triplet super-conducting magnets. Semi-rigid coaxial cables are used to bring the electrical signal from the BPM feedthroughs to the outside flanges. at the ambient temperature. Every year around 10 cables will lose their signals during the operation. The connection usually failed at the warm end of the cable. The problems were either the solder joint failed or the center conductor retracted out of the SMA connector. Finite element analyses were performed to understand the failure mechanism of the solder joint. The results showed that (1) The SMA center conductor can separate from the mating connector due to the thermal retraction. (2) The maximum thermal stress at the warm end solder joint can exceed the material strength of the Pb37/Sn63 solder material and (3) The magnet ramping frequency (-10 Hz), during the machine startup, can possibly resonant the coaxial cable and damage the solder joints, especially when a fracture is initiated. Test results confirmed that by using the silver bearing solder material (a higher strength material) and by crimping the cable at the locations close to the SMA connector (to prevent the center conductor from retracting) can effectively resolve the connector failure problem.

  4. Case study of slope failures at Spilmans Island

    SciTech Connect (OSTI)

    Kayyal, M.K.; Hasen, M.

    1998-11-01

    This paper presents a case study for a dredge disposal site called Spilmans Island, located along the Houston-Galveston Ship Channel, east of Houston. Initially classified as a sand bar in the San Jacinto River, Spilmans Island evolved in recent years with the construction of perimeter levees to contain the flow of materials produced from dredging operations. These levees were often constructed on soft dredged sediments, and as the levees were raised, occasionally slope failures occurred. The objectives of this paper are to illustrate the importance of reconstructing the history of a site as a basis for geotechnical analyses, and to demonstrate the significance of keeping accurate records of past investigations, construction activities, slope failures and subsequent remedial measures. The results of the geotechnical investigation described in this paper offer a clear example of how such data can be used to provide reliable predictions on the stability conditions of raised levees.

  5. Summary of failure analysis activities at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Cowgill, M.G.; Czajkowski, C.J.; Franz, E.M.

    1996-10-01

    Brookhaven National Laboratory has for many years conducted examinations related to the failures of nuclear materials and components. These examinations included the confirmation of root cause analyses, the determination of the causes of failure, identification of the species that accelerate corrosion, and comparison of the results of nondestructive examinations with those obtained by destructive examination. The results of those examinations, which had previously appeared in various formats (formal and informal reports, journal articles, etc.), have been collected together and summarized in the present report. The report is divided into sections according to the general subject matter (for example, corrosion, fatigue, etc.). Each section presents summaries of the information contained in specific reports and publications, all of which are fully identified as to title, authors, report number or journal reference, date of publication, and FIN number under which the work was performed.

  6. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    SciTech Connect (OSTI)

    Duffy, Stephen

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  7. Model the Deformation and Failure of Solids

    Energy Science and Technology Software Center (OSTI)

    2001-10-19

    EMU models the deformation and failure of solids based on a reformulated theory of continuum mechanics known as the Peridynamic model. This approach allows dynamic fracture and other failure mechanisms to be simulated with a minimum of mesh effeces and without a need for supplementary kinetic relations for crack growth. Penetration by a rigid projectile is also included in the code.

  8. Refractory failure in IGCC fossil fuel power systems

    SciTech Connect (OSTI)

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

    2001-01-01

    Current generation refractory materials used in slagging gasifiers employed in Integrated Gasification Combined Cycle (IGCC) fossil fuel power systems have unacceptably short service lives, limiting the reliability and cost effectiveness of gasification as a means to generate power. The short service life of the refractory lining results from exposure to the extreme environment inside the operating gasifier, where the materials challenges include temperatures to 1650 C, thermal cycling, alternating reducing and oxidizing conditions, and the presence of corrosive slags and gases. Compounding these challenges is the current push within the industry for fuel flexibility, which results in slag chemistries and operating conditions that can vary widely as the feedstock for the gasifier is supplemented with alternative sources of carbon, such as petroleum coke and biomass. As a step toward our goal of developing improved refractory materials for this application, we have characterized refractory-slag interactions, under a variety of simulated gasifier conditions, utilizing laboratory exposure tests such as the static cup test and a gravimetric test. Combining this information with that gained from the post-mortem analyses of spent refractories removed from working gasifiers, we have developed a better understanding of refractory failure in gasifier environments. In this paper, we discuss refractory failures in slagging gasifiers and possible strategies to reduce them. Emphasis focuses on the refractories employed in gasifier systems which utilize coal as the primary feedstock.

  9. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  10. Valve system incorporating single failure protection logic

    DOE Patents [OSTI]

    Ryan, Rodger; Timmerman, Walter J. H.

    1980-01-01

    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  11. Mechanical failure of cavities in poroelastic media

    SciTech Connect (OSTI)

    Ozkan, G.; Ortoleva, P.

    1998-12-31

    The stress-induced failure of cavities in poroelastic media is investigated using an analytical solution of the elastic matrix inclusion problem of Eshelby and a rock failure criterion. The elastic properties of the porous matrix surrounding the cavity are modeled using a self-consistent version of the theory of Berryman while the cavity collapse criterion is based on a failure condition calibrated as a function of matrix mineralogy, grain size and porosity. The influence of the latter textural variables as well as pore fluid pressure and cavity shape and orientation relative to the far-field stress are evaluated. The region of failure on the cavity surface is identified. These results are applied to the prediction of vug stability in a sedimentary basin in the context of vuggy reservoir exploration and production.

  12. NREL Test-to-Failure Protocol (Presentation)

    SciTech Connect (OSTI)

    Hacke, P.

    2012-03-01

    The presentation describes the test-to-failure protocol that was developed and piloted at NREL, stressing PV modules with multiple applications of damp heat (with bias) and thermal cycling until they fail.

  13. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Materials Researchers in NETL's Functional Materials Development competency work to discover and develop advanced functional materials and component processing technologies to meet technology performance requirements and enable scale-up for proof-of-concept studies. Research includes separations materials and electrochemical and magnetic materials, specifically: Separations Materials Synthesis, purification, and basic characterization of organic substances, including polymers and

  14. Metallurgical failures in fossil fired boilers

    SciTech Connect (OSTI)

    French, D.N.

    1993-01-01

    This book provides a comprehensive catalog of the types of metallurgical failures common to boilers. The author uses actual case histories of boiler shutdowns, and documents the full range of causes of boiler tube failure. A blueprint is provided for cutting maintenance costs and upgrading the efficiency and reliability of any power plant operation. Individual chapters are processed separately for inclusion in the appropriate data bases.

  15. Future challenges for MEMS failure analysis.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen

    2003-07-01

    MEMS processes and components are rapidly changing in device design, processing, and, most importantly, application. This paper will discuss the future challenges faced by the MEMS failure analysis as the field of MEMS (fabrication, component design, and applications) grows. Specific areas of concern for the failure analyst will also be discussed. MEMS components are extremely diverse in their application and function. Failure analysts will have to be equally diverse and/or multidisciplinary in their analysis of these devices. Many tools and techniques developed from the IC industry have been used for MEMS FA, but more MEMS-specific FA toolsets have to be developed for diagnosis of these failure mechanisms. Many of the devices discussed in this paper have global issues associated with failure analysis. Many non destructive techniques must be developed to assess the failure mechanisms. Tools and techniques that can perform these functions on a larger scale will also be required. To achieve this, industry will have to work with academia and government institutions to create the knowledge base required for tool and technique development for global and local defect localization.

  16. STRESS AND FAILURE ANALYSIS OF RAPIDLY ROTATING ASTEROID (29075) 1950DA

    SciTech Connect (OSTI)

    Hirabayashi, Masatoshi; Scheeres, Daniel J.

    2015-01-01

    Rozitis et al. recently reported that near-Earth asteroid (29075) 1950DA, whose bulk density ranges from 1.0 g cm{sup 3} to 2.4g cm{sup 3}, is a rubble pile and requires a cohesive strength of at least 44-76 Pa to keep from failing due to its fast spin period. Since their technique for giving failure conditions required the averaged stress over the whole volume, it discarded information about the asteroid's failure mode and internal stress condition. This paper develops a finite element model and revisits the stress and failure analysis of 1950DA. For the modeling, we do not consider material hardening and softening. Under the assumption of an associated flow rule and uniform material distribution, we identify the deformation process of 1950DA when its constant cohesion reaches the lowest value that keeps its current shape. The results show that to avoid structural failure the internal core requires a cohesive strength of at least 75-85 Pa. It suggests that for the failure mode of this body, the internal core first fails structurally, followed by the surface region. This implies that if cohesion is constant over the whole volume, the equatorial ridge of 1950DA results from a material flow going outward along the equatorial plane in the internal core, but not from a landslide as has been hypothesized. This has additional implications for the likely density of the interior of the body.

  17. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Toward Local Failure Local Recovery (LFLR) Resilience Model Using MPI-ULFM. Citation Details In-Document Search Title: Toward Local Failure Local Recovery (LFLR) Resilience Model ...

  18. A review of macroscopic ductile failure criteria. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: A review of macroscopic ductile failure criteria. Citation Details In-Document Search Title: A review of macroscopic ductile failure criteria. The objective of ...

  19. Future challenges for MEMS failure analysis. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Title: Future challenges for MEMS failure analysis. MEMS processes and components are ... Specific areas of concern for the failure analyst will also be discussed. MEMS components ...

  20. Processing of superconductive materials and high frequency

    SciTech Connect (OSTI)

    Smith, J.L.

    1987-01-01

    We do not know yet if superconductivity will become useful without refrigeration. Now, the superconductors are so different from copper that it is difficult to imagine replacing copper with such a brittle material. Superconductors conduct dc with no loss, ac with small losses, and microwaves in co-axial lines with almost no loss and with no dispersion from dc to the highest frequencies. They will probably allow us to close the gap between radio frequency and infrared optical transmission. Clearly your industry should know some things about where superconductivity may lead us and must consider whether the greater risk is to develop them or to let others try it. There are no easy answers yet.

  1. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in extreme environments (high-temperature, high-stress, erosive, and corrosive environments, including the performance of materials in contact with molten slags and salts). Research includes materials design and discovery, materials processing and manufacturing, and service-life prediction of materials

  2. Materials of Gasification

    SciTech Connect (OSTI)

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  3. Improved Lining Material for Gasifiers Could Lead to WiderCommerciali...

    Broader source: Energy.gov (indexed) [DOE]

    ... in field trials versus conventional liner materials) by reducing slag penetration and structural spalling at the refractory hot face, one of the primary causes of liner failure. ...

  4. Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials FY 2013 Progress Report ii CONTENTS INTRODUCTION ....................................................................................................................................... 1 Project 18516 - Materials for H1ybrid and Electric Drive Systems ...................................................... 4 Agreement 19201 - Non-Rare Earth Magnetic Materials ............................................................................ 4 Agreement 23278 - Low-Cost

  5. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at the Electron Microscopy Laboratory managed by Los

  6. Reassessment of the BWR scram failure probability

    SciTech Connect (OSTI)

    Burns, E.T.

    1989-01-01

    As part of the Severe Accident Policy Statement implementation, the probabilistic quantification of accident sequence frequencies that may lead to core damage is a key element in demonstrating a plant's safety status relative to US Nuclear Regulatory Commission (NRC) staff goals. One of the key quantitative inputs in a boiling water reactor (BWR) probabilistic risk assessment is the probability of a failure to scram. The assessment of this failure probability has been the subject of a long and continuing debate over the adequacy of available data and analytic modeling. This report provides a summary of the status of this debate, including the latest data, and provides a revision to the characterization of the failure probability originally published in NUREG 0460 and the Utility Group on Anticipated Transient Without Scram (ATWS) Petition.

  7. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  8. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  9. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in ...

  10. An Experimental Study of Shear-Dominated Failure in the 2013 Sandia Fracture Challenge Specimen

    SciTech Connect (OSTI)

    Corona, Edmundo; Deibler, Lisa Anne; Reedlunn, Benjamin; Ingraham, Mathew Duffy; Williams, Shelley

    2015-04-01

    This report presents an experimental study motivated by results obtained during the 2013 Sandia Fracture Challenge. The challenge involved A286 steel, shear-dominated compression specimens whose load-deflection response contained a load maximum fol- lowed by significant displacement under decreasing load, ending with a catastrophic fracture. Blind numerical simulations deviated from the experiments well before the maximum load and did not predict the failure displacement. A series of new tests were conducted on specimens machined from the original A286 steel stock to learn more about the deformation and failure processes in the specimen and potentially improve future numerical simulations. The study consisted of several uniaxial tension tests to explore anisotropy in the material, and a set of new tests on the compression speci- men. In some compression specimen tests, stereo digital image correlation (DIC) was used to measure the surface strain fields local to the region of interest. In others, the compression specimen was loaded to a given displacement prior to failure, unloaded, sectioned, and imaged under the microscope to determine when material damage first appeared and how it spread. The experiments brought the following observations to light. The tensile tests revealed that the plastic response of the material is anisotropic. DIC during the shear- dominated compression tests showed that all three in-plane surface strain components had maxima in the order of 50% at the maximum load. Sectioning of the specimens revealed no signs of material damage at the point where simulations deviated from the experiments. Cracks and other damage did start to form approximately when the max- imum load was reached, and they grew as the load decreased, eventually culminating in catastrophic failure of the specimens. In addition to the steel specimens, a similar study was carried out for aluminum 7075-T651 specimens. These specimens achieved much lower loads and displacements

  11. A model for heterogeneous materials including phase transformations

    SciTech Connect (OSTI)

    Addessio, F.L.; Clements, B.E.; Williams, T.O.

    2005-04-15

    A model is developed for particulate composites, which includes phase transformations in one or all of the constituents. The model is an extension of the method of cells formalism. Representative simulations for a single-phase, brittle particulate (SiC) embedded in a ductile material (Ti), which undergoes a solid-solid phase transformation, are provided. Also, simulations for a tungsten heavy alloy (WHA) are included. In the WHA analyses a particulate composite, composed of tungsten particles embedded in a tungsten-iron-nickel alloy matrix, is modeled. A solid-liquid phase transformation of the matrix material is included in the WHA numerical calculations. The example problems also demonstrate two approaches for generating free energies for the material constituents. Simulations for volumetric compression, uniaxial strain, biaxial strain, and pure shear are used to demonstrate the versatility of the model.

  12. Composite laminate failure parameter optimization through four-point flexure experimentation and analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    2016-05-06

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  13. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  14. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  15. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  16. Survey on Failure Modes and Failure Mechanisms in Digital Components and Systems

    SciTech Connect (OSTI)

    Cetiner, Mustafa Sacit; Korsah, Kofi; Muhlheim, Michael David

    2009-01-01

    This paper presents the preliminary results of a survey on the operating experience of a broad range of digital components and systems deployed in various industries. The primary objective of this survey is to identify principal modes and mechanisms of failure in field-deployed digital systems. Earlier works have sought to determine the failure rates of various classes of digital devices with the intent to integrate this information into the risk analysis calculations though still immature for such systems. Failure rates of individual components or systems are not taken into account in this evaluation; only failure modes and their respective probabilistic distribution are considered. Preliminary results from two data sources, SPIDR and FARADIP, are presented.

  17. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors Last edited: 2016-04-29 11:35:05

  18. Materials Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Researchers in the Materials Characterization Research competency conduct studies of both natural and engineered materials from the micropore (nanometers) to macropore (meters) scale. Research includes, but is not limited to, thermal, chemical, mechanical, and structural (nano to macro) interactions and processes with regard to natural and engineered materials. The primary research investigation tools include SEM, XRD, micro XRD, core logging, medical CT, industrial

  19. Celiac Node Failure Patterns After Definitive Chemoradiation for Esophageal Cancer in the Modern Era

    SciTech Connect (OSTI)

    Amini, Arya; Xiao Lianchun; Allen, Pamela K.; Suzuki, Akihiro; Hayashi, Yuki; Liao, Zhongxing; Hofstetter, Wayne; Crane, Christopher; Komaki, Ritsuko; Bhutani, Manoop S.; Lee, Jeffrey H.; Ajani, Jaffer A.; Welsh, James

    2012-06-01

    Purpose: The celiac lymph node axis acts as a gateway for metastatic systemic spread. The need for prophylactic celiac nodal coverage in chemoradiation therapy for esophageal cancer is controversial. Given the improved ability to evaluate lymph node status before treatment via positron emission tomography (PET) and endoscopic ultrasound, we hypothesized that prophylactic celiac node irradiation may not be needed for patients with localized esophageal carcinoma. Methods and Materials: We reviewed the radiation treatment volumes for 131 patients who underwent definitive chemoradiation for esophageal cancer. Patients with celiac lymph node involvement at baseline were excluded. Median radiation dose was 50.4 Gy. The location of all celiac node failures was compared with the radiation treatment plan to determine whether the failures occurred within or outside the radiation treatment field. Results: At a median follow-up time of 52.6 months (95% CI 46.1-56.7 months), 6 of 60 patients (10%) without celiac node coverage had celiac nodal failure; in 5 of these patients, the failures represented the first site of recurrence. Of the 71 patients who had celiac coverage, only 5 patients (7%) had celiac region relapse. In multivariate analyses, having a pretreatment-to-post-treatment change in standardized uptake value on PET >52% (odds ratio [OR] 0.198, p = 0.0327) and having failure in the clinical target volume (OR 10.72, p = 0.001) were associated with risk of celiac region relapse. Of those without celiac coverage, the 6 patients that later developed celiac failure had a worse median overall survival time compared with the other 54 patients who did not fail (median overall survival time: 16.5 months vs. 31.5 months, p = 0.041). Acute and late toxicities were similar in both groups. Conclusions: Although celiac lymph node failures occur in approximately 1 of 10 patients, the lack of effective salvage treatments and subsequent low morbidity may justify prophylactic treatment

  20. Prospects for Accelerated Development of High Performance Structural Materials

    SciTech Connect (OSTI)

    Zinkle, Steven J; Ghoniem, Nasr M.

    2011-01-01

    We present an overview of key aspects for development of steels for fission and fusion energy applications, by linking material fabrication to thermo-mechanical properties through a physical understanding of microstructure evolution. Numerous design constraints (e.g. reduced activation, low ductile-brittle transition temperature, low neutron-induced swelling, good creep resistance, and weldability) need to be considered, which in turn can be controlled through material composition and processing techniques. Recent progress in the development of high-performance steels for fossil and fusion energy systems is summarized, along with progress in multiscale modeling of mechanical behavior in metals. Prospects for future design of optimum structural steels in nuclear applications by utilization of the hierarchy of multiscale experimental and computational strategies are briefly described.

  1. Failure modes for pipelines in landslide areas

    SciTech Connect (OSTI)

    Bruschi, R.; Spinazze, M.; Tomassini, D.; Cuscuna, S.; Venzi, S.

    1995-12-31

    In recent years a number of incidences of pipelines affected by slow soil movements have been reported in the relevant literature. Further related issues such as soil-pipe interaction have been studied both theoretically and through experimental surveys, along with the environmental conditions which are responsible for hazard to the pipeline integrity. A suitable design criteria under these circumstances has been discussed by several authors, in particular in relation to a limit state approach and hence a strain based criteria. The scope of this paper is to describe the failure mechanisms which may affect the pipeline in the presence of slow soil movements impacting on the pipeline, both in the longitudinal and transverse direction. Particular attention is paid to environmental, geometric and structural parameters which steer the process towards one or other failure mechanism. Criteria for deciding upon remedial measures required to guarantee the structural integrity of the pipeline, both in the short and in the long term, are discussed.

  2. Failure Mode and Effect Analysis (FMEA) Tutorial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Failure Mode and Effect Analysis (FMEA) Tutorial - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  3. Sandia National Laboratories: Friction, Fatigue, and Failure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two steel bars bolted together poses interesting challenges in nonlinear dynamics. (Photo by Matt Brake) Two steel bars bolted together pose interesting challenges in nonlinear dynamics. (Photo by Matt Brake) Facebook Twitter YouTube Flickr RSS News Friction, Fatigue, and Failure By Mollie Rappe Photography By Randy Montoya Thursday, September 01, 2016 Sandia experts, students explore mechanical challenges at summer institute Sandia experts, students explore mechanical challenges at summer

  4. The unifying role of dissipative action in the dynamic failure of solids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grady, Dennis

    2015-05-19

    Dissipative action, the product of dissipation energy and transport time, is fundamental to the dynamic failure of solids. Invariance of the dissipative action underlies the fourth-power nature of structured shock waves observed in selected solid metals and compounds. Dynamic failure through shock compaction, tensile spall and adiabatic shear are also governed by a constancy of the dissipative action. This commonality underlying the various modes of dynamic failure is described and leads to deeper insights into failure of solids in the intense shock wave event. These insights are in turn leading to a better understanding of the shock deformation processes underlyingmore » the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. As a result, calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale energetics and spatial scales in the structured shock wave.« less

  5. Predicting age of ovarian failure after radiation to a field that includes the ovaries

    SciTech Connect (OSTI)

    Wallace, W. Hamish B. . E-mail: Hamish.Wallace@ed.ac.uk; Thomson, Angela B.; Saran, Frank; Kelsey, Tom W.

    2005-07-01

    Purpose: To predict the age at which ovarian failure is likely to develop after radiation to a field that includes the ovary in women treated for cancer. Methods and Materials: Modern computed tomography radiotherapy planning allows determination of the effective dose of radiation received by the ovaries. Together with our recent assessment of the radiosensitivity of the human oocyte, the effective surviving fraction of primordial oocytes can be determined and the age of ovarian failure, with 95% confidence limits, predicted for any given dose of radiotherapy. Results: The effective sterilizing dose (ESD: dose of fractionated radiotherapy [Gy] at which premature ovarian failure occurs immediately after treatment in 97.5% of patients) decreases with increasing age at treatment. ESD at birth is 20.3 Gy; at 10 years 18.4 Gy, at 20 years 16.5 Gy, and at 30 years 14.3 Gy. We have calculated 95% confidence limits for age at premature ovarian failure for estimated radiation doses to the ovary from 1 Gy to the ESD from birth to 50 years. Conclusions: We report the first model to reliably predict the age of ovarian failure after treatment with a known dose of radiotherapy. Clinical application of this model will enable physicians to counsel women on their reproductive potential following successful treatment.

  6. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  7. Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2014-01-01

    This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

  8. PDC IC WELD FAILURE EVALUATION AND RESOLUTION

    SciTech Connect (OSTI)

    Korinko, P.; Howard, S.; Maxwell, D.; Fiscus, J.

    2012-04-16

    During final preparations for start of the PDCF Inner Can (IC) qualification effort, welding was performed on an automated weld system known as the PICN. During the initial weld, using a pedigree canister and plug, a weld defect was observed. The defect resulted in a hole in the sidewall of the canister, and it was observed that the plug sidewall had not been consumed. This was a new type of failure not seen during development and production of legacy Bagless Transfer Cans (FB-Line/Hanford). Therefore, a team was assembled to determine the root cause and to determine if the process could be improved. After several brain storming sessions (MS and T, R and D Engineering, PDC Project), an evaluation matrix was established to direct this effort. The matrix identified numerous activities that could be taken and then prioritized those activities. This effort was limited by both time and resources (the number of canisters and plugs available for testing was limited). A discovery process was initiated to evaluate the Vendor's IC fabrication process relative to legacy processes. There were no significant findings, however, some information regarding forging/anneal processes could not be obtained. Evaluations were conducted to compare mechanical properties of the PDC canisters relative to the legacy canisters. Some differences were identified, but mechanical properties were determined to be consistent with legacy materials. A number of process changes were also evaluated. A heat treatment procedure was established that could reduce the magnetic characteristics to levels similar to the legacy materials. An in-situ arc annealing process was developed that resulted in improved weld characteristics for test articles. Also several tack welds configurations were addressed, it was found that increasing the number of tack welds (and changing the sequence) resulted in decreased can to plug gaps and a more stable weld for test articles. Incorporating all of the process improvements

  9. Estimating Failure Propagation in Models of Cascading Blackouts

    SciTech Connect (OSTI)

    Dobson, Ian [University of Wisconsin, Madison; Carreras, Benjamin A [ORNL; Lynch, Vickie E [ORNL; Nkei, Bertrand [ORNL; Newman, David E [University of Alaska

    2005-09-01

    We compare and test statistical estimates of failure propagation in data from versions of a probabilistic model of loading-dependent cascading failure and a power systems blackout model of cascading transmission line overloads. The comparisons suggest mechanisms affecting failure propagation and are an initial step towards monitoring failure propagation from practical system data. Approximations to the probabilistic model describe the forms of probability distributions of cascade sizes.

  10. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Motivation for Local Failure-Local Recovery (LFLR) Architecture for LFLR Application Recovery Results Discussion Conclusions Sandia Motivation for ...

  11. BWR containment failure analysis during degraded-core accidents

    SciTech Connect (OSTI)

    Yue, D.D.

    1982-06-06

    This paper presents a containment failure mode analysis during a spectrum of postulated degraded core accident sequences in a typical 1000-MW(e) boiling water reactor (BWR) with a Mark-I wetwell containment. Overtemperature failure of containment electric penetration assemblies (CEPAs) has been found to be the major failure mode during such accidents.

  12. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  13. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  14. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  15. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  16. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  17. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing of materials under ideal and realistic process conditions such as those found in coal-fired power plant and integrated gasification combined cycle fuel gas. Performance ...

  18. Users May Now Clear Their Own Login Failures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users May Now Clear Their Own Login Failures Users May Now Clear Their Own Login Failures May 16, 2013 by Francesca Verdier Users may now clear their own login failures simply by logging in to the NIM website (https://nim.nersc.gov). No further steps are necessary; that is, the simple act of logging in to NIM will clear your login failures on all NERSC compute systems. NIM will then provide a display of the number of login failures that were cleared on each compute system that was affected at

  19. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  20. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-04-29 11:34:54

  1. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C.

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  2. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  3. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  4. Argonne National Laboratory Investigates Premature Bearing Failures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Early results of this investigation were recently published in the peer-reviewed journal ... of Material Conference. Bench-top test methods are currently under development to mimic ...

  5. Automated analysis of failure event data

    SciTech Connect (OSTI)

    HENNESSY,COREY; FREERKS,FRED; CAMPBELL,JAMES E.; THOMPSON,BRUCE M.

    2000-03-27

    This paper focuses on fully automated analysis of failure event data in the concept and early development stage of a semiconductor-manufacturing tool. In addition to presenting a wide range of statistical and machine-specific performance information, algorithms have been developed to examine reliability growth and to identify major contributors to unreliability. These capabilities are being implemented in a new software package called Reliadigm. When coupled with additional input regarding repair times and parts availability, the analysis software also provides spare parts inventory optimization based on genetic optimization methods. The type of question to be answered is: If this tool were placed with a customer for beta testing, what would be the optimal spares kit to meet equipment reliability goals for the lowest cost? The new algorithms are implemented in Windows{reg_sign} software and are easy to apply. This paper presents a preliminary analysis of failure event data from three IDEA machines currently in development. The paper also includes an optimal spare parts kit analysis.

  6. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  7. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  8. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:nnsa.energy.govaboutusourprogramsdnnm3remove

    Page...

  9. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  10. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  11. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  12. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and HEP usage as a function of time A powerpoint template you can use at the requirements review Downloads CaseStudyTemplate.docx | unknown Case Study Worksheet -

  13. Engineered Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Engineered Materials Materials design, fabrication, assembly, and characterization for national security needs. Contact Us Group Leader (Acting) Kimberly Obrey Email Deputy Group Leader Dominic Peterson Email Group Office (505)-667-6887 We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly, characterization, and field support. We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly,

  14. Failure propagation in multi-cell lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; Spangler, Scott W.

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module.more » Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.« less

  15. Failure propagation in multi-cell lithium ion batteries

    SciTech Connect (OSTI)

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; Spangler, Scott W.

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module. Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.

  16. Defense against common mode failures in protection system design

    SciTech Connect (OSTI)

    Wyman, R.H.; Johnson, G.L.

    1997-08-27

    The introduction of digital instrumentation and control into reactor safety systems creates a heightened concern about common-mode failure. This paper discusses the concern and methods to cope with the concern. Common-mode failures have been a ``fact-of-life`` in existing systems. The informal introduction of defense-in-depth and diversity (D-in-D&D)-coupled with the fact that hardware common-mode failures are often distributed in time-has allowed systems to deal with past common-mode failures. However, identical software operating in identical redundant systems presents the potential for simultaneous failure. Consequently, the use of digital systems raises the concern about common-mode failure to a new level. A more methodical approach to mitigating common-mode failure is needed to address these concerns. Purposeful introduction of D-in-D&D has been used as a defense against common-mode failure in reactor protection systems. At least two diverse systems are provided to mitigate any potential initiating event. Additionally, diverse displays and controls are provided to allow the operator to monitor plant status and manually initiate engineered safety features. A special form of conimon-mode failure analysis called ``defense-in-depth and diversity analysis`` has been developed to identify possible conimon-mode failure vulnerabilities in digital systems. An overview of this analysis technique is provided.

  17. Bladder Cancer Patterns of Pelvic Failure: Implications for Adjuvant Radiation Therapy

    SciTech Connect (OSTI)

    Baumann, Brian C.; Guzzo, Thomas J.; He Jiwei; Vaughn, David J.; Keefe, Stephen M.; Vapiwala, Neha; Deville, Curtiland; Bekelman, Justin E.; Tucker, Kai; Hwang, Wei-Ting; Malkowicz, S. Bruce; Christodouleas, John P.

    2013-02-01

    Purpose: Local-regional failures (LFs) after cystectomy with or without chemotherapy are common in locally advanced disease. Adjuvant radiation therapy (RT) could reduce LFs, but toxicity has discouraged its use. Modern RT techniques with improved normal tissue sparing have rekindled interest but require knowledge of pelvic failure patterns to design treatment volumes. Methods and Materials: Five-year LF rates after radical cystectomy plus pelvic node dissection with or without chemotherapy were determined for 8 pelvic sites among 442 urothelial bladder carcinoma patients. The impact of pathologic stage, margin status, nodal involvement, and extent of node dissection on failure patterns was assessed using competing risk analysis. We calculated the percentage of patients whose sites of LF would have been completely encompassed within various hypothetical clinical target volumes (CTVs) for postoperative radiation. Results: Compared with stage {<=}pT2, stage {>=}pT3 patients had higher 5-year LF rates in virtually all pelvic sites. Among stage {>=}pT3 patients, margin status significantly altered the failure pattern whereas extent of node dissection and nodal positivity did not. In stage {>=}pT3 patients with negative margins, failure occurred predominantly in the iliac/obturator nodes and uncommonly in the cystectomy bed and/or presacral nodes. Of these patients in whom failure subsequently occurred, 76% would have had all LF sites encompassed within CTVs covering only the iliac/obturator nodes. In stage {>=}pT3 with positive margins, cystectomy bed and/or presacral nodal failures increased significantly. Only 57% of such patients had all LF sites within CTVs limited to the iliac/obturator nodes, but including the cystectomy bed and presacral nodes in the CTV when margins were positive increased the percentage of LFs encompassed to 91%. Conclusions: Patterns of failure within the pelvis are summarized to facilitate design of adjuvant RT protocols. These data suggest

  18. Unifying role of dissipative action in the dynamic failure of solids

    SciTech Connect (OSTI)

    Grady, Dennis E.

    2015-04-28

    A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition in solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.

  19. Link failure detection in a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Megerian, Mark G.; Smith, Brian E.

    2010-11-09

    Methods, apparatus, and products are disclosed for link failure detection in a parallel computer including compute nodes connected in a rectangular mesh network, each pair of adjacent compute nodes in the rectangular mesh network connected together using a pair of links, that includes: assigning each compute node to either a first group or a second group such that adjacent compute nodes in the rectangular mesh network are assigned to different groups; sending, by each of the compute nodes assigned to the first group, a first test message to each adjacent compute node assigned to the second group; determining, by each of the compute nodes assigned to the second group, whether the first test message was received from each adjacent compute node assigned to the first group; and notifying a user, by each of the compute nodes assigned to the second group, whether the first test message was received.

  20. A REVIEW OF SOFTWARE-INDUCED FAILURE EXPERIENCE.

    SciTech Connect (OSTI)

    CHU, T.L.; MARTINEZ-GURIDI, G.; YUE, M.; LEHNER, J.

    2006-09-01

    We present a review of software-induced failures in commercial nuclear power plants (NPPs) and in several non-nuclear industries. We discuss the approach used for connecting operational events related to these failures and the insights gained from this review. In particular, we elaborate on insights that can be used to model this kind of failure in a probabilistic risk assessment (PRA) model. We present the conclusions reached in these areas.

  1. Towards intelligent microstructural design of Nanocomposite Materials. Lightweight, high strength structural/armor materials for service in extreme environments

    SciTech Connect (OSTI)

    Mara, Nathan Allan; Bronkhorst, Curt Allan; Beyerlein, Irene Jane

    2015-12-21

    The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.

  2. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J.

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  3. Code System to Calculate Pressure Vessel Failure Probabilities.

    Energy Science and Technology Software Center (OSTI)

    2001-03-27

    Version 00 OCTAVIA (Operationally Caused Transients And Vessel Integrity Analysis) calculates the probability of pressure vessel failure from operationally-caused pressure transients which can occur in a pressurized water reactor (PWR). For specified vessel and operating environment characteristics the program computes the failure pressure at which the vessel will fail for different-sized flaws existing in the beltline and the probability of vessel failure per reactor year due to the flaw. The probabilities are summed over themore » various flaw sizes to obtain the total vessel failure probability. Sensitivity studies can be performed to investigate different vessel or operating characteristics in the same computer run.« less

  4. The Sandia MEMS Passive Shock Sensor : FY08 failure analysis...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Sandia MEMS Passive Shock Sensor : FY08 failure analysis activities. Citation Details In-Document Search Title: The Sandia MEMS Passive Shock Sensor : FY08 ...

  5. Sandia Energy - Failure Mode and Effect Analysis (FMEA) Tutorial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Failure Mode and Effect Analysis (FMEA) Tutorial Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability Tutorial on FMEA Process...

  6. Wind Turbine Gearbox Failure Modes - A Brief (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.; McDade, M.; Errichello, R.

    2011-10-01

    Wind turbine gearboxes are not always meeting 20-year design life. Premature failure of gearboxes increases cost of energy, turbine downtime, unplanned maintenance, gearbox replacement and rebuild, and increased warranty reserves. The problem is widespread, affects most Original Equipment Manufacturers, and is not caused by manufacturing practices. There is a need to improve gearbox reliability and reduce turbine downtime. The topics of this presentation are: GRC (Gearbox Reliability Collaborative) technical approach; Gearbox failure database; Recorded incidents summary; Top failure modes for bearings; Top failure modes for gears; GRC test gearbox; Bearing nomenclature; Test history; Real damage; Gear sets; Bearings; Observations; and Summary. 5 refs.

  7. Sandian Presents on PV Failure Analysis at European PV Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator ...

  8. Investigation of Possible Wellbore Cement Failures During Hydraulic...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations Citation Details In-Document Search Title: Investigation of Possible ...

  9. DOE Collects Civil Penalties for Failure to Certify Compliance

    Broader source: Energy.gov [DOE]

    DOE recently resolved enforcement actions against a variety of companies for failure to certify that the products they were distributing meet the applicable energy conservation standards.

  10. DOE Collects Civil Penalties for Failure to Certify

    Broader source: Energy.gov [DOE]

    The Office of Enforcement recently settled enforcement actions against ten companies for failure to submit the required certification that products comply with the federal energy conservation...

  11. Failure mechanisms in MEMS. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    In MEMS, both electrical and mechanical precautions must be enacted to reduce the risk of ... Subject: 42 ENGINEERING; MICROELECTRONICS; FAILURE MODE ANALYSIS; FABRICATION; PACKAGING; ...

  12. Training Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Materials Training Materials The following tutorials are produced by NERSC staff and are intended to provide basic instruction on NERSC systems. Sort by: Default | Name | Date (low-high) | Date (high-low) | Source | Category Introduction to Hybrid OpenMP/MPI Programming June 24, 2004 | Author(s): Helen He | Download File: hybridTalk.pdf | pdf | 1005 KB sample managed list Using OpenMP October 20, 2010 | Author(s): Helen He | Introduction to MPI January 11, 2010 | Author(s): Richard

  13. Reference Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy Nevada Field Office webpage Public Reading Room NTA Public Reading Facility Open Monday through Friday, 7:30 am to 4:30 pm (except holidays) 755C East Flamingo Road Las Vegas, Nevada 89119 Phone (702) 794-5106 http://www.nv.doe.gov/library/testingarchive.aspx DOE Electronic Database Also available to the public is an

  14. Critical Materials:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 2. Technology Assessment and Potential ................................................................................................. 5 5 2.1 Major Trends in Selected Clean Energy Application Areas ........................................................... 5 6 2.1.1 Permanent Magnets for Wind

  15. Pattern of Failure After Limited Margin Radiotherapy and Temozolomide for Glioblastoma

    SciTech Connect (OSTI)

    McDonald, Mark W.; Shu, Hui-Kuo G.; Curran, Walter J.; Crocker, Ian R.

    2011-01-01

    Purpose: To evaluate the pattern of failure after limited margin radiotherapy for glioblastoma. Methods and Materials: We analyzed 62 consecutive patients with newly diagnosed glioblastoma treated between 2006 and 2008 with standard fractionation to a total dose of 60Gy with concurrent temozolomide (97%) or arsenic trioxide (3%). The initial clinical target volume included postoperative T2 abnormality with a median margin of 0.7cm. The boost clinical target volume included residual T1-enhancing tumor and resection cavity with a median margin of 0.5cm. Planning target volumes added a 0.3- or 0.5-cm margin to clinical target volumes. The total boost planning target volume (PTV{sub boost}) margin was 1cm or less in 92% of patients. The volume of recurrent tumor (new T1 enhancement) was categorized by the percent within the 60-Gy isodose line as central (>95%), infield (81-95%), marginal (20-80%), or distant (<20%). For comparison, an initial planning target volume with a 2-cm margin and PTV{sub boost} with a 2.5-cm margin were created for each patient. Results: With a median follow-up of 12 months, radiographic tumor progression developed in 43 of 62 patients. Imaging was available for analysis in 41: 38 (93%) had central or infield failure, 2 (5%) had marginal failure, and 1 (2%) had distant failure relative to the 60-Gy isodose line. The treated PTV{sub boost} (median, 140cm{sup 3}) was, on average, 70% less than the PTV{sub boost} with a 2.5-cm margin (median, 477cm{sup 3}) (p < 0.001). Conclusions: A PTV{sub boost} margin of 1cm or less did not appear to increase the risk of marginal and/or distant tumor failures compared with other published series. With careful radiation planning and delivery, it appears that treatment margins for glioblastoma can be reduced.

  16. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    SciTech Connect (OSTI)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.

  17. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect (OSTI)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  18. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  19. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  20. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 6: failure mode analysis. Final report

    SciTech Connect (OSTI)

    Streit, R.D.

    1981-09-01

    Material properties and failure criteria were evaluated to assess the requirements for double-ended guillotine break in the primary coolant loop of the Zion Unit 1 pressurized water reactor. The properties of the 316 stainless steel piping materials were obtained from the literature. Statistical distributions of both the tensile and fracture properties at room and operating temperatures were developed. Yield and ultimate strength tensile properties were combined to estimate the material flow strength. The flow strength and fracture properties were used in the various failure models analyzed. Linear-elastic, elastic-plastic, and fully plastic fracture models were compared, and the governing fracture criterion was determined. For the particular case studied, the fully plastic flow requirement was found to be the controlling fracture criterion leading to a double-ended guillotine pipe break.

  1. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID 412- 11/16/2012 - Page 1 Log No 2012-263 Reference Materials * Transporting Radioactive Waste to the Nevada National Security Site fact sheet (ww.nv.energy.gov/library/factsheets/DOENV_990.pdf) - Generators contract with commercial carriers - U.S. Department of Transportation regulations require carriers to select routes which minimize radiological risk * Drivers Route and Shipment Information Questionnaire completed by drivers to document routes taken to the NNSS upon entry into Nevada -

  2. Fullerene materials

    SciTech Connect (OSTI)

    Malhotra, R.; Ruoff, R.S.; Lorents, D.C.

    1995-04-01

    Fullerenes are all-carbon cage molecules. The most celebrated fullerene is the soccer-ball shaped C{sub 60}, which is composed of twenty hexagons and twelve pentagons. Because its structure is reminiscent of the geodesic domes of architect R. Buckminster Fuller, C{sub 60} is called buckminsterfullerene, and all the materials in the family are designated fullerenes. Huffman and Kraetschmer`s discovery unleashed activity around the world as scientists explored production methods, properties, and potential uses of fullerenes. Within a short period, methods for their production in electric arcs, plasmas, and flames were discovered, and several companies began selling fullerenes to the research market. What is remarkable is that in all these methods, carbon atoms assemble themselves into cage structures. The capability for self-assembly points to some inherent stability of these structures that allows their formation. The unusual structure naturally leads to unusual properties. Among them are ready solubility in solvents and a relatively high vapor pressure for a pure carbon material. The young fullerene field has already produced a surprising array of structures for the development of carbon-base materials having completely new and different properties from any that were previously possible.

  3. CONTAINER MATERIALS, FABRICATION AND ROBUSTNESS

    SciTech Connect (OSTI)

    Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.

    2009-11-10

    The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.

  4. Energy Efficiency and Renewables: Market and Behavioral Failures

    ScienceCinema (OSTI)

    James Sweeney

    2010-09-01

    Thursday, January 28, 2010: Policies to promote renewable energy and energy efficiency have been gaining momentum throughout the world, often justified by environmental and energy security concerns. This presentation first talks about energy efficiency options, then delves into the economic motivation for energy efficiency and renewable energy policies by articulating the classes of relevant behavioral failures and market failures. Such behavioral and market failures may vary intertemporally or atemporally; the temporal structure and the extent of the failures are the critical considerations in the development of energy policies. The talk discusses key policy instruments and assess the extent to which they are well-suited to correct for failures with different structures. http://eetd.lbl.gov/dls/lecture-01-28...

  5. Failures of nickel/copper bolts in subsea application

    SciTech Connect (OSTI)

    Wolfe, L.H.; Joosten, M.W.

    1988-08-01

    Slow-strain-rate tests in ASTM seawater using specimens prepared from a failed nickel/copper-alloy bolt have shown that precipitation-hardened UNS N05500 (Monel K-500) is embrittled by cathodic protection with sacrificial aluminum anodes. Some loss of ductility also occurred when annealed UNS N05500 was coupled to aluminum anodes and when the hardened alloy was coupled to steel. Brittle fractures produced by slow-strain-rate tests were intergranular and were very similar in appearance to the field fractures. While the slow-strain-rate tests were conducted on an alloy from only one source, there is no reason to assume that UNS N05500 alloy from other sources would resist hydrogen embrittlement from standard cathodic protection systems.

  6. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    SciTech Connect (OSTI)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  7. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  8. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S.; Antink, Allison L.

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  9. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  10. Vehicle Technologies Office Merit Review 2016: Electrode Materials Design and Failure Prediction

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory (LBNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  11. Vulnerability Assessment for Cascading Failures in Electric Power Systems

    SciTech Connect (OSTI)

    Baldick, R.; Chowdhury, Badrul; Dobson, Ian; Dong, Zhao Yang; Gou, Bei; Hawkins, David L.; Huang, Zhenyu; Joung, Manho; Kim, Janghoon; Kirschen, Daniel; Lee, Stephen; Li, Fangxing; Li, Juan; Li, Zuyi; Liu, Chen-Ching; Luo, Xiaochuan; Mili, Lamine; Miller, Stephen; Nakayama, Marvin; Papic, Milorad; Podmore, Robin; Rossmaier, John; Schneider, Kevin P.; Sun, Hongbin; Sun, Kai; Wang, David; Wu, Zhigang; Yao, Liangzhong; Zhang, Pei; Zhang, Wenjie; Zhang, Xiaoping

    2008-09-10

    Cascading failures present severe threats to power grid security, and thus vulnerability assessment of power grids is of significant importance. Focusing on analytic methods, this paper reviews the state of the art of vulnerability assessment methods in the context of cascading failures in three categories: steady-state modeling based analysis; dynamic modeling analysis; and non-traditional modeling approaches. The impact of emerging technologies including phasor technology, high-performance computing techniques, and visualization techniques on the vulnerability assessment of cascading failures is then addressed, and future research directions are presented.

  12. Failure analysis of an HCl gas cylinder valve

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2000-12-01

    The fouling failure of an anhydrous HCl gas cylinder valve was investigated after the failure led to an accidental release of HCl gas. It is surmised that water penetrated into the valve by improper purging or valving, and created a severely corrosive environment. The aluminum bronze valve body underwent general corrosion. The corrosion products, primarily nantokite (CuCl), built up within the valve and led to the fouling failure. Dezincification was observed in a leaded nickel silver component of the valve. The Monel 400 valve stem was intact. The cylinder and valve testing procedures that led to the gas release incident are also examined.

  13. In-Situ TEM and DFT Study of Large Cation Transport and Failure Mechanism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Single SnO2 Nanowire - Joint Center for Energy Storage Research July 18, 2013, Research Highlights In-Situ TEM and DFT Study of Large Cation Transport and Failure Mechanism In Single SnO2 Nanowire (Top)Captured in-situ TEM movie frame showing the pristine SnO2 nanowire, displacement reaction upon Na insertion leads to two phases materials and the corresponding electron diffraction pattern. Upon desodiation, pore forms, leading to high impedence of the electrode. (Bottom) High resolution

  14. Unusual refinery boiler tube failures due to corrosion by sulfuric acid induced by steam leaks

    SciTech Connect (OSTI)

    Lopez-Lopez, D.; Wong-Moreno, A.

    1998-12-31

    Corrosion by sulfuric acid in boilers is a low probability event because gas temperature and metal temperature of boiler tubes are high enough to avoid the condensation of sulfuric acid from flue gases. This degradation mechanism is frequently considered as an important cause of air preheaters materials degradation, where flue gases are cooled by heat transfer to the combustion air. Corrosion is associated to the presence of sulfuric acid, which condensates if metal temperature (or gas temperature) is below of the acid dew point. In economizer tubes, sulfuric acid corrosion is an unlikely event because flue gas and tube temperatures are normally over the acid dewpoint. In this paper, the failure analysis of generator tubes (similar to the economizer of bigger boilers) of two small oil-fired subcritical boilers is reported. It is concluded that sulfuric acid corrosion was the cause of the failure. The sulfuric acid condensation was due to the contact of flue gases containing SO{sub 3} with water-steam spray coming from leaks at the interface of rolled tube to the drum. Considering the information gathered from these two cases studied, an analysis of this failure mechanism is presented including a description of the thermodynamics condition of water leaking from the drum, and an analysis of the factors favoring it.

  15. The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koohbor, Behrad; Mallon, Silas; Kidane, Addis; Lu, Wei -Yang

    2015-04-07

    The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digitalmore » image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. As a result, it is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.« less

  16. The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading

    SciTech Connect (OSTI)

    Koohbor, Behrad; Mallon, Silas; Kidane, Addis; Lu, Wei -Yang

    2015-04-07

    The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digital image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. As a result, it is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.

  17. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and

  18. Code System for the Radioactive Liquid Tank Failure Study.

    Energy Science and Technology Software Center (OSTI)

    2000-01-03

    Version 01 RATAF calculates the consequences of radioactive liquid tank failures. In each of the processing systems considered, RATAF can calculate the tank isotopic concentrations in either the collector tank or the evaporator bottoms tank.

  19. Terrestrial Photovoltaic Module Accelerated Test-To-Failure Protocol

    SciTech Connect (OSTI)

    Osterwald, C. R.

    2008-03-01

    This technical report documents a test-to-failure protocol that may be used to obtain quantitative information about the reliability of photovoltaic modules using accelerated testing in environmental temperature-humidity chambers.

  20. The Sandia MEMS Passive Shock Sensor : FY08 failure analysis...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Sandia MEMS Passive Shock Sensor : FY08 failure analysis activities. ... Word Cloud More Like This Full Text preview image File size NAView Full Text View Full ...

  1. Physics of Failure of Electrical Interconnects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ape036_devoto_2011_p.pdf (402.27 KB) More Documents & Publications Physics of Failure of Electrical Interconnects Reliability

  2. Performance of wireless sensor networks under random node failures

    SciTech Connect (OSTI)

    Bradonjic, Milan; Hagberg, Aric; Feng, Pan

    2011-01-28

    Networks are essential to the function of a modern society and the consequence of damages to a network can be large. Assessing network performance of a damaged network is an important step in network recovery and network design. Connectivity, distance between nodes, and alternative routes are some of the key indicators to network performance. In this paper, random geometric graph (RGG) is used with two types of node failure, uniform failure and localized failure. Since the network performance are multi-facet and assessment can be time constrained, we introduce four measures, which can be computed in polynomial time, to estimate performance of damaged RGG. Simulation experiments are conducted to investigate the deterioration of networks through a period of time. With the empirical results, the performance measures are analyzed and compared to provide understanding of different failure scenarios in a RGG.

  3. Researchers Achieve Breakthrough in Solving Leading Cause of Gearbox Failures

    Broader source: Energy.gov [DOE]

    Accomplishing a significant milestone, researchers from the U.S. Department of Energy’s Argonne National Laboratory have successfully replicated the leading cause of wind turbine gearbox failures,...

  4. Fundamental Approach to Electrode Fabrication and Failure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Scale-up and Testing of Advanced Materials from the BATT Program Materials Scale-up and Cell Performance Analysis ATOMISTIC MODELING OF ELECTRODE MATERIALS

  5. Self-heating and failure in scalable graphene devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beechem, Thomas E.; Shaffer, Ryan A.; Nogan, John; Ohta, Taisuke; Hamilton, Allister B.; McDonald, Anthony E.; Howell, Stephen W.

    2016-06-09

    Self-heating induced failure of graphene devices synthesized from both chemical vapor deposition (CVD) and epitaxial means is compared using a combination of infrared thermography and Raman imaging. Despite a larger thermal resistance, CVD devices dissipate >3x the amount of power before failure than their epitaxial counterparts. The discrepancy arises due to morphological irregularities implicit to the graphene synthesis method that induce localized heating. As a result, morphology, rather than thermal resistance, therefore dictates power handling limits in graphene devices.

  6. Integrating Electricity Subsector Failure Scenarios into a Risk Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methodology (December 2013) | Department of Energy Integrating Electricity Subsector Failure Scenarios into a Risk Assessment Methodology (December 2013) Integrating Electricity Subsector Failure Scenarios into a Risk Assessment Methodology (December 2013) The nation's power system consists of both legacy and next generation technologies. New grid technologies are introducing millions of novel, intelligent components to the electric grid that communicate in much more advanced ways than in

  7. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect (OSTI)

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  8. Mini-Ckpts: Surviving OS Failures in Persistent Memory

    SciTech Connect (OSTI)

    Fiala, David; Mueller, Frank; Ferreira, Kurt Brian; Engelmann, Christian

    2016-01-01

    Concern is growing in the high-performance computing (HPC) community on the reliability of future extreme-scale systems. Current efforts have focused on application fault-tolerance rather than the operating system (OS), despite the fact that recent studies have suggested that failures in OS memory are more likely. The OS is critical to a system's correct and efficient operation of the node and processes it governs -- and in HPC also for any other nodes a parallelized application runs on and communicates with: Any single node failure generally forces all processes of this application to terminate due to tight communication in HPC. Therefore, the OS itself must be capable of tolerating failures. In this work, we introduce mini-ckpts, a framework which enables application survival despite the occurrence of a fatal OS failure or crash. Mini-ckpts achieves this tolerance by ensuring that the critical data describing a process is preserved in persistent memory prior to the failure. Following the failure, the OS is rejuvenated via a warm reboot and the application continues execution effectively making the failure and restart transparent. The mini-ckpts rejuvenation and recovery process is measured to take between three to six seconds and has a failure-free overhead of between 3-5% for a number of key HPC workloads. In contrast to current fault-tolerance methods, this work ensures that the operating and runtime system can continue in the presence of faults. This is a much finer-grained and dynamic method of fault-tolerance than the current, coarse-grained, application-centric methods. Handling faults at this level has the potential to greatly reduce overheads and enables mitigation of additional fault scenarios.

  9. On-clip high frequency reliability and failure test structures

    DOE Patents [OSTI]

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  10. On-clip high frequency reliability and failure test structures

    DOE Patents [OSTI]

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  11. Impact and Detection of Pyranometer Failure on PV Performance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Impact and Detection of Pyranometer Failure on PV Performance Impact and Detection of Pyranometer Failure on PV Performance Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps1_nrel_jordan.pdf (1.24 MB) More Documents & Publications Experimental and Modeling Investigation of Radionuclide Interaction and Transport in Representative Geologic Media Brine Migration Experimental Studies for Salt Repositories Performance Assessment of

  12. Fast Detection of Material Deformation through Structural Dissimilarity

    SciTech Connect (OSTI)

    Ushizima, Daniela; Perciano, Talita; Parkinson, Dilworth

    2015-10-29

    Designing materials that are resistant to extreme temperatures and brittleness relies on assessing structural dynamics of samples. Algorithms are critically important to characterize material deformation under stress conditions. Here, we report on our design of coarse-grain parallel algorithms for image quality assessment based on structural information and on crack detection of gigabyte-scale experimental datasets. We show how key steps can be decomposed into distinct processing flows, one based on structural similarity (SSIM) quality measure, and another on spectral content. These algorithms act upon image blocks that fit into memory, and can execute independently. We discuss the scientific relevance of the problem, key developments, and decomposition of complementary tasks into separate executions. We show how to apply SSIM to detect material degradation, and illustrate how this metric can be allied to spectral analysis for structure probing, while using tiled multi-resolution pyramids stored in HDF5 chunked multi-dimensional arrays. Results show that the proposed experimental data representation supports an average compression rate of 10X, and data compression scales linearly with the data size. We also illustrate how to correlate SSIM to crack formation, and how to use our numerical schemes to enable fast detection of deformation from 3D datasets evolving in time.

  13. Critical Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

  14. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  15. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  16. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  17. Representing ductile damage with the dual domain material point method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; Gray, III, G. T.

    2015-12-14

    In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in thismore » impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.« less

  18. Representing ductile damage with the dual domain material point method

    SciTech Connect (OSTI)

    Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; Gray, III, G. T.

    2015-12-14

    In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in this impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.

  19. weapons material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material protection

  20. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    DOE Patents [OSTI]

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2016-03-29

    A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  1. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  2. POF-Darts: Geometric adaptive sampling for probability of failure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ebeida, Mohamed S.; Mitchell, Scott A.; Swiler, Laura P.; Romero, Vicente J.; Rushdi, Ahmad A.

    2016-06-18

    We introduce a novel technique, POF-Darts, to estimate the Probability Of Failure based on random disk-packing in the uncertain parameter space. POF-Darts uses hyperplane sampling to explore the unexplored part of the uncertain space. We use the function evaluation at a sample point to determine whether it belongs to failure or non-failure regions, and surround it with a protection sphere region to avoid clustering. We decompose the domain into Voronoi cells around the function evaluations as seeds and choose the radius of the protection sphere depending on the local Lipschitz continuity. As sampling proceeds, regions uncovered with spheres will shrink,more » improving the estimation accuracy. After exhausting the function evaluation budget, we build a surrogate model using the function evaluations associated with the sample points and estimate the probability of failure by exhaustive sampling of that surrogate. In comparison to other similar methods, our algorithm has the advantages of decoupling the sampling step from the surrogate construction one, the ability to reach target POF values with fewer samples, and the capability of estimating the number and locations of disconnected failure regions, not just the POF value. Furthermore, we present various examples to demonstrate the efficiency of our novel approach.« less

  3. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Office Contact Administrative nav background Materials Test Station dotline ... Materials Test Station: the Preferred Alternative When completed, the Materials Test ...

  4. A Google for Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kristin Persson A Google for Materials February 4, 2014 Kirstin Persson, Berkeley Lab Downloads Persson-Materials-NUG2014.pdf | Adobe Acrobat PDF file A Google For Materials? -...

  5. Effects of Fusion Zone Size on Failure Modes and Performance of Advanced High Strength Steel Spot Welds

    SciTech Connect (OSTI)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2006-04-28

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using the limit load based analytical model and the micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied using statistical data analysis tools. The results in this study show that the conventional weld size of 4 t can not produce nugget pullout mode for both the DP800 and TRIP800 materials. The results also suggest that performance based spot weld acceptance criteria should be developed for different AHSS spot welds.

  6. Computational modeling for hexcan failure under core distruptive accidental conditions

    SciTech Connect (OSTI)

    Sawada, T.; Ninokata, H.; Shimizu, A.

    1995-09-01

    This paper describes the development of computational modeling for hexcan wall failures under core disruptive accident conditions of fast breeder reactors. A series of out-of-pile experiments named SIMBATH has been analyzed by using the SIMMER-II code. The SIMBATH experiments were performed at KfK in Germany. The experiments used a thermite mixture to simulate fuel. The test geometry of SIMBATH ranged from single pin to 37-pin bundles. In this study, phenomena of hexcan wall failure found in a SIMBATH test were analyzed by SIMMER-II. Although the original model of SIMMER-II did not calculate any hexcan failure, several simple modifications made it possible to reproduce the hexcan wall melt-through observed in the experiment. In this paper the modifications and their significance are discussed for further modeling improvements.

  7. Statistical analysis of cascading failures in power grids

    SciTech Connect (OSTI)

    Chertkov, Michael; Pfitzner, Rene; Turitsyn, Konstantin

    2010-12-01

    We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systems consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.

  8. Failure modes and effects analysis of fusion magnet systems

    SciTech Connect (OSTI)

    Zimmermann, M; Kazimi, M S; Siu, N O; Thome, R J

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs.

  9. An Attempt to Calibrate and Validate a Simple Ductile Failure Model Against Axial-Torsion Experiments on Al 6061-T651.

    SciTech Connect (OSTI)

    Reedlunn, Benjamin; Lu, Wei-Yang

    2015-01-01

    This report details a work in progress. We have attempted to calibrate and validate a Von Mises plasticity model with the Johnson-Cook failure criterion ( Johnson & Cook , 1985 ) against a set of experiments on various specimens of Al 6061-T651. As will be shown, the effort was not successful, despite considerable attention to detail. When the model was com- pared against axial-torsion experiments on tubes, it over predicted failure by 3 x in tension, and never predicted failure in torsion, even when the tube was twisted by 4 x further than the experiment. While this result is unfortunate, it is not surprising. Ductile failure is not well understood. In future work, we will explore whether more sophisticated material mod- els of plasticity and failure will improve the predictions. Selecting the appropriate advanced material model and interpreting the results of said model are not trivial exercises, so it is worthwhile to fully investigate the behavior of a simple plasticity model before moving on to an anisotropic yield surface or a similarly complicated model.

  10. High Temperature Compatibility of 60-Watt IHS Materials

    SciTech Connect (OSTI)

    Worley, C. M.; Merten, C. W.

    1995-11-21

    The 60-Watt Isotopic Heat Source (IHS) utilizes a variety of materials which have been selected for their properties at elevated temperatures. These include iridium, molybdenum, and the T-111 alloy which consists of 90 wt% tantalum, 8 wt% tungsten, and 2 wt% hafnium. Properties of interest in radioisotopic heat source applications include high temperature strength, resistance to oxidation, weldability, and ability to act as a diffusion barrier. Iridium is utilized as a clad for fuel pellets because of its high temperature mechanical properties and good compatibility with carbon and plutonium oxide. Molybdenum retains good high temperature strength and has been used as a diffusion barrier in past applications. However, molybdenum also exhibits poor resistance to oxidation. Therefore, it is necessary to enclose molybdenum components so that they are not exposed to the atmosphere. T-111 exhibits moderate oxidation resistance, good high temperature mechanical properties, and good weldability. For these reasons, it is used as the outer containment boundary for the 60-Watt IHS. Because the temperature in GPHS fueled dads is on the order of 1000 degrees Celsius in the 60-W configuration, the potential for diffusion of dissimilar materials from one into another exists. Deleterious effects of diffusion can include degradation of mechanical strength through the formation of brittle intermetallics, degradation of mechanical properties through simple alloying, or formation of voids through the Kirkendall effect. Because of the possibility of these effects, design methodology calls for use of diffusion barriers between materials likely to exhibit interdiffusion at elevated temperatures. The necessity to assure the long term integrity of the 60-Watt IHS dictates that the diffusion behavior of its component materials be known. This report describes the high temperature compatibility studies which were conducted on the component materials of the 60-Watt IHS.