Sample records for brine devonian shale

  1. Unconventional gas sources. Executive summary. [Coal seams, Devonian shale, geopressured brines, tight gas reservoirs

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The long lead time required for conversion from oil or gas to coal and for development of a synthetic fuel industry dictates that oil and gas must continue to supply the United States with the majority of its energy requirements over the near term. In the interim period, the nation must seek a resource that can be developed quickly, incrementally, and with as few environmental concerns as possible. One option which could potentially fit these requirements is to explore for, drill, and produce unconventional gas: Devonian Shale gas, coal seam gas, gas dissolved in geopressured brines, and gas from tight reservoirs. This report addresses the significance of these sources and the economic and technical conditions under which they could be developed.

  2. Methane adsorption on Devonian shales 

    E-Print Network [OSTI]

    Li, Fan-Chang

    1992-01-01T23:59:59.000Z

    METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

  3. Methane adsorption on Devonian shales

    E-Print Network [OSTI]

    Li, Fan-Chang

    1992-01-01T23:59:59.000Z

    METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

  4. Devonian shale production data analysis

    SciTech Connect (OSTI)

    Koziar, G.

    1984-05-01T23:59:59.000Z

    Analysis of Devonian shale production histories without careful data screening can easily mislead even the most exacting investigator. Trends established from cumulative production data may not accurately represent the true production pattern. The difference between a good well and a poorer producer may be the result of fracture depletion or the length of actual producing time (among other factors) rather than a change in reservoir quality. The use of matrix controlled production information, derived from decline curves, appears to resolve this problem.

  5. Evaluation of Devonian shale gas reservoirs

    SciTech Connect (OSTI)

    Vanorsdale, C.R.

    1987-05-01T23:59:59.000Z

    The evaluation of predominantly shale reservoirs presents a problem for engineers traditionally educated either to correct for or to ignore such lithologic zones. Currently accepted evaluation techniques and their applicability are discussed to determine the best way to forecast remaining recoverable gas reserves from the Devonian shales of the Appalachian basin. This study indicates that rate/time decline-curve analysis is the most reliable technique and presents typical decline curves based on production data gathered from 508 shale wells in a three-state study area. The resultant type curves illustrate a dual- (or multiple-) porosity mechanism that violates standard decline-curve analysis guidelines. The results, however, are typical not only for the Devonian shales but for all naturally fractured, multilayered, or similar shale reservoirs.

  6. Reservoir and stimulation analysis of a Devonian Shale gas field

    E-Print Network [OSTI]

    Shaw, James Stanley

    1986-01-01T23:59:59.000Z

    . The Gas Research Institute (GRI) which sponsored this work under GRI Contract No. 5084-213-0980, "Analysis of Eastern Devonian Gas Shales Production Data;" 2. Doug Terry and Joe Petty with Union Drilling, Inc. who showed great interest in this study... and enhance productivity. ~St h The Devonian Shales in the Mason County Field study area can be subdivided using gamma ray logs as follows (in descending order): Upper Devonian Undivided, Huron Shale Member of the Ohio Shale, Java Formation, Angola Shale...

  7. Technically recoverable Devonian shale gas in Ohio

    SciTech Connect (OSTI)

    Kuushraa, V.A.; Wicks, D.E.; Sawyer, W.K.; Esposito, P.R.

    1983-07-01T23:59:59.000Z

    The technically recoverable gas from Devonian shale (Lower and Middle Huron) in Ohio is estimated to range from 6.2 to 22.5 Tcf, depending on the stimulation method and pattern size selected. This estimate of recovery is based on the integration of the most recent data and research on the Devonian Age gas-bearing shales of Ohio. This includes: (1) a compilation of the latest geologic and reservoir data for the gas in-place; (2) analysis of the key productive mechanisms; and, (3) examination of alternative stimulation and production strategies for most efficiently recovering this gas. Beyond a comprehensive assembly of the data and calculation of the technically recoverable gas, the key findings of this report are as follows: a substantial volume of gas is technically recoverable, although advanced (larger scale) stimulation technology will be required to reach economically attractive gas production rates in much of the state; well spacing in certain of the areas can be reduced by half from the traditional 150 to 160 acres per well without severely impairing per-well gas recovery; and, due to the relatively high degree of permeability anisotropy in the Devonian shales, a rectangular, generally 3 by 1 well pattern leads to optimum recovery. Finally, although a consistent geological interpretation and model have been constructed for the Lower and Middle Huron intervals of the Ohio Devonian shale, this interpretation is founded on limited data currently available, along with numerous technical assumptions that need further verification. 11 references, 21 figures, 32 tables.

  8. Geologic analysis of Devonian Shale cores

    SciTech Connect (OSTI)

    none,

    1982-02-01T23:59:59.000Z

    Cleveland Cliffs Iron Company was awarded a DOE contract in December 1977 for field retrieval and laboratory analysis of cores from the Devonian shales of the following eleven states: Michigan, Illinois, Indiana, Ohio, New York, Pennsylvania, West Virginia, Maryland, Kentucky, Tennessee and Virginia. The purpose of this project is to explore these areas to determine the amount of natural gas being produced from the Devonian shales. The physical properties testing of the rock specimens were performed under subcontract at Michigan Technological University (MTU). The study also included LANDSAT information, geochemical research, structural sedimentary and tectonic data. Following the introduction, and background of the project this report covers the following: field retrieval procedures; laboratory procedures; geologic analysis (by state); references and appendices. (ATT)

  9. Porosity and permeability of Eastern Devonian gas shale

    SciTech Connect (OSTI)

    Soeder, D.J.

    1988-03-01T23:59:59.000Z

    High-precision core analysis has been performed on eight Devonian gas shale samples from the Appalachian basin. Seven of the core samples consist of the Upper Devonian Age Huron member of the Ohio shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eight core sample consists of Middle Devonian Age Marcellus shale obtained from a well in Morgantown, WV. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the work has identified a number of geological factors that influence gas production from organic-rich shales. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron shale samples effectively limits the gas porosity of this formation to less than 0.2%, and gas permeability of the rock matrix is commonly less than 0.1 ..mu..d at reservoir stress. The Marcellus shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10%, and a surprisingly high permeability of 20 ..mu..d. Gas permeability of the Marcellus was highly stress-dependent, however; doubling the net confining stress reduced the permeability by nearly 70%. The conclusion reached from this study is that the gas productivity potential of Devonian shale in the Appalachian basin is influenced by a wide range of geologic factors. Organic content, thermal maturity, natural fracture spacing, and stratigraphic relationships between gray and black shales all affect gas content and mobility. Understanding these factors can improve the exploration and development of Devonian shale gas.

  10. Porosity and permeability of eastern Devonian gas shale

    SciTech Connect (OSTI)

    Soeder, D.J.

    1986-01-01T23:59:59.000Z

    High-precision core analysis has been performed on eight samples of Devonian gas shale from the Appalachian Basin. Seven of the core samples consist of the Upper Devonian age Huron Member of the Ohio Shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eighth core sample consists of Middle Devonian age Marcellus Shale obtained from a well in Morgantown, West Virginia. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the results have also shown that there are a number of previously unknown factors which influence or control gas production from organic-rich shales of the Appalachian Basin. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron Shale samples effectively limits the gas porosity of this formation to less than 0.2%, and permeability of the rock matrix to gas is less than 0.1 microdarcy at reservoir stress. The Marcellus Shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10% under stress with a fairly strong ''adsorption'' component. Permeability to gas (K/sub infinity/ was highly stress-dependent, ranging from about 20 microdarcies at a net stress of 3000 psi down to about 5 microdarcies at a net stress of 6000 psi. The conclusion reached from this study is that Devonian shale in the Appalachian Basin is a considerably more complex natural gas resource than previously thought. Production potential varies widely with geographic location and stratigraphy, just as it does with other gas and oil resources. 15 refs., 8 figs., 3 tabs.

  11. Technically recoverable Devonian shale gas in West Virginia

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Wicks, D.E.

    1984-12-01T23:59:59.000Z

    This report evaluates the natural gas potential of the Devonian Age shales of West Virginia. For this, the study: (1) compiles the latest geological and reservoir data to establish the gas in-place; (2) analyzes and models the dominant gas production mechanisms; and (3) examines alternative well stimulation and production strategies for most efficiently recovering the in-place gas. The major findings of the study include the following: (1) The technically recoverable gas from Devonian shale (Huron, Rhinestreet, and Marcellus intervals) in West Virginia is estimated to range from 11 to 44 trillion cubic feet. (2) The Devonian shales in this state entail great geological diversity; the highly fractured, permeable shales in the southwest respond well to traditional development practices while the deep, tight shales in the eastern and northern parts of the state will require new, larger scale well stimulation technology. (3) Beyond the currently developed Huron and Rhinestreet shale intervals, the Marcellus shale offers a third attractive gas zone, particularly in the north central portion of the state. 21 references, 53 figures, 27 tables.

  12. Mechanical properties of Devonian shales from the Appalachian Basin

    SciTech Connect (OSTI)

    Blanton, T.L.; Dischler; Patti, N.C.

    1981-09-30T23:59:59.000Z

    A prime objective of the current study has been to establish wherever possible regional or stratigraphic trends in the various properties required by stimulation research. Lithologically Devonian shales tend to fall into two categories: gray shales and organic-rich black shales. Two black/gray pairs, Huron/Hanover and Marcellus/Mahantango, were selected from four localities in Pennsylvania and Ohio for comprehensive testing. Over 130 experiments were run on these zones to determine elasticity, fracture properties, yield and ultimate strength, and ductility. The results of these tests and previous tests run on core from West Virginia and Kentucky provide a basis for the following conclusions about Devonian shale mechanical properties and their applications in stimulation research: elasticity of Devonian shale matrix material showed no strong trends with respect to either lithology, locality, or confining pressure. Gray shales tended to have a slightly higher Young's modulus than black shales, but the difference between the averages was less than the standard deviation of each average. Ultimate strength, yield strength, and ductility all increase with increasing confining pressure, which is typical for most rocks. Ultimate strength and yield strength tend to be higher for gray shales, whereas black shales tend to be more ductile. Tensile strength showed no particular trends either regionally or lithologically, whereas fracture energy seemed to have the most consistent trends of any material property measured. Black shales tended to have a higher fracture energy, and fracture energy for both black and gray shales tended to increase with depth of burial. Two promising topics for continued study are the effect of confining pressure on fracture energy and the effect of deformation rate on material properties. 16 figures, 9 tables.

  13. Hydrodynamic analogy of production decline for Devonian shale wells

    SciTech Connect (OSTI)

    Pulle, C.V.

    1982-01-01T23:59:59.000Z

    Several studies on production decline curves have shown that an exponential or hyperbolic curve adequately fits production decline data for Devonian shale wells. Attempts to characterize the production decline based on open flows, rock pressures, and specific shale production mechanisms have also been made. This paper seeks to provide a genesis of the decline curves with the use of a simple hydrodynamic analogy. Some physical factors critical to well productivity are also examined. 4 refs.

  14. Evaluation of Devonian-shale potential in Ohio

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The purpose of this report is to inform interested oil and gas operators about EGSP results as they pertain to the Devonian gas shales of the Appalachian basin in eastern Ohio. Geologic data and interpretations are summarized, and areas where the accumulation of gas may be large enough to justify commercial production are outlined. Because the data presented in this report are generalized and not suitable for evaluation of specific sites for exploration, the reader should consult the various reports cited for more detail and discussion of the data, concepts, and interpretations presented. A complete list of EGSP sponsored work pertinent to the Devonian shales in Ohio is contained as an appendix to this report. Radioactive shale zones are also mapped.

  15. Characterization of an Eastern Kentucky Devonian Shales well using a naturally fractured, layered reservoir description 

    E-Print Network [OSTI]

    Jochen, John Edward

    1993-01-01T23:59:59.000Z

    and pressure transient data for a single gas well completed in the Devonian Shales of the Appalachian Basin in Pike Co. , KY. This well was part of a three-well research program sponsored by the Gas Research Institute (GRI) to study the Devonian Shales.... , KY). From the tests conducted on the Preece No. 1, Hopkins et al. concluded that large Devonian Shales intervals which were treated jointly in a single wellbore often were not stimulated effectively, because small intervals accepted a...

  16. Evaluation of Devonian shale potential in West Virginia

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    In West Virginia, all significant areas of current Devonian shale gas production are situated where the radioactive shale units are thicker than 200 feet. Most areas of current gas production exhibit a close correlation with the trend of the Rome trough structure, and nearly all lie within the optimum stress-ratio zone. In addition, most of the current gas-producing areas are located within the zone of optimum shale thermal maturity, and optimum shale thermal maturity nearly coincides with the optimum shale stress-ratio value (0.43) in western and southwestern West Virginia. Areas adjacent to existing gas fields, within northeastern Cabell County, northern Lincoln County, and central Wayne County, are excellent prospects for future production. Additional deeper drilling in existing gas fields within the main trend may tap potential new reservoirs in the Rhinestreet and Marcellus Shales. The area east of the Warfield anticline in central Boone, Logan, and eastern Mingo Counties also may be favorable for gas exploitation of the radioactive Huron Shale. Fractures associated with the flank of the anticline and possible reactivation of basement faults in this area should be sufficient to provide the means for production. Further drilling should also be conducted along extensions of the border fault zone of the Rome trough in the western portion of the state. However, the subsurface trend of the trough must be carefully delineated to successfully develop gas production from potential fractured reservoir systems.

  17. Discovery of agglutinated benthic foraminifera in Devonian black shales and their relevance for the redox state of ancient seas

    E-Print Network [OSTI]

    Polly, David

    Discovery of agglutinated benthic foraminifera in Devonian black shales and their relevance Received in revised form 4 October 2008 Accepted 31 October 2008 Keywords: Black shale Redox Devonian. The discovery that they occur widely in Late Devonian black shales has a bearing on the boundary conditions

  18. Characterization of an Eastern Kentucky Devonian Shales well using a naturally fractured, layered reservoir description

    E-Print Network [OSTI]

    Jochen, John Edward

    1993-01-01T23:59:59.000Z

    of gas in place. ' Although production from the Devonian Shales began as early as 1821, only an estimated 2. 5 Tscf of gas had been produced through 1980, z with estimates of remaining recoverable gas ranging from 27 Tscf using a current technology... scenario, to 42 Tscf by applying advanced technology. ' Current production frotn the Devonian Shales of the Appalachian Basin is estimated at 0. 2 Tscf per year. ' The Devonian S hales is actively being developed in large portions of Pennsylvania, West...

  19. Intergrated study of the Devonian-age black shales in eastern Ohio. Final report

    SciTech Connect (OSTI)

    Gray, J.D.; Struble, R.A.; Carlton, R.W.; Hodges, D.A.; Honeycutt, F.M.; Kingsbury, R.H.; Knapp, N.F.; Majchszak, F.L.; Stith, D.A.

    1982-09-01T23:59:59.000Z

    This integrated study of the Devonian-age shales in eastern Ohio by the Ohio Department of Natural Resources, Division of Geological Survey is part of the Eastern Gas Shales Project sponsored by the US Department of Energy. The six areas of research included in the study are: (1) detailed stratigraphic mapping, (2) detailed structure mapping, (3) mineralogic and petrographic characterization, (4) geochemical characterization, (5) fracture trace and lineament analysis, and (6) a gas-show monitoring program. The data generated by the study provide a basis for assessing the most promising stratigraphic horizons for occurrences of natural gas within the Devonian shale sequence and the most favorable geographic areas of the state for natural gas exploration and should be useful in the planning and design of production-stimulation techniques. Four major radioactive units in the Devonian shale sequence are believed to be important source rocks and reservoir beds for natural gas. In order of potential for development as an unconventional gas resource, they are (1) lower and upper radioactive facies of the Huron Shale Member of the Ohio Shale, (2) upper Olentangy Shale (Rhinestreet facies equivalent), (3) Cleveland Shale Member of the Ohio Shale, and (4) lower Olentangy Shale (Marcellus facies equivalent). These primary exploration targets are recommended on the basis of areal distribution, net thickness of radioactive shale, shows of natural gas, and drilling depth to the radioactive unit. Fracture trends indicate prospective areas for Devonian shale reservoirs. Good geological prospects in the Devonian shales should be located where the fracture trends coincide with thick sequences of organic-rich highly radioactive shale.

  20. Effects of stimulation/completion practices on Eastern Devonian Shale well productivity 

    E-Print Network [OSTI]

    Nearing, Timothy Ray

    1988-01-01T23:59:59.000Z

    of the degree and density of natural fracturing in the shales . The counties and region designations are summarized in table 1. OH WV KY VA Figure 1 - Study Area of Devonian Gas Production. STATE TABLE 1 Description of Study Area COUNTY REGION...EFFECTS OF STIMULATION/COMPLETION PRACTICES ON EASTERN DEVONIAN SHALE WELL PRODUCTIVITY A Thesis by TIMOTHY RAY NEARING Submitted to the Office of Graduate Studies Texas A&M University in partial fulfillment of the requirements for the degree...

  1. Evaluation of massive hydraulic fracturing experiments in the Devonian Shales in Lincoln County, West Virginia 

    E-Print Network [OSTI]

    Holgate, Karen Elaine

    1987-01-01T23:59:59.000Z

    . The well labeled Lincoln 1637 is actually Columbia Well No. 20403. This section illustrated the individual units identified within the Devonian Shale and their OHIO (r WV KY :j - ) WAYNE CABEL LINCOLN 8OONE STUDY AREA MINGO LOGAN WyOMING BIG...EVALUATION OF MASSIVE HYDRAULIC FRACTURING EXPERIMENTS IN THE DEVONIAN SHALES IN LINCOLN COUNTY, WEST VIRGINIA A Thesis by KAREN ELAINE HOLGATE Submitted to the Graduate College of Texas ALM University in partial fulfillment...

  2. Evaluation of massive hydraulic fracturing experiments in the Devonian Shales in Lincoln County, West Virginia

    E-Print Network [OSTI]

    Holgate, Karen Elaine

    1987-01-01T23:59:59.000Z

    EVALUATION OF MASSIVE HYDRAULIC FRACTURING EXPERIMENTS IN THE DEVONIAN SHALES IN LINCOLN COUNTY, WEST VIRGINIA A Thesis by KAREN ELAINE HOLGATE Submitted to the Graduate College of Texas ALM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject: Petroleum Engineering EVALUATION OF MASSIVE HYDRAULIC FRACTURING EXPERIMENTS IN THE DEVONIAN SHALES IN LINCOLN COUNTY, WEST VIRGINIA A Thesis by KAREN ELAINE HDLGATE Approved...

  3. Effects of stimulation/completion practices on Eastern Devonian Shale well productivity

    E-Print Network [OSTI]

    Nearing, Timothy Ray

    1988-01-01T23:59:59.000Z

    in the Devonian shale, ' then the degree of fracture density and fracture preferential direction caused by these stresses should dictate the choice of stimulation method. Young states that fracture orientation will be dictated by the in-situ stress field...EFFECTS OF STIMULATION/COMPLETION PRACTICES ON EASTERN DEVONIAN SHALE WELL PRODUCTIVITY A Thesis by TIMOTHY RAY NEARING Submitted to the Office of Graduate Studies Texas A&M University in partial fulfillment of the requirements for the degree...

  4. A study of the effects of stimulation on Devonian Shale gas well performance 

    E-Print Network [OSTI]

    Zuber, Michael Dean

    1985-01-01T23:59:59.000Z

    that makes up the Appalachian Basin. The Devonian Shale is economical- ly productive from many different combinations of reservoir parameters. Consistencies in reservoir characteristics seem to exist only on a county by county basis (and much smaller... fracture, and ky is the formation permeability in the direction perpendic- ular to the induced hydraulic fracture (see Fig. 2). Figure 2 is a schematic diagram showing how this model was used to simulate a Devonian Shale well with permeability...

  5. The use of Devonian oil shales in the production of portland cement

    SciTech Connect (OSTI)

    Schultz, C.W.; Lamont, W.E. [Alabama Univ., University, AL (United States); Daniel, J. [Lafarge Corp., Alpena, MI (United States)

    1991-12-31T23:59:59.000Z

    The Lafarge Corporation operates a cement plant at Alpena, Michigan in which Antrim shale, a Devonian oil shale, is used as part of the raw material mix. Using this precedent the authors examine the conditions and extent to which spent shale might be utilized in cement production. They conclude that the potential is limited in size and location but could provide substantial benefit to an oil shale operation meeting these criteria.

  6. Practical aspects of Devonian shale exploration and development in Western West Virginia: One operator's experience

    SciTech Connect (OSTI)

    Murray, W.G.; Fairchild, M.; Heck, W.A.; Wolfe, R.T.; Woodfork, L.D.

    1984-05-01T23:59:59.000Z

    The discovery of new oil production (with associated gas) from the Devonian shales in western West Virginia in 1979 led to a tremendous increase in Devonian shale exploration and development in that area. The records of the West Virginia Geological and Economic Survey indicate that over 40% of drilling permits issued in 1982 were for various zones in the Devonian shales. With the decline in the gas market, the number of Devonian shale gas wells has declined in 1983. Nevertheless, activity in Ritchie, Pleasants, and Wood counties has remained very high. That activity is a source of considerable practical information on Devonian shale exploration and development. In fact, that play has provided an active testing ground for a variety of theories and techniques. The information presented in this paper is derived largely from the experience of one operator, Rendova Oil Company of Midland, Texas. That organization has been active in West Virginia since 1980 and, through the end of 1983, has drilled over 40 Devonian shale wells. That effort has been a continuous learning process in all phases of exploration and development. This paper attempts to share that experience by describing the methods and techniques that have been tried as well as Rendova's current practices. The discussion will include exploration rationale, drilling methods, and completion and production practices.

  7. Occurrence of oil and gas in Devonian shales and equivalents in West Virginia

    SciTech Connect (OSTI)

    Schwietering, J. F.

    1981-03-01T23:59:59.000Z

    During the Devonian, an epicontinental sea was present in the Appalachian basin. The Catskill Clastic Wedge was formed in the eastern part of the basin by sediments derived from land along the margin of the continent. Three facies are recognized in the Catskill Clastic Wedge: (1) a red-bed facies deposited in terrestrial and nearshore marine environments; (2) a gray shale and sandstone facies deposited in a shallow- to moderately-deep marine environment; and (3) a dark-gray shale and siltstone facies deposited in the deepest part of the epicontinental sea. Oil and natural gas are being produced from Devonian shales in the western part of West Virginia and from upper Devonian sandstones and siltstones in the north-central part of the state. It is suggested that in addition to extending known areas of gas production, that drilling for natural gas be conducted in areas underlain by organic-rich shales and thick zones of interbedded siltstone and shale in the Devonian section in central, southern, and western West Virginia. The most promising areas for exploration are those areas where fractures are associated with folds, faults, and lineaments. 60 references.

  8. Sedimentology of gas-bearing Devonian shales of the Appalachian Basin

    SciTech Connect (OSTI)

    Potter, P.E.; Maynard, J.B.; Pryor, W.A.

    1981-01-01T23:59:59.000Z

    The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

  9. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements

    SciTech Connect (OSTI)

    Locke, C.D.; Salamy, S.P.

    1991-09-01T23:59:59.000Z

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  10. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report

    SciTech Connect (OSTI)

    Locke, C.D.; Salamy, S.P.

    1991-09-01T23:59:59.000Z

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  11. A study of the effects of stimulation on Devonian Shale gas well performance

    E-Print Network [OSTI]

    Zuber, Michael Dean

    1985-01-01T23:59:59.000Z

    of actual production data from producing Devonian Shale gas wells throughout the Appalachian Basin. These comparisons are of limited use, however, because they fail to take into account recently developed stimulation technologies and because compari... by analysis of these data. Unfortunately, too little data are available for wells stimulated using current technologies. This study included no production data from wells stimulated by radial (tailored-pulse) fracturing methods. These data are vital...

  12. Relationship between bitumen maturity and organic facies in Devonian shales from the Appalachian basin

    SciTech Connect (OSTI)

    Daly, A.R.

    1988-01-01T23:59:59.000Z

    Variation in several bitumen maturity parameters was studied in a core of Devonian shale from the central Appalachian basin. Kerogens in the shales are at maturity levels equivalent to the early stages of oil generation and range in composition from Type III-IV to Type II-III. Maturity parameters based on steranes, terpanes, and n-alkanes exhibit fluctuations that are unrelated to thermal maturity changes in the core. The parameters correlate with one another to a high degree and appear to be directly or indirectly related to the organic facies of the shales. The maturity level indicated by each parameter increases with total organic carbon (TOC) content and hydrogen index value. The greatest variation occurs in rocks with TOC values below 2% and hydrogen index values below 250. The data provide a good opportunity to examine the dependency of bitumen maturity on organic facies, and they highlight a caveat to be considered during interpretation.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  16. Fractures in oriented Devonian-shale cores from the Appalachian Basin. Vol. 1

    SciTech Connect (OSTI)

    Evans, M.A.

    1980-01-01T23:59:59.000Z

    Examination of thirteen oriented Devonian-shale cores from the Appalachian Basin revealed considerable fracturing and shearing at depth. Fracture frequency and orientation measurements were made on the fractures in each core. Fractures and associated structures were differentiated into core-induced fractures, unmineralized natural fractures, mineralized natural fractures, slickensided fractures, and slickenlines. Core-induced fractures exhibit a consistent northeast orientation both areally and with depth. This consistency indicates the presence of an anisotropy which is interpreted to be related to an east to northeast trending maximum compressive stress developed in eastern North America by the convective flow in the mantle associated with spreading along the Mid-Atlantic Ridge. Natural fracture, slickenside, and slickenline orientations are related to: (1) northwest directed tectonic compressive stresses associated with Alleghenian deformation, (2) stresses associated with local faulting, and (3) the same east to northeast maximum compressive stress responsible for the core-induced fractures. Higher frequencies of natural fractures and slickensides are associated primarily with incompetent, high-organic shales. Natural fractures occur most frequently in the Marcellus Shale, Tully Limestone, Geneseo Shale, West Falls Formation, and the Lower Huron Member of the Ohio Shale. Slickensided fractures occur most frequently in the Marcellus Shale, Tully Limestone, Geneseo Shale, West Falls Formation, base of the Java Formation, and Lower Huron and Cleveland Members of the Ohio Shale. These observations are consistent with a fracture facies concept that proposes fracture development in shales that have acted as decollement zones during Alleghenian deformation. Detailed reports are included in Volume 2 for each of the thirteen cores investigated. 25 figures, 4 tables.

  17. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  18. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  19. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  20. Preliminary analysis of Devonian shale oil production in the Appalachian Basin

    SciTech Connect (OSTI)

    Duda, J.R.

    1985-12-01T23:59:59.000Z

    Devonian shale production has been continuous for many years in the Appalachian Basin. In the northwest portion of West Virginia and the southeast area of Ohio, the shale produces liquid hydrocarbons. A few wells have reported initial potentials (IP's) in excess of 1000 barrels per day (bpd). Inherent to this unconventional resource (low pressure, low permeability, low porosity, and naturally-fractured) is a rapid rate of production decline such that, after 4 to 6 months, many wells become inoperable. The US Department of Energy's (DOE's) Morgantown Energy technology Center. (METC) anticipates investigating the occurrence of liquid hydrocarbons in the shale, as well as the reservoir engineering and fluid properties aspects. DOE/METC intends to offer producers in the area information, techniques, and procedures that will optimize liquid production. Besides new well drilling ventures, results of the investigation should affect the approximately 2000 shale wells that are already completed but are plagued by a rapid decline in production. Ideally, these older wells will be regenerated, at least to some degree, leading to further resource exploitation. This report summarizes some of the available production data, characterizes decline rates for selected wells, and specifies a refined study area of high resource potential. 11 refs., 14 figs., 1 tab.

  1. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  2. Inorganic geochemistry of Devonian shales in southern West Virginia: geographic and stratigraphic trends

    SciTech Connect (OSTI)

    Hohn, M.E.; Neal, D.W.; Renton, J.J.

    1980-04-01T23:59:59.000Z

    Samples of cuttings from twenty-one wells and a core from a single well in southern West Virginia were analyzed for major and minor elements: silicon, aluminum, iron, magnesium, calcium, sodium, titanium, phosphorus, manganese, sulfur, zinc, and strontium. Stratigraphic and geographic controls on elemental abundances were studied through canonical correlations, factor analyses, and trend surface analyses. The most abundant elements, silicon and aluminum, show gradual trends through the stratigraphic column of most wells, with silicon increasing and aluminum decreasing up-section. Other elements such as calcium, sulfur, and titanium change abruptly in abundance at certain stratigraphic boundaries. Important geographic trends run east-west: for instance, one can see an increase in sulfur and a decrease in titanium to the west; and a decrease in silicon from the east to the central part of the study area, then an increase further west. Although observed vertical trends in detrital minerals and geographic patterns in elemental abundances agree with the accepted view of a prograding delta complex during Late Devonian time, geographically-local, time restricted depositional processes influenced elemental percentages in subsets of the wells and the stratigraphic intervals studied. The black shales of lower Huron age do not represent simply a return of depositional conditions present in the earlier Rhinestreet time; nor do the gray shales of the Ohio Shale represent the same environmental conditions as the Big White Slate.

  3. Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

    1992-03-01T23:59:59.000Z

    This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

  4. Geology of Devonian shale oil and gas in Pleasants, Wood, and Ritchie Counties, WV

    SciTech Connect (OSTI)

    Filer, J.K.

    1984-05-01T23:59:59.000Z

    The Upper Devonian shale play of western West Virginia is an area of active development of unconventional oil and gas reserves. It is unconventional in that production is from fine grained fractured reservoirs. Examination of recent drilling results has led to a more detailed understanding of the structure and stratigraphy of the area, which in turn can explain some of the production trends observed. Areas of greater fracture density and therefore higher productivity are related to areas of shearing motion in the Burning Springs Thrust Sheet. Open flows after stimulation in these wells can be very high, but first year decline is rapid. At this time it is uncertain how long a production life these wells will have.

  5. Geology of Devonian shale oil and gas in Pleasants, Wood, and Ritchie Counties, West Virginia

    SciTech Connect (OSTI)

    Filer, J.K.

    1987-12-01T23:59:59.000Z

    The Upper Devonian shale play of western West Virginia is an area of active development of unconventional oil and gas reserves. It is unconventional in that production is from fine-grained fractured reservoirs. Examination of recent drilling results has led to a more detailed understanding of the structure and stratigraphy of the area, which in turn can explain some of the production trends observed. Areas of greater fracture density and therefore higher productivity are related to areas of shearing motion in the Burning Springs thrust sheet. Open flows after stimulation in these wells can be very high, but first-year decline is rapid. It is uncertain at this time how long a production life these wells will have.

  6. High-pressure mechanical and sonic properties of a Devonian shale from West Virginia

    SciTech Connect (OSTI)

    Heard, H.C.; Lin, W.

    1986-01-01T23:59:59.000Z

    Static mechanical properties and sonic velocities were determined on each of four members of the Devonian shale from Columbia Gas Transmission's well 20403, Huntington, West Virginia. They were: Pressure - volume data to 4.0 GPa; Compressive strength at confining pressures up to 300 MPa, both parallel and perpendicular to bedding. Extensile strength at 100 to 700 MPa confining pressure, both parallel and perpendicular to bedding. Loading and unloading path in uniaxial strain at 20 to 500 MPa confining pressure, both parallel and perpendicular to bedding. Tensile strength at ambient pressure, parallel and perpendicular to bedding. Shear and compressional wave velocities at confining pressures up to 1000 MPa parallel, at 45/sup 0/, and perpendicular to bedding. Results are presented and discussed. 32 refs., 10 figs., 10 tabs.

  7. Stratigraphy and organic petrography of Mississippian and Devonian oil shale at the Means Project, East-Central Kentucky

    SciTech Connect (OSTI)

    Solomon, B.J.; Hutton, A.C.; Henstridge, D.A.; Ivanac, J.F.

    1985-02-01T23:59:59.000Z

    The Means Oil Shale Project is under consideration for financial assistance by the US Synthetic Fuels Corporation. The project site is located in southern Montgomery County, about 45 miles east of Lexington, Kentucky. In the site area the Devonian Ohio Shale and the Mississippian Sunbury Shale are under study; these oil shales were deposited in the Appalachian Basin. The objective of the Means Project is to mine, using open pit methods, an ore zone which includes the Sunbury and upper Cleveland and which excludes the Bedford interburden. The thick lower grade oil shale below this ore zone renders the higher grade shale at the base of the Huron commercially unattractive. The oil shale at Means has been classified as a marinite, an oil shale containing abundant alginite of marine origin. Lamalginite is the dominant liptinite and comprises small, unicellular alginite with weak to moderate fluorescence at low rank and a distinctive lamellar form. Telalginite, derived from large colonial or thick-walled, unicellular algae, is common in several stratigraphic intervals.

  8. Paleoecology of the Devonian-Mississippian black-shale sequence in eastern Kentucky with an atlas of some common fossils

    SciTech Connect (OSTI)

    Barron, L.S.; Ettensohn, F.R.

    1981-04-01T23:59:59.000Z

    The Devonian-Mississippian black-shale sequence of eastern North America is a distinctive stratigraphic interval generally characterized by low clastic influx, high organic production in the water column, anaerobic bottom conditions, and the relative absence of fossil evidence for biologic activity. The laminated black shales which constitute most of the black-shale sequence are broken by two major sequences of interbedded greenish-gray, clayey shales which contain bioturbation and pyritized micromorph invertebrates. The black shales contain abundant evidence of life from upper parts of the water column such as fish fossils, conodonts, algae and other phytoplankton; however, there is a lack of evidence of benthic life. The rare brachiopods, crinoids, and molluscs that occur in the black shales were probably epiplanktic. A significant physical distinction between the environment in which the black sediments were deposited and that in which the greenish-gray sediments were deposited was the level of dissolved oxygen. The laminated black shales point to anaerobic conditions and the bioturbated greenish-gray shales suggest dysaerobic to marginally aerobic-dysaerobic conditions. A paleoenvironmental model in which quasi-estuarine circulation compliments and enhances the effect of a stratified water column can account for both depletion of dissolved oxygen in the bottom environments and the absence of oxygen replenishment during black-shale deposition. Periods of abundant clastic influx from fluvial environments to the east probably account for the abundance of clays in the greenish-gray shale as well as the small amounts of oxygen necessary to support the depauparate, opportunistic, benthic faunas found there. These pulses of greenish-gray clastics were short-lived and eventually were replaced by anaerobic conditions and low rates of clastic sedimentation which characterized most of black-shale deposition.

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  10. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  11. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  13. Parameter sensitivity analysis of tailored-pulse loading stimulation of Devonian gas shale

    SciTech Connect (OSTI)

    Barbour, T.G.; Mihalik, G.R.

    1980-11-01T23:59:59.000Z

    An evaluation of three tailored-pulse loading parameters has been undertaken to access their importance in gas well stimulation technology. This numerical evaluation was performed using STEALTH finite-difference codes and was intended to provide a measure of the effects of various tailored-pulse load configurations on fracture development in Devonian gas shale. The three parameters considered in the sensitivity analysis were: loading rate; decay rate; and sustained peak pressures. By varying these parameters in six computations and comparing the relative differences in fracture initiation and propagation the following conclusions were drawn: (1) Fracture initiation is directly related to the loading rate aplied to the wellbore wall. Loading rates of 10, 100 and 1000 GPa/sec were modeled. (2) If yielding of the rock can be prevented or minimized, by maintaining low peak pressures in the wellbore, increasing the pulse loading rate, to say 10,000 GPa/sec or more, should initiate additional multiple fractures. (3) Fracture initiation does not appear to be related to the tailored-pulse decay rate. Fracture extension may be influenced by the rate of decay. The slower the decay rate, the longer the crack extension. (4) Fracture initiation does not appear to be improved by a high pressure plateau in the tailored-pulse. Fracture propagation may be enhanced if the maintained wellbore pressure plateau is of sufficient magnitude to extent the range of the tangential tensile stresses to greater radial distances. 26 figures, 2 tables.

  14. Updated overview of structural geology of Devonian shales in Monroe, Noble, and Washington Counties, Ohio

    SciTech Connect (OSTI)

    Baranoski, M.T.

    1988-08-01T23:59:59.000Z

    Detailed stratigraphic and structural mapping of Devonian shale units in Monroe, Noble, and Washington Counties has been performed by the Ohio Division of Geological Survey through a contract with the Gas Research Institute of Chicago, Illinois. This phase of a larger regional study used a computerized data base containing stratigraphic records from geophysical logs of approximately 3000 wells. Mapping on the lower Huron and Gordon units reaffirms the presence of the Cambridge arch and northern tip of the Burning Springs anticline, the two most prominent structures in this area. Several smaller anticlines have been mapped in the intervening area between the southeast-plunging nose of the Cambridge arch and the north-plunging nose of the burning springs anticline. Subtle thickness increases of the lower Huron and Rhinestreet units correspond to structurally positive areas that occur along the trend of the Cambridge arch. The thickness increases are apparent on geophysical logs as locally expanded gamma-ray, neutron, and density curves. These anomalous areas may indicate the termination of upward imbrication near the edge of a decollement on the Silurian Salina E unit salt, as hypothesized by previous workers.

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  16. Bibliography of the paleontology and paleoecology of the Devonian-Mississippian black-shale sequence in North America

    SciTech Connect (OSTI)

    Barron, L.S.; Ettensohn, F.R.

    1980-06-01T23:59:59.000Z

    The Devonian-Mississippian black-shale sequence is one of the most prominent and well-known stratigraphic horizons in the Paleozoic of the United States, yet the paleontology and its paleoecologic and paleoenvironmental implications are poorly known. This is in larger part related to the scarcity of fossils preserved in the shale - in terms of both diversity and abundance. Nonetheless, that biota which is preserved is well-known and much described, but there is little synthesis of this data. The first step in such a synthesis is the compilation of an inclusive bibliography such as this one. This bibliography contains 1193 entries covering all the major works dealing with Devonian-Mississippian black-shale paleontology and paleoecology in North America. Articles dealing with areas of peripheral interest, such as paleogeography, paleoclimatology, ocean circulation and chemistry, and modern analogues, are also cited. In the index, the various genera, taxonomic groups, and other general topics are cross-referenced to the cited articles. It is hoped that this compilation will aid in the synthesis of paleontologic and paleoecologic data toward a better understanding of these unique rocks and their role as a source of energy.

  17. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume III. Data repository and reports published during fiscal year 1979-1980: production, unsponsored research

    SciTech Connect (OSTI)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01T23:59:59.000Z

    This document consists of the following papers: inorganic geochemistry studies of the Eastern Kentucky Gas Field; lithology studies of upper Devonian well cuttings in the Eastern Kentucky Gas Field; possible effects of plate tectonics on the Appalachian Devonian black shale production in eastern Kentucky; preliminary depositional model for upper Devonian Huron age organic black shale in the Eastern Kentucky Gas Field; the anatomy of a large Devonian black shale gas field; the Cottageville (Mount Alto) Gas Field, Jackson County, West Virginia: a case study of Devonian shale gas production; the Eastern Kentucky Gas Field: a geological study of the relationships of Ohio Shale gas occurrences to structure, stratigraphy, lithology, and inorganic geochemical parameters; and a statistical analysis of geochemical data for the Eastern Kentucky Gas Field.

  18. The use of pre- and post-stimulation well test analysis in the evaluation of stimulation effectiveness in the Devonian Shales of the Appalachian Basin 

    E-Print Network [OSTI]

    Lancaster, David Earl

    1988-01-01T23:59:59.000Z

    gas wells throughout the Appalachian Basin. The analysis of pre-stimulation well tests from four wells in Pike County, KY illustrates the practical difficulties in obtaining analyzable data from Devonian Shale wells. Fig. 1 shows the location... and requires that the flow periods prior to shut-in be even longer. The Martin 1 well located in Martin County, KY illustrates the problem of an insufficient flow period in a more typical Devonian Shale well test. The Martin 1 well was studied as part...

  19. The use of pre- and post-stimulation well test analysis in the evaluation of stimulation effectiveness in the Devonian Shales of the Appalachian Basin

    E-Print Network [OSTI]

    Lancaster, David Earl

    1988-01-01T23:59:59.000Z

    gas wells throughout the Appalachian Basin. The analysis of pre-stimulation well tests from four wells in Pike County, KY illustrates the practical difficulties in obtaining analyzable data from Devonian Shale wells. Fig. 1 shows the location... and requires that the flow periods prior to shut-in be even longer. The Martin 1 well located in Martin County, KY illustrates the problem of an insufficient flow period in a more typical Devonian Shale well test. The Martin 1 well was studied as part...

  20. Petrology of the Devonian gas-bearing shale along Lake Erie helps explain gas shows

    SciTech Connect (OSTI)

    Broadhead, R.F.; Potter, P.E.

    1980-11-01T23:59:59.000Z

    Comprehensive petrologic study of 136 thin sections of the Ohio Shale along Lake Erie, when combined with detailed stratigraphic study, helps explain the occurrence of its gas shows, most of which occur in the silty, greenish-gray, organic poor Chagrin Shale and Three Lick Bed. Both have thicker siltstone laminae and more siltstone beds than other members of the Ohio Shale and both units also contain more clayshales. The source of the gas in the Chagrin Shale and Three Lick Bed of the Ohio Shale is believed to be the bituminous-rich shales of the middle and lower parts of the underlying Huron Member of the Ohio Shale. Eleven petrographic types were recognized and extended descriptions are provided of the major ones - claystones, clayshales, mudshales, and bituminous shales plus laminated and unlaminated siltstones and very minor marlstones and sandstones. In addition three major types of lamination were identified and studied. Thirty-two shale samples were analyzed for organic carbon, whole rock hydrogen and whole rock nitrogen with a Perkin-Elmer 240 Elemental Analyzer and provided the data base for source rock evaluation of the Ohio Shale.

  1. Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia. Final report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

    1992-03-01T23:59:59.000Z

    This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

  2. Proton micro-probe analysis of framboidal pyrite and associated maceral types in a Devonian black shale

    SciTech Connect (OSTI)

    Graham, U.M.; Robl, T.L. (Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research); Robertson, J.D. (Univ. of Kentucky, Lexington (United States). Dept. of Chemistry)

    1992-01-01T23:59:59.000Z

    Framboids are spherical, raspberry-like aggregates of pyrite which are typically associated with organic matter in black shales. Because framboids are often intimately intergrown with macerals of the kerogen in black shales the objectives of this study were to: (1) Select tramboidal pyrite with close spatial relationship to distinct maceral types; (2) Determine the trace-element variations within different maceral types and that of framboidal pyrite occurring adjacent to those macerals and; (3) Examine whether the S/Fe ratios of the tramboids vary based on different maceral-type association. This study investigates a Devonian-Mississippian black shale from East-Central Kentucky. The organic-rich matrix consists predominantly of bituminite, alginite and to lesser extent of vitrinite. Most framboids range between < 1[mu]m and 27 [mu]m in size and typically occur as clusters which are engulfed by lamellar flowing vitrinite, indicating that the framboids were already present before compaction. 161 PIXE-analyses were performed in both macerals and framboids. To understand the likelihood of framboid precursors in macerals the authors checked the constancy of the S, Fe and trace-element content in the immediate vicinity of the framboid particle. Moreover, the authors analyzed traverses through framboids associated with the three different maceral types. The S/Fe ratio of the framboids is always that of stoichiometric pyrite. The combined results suggest that the framboids may have formed independent of the sulfur and trace-element concentration among the macerals. Globular, partly translucent grains were observed to have great resemblances in size and trace-element contents compared to those of framboids. The S/Fe ratio of these grains was typically well in excess of 2.0 suggesting that the transparent matrix may have been a sulfur-rich phase that possibly serves as precursor for the framboids.

  3. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect (OSTI)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01T23:59:59.000Z

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  4. Water column structure during deposition of Middle DevonianLower Mississippian black and green/gray shales of the

    E-Print Network [OSTI]

    Kenig, Fabien

    26 August 2004 Abstract The extractable organic matter of organic-rich black shales and associated is analyzed to constrain the water column structure during their deposition. All black shale samples contain water euxinic conditions during black shale deposition. Analysis of green/gray shales also reveals

  5. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume II. Data repository and reports published during fiscal year 1979-1980: regional structure, surface structure, surface fractures, hydrology

    SciTech Connect (OSTI)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01T23:59:59.000Z

    This volume comprises appendices giving regional structure data, surface structure data, surface fracture data, and hydrology data. The fracture data covers oriented Devonian shale cores from West Virginia, Ohio, Virginia, Pennsylvania, and Kentucky. The subsurface structure of the Eastern Kentucky gas field is also covered. (DLC)

  6. Effect of Oxygen Co-Injected with Carbon Dioxide on Gothic Shale Caprock-CO2-Brine Interaction during Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.

    2013-09-16T23:59:59.000Z

    Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10 MPa and ~75 °C. A range of relative volume percentages of O2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO4•2H2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~8–14 ?g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.

  7. The significance of Rb-Sr glauconite ages, Bonneterre Formation, Missouri; Late Devonian-Early Mississippian brine migration in the midcontinent

    SciTech Connect (OSTI)

    Stein, H.J. (Geological Survey, Denver, CO (USA)); Kish, S.A. (Florida State Univ., Tallahassee (USA))

    1991-05-01T23:59:59.000Z

    Rb-Sr mean model ages of 370 {plus minus} 10 Ma for glauconites from the Cambrian lower Bonneterre Formation in southern and central Missouri are in excellent agreement with a Rb-Sr isochron age of 359 {plus minus} 22 Ma for glauconites from the Magmont mine (Viburnum Trend) in the southeast Missouri lead district. The lower Bonneterre and Magmont mines ages probably reflect isotopic resetting, most likely associated with dolomitization and/or Mississippi Valley-type ore formation in the southeast Missouri lead district. The temporal relation between widespread dolomitization and ore formation in Missouri is unclear, but mounting evidence for two Devonian disturbances permits the following interpretation: (1) a Devonian timing (380-400 Ma) for widespread dolomitization, and (2) a Late Devonian-Early Mississippian timing (360-370 Ma) for ore formation in southeast Missouri. Late Devonian-Early Mississippian fluids associated with the earliest stages of collisional tectonics and metamorphism to the south and southeast may have been important in the formation of southeast Missouri ore deposits. These tectonically driven waters may themselves have been the Mississippi Valley-type ore fluids, entering Missouri by way of the Black Warrior basin and Reelfoot rift and/or the Arkoma basin. Alternatively, the movement of orogenic fluids hundreds of kilometers distant may have initiated and distally influenced the migration of more locally derived Mississippi Valley-type ore fluids. Broad regions of Missouri and adjacent areas experienced heating and crustal flexing in the Late Devonian, and consequently, preservation of elevated temperatures in Mississippi Valley-type fluids as they move great lateral distances may not be necessary for ore formation in southeast Missouri.

  8. Potential for producing oil and gas from the Woodford Shale (Devonian-Mississippian) in the southern mid-continent, USA

    SciTech Connect (OSTI)

    Comer, J.B. (Indiana Geological Survey, Bloomington, IN (United States))

    1992-04-01T23:59:59.000Z

    The Woodford Shale is a prolific oil source rock throughout the southern mid-continent of the United States. Extrapolation of thickness and organic geochemical data based on the analysis of 614 samples from the region indicate that on the order of 100 {times} 10{sup 9} bbl of oil (300 {times} 10{sup 12} ft{sup 3} of natural gas equivalent) reside in the Woodford in Oklahoma and northwestern Arkansas. The Woodford in west Texas and southeastern New Mexico contains on the order of 80 {times} 10{sup 9} bbl of oil (240 {times} 10{sup 12} ft{sup 3} of natural gas equivalent). Tapping this resource is most feasible in areas where the Woodford subcrop contains competent lithofacies (e.g., chert, sandstone, siltstone, dolostone) and is highly fractured. Horizontal drilling may provide the optimum exploitation technique. Areas with the greatest potential and the most prospective lithologies include (1) the Nemaha uplift (chert, sandstone, dolostone), (2) Marietta-Ardmore basin (chert), (3) southern flank of the Anadarko basin along the Wichita Mountain uplift (chert), (4) frontal zone of the Ouachita tectonic belt in Oklahoma (chert), and (5) the Central Basin platform in west Texas and New Mexico (chert and siltstone). In virtually all of these areas, the Woodford is in the oil or gas window. Thus, fracture porosity would be continuously fed by hydrocarbons generated in the enclosing source rocks. Reservoir systems such as these typically have produced at low to moderate flow rates for many decades.

  9. Potential for producing oil and gas from Woodford Shale (Devonian-Mississippian) in the southern Mid-Continent, USA

    SciTech Connect (OSTI)

    Comer, J.B. (Indiana Geological Survey, Bloomington (United States))

    1991-03-01T23:59:59.000Z

    Woodford Shale is a prolific oil source rock throughout the southern Mid-Continent of the US. Extrapolation of thickness and organic geochemical data based on the analysis of 614 samples from the region indicate that on the order of 100 {times} 10{sup 9} bbl of oil (300 {times} 10{sup 12} ft {sup 3} of natural gas equivalent). Tapping this resource is most feasible in areas where the Woodford subcrop contains competent lithofacies (e.g., chert, sandstone, siltstone, dolostone) and is high fractured. Horizontal drilling may provide the optimum exploitation technique. Areas with the greatest potential and the most prospective lithologies include (1) the Nemaha uplift (chert, sandstone, dolostone), (2) Marietta-Ardmore basin (chert), (3) southern flank of the Anadarko basin along the Wichita Mountain uplift (chert), (4) frontal zone of the Ouachita tectonic belt in Oklahoma (chert), and (5) the Central Basin platform in west Texas and New Mexico (chert and siltstone). In virtually all of these areas the Woodford is in the oil or gas window. Thus, fracture porosity would be continuously fed by hydrocarbons generated in the enclosing source rocks. Reservoir systems such as these have typically produced at low to moderate flow rates for many decades.

  10. PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT

    SciTech Connect (OSTI)

    Burnett, David

    2012-12-31T23:59:59.000Z

    The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field trials and subcontractor research have been summarized in this Final Report. Individual field trial reports and research reports are contained in the companion volume titled “Appendices”

  11. Origin and geochemical evolution of the Michigan basin brine

    SciTech Connect (OSTI)

    Wilson, T.P.

    1989-01-01T23:59:59.000Z

    Chemical and isotopic data were collected on 126 oil field brine samples and were used to investigate the origin and geochemical evolution of water in 8 geologic formations in the Michigan basin. Two groups of brine are found in the basin, the Na-Ca-Cl brine in the upper Devonian formations, and Ca-Na-Cl brine from the lower Devonian and Silurian aged formations. Water in the upper Devonian Berea, Traverse, and Dundee formations originated from seawater concentrated into halite facies. This brine evolved by halite precipitation, dolomitization, aluminosilicate reactions, and the removal of SO{sub 4} by bacterial action or by CaSO{sub 4} precipitation. The stable isotopic composition (D, O) is thought to represent dilution of evapo-concentrated seawater by meteoric water. Water in the lower Devonian Richfield, Detroit River Group, and Niagara-Salina formations is very saline Ca-Na-Cl brine. Cl/Br suggest it originated from seawater concentrated through the halite and into the MgSO{sub 4} salt facies, with an origin linked to the Silurian and Devonian salt deposits. Dolomitization and halite precipitation increased the Ca/Na, aluminosilicate reactions removed K, and bacterial action or CaSO{sub 4} precipitation removed SO{sub 4} from this brine. Water chemistry in the Ordovician Trenton-Black River formations indicates dilution of evapo-concentrated seawater by fresh or seawater. Possible saline end-members include Ordovician seawater, present-day upper Devonian brine, or Ca-Cl brine from the deeper areas in the basin.

  12. Deformation of shale: mechanical properties and indicators of mechanisms

    E-Print Network [OSTI]

    Ibanez, William Dayan

    1993-01-01T23:59:59.000Z

    Basins, shales of Devonian age are commonly considered reservoir rocks I' or natural gas [Woodward, 1958; Lockett, 1968; Long, 1979; Gonzales and Johnson, 1985], Economic gas production from the Devonian shales of these basins is associated...] and slates [Donath, 1961], may be expected to be weak. Finally, Microstructural studies of deformed shales have been restricted by optical resolution, and the role of crystal plasticity in clays may have been overlooked. Results for the brittle and semi...

  13. Ohio: Devonian evaluated for most favorable potential production

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    Commercial quantities of gas are likely to occur within closely spaced natural fracture systems close to, or within, organic-rich source beds. Four principal source beds have been identified within the shales of east Ohio. Ranked in order of importance based on geographic distribution and thickness, they are the Huron, Rhinestreet, Cleveland, and Marcellus shales. Within each of these zones, there is believed to be a north-south trending area of most favorable shale lying between immature shales to the west and shales too organically lean to the east. Closely spaced localized fracturing of the Devonian shale sequence is likely to occur along 2 regional trends in east Ohio: the Cambridge arch and the Lake Erie shoreline. Operators drilling within these areas, or near any structurally disturbed area, should evaluate and test shale zones that exhibit indications of being naturally fractured.

  14. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§

    2012-02-24T23:59:59.000Z

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  15. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

    2012-03-20T23:59:59.000Z

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  16. Geochemical evidence for possible natural migration of Marcellus Formation brine to

    E-Print Network [OSTI]

    Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow possible migration of Marcellus brine through naturally occurring pathways. The occurrences of saline water, because of natural hydraulic connections to deeper formations. formation water isotopes Marcellus Shale

  17. Depositional environment of Upper Devonian sandstones in Westmoreland County, southwestern Pennsylvania 

    E-Print Network [OSTI]

    McGee, Patricia Ann

    1985-01-01T23:59:59.000Z

    into interbedded shales and siltstones not far to the west of Westmoreland County. To the east, they pass into continental red beds near the southeastern border of Westmoreland County which also coincides with the Laurel Hill anticline. In the cross sections... for natural gas was completed in 1821. It was located in Chautauqua County, New York and produced from Devonian black shales. In 1859, the first oil well, the famous Drake discovery well, was drilled in Titusville, Pennsylvania and produced from the Upper...

  18. Tube foot preservation in the Devonian crinoid Codiacrinus from the Lower Devonian Hunsruck Slate, Germany

    E-Print Network [OSTI]

    Kammer, Thomas

    Tube foot preservation in the Devonian crinoid Codiacrinus from the Lower Devonian Hunsruck Slate.W. 2013: Tube foot preservation in the Devonian crinoid Codiacrinus from the Lower Devonian Hunsruck Slate Follmann from the Lower Devonian Hunsruck Slate of Germany. This is the first definitive proof of tube feet

  19. By Terry Engelder and Gary G. Lash UNIVERSITY PARK, PA.The shale gas rush is on. Excitement over natural gas production from a

    E-Print Network [OSTI]

    Engelder, Terry

    natural gas production from a number of Devonian-Mississippian black shales such as the Barnett by the Eastern Gas Shales Project (EGSP), a U.S. Department of Energy-sponsored investigation of gas potential. Economic gas production from black shale often requires stimulation by hydraulic fracturing

  20. Lithostratigraphy and paleoenvironmental reconstructions for Devonian strata in the Michigan Basin

    SciTech Connect (OSTI)

    Harrison, W.B. III (Western Michigan Univ., Kalamazoo, MI (United States). Dept. of Geology)

    1994-04-01T23:59:59.000Z

    Devonian strata in the Michigan Basin are represented by variably thick sequences of open shelf, tidal flat and sabhka carbonates, interbedded with basin-centered and sabhka evaporites (anhydrite and halite). Although there are isolated outcrops around the margins of the basin, the lithofacies relationships of these strata can be best studied from subsurface data of cores, wireline logs, and drill cutting samples. This database is compiled from over 25,000 oil and gas wells that enter or entirely penetrate Devonian strata in Michigan. Most of the strata in the Michigan Basin Devonian are part of the Kaskaskia cratonic depositional sequence (Sloss, 1963). The sequence begins with the southeast to northwest transgression of a quartz arenite (Sylvania Ss.) sandstone facies onto a weathered, cherty carbonate (Bois Blanc Fm.) surface developed on Lower Devonian strata exposed during the post-Tippecanoe unconformity. With rising sea level, the basin sediments became dominated by open shelf, biohermal and locally restricted lagoon carbonates (Amherstberg Fm.). Much of the Middle Devonian is represented by thick basin-centered sabhka and salina evaporates and restricted-environment carbonates (Lucas Fm.). These interbedded and laterally gradational evaporite/carbonate facies are cyclic, showing gradual salinity changes during accumulation. Stratigraphically important K-Bentonite marker beds are prevalent in this part of the Michigan section. Overlying this restricted sequence are again open shelf, biohermal, and local restricted sabhka carbonate deposits (Dundee Fm.). Thin, but widespread and eastwardly thickening, terrigenous shales and mudstones are intercalated within another shelf carbonate package (Traverse Group). Devonian deposits in the Michigan Basin are capped by thick black shales and interbedded carbonates (Antrim Fm.).

  1. Production data analysis type curves for the Devonian Shales

    E-Print Network [OSTI]

    Hazlett, William Gregory

    1985-01-01T23:59:59.000Z

    0. 12510 0. 12187 0. 12008 0. 11880 0. 11781 0. 11699 0, 11629 0. 11566 0. 11511 0. 11460 0. 11413 0. 11370 0. 11329 0. 11291 0. 11254 0. 11220 0. 11187 0. 11156 0. 11126 0. 11097 0. 10664 0. 10367 0. 10132 0. 99362E-01 0...

  2. Paracontinuous boundaries within the Devonian Columbus Limestone and Delaware Formation of central Ohio

    SciTech Connect (OSTI)

    Conkin, J.E. (Univ. of Louisville, KY (United States). Dept. of Geography and Geosciences); Conkin, B.M. (Jefferson Community Coll., Louisville, KY (United States))

    1994-04-01T23:59:59.000Z

    Internal units within the Columbus Limestone (Early Devonian Emsian [Schoharie] to Middle Devonian Eifelian [late Onesquethawan]) and the Delaware Formation (Middle Devonian early Givetian [Cazenovian]) of central Ohio are separated by disconformities of the magnitude of paracontinuities. Stauffer (1909) divided the Columbus Limestone into zones A--H and the Delaware Formation into zones I--M. Within the Columbus, the A Zone (conglomerate at the base of Bellepoint Member) disconformably overlies Late Silurian beds. The D zone at top of the Bellepoint Member (bearing the Kawkawlin Metabentonite horizon) is overlain paracontinuously by the Marblehead Member (Lower Paraspirifer acuminatus-Spirifer macrothyris to Brevispirifer gregarius-Moellerina greenei zones [= E--G zones]), with the Onondagan Indian Nation Metabentonite in the top of the G Zone. The Marblehead Member is overlain paracontinuously by a bone bed at base of the Venice Member (H zone = Upper Paraspirifer acuminatus- Spirifer duodenarius'' Zone). I Zone (Dublin Shale=Marcellus) of the Delaware Formation overlies the Columbus and has two bone beds at its base; Tioga Metabentonite (restricted) overlies the I Zone bone beds and is a few tenths to 1.85 feet above the base of the I Zone. Paracontinuities and bone beds occur at the bases of J, K, and L zones. Conkin and Conkin (1975) have shown Stauffer's (1909) M Zone is an extension of his L Zone. The Olentangy paracontinuously overlies the L Zone.

  3. Evaluation of the eastern gas shales in Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    To evaluate the potential of the Devonian shale as a source of natural gas, the US Department of Energy (DOE) has undertaken the Eastern Gas Shales Project (EGSP). The EGSP is designed not only to identify the resource, but also to test improved methods of inducing permeability to facilitate gas drainage, collection, and production. The ultimate goal of this project is to increase the production of gas from the eastern shales through advanced exploration and exploitation techniques. The purpose of this report is to inform the general public and interested oil and gas operators about EGSP results as they pertain to the Devonian gas shales of the Appalachian basin in Pennsylvania. Geologic data and interpretations are summarized and areas where the accumulation of gas may be large enough to justify commercial production are outlined. Because the data presented in this report are generalized and not suitable for evaluation of specific sites for exploration, the reader should consult the various reports cited for more detail and discussion of the data, concepts, and interpretations presented.

  4. Bitumen accumulation in Grosmont platform complex, Upper Devonian, Alberta, Canada

    SciTech Connect (OSTI)

    Hoffmann, C.F.; Strausz, O.P.

    1986-09-01T23:59:59.000Z

    The Upper Devonian Grosmont Formation, a broad carbonate platform complex in Alberta, Canada, contains an estimated 300 billion bbl of bitumen. It has been suggested that these vast reserves are related to Lower Cretaceous Athabasca oil sands. Detailed gas chromatographic-mass spectrometric studies of a wide range of biologic marker compounds confirm this suggestion. The Grosmont Formation contains bitumen of similar maturity and source to the Athabasca deposit, but it has been subjected to a greater degree of biodegradation and water washing, possibly as a result of its reservoir rock characteristics. The difference in the degree of biodegradation is manifested by the absence of bicyclic terpanes and by the reduced concentrations of the C/sub 30/ and the 22R epimers of the extended hopanes in the Grosmont bitumen. Also, the greater degree of water washing of the Grosmont bitumen is inferred from the observed distribution of the bicyclic, tricyclic, and tetracyclic terpenoid sulfides, which shows a characteristic loss of the lower molecular weight members in the carbonate bitumen. The correlation established here between the two deposits suggests that if the precursor oil has indeed undergone long-distance migration, the Paleozoic carbonates could have acted as a path for migration. Finally, the observed distribution of steranes in the Grosmont bitumen corresponds to the suggestion that the Mannville Group shales were not the major source rocks of the oil-sand and carbonate bitumen accumulations of northern Alberta. 11 figures, 6 tables.

  5. Former presence of thick post-Devonian strata in northern Appalachian basin: Evidence from fluid-inclusion studies

    SciTech Connect (OSTI)

    Sarwar, G.; Friedman, G.M. (Brooklyn College of the City Univ. of New York, NY (USA))

    1989-08-01T23:59:59.000Z

    Along an 80-km long belt south of Syracuse, New York, the maximum fluid-inclusion homogenization temperatures (T{sub max}) of late-stage cements of the lower Middle Devonian Onondaga Limestone show a local high of 150{degree}-160{degree}C in central New York. T{sub max} decreases both west and east of this area reaching about 100{degree}C in outcrops near Buffalo and Albany, respectively. Southward from Albany, along the western margin of the Hudson Valley, T{sub max} again rises sharply to 170{degree}-180{degree}C in the Kingston area. The thermal alteration index (TAI) and vitrinite reflectance of the overlying Marcellus-Bakoven (Middle Devonian) black shales in central and eastern New York show a comparable trend. The east-west profile of T{sub max} of the Onondaga rocks as well as thermal maturity of the black shales show excellent correlation with similar profiles of authigenic magnetite in the Onondaga Limestone and of clay diagenesis and fission-track ages of the Middle Devonian Tioga Metabentonite Bed, as reported by others. The T{sub max} of the Onondaga Limestone is believed to have been attained during maximum burial, the extent of which can not be accounted for by the present thickness of post-Onondaga strata. As a result of an inferred late Paleozoic uplift, in western and eastern New York, 2-3 km of post-Devonian strata were removed, in central New York 4-5 km, and in southeastern New York 5-6 km were removed. The north-south variation in maximum burial along the Hudson Valley may be explained by additional impact of tectonic loading in the south.

  6. Cathodic protection in oilfield brine

    SciTech Connect (OSTI)

    Turnipseed, S.P. (Chevron U.S.A. Inc., Houston, TX (US))

    1991-12-01T23:59:59.000Z

    In this paper the use of cathodic protection (CP) to mitigate internal and corrosion-related failures that occur in the produced brine phase of oilfield tanks and production vessels is discussed. Unique considerations covered include brine properties, CP system selection, installation details, monitoring, and coatings.

  7. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14T23:59:59.000Z

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  8. Late-Middle to Late Devonian (Givetian-Famennian) tectonic and stratigraphic history of central Kentucky

    SciTech Connect (OSTI)

    Ettensohn, F.R. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences); Barnett, S.F. (Bryan Coll., Dayton, TN (United States)); Norby, R.D. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    Earliest Givetian deposition in central Kentucky is represented in upper parts of the Boyle and Sellersburg formations and reflects marginal-marine to shallow-marine carbonate deposition at the end of the second tectophase of the Acadian orogeny. Inception of the third tectophase of the Acadian orogeny in the area is reflected by a disconformity or angular unconformity between the Boyle and New Albany formations, by reactivation of faults on the Kentucky river and related fault zones, and by concurrent graben formation. Succeeding late Givetian deposition is represented by the equivalent Portwood and Blocher members of the New Albany. The Portwood represents localized deposition of dolomitic breccias and black shales in grabens and half grabens, paleogeographically manifest as a series of restricted coastal lagoons and estuaries in central and east-central Kentucky. In contrast, dolomitic, Blocher black shales in west-central kentucky, beyond the effects of faulting, reflect more open, platform-lagoonal conditions. Both units are carbonate rick, contain a sparse benthic fauna, and had local sources of sediment. By latest Givetian or earliest Frasnian, local basins were largely filed, and when local sediment sources were inundated by transgression, sediment starvation, represented by a major lag zone or bone bed, ensued throughout central Kentucky, while black- and gray-shale deposition continued in deeper parts of the Illinois and Appalachian basins. During the Frasnian and early Famennian, as subsidence and transgression continued, deeper water gray- and black-shale units from the Appalachian and Illinois basins slowly onlapped the Cincinnati Arch area of central Kentucky; black shales in these units are fissile and lack both carbonates and benthic fauna. At the Devonian-Mississippian transition, however, a locally developed unconformity and structurally related erosion probably reflect inception of the fourth and final tectophase of the Acadian orogeny.

  9. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    temperature, type of shale and oil content of shale isof Sulfur in Colorado Oil Shale Oil yield of shale, gal/toncontent of the shale, and shale oil content of the rock can

  10. Tectonic and depositional model of the Arabian and adjoining plates during the Silurian-Devonian

    SciTech Connect (OSTI)

    Husseini, M.I. (Aramco, Dhahran (Saudi Arabia))

    1991-01-01T23:59:59.000Z

    During the Late Ordovician and Early Silurian, the western part of the Arabian Peninsula was covered by polar glaciers that advanced from the south pole in African Gondwana. During this period, nondeposition, erosion, or marginal marine conditions prevailed in eastern and northern Arabia. When the glaciers melted in the Early Silurian, sea level rose sharply and the paleo-Tethys Ocean transgressed the Arabian and adjoining plates depositing a thick, organic-rich shale directly over the glaciogenic and periglacial rocks and related unconformities. The post-glacial sequence coarsens upward reflecting the passage of a coastline prograding northward from African and Arabian Gondwana to northern Arabia. A sea level drop in the Late Silurian placed the study area in a terrestrial environment; however, as sea level recovered in the Early Devonian, a carbonate sequence blanketed most of the area. The transgression, however, was interrupted by regional uplift and local orogenic movements in the Middle and Late Devonian. These movements constitute the onset of Hercynian tectonism, which resulted in erosion of the older sequences, depositional hiatuses, and regional facies changes.

  11. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  12. 2012 by the American Academy of Arts & Sciences Is Shale Gas Good for Climate Change?

    E-Print Network [OSTI]

    Schrag, Daniel

    fracturing ("fracking") techniques that greatly increase the permeability of the shale, vast reserves that the chemicals used in the fracking process will contaminate groundwater aquifers; others are concerned of toxic waste from produced water (a mixture of formation brines and chemicals from the fracking process

  13. Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide

    SciTech Connect (OSTI)

    Hall, V.S. (comp.)

    1980-06-01T23:59:59.000Z

    This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

  14. Synthesis of organic geochemical data from the Eastern Gas Shales

    SciTech Connect (OSTI)

    Zielinski, R.E.; McIver, R.D.

    1982-01-01T23:59:59.000Z

    Over 2400 core and cuttings samples of Upper Devonian shales from wells in the Appalachian, Illinois, and Michigan Basins have been characterized by organic geochemical methods to provide a basis for accelerating the exploitation of this unconventional, gas-rich resource. This work was part of a program initiated to provide industry with criteria for locating the best areas for future drilling and for the development of stimulation methods that will make recovery of the resource economically attractive. The geochemical assessment shows that the shale, in much of the Appalachian, Illinois, and Michigan Basins is source rock that is capable of generating enormous quantities of gas. In some areas the shales are also capable of generating large quantities of oil as well. The limiting factors preventing these sources from realizing most of their potential are their very low permeabilities and the paucity of potential reservoir rocks. This geochemical data synthesis gives direction to future selection of sites for stimulation research projects in the Appalachian Basin by pinpointing those areas where the greatest volumes of gas are contained in the shale matrix. Another accomplishment of the geochemical data synthesis is a new estimate of the total resource of the Appalachian Basin. The new estimate of 2500 TCF is 25 percent greater than the highest previous estimates. This gives greater incentive to government and industry to continue the search for improved stimulation methods, as well as for improved methods for locating the sites where those improved stimulation methods can be most effectively applied.

  15. CHEMISTRY OF SILICA IN CERRO PRIETO BRINES

    E-Print Network [OSTI]

    Weres, O.

    2012-01-01T23:59:59.000Z

    chemistry of silica in Cerro Prieto brine may profitably be14 mg·l-1 AND SYNTHFTIC CERRO PRIETO BRINES High Ca We112Q.by the CFE Laboratory at Cerro Prieto and kindly provided to

  16. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect (OSTI)

    Godec, Michael

    2013-06-30T23:59:59.000Z

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

  17. Brining studies at Pepper Products Inc.

    E-Print Network [OSTI]

    Okoro, John Daniel

    1988-01-01T23:59:59.000Z

    of Department) A. B. Childers (Member) V. E. Sweat (Member) December 1988 Abstract Optimum brining conditions, causes of secondary fermentation, and salt fluctuation were investigated. Jalapeno peppers held in brine solution undergo lactic acid... fermentation, controlled by level of acidification and concentration of salt. Only brining at 7. 5% NaCl, with no added acetic acid, resulted in loss of all fermentable sugars. However, salt concentration fluctuated widely in this sample. Brining in 25...

  18. OIL SHALE DEVELOPMENT IN CHINA

    E-Print Network [OSTI]

    J. Qian; J. Wang; S. Li

    In this paper history, current status and forecast of Chinese oil shale indus-try, as well as the characteristics of some typical Chinese oil shales are given.

  19. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01T23:59:59.000Z

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  20. Improved Water Flooding through Injection Brine Modification

    SciTech Connect (OSTI)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

    2003-01-01T23:59:59.000Z

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  1. A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3(SC) ANeutronPast

  2. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01T23:59:59.000Z

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  3. Development Operations Hypersaline Geothermal Brine Utilization...

    Open Energy Info (EERE)

    Hypersaline Geothermal Brine Utilization Imperial County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Operations Hypersaline...

  4. Chemistry of Silica in Cerro Prieto Brines

    E-Print Network [OSTI]

    Weres, Oleh

    2012-01-01T23:59:59.000Z

    LBL-10166 CERRO-PRIETO-12 XICAN-AMERICANCOOPERATIVE' PROGRAM T THE CERRO PRIETO GEOTHERMAL FIELD ICHEMISTRY OF SILICA IN CERRO PRIETO BRINES Oleh Weres Leon

  5. Chemistry of Silica in Cerro Prieto Brines

    E-Print Network [OSTI]

    Weres, O.

    2010-01-01T23:59:59.000Z

    LBL-10166 CERRO-PRIETO-12 XICAN-AMERICANCOOPERATIVE' PROGRAM T THE CERRO PRIETO GEOTHERMAL FIELD ICHEMISTRY OF SILICA IN CERRO PRIETO BRINES Oleh Weres Leon

  6. Microporomechanical modeling of shale

    E-Print Network [OSTI]

    Ortega, J. Alberto (Jose Alberta Ortega Andrade)

    2010-01-01T23:59:59.000Z

    Shale, a common type of sedimentary rock of significance to petroleum and reservoir engineering, has recently emerged as a crucial component in the design of sustainable carbon and nuclear waste storage solutions and as a ...

  7. Production of Shale Oil 

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01T23:59:59.000Z

    Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

  8. Stimulation rationale for shale gas wells: a state-of-the-art report

    SciTech Connect (OSTI)

    Young, C.; Barbour, T.; Blanton, T.L.

    1980-12-01T23:59:59.000Z

    Despite the large quantities of gas contained in the Devonian Shales, only a small percentage can be produced commercially by current production methods. This limited production derives both from the unique reservoir properties of the Devonian Shales and the lack of stimulation technologies specifically designed for a shale reservoir. Since October 1978 Science Applications, Inc. has been conducting a review and evaluation of various shale well stimulation techniques with the objective of defining a rationale for selecting certain treatments given certain reservoir conditions. Although this review and evaluation is ongoing and much more data will be required before a definitive rationale can be presented, the studies to date do allow for many preliminary observations and recommendations. For the hydraulic type treatments the use of low-residual-fluid treatments is highly recommended. The excellent shale well production which is frequently observed with only moderate wellbore enlargement treatments indicates that attempts to extend fractures to greater distances with massive hydraulic treatments are not warranted. Immediate research efforts should be concentrated upon limiting production damage by fracturing fluids retained in the formation, and upon improving proppant transport and placement so as to maximize fracture conductivity. Recent laboratory, numerical modeling and field studies all indicate that the gas fracturing effects of explosive/propellant type treatments are the predominate production enhancement mechanism and that these effects can be controlled and optimized with properly designed charges. Future research efforts should be focused upon the understanding, prediction and control of wellbore fracturing with tailored-pulse-loading charges. 36 references, 7 figures, 2 tables.

  9. Shale oil demetallization process

    SciTech Connect (OSTI)

    Silverman, M. A.

    1985-08-13T23:59:59.000Z

    Trace metals, particularly As, Fe and Ni, are removed from hydrocarbonaceous oils, particularly shale oil by contacting the shale oil with quadrolobe alumina with or without a processing gas such as hydrogen or nitrogen at 500/sup 0/ F. to 800/sup 0/ F. at 250 to 750 psig and LHSV of 0.4 to 3.0 to deposit a portion of said trace metal onto said alumina and recover an oil product having substantially reduced amounts of trace metal.

  10. Cliffs Minerals, Inc. Eastern Gas Shales Project, Ohio No. 6 series: Gallia County. Phase II report. Preliminary laboratory results

    SciTech Connect (OSTI)

    none,

    1980-06-01T23:59:59.000Z

    The US Department of Energy is funding a research and development program entitled the Eastern Gas Shales Project designed to increase commercial production of natural gas in the eastern United States from Middle and Upper Devonian Shales. On September 28, 1978 the Department of Energy entered into a cooperative agreement with Mitchell Energy Corporation to explore Devonian shale gas potential in Gallia County, Ohio. Objectives of the cost-sharing contract were the following: (1) to select locations for a series of five wells to be drilled around the periphery of a possible gas reservoir in Gallia County, Ohio; (2) to drill, core, log, case, fracture, clean up, and test each well, and to monitor production from the wells for a five-year period. This report summarizes the procedures and results of core characterization work performed at the Eastern Gas Shales Project Core Laboratory on core retrieved from the Gallia County EGSP wells, designated OH No. 6/1, OH No. 6/2, OH No. 6/3, OH No. 6/4, and OH No. 6/5. Characterization work performed includes photographic logs, fracture logs, measurements of core color variation, and stratigraphic interpretation of the cored intervals. In addition the following tests were performed by Michigan Technological University to obtain the following data: directional ultrasonic velocity; directional tensile strength, strength in point load; trends of microfractures; and hydraulic fracturing characteristics.

  11. THE MECHANISM OF INTRAGRANULAR MIGRATION OF BRINE INCLUSIONS IN SALT

    E-Print Network [OSTI]

    Machiels, A.J.

    2010-01-01T23:59:59.000Z

    of Brine Inclusions in a Salt Repository", ORM. -5526 (JulyOF BRINE INCLUSIONS IN SALT A.J. Machiels, S. Yagnik, D.R.OF BRINE INCLUSIONS IN SALT by A.J. Machiels S. Yagnik D.R.

  12. Shale oil by 1990

    SciTech Connect (OSTI)

    Isaac, E.D.; Svoboda, D.

    1981-01-01T23:59:59.000Z

    Commercial processing of oil shale is currently being carried out in two countries, these being Manchuria and Estonia. Germany, Israel, Australia, Brazil and the United States are planning commercial development of oil shale during the 1980's. In the United States, developers currently pursuing production facilities in the Piceance Basin in Colorado are the Union Oil Company; Colony Development Company, now owned by Tosco and Exxon; Occidental Oil Shale Inc.; The Rio Blanco Shale Company (Amoco and Gulf) CA Tract; The Cathedral Bluff's Oil Shale Company (Oxy and Tenneco) at CB tract; The Anvil Points Bureau of Mines Site under the direction of DOE which has been leased to the Paraho Development Company to optimize their process; and Superior Oil. Superior Oil plans to recover Negcolite and Dowsonite that are associated with their oil shale. The processes used by these companies are described briefly. These are the Union B process, Tosco II process, Paraho process, and Occidental process. It is estimated that between 400,000 to 500,000 barrels per day (63,600 to 79,500 m/sup 3//day) production would be achieved by 1990 if all of the effects on the infrastructure are planned for and constructed in an orderly manner.

  13. January 20, 2011 Marcellus Shale 101

    E-Print Network [OSTI]

    Hardy, Christopher R.

    . Will oil shale be viable as well? Oil shale will not be economically viable anytime in the near future

  14. The most pervasive systematic joints hosted by Devonian black shale of the Appa-

    E-Print Network [OSTI]

    Engelder, Terry

    likely imparts a meaningful permeability anisot- ropy to these hydrocarbon source rocks. Keywords: joints driven exclusively by fluid pressure generated as a consequence of hydrocarbon-related maturation supple (Lawn, 1993). In a mechanically iso- tropic and homogeneous rock the stresses near the tip of a joint

  15. Biomarker and Paleontological Investigations of the Late Devonian Extinctions, Woodford Shale, Southern Oklahoma

    E-Print Network [OSTI]

    Nowaczewski, Vincent Stephen

    2011-12-31T23:59:59.000Z

    conditions. 14 Chain length can also be a function of thermal maturity (e.g., Shi et al., 1982). However, carbon preference values (CPI) do not necessarily indicate a rock as being mature or immature as organic matter input also affects chain length... (Peters et al., 2005, p.641). Complementary bulk geochemical data is required to help discern whether biomarker ratios are reflecting changes in source or thermal maturity. While there have been a few organic geochemical studies conducted across...

  16. Effects of reservoir geometry and permeability anisotropy on ultimate gas recovery in Devonian Shale reservoirs

    E-Print Network [OSTI]

    Starnes, Lee McKennon

    1989-01-01T23:59:59.000Z

    , k, =0. 1 md 68 69 70 71 72 73 75 62 Comparison of cumulative gas production as a function of time with different drainage patterns, 160-acre well spacing, k, =0. 1 md, k?=9k L, =50 feet, fracture parallel to k ?. . . . . . . . . . 77 LIST... OF FIGURES (continued) Figure Page 63 65 66 67 Comparison of improvement in gas recovery with different drainage patterns, 160-acre well spacing, k, =0. 1 md, k?=9k L~ =50 feet, fracture parallel to ~ . 78 Comparison of cumulative gas production...

  17. Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques

    SciTech Connect (OSTI)

    Mastalerz, Maria [Indiana Geological Survey; He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Rupp, John A [ORNL

    2012-01-01T23:59:59.000Z

    Two Pennsylvanian coal samples (Spr326 and Spr879-IN1) and two Upper Devonian-Mississippian shale samples (MM1 and MM3) from the Illinois Basin were studied with regard to their porosity and pore accessibility. Shale samples are early mature stage as indicated by vitrinite reflectance (R{sub o}) values of 0.55% for MM1 and 0.62% for MM3. The coal samples studied are of comparable maturity to the shale samples, having vitrinite reflectance of 0.52% (Spr326) and 0.62% (Spr879-IN1). Gas (N{sub 2} and CO{sub 2}) adsorption and small-angle and ultrasmall-angle neutron scattering techniques (SANS/USANS) were used to understand differences in the porosity characteristics of the samples. The results demonstrate that there is a major difference in mesopore (2-50 nm) size distribution between the coal and shale samples, while there was a close similarity in micropore (<2 nm) size distribution. Micropore and mesopore volumes correlate with organic matter content in the samples. Accessibility of pores in coal is pore-size specific and can vary significantly between coal samples; also, higher accessibility corresponds to higher adsorption capacity. Accessibility of pores in shale samples is low.

  18. Biomass production from inland brines

    SciTech Connect (OSTI)

    Reach, C.D. Jr.

    1985-01-01T23:59:59.000Z

    The feasibility of utilizing inland saline waters to produce biomass through the application of marine aquaculture was investigated. From available data, the diatom Phaeodactylum tricornutum and the crustacea Artemia salina were selected as the experimental marine organisms. The proposed diatom served to establish primary productivity and concurrently provide a food source for the herbivorus crustacea. The objective of the first phase research was to investigate the ability of P. tricornutum and A. salina to survive in the inland saline environment. Clarified activated sludge and anaerobic digester effluents were evaluated as nutrient sources for the diatom cultures. Experimental results indicated that diatom and crustacea growth in the inland brine was equivalent to control cultures utilizing seawater. Wastewater effluents were successful as nutrient sources for the diatom cultures. Bioassay experiments conducted with petroleum related brines yielded mixed results respect to the survival and growth of the P. tricornutum and A. salina organisms. A second series of experiments involved cholornaphthalene, chlorophenanthene, and chlorophenanthrene, and chloroanthracene as the experimental hydrocarbons. Results of the diatom studies show chloroanthracene to induce toxic effects at a concentration of 500 ug/L. Artemia studies showed no acutely toxic effects relative to the test hydrocarbons at 50 and 100 ug/L.

  19. Help for declining natural gas production seen in the unconventional sources of natural gas. [Eastern shales, tight sands, coal beds, geopressured zones

    SciTech Connect (OSTI)

    Staats, E.B.

    1980-01-10T23:59:59.000Z

    Oil imports could be reduced and domestic gas production increased if additional gas production is obtained from four unconventional resources-eastern Devonian shales, tight sands, coal beds, and geopressured zones. Gas produced from these resources can help maintain overall production levels as supplies from conventional gas sources gradually decline. The eastern shales and western sands are the chief potential contributors in the near term. Further demonstrations of coal bed methane's recovery feasibility could improve the prospects for its production while future geopressured methane production remains speculative at this time.

  20. CLAY AND SHALE--2002 18.1 CLAY AND SHALE

    E-Print Network [OSTI]

    CLAY AND SHALE--2002 18.1 CLAY AND SHALE By Robert L. Virta Domestic survey data and tables were Roberts, international data coordinator. Companies in the United States mined six types of clays: ball clay, bentonite, common clay and shale, fire clay, fuller's earth, and kaolin. Ball clays consist

  1. CLAY AND SHALE--1999 18.1 CLAY AND SHALE

    E-Print Network [OSTI]

    CLAY AND SHALE--1999 18.1 CLAY AND SHALE By Robert L. Virta Domestic survey data and tables were Roberts, international data coordinator. The amount of clay sold or used by domestic producers in 1999. Production of ball clay, bentonite, common clay and shale, and fuller's earth increased, and production

  2. MARCELLUS SHALE APRIL 2011 EDITION

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    of labor market information for Pennsylvania's Marcellus Shale (MS) industries and related economic Petroleum & Natural Gas Extraction (211111); Natural Gas Liquid Extraction (211112); Drilling Oil & Gas Structures Construction (237120); and Pipeline Transportation of Natural Gas (486210). Marcellus Shale

  3. Process for oil shale retorting

    DOE Patents [OSTI]

    Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

    1981-10-27T23:59:59.000Z

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  4. Nineteenth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1986-01-01T23:59:59.000Z

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  5. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01T23:59:59.000Z

    study of retorted oil shale," Lawrence Livermore Laboratoryb) using columns of spent shale. REFERENCES Burnham, Alankinetics between and oil-shale residual carbon. 1. co Effect

  6. Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts

    E-Print Network [OSTI]

    Fox, J.P.; Persoff, P.

    1980-01-01T23:59:59.000Z

    Mineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. LivermoreEffects Lawrence of Steam on Oil Shale Retorting: Livermore

  7. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01T23:59:59.000Z

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  8. Marcellus Shale Educational Webinar Series

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    #12;Marcellus Shale Litigation and Legislation December 17, 2009 7 . Pennsylvania Oil and Gas Law1 Marcellus Shale Educational Webinar Series October 2009 - March 2010 Penn State Cooperative Extension #12;2 Marcellus Shale Webinar Series Planning Committee · Members ­ Mark Douglass, Jefferson

  9. Shale Play Industry Transportation Challenges,

    E-Print Network [OSTI]

    Minnesota, University of

    ­ High volume commodi-es flows in and out of shale plays · Sand In....Oil in excess of 50 MMT/Yr. · Life of current Shale Oil & Gas explora-on trend ­ 2012) #12;Shale Play Oil Industry A Look at the Baaken · 2-3 Unit Trains

  10. Shale gas in the southern central area of New York State. Volume III. Experience of drilling five shale-gas wells in New York State

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    Five shale-gas wells have been located and drilled in the South-Central areas of New York State as part of this program. The program was undertaken by Arlington Exploration Company (AEC) during 1981 and 1982. The wells were drilled on educational properties in an attempt to demonstrate the economic prospect of natural gas for institutional and small commercial consumers to develop their own source of energy. All five wells were completed in the Marcellus section of the Devonian shale. Each of the five wells was connected to an appropriate heat load for the purpose of production testing. The project supports the theory that a well drilled anywhere in South-Central New York and completed in the Marcellus Shale using modern fracturing techniques (i.e. nitrogen foam) is likely to produce some gas. Important factors not yet predictable are the decline rate of Marcellus production and the volume of recoverable reserves. Depths to the Marcellus Shale generally increase from north (i.e. Houghton College) to south (i.e. Portville Central School).

  11. Oil shale retort apparatus

    DOE Patents [OSTI]

    Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

    1990-01-01T23:59:59.000Z

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  12. Fractured shale reservoirs: Towards a realistic model

    SciTech Connect (OSTI)

    Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

    1996-09-01T23:59:59.000Z

    Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

  13. Effects of scale-up on oil and gas yields in a solid-recycle bed oil shale retorting process

    SciTech Connect (OSTI)

    Carter, S.D.; Taulbee, D.N.; Vego, A. [Univ. of Kentucky, Lexington, KY (United States)

    1994-12-31T23:59:59.000Z

    Fluidized bed pyrolysis of oil shale in a non-hydrogen atmosphere has been shown to significantly increase oil yield in laboratory-scale reactors compared to the Fischer assay by many workers. The enhancement in oil yield by this relatively simple and efficient thermal technique has led to the development of several oil shale retorting processes based on fluidized bed and related technologies over the past fifteen years. Since 1986, the Center for Applied Energy Research (CAER) has been developing one such process, KENTORT II, which is mainly tailored for the Devonian oil shales that occur in the eastern U.S. The process contains three main fluidized bed zones to pyrolyze, gasify, and combust the oil shale. A fourth fluidized bed zone serves to cool the spent shale prior to exiting the system. The autothermal process utilizes processed shale recirculation to transfer heat from the combustion to the gasification and pyrolysis zones. The CAER is currently testing the KENTORT II process in a 22.7-kg/hr process-development unit (PDU).

  14. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Annual report, June 1991--May 1992

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W. [Alabama Univ., University, AL (United States); Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Misra, M. [Nevada Univ., Reno, NV (United States); Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1992-11-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  15. Preliminary hydrogeologic framework of the Silurian and Devonian carbonate aquifer system in the Midwestern Basins and Arches Region of Indiana, Ohio, Michigan, and Illinois

    SciTech Connect (OSTI)

    Casey, G.D. (Geological Survey, Columbus, OH (United States))

    1992-01-01T23:59:59.000Z

    The aquifer and confining units have been identified; data on the thickness, extent, and structural configuration of these units have been collected; and thickness and structure-contour maps have been generated. Hydrologic information for the confining units and the aquifer also has been compiled. Where present, the confining unit that caps the carbonate aquifer consists of shales of Middle and Upper Devonian age and Lower Mississippian age, however, these units have been eroded from a large part of the study area. The regional carbonate aquifer consists of Silurian and Devonian limestones and dolomites. The rocks that comprise the aquifer in Indiana and northwestern Illinois are grouped into four major stratigraphic units: Brassfield and Sexton Creek Limestones or the Cataract Formation, the Salamonie Dolomite, the Salina Group, and the Detroit River and Traverse Formations or the Muscatatuck Group. In Ohio and southern Michigan the aquifer is grouped into ten stratigraphic units: Brassfield Limestone and Cataract Formation, the Dayton Limestone, the Rochester Shale equivalent, the Lockport Dolomite, the Salina Formation, the Hillsboro Sandstone, the Detroit River Group, the Columbus Limestone, the Delaware Limestone, and the Traverse Formation. The thickness of the carbonate aquifer increases from the contact with the outcropping Ordovician shales in the south-central part of the study area from the contact into the Appalachian Foreland Structural Basin from 0 ft at the contact to more than 700 ft at the eastern boundary of the study area, to more than 1,000 ft beneath Lake Erie and greater than 1,200 ft in southeastern Michigan. At the edge of the Michigan Intercontinental Structural Basin in western Ohio and eastern Indiana, the thickness ranges from 700 to 900 ft. and from 200 ft to 300 ft in south-central Indiana along the northeastern edge of the Illinois Intercontinental Structural Basin.

  16. Solar retorting of oil shale

    DOE Patents [OSTI]

    Gregg, David W. (Morago, CA)

    1983-01-01T23:59:59.000Z

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  17. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  18. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21T23:59:59.000Z

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  19. Synthetic drill-in fluid for gravel packing depleted sands and pressured shale

    SciTech Connect (OSTI)

    Ali, S.; Griffith, G. [Chevron USA Production Co., New Orleans, LA (United States); Jones, T.; Hinojosa, R. [Baker Hughes INTEQ, Houston, TX (United States); Smejkal, K. [Baker Oil Tools, Houston, TX (United States)

    1999-03-01T23:59:59.000Z

    Weighted synthetic- or oil-base drill-in fluids offer an excellent solution to the problem of reactive, pressured shale. However, some operators remain uneasy about drilling into a reservoir with an invert emulsion drill-in fluid. This apprehension is partly due to the possibility of creating emulsion blocks or changing the rock matrix wettability. Either of these conditions may reduce the crude`s mobility by restricting flow. This formation damage is avoided with water-base drill-in fluids, but the borehole stability problem remains an issue. A synthetic drill-in fluid`s ability to stabilize reactive shales is well documented. There remains a concern that once reactive shales are exposed to completion brine, the inhibition imparted by a synthetic fluid is lost. If lost, the shale particles could spall (slough) freely into the wellbore, plugging the screens and resulting in an incomplete gravel placement. Another concern is the effective displacement of the synthetic fluid to the completion brine without creating undesirable emulsions and damaging the integrity of the synthetic-fluid filter cake. The key appears to be selecting a spacer system that prevents formation of viscous emulsions at the interfaces and would not aggressively attack the wellbore filter cake. The paper describes laboratory evaluation, simulated core tests, test results, a field case history in the South Timbalier field offshore Louisiana, and lessons learned.

  20. Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts

    E-Print Network [OSTI]

    Fox, J.P.; Persoff, P.

    1980-01-01T23:59:59.000Z

    for the grout. SPENT SHALE Oil shale, which is a low-gradeMineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. Livermore

  1. Production of Shale Oil

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01T23:59:59.000Z

    and the principal features of a proposed $5 billion project to develop facilities for production of 100,000 barrels per day of synthetic crude from oil shale. Subjects included are resource evaluation, environmental baseline studies, plans for acquisition of permits...

  2. The twentieth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1987-01-01T23:59:59.000Z

    This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

  3. Petrographic observations suggestive of microbial mats from Rampur Shale and Bijaigarh Shale,

    E-Print Network [OSTI]

    Schieber, Juergen

    Petrographic observations suggestive of microbial mats from Rampur Shale and Bijaigarh Shale observations of two Vindhyan black shales (Rampur Shale of the Semri Group and Bijaigarh Shale of the Kaimur an attempt has been made to highlight possible microbial mat features from two black shale horizons (Rampur

  4. Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1993-03-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

  5. Study of gas production potential of New Albany Shale (group) in the Illinois basin

    SciTech Connect (OSTI)

    Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01T23:59:59.000Z

    The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

  6. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01T23:59:59.000Z

    cement from spent oil shale," Vol. 10, No. 4, p. 54S,Colorado's primary oil shale resource for vertical modifiedSimulated effects of oil-shale development on the hydrology

  7. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

  8. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    III, "Method of Breaking Shale Oil-Water Emulsion," U. S.Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedings

  9. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01T23:59:59.000Z

    hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

  10. Case Study: Shale Bings in Central

    E-Print Network [OSTI]

    and oil shale was widespread. The extraction of oil from shales began in the 1850s and developed within the region that the oil-shale bings constitute one of the eight main habi- tats in West Lothian

  11. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

  12. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

  13. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    Elevated Temperature Corrosion of Oil Shale Retort Componentin In-Situ Oil Shale Retorts," NACE Corrosion 80, Paper No.6-10, 1981 CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A.

  14. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

  15. Shale oil recovery process

    DOE Patents [OSTI]

    Zerga, Daniel P. (Concord, CA)

    1980-01-01T23:59:59.000Z

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  16. Early diagenesis and sequential stratigraphic development of calcite concretions from the Middle Devonian Hamilton Group, central New York state

    SciTech Connect (OSTI)

    Dix, G.R.; Mullins, H.T.

    1985-01-01T23:59:59.000Z

    The Hamilton Group represents the initial westward progradational cycle of the Middle Devonian Catskill delta beginning with a distal, dysaerobic, black shale facies (Marcellus Fm) that evolves upward into more shallow, and better oxygenated, siliciclastics and limestones. On the basis of empirical solidity-porosity data and published compaction curves, iron-poor calcite concretions record a sequential increase in depth of burial for initial formation, from the base to the top of the Hamilton Group. Subsurface diagenetic depths range from as little as 1 m to a maximum of 125 m indicating shallow-burial diagenesis for the origin of most of the concretions. However, burial depths for concretion formation calculated from delta/sup 18/OPDB paleotemperatures are significantly greater ranging from 400 to 600 m. In contrast, concretions from Devonian sandstones in the Ivy Point Member (Ludlowville Fm) are iron-rich calcite with positive delta/sup 13/CPDB values and record similar burial depths (approx. 570 m) calculated by both delta/sup 18/OPDB and solidity-compaction data. Trends in delta/sup 13/C isotopes indicate that iron-poor calcite was derived from zones of sulfate-reduction and upper methanogenesis whereas iron-rich calcite was derived from the lower part of the methanogenesis diagenetic zone. Petrographic and SEM data indicate that most concretions have undergone subsequent burial diagenesis. Greater burial depth for concretion formation in younger stratigraphic units is explained as a consequence of greater subsurface depth at which carbonate is evolved due to deepening of the oxidation zone in the upper subsurface.

  17. Apparatus for oil shale retorting

    DOE Patents [OSTI]

    Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

    1986-01-01T23:59:59.000Z

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  18. Oil shale: The environmental challenges III

    SciTech Connect (OSTI)

    Petersen, K.K.

    1983-01-01T23:59:59.000Z

    This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

  19. Clay and SHale--2004 18.1 Clay and Shale

    E-Print Network [OSTI]

    Clay and SHale--2004 18.1 Clay and Shale By Robert l. Virta Domestic survey data and tables were, and the world production tables were prepared by Linder Roberts, international data coordinator. Ball Clay.--In 2004, 4 companies mined ball clay from 47 pits in 4 States. Production of domestic ball clay

  20. CLAY AND SHALE--1998 R1 CLAY AND SHALE

    E-Print Network [OSTI]

    CLAY AND SHALE--1998 R1 CLAY AND SHALE By Robert L. Virta Domestic survey data and tables were of clay sold or used by domestic producers in 1998 was 41.6 million metric tons (Mt) valued at $1.66 billion, essentially unchanged from that of 1997. Production of ball clay and kaolin increased

  1. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01T23:59:59.000Z

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  2. Preliminary analyses of matrix properties of Silurian and Devonian carbonate rocks in the Indiana and Ohio parts of the Midwestern Basins and Arches Region

    SciTech Connect (OSTI)

    Casey, G.D. (Geological Survey, Columbus, OH (United States). Water Resources Div.)

    1994-04-01T23:59:59.000Z

    The US Geological Survey's Regional Aquifer-Systems Analysis (RASA) in the Midwestern Basins and Arches Region is investigating the Silurian and Devonian carbonate-rock aquifer in parts of Indiana, Ohio, Michigan, and Illinois. Core samples from the carbonate-rock aquifer in Indiana and Ohio were analyzed for horizontal permeability and porosity. These matrix properties were used to describe the hydrogeologic aspects of the carbonate-rock aquifer throughout the regional study area. Core descriptions by the Indiana and Ohio State Geological surveys, were used for sub-dividing the core into the various lithostratigraphic groups. The lithostratigraphic groups are: the Brassfield/Sexton Creek Limestone, the Sublockport (including the Dayton Limestone and the Rochester Shale Equivalent), the Lockport Dolomite or the Salamonie Dolomite, the Salina Group, the lower section of the Muscatatuck Group and the upper section of the Muscatatuck Group. The porosities and horizontal permeabilities determined from the 38 samples were analyzed by nonparametric statistical methods. The data were grouped by lithologic unit, well location, and position within a depositional basin (the Appalachian, Michigan and Illinois Basins). In each case, all groups of data had identical distributions. These results show that the horizontal permeability and porosity of the matrix in the Silurian and Devonian carbonate rocks that were sampled are statistically similar and that variation between the groups is not statistically important.

  3. THERMAL GRADIENT MIGRATION OF BRINE INCLUSIONS IN SALT

    E-Print Network [OSTI]

    Yagnik, S.K.

    2010-01-01T23:59:59.000Z

    OF BRINE INCLUSIONS IN SALT Suresh K. Yagnik February 1982 TOF BRINE INCLUSIONS IN SALT by Suresh K. Yagnik Materialsb u i l t in future. The salt deposits, however, are known

  4. Portable brine evaporator unit, process, and system

    DOE Patents [OSTI]

    Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

    2009-04-07T23:59:59.000Z

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  5. Batteries from Brine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine March 31, 2014

  6. SciTech Connect: Paleoecology of the Devonian-Mississippian black...

    Office of Scientific and Technical Information (OSTI)

    United States Language: English Subject: 58 GEOSCIENCES; 54 ENVIRONMENTAL SCIENCES; 03 NATURAL GAS; 04 OIL SHALES AND TAR SANDS; BLACK SHALES; GEOLOGY; PALEONTOLOGY; KENTUCKY;...

  7. Oil shale, tar sands, and related materials

    SciTech Connect (OSTI)

    Stauffer, H.C.

    1981-01-01T23:59:59.000Z

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  8. Bureau of Land Management Oil Shale Development

    E-Print Network [OSTI]

    Utah, University of

    Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U.S. are in the Green River Formation in Wyoming, Utah, and Colorado. 72 % of this oil shale resource is on Federal

  9. Favorable conditions noted for Australia shale oil

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

  10. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  11. Biochemical processes for geothermal brine treatment

    SciTech Connect (OSTI)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

    1998-08-01T23:59:59.000Z

    As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  12. BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT

    SciTech Connect (OSTI)

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

    1998-09-20T23:59:59.000Z

    As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  13. Oil shale retorting method and apparatus

    SciTech Connect (OSTI)

    York, E.D.

    1983-03-22T23:59:59.000Z

    Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

  14. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01T23:59:59.000Z

    and Utilization of Oil Shale Resources, Tillinn, Estonia (and Utilization of Oil Shale Resources, Tallinn, Estonia (Colorado's Primary Oil-Shale Resource for Vertical Modified

  15. Carbon sequestration in depleted oil shale deposits

    DOE Patents [OSTI]

    Burnham, Alan K; Carroll, Susan A

    2014-12-02T23:59:59.000Z

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  16. U.S. Shale Gas and Shale Oil Plays Review of Emerging Resources...

    Gasoline and Diesel Fuel Update (EIA)

    most shale gas and shale oil wells are only a few years old, their long-term productivity is untested. Consequently, the long-term production profiles of shale wells and...

  17. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01T23:59:59.000Z

    pore-volume study of retorted oil shale," Lawrence Livermorekinetics between and oil-shale residual carbon. 1. co Effectkinetics between and oil-shale residual carbon. 2. co 2

  18. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01T23:59:59.000Z

    pore-volume study of retorted oil shale," Lawrence LivermoreReaction kinetics between and oil-shale residual carbon. 1.Reaction kinetics between and oil-shale residual carbon. 2.

  19. Crude oil and shale oil

    SciTech Connect (OSTI)

    Mehrotra, A.K. [Univ. of Calgary (Canada)

    1995-06-15T23:59:59.000Z

    This year`s review on crude oil and shale oil has been prepared by classifying the references into the following main headings: Hydrocarbon Identification and Characterization, Trace Element Determination, Physical and Thermodynamic Properties, Viscosity, and Miscellaneous Topics. In the two-year review period, the references on shale oils were considerably less in number than those dealing with crude oils. Several new analytical methodologies and applications were reported for hydrocarbon characterization and trace element determination of crude oils and shale oils. Also included in this review are nine U.S., Canadian British and European patents. 12 refs.

  20. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01T23:59:59.000Z

    recovery Vent gas '\\Raw shale oil Recycled gas compressorThis process produces shale oil, a low BTU gas, and char,Oil Shale Process" in Oil Shale and Tar Sands, J. W. Smith

  1. Eastern Gas Shales Project: West Virginia No. 7 well, Wetzel County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    none,

    1981-12-01T23:59:59.000Z

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-West Virginia No. 7 well. Information provided includes a stratigraphic summary and lithiology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 533 feet of core retrieved from a well drilled in Wetzel county of north-central West Virginia.

  2. Eastern Gas Shales Project: Pennsylvania No. 5 well, Lawrence County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    none,

    1981-10-01T23:59:59.000Z

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Pennsylvania No. 5 well. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technology University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 604 feet of core retrieved from a well drilled in Lawrence County of west-central Pennsylvania.

  3. Eastern Gas Shales Project: Pennsylvania No. 3 well, Erie County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    none,

    1981-09-01T23:59:59.000Z

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Pennsylvania No. 3 well. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. This data presented was obtained from the study of approximately 422 feet of core retrieved from a well drilled in Erie County of north-western Pennsylvania.

  4. Eastern Gas Shales Project: Pennsylvania No. 1 well, McKean County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    none,

    1981-10-01T23:59:59.000Z

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Pennsylvania No. 1 well. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 741 feet of core retrieved from a well drilled in MeKean County of north-central Pennsylvania.

  5. Eastern Gas Shales Project: Pennsylvania No. 4 well, Indiana County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    none,

    1981-10-01T23:59:59.000Z

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Pennsylvania No. 4 well. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 891 feet of core retrieved from a well drilled in Indiana County of west-central Pennsylvania.

  6. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01T23:59:59.000Z

    Minor elements in oil shale and oil~shale products, LERCmercury to the oil shale, shale oil, and retort water. Thesemercury to spent shale, shale oil, retort water and offgas

  7. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31T23:59:59.000Z

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

  8. Production Trends of Shale Gas Wells

    E-Print Network [OSTI]

    Khan, Waqar A.

    2010-01-14T23:59:59.000Z

    To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important...

  9. LLNL oil shale project review

    SciTech Connect (OSTI)

    Cena, R.J. (ed.)

    1990-04-01T23:59:59.000Z

    Livermore's oil shale project is funded by two budget authorities, two thirds from base technology development and one third from environmental science. Our base technology development combines fundamental chemistry research with operation of pilot retorts and mathematical modeling. We've studied mechanisms for oil coking and cracking and have developed a detailed model of this chemistry. We combine the detailed chemistry and physics into oil shale process models (OSP) to study scale-up of generic second generation Hot-Recycled-Solid (HRS) retorting systems and compare with results from our 4 tonne-per-day continuous-loop HRS pilot retorting facility. Our environmental science program focuses on identification of gas, solid and liquid effluents from oil shale processes and development of abatement strategies where necessary. We've developed on-line instruments to quantitatively measure trace sulfur and nitrogen compounds released during shale pyrolysis and combustion. We've studied shale mineralogy, inorganic and organic reactions which generate and consume environmentally sensitive species. Figures, references, and tables are included with each discussion.

  10. FLUIDIZED BED COMBUSTION UNIT FOR OIL SHALE

    E-Print Network [OSTI]

    M. Hammad; Y. Zurigat; S. Khzai; Z. Hammad; O. Mubydeem

    combustion performance using oil shale as fuel in direct burning process. It is a steel column of 18 cm

  11. Depositional environment of Upper Devonian gas producing sandstones, Westmoreland County, southwestern Pennsylvania 

    E-Print Network [OSTI]

    Work, Rebecca Miller

    1988-01-01T23:59:59.000Z

    DEPOSITIONAL ENVIRONMENT OF UPPER DEVONIAN GAS PRODUCING SANDSTONES, WESTMORELAND COUNTY, SOUTHWESTERN PENNSYLVANIA A Thesis by REBECCA MILLER WORK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1988 Major Subject: Geology DEPOSITIONAL ENVIRONMENT OF UPPER DEVONIAN GAS PRODUCING SANDSTONES, WESTMORELAND COUNTY, SOUTHWESTERN PENNSYLVANIA A Thesis REBECCA MILLER WORK Approved as to style...

  12. Burgess Shale: Cambrian Explosion in Full Bloom

    E-Print Network [OSTI]

    Hagadorn, Whitey

    4 Burgess Shale: Cambrian Explosion in Full Bloom James W. Hagadorn T he middle cambrian burgess shale is one of the world's best-known and best-studied fossil deposits. The story of the discovery in the Burgess Shale Formation of the Canadian Rockies, Charles Walcott discovered a remarkable "phyl- lopod

  13. Black Shales Adina Paytan, Stanford University, USA

    E-Print Network [OSTI]

    Paytan, Adina

    Tales of Black Shales Adina Paytan, Stanford University, USA Several times during the middle of the Cretaceous period, between 125 and 80 million years ago, organic-carbon-rich black shales were deposited over large areas of the ocean floor. These black shales provide valuable information about past climates

  14. Oil shale technology and evironmental aspects

    SciTech Connect (OSTI)

    Scinta, J.

    1982-01-01T23:59:59.000Z

    Oil shale processes are a combination of mining, retorting, and upgrading facilities. This work outlines the processing steps and some design considerations required in an oil shale facility. A brief overview of above ground and in situ retorts is presented; 6 retorts are described. The development aspects which the oil shale industry is addressing to protect the environment are presented.

  15. Australian developments in oil shale processing

    SciTech Connect (OSTI)

    Baker, G.L.

    1981-01-01T23:59:59.000Z

    This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

  16. Oil shale technology. Final report

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

  17. CLAY AND SHALE--2003 18.1 CLAY AND SHALE

    E-Print Network [OSTI]

    %), drilling mud (22%), and iron ore pelletizing (15%); for common clay and shale, brick (55%), cement (19 Protection Agency (EPA) finalized its maximum achievable control technology (MACT) regulation/Mg of uncalcined clay or a reduction of 30% in emissions. For new batch kilns, hydrogen fluoride and hydrogen

  18. Jordan ships oil shale to China

    SciTech Connect (OSTI)

    Not Available

    1986-12-01T23:59:59.000Z

    Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.

  19. Bakken Shale Oil Production Trends

    E-Print Network [OSTI]

    Tran, Tan

    2012-07-16T23:59:59.000Z

    to study this Type of behavior because of scattering data, which leads to erroneous interpretation for the analysis. These production Types, especially Types I and II will give a new type curve matches for shale oil wells above or below the bubble point....

  20. Sedimentology, petrology, and gas potential of the Brallier Formation: upper Devonian turbidite facies of the Central and Southern Appalachians

    SciTech Connect (OSTI)

    Lundegard, P.D.; Samuels, N.D.; Pryor, W.A.

    1980-03-01T23:59:59.000Z

    The Upper Devonian Brallier Formation of the central and southern Appalachian basin is a regressive sequence of siltstone turbidites interbedded with mudstones, claystones, and shales. It reaches 1000 meters in thickness and overlies basinal mudrocks and underlies deltaic sandstones and mudrocks. Facies and paleocurrent analyses indicate differences between the depositional system of the Brallier Formation and those of modern submarine fans and ancient Alpine flysch-type sequences. The Brallier system is of finer grain size and lower flow intensity. In addition, the stratigraphic transition from turbidites to deltaic sediments is gradual and differs in its facies succession from the deposits of the proximal parts of modern submarine fans. Such features as massive and pebbly sandstones, conglomerates, debris flows, and massive slump structures are absent from this transition. Paleocurrents are uniformly to the west at right angles to basin isopach, which is atypical of ancient turbidite systems. This suggests that turbidity currents had multiple point sources. The petrography and paleocurrents of the Brallier Formation indicate an eastern source of sedimentary and low-grade metasedimentary rocks with modern relief and rainfall. The depositional system of the Brallier Formation is interpreted as a series of small ephemeral turbidite lobes of low flow intensity which coalesced in time to produce a laterally extensive wedge. The lobes were fed by deltas rather than submarine canyons or upper fan channel systems. This study shows that the present-day turbidite facies model, based mainly on modern submarine fans and ancient Alpine flysch-type sequences, does not adequately describe prodeltaic turbidite systems such as the Brallier Formation. Thickly bedded siltstone bundles are common features of the Brallier Formation and are probably its best gas reservoir facies, especially when fracture porosity is well developed.

  1. Focus on the Marcellus Shale By Lisa Sumi

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Shale Gas: Focus on the Marcellus Shale By Lisa Sumi FOR THE OIL & GAS ACCOUNTABILITY PROJECT on potential oil and gas development in the Marcellus Shale formation in northeastern Pennsylvania · www.ogap.org #12;Shale Gas: Focus on the Marcellus Shale A REPORT COMPILED FOR THE OIL AND GAS

  2. New York Marcellus Shale: Industry boom put on hold

    SciTech Connect (OSTI)

    Mercurio, Angelique

    2012-01-16T23:59:59.000Z

    Key catalysts for Marcellus Shale drilling in New York were identified. New York remains the only state in the nation with a legislative moratorium on high-volume hydraulic fracturing, as regulators and state lawmakers work to balance the advantages of potential economic benefits while protecting public drinking water resources and the environment. New York is being particularly careful to work on implementing sufficiently strict regulations to mitigate the environmental impacts Pennsylvania has already seen, such as methane gas releases, fracturing fluid releases, flowback water and brine controls, and total dissolved solids discharges. In addition to economic and environmental lessons learned, the New York Department of Environmental Conservation (DEC) also acknowledges impacts to housing markets, security, and other local issues, and may impose stringent measures to mitigate potential risks to local communities. Despite the moratorium, New York has the opportunity to take advantage of increased capital investment, tax revenue generation, and job creation opportunities by increasing shale gas activity. The combination of economic benefits, industry pressure, and recent technological advances will drive the pursuit of natural gas drilling in New York. We identify four principal catalysts as follows: Catalyst 1: Pressure from Within the State. Although high-volume hydraulic fracturing has become a nationally controversial technology, shale fracturing activity is common in every U.S. state except New York. The regulatory process has delayed potential economic opportunities for state and local economies, as well as many industry stakeholders. In 2010, shale gas production accounted for $18.6 billion in federal royalty and local, state, and federal tax revenues. (1) This is expected to continue to grow substantially. The DEC is under increased pressure to open the state to the same opportunities that Alabama, Arkansas, California, Colorado, Kansas, Louisiana, Montana, New Mexico, North Dakota, Ohio, Oklahoma, Pennsylvania, South Dakota, Texas, Utah, West Virginia, and Wyoming are pursuing. Positive labor market impacts are another major economic draw. According to the Revised Draft SGEIS on the Oil, Gas and Solution Mining Regulatory Program (September 2011), hydraulic fracturing would create between 4,408 and 17,634 full-time equivalent (FTE) direct construction jobs in New York State. Indirect employment in other sectors would add an additional 29,174 FTE jobs. Furthermore, the SGEIS analysis suggests that drilling activities could add an estimated $621.9 million to $2.5 billion in employee earnings (direct and indirect) per year, depending upon how much of the shale is developed. The state would also receive direct tax receipts from leasing land, and has the potential to see an increase in generated indirect revenue. Estimates range from $31 million to $125 million per year in personal income tax receipts, and local governments would benefit from revenue sharing. Some landowner groups say the continued delay in drilling is costing tens of thousands of jobs and millions of dollars in growth for New York, especially in the economically stunted upstate. A number of New York counties near Pennsylvania, such as Chemung, NY, have experienced economic uptick from Pennsylvania drilling activity just across the border. Chemung officials reported that approximately 1,300 county residents are currently employed by the drilling industry in Pennsylvania. The Marcellus shale boom is expected to continue over the next decade and beyond. By 2015, gas drilling activity could bring 20,000 jobs to New York State alone. Other states, such as Pennsylvania and West Virginia, are also expected to see a significant increase in the number of jobs. Catalyst 2: Political Reality of the Moratorium. Oil and gas drilling has taken place in New York since the 19th century, and it remains an important industry with more than 13,000 currently active wells. The use of hydraulic fracturing in particular has been employed for decades. Yet, as technological

  3. Production of hydrogen from oil shale

    SciTech Connect (OSTI)

    Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

    1985-12-24T23:59:59.000Z

    A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

  4. Radionuclide transport in sandstones with WIPP brine

    SciTech Connect (OSTI)

    Weed, H.C.; Bazan, F.; Fontanilla, J.; Garrison, J.; Rego, J.; Winslow, A.M.

    1981-02-01T23:59:59.000Z

    Retardation factors (R) have been measured for the transport of /sup 3/H, /sup 95m/Tc, and /sup 85/Sr in WIPP brine using St. Peter, Berea, Kayenta, and San Felipe sandstone cores. If tritium is assumed to have R=1, /sup 95m/Tc has R=1.0 to 1.3 and therefore is essentially not retarded. Strontium-85 has R = 1.0 to 1.3 on St. Peter, Berea, and Kayenta, but R=3 on San Felipe. This is attributed to sorption on the matrix material of San Felipe, which has 45 volume % matrix compared with 1 to 10 volume % for the others. Retardation factors (R/sub s/) for /sup 85/Sr calculated from static sorption measurements are unity for all the sandstones. Therefore, the static and transport results for /sup 85/Sr disagree in the case of San Felipe, but agree for St. Peter, Berea, and Kayenta.

  5. Geochemistry of Aluminum in High Temperature Brines

    SciTech Connect (OSTI)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

    1999-05-18T23:59:59.000Z

    The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

  6. Architecture of the Middle Devonian Kvamshesten Group, western Norway: sedimentary response to deformation above a ramp-flat

    E-Print Network [OSTI]

    Andersen, Torgeir Bjørge

    Architecture of the Middle Devonian Kvamshesten Group, western Norway: sedimentary response. ANDERSEN 1 1Department of Geology, University of Oslo, Pb 1047 Blindern, 0316 Oslo, Norway 2present address." Geological Survey of Norway, 7491 Trondheim, Norway Abstract: The Mid-Devonian Kvamshesten basin in western

  7. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01T23:59:59.000Z

    solid waste disposal facility. the packed bed of shale in an emulsion with the oil, IIJNDERGII'lOUND TREATMENT

  8. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    Reports and Publications (EIA)

    2011-01-01T23:59:59.000Z

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  9. 90-day Interim Report on Shale Gas Production - Secretary of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board The Shale Gas...

  10. INTER-MOUNTAIN BASINS SHALE BADLAND extent exaggerated for display

    E-Print Network [OSTI]

    INTER-MOUNTAIN BASINS SHALE BADLAND R.Rondeau extent exaggerated for display ACHNATHERUM HYMENOIDES HERBACEOUS ALLIANCE Achnatherum hymenoides Shale Barren Herbaceous Vegetation ARTEMISIA BIGELOVII SHRUBLAND ALLIANCE Leymus salinus Shale Sparse Vegetation Overview: This widespread ecological system

  11. La Revolucin del Shale Gas Profesor: Hugh Rudnick

    E-Print Network [OSTI]

    Rudnick, Hugh

    La Revolución del Shale Gas Mayo 2011 Profesor: Hugh Rudnick Profesional Externo: Verónica Cortés........................................................................................................................................ 6 ¿Qué es el Shale Gas...................................................................................................................................... 7 Shale Gas

  12. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01T23:59:59.000Z

    Controls for a Commercial Oil Shale In~try, Vol. I, An En~Mathematical Hodel for In-Situ Shale Retorting," in SecondBriefing on In-Situ Oil Shale Technology, Lawrence Livermore

  13. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01T23:59:59.000Z

    CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,CEMENTS FROM SPENT OIL SHALE P, K, Mehta Civil Engineering

  14. Control Strategies for Abandoned in situ Oil Shale Retorts

    E-Print Network [OSTI]

    Persoff, P.; Fox, J.P.

    1979-01-01T23:59:59.000Z

    Presented elt the TUJelfth Oil Shale Synlposittnz, Golden,for Abandoned In Situ Oil Shale Retorts P. Persoll and ]. P.Water Pollution of Spent Oil Shale Residues, EDB Lea,

  15. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01T23:59:59.000Z

    Controls for a Commercial Oil Shale In~try, Vol. I, An En~in Second Briefing on In-Situ Oil Shale Technology, LawrenceReactions in Colorado Oil Shale, Lawrence Report UCRL-

  16. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01T23:59:59.000Z

    20 to 40% of the oil shale, and explosively rubblizing andCEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,

  17. Shale Oil Value Enhancement Research

    SciTech Connect (OSTI)

    James W. Bunger

    2006-11-30T23:59:59.000Z

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  18. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect (OSTI)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01T23:59:59.000Z

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  19. TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY

    E-Print Network [OSTI]

    Kland, M.J.

    2010-01-01T23:59:59.000Z

    Chemicals Identified in Oil Shale and Shale Oil. list." 1.of Trace Contaminants in Oil Shale Retort Wa- ters", Am.Trace Contaminants in Oil Shale Retort Waters", in Oil Shale

  20. INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER

    E-Print Network [OSTI]

    Farrier, D.S.

    2011-01-01T23:59:59.000Z

    Minor Elements in Oil Shale and Oil Shale Products. LERCfor Use 1n Oil Shale and Shale Oil. OSRD-32, 1945. Jeris, J.Water coproduced with shale oil and decanted from it is

  1. TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY

    E-Print Network [OSTI]

    Kland, M.J.

    2010-01-01T23:59:59.000Z

    Identified in Oil Shale and Shale Oil. list." 1. Preliminaryrisks of large scale shale oil production are sufficient tofound in oil shale and shale oil by EMIC and ETIC, has

  2. CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE

    E-Print Network [OSTI]

    Amy, Gary L.

    2013-01-01T23:59:59.000Z

    decomposition of kerogen to shale oil and related by~of Oil Shale to Produce Shale Oil and Related Byproducts.Ref. 3). Chemis of Oil Shale Oil shale is a sedimentary

  3. Developments in oil shale in 1987

    SciTech Connect (OSTI)

    Knutson, C.F.; Dana, G.F.; Solti, G.; Qian, J.L.; Ball, F.D.; Hutton, A.C.; Hanna, J.; Russell, P.L.; Piper, E.M.

    1988-10-01T23:59:59.000Z

    Oil shale development continued at a slow pace in 1987. The continuing interest in this commodity is demonstrated by the 342 oil shale citations added to the US Department of Energy Energy Database during 1987. The Unocal project in Parachute, Colorado, produced 600,000 bbl of synfuel in 1987. An appreciable amount of 1987's activity was associated with the nonsynfuel uses of oil shale. 4 figs., 2 tabs.

  4. Comparative dermotoxicity of shale oils

    SciTech Connect (OSTI)

    Holland, L.M.; Wilson, J.S.; Foreman, M.E.

    1980-01-01T23:59:59.000Z

    When shale oils are applied at higher dose levels the standard observation of tumor production and latency are often obscured by a severe inflammatory response leading to epidermal degeneration. The two experiments reported here are still in progress, however the interim results are useful in assessing both the phlogistic and tumorigenic properties of three shale oils. Three shale oils were tested in these experiments. The first crude oil (OCSO No. 6) was produced in a modified in situ report at Occidental Oil Company's Logan Wash site near Debeque, Colorado. The second crude oil (PCSO II) was produced in the above ground Paraho vertical-kiln retort located at Anvil Points near Rifle, Colorado and the third oil was the hydrotreated daughter product of the Paraho crude (PCSO-UP). Experiment I was designed to determine the highest dose level at which tumor latency could be measured without interference from epidermal degeneration. Experiment II was designed to determine the effect of application frequency on both tumor response and inflammatory phenomena. Complete epidermal degeneration was used as the only measure of severe inflammation. Relative tumorigenicity was based on the number of tumor bearing mice without regard to multiple tumors on individual animals. In both experiments, tumor occurrence was confirmed one week after initial appearance. The sex-related difference in inflammatory response is striking and certanly has significance for experimental design. An increased phlogistic sensitivity expressed in male mice could affect the meaning of an experiment where only one sex was used.

  5. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01T23:59:59.000Z

    Investigations on hydraulic cement from spent oil shale,"April 16-18, 1980 HYDRAULIC CEMENT PREPARATION FROM LURGIpressi ve b strength, MPa this cement in moist environments.

  6. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    at the National Association of Corrosion EngineersConference, Corrosion '81, Toronto, Ontario, Canada,April 6-10, 1981 CORROSION OF METALS IN OIL SHALE

  7. U.S. Geological Survey Open-File Report 2005-1268U.S. Geological Survey Open-File Report 2005-1268 Published 2005Published 2005

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    within reservoirs (Water, oil, gas cap)oil, gas cap) #12;The Devonian Shale - Middle andThe Devonian, 1975)(de Witt and others, 1975) A'A #12;Oil in Devonian Shale and OriskanyOil in Devonian Shale Natural Gas Resources in Devonian Black Shales,Assessment of Undiscovered Natural Gas Resources

  8. The feasibility of deep well injection for brine disposal

    E-Print Network [OSTI]

    Spongberg, Martin Edward

    1994-01-01T23:59:59.000Z

    feasibility. The methodology is utilized to make a preliminary evaluation of a proposed brine injection project in the Dove Creek area of King and Stonewall Counties, North Central Texas. Four known deep aquifers are modeled, using the SWIFT/486 software...

  9. acartia tonsa brine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be determined in advance. We estimate the optimal design of an average-sized ice rink, including pipe diameter, depth and brine type (ethylene glycol and ammonia). We also...

  10. Secretary of Energy Advisory Board Subcommittee Releases Shale...

    Office of Environmental Management (EM)

    Releases Shale Gas Recommendations Secretary of Energy Advisory Board Subcommittee Releases Shale Gas Recommendations August 11, 2011 - 8:54am Addthis WASHINGTON, D.C. - A diverse...

  11. Secretary of Energy Advisory Board Hosts Conference Call on Shale...

    Energy Savers [EERE]

    of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report Secretary of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report November 10, 2011 -...

  12. Oil Shale and Other Unconventional Fuels Activities | Department...

    Energy Savers [EERE]

    Petroleum Reserves Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil...

  13. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of energy,...

  14. Method for forming an in-situ oil shale retort in differing grades of oil shale

    SciTech Connect (OSTI)

    Ricketts, T.E.

    1984-04-24T23:59:59.000Z

    An in-situ oil shale retort is formed in a subterranean formation containing oil shale. The formation comprises at least one region of relatively richer oil shale and another region of relatively leaner oil shale. According to one embodiment, formation is excavated from within a retort site for forming at least one void extending horizontally across the retort site, leaving a portion of unfragmented formation including the regions of richer and leaner oil shale adjacent such a void space. A first array of vertical blast holes are drilled in the regions of richer and leaner oil shale, and a second array of blast holes are drilled at least in the region of richer oil shale. Explosive charges are placed in portions of the blast holes in the first and second arrays which extend into the richer oil shale, and separate explosive charges are placed in portions of the blast holes in the first array which extend into the leaner oil shale. This provides an array with a smaller scaled depth of burial (sdob) and closer spacing distance between explosive charges in the richer oil shale than the sdob and spacing distance of the array of explosive charges in the leaner oil shale. The explosive charges are detonated for explosively expanding the regions of richer and leaner oil shale toward the horizontal void for forming a fragmented mass of particles. Upon detonation of the explosive, greater explosive energy is provided collectively by the explosive charges in the richer oil shale, compared with the explosive energy produced by the explosive charges in the leaner oil shale, resulting in comparable fragmentation in both grades of oil shale.

  15. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Glossary

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLEChallenges are Associated with Shale GasItWater

  16. Carcinogenicity Studies of Estonian Oil Shale Soots

    E-Print Network [OSTI]

    A. Vosamae

    Several series of chronic experiments in white mice and white rats were carried out in order to determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All the investigated samples of soot showed a relatively low (from 14 to 1200 ppm) benzo

  17. Chemical kinetics and oil shale process design

    SciTech Connect (OSTI)

    Burnham, A.K.

    1993-07-01T23:59:59.000Z

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  18. MID-LATE DEVONIAN CALCIFIED MARINE ALGAE AND CYANOBACTERIA, SOUTH CHINA

    E-Print Network [OSTI]

    Riding, Robert

    MID-LATE DEVONIAN CALCIFIED MARINE ALGAE AND CYANOBACTERIA, SOUTH CHINA QI FENG,1 YI-MING GONG,1 contain microfossils generally regarded as calcified algae and cyanobacteria. These are present in 61 out with differing degrees of confidence, and placed in algae, cyanobacteria or microproblematica. Algae: Halysis

  19. LLNL oil shale project review: METC third annual oil shale contractors meeting

    SciTech Connect (OSTI)

    Cena, R.J.; Coburn, T.T.; Taylor, R.W.

    1988-01-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory combines laboratory and pilot-scale experimental measurements with mathematical modeling of fundamental chemistry and physics to provide a technical base for evaluating oil shale retorting alternatives. Presented herein are results of four research areas of interest in oil shale process development: Recent Progress in Solid-Recycle Retorting and Related Laboratory and Modeling Studies; Water Generation During Pyrolysis of Oil Shale; Improved Analytical Methods and Measurements of Rapid Pyrolysis Kinetics for Western and Eastern Oil Shale; and Rate of Cracking or Degradation of Oil Vapor In Contact with Oxidized Shale. We describe operating results of a 1 tonne-per-day, continuous-loop, solid-recycle, retort processing both Western And Eastern oil shale. Sulfur chemistry, solid mixing limits, shale cooling tests and catalyst addition are all discussed. Using a triple-quadrupole mass spectrometer, we measure individual species evolution with greater sensitivity and selectivity. Herein we discuss our measurements of water evolution during ramped heating of Western and Eastern oil shale. Using improved analytical techniques, we determine isothermal pyrolysis kinetics for Western and Eastern oil shale, during rapid heating, which are faster than previously thought. Finally, we discuss the rate of cracking of oil vapor in contact with oxidized shale, qualitatively using a sand fluidized bed and quantitatively using a vapor cracking apparatus. 3 refs., 4 figs., 1 tab.

  20. Development of the Natural Gas Resources in the Marcellus Shale

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    be the most productive areas of the shale. The large amount of industrial activity necessary for shale gasDevelopment of the Natural Gas Resources in the Marcellus Shale New York, Pennsylvania, Virginia for informational purposes only and does not support or oppose development of the Marcellus Shale natural gas

  1. Shale Oil Production Performance from a Stimulated Reservoir Volume

    E-Print Network [OSTI]

    Chaudhary, Anish Singh

    2011-10-21T23:59:59.000Z

    .1 Unconventional resources ................................................................................. 1 1.2 Oil shale and shale oil ....................................................................................... 6 1.3 Production from unconventional..., heavy oil, shale gas and shale oil. On the other hand, conventional reservoirs can be produced at economic flow rates and produce economic volumes of oil and gas without large stimulation treatments or any special recovery process. Conventional...

  2. Study of composite cement containing burned oil shale

    E-Print Network [OSTI]

    Dalang, Robert C.

    Study of composite cement containing burned oil shale Julien Ston Supervisors : Prof. Karen properties. SCMs can be by-products from various industries or of natural origin, such as shale. Oil shale correctly, give a material with some cementitious properties known as burned oil shale (BOS). This study

  3. Morphological Investigations of Fibrogenic Action of Estonian Oil Shale Dust

    E-Print Network [OSTI]

    V. A. Kung

    dust produced in the mining and processing of Estonian oil shale is given. Histological examination of

  4. Process Design and Integration of Shale Gas to Methanol 

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04T23:59:59.000Z

    pathways for the production of methanol from shale gas. The composition of the shale gas feedstock is assumed to come from the Barnett Shale Play located near Fort Worth, Texas, which is currently the most active shale gas play in the US. Process...

  5. Location and Geology Fig 1. The Macasty black shale

    E-Print Network [OSTI]

    , Quebec, is organic-rich black shale and hosting oil and gas. It is equivalent to the Ithaca shaleLocation and Geology Fig 1. The Macasty black shale in the Anticosti Island in the Gulf of St. d13C for calcite disseminated in the black shale range from 2.6o to 2.8 / The values are lower

  6. Differential thermal analysis of the reaction properties of raw and retorted oil shale with air

    SciTech Connect (OSTI)

    Wang, T.F.

    1984-01-01T23:59:59.000Z

    The results of a study to determine the kinetics of combustion of oil shale and its char by using differential thermal analysis are reported. The study indicates that Colorado oil shale and its char combustion rate is the fastest while Fushun oil shale and its char combustion rate is the slowest among the six oil shales used in this work. Oil shale samples used were Fushun oil shale, Maoming oil shale, Huang county oil shale, and Colorado oil shale.

  7. CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE

    E-Print Network [OSTI]

    Amy, Gary L.

    2013-01-01T23:59:59.000Z

    from Characterization of Spent Shale s . , , . • • . . • ,4. Preparation of Spent Shale Samples and Procedure forof Particular Types of Spent Shale References • Appendix A.

  8. CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE

    E-Print Network [OSTI]

    Amy, Gary L.

    2013-01-01T23:59:59.000Z

    OF FIGURES Areal extent of oil shale deposits in the Greencommercial in~·situ oil shale facility. Possible alternativefor pyrolysis of oil shale Figure 7. Establishment of

  9. What is shale gas and why is it important?

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

  10. Kerogen extraction from subterranean oil shale resources

    SciTech Connect (OSTI)

    Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

    2009-03-10T23:59:59.000Z

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  11. Kerogen extraction from subterranean oil shale resources

    SciTech Connect (OSTI)

    Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

    2010-09-07T23:59:59.000Z

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  12. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01T23:59:59.000Z

    true in-situ oil shale combustion experiment con- A gasoil, depending on the specific process used. The water, referred to as retort water, originates from combustion,

  13. Oil shale mining studies and analyses of some potential unconventional uses for oil shale

    SciTech Connect (OSTI)

    McCarthy, H.E.; Clayson, R.L.

    1989-07-01T23:59:59.000Z

    Engineering studies and literature review performed under this contract have resulted in improved understanding of oil shale mining costs, spent shale disposal costs, and potential unconventional uses for oil shale. Topics discussed include: costs of conventional mining of oil shale; a mining scenario in which a minimal-scale mine, consistent with a niche market industry, was incorporated into a mine design; a discussion on the benefits of mine opening on an accelerated schedule and quantified through discounted cash flow return on investment (DCFROI) modelling; an estimate of the costs of disposal of spent shale underground and on the surface; tabulation of potential increases in resource recovery in conjunction with underground spent shale disposal; the potential uses of oil shale as a sulfur absorbent in electric power generation; the possible use of spent shale as a soil stabilizer for road bases, quantified and evaluated for potential economic impact upon representative oil shale projects; and the feasibility of co-production of electricity and the effect of project-owned and utility-owned power generation facilities were evaluated. 24 refs., 5 figs., 19 tabs.

  14. Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone Aquifers

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    1 Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone models. As a step toward this, network flow models were used to simulate the flow of CO2-saturated brine

  15. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Energy Savers [EERE]

    Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a 1...

  16. Gas Content of Gladys McCall Reservoir Brine A Topical Report

    Office of Scientific and Technical Information (OSTI)

    gas t o brine ratio. This w i l l result i n cubic feet of methane, ethane, propane, etc. per barrel of brine, Then, the contributions from sample points are added until...

  17. Method for retorting oil shale

    DOE Patents [OSTI]

    Shang, Jer-Yu; Lui, A.P.

    1985-08-16T23:59:59.000Z

    The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

  18. A Study of the Dielectric Properties of Dry and Saturated Green River Oil Shale

    SciTech Connect (OSTI)

    Sweeney, J; Roberts, J; Harben, P

    2007-02-07T23:59:59.000Z

    We measured dielectric permittivity of dry and fluid-saturated Green River oil shale samples over a frequency range of 1 MHz to 1.8 GHz. Dry sample measurements were carried out between room temperature and 146 C, saturated sample measurements were carried out at room temperature. Samples obtained from the Green River formation of Wyoming and from the Anvil Points Mine in Colorado were cored both parallel and perpendicular to layering. The samples, which all had organic richness in the range of 10-45 gal/ton, showed small variations between samples and a relatively small level of anisotropy of the dielectric properties when dry. The real and imaginary part of the relative dielectric permittivity of dry rock was nearly constant over the frequency range observed, with low values for the imaginary part (loss factor). Saturation with de-ionized water and brine greatly increased the values of the real and imaginary parts of the relative permittivity, especially at the lower frequencies. Temperature effects were relatively small, with initial increases in permittivity to about 60 C, followed by slight decreases in permittivity that diminished as temperature increased. Implications of these observations for the in situ electromagnetic, or radio frequency (RF) heating of oil shale to produce oil and gas are discussed.

  19. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W.; Vidic, Radisav D; Gregory, Kelvin B.

    2013-12-01T23:59:59.000Z

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, ?-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

  20. Multiscale strength homogenization : application to shale nanoindentation

    E-Print Network [OSTI]

    Gathier, Benjamin

    2008-01-01T23:59:59.000Z

    Shales are one of the most encountered materials in sedimentary basins. Because of their highly heterogeneous nature, their strength prediction for oil and gas exploitation engineering has long time been an enigma. In this ...

  1. Australian Shale Gas Assessment Project Reza Rezaee

    E-Print Network [OSTI]

    , Access to different pore structure evaluation techniques including low pressure nitrogen adsorptionAustralian Shale Gas Assessment Project Reza Rezaee Unconventional Gas Research Group of natural gas in many countries. According to recent assessments, Australia has around 437 trillion cubic

  2. Microporoelastic modeling of organic-rich shales

    E-Print Network [OSTI]

    Khosh Sokhan Monfared, Siavash

    2015-01-01T23:59:59.000Z

    Due to their abundance, organic-rich shales are playing a critical role in re-defining the world's energy landscape leading to shifts in global geopolitics. However, technical challenges and environmental concerns continue ...

  3. Constraints on origin and evolution of Red Sea brines from helium and argon isotopes

    E-Print Network [OSTI]

    Winckler, Gisela

    Constraints on origin and evolution of Red Sea brines from helium and argon isotopes Gisela November 2000 Abstract Brines from three depressions along the axis of the Red Sea, the Atlantis II II and the Discovery brines originating from locations in the central Red Sea show 4 He

  4. Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline

    E-Print Network [OSTI]

    Marchant, David R.

    Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline lake lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments watershed and show that this, together with small amounts of meltwater, are capable of generating brines

  5. Dynamics and storage of brine in mid-ocean ridge hydrothermal systems

    E-Print Network [OSTI]

    Wilcock, William

    Dynamics and storage of brine in mid-ocean ridge hydrothermal systems Fabrice J. Fontaine1 and brine phases. Time series of vent temperature and salinity (chlorinity) show that some black-smoker vent below seawater for over a decade, which raises important questions concerning the fate of brines

  6. of brine heterogeneity in modern sedimentary basins (6) imply inefficiency of mixing and the

    E-Print Network [OSTI]

    Boyce, C. Kevin

    of brine heterogeneity in modern sedimentary basins (6) imply inefficiency of mixing and the potential for preservation of individual, metal- charged brine reservoirs that could be tapped at some later. The observation that the texturally later brines have higher metal contents is consistent with this model

  7. Brine fluxes from growing sea ice A. J. Wells,1,2

    E-Print Network [OSTI]

    Wettlaufer, John S.

    Brine fluxes from growing sea ice A. J. Wells,1,2 J. S. Wettlaufer,1,2,3 and S. A. Orszag2] It is well known that brine drainage from growing sea ice has a controlling influence on its mechanical oceans. When the ice has exceeded a critical thickness the drainage process is dominated by brine

  8. On the Reliability of Numerical Solutions of Brine Transport in Groundwater: Analysis of In ltration

    E-Print Network [OSTI]

    Bergamaschi, Luca

    On the Reliability of Numerical Solutions of Brine Transport in Groundwater: Analysis of In#12, brine transport List of symbols c normalized salt concentration c k l value of concentration on triangle:37; p.2 #12; Reliability of Numerical Simulations of Brine Transport in Groundwater 3 equivalent

  9. Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines

    E-Print Network [OSTI]

    Zhu, Chen

    Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines Zhenhao mineral solubility in H2S saturated brines. An example calculation for galena solubility is given. 1 gasification process.5,6 Sequestration of the gases into geological brine formation is one of the promising

  10. WERE AQUEOUS RIPPLES ON MARS FORMED BY FLOWING BRINES? MICHAEL P. LAMB, JOHN P. GROTZINGER

    E-Print Network [OSTI]

    WERE AQUEOUS RIPPLES ON MARS FORMED BY FLOWING BRINES? MICHAEL P. LAMB, JOHN P. GROTZINGER are not observed. Recent thermodynamic modeling indicates that these brines could have had higher densities (by up whether ripples could have been stable bed forms under flowing Martian brines. To this end, we compiled

  11. INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES

    E-Print Network [OSTI]

    Fox, J.P.

    2011-01-01T23:59:59.000Z

    Minor Elements ~n Oil Shale and Oil-Shale Products. LERC RI-Analytical Chemistry of Oil Shale and Tar Sands. Advan. inH. Meglen. The Analysis of Oil-Shale Materials for Element

  12. USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES

    E-Print Network [OSTI]

    Girvin, D.G.

    2011-01-01T23:59:59.000Z

    Minor Elements in Oil Shale and Oil-Shale Products. LERC RIChemistry of Tar Sands and Oil Shale, ACS, New Orleans.Constituent Analysis of Oil Shale and Solvent-Refined Coal

  13. Source contributions to Devonian granite magmatism near the Laurentian border, New Hampshire and Western Maine, USA

    E-Print Network [OSTI]

    Solar, Gary S.

    Source contributions to Devonian granite magmatism near the Laurentian border, New Hampshire complex, a suite of mainly granitic intrusions in New Hampshire and western Maine, are used to evaluate.56­15.58] and an areally dominant granite [370F2 Ma; eNd (at 370 Ma)=�7.0 to �0.6; initial 207 Pb/204 Pb=15

  14. Advanced biochemical processes for geothermal brines: Current developments

    SciTech Connect (OSTI)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M. [Brookhaven National Lab., Upton, NY (United States). Energy Science and Technology Div.; Bajsarowicz, V. [CET Environmental Services, Inc., Richmond, CA (United States); McCloud, M. [C.E. Holt/California Energy, Pasadena, CA (United States)

    1997-07-07T23:59:59.000Z

    A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the r and D effort identified a combination of biochemical and chemical processes which became the basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource, the emerging technology has to be flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

  15. PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01T23:59:59.000Z

    or by refin- ing and using shale Oil Mass balances and oil.shale retorting produces shale oil, mobility factors wereand retort operating shale, shale oil, retorting (LETC) con-

  16. Method for maximizing shale oil recovery from an underground formation

    DOE Patents [OSTI]

    Sisemore, Clyde J. (Livermore, CA)

    1980-01-01T23:59:59.000Z

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  17. Oil production enhancement through a standardized brine treatment. Final report

    SciTech Connect (OSTI)

    Adewumi, A.; Watson, R.; Tian, S.; Safargar, S.; Heckman, S.; Drielinger, I.

    1995-08-01T23:59:59.000Z

    In order to permit the environmentally safe discharge of brines produced from oil wells in Pennsylvania to the surface waters of the Commonwealth and to rapidly brings as many wells as possible into compliance with the law, the Pennsylvania Oil and Gas Association (POGAM) approached the Pennsylvania State University to develop a program designed to demonstrate that a treatment process to meet acceptable discharge conditions and effluent limitations can be standardized for all potential stripper wells brine discharge. After the initial studies, the first phase of this project was initiated. A bench-scale prototype model was developed for conducting experiments in laboratory conditions. The experiments pursued in the laboratory conditions were focused on the removal of ferrous iron from synthetically made brine. Iron was selected as the primary heavy metals for studying the efficiency of the treatment process. The results of a number of experiments in the lab were indicative of the capability of the proposed brine treatment process in the removal of iron. Concurrent with the laboratory experiments, a comprehensive and extensive kinetic study was initiated. This study was necessary to provide the required data base for process modeling. This study included the investigation of the critical pH as well as the rate and order of reactions of the studied elements: aluminum, lead, zinc, and copper. In the second phase of this project, a field-based prototype was developed to evaluate and demonstrate the treatment process effectiveness. These experiments were conducted under various conditions and included the testing on five brines from different locations with various dissolved constituents. The outcome of this research has been a software package, currently based on iron`s reactivity, to be used for design purposes. The developed computer program was refined as far as possible using the results from laboratory and field experiments.

  18. Retorting of oil shale followed by solvent extraction of spent shale: Experiment and kinetic analysis

    SciTech Connect (OSTI)

    Khraisha, Y.H.

    2000-05-01T23:59:59.000Z

    Samples of El-Lajjun oil shale were thermally decomposed in a laboratory retort system under a slow heating rate (0.07 K/s) up to a maximum temperature of 698--773 K. After decomposition, 0.02 kg of spent shale was extracted by chloroform in a Soxhlet extraction unit for 2 h to investigate the ultimate amount of shale oil that could be produced. The retorting results indicate an increase in the oil yields from 3.24% to 9.77% of oil shale feed with retorting temperature, while the extraction results show a decrease in oil yields from 8.10% to 3.32% of spent shale. The analysis of the data according to the global first-order model for isothermal and nonisothermal conditions shows kinetic parameters close to those reported in literature.

  19. Proper use of sodium bisulfite with minimal salt penetration during brine immersion freezing of shrimp

    E-Print Network [OSTI]

    Broussard, Suzanne Rene

    1988-01-01T23:59:59.000Z

    solution reduced the 41 120 100 0 0 80 E CL CL CV g 60 CL 40 20 ? ~ 0:23, CaCI2. NaCI ? ? & 5:18, Caclz. NaCI ? ? 0 8:15, CaCI2. NaCI 0 4 6 Days on Ice 10 Figure 13-Residual sulfur dioxide on thawed brine frozen shrimp frozen... freezing for two trials. 34 13-Residual sulfur dioxide on thawed brine frozen shrimp frozen in different brine immersion media 41 Figure 14- Black spot development on thawed brine frozen shrimp frozen in different brine immersion media Page 42...

  20. BTEX biodegradation in fractured shale

    SciTech Connect (OSTI)

    O`Cleirigh, D.; Coryea, H. [Roy F. Weston, Inc., Austin, TX (United States); Christopher, M.; Vaughn, C. [Roy F. Weston, Inc., Houston, TX (United States)

    1997-12-31T23:59:59.000Z

    A petroleum hydrocarbon groundwater plume was identified at a Federal Aviation Administration (FAA) facility in Oklahoma. The affected area had an average BTEX concentration of 3.8 mg/L. Previous aquifer tests indicated preferential groundwater flow paths resulting from natural fractures present in the aquifer formation (primarily shale). A pneumatic fracturing pilot study was performed to evaluate the technology`s effectiveness in creating a more isotropic aquifer. As part of the study, pre-fracture/post-fracture pump tests were performed. Pre-fracture and post-fracture graphs confirmed the study`s hypothesis that pneumatic fracturing would eliminate preferential flow paths and increase groundwater yield. Based on the successful pneumatic fracturing test, an area within the petroleum hydrocarbon plume was fractured and a pilot-scale biodegradation system was operated for four months. The remediation system provided groundwater circulation amended with nutrients and oxygen. Results of the study indicated a significant decrease in BTEX concentrations between the injection well and the observation wells. By Day 113, the benzene concentration (0.044 mg/L) at one of the observation wells was less than the desired state cleanup goal of 0.05 mg/L.

  1. Eastern Gas Shales Program. Completion and stimulation of five New York State Energy Research and Development Authority Wells Allegany and Cattaraugus Counties, New York

    SciTech Connect (OSTI)

    Rdissi, A.

    1981-11-01T23:59:59.000Z

    In order to evaluate the potential of the Devonian Shales as a source of natural gas, DOE/METC in Morgantown, West Virginia, has undertaken the Eastern Gas Shale Program (EGSP); not only to characterize and identify the resource, but also to enhance and improve the productivity of wells completed in the shale. One of the methods used to achieve improved productivity is hydraulic fracturing and, more specifically, foam fracturing. The efforts by DOE/METC included completion and stimulation of five New York State Energy Research and Development Authority (NYSERDA) wells; located in western Allegany County and southwestern Cattaraugus County, New York. The five wells were drilled on high shcool and college properties during the months of June and July 1981. DOE/METC's contribution to the program funded the stimulation and completion of the wells. This work was done under the engineering and field supervision of Gruy Federal, Inc. as contractor to DOE. The completion work took place in the months of July and August 1981. This consisted of running a cement bond log in each well. All logs showed good bonding. This was followed by perforating the Marcellus Shale through the 4-1/2-inch casing. During the next phase, the formation was broken down with 1500 gallons of regular HF acid and, then, foam fractured using 50,000 gallons of foam consisting of water and nitrogen; the fractures were propped with 60,000 pounds of sand. After the cleanout operations, open flow potentials and rock pressures were measured in each well. None of the wells had a gas show before fracturing but, after fracturing, open flow ranged from a low of 19 Mcf/D to a high of 73 Mcf/D. 1 reference, 6 figures, 1 table.

  2. Shale Oil Production Performance from a Stimulated Reservoir Volume 

    E-Print Network [OSTI]

    Chaudhary, Anish Singh

    2011-10-21T23:59:59.000Z

    The horizontal well with multiple transverse fractures has proven to be an effective strategy for shale gas reservoir exploitation. Some operators are successfully producing shale oil using the same strategy. Due to its higher viscosity and eventual...

  3. Shale gas production: potential versus actual greenhouse gas emissions

    E-Print Network [OSTI]

    O’Sullivan, Francis Martin

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  4. Comparison of Emperical Decline Curve Analysis for Shale Wells 

    E-Print Network [OSTI]

    Kanfar, Mohammed Sami

    2013-07-13T23:59:59.000Z

    methods are benchmarked against simulation. This study compares the decline methods to four simulation cases which represent the common shale declines observed in the field. Shale wells, which are completed with horizontal wells and multiple traverse...

  5. Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale...

    Energy Savers [EERE]

    (SEAB) on Shale Gas Production Posts Draft Report Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production Posts Draft Report November 10, 2011 - 1:12pm...

  6. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01T23:59:59.000Z

    ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P.Cement Manufacture from Oil Shale, U.S. Patent 2,904,445,203 (1974), E. D. York, Amoco Oil Co. , letter to J, P. Fox,

  7. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    O'Sullivan, Francis

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  8. Burngrange Nos.1 and 2 (oil Shale) Mine, Midlothian 

    E-Print Network [OSTI]

    Bryan, A. M.

    1947-01-01T23:59:59.000Z

    BURNGRANGE Nos. I AND 2 (Oil Shale) MINE, MIDLOTHIAN REPORT On the Causes of, and Circumstances attending, the Explosion and Fire which occurred on the 10th January, 1947, at the Burngrange Nos. I and 2 (Oil Shale) ...

  9. Can We Accurately Model Fluid Flow in Shale?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to...

  10. Process Design and Integration of Shale Gas to Methanol

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04T23:59:59.000Z

    Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

  11. System for utilizing oil shale fines

    DOE Patents [OSTI]

    Harak, Arnold E. (Laramie, WY)

    1982-01-01T23:59:59.000Z

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  12. Shale Oil and Gas, Frac Sand, and Watershed

    E-Print Network [OSTI]

    Minnesota, University of

    ;Bakken Oil Shale scope · Light, Sweet crude ­ ideal for automotive fuels and mid-size refineries (Midwest

  13. Occurrence of Multiple Fluid Phases Across a Basin, in the Same Shale Gas Formation – Eagle Ford Shale Example 

    E-Print Network [OSTI]

    Tian, Yao

    2014-04-29T23:59:59.000Z

    Shale gas and oil are playing a significant role in US energy independence by reversing declining production trends. Successful exploration and development of the Eagle Ford Shale Play requires reservoir characterization, recognition of fluid...

  14. Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations 

    E-Print Network [OSTI]

    Zhang, Junjing

    2014-07-10T23:59:59.000Z

    Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

  15. Microstructures and Rheology of a Limestone-Shale Thrust Fault 

    E-Print Network [OSTI]

    Wells, Rachel Kristen

    2011-02-22T23:59:59.000Z

    thick calcite and shale shear zone suggest that calcite, not shale, controlled the rheology of the shear zone rocks. While shale deformed brittley, plasticity-induced fracturing in calcite resulted in ultrafine-grained (<1.0 ?m) fault rocks that deformed...

  16. Shale Gas and the Environment: Critical Need for a

    E-Print Network [OSTI]

    McGaughey, Alan

    Shale Gas and the Environment: Critical Need for a Government­University­Industry Research Initiative P o l i c y m a k e r G u i d e #12;Shale gas production is increasing at a rapid rate initiative is needed to fill critical gaps in knowledge at the interface of shale gas development

  17. Shale Gas and the Environment: Critical Need for a

    E-Print Network [OSTI]

    McGaughey, Alan

    Shale Gas and the Environment: Critical Need for a Government­University­Industry Research Initiative P O L I C Y M A K E R G U I D E #12;Shale gas production is increasing at a rapid rate initiative is needed to fill critical gaps in knowledge at the interface of shale gas development

  18. 2006 Minerals Yearbook ClaY and Shale

    E-Print Network [OSTI]

    2006 Minerals Yearbook ClaY and Shale U.S. Department of the Interior U.S. Geological Survey January 2008 #12;Clay and Shale--2006 18.1 The amount of clay sold or used by domestic producers in 2006 in 2005 (table 1). Common clay and shale accounted for 59% of the tonnage, and kaolin accounted for 55

  19. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

  20. Evolution of Marine Invertebrates and the Burgess Shale Fossils

    E-Print Network [OSTI]

    Kammer, Thomas

    Evolution of Marine Invertebrates and the Burgess Shale Fossils Geology 331, Paleontology #12 #12;Burgess Shale Fossils · Most are soft-bodied fossils, a very rare kind of fossilization. · Of today's 32 living phyla, 15 are found in the Burgess Shale. The other 17 are microscopic or too delicate

  1. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale

    E-Print Network [OSTI]

    Jackson, Don

    Paleoecology of the Greater Phyllopod Bed community, Burgess Shale Jean-Bernard Caron , Donald A and composition, ecological attributes, and environmental influences for the Middle Cambrian Burgess Shale ecosystems further suggest the Burgess Shale community was probably highly dependent on immigration from

  2. Risks and Risk Governance in Unconventional Shale Gas Development

    E-Print Network [OSTI]

    Jackson, Robert B.

    Risks and Risk Governance in Unconventional Shale Gas Development Mitchell J. Small,*, Paul C, Desert Research Institute, Reno, Nevada 89512, United States 1. INTRODUCTION The recent U.S. shale gas Issue: Understanding the Risks of Unconventional Shale Gas Development Published: July 1, 2014 A broad

  3. Red Leaf Resources and the Commercialization of Oil Shale

    E-Print Network [OSTI]

    Utah, University of

    Red Leaf Resources and the Commercialization of Oil Shale #12;About Red Leaf Resources 2006 Company commercial development field activities #12;Highlights Proven, Revolutionary Oil Shale Extraction Process Technology Significant Owned Oil Shale Resource #12;· The executive management team of Red Leaf Resources

  4. Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations

    E-Print Network [OSTI]

    Zhang, Junjing

    2014-07-10T23:59:59.000Z

    Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

  5. THE SHALE OIL BOOM: A U.S. PHENOMENON

    E-Print Network [OSTI]

    June 2013 THE SHALE OIL BOOM: A U.S. PHENOMENON LEONARDO MAUGERI The Geopolitics of Energy Project material clearly cite the full source: Leonardo Maugeri. "The Shale Oil Boom: A U.S. Phenomenon" Discussion and International Affairs. #12;June 2013 THE SHALE OIL BOOM: A U.S. PHENOMENON LEONARDO MAUGERI The Geopolitics

  6. The Public Health Implications of Marcellus Shale Activities

    E-Print Network [OSTI]

    Jiang, Huiqiang

    INCIDENT #12;#12;#12;Implications of the Gulf Oil Spill to Marcellus Shale Activities - EnvironmentalThe Public Health Implications of Marcellus Shale Activities Bernard D. Goldstein, MD Department using Data.FracTracker.org. #12;Drilling Rig in Rural Upshur County, WV Source: WVSORO, Modern Shale Gas

  7. FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR

    E-Print Network [OSTI]

    Fish, Richard H.

    2013-01-01T23:59:59.000Z

    viable is the recovery of shale oil from our substantialdeposits of oil shale (1). Shale oil is recovered from oilproduce~ along with the shale oil, considerable amounts of

  8. Oil shale retorting and combustion system

    DOE Patents [OSTI]

    Pitrolo, Augustine A. (Fairmont, WV); Mei, Joseph S. (Morgantown, WV); Shang, Jerry Y. (Fairfax, VA)

    1983-01-01T23:59:59.000Z

    The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

  9. Analysis of anions in geological brines using ion chromatography

    SciTech Connect (OSTI)

    Merrill, R.M.

    1985-03-01T23:59:59.000Z

    Ion chromatographic procedures for the determination of the anions bromide, sulfate, nitrite, nitrate, phosphate, and iodide in brine samples have been developed and are described. The techniques have been applied to the analysis of natural brines, and geologic evaporites. Sample matrices varied over a range from 15,000 mg/L to 200,000 mg/L total halogens, nearly all of which is chloride. The analyzed anion concentrations ranged from less than 5 mg/L in the cases of nitrite, nitrate, and phosphate, to 20,000 mg/L in the case of sulfate. A technique for suppressing chloride and sulfate ions to facilitate the analysis of lower concentration anions is presented. Analysis times are typically less than 20 minutes for each procedure and the ion chromatographic results compare well with those obtained using more time consuming classical chemical analyses. 10 references, 14 figures.

  10. 2 INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 EXPERIMENTAL STUDY OF CRUDE/BRINE/ROCK INTERACTION AT

    E-Print Network [OSTI]

    Schechter, David S.

    44 2 INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 EXPERIMENTAL STUDY OF CRUDE of imbibition or oil production rate, particularly after seven days or more aging time with oil. However in this section and expand the understanding of the interactions of the Spraberry reservoir rock, oil and brine

  11. Shale we look for gas?............................................................................. 1 The Marcellus shale--An old "new" gas reservoir in Pennsylvania ............ 2

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    #12;CONTENTS Shale we look for gas?............................................................................. 1 The Marcellus shale--An old "new" gas reservoir in Pennsylvania ............ 2 Meet the staff, the contour interval should be 6 inches. #12;STATE GEOLOGIST'S EDITORIAL Shale We Look For Gas? Recently, you

  12. Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas

    E-Print Network [OSTI]

    Ge, Zigang

    Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

  13. Shale Gas Glossary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle|SecurityDepartment ofSeptemberAir ShaleWater Shale

  14. Shale gas is natural gas trapped inside

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/UnionGlossary Shale GasShale gas

  15. SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01T23:59:59.000Z

    Properties of Spent Shales. Surface Area Measurements.Carbon. Effects. ~~ co 2,and Oil~Shale Partial-pressure andWater from Green River Oil Shale, 11 Chem. Ind. 1, 485 (

  16. SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01T23:59:59.000Z

    Water from Green River Oil Shale, 11 Chem. Ind. 1, 485 (Effluents from In-Situ Oil Shale Processing," in ProceedingsControl Technology for Oil Shale Retort Water," August 1978.

  17. SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01T23:59:59.000Z

    of Control Technology for Shale Oil Wastewaters,~~ inpyrolysized to produce shale oil, gas, a solid referred towaters are co-produced with shale oil and separated from it

  18. Applying Decline Curve Analysis in the Liquid-rich Shales: Eagle Ford Shale Study 

    E-Print Network [OSTI]

    Indras, Purvi

    2014-01-09T23:59:59.000Z

    With the emergence of liquid rich shale (LRS) plays like Eagle Ford and Northern Barnett, the petroleum industry needs a simple, easily applied technique that provides reliable estimates of future production rates in this kind of reservoir...

  19. Microbial desulfurization of Eastern oil shale: Bioreactor studies

    SciTech Connect (OSTI)

    Maka, A.; Akin, C.; Punwani, D.V.; Lau, F.S.; Srivastava, V.J.

    1989-01-01T23:59:59.000Z

    The removal of sulfur from Eastern oil shale (40 microns particle size) slurries in bioreactors by mixed microbial cultures was examined. A mixed culture that is able to remove the organic sulfur from model sulfur compounds presenting coal as well as a mixed culture isolated from oil shale enrichments were evaluated. The cultures were grown in aerobic fed-batch bioreactors where the oil shale served as the source of all nutrients except organic carbon. Glucose was added as an auxiliary carbon source. Microbial growth was monitored by plate counts, the pH was checked periodically, and oil shale samples were analyzed for sulfur content. Results show a 24% reduction in the sulfur content of the oil shale after 14 days. The settling characteristics of the oil shale in the bioreactors were examined in the presence of the microbes. Also, the mixing characteristics of the oil shale in the bioreactors were examined. 10 refs., 6 figs., 5 tabs.

  20. Soil stabilization using oil-shale solid waste

    SciTech Connect (OSTI)

    Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

    1994-04-01T23:59:59.000Z

    Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

  1. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    E-Print Network [OSTI]

    Liu, H.H.

    2012-01-01T23:59:59.000Z

    of a jurassic opalinum shale, switzerland. Clays and Clay96   1 INTRODUCTION Clay/shale has been considered asand Rupture of Heterogeneous Shale Samples by Using a Non-

  2. Marcellus Shale Advisory Commission Report Summary

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    of Oil and Gas Act in nearly three decades. Culmination of four months of work by commission. o 20 with the products they need. Train Pennsylvanians for Natural Gas Jobs. Work with industry to develop Marcellus Shale Advisory Commission Report Summary A Comprehensive, Strategic Plan. 96

  3. FLUIDIZED BED COMBUSTION UNIT FOR OIL SHALE

    E-Print Network [OSTI]

    M. Hammad; Y. Zurigat; S. Khzai; Z. Hammad; O. Mubydeem

    A fluidized bed combustion unit has been designed and installed to study the fluidized bed combustion performance using oil shale as fuel in direct burning process. It is a steel column of 18 cm inside diameter and 130 cm height fitted with a perforated plate air distributor of 611 holes, each of 1

  4. Boomtown blues; Oil shale and Exxon's exit

    SciTech Connect (OSTI)

    Gulliford, A. (Western New Mexico Univ., Silver City, NM (USA))

    1989-01-01T23:59:59.000Z

    This paper chronicles the social and cultural effects of the recent oil shale boom on the Colorado communities of Rifle, Silt, Parachute, and Grand Junction. The paper is based upon research and oral history interviews conducted throughout Colorado and in Houston and Washington, DC.

  5. Water mist injection in oil shale retorting

    DOE Patents [OSTI]

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30T23:59:59.000Z

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  6. Barnett Marcellus Shales December 10, 2008

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Barnett ­ Marcellus Shales December 10, 2008 #12;2 Why Are We Here Today? Pennsylvania, New York is in the heart of the Marcellus #12;3 More Than Just Natural Gas: This Is the Bigger Story *Perryman Report, 2008 Compare to the Marcellus? Lies 7,000 to 7,200 feet below the surface Much smaller drilling locations

  7. A cost-effective statistical screening method to detect oilfield brine contamination

    SciTech Connect (OSTI)

    Alyanak, N.; Grace, J.T.; Campbell, M.D. [United Resources International, Houston, TX (United States)

    1995-12-01T23:59:59.000Z

    A statistical screening method has been developed using Tolerance Limits for barium (Ba{sup +2}) to identify contamination of a fresh-water aquifer by oilfield brines. The method requires an understanding of the local hydrochemistry of oilfield brines, inexpensive, Publicly available hydrochemical data, a single sample analysis from the suspect well and the application of a simple statistical procedure. While this method may not provide absolute evidence of oilfield brine contamination of a fresh-water aquifer, it does identify conditions where brine contamination is a strong probability over other possible sources of chlorides.

  8. Upper Devonian and Lower Mississippian conodont zones in Montana, Wyoming, and South Dakota

    E-Print Network [OSTI]

    Klapper, G.

    1966-05-23T23:59:59.000Z

    of the Cheiloceras-Stufe in New York are the same as HASS ' lower Gassaway faunal zone in its New York occurrence, with the exception of the South Wales Member of the Perrysburg Formation. The upper Gassaway fau- nal zone of the Chattanooga Shale (51, p. 22... of the Cheiloceras-Stufe in New York are the same as HASS ' lower Gassaway faunal zone in its New York occurrence, with the exception of the South Wales Member of the Perrysburg Formation. The upper Gassaway fau- nal zone of the Chattanooga Shale (51, p. 22...

  9. Two-level, horizontal free face mining system for in situ oil shale retorts

    SciTech Connect (OSTI)

    Cha, C.Y.; Ricketts, T.E.

    1986-09-16T23:59:59.000Z

    A method is described for forming an in-situ oil shale retort within a retort site in a subterranean formation containing oil shale, such an in-situ oil shale retort containing a fragmented permeable mass of formation particles containing oil shale formed within upper, lower and side boundaries of an in-situ oil shale retort site.

  10. The chemistry of minerals obtained from the combustion of Jordanian oil shale

    E-Print Network [OSTI]

    Shawabkeh, Reyad A.

    The chemistry of minerals obtained from the combustion of Jordanian oil shale Awni Y. Al was performed on the spent oil shale (oil shale ash) obtained from the combustion of Jordanian oil shale process, minimal fragmentation was encountered since Jordanian oil shale contains large proportions of ash

  11. Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL in

    E-Print Network [OSTI]

    Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL a reservoir for shale-gas and oil. We examined organic-rich black shale, known as Macasty shale, of Upper SHALE-GAS AND OIL in THE SUBSURFACE OF ANTICOSTI ISLAND, CANADA Key Words: Provenance, Anticosti Island

  12. Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas, desorbtion, tracing, migration Overview The discovery of shale gas in UK Shales demonstrates how important and no doubt will vary from shale to shale. An improved understanding of the controls on gas production from

  13. Oil shale ash-layer thickness and char combustion kinetics

    SciTech Connect (OSTI)

    Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

    1992-04-15T23:59:59.000Z

    A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

  14. Los Alamos environmental activities/oil shale effluents

    SciTech Connect (OSTI)

    Peterson, E.J.

    1985-01-01T23:59:59.000Z

    The objectives of this research are to determine the nature, magnitude, and time dependence of the major and trace element releases as functions of the raw shale mineralogy, retorting conditions, and spent shale mineral assemblages. These experimental studies will focus on retorting variable regimes characteristic of most retorting processes. As an adjunct objective, the relation of laboratory results to those obtained from both bench-scale and pilot-scale retorts, when both have been operated under similar retorting conditions, will be defined. The goal is to develop a predictive capability for spent shale chemistry as a function of the raw material feedstock and process parameters. Key accomplishments follow: completed an overview of health, environmental effects, and potential ''show stoppers'' in oil shale development; elucidated the importance of both raw material and process in the identity and behavior of spent shale wastes (Occidental raw and spent shales from the Logan Wash site); completed a balanced factorial design experiment to investigate the influence of shale type, temperature, and atmosphere on spent shale behavior; compared the behavior of spent shales from laboratory experiments with shales generated from MIS retorting by OOSI at Logan Wash, Colorado; completed a study of the partitioning of minerals, inorganics, and organics as a function of particle size in a raw shale from Anvil Points, Colorado; evaluated the application of the Los Alamos nuclear microprobe to the characterization of trace element residences in shale materials; established the use of chemometrics as a major tool for evaluating large data bases in oil shale research and for relating field and laboratory results; conceptualized and evaluated experimentally a multistaged leaching control for abandonment of underground retorts; and coordinated activities with other DOE laboratories, industry laboratories, and universities. 13 refs., 1 fig., 2 tabs.

  15. Water management practices used by Fayetteville shale gas producers.

    SciTech Connect (OSTI)

    Veil, J. A. (Environmental Science Division)

    2011-06-03T23:59:59.000Z

    Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

  16. PAPER NO. rtos-A118 International Conference on Oil Shale: “Recent Trends In Oil Shale”, 7-9 November 2006, Amman,Jordan WORLD OIL SHALE RETORTING TECHNOLOGIES

    E-Print Network [OSTI]

    Jialin Qian; Jianqiu Wang

    This paper mainly describes the world’s commercial oil shale retorting technologies, including lump oil shale and particulate oil shale retorting technologies. Fushun Type Retorting, Petrosix Retorting, and Kiviter Retorting are illustrated as the examples of lump oil shale retorting; Galoter

  17. The Late Devonian mass extinction was unusually protracted and ecologically selective, with preferential diversity losses among reef-

    E-Print Network [OSTI]

    Sageman, Brad

    of the Phanerozoic (Sepkoski, 1986), with species- level extinction in the marine biosphere estimated to have beenABSTRACT The Late Devonian mass extinction was unusually protracted and ecologically selective have investigated the link between the extinction's unique character- istics and changes

  18. Distribution and origin of ethyl-branched alkanes in a Cenomanian transgressive shale of the Western Interior

    E-Print Network [OSTI]

    Kenig, Fabien

    Note Distribution and origin of ethyl-branched alkanes in a Cenomanian transgressive shale hydrocarbon fraction of the basal Graneros Shale (Cenomanian, Western Interior Seaway, USA). On the basis rights reserved. Keywords: Monoethylalkanes; Branched alkanes; Black shales; Cenomanian; Graneros Shale

  19. A feasibility study of oil shale fired pulse combustors with applications to oil shale retorting

    SciTech Connect (OSTI)

    Morris, G.J.; Johnson, E.K.; Zhang, G.Q.; Roach, R.A.

    1992-07-01T23:59:59.000Z

    The results of the experimental investigation performed to determine the feasibility of using pulverized Colorado oil shale to fuel a bench scale pulse combustor reveal that oil shale cannot sustain pulsations when used alone as fuel. Trace amounts of propane mixed with the oil shale enabled the pulsations, however. Up to 80% of the organic material in the oil shale was consumed when it was mixed with propane in the combustor. Beyond the feasibility objectives, the operating conditions of the combustor fuel with propane and mixtures of oil shale and propane were characterized with respect to pulsation amplitude and frequency and the internal combustor wall temperature over fuel lean and fuel rich stoichiometries. Maximum pressure excursions of 12.5 kPa were experienced in the combustor. Pulsation frequencies ranged from 50 to nearly 80 Hz. Cycle resolved laser Doppler anemometry velocities were measured at the tail pipe exit plane. Injecting inert mineral matter (limestone) into the pulse combustor while using propane fuel had only a slight effect on the pulsation frequency for the feed rates tested.

  20. Plan for addressing issues relating to oil shale plant siting

    SciTech Connect (OSTI)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01T23:59:59.000Z

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  1. Utilization of Estonian oil shale at power plants

    SciTech Connect (OSTI)

    Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

    1996-12-31T23:59:59.000Z

    Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

  2. INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER

    E-Print Network [OSTI]

    Farrier, D.S.

    2011-01-01T23:59:59.000Z

    9 true in situ oil shale combustion experiment conducted byatmosphere process (combustion) and the oil shale reservesoil-shale process water. This water originates primarily from three sources: combustion,

  3. Macrurous Decapods from the Bearpaw Shale (Cretaceous: Campanian) of Northeastern Montana

    E-Print Network [OSTI]

    Kammer, Thomas

    Macrurous Decapods from the Bearpaw Shale (Cretaceous: Campanian) of Northeastern Montana Rodney M THE BEARPAW SHALE (CRETACEOUS: CAMPANIAN) OF NORTHEASTERN MONTANA RODNEY M. FELDMANN, GALE A. BISHOP Shale of north- eastern Montana were studied to characterize the occurrence, preservation

  4. Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind #12;1 Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind November 15, 2010 Author.....................................................................................................................3 Marcellus Shale Natural Gas

  5. SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS

    E-Print Network [OSTI]

    Fish, Richard H.

    2013-01-01T23:59:59.000Z

    organoarsenic compounds in oi.l shale process waters using aPresented at the 13th Oil Shale Symposium, Golden, CO, April~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.

  6. WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01T23:59:59.000Z

    from a Simulated In-Situ Oil Shale Retort, Proceedings ofthe 11th Oil Shale Symposium, 1978. J. W.MB_terial in Green River Oil Shale, U.S. Bur. lvlines Rept.

  7. ANAEROBIC FERMENTATION OF SIMULATED IN-SITU OIL SHALE RETORT WATER

    E-Print Network [OSTI]

    Ossio, E.A.

    2011-01-01T23:59:59.000Z

    Water from Green River Oil Shale, Chemistry and Industry,an In-Situ Produced Oil-Shale Processin g Water, LERC ReportOf Simulated In-Situ Oil Shale Retort Water B.A. Ossio, J.P.

  8. USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES

    E-Print Network [OSTI]

    Girvin, D.G.

    2011-01-01T23:59:59.000Z

    A. Robb, and T. J. Spedding. Minor Elements in Oil Shale andOil-Shale Products. LERC RI 77-1, 1977. Bertine, K. K. andFrom A Simulated In-Situ Oil Shale Retort. In: Procedings of

  9. OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    ,

    2012-01-01T23:59:59.000Z

    from In-Situ Retorting of Oil Shale," Energy and EnvironmentTrace Contaminants in Oil Shale Retort Water M. J. Kland, A.Arsenic Compounds 1n Oil Shale Process Waters R. H. Fish,

  10. INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER

    E-Print Network [OSTI]

    Farrier, D.S.

    2011-01-01T23:59:59.000Z

    A. Robb, and T. J. Spedding. Minor Elements in Oil Shale andOil Shale Products. LERC Rept. of Invest. 77-1, 1977.Significant to In Situ Oil Shale Processing. Quart. Colo.

  11. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01T23:59:59.000Z

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,E . • 1977; Mercury in Oil Shale from the Mahogany Zone the

  12. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01T23:59:59.000Z

    in U.S. Geological Survey Oil Shale Assessment Team, ed. ,Oil shale resources in the Eocene Green River Formation,Assessment of in-place oil shale resources in the Eocene

  13. OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    ,

    2012-01-01T23:59:59.000Z

    from In-Situ Retorting of Oil Shale," Energy and EnvironmentStudies Trace Contaminants in Oil Shale Retort Water M. J.Organic Arsenic Compounds 1n Oil Shale Process Waters R. H.

  14. SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS

    E-Print Network [OSTI]

    Fish, Richard H.

    2013-01-01T23:59:59.000Z

    Presented at the 13th Oil Shale Symposium, Golden, CO, April~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.compounds in the seven oil shale process waters. These

  15. ANAEROBIC FERMENTATION OF SIMULATED IN-SITU OIL SHALE RETORT WATER

    E-Print Network [OSTI]

    Ossio, E.A.

    2011-01-01T23:59:59.000Z

    Water from Green River Oil Shale, Chemistry and Industry,for an In-Situ Produced Oil-Shale Processin g Water, LERCOf Simulated In-Situ Oil Shale Retort Water B.A. Ossio, J.P.

  16. OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    ,

    2012-01-01T23:59:59.000Z

    from In-Situ Retorting of Oil Shale," Energy and EnvironmentTrace Contaminants in Oil Shale Retort Water M. J. Kland, A.Organic Arsenic Compounds 1n Oil Shale Process Waters R. H.

  17. A Strategy for the Abandonment of Modified In-Situ Oil Shale Retorts

    E-Print Network [OSTI]

    Fox, J.P.; Persoff, P.; Moody, M.M.; Sisemore, C.J.

    1978-01-01T23:59:59.000Z

    Effects of steam on oil shale ing: a preliminary laboratoryInstitute to Rio Blanco Oil Shale Project, May 1977. 1~52089, part 2, March 1978. oil shale: J. H. Campbell and J.

  18. WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01T23:59:59.000Z

    from a Simulated In-Situ Oil Shale Retort, Proceedingsof the 11th Oil Shale Symposium, 1978. J. W.MB_terial in Green River Oil Shale, U.S. Bur. lvlines Rept.

  19. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01T23:59:59.000Z

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,V. E . • 1977; Mercury in Oil Shale from the Mahogany Zone

  20. ANAEROBIC FERMENTATION OF SIMULATED IN-SITU OIL SHALE RETORT WATER

    E-Print Network [OSTI]

    Ossio, E.A.

    2011-01-01T23:59:59.000Z

    Water co produced with shale oil and decanted from it isWater from Green River Oil Shale, Chemistry and Industry,for an In-Situ Produced Oil-Shale Processin g Water, LERC

  1. WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01T23:59:59.000Z

    4, 19'70, p. 89. 24. C-b Shale Oil Venture: Hydrology, MinePiles Solid wastes from the shale-oil recovery process alsofrom a Simulated In-Situ Oil Shale Retort, Proceedings of

  2. A Strategy for the Abandonment of Modified In-Situ Oil Shale Retorts

    E-Print Network [OSTI]

    Fox, J.P.; Persoff, P.; Moody, M.M.; Sisemore, C.J.

    1978-01-01T23:59:59.000Z

    Effects of steam on oil shale ing: a preliminary laboratoryInstitute to Rio Blanco Oil Shale Project, May 1977. 1~Cement, pozzolan and oil shale chemistry The chemistry of

  3. OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    ,

    2012-01-01T23:59:59.000Z

    each of retort water and shale oil, about 10 1 000 standardfrom In-Situ Retorting of Oil Shale," Energy and Environmentanic species present in shale oils process waters, gases,

  4. Pressure Buildup and Brine Migration During CO2 Storage in Multilayered Aquifers

    E-Print Network [OSTI]

    Zhou, Quanlin

    . Introduction Carbon dioxide capture combined with geologic stor- age (CCS) in suitable subsurface formations-6584.2012.00972.x potentially creating far-ranging pressure buildup and brine displacement in deep CO2 storage of resident brine caused by CCS operations require modeling/analysis tools of considerable complexity (Celia

  5. Conservative behavior of uranium vs. salinity in Arctic sea ice and brine Christelle Not a,

    E-Print Network [OSTI]

    Available online 23 December 2011 Keywords: Uranium Salinity Sea ice Brine Seawater Arctic UraniumConservative behavior of uranium vs. salinity in Arctic sea ice and brine Christelle Not a, ,1 disequilibrium The conservative behavior of uranium (U) with respect to salinity in open ocean waters is widely

  6. RIS-M-2260 HEAT GRADIENT INDUCED MIGRATION OF BRINE INCLUSIONS IN ROCK SALT

    E-Print Network [OSTI]

    RISØ-M-2260 HEAT GRADIENT INDUCED MIGRATION OF BRINE INCLUSIONS IN ROCK SALT Mathematical treatment project. Abstract. A mathematical model for the brine migration in rock salt around an infinite line heat source is set up. The tempera- ture field around the time dependent heat source is calculated by use

  7. Shale Webinar Series to Start September 13th The Penn State Marcellus Education Team will be offering a new monthly Shale webinar series beginning

    E-Print Network [OSTI]

    Shale Webinar Series to Start September 13th The Penn State Marcellus Education Team will be offering a new monthly Shale webinar series beginning Thursday, September 13th from 1:00 to 2:00 PM. Tom the series with an overview of trends and updates on shale development. Tom will provide an analysis of shale

  8. Research and information needs for management of oil shale development

    SciTech Connect (OSTI)

    Not Available

    1983-05-01T23:59:59.000Z

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  9. akinbo shale eastern: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: in excess of 50 MMTYr. Life of current Shale Oil & Gas explora-on trend Demand and Supply Factors -Gas and Oil Commodity Pricing...

  10. antrim shales: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: in excess of 50 MMTYr. Life of current Shale Oil & Gas explora-on trend Demand and Supply Factors -Gas and Oil Commodity Pricing...

  11. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01T23:59:59.000Z

    environmental impacts that are unique to in-situ oil shale production, Literature from related areas (reservoir and civil engineering and deep coal

  12. Attrition and abrasion models for oil shale process modeling

    SciTech Connect (OSTI)

    Aldis, D.F.

    1991-10-25T23:59:59.000Z

    As oil shale is processed, fine particles, much smaller than the original shale are created. This process is called attrition or more accurately abrasion. In this paper, models of abrasion are presented for oil shale being processed in several unit operations. Two of these unit operations, a fluidized bed and a lift pipe are used in the Lawrence Livermore National Laboratory Hot-Recycle-Solid (HRS) process being developed for the above ground processing of oil shale. In two reports, studies were conducted on the attrition of oil shale in unit operations which are used in the HRS process. Carley reported results for attrition in a lift pipe for oil shale which had been pre-processed either by retorting or by retorting then burning. The second paper, by Taylor and Beavers, reported results for a fluidized bed processing of oil shale. Taylor and Beavers studied raw, retorted, and shale which had been retorted and then burned. In this paper, empirical models are derived, from the experimental studies conducted on oil shale for the process occurring in the HRS process. The derived models are presented along with comparisons with experimental results.

  13. ,"New York Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:43:21 AM" "Back to Contents","Data 1: New York Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"...

  14. Department of Energy, Office of Naval Petroleum & Oil Shale Reserves

    Broader source: Energy.gov (indexed) [DOE]

    Items that may be marked "disposrtron not Office of Naval Petroleum & Oil Shale Reserves approved" or "withdrawn" In column 10 4 Nameof Personwith whom to confer 5...

  15. Validation of classical density-dependent solute transport theory for stable, high-concentration-gradient brine displacements in

    E-Print Network [OSTI]

    Hassanizadeh, S. Majid

    -concentration-gradient brine displacements in coarse and medium sands S.J. Watson a,1 , D.A. Barry a,1 , R.J. Schotting b,*, S by a brine solution, under either constant head or constant volume flux conditions. The experimental data, significantly less ex- perimental research has been conducted to investigate high-concentration (e.g., brine

  16. PII S0016-7037(01)00901-2 Effect of light and brine shrimp on skeletal 13

    E-Print Network [OSTI]

    Grottoli, Andréa G.

    PII S0016-7037(01)00901-2 Effect of light and brine shrimp on skeletal 13 C in the Hawaiian coral, or high concentrations of brine shrimp. Decreases in light from 100% resulted in significant decreases. Increases in brine shrimp concentrations resulted in increased skeletal 13 C levels. This unexpected outcome

  17. Dense water formation on the northwestern shelf of the Okhotsk Sea: 1. Direct observations of brine rejection

    E-Print Network [OSTI]

    Talley, Lynne D.

    Dense water formation on the northwestern shelf of the Okhotsk Sea: 1. Direct observations of brine 2004; accepted 21 April 2004; published 1 July 2004. [1] Dense Shelf Water (DSW) formation due to brine this period. The density increase terminated abruptly in late February, while the active brine rejection

  18. PII S0016-7037(01)00579-8 The origin and evolution of base metal mineralising brines and hydrothermal fluids,

    E-Print Network [OSTI]

    Banks, David

    PII S0016-7037(01)00579-8 The origin and evolution of base metal mineralising brines are the source of the mineralising fluids. Cl and Br systematics suggest that the brines were formed either cation composition (Na, Ca, K, Mg) of the brines is not consistent solely with evaporation processes

  19. CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE

    E-Print Network [OSTI]

    Amy, Gary L.

    2013-01-01T23:59:59.000Z

    water from the oil shale matrix, (2) the combustion of , (3)contrast, oil shale retorted at lower ) without combustiongas combustion retorting process; (2) from the Union Oil

  20. 90-day Second Report on Shale Gas Production - Secretary of Energy...

    Broader source: Energy.gov (indexed) [DOE]

    90-day Second Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Second Report on Shale Gas Production - Secretary of Energy Advisory Board Novemeber 18,...

  1. TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY

    E-Print Network [OSTI]

    Kland, M.J.

    2010-01-01T23:59:59.000Z

    Jr. and M. D. Shelby, "Chemicals Identified in Oil Shaleand Shale Oil. list." 1. Preliminary Environmental MutagenTrace Contaminants in Oil Shale Retort Wa- ters", Am. Chern.

  2. TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY

    E-Print Network [OSTI]

    Kland, M.J.

    2010-01-01T23:59:59.000Z

    Jr. and M. D. Shelby, "Chemicals Identified in Oil Shaleand Shale Oil. list." 1. Preliminary Environmental Mutagenof Trace Contaminants in Oil Shale Retort Wa- ters", Am.

  3. Trace elements in oil shale. Progress report, 1979-1980

    SciTech Connect (OSTI)

    Chappell, W R

    1980-01-01T23:59:59.000Z

    The purpose of this research program is to understand the potential impact of an oil shale industry on environmental levels of trace contaminants in the region. The program involves a comprehensive study of the sources, release mechanisms, transport, fate, and effects of toxic trace chemicals, principally the trace elements, in an oil shale industry. The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements by shale and oil production and use. The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. Leachate studies show that significant amounts of B, F, and Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements are not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. Many of the so-called standard methods for analyzing trace elements in oil shale-related materials are inadequate. A sampling manual is being written for the environmental scientist and practicing engineer. A new combination of methods is developed for separating the minerals in oil shale into different density fractions. Microbial investigations have tentatively identified the existence of thiobacilli in oil shale materials such as leachates. (DC)

  4. General screening criteria for shale gas reservoirs and production data analysis of Barnett shale

    E-Print Network [OSTI]

    Deshpande, Vaibhav Prakashrao

    2009-05-15T23:59:59.000Z

    Shale gas reservoirs are gaining importance in United States as conventional oil and gas resources are dwindling at a very fast pace. The purpose of this study is twofold. First aim is to help operators with simple screening criteria which can help...

  5. SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale M. O. Eshkalak, SPE, S. D of production from shale gas reservoirs. In this study, synthetic geomechanical logs (Including following-driven models are developed that are capable of generating synthetic geomechanical logs from conventional logs

  6. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential

  7. Water's Journey Through the Shale Gas Drilling and

    E-Print Network [OSTI]

    Lee, Dongwon

    Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas. This publication fo- cuses mostly on Pennsylvania because it has the most Marcellus drilling activity of any state

  8. Market analysis of shale oil co-products. Appendices

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  9. Morphological Investigations of Fibrogenic Action of Estonian Oil Shale Dust

    E-Print Network [OSTI]

    V. A. Kung

    A review of morphological investigations carried out to clarify the pathogenicity of industrial dust produced in the mining and processing of Estonian oil shale is given. Histological examination of lungs of workers in the oil shale industry taken at necropsies showed that the inhalation of oil

  10. The Models of Estimating Oil Shale Flows and Price

    E-Print Network [OSTI]

    Tauno Tammeoja; Aire Västrik

    The fast economical growth of Estonia in past years has set us several questions on sustainability of oil shale mining in Estonia. For how long do the oil shale resources last? What are the mining expenditures in the areas of different mining conditions and how do they change in future? Thus, in

  11. Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers

    E-Print Network [OSTI]

    that fracking the shale could reduce that transport time to tens or hundreds of years. Conductive faults to reach a new equilibrium reflecting the significant changes caused by fracking the shale, which could for development. Hydraulic fracturing (fracking, the industry term for the operation; Kramer 2011) loosens

  12. Removal of nitrogen and sulfur from oil-shale

    SciTech Connect (OSTI)

    Olmstead, W.N.

    1986-01-28T23:59:59.000Z

    This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

  13. Physical and mechanical properties of bituminous mixtures containing oil shales

    SciTech Connect (OSTI)

    Katamine, N.M.

    2000-04-01T23:59:59.000Z

    Rutting of bituminous surfaces on the Jordanian highways is a recurring problem. Highway authorities are exploring the use of extracted shale oil and oil shale fillers, which are abundant in Jordan. The main objectives of this research are to investigate the rheological properties of shale oil binders (conventional binder with various percentages of shale oil), in comparison with a conventional binder, and to investigate the ability of mixes to resist deformation. The latter is done by considering three wearing course mixes containing three different samples of oil shale fillers--which contained three different oil percentages--together with a standard mixture containing limestone filler. The Marshall design method and the immersion wheel tracking machine were adopted. It was concluded that the shale oil binders displayed inconsistent physical properties and therefore should be treated before being used. The oil shale fillers have provided mixes with higher ability to resist deformation than the standard mix, as measured by the Marshall quotients and the wheel tracking machine. The higher the percentages of oil in the oil shale fillers, the lower the ability of the mixes to resist deformation.

  14. History and some potentials of oil shale cement

    SciTech Connect (OSTI)

    Knutson, C.F.; Smith, R.P.; Russell, B.F. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

    1989-01-01T23:59:59.000Z

    The utilization of oil shale as a cement component is discussed. It was investigated in America and Europe during World War I. Additional development occurred in Western Europe, Russia, and China during the 1920s and 1930s. World War II provided further development incentives and a relatively mature technology was in place in Germany, Russia, and China prior to 1980. The utilization of oil shale in cement has taken a number of different paths. One approach has been to utilize the energy in the oil shale as the principal source for the cement plant and to use the combusted shale as a minor constituent of the plant's cement product. A second approach has been to use the combusted shale as a class C or cementitious fly-ash component in portland cement concrete. Other approaches utilizing eastern oil shale have been to use the combusted oil shale with additives as a specialty cement, or to cocombust the oil shale with coal and utilize the sulfur-rich combustion product.

  15. SPE-139032-PP Field Development Strategies for Bakken Shale Formation

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE-139032-PP Field Development Strategies for Bakken Shale Formation S.Zargari, SPE, S s a ckno wle dgm ent of S PE co p yrig ht. Abstract Bakken shale has been subjected to more attention coupled with advancements in horizontal drilling, increased the interest of oil companies for investment

  16. Optimization Models for Shale Gas Water Management Linlin Yang

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimization Models for Shale Gas Water Management Linlin Yang , Jeremy Manno and Ignacio E. Grossmann Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA Carrizo Oil & Gas and multiple scenarios from historical data. Two examples representative of the Marcellus Shale play

  17. Assessment of industry needs for oil shale research and development

    SciTech Connect (OSTI)

    Hackworth, J.H.

    1987-05-01T23:59:59.000Z

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  18. Market analysis of shale oil co-products. Summary report

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    This study examines the potential for separating, upgrading and marketing sodium mineral co-products together with shale oil production. The co-products investigated are soda ash and alumina which are derived from the minerals nahcolite and dawsonite. Five cases were selected to reflect the variance in mineral and shale oil content in the identified resource. In the five cases examined, oil content of the shale was varied from 20 to 30 gallons per ton. Two sizes of facilities were analyzed for each resource case to determine economies of scale between a 15,000 barrel per day demonstration unit and a 50,000 barrel per day full sized plant. Three separate pieces of analysis were conducted in this study: analysis of manufacturing costs for shale oil and co-products; projection of potential world markets for alumina, soda ash, and nahcolite; and determination of economic viability and market potential for shale co-products.

  19. Oil shale as an energy source in Israel

    SciTech Connect (OSTI)

    Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

    1996-01-01T23:59:59.000Z

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

  20. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20T23:59:59.000Z

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  1. Beginning of an oil shale industry in Australia

    SciTech Connect (OSTI)

    Wright, B. (Southern Pacific Petroleum NL, 143 Macquarie Street, Sydney (AU))

    1989-01-01T23:59:59.000Z

    This paper discusses how preparations are being made for the construction and operation of a semi commercial plant to process Australian oil shale. This plant is primarily designed to demonstrate the technical feasibility of processing these shales at low cost. Nevertheless it is expected to generate modest profits even at this demonstration level. This will be the first step in a three staged development of one of the major Australian oil shale deposits which may ultimately provide nearly 10% of Australia's anticipated oil requirements by the end of the century. In turn this development should provide the basis for a full scale oil shale industry in Australia based upon the advantageously disposed oil shale deposits there. New sources of oil are becoming critical since Australian production is declining rapidly while consumption is accelerating.

  2. Expectations for Oil Shale Production (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

  3. Ohio Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1(BillionThousandShale

  4. Oklahoma Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9Yearper ThousandShale

  5. Eastern States Shale Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877SouthwestWisconsinStatement 1 June2009CoalbedShale

  6. New Mexico Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet)4.17 5.32WellheadperShale

  7. Pennsylvania Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYearYearDecadeperYear(DollarsShale

  8. What is shale gas? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. Department ofFebruary 27, 2015What is shale

  9. Shale Gas Glossary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/UnionGlossary Shale Gas Glossary

  10. Shale gas - what happened? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/UnionGlossary Shale Gas

  11. Virginia Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas, Wet AfterperShale

  12. Potential small-scale development of western oil shale

    SciTech Connect (OSTI)

    Smith, V.; Renk, R.; Nordin, J.; Chatwin, T.; Harnsberger, M.; Fahy, L.J.; Cha, C.Y.; Smith, E.; Robertson, R.

    1989-10-01T23:59:59.000Z

    Several studies have been undertaken in an effort to determine ways to enhance development of western oil shale under current market conditions for energy resources. This study includes a review of the commercial potential of western oil shale products and byproducts, a review of retorting processes, an economic evaluation of a small-scale commercial operation, and a description of the environmental requirements of such an operation. Shale oil used as a blend in conventional asphalt appears to have the most potential for entering today's market. Based on present prices for conventional petroleum, other products from oil shale do not appear competitive at this time or will require considerable marketing to establish a position in the marketplace. Other uses for oil shale and spent shale, such as for sulfur sorbtion, power generation, cement, aggregate, and soil stabilization, are limited economically by transportation costs. The three-state area area consisting of Colorado, Utah, and Wyoming seems reasonable for the entry of shale oil-blended asphalt into the commercial market. From a review of retorting technologies and the product characteristics from various retorting processes it was determined that the direct heating Paraho and inclined fluidized-bed processes produce a high proportion of heavy material with a high nitrogen content. The two processes are complementary in that they are each best suited to processing different size ranges of materials. An economic evaluation of a 2000-b/d shale oil facility shows that the operation is potentially viable, if the price obtained for the shale oil residue is in the top range of prices projected for this product. Environmental requirements for building and operating an oil shale processing facility are concerned with permitting, control of emissions and discharges, and monitoring. 62 refs., 6 figs., 10 tabs.

  13. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); McJannet, G.S. [Dept. of Energy, Tupman, CA (United States)

    1996-12-31T23:59:59.000Z

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  14. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1996-01-01T23:59:59.000Z

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  15. Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Magnafacies

    E-Print Network [OSTI]

    Basu, Asish R.

    -isotopic ratios were measured in whole rock black shales with different grades of thermal maturity from the Utica/Sm that cannot be explained solely by diagenesis, implying source heterogeneity. Whole rock black shales maturation), which alters the Sm/Nd ratio of the rock, it can be argued that the different components

  16. Potential Economic Impacts of Marcellus Shale in Pennsylvania: Reflections on the Perryman Group Analysis from Texas

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Potential Economic Impacts of Marcellus Shale in Pennsylvania: Reflections on the Perryman Group The exploration and development of the Marcellus Shale natural gas play has significant potential to affect in the Barnett Shale region of north Texas. The Barnett Shale play is very similar in geology to the Marcellus

  17. TOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen

    E-Print Network [OSTI]

    Angenent, Lars T.

    TOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen DATE fracturing of shale formations (shale gas) is projected by the Energy Information Administration to become the nation's energy landscape. However, the environmental impacts associated with ``fracking'' for shale gas

  18. A THERMODYNAMICS STUDY ON THE UTILIZATION OF JORDANIAN OIL SHALE IN CEMENT INDUSTRY

    E-Print Network [OSTI]

    Awni Y. Al-otoom

    Oil shale can be utilized in manufacturing the Portland cement. In addition to the utilization of the spent oil shale after combustion, it can also reduce the required temperature for the clinkering reactions. A study on the Jordanian oil shale was performed to maximize the use of oil shale in the

  19. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater

    E-Print Network [OSTI]

    Shawabkeh, Reyad A.

    Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater Reyad; available online 29 October 2003 Abstract A by-product fly ash from oil shale processing was converted shale; Ash; Zeolite; Cadmium and lead removal 1. Introduction Oil shale exists in Jordan with large

  20. Fire and explosion hazards of oil shale. Report of Investigations/1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    This publication presents the results of investigations into the fire and explosion hazards of oil-shale rocks and dust. Three areas were examined: the explosibility and ignitability of oil-shale dust clouds, the fire hazards of oil-shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles.

  1. Review article Oil and gas wells and their integrity: Implications for shale and

    E-Print Network [OSTI]

    Jackson, Robert B.

    Review article Oil and gas wells and their integrity: Implications for shale and unconventional by Elsevier Ltd. 1. Introduction The rapid expansion of shale gas and shale oil exploration and exploitation xxx Keywords: Shale Fracking Integrity Barrier Integrity Wells a b s t r a c t Data from around

  2. Modeling, History Matching, Forecasting and Analysis of Shale Reservoirs Performance Using Artificial Intelligence

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    matching, forecasting and analyzing oil and gas production in shale reservoirs. In this new approach and analysis of oil and gas production from shale formations. Examples of three case studies in Lower Huron and New Albany shale formations (gas producing) and Bakken Shale (oil producing) is presented

  3. 3D multi-scale imaging of experimental fracture generation in shale gas reservoirs.

    E-Print Network [OSTI]

    Henderson, Gideon

    in research and shale unconventional reservoirs that will provide you with the skills to enter the oil and gas3D multi-scale imaging of experimental fracture generation in shale gas reservoirs. Supervisory-grained organic carbon-rich rocks (shales) are increasingly being targeted as shale gas "reservoirs". Due

  4. Oil shale-A new frontier

    SciTech Connect (OSTI)

    Mc Dermott, W.F.

    1980-12-01T23:59:59.000Z

    Occidental began its development of the Modified In-Situ retorting process in the late 1960's. The first field work commenced at the Logan Wash property in 1972. Three research retorts were constructed and burned, utilizing two different methods of forming the retort. Following this successful research work, three commercial sized retorts were constructed. Over 100,000 barrels of oil have been produced to date. Two additional full-scale retorts are under development at Logan Wash. The results of the Logan Wash program are being used in the design and construction of the C.B. Federal Prototype Lease Tract. This 5,000 acre tract is leased to the Cathedral Bluffs Shale Oil Company, a partnership between Tenneco and Occidental, with Occidental as the operator, by the Department of Interior. Site work began in 1977 and currently three (3) large shafts are being sunk to a depth of about 1900 ft. to access the oil shale formation. The operation will commence in 1985 and reach full production in 1990. Both Modified In-Situ and surface retorting will be used to produce a nominal 100,000 barrels per day. The mine will hoist 60,000 tons per day and will use 3,400 underground workers in the mining, construction of the retorts, and the operation of the retorts. This combination of underground activities creates a unique challenge to the design and operation of such a facility.

  5. Preferred orientation and elastic anisotropy in shales.

    SciTech Connect (OSTI)

    Lonardelli, I.; Wenk, H.-R.; Ren, Y.; Univ. of California at Berkeley

    2007-03-01T23:59:59.000Z

    Anisotropy in shales is becoming an important issue in exploration and reservoir geophysics. In this study, the crystallographic preferred orientation of clay platelets that contributes to elastic anisotropy was determined quantitatively by hard monochromatic X-ray synchrotron diffraction in two different shales from drillholes off the coast of Nigeria. To analyze complicated diffraction images with five different phases (illite/smectite, kaolinite, quartz, siderite, feldspar) and many overlapping peaks, we applied a methodology based on the crystallographic Rietveld method. The goal was to describe the intrinsic physical properties of the sample (phase composition, crystallographic preferred orientation, crystal structure, and microstructure) and compute macroscopic elastic properties by averaging single crystal properties over the orientation distribution for each phase. Our results show that elastic anisotropy resulting from crystallographic preferred orientation of the clay particles can be determined quantitatively. This provides a possible way to compare measured seismic anisotropy and texture-derived anisotropy and to estimate the contribution of the low-aspect ratio pores aligned with bedding.

  6. Seizing a species : the story of the Great Salt Lake brine shrimp harvest

    E-Print Network [OSTI]

    Wotipka, Samuel Alex

    2014-01-01T23:59:59.000Z

    In the early 1950s, C.C. "Sparkplug" Sanders began harvesting brine shrimp from Utah's Great Salt Lake. Sanders built up a small business selling their eggs, called "cysts, to aquarium stores across the country. During the ...

  7. Soils and Brine Geochemistry and Mineralogy of Hyperarid Desert Playa, Ouargla Basin,

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Soils and Brine Geochemistry and Mineralogy of Hyperarid Desert Playa, Ouargla Basin, Algerian. The chemical and mineralogical specificity of this hyperarid ecosystem has been compared to other areas under

  8. Behavior of type 304 and type 316 austenitic stainless in 55% lithium bromide heavy brine environments

    SciTech Connect (OSTI)

    Itzhak, D.; Elias, O. (Ben-Gurion Univ., Beer-Sheva (Israel). Dept. of Materials Engineering)

    1994-02-01T23:59:59.000Z

    Cylindrical tensile specimens of AISI type 304 (UNS S30400) and type 316 (UNS S31600) stainless steels (SS) were tested under constant-load conditions in 55% lithium bromide (LiBr) heavy brines at temperatures of 120 C and 140 C. Elongation and open-circuit potential (OCP) were recorded during the tensile test. Potentiodynamic polarization measurements were conducted, and the failed surface fractures were examined by scanning electron microscopy. The tested SS were subjected to stress corrosion under the test environments. Sensitivity was affected strongly by pH values. In LiBr brine of pH = 11.6, the passivation processes were more effective than in brine of pH = 6 [approximately] 8. Because of effective passivation behavior in brine of pH = 11.6, lower values of [delta]l[sub 0] were measured, indicating lower dislocation relaxation processes and high resistance to stress corrosion cracking.

  9. New Energy Efficient Method for Cleaning Oilfield Brines with Carbon Dioxide 

    E-Print Network [OSTI]

    Little, C. T.; Seibert, A. F.; Bravo, J. L.; Fair, J. R.

    1991-01-01T23:59:59.000Z

    Water contaminated with hydrocarbons often results during the production of oil. The polluted water, which may be naturally occurring or a result of water or steam flooding operations, must be cleaned before disposal or re-injection. These brines...

  10. Pathogenicity of a pseudomonad bacterium to larvae of penaeid and brine shrimp

    E-Print Network [OSTI]

    Huang, Chu-Liang

    1982-01-01T23:59:59.000Z

    OF SCIENCE August 1982 Major Subject: Veterinary Microbiology PATHOGENICITY OF A PSEUDOMONAD BACTERIUM TO LARVAE OF PENAEID AND BRINE SHRIMP A Thesis by CHU-LIANG HUANG Approved as to style and content by: (Chairman of Committee) (Member) (Member...) (Member) (Head of Department) August 1982 ABSTRACT Pathogenicity of a Pseudomonad Bacterium to Larvae of Penaeid and Brine Shrimp (August 1982) Chu-Liang Huang, B. S , National Taiwan University Chairman of Advisory Committee: Dr. Donald H. Lewis A...

  11. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    SciTech Connect (OSTI)

    Olander, D.R.

    1984-08-01T23:59:59.000Z

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  12. Industrial hygiene aspects of underground oil shale mining

    SciTech Connect (OSTI)

    Hargis, K.M.; Jackson, J.O.

    1982-01-01T23:59:59.000Z

    Health hazards associated with underground oil shale mining are summarized in this report. Commercial oil shale mining will be conducted on a very large scale. Conventional mining techniques of drilling, blasting, mucking, loading, scaling, and roof bolting will be employed. Room-and-pillar mining will be utilized in most mines, but mining in support of MIS retorting may also be conducted. Potential health hazards to miners may include exposure to oil shale dusts, diesel exhaust, blasting products, gases released from the oil shale or mine water, noise and vibration, and poor environmental conditions. Mining in support of MIS retorting may in addition include potential exposure to oil shale retort offgases and retort liquid products. Based upon the very limited industrial hygiene surveys and sampling in experimental oil shale mines, it does not appear that oil shale mining will result in special or unique health hazards. Further animal toxicity testing data could result in reassessment if findings are unusual. Sufficient information is available to indicate that controls for dust will be required in most mining activities, ventilation will be necessary to carry away gases and vapors from blasting and diesel equipment, and a combination of engineering controls and personal protection will likely be required for control of noise. Recommendations for future research are included.

  13. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15T23:59:59.000Z

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  14. Status of LLNL Hot-Recycled-Solid oil shale retort

    SciTech Connect (OSTI)

    Baldwin, D.E.; Cena, R.J.

    1993-12-31T23:59:59.000Z

    We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

  15. Developing a Process for Commercial Silica Production from Geothermal Brines

    SciTech Connect (OSTI)

    Bourcier, W; Martin, S; Viani, B; Bruton, C

    2001-04-11T23:59:59.000Z

    Useful mineral by-products can be produced from geothermal brines. Although silica has many commercial uses, problems remain in producing a marketable product. We are conducting laboratory and modeling studies aimed at optimizing for rubber additive use, the properties of silica precipitates from Salton Sea and Coso-like geothermal fluids, Our goal is to develop a robust technique for producing silicas that have desirable physical and chemical properties for commercial use, while developing a generic understanding of silica precipitation that will allow extraction to be extended to additional fluid types, and to be easily modified to produce new types of marketable silica. Our experiments start with an acidified geothermal fluid similar to those treated by pH modification technology. Silica precipitation is induced by adding base and/or adding Mg or Ca salts to affect the nature of the precipitate. For the analog Salton Sea fluids, adding base alone caused silica to precipitate fairly rapidly. To date, we have characterized precipitates from experiments in which the final pH varied from 4 to 8, where NaOH and Na{sub 2}C0{sub 3} were added as bases, and CaCl{sub 2} and MgCl{sub 2} were added as salts. SEM photos of the silica precipitates from the Salton Sea and Cos0 fluids show that the silica particles are clusters of smaller silica particles down to the resolution of the SEM (about 80-100 nm in diameter). The particle sizes and surface areas of silicas from the Salton Sea and Coso analog brines are similar to the properties of the Degussa silica commonly used as a rubber additive. An evaluation of the strength of the silica-organic bond as tested by dispersion in oil (polybutadiene) was inconclusive. Neither the Degussa materials nor our laboratory precipitates dispersed readily in nor dispersed down to the fundamental particle size. Preliminary NMR data indicates that the Degussa silica has a smaller degree of silica polymerization (a slightly smaller average number of Si-0 bonds per silica tetrahedron) than the synthetic samples, but a comparable degree of hydrogen bonding of the surface silanol sites.

  16. Hard-bottom macrofauna of the East Flower Garden brine seep: impact of a long term, point-source brine discharge

    E-Print Network [OSTI]

    Gittings, Stephen Reed

    1983-01-01T23:59:59.000Z

    canyon transect were sta- tions R6 and R7, both of which were on top of Cottonwick Rock, ap- proximately 2 m above the canyon floor. Figure 5 (p. 12) shows that salinity and sulfide at these stations were at normal marine levels. Though the total...HARD-BOT1'OM MACROFAUNA OF THE EAST FLOWER GARDEN BRINE SEEP: IMPACT OF A LONG TERM, POINT-SOURCE BRINE DISCHARGE A Thesis by STEPHEN REED GITTINGS Submitted to the Graduate College of Texas A&M University in partial fulfillment...

  17. Recovery of energy from geothermal brine and other hot water sources

    DOE Patents [OSTI]

    Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

    1981-01-01T23:59:59.000Z

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  18. Numerical simulations of lab-scale brine-water mixing experiments.

    SciTech Connect (OSTI)

    Khalil, Imane; Webb, Stephen Walter

    2006-10-01T23:59:59.000Z

    Laboratory-scale experiments simulating the injection of fresh water into brine in a Strategic Petroleum Reserve (SPR) cavern were performed at Sandia National Laboratories for various conditions of injection rate and small and large injection tube diameters. The computational fluid dynamic (CFD) code FLUENT was used to simulate these experiments to evaluate the predictive capability of FLUENT for brine-water mixing in an SPR cavern. The data-model comparisons show that FLUENT simulations predict the mixing plume depth reasonably well. Predictions of the near-wall brine concentrations compare very well with the experimental data. The simulated time for the mixing plume to reach the vessel wall was underpredicted for the small injection tubes but reasonable for the large injection tubes. The difference in the time to reach the wall is probably due to the three-dimensional nature of the mixing plume as it spreads out at the air-brine or oil-brine interface. The depth of the mixing plume as it spreads out along the interface was within a factor of 2 of the experimental data. The FLUENT simulation results predict the plume mixing accurately, especially the water concentration when the mixing plume reaches the wall. This parameter value is the most significant feature of the mixing process because it will determine the amount of enhanced leaching at the oil-brine interface.

  19. Oil shale program. Eighteenth quarterly report, April 1980-June 1980

    SciTech Connect (OSTI)

    Stevens, A. L. [ed.] [ed.

    1980-11-01T23:59:59.000Z

    Instrumentation and evaluation activities are in progress at two DOE-supported in situ oil shale field projects, namely, the Geokinetics Oil Shale Project near Vernal, Utah, and the Occidental Oil Shale Project near DeBeque, Colorado. In support of these projects, it is necessary to develop new and advanced instrumentation systems and associated deployment, recording and analysis techniques that are unique to the field project needs. A rock mechanics program provides material properties, material response models and computational methods for use in the design analysis, and evaluation functions. In addition, retorting studies are in progress on problems unique to the low void conditions encountered in field experiments.

  20. Characterization of nitrogen compound types in hydrotreated Paraho shale oil

    SciTech Connect (OSTI)

    Holmes, S.A.; Latham, D.R.

    1980-10-01T23:59:59.000Z

    Results from the separation and characterization of nitrogen compound types in hydrotreated Paraho shale oil samples were obtained. Two samples of Paraho shale oil were hydrotreated by Chevron Research Company such that one sample contained about 0.05 wt. percent nitrogen and the other sample contained about 0.10 wt. percent nitrogen. A separation method concentrate specific nitrogen compound types was developed. Characterization of the nitrogen types was accomplished by infrared spectroscopy, mass spectrometry, potentiometric titration, and elemental analysis. The distribution of nitrogen compound types in both samples and in the Paraho crude shale oil is compared.

  1. Use of data obtained from core tests in the design and operation of spent brine injection wells in geopressured or geothermal systems

    SciTech Connect (OSTI)

    Jorda, R.M.

    1980-03-01T23:59:59.000Z

    The effects of formation characteristics on injection well performance are reviewed. Use of data acquired from cores taken from injection horizons to predict injectivity is described. And methods for utilizing data from bench scale testing of brine and core samples to optimize injection well design are presented. Currently available methods and equipment provide data which enable the optimum design of injection wells through analysis of cores taken from injection zones. These methods also provide a means of identifying and correcting well injection problems. Methods described in this report are: bulk density measurement; porosity measurement; pore size distribution analysis; permeability measurement; formation grain size distribution analysis; core description (lithology) and composition; amount, type and distribution of clays and shales; connate water analysis; consolidatability of friable reservoir rocks; grain and pore characterization by scanning electron microscopy; grain and pore characterization by thin section analysis; permeability damage and enhancement tests; distribution of water-borne particles in porous media; and reservoir matrix acidizing effectiveness. The precise methods of obtaining this information are described, and their use in the engineering of injection wells is illustrated by examples, where applicable. (MHR)

  2. SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01T23:59:59.000Z

    9 true in~situ oil shale combustion experiment conducted byoil and gases. These vapors originate primarily from combustion,

  3. COLLOQUIUM: "The Environmental Footprint of Shale Gas Extraction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 9, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: "The Environmental Footprint of Shale Gas Extraction and Hydraulic Fracturing" Professor Robert Jackson Duke...

  4. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heavy oil and tar sand, coal liquids, gas-to-liquids (GTL), hydrogen, gas hydrates, and renewable energy resources, as well as oil shale, which is the focus of this re- port....

  5. A Comparative Study of the Mississippian Barnett Shale, Fort...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National...

  6. Data Bias in Rate Transient Analysis of Shale Gas Wells

    E-Print Network [OSTI]

    Agnia, Ammar Khalifa Mohammed

    2012-07-16T23:59:59.000Z

    functions involve rate as essential constituent, the superposition time is affected greatly with rate issues. Production data of shale gas wells are usually subjected to operating issues that yield noise and outliers. Whenever the rate data is noisy...

  7. Economic analysis of shale gas wells in the United States

    E-Print Network [OSTI]

    Hammond, Christopher D. (Christopher Daniel)

    2013-01-01T23:59:59.000Z

    Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

  8. Production Forecast, Analysis and Simulation of Eagle Ford Shale Oil 

    E-Print Network [OSTI]

    Alotaibi, Basel Z S Z J

    2014-12-02T23:59:59.000Z

    fracturing to liberate the recoverable hydrocarbon reserves. Thousands of wells that have been drilled in the major oil shale formations: Bakken, Permian Basin and Eagle Ford, where oil production peaked in the first few weeks and then showed a sharp...

  9. Shale Gas Application in Hydraulic Fracturing Market is likely...

    Open Energy Info (EERE)

    Shale Gas Application in Hydraulic Fracturing Market is likely to grow at a rate of 6.46%, owing to increased natural gas demand Home > Groups > Renewable Energy RFPs Wayne31jan's...

  10. The U.S. Natural Gas and Shale Production Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas and Shale Production Outlook for North American Gas Forum September 29, 2014 by Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas...

  11. Implications of the U.S. Shale Revolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implications of the U.S. Shale Revolution For US-Canada Energy Summit October 17, 2014 | Chicago, IL By Adam Sieminski, Administrator U.S. Energy Information Administration 0 5 10...

  12. Modeling of Magnetic Nanoparticles Transport in Shale Reservoirs 

    E-Print Network [OSTI]

    An, Cheng

    2014-12-18T23:59:59.000Z

    of this technology for enhanced oil recovery, nano-scale sensors and subsurface mapping. Little work has been conducted to establish numerical models to investigate nanoparticle transport in reservoirs, and particularly much less for shale reservoirs. Unlike...

  13. Production Forecast, Analysis and Simulation of Eagle Ford Shale Oil

    E-Print Network [OSTI]

    Alotaibi, Basel Z S Z J

    2014-12-02T23:59:59.000Z

    fracturing to liberate the recoverable hydrocarbon reserves. Thousands of wells that have been drilled in the major oil shale formations: Bakken, Permian Basin and Eagle Ford, where oil production peaked in the first few weeks and then showed a sharp...

  14. West Lothian Biodiversity Action Plan: Oil Shale Bings 

    E-Print Network [OSTI]

    Harvie, Barbra

    2005-01-01T23:59:59.000Z

    This report establishes the importance of the West Lothian oil-shale bings at both a national (UK) and local (West Lothian) scale, for their contribution to local biodiversity, their historical importance, their education ...

  15. Modeling of Magnetic Nanoparticles Transport in Shale Reservoirs

    E-Print Network [OSTI]

    An, Cheng

    2014-12-18T23:59:59.000Z

    of this technology for enhanced oil recovery, nano-scale sensors and subsurface mapping. Little work has been conducted to establish numerical models to investigate nanoparticle transport in reservoirs, and particularly much less for shale reservoirs. Unlike...

  16. Analysis of Water Flowback Data in Gas Shale Reservoirs

    E-Print Network [OSTI]

    Aldaif, Hussain

    2014-09-24T23:59:59.000Z

    Properties of both shale gas reservoirs and hydraulic fractures are usually estimated by analyzing hydrocarbon production data while water data is typically ignored. This study introduces a new method to estimate the effective fracture volume...

  17. Forecasting long-term gas production from shale

    E-Print Network [OSTI]

    Cueto-Felgueroso, Luis

    Oil and natural gas from deep shale formations are transforming the United States economy and its energy outlook. Back in 2005, the US Energy Information Administration published projections of United States natural gas ...

  18. Assessment of Eagle Ford Shale Oil and Gas Resources

    E-Print Network [OSTI]

    Gong, Xinglai

    2013-07-30T23:59:59.000Z

    , and to assess Eagle Ford shale oil and gas reserves, contingent resources, and prospective resources. I first developed a Bayesian methodology to generate probabilistic decline curves using Markov Chain Monte Carlo (MCMC) that can quantify the reserves...

  19. STUDY COMMISSIONED BY WEST LOTHIAN COUNCIL OIL-SHALE BINGS

    E-Print Network [OSTI]

    #12;STUDY COMMISSIONED BY WEST LOTHIAN COUNCIL OIL-SHALE BINGS Dr Barbra Harvie School of Geo.....................................................................................................3 The birth of the oil industry ...........................................................................................................................3 The impact of oil on society

  20. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01T23:59:59.000Z

    The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

  1. Cyclone oil shale retorting concept. [Use it all retorting process

    SciTech Connect (OSTI)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01T23:59:59.000Z

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  2. Sorption of cesium and strontium from concentrated brines by backfill barrier materials

    SciTech Connect (OSTI)

    Winslow, C D

    1981-03-01T23:59:59.000Z

    The sorption of radionuclides from potentially intruding groundwater at a nuclear waste repository is a major chemical function of backfill barriers. In this study, various materials (including clays, zeolites and an inorganic ion exchanger) were screened for the sorption of the fission products cesium and strontium in concentrated brines. Representative brines A and B for the Waste Isolation Pilot Plant (WIPP), a proposed radioactive waste repository and test facility in bedded salt were used. Sorption properties were quantified using empirical distribution coefficients, k/sub d/. Of the materials examined, sodium titanate had the highest k/sub d/ for the sorption of Sr(II) in both brine A (k/sub d/ = 125 ml/g) and brine B(k/sub d/ = 500 to 600 ml/g). A mordenite-type zeolite was the most effective getter for Cs(I) in brine A (k/sub d = 27 ml/g), while illite yielded the highest k/sub d/ for Cs(I) in brine B (k/sub d/ = 115 ml/g). The relative merit of these k/sub d/ values is evaluated in terms of calculated estimates of breakthrough times for a backfill barrier containing the getter. Results show that a backfill mixture containing these getters is potentially an effective barrier to the migration of Sr(II) and Cs(I), although further study (especially for the sorption of cesium from brine A) is recommended. Initial mechanistic studies revealed competing ion effects which would support an ion exchange mechanism. K/sub d/'s were constant over a Sr(II) concentration range of 10/sup -11/ to 10/sup -5/ M and a Cs(I) concentration range of 10/sup -8/ to 10/sup -5/ M, supporting the choice of a linear sorption isotherm as a model for the results. Constant batch composition was shown to be attained within one week.

  3. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: Pore-scale studies in micromodels

    E-Print Network [OSTI]

    Kim, Y.

    2013-01-01T23:59:59.000Z

    accumulation of residual water in pendular structuresAfter drainage, the residual water remained as thick filmsdisplaced brine), the residual water was initially retained

  4. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27T23:59:59.000Z

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  5. Technology experience and economics of oil shale mining in Estonia

    SciTech Connect (OSTI)

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1995-11-01T23:59:59.000Z

    The exhaustion of fuel-energy resources became an evident problem of the European continent in the 1960s. Careful utilization of their own reserves of coal, oil, and gas (Germany, France, Spain) and assigned shares of imports of these resources make up the strategy of economic development of the European countries. The expansion of oil shale utilization is the most topical problem. The experience of mining oil shale deposits in Estonia and Russia, in terms of the practice and the economic results, is reviewed in this article. The room-and-pillar method of underground mining and the open-cut technology of clearing the ground ensure the fertility of a soil. The economics of underground and open pit oil shale mines is analyzed in terms of natural, organizational, and technical factors. These analyses are used in the planning and management of oil shale mining enterprises. The perspectives of the oil shale mining industry of Estonia and the economic expediency of multiproduction are examined. Recommendations and guidelines for future industrial utilization of oil shale are given in the summary.

  6. PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01T23:59:59.000Z

    V. , 1979, Analysis of oil shale of products and effluents:In- Situ Retorting of Oil Shale in a Controlled- Stateactivation: Archaeometry, oil-shale analysis v. 11, p.

  7. FreezeFrac Improves the Productivity of Gas Shales S. Enayatpour, E. Van Oort, T. Patzek, University of Texas At Austin

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    to unconventional hydrocarbon reservers such as oil shales, gas shales, tight gas sands, coalbed methane, and gas

  8. Slow Radio-Frequency Processing of Large Oil Shale Volumes to Produce Petroleum-Like Shale Oil

    SciTech Connect (OSTI)

    Burnham, A K

    2003-08-20T23:59:59.000Z

    A process is proposed to convert oil shale by radio frequency heating over a period of months to years to create a product similar to natural petroleum. Electrodes would be placed in drill holes, either vertical or horizontal, and a radio frequency chosen so that the penetration depth of the radio waves is of the order of tens to hundreds of meters. A combination of excess volume production and overburden compaction drives the oil and gas from the shale into the drill holes, where it is pumped to the surface. Electrical energy for the process could be provided initially by excess regional capacity, especially off-peak power, which would generate {approx}3 x 10{sup 5} bbl/day of synthetic crude oil, depending on shale grade. The electricity cost, using conservative efficiency assumptions, is $4.70 to $6.30/bbl, depending on grade and heating rate. At steady state, co-produced gas can generate more than half the electric power needed for the process, with the fraction depending on oil shale grade. This would increase production to 7.3 x 10{sup 5} bbl/day for 104 l/Mg shale and 1.6 x 10{sup 6} bbl/day for 146 l/Mg shale using a combination of off-peak power and power from co-produced gas.

  9. Developing a process for commercial silica production from Salton Sea brines

    SciTech Connect (OSTI)

    Bourcier, W; McCutcheon, M; Leif, R; Bruton, C

    2000-09-25T23:59:59.000Z

    The goal of this joint LLNL-CalEnergy project is to develop a method for precipitating marketable silica from spent Salton Sea Geothermal Field (SSGF) brines. Many markets for silica exist. We have initially targeted production of silica as a rubber additive. Silica reinforced rubber gives tires less rolling resistance, greater tear strength, and better adhesion to steel belts. Previous silica precipitates produced by CalEnergy from Salton Sea brines were not suitable as rubber additives. They did not to disperse well in the rubber precursors and produced inferior rubber. CalEnergy currently minimizes silica scaling in some of their production facilities by acidifying the brine pH. The rate of silica precipitation slows down as the pH is lowered, so that energy extraction and brine reinfection are possible without unacceptable amounts of scaling even with more than 700 ppm SiO{sub 2} in solution. We are adding a step in which a small amount of base is added to the acidified brine to precipitate silica before reinfection. By carefully controlling the type, rate, and amount of base addition, we can optimize the properties of the precipitate to approach those of an ideal rubber additive.

  10. Western oil shale development: a technology assessment. Volume 8. Health effects of oil shale development

    SciTech Connect (OSTI)

    Rotariu, G.J.

    1982-02-01T23:59:59.000Z

    Information on the potential health effects of a developing oil shale industry can be derived from two major sources: (1) the historical experience in foreign countries that have had major industries; and (2) the health effects research that has been conducted in the US in recent years. The information presented here is divided into two major sections: one dealing with the experience in foreign countries and the second dealing with the more recent work associated with current oil shale development in the US. As a result of the study, several observations can be made: (1) most of the current and historical data from foreign countries relate to occupational hazards rather than to impacts on regional populations; (2) neither the historical evidence from other countries nor the results of current research have shown pulmonary neoplasia to be a major concern, however, certain types of exposure, particularly such mixed source exposures as dust/diesel or dust/organic-vapor have not been adequately studied and the lung cancer question is not closed; (3) the industry should be alert to the incidence of skin disease in the industrial setting, however, automated techniques, modern industrial hygiene practices and realistic personal hygiene should greatly reduce the hazards associated with skin contact; and (4) the entire question of regional water contamination and any resultant health hazard has not been adequately addressed. The industrial practice of hydrotreating the crude shale oil will diminish the carcinogenic hazard of the product, however, the quantitative reduction of biological activity is dependent on the degree of hydrotreatment. Both Soviet and American experimentalists have demonstrated a correlation betweed carcinogenicity/toxicity and retorting temperature; the higher temperatures producing the more carcinogenic or toxic products.

  11. NATURAL GAS FROM SHALE: Questions and Answers It Seems Like Shale Gas Came Out

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economic Evaluation of theSafetyIt Seems Like Shale

  12. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economic Evaluation of theSafetyIt Seems Like Shale

  13. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLEChallenges are Associated with Shale GasIt Seems LikeAir

  14. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLEChallenges are Associated with Shale GasIt Seems

  15. Modeling gas and brine migration for assessing compliance of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Vaughn, P. [Applied Physics, Inc., Albuquerque, NM (United States); Butcher, B. [Sandia National Labs., Albuquerque, NM (United States); Helton, J. [Arizona State Univ., Tempe, AZ (United States); Swift, P. [Tech. Reps., Inc., Albuquerque, NM (United States)

    1993-10-01T23:59:59.000Z

    At the request of the WIPP Project Integration Office (WPIO) of the DOE, the WIPP Performance Assessment (PA) Department of Sandia National Laboratories (SNL) has completed preliminary uncertainty and sensitivity analyses of gas and brine migration away from the undisturbed repository. This paper contains descriptions of the numerical model and simulations, including model geometries and parameter values, and a summary of major conclusions from sensitivity analyses. Because significant transport of contaminants can only occur in a fluid (gas or brine) medium, two-phase flow modeling can provide an estimate of the distance to which contaminants can migrate. Migration of gas or brine beyond the RCRA ``disposal-unit boundary`` or the Standard`s accessible environment constitutes a potential, but not certain, violation and may require additional evaluations of contaminant concentrations.

  16. Exposure and effects of oilfield brine discharges on western sandpipers (Calidris mauri) in Nueces Bay, Texas

    SciTech Connect (OSTI)

    Rattner, B.A.; Melancon, M.J. [National Biological Survey, Laurel, MD (United States); Capizzi, J.L. [Texas A& M Univ., College Station, TX (United States); King, K.A. [Fish and Wildlife Service, Phoenix, AZ (United States); LeCaptain, L.J. [Fish and Wildlife Service, Spokane, WA (United States)

    1995-05-01T23:59:59.000Z

    Discharge of oilfield brines into fresh and estuarine waters is a common disposal practice in Texas. Petroleum crude oil (PCO) extraction from underground stores includes the removal of a significant amount of water along with the oil. Several methods may be used to separate the oil and water fractions, including tank batteries, heat separation, and skimming ponds. Disposal of the resultant produced water (oilfield brine) may be accomplished by deep-well injection or discharge to surface waters. In Texas, an estimated 766,000 barrels of oilfield brine were discharged daily into tidal waters in 1979. The maximum concentration for oil and grease in these discharges permitted by the Texas Railroad Commission is 25 ppm. Several studies have shown that oilfield brines are toxic to a wide range of marine life, yet little is known about their effects on birds and mammals. Exposure to petroleum in oilfield wastes could evoke toxicological effects in some waterbird species. Avian responses to PCO exposure are highly variable, including cessation of growth, osmoregulatory impairment, endocrine dysfunction, hemolytic anemia, altered blood chemistry, cytochrome P450 induction, reduced reproductive success, and mortality. Oilfield brine discharges may soon be the largest and most pervasive source of contaminants entering Texas estuaries. Migratory and resident birds feeding in the vicinity of discharge sites may be ingesting food items contaminated with petroleum hydrocarbons, heavy metals and salts in sufficient quantities to evoke toxicity. The present study of wintering western sandpipers (Calidris mauri) that feed and roost near discharge sites sought to examine oilfield brine exposure and effects through quantification of contaminant burdens, morphological characteristics, and cytochrome P450-associated monooxygenase activities. 20 refs., 2 tabs.

  17. Formation and character of an ancient 19-m ice cover and underlying trapped brine in an ``ice-sealed'' east

    E-Print Network [OSTI]

    Priscu, John C.

    Formation and character of an ancient 19-m ice cover and underlying trapped brine in an ``ice bed year-round. New ice-core analysis and tempera- ture data show that beneath 19 m of ice is a water°C. The ice cover thickens at both its base and surface, sealing concentrated brine beneath. The ice

  18. Pressure Transient Analysis and Production Analysis for New Albany Shale Gas Wells 

    E-Print Network [OSTI]

    Song, Bo

    2010-10-12T23:59:59.000Z

    Shale gas has become increasingly important to United States energy supply. During recent decades, the mechanisms of shale gas storage and transport were gradually recognized. Gas desorption was also realized and quantitatively described. Models...

  19. Simulating the Effect of Water on the Fracture System of Shale Gas Wells 

    E-Print Network [OSTI]

    Hamam, Hassan Hasan H.

    2011-10-21T23:59:59.000Z

    It was observed that many hydraulically fractured horizontal shale gas wells exhibit transient linear flow behavior. A half-slope on a type curve represents this transient linear flow behavior. Shale gas wells show a significant skin effect which...

  20. The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs 

    E-Print Network [OSTI]

    Kamenov, Anton

    2013-04-11T23:59:59.000Z

    Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

  1. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11T23:59:59.000Z

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  2. Plan and justification for a Proof-of-Concept oil shale facility

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  3. OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    ,

    2012-01-01T23:59:59.000Z

    Holes from the Naval Oil Shale Reserve No. 1 R. D. Giauque,all of the known oil and gas reserves in the United States.cores from the Naval Oil Shale Reserve No. 1 were sectioned

  4. Rock Classification in Organic Shale Based on Petrophysical and Elastic Rock Properties Calculated from Well Logs

    E-Print Network [OSTI]

    Aranibar Fernandez, Alvaro A

    2015-01-05T23:59:59.000Z

    classification method was then applied to the field examples from the Haynesville shale and Woodford shales for rock classification. The estimates of porosity, TOC, bulk modulus, shear modulus, and volumetric concentrations of minerals were obtained...

  5. Rigorous Simulation Model of Kerogen Pyrolysis for the In-situ Upgrading of Oil Shales 

    E-Print Network [OSTI]

    Lee, Kyung Jae

    2014-10-09T23:59:59.000Z

    Oil shale is a vast, yet untapped energy source, and the pyrolysis of kerogen in the oil shales releases recoverable hydrocarbons. In this dissertation, we investigate how to increase process efficiency and decrease the costs of in-situ upgrading...

  6. DISTRIBUTION OF NATURALLY OCCURRING RADIONUCLIDES (U, Th) IN TIMAHDIT'S BLACK SHALE (MOROCCO)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    focused on the use of Moroccan's black oil shales as the raw materials for production of a new type, 1991). These adsorbents were produced from oil shale, which is abundant in Morocco. The choice

  7. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses 

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11T23:59:59.000Z

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  8. The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs

    E-Print Network [OSTI]

    Kamenov, Anton

    2013-04-11T23:59:59.000Z

    Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

  9. INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES

    E-Print Network [OSTI]

    Fox, J.P.

    2011-01-01T23:59:59.000Z

    W. A. Robb, and T. J. Spedding. Minor Elements ~n Oil Shaleand Oil-Shale Products. LERC RI-77/1, 1977. Wildeman, T. R.H. Meglen. The Analysis of Oil-Shale Materials for Element

  10. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01T23:59:59.000Z

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,Particle Size on Retorting Oil in a Controlled~State Retort,residence of elements in rich oil shales of the Green River

  11. Shale oil recovery systems incorporating ore beneficiation : final report, October 1982

    E-Print Network [OSTI]

    Weiss, M. A.

    1982-01-01T23:59:59.000Z

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is, concentration of the kerogen) before the oil-recovery step. The objective was to ...

  12. Examination of eastern oil shale disposal problems - the Hope Creek field study

    SciTech Connect (OSTI)

    Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

    1985-02-01T23:59:59.000Z

    A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

  13. USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES

    E-Print Network [OSTI]

    Girvin, D.G.

    2011-01-01T23:59:59.000Z

    W. A. Robb, and T. J. Spedding. Minor Elements in Oil Shaleand Oil-Shale Products. LERC RI 77-1, 1977. Bertine, K. K.From A Simulated In-Situ Oil Shale Retort. In: Procedings of

  14. INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER

    E-Print Network [OSTI]

    Farrier, D.S.

    2011-01-01T23:59:59.000Z

    W. A. Robb, and T. J. Spedding. Minor Elements in Oil Shaleand Oil Shale Products. LERC Rept. of Invest. 77-1, 1977.Significant to In Situ Oil Shale Processing. Quart. Colo.

  15. Plan and justification for a Proof-of-Concept oil shale facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  16. Rigorous Simulation Model of Kerogen Pyrolysis for the In-situ Upgrading of Oil Shales

    E-Print Network [OSTI]

    Lee, Kyung Jae

    2014-10-09T23:59:59.000Z

    Oil shale is a vast, yet untapped energy source, and the pyrolysis of kerogen in the oil shales releases recoverable hydrocarbons. In this dissertation, we investigate how to increase process efficiency and decrease the costs of in-situ upgrading...

  17. Assessing the mechanical microstructure of shale by nanoindentation : the link between mineral composition and mechanical properties

    E-Print Network [OSTI]

    Bobko, Christopher Philip, 1981-

    2008-01-01T23:59:59.000Z

    Shale is a multi-phase, multi-scale sedimentary rock that makes up 75% of the earth's sedimentary basins and is especially critical in petroleum engineering applications. At macroscopic scales, shales possess a diverse set ...

  18. Complex conductivity tensor of anisotropic hydrocarbon-1 bearing shales and mudrocks2

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    to describe seismic and electromagnetic (EM) measurements in these anisotropic54 materials.55 Oil-shale to release their hydrocarbons. Hence, oil shales and58 mudrocks are typically water-wet, single- or dual

  19. Repassivation of 13% Cr steel dependent on brine pH

    SciTech Connect (OSTI)

    Skogsberg, J.W.; Walker, M.L.

    2000-02-01T23:59:59.000Z

    A joint laboratory project, involving an oil production and oil well service company, investigated repassivation of martensitic 13% Cr steel. The rate at which this alloy is repassivated after losing its protective passive oxide layer to hydrochloric acid (HCI) depended on the pH of the spent acid returns. Test samples of 13% Cr cut from oilfield tubing were subjected to a fluid sequence of (1) initial brine, (2) HCI, (3) spent acid, and (4) final brine. In 9 days, the samples regained their passive oxide layers. When spent acid was taken out of the fluid sequence, the samples regained passive oxide layers in 3 days.

  20. Brine transport studies in the bedded salt of the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    McTigue, D.F.; Nowak, E.J.

    1987-01-01T23:59:59.000Z

    Brine flow has been measured to unheated boreholes for periods of a few days and to heated holes for two years in the WIPP facility. It is suggested that Darcy flow may dominate the observed influx of brine. Exact solutions to a linearized model for one-dimensional, radial flow are evaluated for conditions approximating the field experiments. Flow rates of the correct order of magnitude are calculated for permeabilities in the range 10/sup -21/ to 10/sup -20/ m/sup 2/ (1 to 10 nanodarcy) for both the unheated and heated cases. 20 refs., 3 figs., 1 tab.