Powered by Deep Web Technologies
Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Characterization of a soil contaminated by oilfield brine  

SciTech Connect (OSTI)

Brine contamination of soil is a common environmental problem associated with the onshore production of oil and gas. A site of extensive contamination in Oklahoma has been characterized using conductimetry, direct potentiometry (pH- and chloride-selective electrodes), and atomic absorption spectrophotometry (for Na{sup +} and Ca{sup 2+}) to determine the extent of the contamination and the efficacy of various remediation technologies.

Al-Mutairi, K.; Harris, T. [Univ. of Tulsa, OH (United States)

1995-12-01T23:59:59.000Z

2

Remediation of brine-contaminated soil using calcium nitrate, gypsum, and straw.  

E-Print Network [OSTI]

??Salt-affected soils from point source brine contamination are common in the active oil field in SE Saskatchewan. A remediation process that included dewatering by sub-surface… (more)

Nielsen, Jennifer I.

2013-01-01T23:59:59.000Z

3

A cost-effective statistical screening method to detect oilfield brine contamination  

SciTech Connect (OSTI)

A statistical screening method has been developed using Tolerance Limits for barium (Ba{sup +2}) to identify contamination of a fresh-water aquifer by oilfield brines. The method requires an understanding of the local hydrochemistry of oilfield brines, inexpensive, Publicly available hydrochemical data, a single sample analysis from the suspect well and the application of a simple statistical procedure. While this method may not provide absolute evidence of oilfield brine contamination of a fresh-water aquifer, it does identify conditions where brine contamination is a strong probability over other possible sources of chlorides.

Alyanak, N.; Grace, J.T.; Campbell, M.D. [United Resources International, Houston, TX (United States)

1995-12-01T23:59:59.000Z

4

In cooperation with Fort Peck Tribes Office of Environmental Protection Delineation of Brine Contamination in and near the  

E-Print Network [OSTI]

;#12;Delineation of Brine Contamination in and near the East Poplar Oil Field, Fort Peck Indian Reservation citation: Thamke, J.N., and Smith, B.D., 2014, Delineation of brine contamination in and near the EastIn cooperation with Fort Peck Tribes Office of Environmental Protection Delineation of Brine

Torgersen, Christian

5

Soils and Brine Geochemistry and Mineralogy of Hyperarid Desert Playa, Ouargla Basin,  

E-Print Network [OSTI]

Soils and Brine Geochemistry and Mineralogy of Hyperarid Desert Playa, Ouargla Basin, Algerian. The chemical and mineralogical specificity of this hyperarid ecosystem has been compared to other areas under

Ahmad, Sajjad

6

Emplacement and release of brines from subsurface  

E-Print Network [OSTI]

Groundwater contamination by dense brines is addressed fromgroundwater contamination where dense brines might have beenbrines can become long-term sources of groundwater contamination

Hunt, James R; Flowers, Tracey C

2004-01-01T23:59:59.000Z

7

Review of soil contamination guidance  

SciTech Connect (OSTI)

A review of existing and proposed radioactive soil contamination standards and guidance was conducted for United Nuclear Corporation (UNC), Office of Surplus Facilities Management. Information was obtained from both government agencies and other sources during a literature survey. The more applicable standards were reviewed, evaluated, and summarized. Information pertaining to soil contamination for both facility operation and facility decommissioning was obtained from a variety of sources. These sources included: the Code of Federal Regulations, regulatory guides, the Federal Register, topical reports written by various government agencies, topical reports written by national laboratories, and publications from the American National Standards Institute (ANSI). It was difficult to directly compare the standards and guidance obtained from these sources since each was intended for a specific situation and different units or bases were used. However, most of the information reviewed was consistent with the philosophy of maintaining exposures at levels as low as reasonably achievable (ALARA).

Mueller, M.A.; Kennedy, W.E. Jr.; Soldat, J.K.

1981-08-01T23:59:59.000Z

8

Bioaugmentation of TNT-contaminated soil  

E-Print Network [OSTI]

Microbial transformation of trinitrotoluene (TNT) in phics. contaminated soil was investigated in this research. A Bacillus sp., isolated from soil obtained from an army ammunition facility, was used to enhance the rate of TNT removal over a 360 day...

Bokelmann, Annamarie

1999-01-01T23:59:59.000Z

9

In situ removal of contamination from soil  

DOE Patents [OSTI]

A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

Lindgren, E.R.; Brady, P.V.

1997-10-14T23:59:59.000Z

10

In situ removal of contamination from soil  

DOE Patents [OSTI]

A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

Lindgren, Eric R. (Albuquerque, NM); Brady, Patrick V. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

11

Assessing inhalation exposure from airborne soil contaminants  

SciTech Connect (OSTI)

A method of estimation of inhalation exposure to airborne soil contaminants is presented. this method is derived from studies of airborne soil particles with radioactive tags. The concentration of contaminants in air (g/m{sup 3}) can be derived from the product of M, the suspended respirable dust mass concentration (g/m{sup 3}), S, the concentration of contaminant in the soil (g/g), and E{sub f}, an enhancement factor. Typical measurement methods and values of M, and E{sub f} are given along with highlights of experiences with this method.

Shinn, J.H.

1998-04-01T23:59:59.000Z

12

A petroleum contaminated soil bioremediation facility  

SciTech Connect (OSTI)

The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation.

Lombard, K.; Hazen, T.

1994-06-01T23:59:59.000Z

13

Evaluation of soil washing for radiologically contaminated soils  

SciTech Connect (OSTI)

Soil washing has been applied internationally to decontaminate soils due to the widespread increase in environmental awareness manifested in the United States by promulgation of the Comprehensive Environmental Response, Compensation and Liability Act, yet we continue to lack understanding on why the technique works in one application and not in another. A soil washing process typically integrates a variety of modules, each designed to decontaminate the matrix by destroying a particular phase or segregating a particle size fraction in which the contaminants are concentrated. The more known about how the contaminants are fixed, the more likely the process will succeed. Much can be learned from bioavailability studies on heavy metals in soils. Sequential extraction experiments designed to destroy one fixation mechanism at a time can be used to determine how contaminants are bound. This knowledge provides a technical basis for designing a processing strategy to efficiently decontaminate soil while creating a minimum of secondary wastes. In this study, a soil from the Idaho National Engineering Laboratory was physically and chemically characterized, then sequentially extracted to determine if soil washing could be effectively used to remove cesium, cobalt and chromium.

Gombert, D. II

1994-03-01T23:59:59.000Z

14

In-Situ Thermal Remediation of Contaminated Soil1  

E-Print Network [OSTI]

as follows. Over a period of several weeks, electrical energy is introduced to the contaminated soil usingChapter 1 In-Situ Thermal Remediation of Contaminated Soil1 Written by Huaxiong Huang,2 Serguei Lapin and Rex Westbrook 1.1 Background Recently, a method for removing contaminants from soil (several

Lapin, Sergey

15

Method for treatment of soils contaminated with organic pollutants  

DOE Patents [OSTI]

A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

Wickramanayake, Godage B. (Cranbury, NJ)

1993-01-01T23:59:59.000Z

16

Bioremediation of uranium contaminated soils and wastes  

SciTech Connect (OSTI)

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

Francis, A.J.

1998-12-31T23:59:59.000Z

17

Remediating pesticide contaminated soils using solvent extraction  

SciTech Connect (OSTI)

Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p{prime}-DDT, p,p{prime}-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as solvents over a wide range of operating conditions. It was demonstrated that a six-stage methanol extraction using a solvent-to-soil ratio of 1.6 can decrease pesticide levels in the soil by more than 99% and reduce the volume of material requiring further treatment by 25 times or more. The high solubility of the pesticides in methanol resulted in rapid extraction rates, with the system reaching quasi-equilibrium state in 30 minutes. The extraction efficiency was influenced by the number of extraction stages, the solvent-to-soil ratio, and the soil moisture content. Various methods were investigated to regenerate and recycle the solvent. Evaporation and solvent stripping are low cost and reliable methods for removing high pesticide concentrations from the solvent. For low concentrations, GAC adsorption may be used. Precipitating and filtering pesticides by adding water to the methanol/pesticide solution was not successful when tested with soil extracts. 26 refs., 10 figs., 6 tabs.

Sahle-Demessie, E.; Meckes, M.C.; Richardson, T.L. [National Management Research Lab., Cincinnati, OH (United States)

1996-12-31T23:59:59.000Z

18

Coupling Sorption to Soil Weathering during Reactive Transport: Impacts of Mineral Transformation and Sorbate Aging on Contaminant Speciation and Mobility  

SciTech Connect (OSTI)

The Hanford subsurface has become contaminated with highly alkaline, radioactive waste generated as a result of weapons production. The radioactive brine was stored in underground storage tanks, a number of which developed leaks and contaminated the surrounding subsurface. The high pH and ionic strength of these wastes has been predicted to accelerate the degree of soil weathering to produce new mineral phases--cancrinite and sodalite among the most abundant. Previous work has demonstrated that Cs and Sr, which along with I represent the most radioactive components in the waste, are sequestered by these neo-formed solids. The present work is aimed at assessing the stability of these neo-formed solids, with special emphasis on the degree of Cs, Sr and I release under ambient (neutral pH, low ionic strength) conditions expected to return to the Hanford area after the caustic radioactive brine waste is removed.

Carl I. Steefel; Aaron Thompson; Jon Chorover

2006-06-01T23:59:59.000Z

19

Procedures for sampling radium-contaminated soils  

SciTech Connect (OSTI)

Two procedures for sampling the surface layer (0 to 15 centimeters) of radium-contaminated soil are recommended for use in remedial action projects. Both procedures adhere to the philosophy that soil samples should have constant geometry and constant volume in order to ensure uniformity. In the first procedure, a ''cookie cutter'' fashioned from pipe or steel plate, is driven to the desired depth by means of a slide hammer, and the sample extracted as a core or plug. The second procedure requires use of a template to outline the sampling area, from which the sample is obtained using a trowel or spoon. Sampling to the desired depth must then be performed incrementally. Selection of one procedure over the other is governed primarily by soil conditions, the cookie cutter being effective in nongravelly soils, and the template procedure appropriate for use in both gravelly and nongravelly soils. In any event, a minimum sample volume of 1000 cubic centimeters is recommended. The step-by-step procedures are accompanied by a description of the minimum requirements for sample documentation. Transport of the soil samples from the field is then addressed in a discussion of the federal regulations for shipping radioactive materials. Interpretation of those regulations, particularly in light of their application to remedial action soil-sampling programs, is provided in the form of guidance and suggested procedures. Due to the complex nature of the regulations, however, there is no guarantee that our interpretations of them are complete or entirely accurate. Preparation of soil samples for radium-226 analysis by means of gamma-ray spectroscopy is described.

Fleischhauer, H.L.

1985-10-01T23:59:59.000Z

20

BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.  

SciTech Connect (OSTI)

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

FRANCIS,A.J.

1998-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

System for the removal of contaminant soil-gas vapors  

DOE Patents [OSTI]

A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

Weidner, Jerry R. (Iona, ID); Downs, Wayne C. (Sugar City, ID); Kaser, Timothy G. (Ammon, ID); Hall, H. James (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

22

System for the removal of contaminant soil-gas vapors  

DOE Patents [OSTI]

A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

1997-12-16T23:59:59.000Z

23

Activated Peroxygens for Remediation of Contaminated Soil and Groundwater  

E-Print Network [OSTI]

i Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis Submitted of Doctor of Philosophy Department of Chemistry, Biotechnology and Environmental Engineering Section May 2011 #12;ii Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis

Hansen, René Rydhof

24

ORIGINAL PAPER Bioremediation of oily sludge-contaminated soil  

E-Print Network [OSTI]

ORIGINAL PAPER Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes In situ bioremediation of oily sludge- contaminated soil by biostimulation of indigenous microbes through. Keywords Bioremediation Á Biostimulation Á In situ Á Microbial community Á Oily sludge Introduction

Ma, Lena

25

Electron Microbeam Investigation of Uranium-Contaminated Soils from  

E-Print Network [OSTI]

Research Electron Microbeam Investigation of Uranium-Contaminated Soils from Oak Ridge, TN, USA J O Street, Baltimore, Maryland 21218, Department of Geological Sciences, Indiana University, 1001 East 10th Street, Bloomington, Indiana 47405 Two samples of uranium-contaminated soil from the Department of Energy

Zhu, Chen

26

Comparative analyses of soil contaminant levels and plant species diversity at developing and disused oil well sites in Qianjiang oilfield, China  

SciTech Connect (OSTI)

Oilfield development contaminates soils and waters with crude oil, brine and heavy metals. Oil well sites are probably the most contaminated places in oilfields. During drilling and crude oil extraction from underground stores, a significant amount of oil and brine discharges into soils at oil well sites by blowouts, container spillages and pipeline ruptures. In oilfields in China, it was estimated that about 0.77 - 1.85% crude oil discharged into soils at oil well sites during oilfield development. Exposure to oil and salt contaminants could evoke toxicological effects in plants. Responses of plants to the contaminant exposure include inhibition of photosynthesis and nitrogen fixation, cessation of growth, reduced reproductive success and mortality. These harmful impacts on plants would be expected to result in remarkable loss of biodiversity. Qianjiang oilfield has been developed for about thirty-five years. Oil well sites in it have long been contaminated with oil and brine since, and plants at the well sites are rare. In the last three years however some wells have fallen into disuse. In result, a few plant species have intruded into the disuse well sites and formed new populations, and plant species diversity in these places has increased thereby. For benefit of restoration of the disuse well sites, it is interesting to know the relationships between contaminant levels and plant biodiversity. The present paper focuses the attention on comparative analyses of soil contaminations by crude oil, salt and some heavy metals and plant species diversity at developing and disuse oil well sites. 15 refs., 3 tabs.

Xiong, Z.T.; Hu, H.X.; Wang, Y.X. [Wuhan Univ., Hubei (China)] [and others] [Wuhan Univ., Hubei (China); and others

1997-04-01T23:59:59.000Z

27

Brine contamination of ground water and streams in the Baxterville Oil Field Area, Lamar and Marion Counties, Mississippi. Water resources investigation  

SciTech Connect (OSTI)

The report defines the extent of oil-field-brine contamination in ground water and streams in the Baxterville oil field area. The report is based largely on data collected during the period October 1984 through November 1985. Water samples were collected from streams and wells in the study area. Data from a previous study conducted in the vicinity of the nearby Tatum Salt Dome were used for background water-quality information. Natural surface-water quality was determined by sampling streamflow from a nearby basin having no oil field activities and from samples collected in an adjacent basin during a previous study.

Kalkhoff, S.J.

1993-12-31T23:59:59.000Z

28

Apparatus for treatment of soils contaminated with organic pollutants  

DOE Patents [OSTI]

An apparatus for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil in a manner adapted to decompose the organic compounds; one embodiment of the apparatus comprises a means to supply ozone as a gas-ozone mixture, a stability means to treat ozone obtained from the supply and distribution means to apply the stabilized gas-ozone to soil. The soil may be treated in situ or may be removed for treatment and refilled.

Wickramanayake, Godage B. (Columbus, OH)

1993-01-01T23:59:59.000Z

29

Kinetics of Cd Release from Some Contaminated Calcareous Soils  

SciTech Connect (OSTI)

Contamination of soils with heavy metals may pose long-term risk to groundwater quality leading to health implications. Bioavailability of heavy metals, like cadmium (Cd) is strongly affected by sorption and desorption processes. The release of heavy metals from contaminated soils is a major contamination risks to natural waters. The release of Cd from contaminated soils is strongly influenced by its mobility and bioavailability. In this study, the kinetics of Cd desorption from ten samples of contaminated calcareous soils, with widely varying physicochemical properties, were studied using 0.01 M EDTA extraction. The median percentage of Cd released was about 27.7% of the total extractable Cd in the soils. The release of Cd was characterized by an initial fast release rate (of labile fractions) followed by a slower release rate (of less labile fractions) and a model of two first-order reactions adequately describes the observed release of Cd from the studied soil samples. There was positive correlation between the amount of Cd released at first phase of release and Cd in exchangeable fraction, indicating that this fraction of Cd is the main fraction controlling the Cd in the kinetic experiments. There was strongly negative correlation between the amount of Cd released at first and second phases of release and residual fraction, suggesting that this fraction did not contribute in Cd release in the kinetic experiments. The results can be used to provide information for evaluation of Cd potential toxicity and ecological risk from contaminated calcareous soils.

Sajadi Tabar, S.; Jalali, M., E-mail: jalali@basu.ac.ir [Bu-Ali Sina University, Department of Soil Science, College of Agriculture (Iran, Islamic Republic of)

2013-03-15T23:59:59.000Z

30

An integrated treatment methodology for PCB-contaminated soil  

E-Print Network [OSTI]

This study proposed coupling two different treatment technologies, chemical dehalogenation using potassium polyethylene glycol (KPEG) and bioremediation, to optimize the destruction and detoxification of PCB-contaminated soil. Changes in toxicity...

Garcia, Shannon S

1995-01-01T23:59:59.000Z

31

Remediation of arsenic-contaminated soils and groundwaters  

DOE Patents [OSTI]

An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

Peters, Robert W. (Naperville, IL); Frank, James R. (Glen Ellyn, IL); Feng, Xiandong (West Richland, WA)

1998-01-01T23:59:59.000Z

32

BIOCYCLE JUNE 2002 41 ETAL contaminated soils  

E-Print Network [OSTI]

where smelter emissions or mine wastes caused con- tamination and soils were acidic. Such metal toxic the location of the main lead smelter, over 2,000 yards of soils have been excavated and replaced with clean

Brown, Sally

33

Use of passive sampling devices to determine soil contaminant concentrations  

SciTech Connect (OSTI)

The effective remediation of contaminated sites requires accurate identification of chemical distributions. A rapid sampling method using passive sampling devices (PSDs) can provide a thorough site assessment. We have been pursuing their application in terrestrial systems and have found that they increase the ease and speed of analysis, decrease solvent usage and overall cost, and minimize the transport of contaminated soils. Time and cost savings allow a higher sampling frequency than is generally the case using traditional methods. PSDs have been used in the field in soils of varying physical properties and have been successful in estimating soil concentrations ranging from 1 {mu}g/kg (parts per billion) to greater than 200 mg/kg (parts per million). They were also helpful in identifying hot spots within the sites. Passive sampling devices show extreme promise as an analytical tool to rapidly characterize contaminant distributions in soil. There are substantial time and cost savings in laboratory personnel and supplies. By selectively excluding common interferences that require sample cleanup, PSDs can be retrieved from the field and processed rapidly (one technician can process approximately 90 PSDs in an 8-h work day). The results of our studies indicate that PSDs can be used to accurately estimate soil contaminant concentrations and provide lower detection limits. Further, time and cost savings will allow a more thorough and detailed characterization of contaminant distributions. 13 refs., 4 figs., 2 tabs.

Johnson, K.A. [Clemson Univ., Pendleton, SC (United States); [Washington State Univ., Richland, WA (United States); Hooper, M.J. [Clemson Univ., Pendleton, SC (United States); Weisskopf, C.P. [Washington State Univ., Richland, WA (United States)

1996-12-31T23:59:59.000Z

34

Immobilization of uranium in contaminated soil by natural apatite addition  

SciTech Connect (OSTI)

Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P{sub 2}O{sub 5} in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uranium determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P{sub 2}O{sub 5} in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)

Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa; Iles, Deana; Zildzovic, Snezana [Institute for Technology of Nuclear and other Mineral Raw Materials, Franche d' Epere 86, Belgrade (Serbia)

2007-07-01T23:59:59.000Z

35

Vitrification testing of soil fines from contaminated Hanford 100 Area and 300 Area soils  

SciTech Connect (OSTI)

The suitability of Hanford soil for vitrification is well known and has been demonstrated extensively in other work. The tests reported here were carried out to confirm the applicability of vitrification to the soil fines (a subset of the Hanford soil potentially different in composition from the bulk soil) and to provide data on the performance of actual, vitrified soil fines. It was determined that the soil fines were generally similar in composition to the bulk Hanford soil, although the fraction <0.25 mm in the 100 Area soil sample appears to differ somewhat from the bulk soil composition. The soil fines are readily melted into a homogeneous glass with the simple additions of CaO and/or Na{sub 2}O. The vitrified waste (plus additives) occupies only 60% of the volume of the initial untreated waste. Leach testing has shown the glasses made from the soil fines to be very durable relative to natural and man-made glasses and has demonstrated the ability of the vitrified waste to greatly reduce the release of radionuclides to the environment. Viscosity and electrical conductivity measurements indicate that the soil fines will be readily processable, although with levels of additives slightly greater than used in the radioactive melts. These tests demonstrate the applicability of vitrification to the contaminated soil fines and the exceptional performance of the waste form resulting from the vitrification of contaminated Hanford soils.

Ludowise, J.D.

1994-05-01T23:59:59.000Z

36

In situ recycling of contaminated soil uses bioremediation  

SciTech Connect (OSTI)

OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties.

Shevlin, P.J.; Reel, D.A.

1996-04-01T23:59:59.000Z

37

Zinc Speciation in a Smelter-Contaminated Soil Profile  

E-Print Network [OSTI]

Zinc Speciation in a Smelter-Contaminated Soil Profile Using Bulk and Microspectroscopic Techniques minerals may have been aerially deposited from the smelter operation. Microspec- troscopy detected also in increased trace metal concentrations and acidic pH values in topsoils in the vicinity of smelter facilities

Sparks, Donald L.

38

Assessing the Bioavailability of Ni in Smelter Contaminated Soils. (S11-everhart242852-oral)  

E-Print Network [OSTI]

Assessing the Bioavailability of Ni in Smelter Contaminated Soils. (S11-everhart242852-oral efforts. In this study, Welland Loam and Quarry Muck soils contaminated with Ni from a smelter facility

Sparks, Donald L.

39

Remediation of contaminated soils and sediments using Daramend bioremediation  

SciTech Connect (OSTI)

Soils and sediments containing polyaromatic hydrocarbons (PAH), petroleum hydrocarbons, heavy oils, chlorinated phenols, pesticides, herbicides and phthalates, either individually or in combination, have been difficult to remediate in the past. Not only the species of contaminant, but contaminant concentrations were roadblocks to successful use of bioremediation. Daramend{sup Tm} remediation has removed many of these obstacles through extensive research. Bench-scale, pilot-scale and full-scale demonstrations have been conducted at a variety of industrial sites. At a manufactured gas site, 295 days of Daramend remediation reduced concentrations of chrysene and fluoranthene from 38.9 mg/kg to 5.9 mg/kg and 84.6 mg/kg to 7.8 mg/kg respectively. Elsewhere, the total PAH concentration in a silty soil was reduced from 1,442 mg/kg to 36 mg/kg. Concentrations of even the most refractory PAHs (e.g. pyrene, benzo(a)pyrene) were reduced to below the established clean-up guidelines. Total petroleum hydrocarbons (diesel fuel) have also been reduced from 8,700 mg/kg to 34 mg/kg after 182 days of treatment. Similarly, in a clay soil contaminated by crude oil processing, the concentrations of high molecular weight aliphatic hydrocarbons were rapidly reduced (138 days) to below the remediation criteria. Demonstrations with wood treatment site soils have proven Daramend remediation effective in enhancing the target compound degradation rates. Soils containing 2170 mg PCP/kg were shown to contain only 11 mg PCP/kg after 280 days of Darmend remediation. The issue of toxicity of soil containing increased amounts of pentachlorophenols was solved. Performance data collected during these projects indicate that Daramend remediation provides a cost effective method for clean-up of soils and sediments containing a variety of organic compounds.

Burwell, S.W.; Bucens, P.G.; Seech, A.G.

1996-05-01T23:59:59.000Z

40

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network [OSTI]

brine  management  or   extracted  water  management  infrastructure  or  where  nearby  fresh  water  resources  need  to  be   carefully  monitored  for  later  contamination.  

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Uranium-contaminated soils: Ultramicrotomy and electron beam analysis  

SciTech Connect (OSTI)

Uranium-contaminated soils from the U.S. Department of Energy (DOE) Fernald Site, Ohio, have been examined by a combination of scanning electron microscopy with backscattered electron imaging (SEM/BSE) and analytical electron microscopy (AEM). The inhomogeneous distribution of particulate uranium phases in the soil required the development of a method for using ultramicrotomy to prepare transmission electron microscopy (TEM) thin sections of the SEM mounts. A water-miscible resin was selected that allowed comparison between SEM and TEM images, permitting representative sampling of the soil. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite (UO{sub 2}). No uranium was detected in association with phyllosilicates in the soil.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1994-02-01T23:59:59.000Z

42

Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils  

DOE Patents [OSTI]

An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.

Lindgren, E.R.; Mattson, E.D.

1995-07-25T23:59:59.000Z

43

Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils  

DOE Patents [OSTI]

There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.

Lindgren, Eric R. (Albuquerque, NM); Mattson, Earl D. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

44

Hanford Site surface soil radioactive contamination control plan, March 1993  

SciTech Connect (OSTI)

The Decommissioning and Resource Conservation and Recovery Act Closure Program is responsible to the US Department of Energy Richland Field Office, for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities and Resource Conservation and Recovery Act of 1976 closures at the Hanford Site. This program also manages the Radiation Area Remedial Action that includes the surveillance, maintenance, decontamination, and/or interim stabilization of inactive burial grounds, cribs, ponds, trenches, and unplanned release sites. This plan addresses only the Radiation Area Remedial Action activity requirements for managing and controlling the contaminated surface soil areas associated with these inactive sites until they are remediated as part of the Hanford Site environmental restoration process. All officially numbered Radiation Area Remedial Action and non-Radiation Area Remedial Action contaminated surface soil areas are listed in this document so that a complete list of the sites requiring remediation is contained in one document.

Mix, P.D.; Winship, R.A.

1993-04-01T23:59:59.000Z

45

Lead and cadmium speciation in smelter-contaminated soil  

SciTech Connect (OSTI)

The design of a {open_quotes}washing{close_quotes} process for the removal and recovery of heavy metals from contaminated soil requires in-depth knowledge of the speciation of the metals. In addition to being present in their original forms (e.g. oxides particulates emitted by a smelter), the contaminating metals may come to be associated with a variety of solid phases commonly present in soil. The {open_quotes}standard{close_quotes} speciation analysis, a series of sequential chemical extractions, has been examined critically, and several improvements to the procedure have been examined. Also, the procedure has been used to characterize samples collected in the vicinity of a zinc smelter that has been in operation for nearly 80 years.

Bergers, M.; Harris, T. [Univ. of Tulsa, OK (United States)

1995-12-01T23:59:59.000Z

46

Bioremediation of oil-contaminated soil -- A rate model  

SciTech Connect (OSTI)

Three rate equations, a modified Monod equation and two mass transfer rate equations, were used to calculate the biodegradation rate, oxygen transfer rate and oil transfer rate during a bioremediation process of oil-contaminated soil. Based on experimental rate constants, these three rates were calculated and compared. It was found the bioremediation rate of oil-contaminated soil could be controlled by the mass transfer process of oil into aqueous solution (0.12 mg BOD/(1-h)). When the oil transfer rate is enhanced by at least 10 times, the oxygen transfer process (0.1--1.0 mg BOD/(1-h)) becomes the rate-controlling step. For most of the cases, the biodegradation of oil in aqueous solution is not the limiting step unless the microbial population in the aqueous solution is less than 100 mg VSS/1.

Li, K.Y.; Zhang, Y.; Xu, T. [Lamar Univ., Beaumont, TX (United States). Chemical Engineering Dept.] [Lamar Univ., Beaumont, TX (United States). Chemical Engineering Dept.

1995-12-31T23:59:59.000Z

47

Advanced Assay Systems for Radionuclide Contamination in Soils  

SciTech Connect (OSTI)

Through the support of the Department of Energy (DOE) Office of Environmental Management (EM) Technical Assistance Program, the Idaho National Laboratory (INL) has developed and deployed a suite of systems that rapidly scan, characterize, and analyze surface soil contamination. The INL systems integrate detector systems with data acquisition and synthesis software and with global positioning technology to provide a real-time, user-friendly field deployable turn-key system. INL real-time systems are designed to characterize surface soil contamination using methodologies set forth in the Multi-Agency Radiation Surveys and Site Investigation Manual (MARSSIM). MARSSIM provides guidance for planning, implementing, and evaluating environmental and facility radiological surveys conducted to demonstrate compliance with a dose or risk-based regulation and provides real-time information that is immediately available to field technicians and project management personnel. This paper discusses the history of the development of these systems and describes some of the more recent examples and their applications.

J. R. Giles; L. G. Roybal; M. V. Carpenter; C. P. Oertel; J. A. Roach

2008-02-01T23:59:59.000Z

48

In-Situ Contained And Of Volatile Soil Contaminants  

DOE Patents [OSTI]

The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

Varvel, Mark Darrell (Idaho Falls, ID)

2005-12-27T23:59:59.000Z

49

In-Situ Containment and Extraction of Volatile Soil Contaminants  

DOE Patents [OSTI]

The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

Varvel, Mark Darrell

2005-12-27T23:59:59.000Z

50

LEACHING BEHAVIOR OF PETROLEUM CONTAMINATED SOILS STABILIZED WITH HIGH CARBON CONTENT FLY ASH  

E-Print Network [OSTI]

1 LEACHING BEHAVIOR OF PETROLEUM CONTAMINATED SOILS STABILIZED WITH HIGH CARBON CONTENT FLY ASH the stabilization of petroleum- contaminated soils (PCSs) using another recycled material, high carbon content fly; however, the level of petroleum contamination has a significant effect on the leaching properties

Aydilek, Ahmet

51

Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils  

E-Print Network [OSTI]

Zn/Al hydrotalcite in smelter-impacted soils from northernQuantitative Zn speciation in smelter-contaminated soils byand bioavailability of zinc in a smelter contaminated soil.

Jacquat, Olivier

2009-01-01T23:59:59.000Z

52

Rate controlling model for bioremediation of oil contaminated soil  

SciTech Connect (OSTI)

A mathematical model of bio-remediation of hydrocarbons in a soil matrix has been developed to predict the rate controlling step and the remediation rate during the bioremediation of a contaminated soil. The model is based on mass transfer of oxygen and oil into the aqueous solution in the soil matrix and the biodegradation of the hydrocarbons in the aqueous solution. Monod's equation was used to describe the biodegradation rate in aqueous solution while the mass transfer equations were used to describe the mass transfer rates of oxygen and oil in the soil matrix. Results from model calculations indicate that the bio-remediation rate increases and approaches a limiting value when one of the rates becomes controlling. When the parameters of the site soil samples are measured and the solubilities of oxygen and oil in aqueous solution are obtained, the bioremediation rate can be predicted by this model. The rate controlling step of the bioremediation site may be identified quickly and steps to improve the bioremediation rate can be recommended. 8 refs., 7 figs.

Li, K.Y.; Annamali, S.N.; Hopper, J.R. (Lamar Univ., Beaumont, TX (United States))

1993-11-01T23:59:59.000Z

53

Soil & Sediment Contamination, 17:137149, 2008 Copyright Taylor & Francis Group, LLC  

E-Print Network [OSTI]

Soil & Sediment Contamination, 17:137­149, 2008 Copyright © Taylor & Francis Group, LLC ISSN: 1532 of the Human Health Risks of Asbestos in Soils FRANK A. SWARTJES1 AND PETER C. TROMP2 1 National Institute, Apeldoorn, The Netherlands A tiered approach for the assessment of human health risks of soil contamination

Ahmad, Sajjad

54

Uranium-contaminated soils: Ultramicrotomy and electron beam analysis  

SciTech Connect (OSTI)

Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1994-04-01T23:59:59.000Z

55

Effect of moisture on air stripping of non volatile organic contaminants from soil  

E-Print Network [OSTI]

, a fluid phase and a solid phase, similar to the one used for packed bed adsorbers. Mass transfer between the phases was assumed to be controlled by sorption, with first order surface kinetics describing the change of contaminant concentration... . B. Objectives . . Page 1 2 A. Soil Composition and Interaction with Organic Compounds . . B. Effect of Soil Moisture on Contaminant Transport . C. Mathematical Modeling of Contaminant Transport in Soil . D. Air Stripping of Organic...

Alvarez, Roberto

1991-01-01T23:59:59.000Z

56

Physical properties of soils contaminated by oil lakes, Kuwait  

SciTech Connect (OSTI)

In preparation for a marine assault by the coalition forces, the Iraqi Army heavily mined Kuwait`s coastal zone and the oil fields. Over a million mines were placed on the Kuwait soil. Burning of 732 oil wells in the State of Kuwait due to the Iraqi invasion caused damages which had direct and indirect effect on environment. A total of 20-22 million barrels of spilled crude oil were collected in natural desert depressions and drainage network which formed more than 300 oil lakes. The total area covered with oil reached 49 km{sup 2}. More than 375 trenches revealed the existence of hard, massive caliche (CaCO{sub 3}) subsoil which prevent leached oil from reaching deeper horizons, and limited the maximum depth of penetration to 1.75 m. Total volume of soil contaminated reached 22,652,500 m{sup 3} is still causing environmental problems and needs an urgent cleaning and rehabilitation. Kuwait Oil Company has recovered approximately 21 million barrels from the oil lakes since the liberation of Kuwait. In our examined representative soil profiles the oil penetration was not deeper than 45 cm. Infiltration rate, soil permeability, grain size distribution, aggregates formation and water holding capacity were assessed. 15 refs., 5 figs., 5 tabs.

Mohammad, A.S. [Kuwait Univ., Safat (Kuwait); Wahba, S.A.; Al-Khatieb, S.O. [Arabian Gulf Univ. (Bahrain)

1996-08-01T23:59:59.000Z

57

Soil Nitrogen Mineralization Potential for Improved Fertilizer Recommendations and Decreased Nitrate Contamination of Groundwater  

E-Print Network [OSTI]

In order to prevent overfertilization, which could lead to groundwater contamination, rapid and accurate soil testing procedures are needed to evaluate agricultural surface soils for their potential to mineralize C and N. Our objectives were...

Franzluebbers, Alan; Haney, Richard; Hons, Frank

58

Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations  

E-Print Network [OSTI]

brine in the wellbore up to the base of the freshwater aquifer and would thereby lead to contamination.

Birkholzer, J.T.

2012-01-01T23:59:59.000Z

59

Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration  

SciTech Connect (OSTI)

To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

Francis, C. W.

1993-09-01T23:59:59.000Z

60

Geochemical evidence for possible natural migration of Marcellus Formation brine to  

E-Print Network [OSTI]

as the potential for contamination from toxic substances in hydraulic fracturing fluid and/or pro- duced brinesGeochemical evidence for possible natural migration of Marcellus Formation brine to shallow of stray gas, metal-rich formation brines, and hydrau- lic fracturing and/or flowback fluids to drinking

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ARSENIC UPTAKE BY TWO HYPERACCUMULATOR FERNS FROM FOUR ARSENIC CONTAMINATED SOILS  

E-Print Network [OSTI]

(Cai et al., 2002). Smelting and mining sites are often significant sources Water, Air, and Soil Pollution (2005) 168: 71­89 C Springer 2005 #12;72 A. O. FAYIGA AND L. Q. MA of arsenic contamination

Ma, Lena

62

Smouldering Combustion of Organic Liquids in Porous Media for Remediating NAPL-contaminated Soils   

E-Print Network [OSTI]

This research investigated the potential of smouldering combustion to be employed as a remediation approach for soil contaminated by non-aqueous phase liquids (NAPLs). Small-scale (~15 cm), proof-of-concept experiments ...

Pironi, Paolo

2010-01-01T23:59:59.000Z

63

Developing effective removal of caesium, strontium and uranium from contaminated soils and sediments  

E-Print Network [OSTI]

their migration from the source. One of the handful of contaminated soil and water remediation technologies being (National Nuclear Laboratory Ltd.) Nuclear materials processing has produced a large and complex legacy of radioactively contaminated ground (1, 2) . An immediate priority is the remediation of high activity fission

Burke, Ian

64

Zn Speciation in the Organic Horizon of a Contaminated Soil by  

E-Print Network [OSTI]

, MS 6-2100, Berkeley, California 94720 Soils that have been acutely contaminated by heavy metals show to metal toxicity (5). Similar organic layers have been reported in many other contaminated sites (6 distinct characteristics, such as colonization by metal-tolerant plant species and topsoil enrichment

65

Portable brine evaporator unit, process, and system  

DOE Patents [OSTI]

The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

2009-04-07T23:59:59.000Z

66

Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine  

SciTech Connect (OSTI)

Remediation of soil contaminated with {sup 137}Cs remains one of the most challenging tasks after the Chernobyl 1986 accident. The objectives of this research were to (1) identify extractants that may be used to solubilize {sup 137}Cs in soil solution, (2) study the effect of soil amendments on {sup 137}Cs accumulation by plants, and (3) evaluate the applicability of phytoextraction for environmental restoration of soil contaminated with {sup 137}Cs. The availability of {sup 137}Cs to the plants in Chernobyl soil was limited, because this radionuclide was tightly bound to exchange sites of soil particles or incorporated into the crystalline structure of primary and secondary minerals. Out of 20 soil amendments tested to increase {sup 137}Cs desorption/solubility in the soil, ammonium salts were found to be the most practical soil amendment that can potentially increase {sup 137}Cs bioavailability. Among the screened plants, Amaranth cultivars had the highest {sup 137}Cs accumulation. Three sequential crops of Indian mustard grown in one vegetation season at the experimental plot resulted in a small decrease of {sup 137}Cs specific activity within the top 15 cm of soil. Further improvements are necessary to make phytoremediation technology a feasible option for restoration of {sup 137}Cs-contaminated territories.

Dushenkov, S. [Phytotech, Inc., Monmouth Junction, NJ (United States)] [Phytotech, Inc., Monmouth Junction, NJ (United States); Mikheev, A.; Prokhnevsky, A.; Ruchko, M.; Sorochinsky, B. [National Academy of Science, Kiev (Ukraine). Inst. of Cell Biology and Genetic Engineering] [National Academy of Science, Kiev (Ukraine). Inst. of Cell Biology and Genetic Engineering

1999-02-01T23:59:59.000Z

67

Assessment of Dioxin-Like Soil Contamination in Mexico by Enzyme-Linked Immunosorbent Assay  

E-Print Network [OSTI]

Assessment of Dioxin-Like Soil Contamination in Mexico by Enzyme-Linked Immunosorbent Assay E describe the results of a pre- liminary soil assessment program for the detection of dioxins at different sources of dioxins: Anaversa and Tekchem industrial areas where organochlorine pesticides were

Hammock, Bruce D.

68

Operating and life-cycle costs for uranium-contaminated soil treatment technologies  

SciTech Connect (OSTI)

The development of a nuclear industry in the US required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the US Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To avoid disposal of these soils in low-level radioactive waste burial sites, increasing emphasis has been placed on the remediating soils contaminated with uranium and other radionuclides. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the DOE Office of Technology Development (OTD) evaluates and compares the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium-contaminated soils. Each technology must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

Douthat, D.M.; Armstrong, A.Q. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.; Stewart, R.N. [Univ. of Tennessee, Knoxville, TN (United States)

1995-09-01T23:59:59.000Z

69

Soil washing as a potential remediation technology for contaminated DOE sites  

SciTech Connect (OSTI)

Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

Devgun, J.S.; Beskid, N.J. (Argonne National Lab., IL (United States)); Natsis, M.E. (Princeton Univ., NJ (United States)); Walker, J.S. (USDOE, Washington, DC (United States))

1993-01-01T23:59:59.000Z

70

Soil washing as a potential remediation technology for contaminated DOE sites  

SciTech Connect (OSTI)

Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

Devgun, J.S.; Beskid, N.J. [Argonne National Lab., IL (United States); Natsis, M.E. [Princeton Univ., NJ (United States); Walker, J.S. [USDOE, Washington, DC (United States)

1993-03-01T23:59:59.000Z

71

Electrokinetic removal of charged contaminant species from soil and other media using moderately conductive adsorptive materials  

DOE Patents [OSTI]

Method for collecting and concentrating charged species, specifically, contaminant species in a medium, preferably soil. The method utilizes electrokinesis to drive contaminant species into and through a bed adjacent to a drive electrode. The bed comprises a moderately electrically conductive adsorbent material which is porous and is infused with water or other solvent capable of conducting electrical current. The bed material, preferably activated carbon, is easily removed and disposed of. Preferably, where activated carbon is used, after contaminant species are collected and concentrated, the mixture of activated carbon and contaminant species is removed and burned to form a stable and easily disposable waste product.

Lindgren, Eric R. (Albuquerque, NM); Mattson, Earl D. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

72

atrazine-contaminated soils ecotoxicological: Topics by E-print...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 93 Climatic influences on hillslope soil transport efficiency MIT - DSpace...

73

SOIL DESICCATION TECHNIQUES STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU  

SciTech Connect (OSTI)

Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

BENECKE MW; CHRONISTER GB; TRUEX MJ

2012-01-30T23:59:59.000Z

74

Supercritical CO sub 2 -cosolvent extraction of contaminated soils and sediments  

SciTech Connect (OSTI)

DDT- or PCB-contaminated topsoils of high organic content were extracted using supercritical CO{sub 2} or CO{sub 2}-5 wt% cosolvent (toluene, acetone, methanol, acetic acid, diethylamine) mixtures at 313 K and 101 bar. In separate experiments, the pure contaminants were dissolved in supercritical CO{sub 2} at the same conditions and the equilibrium solubilities determined. Most of the cosolvents only marginally improve extraction rates over the case of pure CO{sub 2}. Methanol, however, increases total amounts of DDT removal from 50-80% to > 95%, and increases DDT and PCB extraction rates by as much as an order of magnitude. Methanol is a superior cosolvent probably because its hydrogen-bonding ability is better suited to interaction with the organic matter in the soil (humic acids, fulvic acids, polysaccharides); the organic matter essentially dissolves the contaminants in the soil matrix. Comparing a simple fixed-bed, local equilibrium (based on pure contaminant equilibria) desorption model to the actual desorption data indicates that contaminant solubilities in supercritical fluids are enhanced (over the pure contaminant case) when desorbing from soils. The enhancements may be related to the simultaneous desorption of other low molecular-weight organics from the soils.

Dooley, K.M.; Ghonasgi, D.; Knopf, F.C. (Louisiana State Univ., Baton Rouge (USA))

1990-11-01T23:59:59.000Z

75

Predicting Fate and Transport of Contaminants in the Vadose Zone using a Soil Screening Model  

SciTech Connect (OSTI)

Soil Screening Levels (SSLs) are threshold concentrations below which there is no concern for the migration of residual soil contaminants to the aquifer above maximum contaminant levels (MCLs). At sites where contaminant concentrations exceed SSLs, further study maybe warranted under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). SSLs are based upon simplified fate and transport assumptions, but the guidance allows the flexibility to develop a detailed modeling approach that accounts for complex site variables such as degradation and thickness of the vadose zone. The distinct advantage of the detailed modeling is that individual sites may calculate a less restrictive, but still protective SSL. A Multi-Layer Vadose Zone Contaminant Migration Model [VZCOMML(C)] was developed at the Savannah River Site to allay the higher costs of detailed modeling and achieve a higher clean-up level. The software model is faster, simpler, and less expensive to us e than other commercially available codes.

Rucker, G.

2002-08-14T23:59:59.000Z

76

Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001  

SciTech Connect (OSTI)

This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

Huang, Chin-Pao

2001-05-31T23:59:59.000Z

77

Plasma treatment of INEL soil contaminated with heavy metals  

SciTech Connect (OSTI)

INEL soil spiked with inorganic salts of chromium, lead, mercury, silver, and zinc was melted in a 150 kW plasma furnace to produce a glassy slag product. This glassy slag is an environmentally safe waste form. In order to reduce the melting temperature of the soil, sodium carbonate was added to half of the test batches. Random sample from each batch of glassy slag product were analyzed by an independent laboratory for total metals concentration and leachability of metals via the Environmental Protection Agency (EPA) toxicity characterization leaching procedure (RCLP) tests. These tests showed the residual metals were very tightly bound to the slag matrix and were within EPA TCLP limits under these test conditions. Additionally, scanning electron microscopy (SEM) and emissions dispersive spectroscopy (EDS) analysis of the vitrified soil also confirmed that the added metals present in the vitrified soil were totally contained in the crystalline phase as distinct oxide crystallites.

Detering, B.A.; Batdorf, J.A.

1992-01-01T23:59:59.000Z

78

Alcohol flushing for enhanced removal of coal tar from contaminated soils  

SciTech Connect (OSTI)

Alcohol flushing for enhancing the removal of coal tar from contaminated soils and reducing coal tar concentrations in the aqueous-phase leachate was investigated. Four soil columns were packed with relatively undisturbed coal tar contaminated soils collected from a former coal gasification site. These columns were leached with water and then flushed with isopropyl alcohol (IPA) solutions. Initially, total coal tar concentrations in water leachate ranged from = 0.1 to 150 mg/L for the four columns. Coal tar concentrations in the column effluent generally increased three to five orders of magnitude during the initial IPA flush. Each column was flushed with 1-3 pore volumes of an IPA solution. Reduction of coal tar concentrations in water leachate, attributed to the alcohol flushing, was noted in three of the four columns. The total coal tar removed from the soil columns during the IPA flushes constituted from 54 to 97% of the total coal tar removed during both water leaching (240-800 pore volumes) and alcohol flushing (1-3 pore volumes). The alcohol flushing removed from 3 to 19 % of the total coal tar in the various soil columns. Results indicated that alcohol flushing can enhance the removal of coal tar from contaminated soils and can reduce the aqueous-phase coal tar concentrations in the leachate. 16 refs., 5 figs., 3 tabs.

Hayden, N.J. [Univ. of Vermont, Burlington, VT (United States); Van der Hoven, E.J. [Living Technologies, Inc., Burlington, VT (United States)

1996-11-01T23:59:59.000Z

79

Identification of 300 Area Contaminants of Potential Concern for Soil  

SciTech Connect (OSTI)

This report documents the process used to identify source area contaminants of potential concern (COPCs) in support of the 300 Area remedial investigation/feasibility study (RI/FS) work plan. This report also establishes the exclusion criteria applicable for 300 Area use and the analytical methods needed to analyze the COPCs.

R.W. Ovink

2010-04-05T23:59:59.000Z

80

DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites  

SciTech Connect (OSTI)

The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

Not Available

1989-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Plant Mounds as Concentration and Stabilization Agents for Actinide Soil Contaminants in Nevada  

SciTech Connect (OSTI)

Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around the base of shrubs and are common features in deserts in the southwestern United States. An important factor in their formation is that shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, 241Am, and U in plant mounds at safety experiment and storage-transportation test sites of nuclear devices. Although aerial concentrations of these contaminants were highest in the intershrub or desert pavement areas, the concentration in mounds were higher than in equal volumes of intershrub or desert pavement soil. The NAEG studies found the ratio of contaminant concentration of actinides in soil to be greater (1.6 to 2.0) in shrub mounds than in the surrounding areas of desert pavement. At Project 57 on the NTTR, 17 percent of the area was covered in mounds while at Clean Slate III on the TTR, 32 percent of the area was covered in mounds. If equivalent volumes of contaminated soil were compared between mounds and desert pavement areas at these sites, then the former might contain as much as 34 and 62 percent of the contaminant inventory, respectively. Not accounting for radionuclides associated with shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. In addition, preservation of shrub mounds could be important part of long-term stewardship if these sites are closed by fencing and posting with administrative controls.

D.S. Shafer; J. Gommes

2009-02-03T23:59:59.000Z

82

Lead contamination in street soils of Nairobi City and Mombasa Island, Kenya  

SciTech Connect (OSTI)

The advent of modern industrialization and, in particular, the motor vehicle has witnessed dramatic increases in lead usage both as a component of lead-acid storage battery and from 1923 as organic lead alkyl anti-knock additive in petroleum. Several workers have established a correlation between increasing lead concentration in roadside soils and vehicular traffic density. Although researchers studied the heavy metal content in Lake Victoria sediments, no urban roadside soils were investigated. Since lead is used as a petrol additive in Kenya, it is necessary to document the extent and magnitude of lead contamination of roadside soils in inland and coastal urban environments and evaluate its environmental implications.

Onyari, J.M.; Wandiga, S.O.; Njenga, G.K.; Nyatebe, J.O. (Univ. of Nairobi (Kenya))

1991-05-01T23:59:59.000Z

83

Macroscopic and molecular-scale assessment of soil lead contamination impacted by seasonal dove hunting activities  

SciTech Connect (OSTI)

Environmental contamination of lead (Pb) in soils and sediments poses serious threats to human and ecological health. The objective of this study is to investigate the effect of seasonal dove sports hunting activities on Pb contamination in acid forest soils. A grid sampling method was used to investigate the spatial distribution of Pb contamination in surface soils. Soils were analyzed for total metal(loid) concentration and characterized for physicochemical properties and mineralogy. Adsorption isotherm experiments were also conducted to understand the reactivity and retention capacity of Pb(II) in soils. Finally, synchrotron-based X-ray microprobe and X-ray absorption spectroscopy were used to understand the chemical speciation of Pb that controls the retention/release mechanisms of Pb in soils. There was no excessive accumulation of Pb at the site. However, the concentration of Pb in surface soils was greater than the background level (<16 mg kg{sup -1}). The contamination level of Pb was as high as 67 mg kg{sup -1} near a patch of corn field where lime was frequently applied. A microfocused X-ray microprobe analysis showed the presence of Pb pellet fragments that predominantly contain oxidized Pb(II), suggesting that oxidative dissolution was occurring in soils. Dissolved Pb(II) can be readily retained in soils up to {approx}3,600 mg kg{sup -1} via inner-sphere and outer-sphere surface complexation on carbon and aluminol functional groups of soil components, suggesting that partitioning reactions control the concentration of Pb in soil solution. The fate of Pb is likely to be controlled by (1) oxidative dissolution process of Pb(0) pellets and (2) the release of outer-sphere and/or inner-sphere Pb surface complexes in humic substances and aluminosilicate/Al oxyhydroxides. Although no remedial actions are immediately required, the long-term accumulation of Pb in soils should be carefully monitored in protecting ecosystem and water quality at the dove hunting field.

Arai, Y.; Tappero, R.; Rick, A.R.; Saylor, T.; Faas, E. & Lanzirotti, A.

2011-05-24T23:59:59.000Z

84

Remedial extraction and catalytic hydrodehalogenation for treatment of soils contaminated by halogenated hydrophobic organic compounds  

E-Print Network [OSTI]

for the extraction of 1,2,4,5-tetrachlorobenzne (TeCB) or pentachlorophenol (PCP) from contaminated soil. Palladium-catalyzed hydrodehalogenation (HDH) was applied for destroying TeCB or PCP in mixtures of water and ethanol in a batch mode. The experimental results...

Wee, Hun Young

2009-05-15T23:59:59.000Z

85

Dissolution of Nickel Oxide in a Smelter Contaminated Soil. (S02-mcnear100330-Oral)  

E-Print Network [OSTI]

Dissolution of Nickel Oxide in a Smelter Contaminated Soil. (S02-mcnear100330-Oral) Abstract: Aerially dispersed nickel oxide particles from a nickel smelter were studied. SXRF mapping and SEM imaging oxides used in previous studies may not be representative of that generated from the smelter facility due

Sparks, Donald L.

86

The physiology of mycorrhizal Lolium multiflorum in the phytoremediation of petroleum hydrocarbon-contaminated soil  

E-Print Network [OSTI]

, and water systems (SEMARNAT, 2004). In Tabasco, Mexico which is one of the most important Mexican States for petroleum extraction and distribution, the extent of contaminated soil surface by oil spills is approximately 0.07% of the total area of the state...

Alarcon, Alejandro

2009-06-02T23:59:59.000Z

87

Characterization and inventory of contaminants in WAG 2 floodplain soils of White Oak Creek  

SciTech Connect (OSTI)

A remedial investigation was conducted to determine the extent and type of contamination in the floodplain soils of Waste Area Grouping (WAG) 2, in conjunction with environmental restoration activities at the US Department of Energy (DOE) Oak Ridge Reservation (ORR). WAG 2 is located downstream from the main Oak Ridge National Laboratory (ORNL) plant area. As a result of past, present, and potential future releases of hazardous substances to the environment, the ORR was placed on the National Priorities List in December 1989. Sites on this list must be investigated to determine if remedial actions are possible. This report documents the findings of the remedial investigation of the WAG 2 floodplain soils by (1) presenting the characterization and inventory of contaminants, (2) comparing the walkover survey data to quantitative gamma-emitting radionuclide data, and (3) presenting an assessment of human health risk from exposure to these soils. Contaminant characterization results indicated that the primary contaminants in the WAG 2 floodplain are the gamma-emitting radionuclides {sup 137}Cs and {sup 60}Co, although cobalt activity levels are 1/25th or less than those of cesium. Inorganic contaminants discussed in this report were limited to those contributing significantly to human exposure: antimony, barium, chromium(IV), manganese, mercury, and nickel.

Ford, C.J.; Nyquist, J.E.; Purucker, S.T. [Oak Ridge National Lab., TN (United States); Burgoa, B.B. [CDM Federal Programs Corp., Oak Ridge, TN (United States); Winterfield, R.F. [STEP Environmental, Inc., Oak Ridge, TN (United States)

1997-01-01T23:59:59.000Z

88

Field evaluation of the lignin-degrading fungus 'phanerochaete sordida' to treat creosote-contaminated soil  

SciTech Connect (OSTI)

A field study to determine the ability of selected lignin-degrading fungi to remediate soil contaminated with pentachlorophenol and creosote was performed at a wood treating facility in south central Mississippi in the Autumn of 1991. The study was designed to evaluate 7 fungal treatments and appropriate control treatments. Soil concentrations of 14 priority pollutant polycyclic aromatic hydrocarbon (PAH) components of creosote were measured over time to determine treatment efficacies. Fungal treatments involved mixing fungal inocula and aspen chips into the contaminated soil and maintaining moisture by irrigation and aeration by tillage. PAHs of more than 4 rings persisted at their original concentrations during the 8 wk course of the study for all treatments and controls.

Davis, M.W.; Glaser, J.A.; Evans, J.W.; Lamar, R.T.

1993-01-01T23:59:59.000Z

89

Pilot-scale evaluation of chemical oxidation for MTBE-contaminated soil  

SciTech Connect (OSTI)

The US Environmental Protection Agency (USEPA) has tentatively classified MTBE as a possible human carcinogen, thus further emphasizing the importance for study of fate, transport, and environmental effects of MTBE. The treatment of subsurface contaminants (e.g., MTBE) from leaking underground storage tank (LUST) sites presents many complex challenges. Many techniques have been employed for the remediation of contaminants in soil and groundwater at LUST sites. Under sponsorship of US EPA's National Risk Management Research Laboratory, IT Corporation has conducted evaluations of chemical oxidation of MTBE contaminated soil using Fenton's Reagent (hydrogen peroxide catalyzed by ferrous sulfate), simulating both ex-situ and in-situ soil remediation. Bench-scale ex-situ tests have shown up to 90% degradation of MTBE within 12 hours. Pilot-scale MTBE oxidation tests were conducted in a stainless paddle-type mixer with a 10 cubic foot mixing volume. The reactor was designed with a heavy duty mixer shaft assembly to homogenize soil and included provisions for contaminant and reagent addition, mixing, and sample acquisition. The tests were performed by placing 400 pounds of a synthetic soil matrix (consisting of a mixture of top soil, sand, gravel and clay) in the reactor, spiking with 20 ppm of MTBE, and mixing thoroughly. The variables evaluated in the pilot-scale tests included reaction time, amount of hydrogen peroxide, and amount of ferrous sulfate. After 8 hours of reaction, using 4 times the stoichiometric quantity of hydrogen peroxide and a 10:1 hydrogen peroxide: ferrous iron weight ratio, approximately 60% MTBE degradation was observed. When 10 times the stoichiometric quantity of hydrogen peroxide was used (with the same ratio of hydrogen peroxide to ferrous iron), 90% MTBE degradation was observed. When the same test was performed without any ferrous iron addition, 75% MTBE degradation was observed.

Rahman, M.; Schupp, D.A.; Krishnan, E.R.; Tafuri, A.N.; Chen, C.T.

1999-07-01T23:59:59.000Z

90

In situ chemical fixation of arsenic-contaminated soils: Anexperimental study  

SciTech Connect (OSTI)

This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching procedure (TCLP) and EPA Method 1312 [USEPA.Method 1312:synthetic precipitation leaching procedure. Test methods for evaluatingsolid waste, physical/chemical methods. 3rd ed. Washington, DC: U.S.Environmental Protection Agency, Office of Solid Waste. U.S. GovernmentPrinting Office; 1994]synthetic precipitation leaching procedure(SPLP).Both FW and BH soils showed significant decreases in arsenicleachability for all three treatment solutions, compared to untreatedsoil. While soils treated with solution (3) showed the best results withsubsequent TCLP sequential leaching, SPLP sequential leaching of treatedsoils indicated that lowest arsenic mobility was obtained using treatmentsolution (1). Treatment solution (1) with only FeSO4 is considered thebest choice for remediation of arsenic-contaminated soil because SPLPsequential leaching better simulates natural weathering. Analysis oftreated soils produced no evidence of newly-formed arsenic-bearing phasesin either soil after treatment. Sequential chemical extractions oftreated soils indicate that surface complexation of arsenic on ferrichydroxide is the major mechanism for the fixation process.

Yang, Li; Donahoe, Rona J.; Redwine, James C.

2007-03-27T23:59:59.000Z

91

Characteristics of radionuclide-contaminated soils from the Sedan crater area at the Nevada test site  

SciTech Connect (OSTI)

The distribution of radionuclides in selected soil profiles and the characteristics of contaminated ejecta in the Sedan crater area (site of a nuclear excavation test conducted in 19862) were investigated in an attempt to define the physicochemical parameters controlling the redistribution of radionuclides required to assess the environmental and health hazards of the contaminated area. The results showed that concentrations of /sup 239,240/Pu, /sup 241/Am, /sup 155/Eu, /sup 137/Cs, /sup 102m/Rh, /sup 90/Sr, and /sup 60/Co decreased with depth and with increasing distance from ground zero. The contaminated particles occurred as moderately porous calcium aluminosilicate glass, predominantly and size (2-0.1 mm in diameter), in the loamy sand or sandy loam soil. Differences in distribution patterns and concentration ratios among the radionuclides indicted a that a significant fraction of the /sup 137/Cs and /sup 90/Sr present in contaminated overburden materials had moved downward during the past 22 years, under arid environmental conditions, into the buried soil.

Lee, S.Y.; Tamura, T.; Larsen, I.L.; Essington, E.H.

1987-08-01T23:59:59.000Z

92

Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site  

SciTech Connect (OSTI)

As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station.

Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

1983-09-01T23:59:59.000Z

93

Modeling of heavy metal transport in a contaminated soil  

SciTech Connect (OSTI)

Observed depth profiles in soils polluted by Zn and Cu that originate from a metal smelter are quantitatively interpreted by combining the production history of the smelter with established transport models. Using independent laboratory and field data, we were able to calculate the present depth profiles semiquantitatively by applying the pure convection model without parameter fitting. The agreement of the calculated depth profiles with the experimental data can be improved by including dispersion effects in the convection-dispersion model or the stochastic convection model. For the latter model, the depth profiles were calculated analytically. These models were used to calculate the expected depth profiles in the future and to judge possible remediation strategies. 48 refs., 12 figs., 1 tab.

Cernik, M.; Federer, P.; Borkovec, M.; Sticher, H. [Inst. of Terrestrial Ecology, Schlieren (Switzerland)

1994-11-01T23:59:59.000Z

94

Remediation application strategies for depleted uranium contaminated soils at the US Army Yuma Proving Ground  

SciTech Connect (OSTI)

The US Army Yuma Proving Ground (YPG), located in the southwest portion of Arizona conducts firing of projectiles into the Gunpoint (GP-20) firing range. The penetrators are composed of titanium and DU. The purpose of this project was to determine feasible cleanup technologies and disposal alternatives for the cleanup of the depleted uranium (DU) contaminated soils at YPG. The project was split up into several tasks that include (a) collecting and analyzing samples representative of the GP-20 soils, (b) evaluating the data results, (c) conducting a literature search of existing proven technologies for soil remediation, and (0) making final recommendations for implementation of this technology to the site. As a result of this study, several alternatives for the separation, treatment, and disposal procedures are identified that would result in meeting the cleanup levels defined by the Nuclear Regulatory Commission for unrestricted use of soils and would result in a significant cost savings over the life of the firing range.

Vandel, D.S.; Medina, S.M.; Weidner, J.R.

1994-03-01T23:59:59.000Z

95

Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers  

DOE Patents [OSTI]

Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

Carrigan, Charles R.; Nitao, John J.

2003-06-10T23:59:59.000Z

96

Selective leaching of uranium from uranium-contaminated soils: Progress report 1  

SciTech Connect (OSTI)

Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

1993-02-01T23:59:59.000Z

97

Selective leaching of uranium from uranium-contaminated soils: Progress report 1  

SciTech Connect (OSTI)

Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

1993-02-01T23:59:59.000Z

98

TECHNICAL EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM-CONTAMINATED SOILS AT THE NEVADA TEST SITE (NTS)  

SciTech Connect (OSTI)

The Clemson Environmental Technologies Laboratory (CETL) was contracted by the National Energy Technology Center to evaluate technologies that might be used to reduce the volume of plutonium-contaminated soil at the Nevada Test Site. The project has been systematically approached. A thorough review and summary was completed for: (1) The NTS soil geological, geochemical and physical characteristics; (2) The characteristics and chemical form of the plutonium that is in these soils; (3) Previous volume reduction technologies that have been attempted on the NTS soils; (4) Vendors with technology that may be applicable; and (5) Related needs at other DOE sites. Soils from the Nevada Test Site were collected and delivered to the CETL. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu-239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. Using the information obtained from these reviews, three vendors were selected to demonstration their volume reduction technologies at the CETL. Two of the three technologies, bioremediation and soil washing, met the performance criteria. Both were able to significantly reduce the concentration plutonium in the soil from around 1100 pCi/g to 200 pCi/g or less with a volume reduction of around 95%, well over the target 70%. These results are especially encouraging because they indicate significant improvement over that obtained in these earlier pilot and field studies. Additional studies are recommended.

Steve Hoeffner

2003-12-31T23:59:59.000Z

99

Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil  

DOE Patents [OSTI]

In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

Knauss, Kevin G. (Livermore, CA); Copenhaver, Sally C. (Livermore, CA); Aines, Roger D. (Livermore, CA)

2000-01-01T23:59:59.000Z

100

Baldwin Thermal Treatment Facility, Baldwin, Illinois: Organics and contaminated soils  

SciTech Connect (OSTI)

The Baldwin Thermal Treatment Facility is located at the Illinois Power Company`s Baldwin Power Plant, east of St. Louis, Missouri. It consists of two coal fired cyclone boilers and one pulverized coal boiler. Wastes are fed to the two cyclone boilers, at present. Future expansion to the pulverizer unit is planned. The boilers burn at 3,000 F with six seconds retention. This exceeds blast furnaces and most incinerators. An added feature is that the coal and waste materials are injected directly into the hottest zone immediately preventing any possible creation of dioxins. Up to 600 tons of waste per day can be fed to the boilers. This will increase when the third boiler is added to the permit. The facility can take a wide range of sizes and concentrations of coal tars and oils. The on-site process equipment will process these with on-site coal in varying proportions as required to ensure a stable uniform feed to the boiler. The on-site process equipment can process intermixed rock, metal, concrete, soil into a uniform blend with coal tars and coal. On-site decontamination of scrap metal is also provided for.

Kipin, P.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Acoustically enhanced remediation of contaminated soils and ground water. Volume 1  

SciTech Connect (OSTI)

The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

NONE

1995-10-01T23:59:59.000Z

102

Aqueous biphasic extraction of uranium and thorium from contaminated soils. Final report  

SciTech Connect (OSTI)

The aqueous biphasic extraction (ABE) process for soil decontamination involves the selective partitioning of solutes and fine particulates between two immiscible aqueous phases. The biphase system is generated by the appropriate combination of a water-soluble polymer (e.g., polyethlene glycol) with an inorganic salt (e.g., sodium carbonate). Selective partitioning results in 99 to 99.5% of the soil being recovered in the cleaned-soil fraction, while only 0.5 to 1% is recovered in the contaminant concentrate. The ABE process is best suited to the recovery of ultrafine, refractory material from the silt and clay fractions of soils. During continuous countercurrent extraction tests with soil samples from the Fernald Environmental Management Project site (Fernald, OH), particulate thorium was extracted and concentrated between 6- and 16-fold, while the uranium concentration was reduced from about 500 mg/kg to about 77 mg/kg. Carbonate leaching alone was able to reduce the uranium concentration only to 146 mg/kg. Preliminary estimates for treatment costs are approximately $160 per ton of dry soil. A detailed flowsheet of the ABE process is provided.

Chaiko, D.J.; Gartelmann, J.; Henriksen, J.L.; Krause, T.R.; Deepak; Vojta, Y.; Thuillet, E.; Mertz, C.J.

1995-07-01T23:59:59.000Z

103

Characterization of the Contaminated Soil Under the Hanford 324 Building B Cell, Washington, USA - 12182  

SciTech Connect (OSTI)

The 324 Building on the Hanford site played a key role in radiochemical and metallurgical research programs conducted by DOE. The B hot cell in the 324 Building was the site of high-level waste vitrification research. During clean-out operations in November 2009, a tear was noted in the stainless steel liner on the floor of B Cell. Exposure rate readings taken at various locations in the soil about 0.5 meters below B Cell reached 8,900 Roentgen (R) per hour, confirming the existence of a significant soil contamination field. The source of the radioactive material was likely a 510 L spill from the Canister Fabrication Project, consisting of purified, concentrated Cs-137 and Sr-90 solutions totaling 48,000 TBq (1.3 MCi). MCNP modeling was used to estimate that the measured exposure rates were caused by 5,900 TBq (160 kCi) of Sr- 90 and Cs-137, although additional contamination was thought to exist deeper in the soil column. Two physical soil samples were obtained at different depths, which helped verify the contamination estimates. A detailed exposure rate survey inside B Cell was combined with additional MCNP modeling to estimate that an additional 1,700 TBq (460 kCi) is present just below the floor. Based on the results of the sampling campaign, it is likely that the radioactive material below B Cell is primarily consists of feed solutions from the FRG Canister Fabrication Project, and that it contains purified Sr-90 and Cs-137 with enough actinide carryover to make some of the soil transuranic. The close agreement between the Geoprobe calculations and the physical samples adds confidence that there are more than 3700 TBq (100,000 Ci) of Sr-90 and Cs-137 in the soil approximately 1 meter below the cell floor. The majority of the Cs-137 is contained in the first meter of soil, while significant Sr-90 contamination extends to 10 meters below the cell floor. It is also likely that an additional 15,000 TBq (400,000 Ci) of Cs-137 and Sr-90 activity is present directly below the floor of the cell, and that the residual activity inside the cell is only half of the previous estimates. However, the partitioning of activity between residuals in the cell and in the soil below the floor is much more uncertain than the activity calculations associated with the Geoprobe measurements. Taken together, the calculated soil activities represent about half of the spill associated with the FRG Canister Fabrication project. The remainder of the spill is believed to have remained in the cell, where the majority has been removed as part of cell cleanup activities. The magnitude of the soil contamination below 324 B Cell is sobering, and it represents one of the most challenging remediation activities in the DOE complex. Of course, safe remediation begins with a good understanding of the magnitude of the problem. As a result, additional modeling and cross-comparison efforts are planned for 2012. (authors)

Josephson, Walter S. [Worley Parsons Polestar, 601 Williams Boulevard, Suite 4A, Richland WA 99352 (United States)

2012-07-01T23:59:59.000Z

104

Efficacy of Ultraviolet Light and Antimicrobials to Reduce Listeria monocytogenes in Chill Brines.  

E-Print Network [OSTI]

??Chill brines used in ready-to-eat meat processing may be an important source of post-processing contamination by Listeria monocytogenes. The purpose of this study was to… (more)

Parikh, Priti P.

2007-01-01T23:59:59.000Z

105

Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China)  

E-Print Network [OSTI]

Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China Avenue Edouard Belin, 31400 Toulouse, France b Department of Environmental Science, Hunan Agricultural polluted with As, Cd, Zn, Pb and Cu. The contamination levels were in the order of GYBNSZYNJTC showing

Mailhes, Corinne

106

Cathodic protection in oilfield brine  

SciTech Connect (OSTI)

In this paper the use of cathodic protection (CP) to mitigate internal and corrosion-related failures that occur in the produced brine phase of oilfield tanks and production vessels is discussed. Unique considerations covered include brine properties, CP system selection, installation details, monitoring, and coatings.

Turnipseed, S.P. (Chevron U.S.A. Inc., Houston, TX (US))

1991-12-01T23:59:59.000Z

107

Compost Science and Utilization, 9(4):274-283 (2001) BIOREMEDIATION OF A PCB-CONTAMINATED SOIL VIA COMPOSTING  

E-Print Network [OSTI]

Compost Science and Utilization, 9(4):274-283 (2001) BIOREMEDIATION OF A PCB-CONTAMINATED SOIL VIA COMPOSTING Frederick C. Michel Jr.1 , John Quensen, C.A.Reddy NSF Center for Microbial Ecology, Michigan and composted in field scale piles to determine the effect of soil to amendment ratio on PCB degradation

Michel Jr., Frederick C.

2001-01-01T23:59:59.000Z

108

Remediation of a fractured clay soil contaminated with gasoline containing MTBE  

SciTech Connect (OSTI)

Gasoline and other light non-aqueous phase liquids (LNAPLs) released into fractured clay soils initially move by advection of the LNAPL through the fractures. Once advective movement of the LNAPL ceases, dissolution of the gasoline components into the pore water and diffusion into the intact blocks of clay becomes an important transport process. The aqueous-phase flux of each compound in the mixture depends in large part upon its aqueous solubility. For example, a low-solubility compound like isooctane remains primarily in the fracture in the LNAPL. A high-solubility compound, like methyl-tert-butyl ether (MTBE), dissolves readily and may move almost entirely into the clay matrix. The distribution of compounds between the matrix and the fractures will have an important impact on the rate at which the gasoline contaminated soil can be remediated. In this context, the presence of soluble additives like MTBE can significantly impact the risk and remediation time for the, soil. Beginning in 1993 a field study to examine the applicability of air flushing for remediation of low-permeability soils was sponsored by API. The study focused on a variety of soil vapor extraction (SVE) and in situ air sparging (IAS) approaches for mass removal and risk reduction. The source of gasoline contamination in this study was a release of 50 liters of a mixture containing 14 gasoline hydrocarbons ranging from pentane to naphthalene, and including MTBE. The mixture was released into the shallow subsurface and allowed to redistribute for 10 months prior to air flushing startup. Numerical modeling indicated that essentially all of the MTBE should have dissolved into the matrix. In contrast, essentially all of the isooctane should have remained in the LNAPL in the fractures.

Johnson, R.L.; Grady, D.E. [Oregon Graduate Institute, Portland, OR (United States); Walden, T. [BP Oil Europe, Brussels (Belgium)

1997-12-31T23:59:59.000Z

109

Measurement of biodegradation rate constants of a water extract from petroleum-contaminated soil  

SciTech Connect (OSTI)

The study of biodegradation rate constants of petroleum products in water extract from contaminated soil presents an important component in the evaluation of bioremediation process. In this study, soil samples were gathered from an industrial site which was used for maintenance and storage of heavy equipment used in the oil and gas exploration and production industry. The petroleum contaminants were extracted from the soil using distilled water. This water extract was used as the substrate to acclimate a microbial community and also for the biological kinetic studies. Kinetic studies were carried out in batch reactors, and the biodegradation rates were monitored by a computer-controlled respirometer. The BOD data were analyzed by using the Monod equation. Experimental results give the average value of the maximum rate constant as 0.038 mg BOD/(mg VSS hr) and the average value of the substrate concentration of half rate as 746 mg BOD/l. A GC/MS analysis on the sample of the test solutions before and after 5 days of biological oxidation indicates that the hydrocarbons initially present in the solution were degraded.

Li, K.Y.; Kane, A.J.; Wang, J.J.; Cawley, W.A. (Lamar Univ., Beaumont, TX (United States). Chemical Engineering Dept.)

1993-01-01T23:59:59.000Z

110

Strategies for Treating and Dewatering Contaminated Soils and Sediments Simultaneously - 13389  

SciTech Connect (OSTI)

MSE Technology Applications, Inc. (MSE) was asked to perform a series of treatability studies by Global Technologies, Inc. (Global) and M{sup 2} Polymer Technologies, Inc. (M{sup 2} Polymer) using Global's metal treatment agent, Molecular Bonding System (MBS) and M{sup 2} Polymer's super-absorbent polymer, Waste Lock 770 (WL-770). The primary objective of the study was to determine if the two products could be used as a one-step treatment process to reduce the leachability of metals and de-water soils and/or sediments simultaneously. Three phases of work were performed during the treatability study. The first phase consisted of generating four bench-scale samples: two treated using only MBS and two treated using only WL- 770, each at variable concentrations. The second phase consisted of generating nine bench-scale samples that were treated using MBS and WL-770 in combination with three different addition techniques. The third phase consisted of generating four intermediate-scale samples that were treated using MBS and WL-770 simultaneously. The soils used in the treatability study were collected at the Mike Mansfield Advanced Technology Center in Butte, Montana. The collected soils were screened at 4 mesh (4.75 millimeters (mm)) to remove the coarse fraction of the soil and spiked with metallic contaminants of lead, cadmium, nickel, mercury, uranium, chromium, and zinc. (authors)

Bickford, Jody; Foote, Martin [MSE Technology Applications, Inc., 200 Technology Way, Butte, MT 59701 (United States)] [MSE Technology Applications, Inc., 200 Technology Way, Butte, MT 59701 (United States)

2013-07-01T23:59:59.000Z

111

Sulfur Polymer Stabilization/Solidification Treatability Study of Mercury Contaminated Soil from the Y-12 Site  

SciTech Connect (OSTI)

As a result of past operations, the Department of Energy’s (DOE) Oak Ridge Y-12 National Security Complex (Y-12 Plant) has extensive mercury-contamination in building structures, soils, storm sewer sediments, and stream sediments, which are a source of pollution to the local ecosystem. Because of mercury’s toxicity and potential impacts on human health and the environment, DOE continues to investigate and implement projects to support the remediation of the Y-12 site.URS and #9122;CH2M Oak Ridge LLC (UCOR) under its prime contract with DOE has cleanup responsibilities on the DOE Oak Ridge Reservation and is investigating potential mercury-contaminated soil treatment technologies through an agreement with Babcock and Wilcox (B and W) Y-12, the Y-12 operating contractor to DOE. As part of its investigations, UCOR has subcontracted with Brookhaven National Laboratory (BNL) to conduct laboratory-scale studies evaluating the applicability of the Sulfur Polymer Stabilization/Solidification (SPSS) process using surrogate and actual mixed waste Y-12 soils containing mercury (Hg) at 135, 2,000, and 10,000 ppm.SPSS uses a thermoplastic sulfur binder to convert Hg to stable mercury sulfide (HgS) and solidifies the chemically stable product in a monolithic solid final waste form to reduce dispersion and permeability. Formulations containing 40 – 60 dry wt% Y-12 soil were fabricated and samples were prepared in triplicate for Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP) testing by an independent laboratory. Those containing 50 and 60 wt% soil easily met the study criteria for maximum allowable Hg concentrations (47 and 1 ppb, respectively compared with the TCLP limit of 200 ppb Hg). The lowest waste loading of 40 wt% yielded TCLP Hg concentrations slightly higher (240 ppb) than the allowable limit. Since the Y-12 soil tended to form clumps, the improved leaching at higher waste loadings was probably due to reduction in particle size from friction of the soil mixing, which creates more surface area for chemical conversion. This was corroborated by the fact that the same waste loading pre-treated by ball milling to reduce particle size prior to SPSS processing yielded TCLP concentrations almost 30 times lower, and at 8.5 ppb Hg was well below EPA limits. Pre-treatment by ball milling also allowed a reduction in the time required for stabilization, thus potentially reducing total process times by 30%.Additional performance testing was conducted including measurement of compressive strength to confirm mechanical integrity and immersion testing to determine the potential impacts of storage or disposal under saturated conditions. For both surrogate and actual Y-12 treated soils, waste form compressive strengths ranged between 2,300 and 6,500 psi, indicating very strong mechanical integrity (a minimum of greater than 40 times greater than the NRC guidance for low-level radioactive waste). In general, compressive strength increases with waste loading as the soil acts as an aggregate in the sulfur concrete waste forms. No statistically significant loss in strength was recorded for the 30 and 40 wt% surrogate waste samples and only a minor reduction in strength was measured for the 43 wt% waste forms. The 30 wt% Y-12 soil did not show a significant loss in strength but the 50 wt% samples were severely degraded in immersion due to swelling of the clay soil. The impact on Hg leaching, if any, was not determined.

Kalb P.; Milian, L.; Yim, S. P.

2012-11-30T23:59:59.000Z

112

Validation of classical density-dependent solute transport theory for stable, high-concentration-gradient brine displacements in  

E-Print Network [OSTI]

-concentration-gradient brine displacements in coarse and medium sands S.J. Watson a,1 , D.A. Barry a,1 , R.J. Schotting b,*, S.M. Hassanizadeh b a School of Civil and Environmental Engineering, Contaminated Land Assessment and Remediation by a brine solution, under either constant head or constant volume flux conditions. The experimental data

Hassanizadeh, S. Majid

113

Investigation of the potential impacts from tritium soil contamination in the CP-5 yard.  

SciTech Connect (OSTI)

Based on a review of available data, significant contributions to low-level tritium soil contamination in the CP-5 yard have been made by airborne tritium fallout and rainout from the CP-5 ventilation system stack. Based on the distribution of tritium in the yard, it is also likely that leaks in secondary system piping which lead to the cooling towers were a significant contributor to tritium in CP-5 yard subsurface soil. Based on the foregoing analysis, low-level tritium contamination will not prohibit the release of the yard for unrestricted use in the future. Worst case dose estimates based on very conservative assumptions indicate that a 25 rmem annual effective dose equivalent limit will not be exceeded under the most restrictive residential-use family farm scenario. Given the impermeable nature of the glacial till under CP-5, low-level concentrations of tritium may be occasionally detected in the deep well (3300 12D), but the peak concentration will not approach the levels calculated by RESRAD; however, continued monitoring of the deep well is recommended. To ensure that all sources of potential tritium release have been removed from the CP-5 complex, removal of tritiated water from each rod-out hole and an evaluation of the physical integrity of the rod-out holes is recommended. This will also allow for an evaluation of tritium concentrations in shallow groundwater under CP-5 by sampling groundwater that is currently being forced into the drain tile system. Additional surface and subsurface soil sampling and analysis will be required to determine the final release status of soils around the Building 330 complex relative to elevated concentrations of CS-137, CO-60,Co-57, and Eu-152 identified during the 1993 IT Corporation characterization. The potential radiological impact from isolated elevations of the latter radionuclides is relatively low and can be evaluated as part of the final status survey of outdoor areas surrounding the Building 330 complex. In summary, the following activities are recommended: Remove tritiated water from each rod-out hole; Monitor rod-out hole tritium concentrations as they fill up with shallow groundwater; Continue groundwater monitoring and Perform surface and subsurface soil sampling around the CP-5 complex as part of the final status survey.

Hysong, R. J.

1998-12-21T23:59:59.000Z

114

Recycling non-hazardous industrial wastes and petroleum contaminated soils into structural clay ceramics  

SciTech Connect (OSTI)

Cherokee Environmental Group (CEG)--a subsidiary of the Cherokee Sanford Group, Inc. (CSG)--has developed a system to beneficially reuse non-hazardous industrial wastes and petroleum contaminated soils into the recycling process of CSG`s structural clay ceramics manufacturing operation. The wastes and soils are processed, screened, and blended with brickmaking raw materials. The resulting material is formed and fired in such a way that the bricks still exceed American Society for Testing and Materials (ASTM) quality standards. Prior to usage, recycled materials are rigorously tested for ceramic compatibility and environmental compliance. Ceramic testing includes strength, shrinkage, and aesthetics. Environmental compliance is insured by testing for both organic and inorganic constituents. This recycling process has been fully permitted by all required state regulatory agencies in North Carolina, Maryland, and South Carolina where facilities are located. This inter-industrial synergy has eliminated landfill reliance and liability for many companies and property owners. The recycling volume of wastes and soils is high because CSG is one of the largest brick manufacturers in the nation. Together, CEG and CSG have eliminated more than 1 billion pounds of material from landfills by beneficially reusing the non-hazardous wastes.

MacRunnels, Z.D.; Miller, H.B. Jr. [Cherokee Environmental Group, Sanford, NC (United States)

1994-12-31T23:59:59.000Z

115

Comparison of Statistically Modeled Contaminated Soil Volume Estimates and Actual Excavation Volumes at the Maywood FUSRAP Site - 13555  

SciTech Connect (OSTI)

As part of the ongoing remediation process at the Maywood Formerly Utilized Sites Remedial Action Program (FUSRAP) properties, Argonne National Laboratory (Argonne) assisted the U.S. Army Corps of Engineers (USACE) New York District by providing contaminated soil volume estimates for the main site area, much of which is fully or partially remediated. As part of the volume estimation process, an initial conceptual site model (ICSM) was prepared for the entire site that captured existing information (with the exception of soil sampling results) pertinent to the possible location of surface and subsurface contamination above cleanup requirements. This ICSM was based on historical anecdotal information, aerial photographs, and the logs from several hundred soil cores that identified the depth of fill material and the depth to bedrock under the site. Specialized geostatistical software developed by Argonne was used to update the ICSM with historical sampling results and down-hole gamma survey information for hundreds of soil core locations. The updating process yielded both a best guess estimate of contamination volumes and a conservative upper bound on the volume estimate that reflected the estimate's uncertainty. Comparison of model results to actual removed soil volumes was conducted on a parcel-by-parcel basis. Where sampling data density was adequate, the actual volume matched the model's average or best guess results. Where contamination was un-characterized and unknown to the model, the actual volume exceeded the model's conservative estimate. Factors affecting volume estimation were identified to assist in planning further excavations. (authors)

Moore, James [U.S. Army Corps of Engineers - New York District 26 Federal Plaza, New York, New York 10278 (United States)] [U.S. Army Corps of Engineers - New York District 26 Federal Plaza, New York, New York 10278 (United States); Hays, David [U.S. Army Corps of Engineers - Kansas City District 601 E. 12th Street, Kansas City, Missouri 64106 (United States)] [U.S. Army Corps of Engineers - Kansas City District 601 E. 12th Street, Kansas City, Missouri 64106 (United States); Quinn, John; Johnson, Robert; Durham, Lisa [Argonne National Laboratory, Environmental Science Division 9700 S. Cass Ave., Argonne, Illinois 60439 (United States)] [Argonne National Laboratory, Environmental Science Division 9700 S. Cass Ave., Argonne, Illinois 60439 (United States)

2013-07-01T23:59:59.000Z

116

The science of global soil change: Networking for our future  

E-Print Network [OSTI]

that showcases more than 150 long-term studies and encourages scientists from around the world to collaborate in new ways (http://ltse.env.duke.edu). At the workshop, researchers presented results from long-term studies of soil fertility and contamination... model parameters based on observations. Processes of vertical and lat- eral mixing and the parameterization of eddies, plumes, freshwater and heat fluxes, the cold shallow halocline, and brine forma- tion also require refinement and validation...

Billings, Sharon A.

2008-04-01T23:59:59.000Z

117

Independent Verification Survey of the Clean Coral Storage Pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project  

SciTech Connect (OSTI)

f I The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficial use on Johnston Island. The clean storage pile currently consists of approximately 120,000 m3 of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain wi th 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity.

Wilson-Nichols, M.J.; Egidi, P.V.; Roemer, E.K.; Schlosser, R.M.

2000-09-01T23:59:59.000Z

118

JV Task 99-Integrated Risk Analysis and Contaminant Reduction, Watford City, North Dakota  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) conducted a limited site investigation and risk analyses for hydrocarbon-contaminated soils and groundwater at a Construction Services, Inc., site in Watford City, North Dakota. Site investigation confirmed the presence of free product and high concentrations of residual gasoline-based contaminants in several wells, the presence of 1,2-dichloroethane, and extremely high levels of electrical conductivity indicative of brine residuals in the tank area south of the facility. The risk analysis was based on compilation of information from the site-specific geotechnical investigation, including multiphase extraction pilot test, laser induced fluorescence probing, evaluation of contaminant properties, receptor survey, capture zone analysis and evaluation of well head protection area for municipal well field. The project results indicate that the risks associated with contaminant occurrence at the Construction Services, Inc. site are low and, under current conditions, there is no direct or indirect exposure pathway between the contaminated groundwater and soils and potential receptors.

Jaroslav Solc; Barry W. Botnen

2007-05-31T23:59:59.000Z

119

Characterization of Pu-contaminated soils from Nuclear Site 201 at the Nevada Test Site  

SciTech Connect (OSTI)

Distribution and characteristics of Pu-bearing radioactive particles throughout five soil profiles from Nuclear Site (NS) 201 were investigated. Concentrations of /sup 239/ /sup 240/Pu and /sup 241/Am decreased with depth and most of the contamination was contained in the top 5 cm except in profile 4 where it extended to 10 cm. The mean activity ratio of /sup 239/ /sup 240/Pu to /sup 241/Am and its standard error were 5.8 +- 0.3 (N=42). Most of the total radioactivity of the soils was contributed by 0.25 to 2 mm sand size fraction which comprised 20 to 50% by weight of the soils. The radioactive particles in the 0.25 to 2 mm size fraction occurred as spherical glass particles or as glass coatings on sand particles. The glass coatings had gas voids in the matrix but were not as porous as the radioactive particles from NS 219. After impact grinding the >0.25-mm size fractions for one hour, 85% of the initial activity in a NS 201 sample remained with the particles on the 0.25 mm sieve, whereas in the NS 219 sample only 10% remained. The results show that the radioactive particles from NS 201 were much more stable against the impact grinding force than those from NS 219. Therefore, the NS 201 soils would be expected to have a lower probability of producing respirable-size radioactive particles by saltation during wind erosion. 19 references, 3 figures, 3 tables.

Lee, S.Y.; Tamura, T.; Larsen, I.L.

1983-01-01T23:59:59.000Z

120

DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites. Final report and users` guide  

SciTech Connect (OSTI)

The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

Not Available

1989-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The brine underlying the Oak Ridge Reservation, Tennessee, USA: Characterization, genesis, and environmental implications  

SciTech Connect (OSTI)

The deep hydrogeologic system underlying the Oak Ridge Atomic Reservation contains brine. Its origin was assessed using existing and newly acquired chemical and isotopic data. The proposed model which best fits the data is modification of residual brine from which halite has been precipitated. Potential sources for this brine are in the Appalachian Mountains in the east, where bedded halite is documented, and where the hydraulic gradient needed to move the residual brine exists. Other models, such as ultrafiltration and halite dissolution, were also evaluated. In places, contaminants such as radionuclides, heavy metals, nitrates, and organic compounds have reached the deep system. The chemical and isotopic features of the brine were examined with respect to its potential discharge, contaminated in places, into shallow, freshwater systems. The observations suggest that whereas the origin of the salts in the brine may be very old, influx of recent water takes place. Consequently, the brine is not isolated (in terms of recharge and discharge) from the overlying active and fresh-water-bearing units. 78 refs., 8 figs., 1 tab.

Nativ, R. [Hebrew Univ. of Jerusalem, Rehovot (Israel)] [Hebrew Univ. of Jerusalem, Rehovot (Israel)

1996-03-01T23:59:59.000Z

122

Complete Genome Sequence of Rahnella sp Strain Y9602, a Gammaproteobacterium Isolate from Metal- and Radionuclide-Contaminated Soil  

SciTech Connect (OSTI)

Rahnella sp. strain Y9602 is a gammaproteobacterium isolated from contaminated subsurface soils that is capable of promoting uranium phosphate mineralization as a result of constitutive phosphatase activity. Here we report the first complete genome sequence of an isolate belonging to the genus Rahnella.

Martinez, Robert J [University of Alabama, Tuscaloosa; Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Held, Brittany [Los Alamos National Laboratory (LANL); Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Sobeckya, Patricia A. [University of Alabama, Tuscaloosa

2012-01-01T23:59:59.000Z

123

Brining studies at Pepper Products Inc.  

E-Print Network [OSTI]

of Department) A. B. Childers (Member) V. E. Sweat (Member) December 1988 Abstract Optimum brining conditions, causes of secondary fermentation, and salt fluctuation were investigated. Jalapeno peppers held in brine solution undergo lactic acid... fermentation, controlled by level of acidification and concentration of salt. Only brining at 7. 5% NaCl, with no added acetic acid, resulted in loss of all fermentable sugars. However, salt concentration fluctuated widely in this sample. Brining in 25...

Okoro, John Daniel

2012-06-07T23:59:59.000Z

124

Brine Sampling and Evaluation Program, 1991 report  

SciTech Connect (OSTI)

The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J. [International Technology Corp., Albuquerque, NM (United States)] [International Technology Corp., Albuquerque, NM (United States); Belski, D.S. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.] [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

1993-09-01T23:59:59.000Z

125

Hazen, T. C., A. J. Tien, A. Worsztynowicz, D. J. Altman, K. Ulfig, and T. Manko. 2003. Biopiles for Remediation of Petroleum-Contaminated Soils: A Polish Case Study. NATO Advanced Research  

E-Print Network [OSTI]

(a)pyrene and BTEX compounds were identified as the contaminants of concern. Approximately 3,300 m3 of contaminated for Remediation of Petroleum-Contaminated Soils: A Polish Case Study. NATO Advanced Research Workshop Volume on The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions. V. Sasek, J. Glaser, and P

Hazen, Terry

126

Adaptation to metal-contaminated soils in populations of the moss, Ceratodon purpureus: Vegetative growth and reproductive expression  

SciTech Connect (OSTI)

Many observations suggest that morphological evolution occurs slowly in bryophytes, and this has been suggested to reflect low genetic diversity within species. Isozyme studies, however, stand in apparent contrast and have shown that bryophytes can contain high levels of genetic variability within and among populations. In light of this conflict, we tested the potential of the moss, Ceratodon purpureus, to undergo adaptive change (i.e., ecotypic differentiation) in response to soils that have been contaminated with high levels of metals for 90 years by measuring gametophytic growth and reproductive expression under experimental conditions. Variation in protonemal growth in sterile culture indicates that plants from one population growing on contaminated soil near a smelter are significantly more tolerant of zinc, cadmium, and lead than plants from uncontaminated sites. Results from a common garden experiment, in which plants were grown on soil from the smelter site, indicate that plants from near the smelter are significantly more tolerant of contaminated soils than plants from uncontaminated sites for vegetative growth. The same experiment suggests that plants from the smelter site are also more tolerant in terms of gametangial production (although we could not test this statistically). Our results demonstrate that C. purpureus has been able to undergo relatively rapid evolution in response to strong selective pressures. 29 refs., 4 figs., 5 tabs.

Jules, E.S.; Shaw, A.J. (Univ. of Michigan, Ann Arbor, MI (United States))

1994-06-01T23:59:59.000Z

127

Enhanced bioremediation process: A case study of effectiveness on PAH contamination in soils at a former wood-treating site  

SciTech Connect (OSTI)

The Enhanced Bioremediation Process (EBP) technology is an exsitu biodegradation process that utilizes bacterial and fungal inoculants to effectively oxidize and bioremediate persistent hard to degrade organics in contaminated soils. The EBP fungal inoculants produce highly reactive extracellular peroxidase enzymes that can oxidize and degrade lignin, a complex, natural polymer composed of phenylpropane units that is resistant to decay. The lignin peroxidase enzymes are highly nonspecific because of their ability to oxidize the heterogenic lignin molecule, and are capable of degrading a wide variety of complex organic compounds. Because the chemical sub-structure of lignin (1,2-aryl diethers, alkyl sidechains and connected aryl systems) resembles that of many persistent organic compounds, the EBP inoculants are very effective in biodegrading similar hazardous organic pollutants in contaminated soils. As an inadvertent by-product of these biochemical processes, the EBP organisms reduce the organic constituents to a soluble form. In a soluble form, the indigenous organisms can further degrade the contaminants. The technology is applied in such a manner as to maximize the activity of the indigenous organisms by establishing optimum growth conditions. The efficacy of the EBP technology in degrading persistent environmental pollutants has been documented at both the bench scale and pilot demonstration levels. A recently completed field pilot demonstration was conducted at a creosote contaminated site. The demonstration entailed the treatment of approximately 700 tons of soil contaminated with PAH constituents. Laboratory analyses of pre and post-treated soils indicate that total average PAH concentrations in many samples were reduced by greater than 91 percent over a two month treatment period.

Mills, W.F. [Miltech Environmental, Inc., Tucker, GA (United States); Matens, B.L. [Dames and Moore, Baton Rouge, LA (United States); Buchalter, D.S. [EMCON, Norcross, GA (United States); Montgomery, D.N. [Georgia Dept. of Transportation, Forest Park, GA (United States). Office of Materials and Research

1997-12-31T23:59:59.000Z

128

Modeling gas and brine migration for assessing compliance of the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

At the request of the WIPP Project Integration Office (WPIO) of the DOE, the WIPP Performance Assessment (PA) Department of Sandia National Laboratories (SNL) has completed preliminary uncertainty and sensitivity analyses of gas and brine migration away from the undisturbed repository. This paper contains descriptions of the numerical model and simulations, including model geometries and parameter values, and a summary of major conclusions from sensitivity analyses. Because significant transport of contaminants can only occur in a fluid (gas or brine) medium, two-phase flow modeling can provide an estimate of the distance to which contaminants can migrate. Migration of gas or brine beyond the RCRA ``disposal-unit boundary`` or the Standard`s accessible environment constitutes a potential, but not certain, violation and may require additional evaluations of contaminant concentrations.

Vaughn, P. [Applied Physics, Inc., Albuquerque, NM (United States); Butcher, B. [Sandia National Labs., Albuquerque, NM (United States); Helton, J. [Arizona State Univ., Tempe, AZ (United States); Swift, P. [Tech. Reps., Inc., Albuquerque, NM (United States)

1993-10-01T23:59:59.000Z

129

Brine Sampling and Evaluation Program, 1990 report  

SciTech Connect (OSTI)

The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1990. When excavations began in 1982, small brine seepages (weeps) were observed on the walls. These brine occurrences were initially described as part of the Site Validation Program. Brine studies were formalized in 1985. The BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. The brine chemistry is important because it assists in understanding the origin of the brine and because it may affect possible chemical reactions in the buried waste after sealing the repository. The volume of brine and the hydrologic system that drives the brine seepage also need to be understood to assess the long-term performance of the repository. After more than eight years of observations (1982--1990), no credible evidence exists to indicate that enough naturally occurring brine will seep into the WIPP excavations to be of practical concern. The detailed observations and analyses summarized herein and in previous BSEP reports confirm the evidence apparent during casual visits to the underground workings -- that the excavations are remarkably dry.

Deal, D.E.; Abitz, R.J.; Myers, J.; Case, J.B.; Martin, M.L.; Roggenthen, W.M. [International Technology Corp., Albuquerque, NM (United States)] [International Technology Corp., Albuquerque, NM (United States); Belski, D.S. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.] [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

1991-08-01T23:59:59.000Z

130

Field test and mathematical modeling of bioremediation of an oil-contaminated soil. Part 2: Mathematical modeling  

SciTech Connect (OSTI)

A mathematical model was developed to describe the oxygen transfer from the air, the oil transfer from the soil, and the bio-reaction in the aqueous phase. Important parameters used in this model were obtained independently either in the laboratory or from the literature. The oil transfer rate constant, K[sub 1]a, was found to be a function of time during the remediation. The oil transfer rate controlling in this bioremediation process is confirmed again by the parameters obtained from simulation results for each plot. An example of calculation was used to illustrate the oil transfer controlling step in the bioremediation of oil contaminated soil.

Li, K.Y.; Xu, T.; Colapret, J.A. (Lamar Univ., Beaumont, TX (United States)); Cawley, W.A. (Gulf Coast Hazardous Substance Research Center, Beaumont, TX (United States)); Bonner, J.S. (Texas A and M Univ., College Station, TX (United States). Civil Engineering Dept.); Ernest, A.; Verramachaneni, P.B. (Texas A and I Univ., Kingsville, TX (United States). Environmental Engineering Dept.)

1994-01-01T23:59:59.000Z

131

E-Print Network 3.0 - artificially contaminated soil Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12;Urban Soil - Compaction 12;Urban... Engineering Urban Soils to Improve Landscape Tree Performance P. Eric Wiseman, Ph.D. Assistant... .cnr.vt.eduurbanforestry...

132

E-Print Network 3.0 - actinide soil contaminants Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12;Urban Soil - Compaction 12;Urban... Engineering Urban Soils to Improve Landscape Tree Performance P. Eric Wiseman, Ph.D. Assistant... .cnr.vt.eduurbanforestry...

133

E-Print Network 3.0 - alpha contaminated soils Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12;Urban Soil - Compaction 12;Urban... Engineering Urban Soils to Improve Landscape Tree Performance P. Eric Wiseman, Ph.D. Assistant... .cnr.vt.eduurbanforestry...

134

E-Print Network 3.0 - agricultural soil contaminated Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AgronomyCrop, Soil, and EnvironmEntal SCi... . DarrellSchulze,PurdueAgronomy Rural Wastewater Shrinking and swelling soils can damage homes, roads Source:...

135

E-Print Network 3.0 - aromatic hydrocarbon-contaminated soil...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soil... hydrocarbon degraders, and polycyclic aromatic ... Source: Ma, Lena - Soil and Water Science Department, University of Florida Collection: Environmental Sciences and...

136

Toxicological benchmarks for potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process  

SciTech Connect (OSTI)

An important step in ecological risk assessments is screening the chemicals occur-ring on a site for contaminants of potential concern. Screening may be accomplished by comparing reported ambient concentrations to a set of toxicological benchmarks. Multiple endpoints for assessing risks posed by soil-borne contaminants to organisms directly impacted by them have been established. This report presents benchmarks for soil invertebrates and microbial processes and addresses only chemicals found at United States Department of Energy (DOE) sites. No benchmarks for pesticides are presented. After discussing methods, this report presents the results of the literature review and benchmark derivation for toxicity to earthworms (Sect. 3), heterotrophic microbes and their processes (Sect. 4), and other invertebrates (Sect. 5). The final sections compare the benchmarks to other criteria and background and draw conclusions concerning the utility of the benchmarks.

Will, M.E.; Suter, G.W. II

1995-09-01T23:59:59.000Z

137

Improved Water Flooding through Injection Brine Modification  

SciTech Connect (OSTI)

Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

2003-01-01T23:59:59.000Z

138

Relationship between the {sup 137}Cs whole-body counting results and soil and food contamination in farms near Chernobyl  

SciTech Connect (OSTI)

The authors measured the radioactivity in the soil and child food samples from farms near Mogilev (56--270 GBq km{sup {minus}2} {sup 137}Cs), Gomel (36--810 GBq km{sup {minus}2} {sup 137}Cs), and Klincy (59--270 GBq km{sup {minus}2} {sup 137}Cs), who had whole-body {sup 137}Cs counting results measured as part of a health examination in the Chernobyl Sasakawa Health and Medical Cooperation Project. Soil contamination on the family farm seems to be the main source of human contamination because most of the people in the area live on small farms and they and their domestic animals eat crops from the farms. A clear correlation was found between the children's whole-body {sup 137}Cs counting results and the radioactivity in their food (correlation coefficient: 0.76; confidence level of correlation: 3.2 x 10{sup {minus}9}). There were also significant correlations between the whole-body {sup 137}Cs counting results and both the radioactivity of the soil samples (correlation coefficient: 0.22; confidence level of correlation: 0.0107) and the average contamination level of their current residence (correlation coefficient: 0.20; confidence level of correlation: 0.0174).

Takatsuji, Toshihiro; Sato, Hitoshi; Takada, Jun [and others] [and others

2000-01-01T23:59:59.000Z

139

Successful Characterization and Remedial Contour of Highly Contaminated Mercury Soil at the Y-12 National Security Complex - 13593  

SciTech Connect (OSTI)

An area known as the 81-10 pad within the footprint of the Y-12 National Security Complex, suspected to be heavily contaminated with mercury, was slated for characterization in support of a Federal Facilities Agreement (FFA) milestone to be accomplished by September 30, 2012. A full remedial design report (RDR) required the soil in Exposure Unit -9 (EU-9) to be fully characterized for a number of contaminates of concern including mercury. The goal of this characterization effort was to determine what soil, if any, would need to be removed for the protection of industrial workers and impacts to the surface and ground water. Funding for this project was made available using buy-back scope under the American Recovery and Reinvestment Act (ARRA). The EU-9 soil unit involved 3 different classifications which were determined as follows: Class 1: Known to have been impacted, contamination is likely; Class 2: Suspected to have been impacted, contamination is unknown; Class 3: Area not known to have been impacted, contamination unlikely. Due to various sampling and analysis events since the 1980's, significant mercury contamination was expected under the concrete pad of an area known as 81-10. Mercury contamination outside of the boundary of this pad within the EU-9 footprint was not known and therefore an original planned estimate of 1,461 cubic meters of material were expected to be heavily contaminated with mercury requiring removal, treatment and disposal. Through the use of a highly effective nature and extent sampling and analysis design that involved a hybrid of statistically-based and judgmental sampling, the actual remedial contour requiring removal was approximately 717 cubic meters, roughly 12% of the original estimate. This characterization approach was executed in full compliance with the Record of Decision (ROD) [1] documents that were agreed upon by the U.S. Department of Energy, Environmental Protection Agency and Tennessee Department of Environment and Conservation. In addition, the RDR was completed ahead of the FFA milestone date of September 30, 2012. (authors)

White, Aaron; Rigas, Michael [U.S. Department of Energy Oak Ridge Operations, Oak Ridge, TN 37830 (United States)] [U.S. Department of Energy Oak Ridge Operations, Oak Ridge, TN 37830 (United States); Birchfield, Joseph W. III [1528 Paxton Drive Knoxville, TN 37918 (United States)] [1528 Paxton Drive Knoxville, TN 37918 (United States)

2013-07-01T23:59:59.000Z

140

Modeling Elution Histories of Copper and Lead from Contaminated Soil Treated by Poly,,amidoamine... Dendrimers  

E-Print Network [OSTI]

procedures; Heavy metals; Soil pollution; Soil treatment. In recent years, extraction of heavy metals from transport models do not simulate the dynamic leaching process of heavy metals desorbed by the water soluble soil treated by poly amidoamine dendrimers. In the model, the metal sorption sites of the soil were

Clement, Prabhakar

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Major Recovery Act Project Completed at Hanford: Two New Super Cells Go Into Service To Accept Contaminated Soil and Debris Months Ahead of Schedule and Millions Under Budget  

Broader source: Energy.gov [DOE]

RICHLAND, WASH. – Two new super cells are going into service to expand disposal capacity for contaminated soil and debris at the Environmental Restoration Disposal Facility (ERDF), at the Department of Energy’s (DOE) Hanford Site in southeastern Washington State.

142

Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil  

DOE Patents [OSTI]

The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

2014-07-08T23:59:59.000Z

143

Composition and process for organic and metal contaminant fixation in soil  

DOE Patents [OSTI]

A method and compositions using a first ferrous iron containing solution with the iron concentration in excess of theoretical requirements to treat a contaminated site to reduce hexavalent chromium to trivalent chromium and coprecipitate trivalent chromium with other heavy metals and using a second solution of silicate containing a destabilizing salt to form a relatively impermeable gel in the contaminated site thereby fixing metals and organics to the extent that there should be no detectable ground water contamination.

Schwitzgebel, Klaus (7507 Chimney Corners, Austin, TX 78731)

1994-02-08T23:59:59.000Z

144

E-Print Network 3.0 - arsenic-contaminated soils anexperimental...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

most notorious poisons. Consumption of arsenic- contaminated waters... + and use the energy released for growth. They are found in many ... Source: Crawford, Ian - Department...

145

Utilization of a duckweed bioassay to evaluate leaching of heavy metals in smelter contaminated soils  

SciTech Connect (OSTI)

The purpose of this study was to determine whether a duckweed bioassay could be used to evaluate the downward migration of heavy metals in smelter soils. The duckweed bioassay was initially used to evaluate elutriates prepared from samples of smelter soils. These initial tests verified that the elutriates would elicit toxic responses. Elutriate testing was followed with an evaluation of leachate from untreated soil cores or soil cores that had been amended with organic matter either unplanted or planted to a grass-forb seed mixture. There was an inverse linear relationship between heavy-metal concentrations in leachate and NOEC and IC{sub 50} values expressed as percentages among all soil cores. Based on these preliminary duckweed bioassays, there were no differences between soil types or organic amended or non-amended soil, but leachate from vegetated soil cores were less toxic than were leachates from non-vegetated soil cores. Overall, the duckweed bioassays were useful in detecting heavy metal availability in elutriate and leachate samples from smelter soils.

Youngman, A.L.; Lydy, M.J. [Wichita State Univ., KS (United States). Dept. of Biological Sciences; Williams, T.L. [Laidlaw Environmental Services, Wichita, KS (United States)

1998-12-31T23:59:59.000Z

146

Effects of in situ Remediation on the Speciation and Bioavailability of Zinc in a Smelter Contaminated Soil  

SciTech Connect (OSTI)

We report results from an extensive study on the speciation of zinc (Zn) and its relation to the mobility and bioavailablity of this element in a smelter contaminated soil and an in situ remediated area of this soil 12 yr after the application of cyclonic ash and compost. Emphasis was placed on the role of neoformed precipitates in controlling Zn speciation, mobility and bioavailability under different environmental conditions. Twelve years after remediation, the pH of the treated and non-treated soil differed by only 0.5 pH unit. Using state-of-the-art electron and X-ray microscopies in combination with micro-focused extended X-ray absorption fine structure ({micro}-EXAFS) spectroscopy, no major differences in Zn speciation were found between samples of the treated and non-treated soil. In both soils, 30% to 50% of Zn was present in smelter related minerals (willemite, hemimorphite or gahnite), while 50% to 70% of Zn was incorporated into newly formed Zn precipitates. Contrary to the non-treated soil, the treated soil did not contain gahnite or sphalerite; it is possible that these minerals were dissolved under the higher pH conditions at the time of treatment. Desorption experiments, using a stirred flow technique with a 0.1 mol/L CaCl{sub 2} (pH 6.5) and a HNO{sub 3} (pH 4.0) solution were employed to determine the exchangeable Zn fraction and the Zn fraction which will be mobilized under more extreme weathering conditions, respectively. No significant differences were found in desorption behavior between the treated vs. non-treated soil. Bioavailability tests, using the R. metallidurans AE1433 biosensor showed that {approx}8% of total Zn was bioavailable in both the treated and non-treated soils. It was concluded that the incorporation of Zn into newly formed precipitates in both the treated and non treated soils leads to a significant natural attenuation of the exchangeable/bioavailable Zn fraction at near neutral pH conditions. At lower pHs, conditions not favorable to the formation of Zn precipitates, the pool of Zn associated with the secondary Zn precipitates is potentially more bioavailable.

Nachtegaal,M.; Marcus, M.; Sonke, J.; Vangronsveld, J.; Livi, K.; van Der Lelie, D.; Sparks, D.

2005-01-01T23:59:59.000Z

147

Soil & Sediment Contamination, 17:619629, 2008 Copyright Taylor & Francis Group, LLC  

E-Print Network [OSTI]

contamination, sewage lagoon Introduction Heavy metal pollution is one of the most pervasive and serious-0383 print / 1549-7887 online DOI: 10.1080/15320380802425121 Fate of Heavy Metal Contaminants in a Former in 1999, was an- alyzed to determine the subsequent mobility of heavy metals and their relationship

Neher, Deborah A.

148

Technical assistance to Ohio closure sites; Recommendations toaddress contaminated soils, concrete, and corrective action managementunit/groundwater contamination at Ashtabula, Ohio  

SciTech Connect (OSTI)

The Ashtabula Environmental Management Project (AEMP) at Department of Energy-Ohio (DOE-OH) requested technical assistance from the EM-50 Lead Lab to aid in defining new cost and time effective approaches in the following problem areas: soils, concrete, and groundwater/Corrective Action Management Unit (CAMU) at RMIES in Ashtabula, Ohio. Attachment 1 provides the site request for assistance. The technical assistance team assembled for this request is provided in Attachment 2. These individuals reviewed key site information prior to convening with DOE and contractor personnel (RMIES and Earthline) for a three-and-a-half-day meeting to better understand baseline technologies, limitations, and site-specific issues. After listening to presentations about the nature and extent of known contamination, the team broke out into several groups to brainstorm ideas and develop viable solutions. This executive summary details unresolved issues requiring management attention as well as recommendations to address soils, concrete, and groundwater/CAMU. It also provides a summary of additional technical assistance that could be provided to the site. More details are presented in the body of this report.

Charoglu, Emily; Eddy-Dilek, Carol; Gombert, Dirk; Hazen, Terry; Johnson, Bob; Looney, Brian; Krstich, Michael A.; Rautman, Chris; Tripp,Julia; Whitmill, Larry

2002-08-26T23:59:59.000Z

149

E-Print Network 3.0 - arsenic contaminated soils Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 Soil and Water Science Department University of...

150

ARSENIC HYPERACCUMULATION BY Pteris vittata L. AND ITS POTENTIAL FOR PHYTOREMEDIATION OF ARSENIC-CONTAMINATED SOILS  

E-Print Network [OSTI]

needed assistance in harvesting ferns and soil sampling. I also wish to thank the past and present ...............................................................................................8 Arsenic in Water.................

Ma, Lena

151

Exposure and effects of oilfield brine discharges on western sandpipers (Calidris mauri) in Nueces Bay, Texas  

SciTech Connect (OSTI)

Discharge of oilfield brines into fresh and estuarine waters is a common disposal practice in Texas. Petroleum crude oil (PCO) extraction from underground stores includes the removal of a significant amount of water along with the oil. Several methods may be used to separate the oil and water fractions, including tank batteries, heat separation, and skimming ponds. Disposal of the resultant produced water (oilfield brine) may be accomplished by deep-well injection or discharge to surface waters. In Texas, an estimated 766,000 barrels of oilfield brine were discharged daily into tidal waters in 1979. The maximum concentration for oil and grease in these discharges permitted by the Texas Railroad Commission is 25 ppm. Several studies have shown that oilfield brines are toxic to a wide range of marine life, yet little is known about their effects on birds and mammals. Exposure to petroleum in oilfield wastes could evoke toxicological effects in some waterbird species. Avian responses to PCO exposure are highly variable, including cessation of growth, osmoregulatory impairment, endocrine dysfunction, hemolytic anemia, altered blood chemistry, cytochrome P450 induction, reduced reproductive success, and mortality. Oilfield brine discharges may soon be the largest and most pervasive source of contaminants entering Texas estuaries. Migratory and resident birds feeding in the vicinity of discharge sites may be ingesting food items contaminated with petroleum hydrocarbons, heavy metals and salts in sufficient quantities to evoke toxicity. The present study of wintering western sandpipers (Calidris mauri) that feed and roost near discharge sites sought to examine oilfield brine exposure and effects through quantification of contaminant burdens, morphological characteristics, and cytochrome P450-associated monooxygenase activities. 20 refs., 2 tabs.

Rattner, B.A.; Melancon, M.J. [National Biological Survey, Laurel, MD (United States); Capizzi, J.L. [Texas A& M Univ., College Station, TX (United States); King, K.A. [Fish and Wildlife Service, Phoenix, AZ (United States); LeCaptain, L.J. [Fish and Wildlife Service, Spokane, WA (United States)

1995-05-01T23:59:59.000Z

152

Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater  

DOE Patents [OSTI]

A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

Turick, Charles E. (Idaho Falls, ID); Apel, William W. (Idaho Falls, ID)

1997-10-28T23:59:59.000Z

153

Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater  

DOE Patents [OSTI]

A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed. 10 figs.

Turick, C.E.; Apel, W.W.

1997-10-28T23:59:59.000Z

154

The Brine Shrimp's Butterfly Stroke  

E-Print Network [OSTI]

We investigate the fluid dynamics of brine shrimp larvae swimming in this gallery of fluid motion video. Time resolved particle image velocimetry was performed using nano-particles as seeding material to measure the time dependent velocity and vorticity fields. The Reynolds number of the flow was roughly 8 and the Womerseley number (ratio of periodic forcing to viscous forcing) was about 5. Vorticity dynamics reveals the formation of a vortex ring structure at the tip of each arm at the beginning of the power stroke. This two vortex system evolves dramatically with time as the stroke progresses. The outer circulation is noted to weaken while the inner circulation strengthens over the power stroke. The gaining strength of the inner vortex correlates with the acceleration and forward movement of the larvae.

Johnson, Brennan; Dasi, Lakshmi Prasad

2011-01-01T23:59:59.000Z

155

Technical Assistance to Ohio Closure Sites Technologies to Address Excavated VOC Contaminated Soil  

E-Print Network [OSTI]

and available solar heat. This report focuses on design features and recommendations for implementing disposal, passive soil venting, enhanced soil venting, zero-valent iron, anaerobic bioremediation, aerobic and functional design requirements (equipment, flow rates, options, issues, cautions, etc.).The design

Hazen, Terry

156

Mine waste contamination limits soil respiration rates: a case study using quantile regression  

E-Print Network [OSTI]

, the toxicity of heavy metals depends on soil acidity and organic matter because these factors strongly an environmental gradient. We quantified in situ soil respiration, pH, and heavy metal concentrations across a mine was limited with respect to both heavy metals and pH, and that both increased metals and increased acidity

Rilli, Matthias C.

157

Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil: Micro-XRF  

E-Print Network [OSTI]

: Micro-XRF element mapping and EXAFS spectroscopy Andreas Voegelin *, Frank-Andreas Weber, Ruben (gleyic Fluvisol). The analysis of soil thin sections by synchrotron micro-X-ray fluorescence (l-XRF

158

Heavy Metal Contamination In Soil Under The Application Of Polluted Sewage Water Across Vrishabhavathi River  

E-Print Network [OSTI]

The main aim in this study is to assess the level of heavy metals concentration in soil profile and their mobility in the presence of pH and organic carbon,where polluted water is used in agriculture. The samples of soil collected at different sites across Vrishabhavathi river valley have been analyzed for heavy metals, viz. Pb, Zn, Cd, Cr, Cu, Ni, Fe and Mn using atomic absorption spectrophotometer. These values assessed with respect to reference soil taken from unpolluted soil profile. The heavy metals studied at all sampling sites compared with Indian Standards and all heavy metals are below permissible limits. The concentration of all the metals is high compared to the soil sample taken from unpolluted site shows the build up of heavy metal concentration using polluted water in irrigation. The % of organic carbon varies from 1.9 to 2.9 % in top layer and 1 to 1.6 % in the subsequent layer. The pH value is higher on top layer soil and decreases in subsequent layer.

Jayadev E. T. Puttaih

159

Fate of Brine Applied to Unpaved Roads at a Radioactive Waste Subsurface Disposal Area  

SciTech Connect (OSTI)

Between 1984 and 1993, MgCl2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl– might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl– in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl– concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl– concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl– was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl– remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl– in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area.

Larry C. Hull; Carolyn W. Bishop

2004-02-01T23:59:59.000Z

160

Application of inorganic-contaminated groundwater to surface soils and compliance with toxicity characteristic (TCLP) regulations  

SciTech Connect (OSTI)

The Westinghouse Savannah River Company (WSRC) is currently implementing a Purged Water Management Program (PWMP) at the Savannah River Site (SRS) near Aiken, South Carolina. A variety of constituents and disposal strategies are being considered. Constituents investigated in the PWMP include radionuclides, organics, and inorganics (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag). One practical disposal alternative is to discharge purged water (all constituents below regulatory levels) to the ground surface near the monitoring well that is being purged. The purpose of this investigation is to determine if long-term application of purged water that contains inorganic constituents (below regulatory levels) to surface soils will result in the accumulation of inorganics such that the soil becomes a hazardous waste according to the Toxicity Characteristic regulations (40 CFR Part 261.24). Two study soils were selected that encompass the range of soils found at the SRS: Lakeland and Orangeburg. Laboratory batch equilibrium studies indicate that the soils, although able to retain a large amount of inorganics, will not exceed Toxicity Characteristic concentrations when subjected to the TCLP. Field studies are underway to confirm this.

Bergren, C.L.; Flora, M.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Jackson, J.L.; Hicks, E.M. [Sirrine Environmental Consultants, Greenville, SC (United States)

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Application of inorganic-contaminated groundwater to surface soils and compliance with toxicity characteristic (TCLP) regulations  

SciTech Connect (OSTI)

The Westinghouse Savannah River Company (WSRC) is currently implementing a Purged Water Management Program (PWMP) at the Savannah River Site (SRS) near Aiken, South Carolina. A variety of constituents and disposal strategies are being considered. Constituents investigated in the PWMP include radionuclides, organics, and inorganics (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag). One practical disposal alternative is to discharge purged water (all constituents below regulatory levels) to the ground surface near the monitoring well that is being purged. The purpose of this investigation is to determine if long-term application of purged water that contains inorganic constituents (below regulatory levels) to surface soils will result in the accumulation of inorganics such that the soil becomes a hazardous waste according to the Toxicity Characteristic regulations (40 CFR Part 261.24). Two study soils were selected that encompass the range of soils found at the SRS: Lakeland and Orangeburg. Laboratory batch equilibrium studies indicate that the soils, although able to retain a large amount of inorganics, will not exceed Toxicity Characteristic concentrations when subjected to the TCLP. Field studies are underway to confirm this.

Bergren, C.L.; Flora, M.A. (Westinghouse Savannah River Co., Aiken, SC (United States)); Jackson, J.L.; Hicks, E.M. (Sirrine Environmental Consultants, Greenville, SC (United States))

1991-01-01T23:59:59.000Z

162

Arsenic speciation in multiple metal environments II. Micro-spectroscopic investigation of a CCA contaminated soil  

E-Print Network [OSTI]

2006, Aus- tralia. stances (acid mine drainage, smelter wastes, pesticides, chro- mated copper arsenate January 2008 Abstract The speciation of arsenic (As) in a copper-chromated-arsenate (CCA) contaminated as a continuum of fully and poorly-ordered copper-arsenate precipitates with additional components being

163

Task 15 -- Remediation of organically contaminated soil using hot/liquid (subcritical) water. Semi-annual report, April 1--September 30, 1997  

SciTech Connect (OSTI)

This activity involves a pilot-scale demonstration of the use of hot/liquid water for the removal of organic contaminants from soil at the pilot (20 to 40 kg) scale. Lab-scale studies are being performed to determine the optimum temperature, contact time, and flow rates for removal of the organic contaminants. Initial investigations into using carbon sorbents to clean the extractant water for recycle use and to concentrate the extracted contaminants in a small volume for disposal are also being performed. Liquid water is normally considered to be too polar a solvent to be effective for removal of organic contaminants from contaminated soils and sludges. However, the Energy and Environmental Research Center (EERC) has demonstrated that the polarity of liquid water can be changed from that of a very polar solvent at ambient conditions to that of an organic solvent (e.g., ethanol or acetonitrile) by simply raising the temperature. The EERC has exploited this unique property of liquid water to obtain highly selective extractions of polar (at lower temperatures) to nonpolar (at 200 to 250 C) organics from contaminated soils and sludges. Only moderate pressures (a maximum of about 45 atm at 250 C and lower pressures at lower temperatures) are required. With this procedure, all detectable hazardous organics were removed from the sludge, thus making the remaining material (about 99% of the original mass) a nonhazardous material. The present understanding of hot/liquid water extraction for the removal of hazardous organics from contaminated soils and sludges is being used to develop the engineering parameters needed to perform a pilot-scale demonstration of the remediation technology. Progress during the report period is summarized.

Hawthorne, S.B.

1997-12-31T23:59:59.000Z

164

SOILS, SEC 3 REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS RESEARCH ARTICLE  

E-Print Network [OSTI]

of environmental concern. Repeated applications of Cu-containing fungicides have resulted in a large scale of Cu Accumulation and availability of copper in citrus grove soils as affected by fungicide application Jinghua Fan production and control fungus diseases in vines, citrus, coffee, and other fruit plants (Epstein and Bassein

Ma, Lena

165

doi:10.1016/j.gca.2004.08.024 Zinc mobility and speciation in soil covered by contaminated dredged sediment  

E-Print Network [OSTI]

sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction in a pseudogley soil (pH 8.2­8.3) before and after contamination by land-disposition of a dredged sediment ([Zn and the laboratory using state-of-the-art synchrotron- based techniques. Sediment disposition on land caused

166

Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm  

SciTech Connect (OSTI)

This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding.

Becker, D.L.

1997-11-03T23:59:59.000Z

167

Hydrogeologic aspects of brine disposal in the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana  

SciTech Connect (OSTI)

The East Poplar Oil Field encompasses about 70 square miles in the south-central part of the Fort Peck Indian Reservation. Oil production began in 1952 from the Mississippian Madison Group. Production depths range from about 5,500 to 6,000 feet below land surface. Large quantities of brine (water having a dissolved-solids concentration greater than 35,000 milligrams per liter) have been produced with the oil. The brine has a dissolved-solids concentration of as much as 160,000 milligrams per liter. Most of the brine has been disposed of by injection into shallower subsurface formations (mainly the Lower Cretaceous Dakota Sandstone at depths of about 3,300 feet and the Upper Cretaceous Judith River Formation at depths of about 1,000 feet). Smaller quantities of brine have been directed to storage and evaporation pits. Handling, transport, and disposal of the brine have resulted in its movement into and migration through shallow Quaternary alluvial and glacial deposits along the Poplar River valley. Locally, domestic water supplies are obtained from these deposits. The major point, sources of shallow ground-water contamination probably is leakage of brine from corroded disposal-well casing and pipelines. Using electromagnetic geophysical techniques and auger drilling, three saline-water plumes in alluvial deposits and one plum in glacial deposits have been delineated. Dominant constituents in plume areas are sodium and chloride, whereas those in nonplume areas are sodium and bicarbonate.

Craigg, S.D.; Thamke, J.N. (Geological Survey, Helena, MT (United States))

1993-04-01T23:59:59.000Z

168

Brine flow in heated geologic salt.  

SciTech Connect (OSTI)

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

169

Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report  

SciTech Connect (OSTI)

A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

1994-10-01T23:59:59.000Z

170

A Test to Illustrate the Effects of ECOSAFE on the Movement of Oil in Contaminated Soils  

SciTech Connect (OSTI)

An ECOSAFE{trademark} solution was tested at 1 part to 100 milliliters of de-ionized water against a control set using de-ionized water only. Each soil column received five and one-quarter treatments of either ECOSAFE{trademark} solution or de-ionized water over two and one-half days. Air was injected following saturation of the columns and leachate recovery. Soil samples were collected from each column on the final day. The total volume of water added to the Control Column was 6.150 milliliters. The laboratory homogenized 2500 ml of water and removed 75 ml of free crude oil product before analysis. Of that, 1,000 milliliters was analyzed for TPH content and 1,000 milliliters was analyzed for Diesel Range Organics using EPA Method 1664 and 8015 Modified, respectively. The sample contained 17 mg/L of TPH and 34 mg/L of Diesel Range Organics. The total volume of water added to the Test Column was 5,850 milliliters. The samples were analyzed for TPH content and Diesel Range Organics using EPA Method 1664 and 8015 Modified, respectively. The sample contained 15 mg/L of TPH and 500 mg/L of Diesel Range Organics.

Jackson, L. M.

2002-03-04T23:59:59.000Z

171

Evidence for ground-water circulation in the brine-filled aquitard, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Various geologic, hydrologic, and geochemical methods were used to assess active ground-water circulation in a brine-filled, deep (> 50 m below land surface) aquitard underlying the Oak Ridge Reservation, Tennessee. In places, the brine which was presumed to be stagnant in the past, contains various contaminants. If ground-water circulation is viable in the brine-containing formations, then remediation or containment of the deep-seated contaminants should be considered a high priority. Data used to determine this included (1) spatial and temporal pressures and hydraulic heads measured in the aquitard, (2) hydraulic parameters of the formations in question, (3) vertical temperature gradients, and (4) spatial and temporal chemical and isotopic composition of the saline ground water. Conclusions suggest that the saline water contained at depth is not isolated (in terms of recharge and discharge) from the overlying active and fresh-water-(< 500 mg/l) bearing units. Consequently, influx of young water (and contamination) from land surface does occur. Potential discharge into the shallow aquifers was assumed where the hydraulic head of the saline water was higher than that in the shallow aquifers, accounting for temperature and salinity anomalies observed close to land surface. The confined water (and dissolved solutes) move along open conduits at relatively high velocity into adjacent, more permeable units.

Nativ, R. [Hebrew Univ. of Jerusalem (Israel). Dept. of Soil and Water Sciences; Halleran, A.; Hunley, A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

1997-07-01T23:59:59.000Z

172

Bioremediation of petroleum hydrocarbo-contaminated soils, comprehensive report, December 1999  

SciTech Connect (OSTI)

The US Department of Energy and the Institute for Ecology of Industrial Areas (IETU), Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. A major focus of this program has been the demonstration of bioremediation techniques to cleanup the soil and sediment associated with a waste lagoon at the Czechowice Oil Refinery (CZOR) in southern Poland. After an expedited site characterization (ESC), treatability study, and risk assessment study, a remediation system was designed that took advantage of local materials to minimize cost and maximize treatment efficiency. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system. The CZOR, our industrial partner for this project, was chosen because of their foresight and commitment to the use of new approaches for environmental restoration. This program sets a precedent for Poland in which a portion of the funds necessary to complete the project were provided by the company responsible for the problem. The CZOR was named by PIOS (State Environmental Protection Inspectorate of Poland) as one of the top 80 biggest polluters in Poland. The history of the CZOR dates back more than 100 years to its establishment by the Vacuum Oil Company (a U.S. company and forerunner of Standard Oil). More than a century of continuous use of a sulfuric acid-based oil refining method by the CZOR has produced an estimated 120,000 tons of acidic, highly weathered, petroleum sludge. This waste has been deposited into three open, unlined process waste lagoons, 3 meters deep, now covering 3.8 hectares. Initial analysis indicated that the sludge was composed mainly of high molecular weight paraffinic and polynuclear aromatic hydrocarbons (PAHs). The overall objective of this full-scale demonstration project was to characterize, assess and remediate one of these lagoons. The remediation tested and evaluated a combination of U.S. and Polish-developed biological remediation technologies. Specifically, the goal of the demonstration was to reduce the environmental risk from PAH compounds in soil and to provide a green zone (grassy area) adjacent to the site boundary. The site was characterized using the DOE-developed Expedited Site Characterization (ESC) methodology. Based on the results of the ESC, a risk assessment was conducted using established U.S. procedures. Based on the results of the ESC and risk assessment, a 0.3-hectare site, the smallest of the waste lagoons, was selected for a modified aerobic biopile demonstration. This Executive Summary and the supporting report and appendices document the activities and results of this cooperative venture.

Hazen, Terry

2000-04-01T23:59:59.000Z

173

Identification of specific isomers of PCDD contaminants in environmental soils generated from the incineration of waste cables and their quantitative analysis  

SciTech Connect (OSTI)

In this study, a series of PCDDs emitted to the surrounding soil as the result of incineration of waste cables have been identified. PCDD contaminants were concentrated from soil samples and isolated from other materials by chromatographic methods. PCDD isomers were identified separately by column chromatography utilizing column packed with materials such as Kieselgel/44 vol.% H{sub 2}SO{sub 4}. Macro Alumina B Super 1, Mix Column, Bio Beads S-X3, Alumina B Super 1 + Kieselgel/AgNO{sub 3} and their quantitative determinations were performed by GC/MS (gas chromatography/mass spectroscopy).

Pehlivan, M.; Beduek, A.D. [Selcuk Univ., Konya (Turkey)

1994-10-01T23:59:59.000Z

174

Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils  

E-Print Network [OSTI]

soil thin section and corresponding -XRF maps (black: lowestsection and corresponding - XRF maps for Zn, Ca, Fe and Mn (soil thin section and corresponding -XRF maps (black: lowest

Jacquat, Olivier

2009-01-01T23:59:59.000Z

175

Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils  

SciTech Connect (OSTI)

The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of {sup 14}C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the {sup 14}C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

Anderson, T.A. (Tennessee Univ., Knoxville, TN (United States)); Walton, B.T. (Oak Ridge National Lab., TN (United States))

1992-01-01T23:59:59.000Z

176

Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in southwest Montana uplands contaminated by smelter emissions. 2: Laboratory phytotoxicity studies  

SciTech Connect (OSTI)

Vegetation communities on metal- and arsenic-contaminated uplands surrounding a smelter in southwest Montana have been eliminated or highly modified. Laboratory toxicity tests were performed using site soils from the impacted areas to determine whether the soils limit the ability of plants to establish and grow. The germination and growth of alfalfa, lettuce, and wheat in impacted area soils was compared to germination and growth of the three species in reference soils. The degree of phytotoxicity was quantified using a species-endpoint toxicity score calculated on the magnitude of difference between germination and growth of plants in impacted and reference soils. The impacted soils exhibited substantial toxicity to plants: 5% of the sites were severely phytotoxic, 55% were highly phytotoxic, 10% were moderately phytotoxic, 20% were mildly phytotoxic, and 10% were nontoxic. Root growth was consistently the most affected endpoint (18 of 20 impacted soils) and reduction in root length and mass was observed. Correlation and partial correlation analysis was used to evaluate the causes of phytotoxicity. Concentrations of As, Cu, and Zn and, to a lesser extent, Pb and Cd were found to be positively correlated with phytotoxicity.

Kapustka, L.A. [Ecological Planning and Toxicology, Inc., Corvallis, OR (United States); Lipton, J.; Galbraith, H.; Cacela, D.; LeJeune, K. [Hagler Bailly Consulting, Inc., Boulder, CO (United States)

1995-11-01T23:59:59.000Z

177

XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings: Importance of adsorption processes  

SciTech Connect (OSTI)

The authors investigated smelter-contaminated soils from Evin-Malmaison, Nord-Pas-de-Calais, France, and mine tailings from Leadville, Colorado, U.S.A. Bulk Pb concentrations range from 460 to 1900 ppm in the topsoils at Evin-Malmaison site and from 6000 to 10,000 ppm in the tailings samples from the Leadville site. These concentrations necessarily raise human health and environmental concerns, but bioavailability and chemical lability of Pb in these materials vary dramatically and show little correlation with bulk concentrations. This study provides detailed information on the speciation of Pb in these materials. Emphasis is on the identification and characterization of poorly crystalline and/or fine-grained species, such as sorption complexes and poorly crystalline (co)precipitates, which are likely to control Pb bioavailability and mobility in these natural systems. In the Evin-Malmaison samples, direct spectroscopic evidence for Pb sorbed to humic acids was found, as well as to both manganese and iron (oxyhydr)oxides. In the Leadville samples, variations in Pb speciation with pH are consistent with predictions based on simplified model system studies of adsorption processes; specifically, the carbonate-buffered tailings with near-neutral pH contain up to 50% of total Pb as adsorption complexes on iron (oxyhydr)oxides, whereas Pb speciation in sulfide-rich low pH samples is dominated by Pb-bearing jarosites with no evidence for adsorbed Pb in these latter samples.

Morin, G.; Juillot, F.; Ildefonse, P.; Calas, G. [Univ. de Paris 6 et 7 (France). Lab. de Mineralogie-Cristallographie; Ostergren, J.D. [Stanford Univ., CA (United States). Dept. of Geological and Environmental Sciences; Brown, G.E. Jr. [Stanford Univ., CA (United States). Dept. of Geological and Environmental Sciences]|[Stanford Synchrotron Radiation Lab., CA (United States)

1999-03-01T23:59:59.000Z

178

Expected brine movement at potential nuclear waste repository salt sites  

SciTech Connect (OSTI)

The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

McCauley, V.S.; Raines, G.E.

1987-08-01T23:59:59.000Z

179

Fate of Magnesium Chloride Brine Applied to Suppress Dust from Unpaved Roads at the INEEL Subsurface Disposal Area  

SciTech Connect (OSTI)

Between 1984 and 1993, MgCl2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl– might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl– in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl– concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl– concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl– was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl– remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl– in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface

Larry Hull; Carolyn Bishop

2004-02-01T23:59:59.000Z

180

Removing Radium-226 Contamination From Ion Exchange Resins Used in Drinking Water Treatment  

E-Print Network [OSTI]

Removing Radium-226 Contamination From Ion Exchange Resins Used in Drinking Water Treatment P r o b of groundwater containing high levels of radium-226 activity (Objective 1) were regenerated with prescribed brine that the concentration of salt in the brine cleaning solution was the most influential factor in the resin regeneration

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

TECHNICAL BASIS DOCUMENT OF MARSSIM FIELD CALIBRATION FOR QUANTIFICATION OF CS-137 VOLUMETRICALLY CONTAMINATED SOILS IN THE BC CONTROLLED AREA USING 2 BY 2 SODIUM IODIDE DETECTORS  

SciTech Connect (OSTI)

The purpose of this paper is to provide the Technical Basis and Documentation for Field Calibrations of radiation measurement equipment for use in the MARSSIM Seeping Surveys of the BC Controlled Area (BCCA). The Be Controlled Area is bounded on tt1e north by (but does not include) the BCCribs & Trenches and is bounded on the south by Army Loop Road. Parts of the BC Controlled Area are posted as a Contamination Area and the remainder is posted as a Soil Contamination Area. The area is approximately 13 square miles and divided into three zones (Zone A , Zone B. and Zone C). A map from reference 1 which shows the 3 zones is attached. The MARSSIM Scoping Surveys are intended 10 better identify the boundaries of the three zones based on the volumetric (pCi/g) contamination levels in the soil. The MARSSIM Field Calibration. reference 2. of radiation survey instrumentation will determine the Minimum Detectable Concentration (MDC) and an algorithm for converting counts to pCi/g. The instrumentation and corresponding results are not intended for occupational radiation protection decisions or for the release of property per DOE Order 5400.5.

PAPPIN JL

2007-10-26T23:59:59.000Z

182

Using Nitrogen and Oxygen Isotope Compositions of Nitrate to Distinguish Contaminant Sources in Hanford Soil and Groundwater  

E-Print Network [OSTI]

stable isotopes at the Hanford Site, WA: Environ. Sci.Contaminant Transport at the Hanford Site, WA: Vadose ZoneRev. 0, Lockheed Martin Hanford Corporation, Richland, WA.

Conrad, Mark

2008-01-01T23:59:59.000Z

183

Summary Results for Brine Migration Modeling Performed by LANL...  

Office of Environmental Management (EM)

BrineMigrationModeling More Documents & Publications Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt Establishing the Technical Basis for...

184

Consolidation and permeability of salt in brine  

SciTech Connect (OSTI)

The consolidation and loss of permeability of salt crystal aggregates, important in assessing the effects of water in salt repositories, has been studied as a function of several variables. The kinetic behavior was similar to that often observed in sintering and suggested the following expression for the time dependence of the void fraction: phi(t) = phi(0) - (A/B)ln(1 + Bt/z(0)/sup 3/), where A and B are rate constants and z(0) is initial average particle size. With brine present, A and phi(0) varied linearly with stress. The initial void fraction was also dependent to some extent on the particle size distribution. The rate of consolidation was most rapid in brine and least rapid in the presence of only air as the fluid. A brine containing 5 m MgCl/sub 2/ showed an intermediate rate, presumably because of the greatly reduced solubility of NaCl. A substantial wall effect was indicated by an observed increase in the void fraction of consolidated columns with distance from the top where the stress was applied and by a dependence of consolidation rate on the column height and radius. The distance through which the stress fell by a factor of phi was estimated to change inversely as the fourth power of the column diameter. With increasing temperature (to 85/sup 0/C), consolidation proceeded somewhat more rapidly and the wall effect was reduced. The permeability of the columns dropped rapidly with consolidation, decreasing with about the sixth power of the void fraction. In general, extrapolation of the results to repository conditions confirms the self-sealing properties of bedded salt as a storage medium for radioactive waste.

Shor, A.J.; Baes, C.F. Jr.; Canonico, C.M.

1981-07-01T23:59:59.000Z

185

Stabilization and reuse of heavy metal contaminated soils by means of quicklime sulfate salt treatment. Final report, September 1992--February 1995  

SciTech Connect (OSTI)

Capillary and hydraulic flows of water in porous media contaminated by heavy metal species often result in severe aquifer contamination. In the present study a chemical admixture stabilization approach is proposed, where heavy metal stabilization/immobilization is achieved by means of quicklime-based treatment. Both in-situ treatment by injection and on-site stabilization by excavation, mixing, and compaction will be investigated. In addition, the potential to reuse the resulting stabilized material as readily available construction material will also be investigated. The heavy metals under study include: arsenic, chromium, lead, and mercury. The proposed technical approach consists of three separate phases. During phase A, both artificial and naturally occurring contaminated soil mixes were treated, and then tested for stress-strain properties, leachability, micromorphology, mineralogical composition, permeability, setting time, and durability. In such a way, the effectiveness of the proposed remediation technology was verified, the treatment approach was optimized, and the underlying mechanisms responsible for stabilization were established. During phase B, the proposed technology will be tested for two DOE-site subscale systems, involving naturally occurring contaminated soil, using the same testing methodology as the one outlined for phase A. Provided that the proposed technology is proven effective for the subscale systems, a field application will be demonstrated. Again process quality monitoring will be performed by testing undisturbed samples collected from the treated sites, in the same fashion as for the previous phases. Following completion of the proposed study, a set of comprehensive guidelines for field applications will be developed. 42 refs., 196 figs., 26 tabs.

Dermatas, D.

1995-08-01T23:59:59.000Z

186

Sparingly-Soluble Phosphate Rock Induced Significant Plant Growth and Arsenic Uptake by Pteris vittata from Three Contaminated Soils  

E-Print Network [OSTI]

results in regulatory actions at waste sites, but no such protocols exist for residential and public removing hazard- ous contaminants. This technique requires no special equip- ment or high operating costs

Ma, Lena

187

Faecal contamination of watercourses from farm waste disposal for three sites in the UK with contrasting soil  

E-Print Network [OSTI]

Faecal contamination of watercourses from farm waste disposal for three sites in the UK of fertilizer (Hooda et al. 2000). However, there are concerns about the faecal contribution that such field

Owens, Philip

188

Albert Munsell and His Impact on Soil Science and  

E-Print Network [OSTI]

mill tailings, radium processing residues, oil field brines, and indoor radon. He has participated in the IAEA International Chernobyl Project, and in studies of radionuclide contaminants in the Arctic regions

Zanibbi, Richard

189

Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm  

SciTech Connect (OSTI)

A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

Balsley, S.D.; Krumhansl, J.L.; Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States); McKeen, R.G. [Alliance for Transportation Research, Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

190

Micromorphology and Stable Isotope Geochemistry of Historical Pedogenic Siderite Formed in PAH-Contaminated Alluvial Clay Soils, Tennessee, USA  

E-Print Network [OSTI]

Alluvial clay soil samples from six boreholes advanced to depths of 400–450 cm (top of limestone bedrock) from the Chattanooga Coke Plant (CCP) site were examined micromorphologically and geochemically in order to determine if pedogenic siderite (Fe...

Driese, S.G.; Ludvigson, Greg A.; Roberts, Jennifer A.; Fowle, David A.; Gonzalez, Luis A.; Smith, Jon Jay; Vulava, V.M.; McKay, L.D.

2010-11-01T23:59:59.000Z

191

Coupling Sorption to Soil Weathering During Reactive Transport: Impacts of Mineral Transformation and Sorbent Aging on Contaminant Speciation and Mobility  

SciTech Connect (OSTI)

This project aimed for a predictive-mechanistic understanding of the coupling between mineral weathering and contaminant (Cs, Sr, I) transport/fate in caustic waste-impacted sediments. Based on our prior studies of model clay mineral systems, we postulated that contaminant uptake to Hanford sediments would reflect concurrent adsorption and co-precipitation effects. Our specific objectives were: (1) to assess the molecular-scale mechanisms responsible for time-dependent sequestration of contaminants (Cs, Sr and I) during penetration of waste-induced weathering fronts; (2) to determine the rate and extent of contaminant release from the sorbed state; (3) to develop a reactive transport model based on molecular mechanisms and macroscopic flow experiments [(1) and (2)] that simulates adsorption, aging, and desorption dynamics. Progress toward achieving each of these objectives is discussed below. We observed unique molecular mechanisms for sequestration of Sr, Cs and I during native silicate weathering in caustic waste. Product solids, which included poorly crystalline aluminosilicates and well-crystallized zeolites and feldspathoids, accumulate contaminant species during crystal growth.

Chorover, J.; Mueller, K. T.; O'Day, P. A.; Serne, R. J.; Steefel, C. I.

2009-10-30T23:59:59.000Z

192

Radionuclide transport in sandstones with WIPP brine  

SciTech Connect (OSTI)

Retardation factors (R) have been measured for the transport of /sup 3/H, /sup 95m/Tc, and /sup 85/Sr in WIPP brine using St. Peter, Berea, Kayenta, and San Felipe sandstone cores. If tritium is assumed to have R=1, /sup 95m/Tc has R=1.0 to 1.3 and therefore is essentially not retarded. Strontium-85 has R = 1.0 to 1.3 on St. Peter, Berea, and Kayenta, but R=3 on San Felipe. This is attributed to sorption on the matrix material of San Felipe, which has 45 volume % matrix compared with 1 to 10 volume % for the others. Retardation factors (R/sub s/) for /sup 85/Sr calculated from static sorption measurements are unity for all the sandstones. Therefore, the static and transport results for /sup 85/Sr disagree in the case of San Felipe, but agree for St. Peter, Berea, and Kayenta.

Weed, H.C.; Bazan, F.; Fontanilla, J.; Garrison, J.; Rego, J.; Winslow, A.M.

1981-02-01T23:59:59.000Z

193

Geochemistry of Aluminum in High Temperature Brines  

SciTech Connect (OSTI)

The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

1999-05-18T23:59:59.000Z

194

Acceptance of Soil from Off Site Sources In order to guard against receiving contaminated soils to used as fill material on campus,  

E-Print Network [OSTI]

this guideline document in order to provide information for acceptance of clean imported fill material from off regulations governing the remediation of site, and hazardous chemical disposal. Local Oversight Program Agency, auto repair facilities and sites containing petroleum impacted soils and disposal and transportation

de Lijser, Peter

195

An enzyme-linked immunosorbent assay for the determination of dioxins in contaminated sediment and soil samples  

E-Print Network [OSTI]

An enzyme-linked immunosorbent assay for the determination of dioxins in contaminated sediment-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin values and log- transformed GC/HRMS-derived TEQ values were. Keywords: PCDD; PCDF; 2,3,7,8-Tetrachlorodibenzo-p-dioxin; TCDD; GC/HRMS; Immunoassay 1. Introduction

Hammock, Bruce D.

196

The feasibility of deep well injection for brine disposal  

E-Print Network [OSTI]

feasibility. The methodology is utilized to make a preliminary evaluation of a proposed brine injection project in the Dove Creek area of King and Stonewall Counties, North Central Texas. Four known deep aquifers are modeled, using the SWIFT/486 software...

Spongberg, Martin Edward

1994-01-01T23:59:59.000Z

197

Integrated process for coalbed brine and methane disposal  

SciTech Connect (OSTI)

This paper describes a technology and project to demonstrate and commercialize a brine disposal process for converting the brine stream of a coalbed gas producing site into clean water for agricultural use and dry solids that can be recycled for industrial consumption. The process also utilizes coalbed methane (CBM) released from coal mining for the combustion process thereby substantially reducing the potential for methane emissions to the atmosphere. The technology is ideally suited for the treatment and disposal of produced brines generated from the development of coal mines and coalbed methane resources worldwide. Over the next 10 to 15 years, market potential for brine elimination equipment and services is estimated to be in the range of $1 billion.

Byam, J.W. Jr.; Tait, J.H.; Brandt, H.

1996-12-31T23:59:59.000Z

198

ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R.; Wrights, R. S.

2002-02-25T23:59:59.000Z

199

Absorbing WIPP brines : a TRU waste disposal strategy.  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R. (David R.); Wright, R. (Robert)

2002-01-01T23:59:59.000Z

200

Strontium isotopic study of subsurface brines from Illinois basin  

SciTech Connect (OSTI)

The abundance of the radiogenic isotope /sup 87/Sr in a subsurface brine can be used as a tracer of brine origin, evolution, and diagenetic effects. The authors have determined the /sup 87/Sr//sup 86/Sr ratios of over 60 oil-field waters from the Illinois basin, where brine origin is perplexing because of the absence of any significant evaporite strata. Initially, they analyzed brines from 15 petroleum-producing sandstone and carbonate units; waters from Ordovician, Silurian, Devonian, and Mississippian strata have /sup 87/Sr//sup 86/Sr ratios in the range 0.7079-0.7108. All but those from the Ste. Genevieve Limestone (middle Mississippian) are more radiogenic in /sup 87/Sr//sup 86/Sr than seawater values for this interval of geologic time. The detrital source of the more radiogenic /sup 87/Sr may be the New Albany Shale group, considered to be a major petroleum source rock in the basin. The /sup 87/Sr//sup 86/Sr ratios of Ste. Genevieve brines apparently evolved without a contribution from fluid-shale interaction.

hetherington, E.A.; Stueber, A.M.; Pushkar, P.

1986-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Actinide (III) solubility in WIPP Brine: data summary and recommendations  

SciTech Connect (OSTI)

The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

2009-09-01T23:59:59.000Z

202

Bioremediation of contaminated groundwater  

DOE Patents [OSTI]

An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

Hazen, T.C.; Fliermans, C.B.

1995-01-24T23:59:59.000Z

203

Bioremediation of contaminated groundwater  

DOE Patents [OSTI]

An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

Hazen, Terry C. (Augusta, GA); Fliermans, Carl B. (Augusta, GA)

1995-01-01T23:59:59.000Z

204

CharacteristicGalerkin and Mixed Finite Element Approximation of Contamination by Compressible  

E-Print Network [OSTI]

Characteristic­Galerkin and Mixed Finite Element Approximation of Contamination by Compressible­disposal contamination in porous media is modeled by a coupled system of partial differential equations for the brine, radionuclides, and heat and by a mixed finite element method for the pressure and velocity

Chou, So-Hsiang

205

A Mixed Finite Element Approximation for Compressible Flow of Contamination from Nuclear  

E-Print Network [OSTI]

A Mixed Finite Element Approximation for Compressible Flow of Contamination from Nuclear Waste in Porous Media S. H. CHOU AND Q. LI Abstract A compressible nuclear waste disposal contamination in porous of this system using a finite element method for the brine, radionuclides, and heat combined with a mixed finite

Chou, So-Hsiang

206

Annotated bibliography of literature relating to wind transport of plutonium-contaminated soils at the Nevada Test Site  

SciTech Connect (OSTI)

During the period from 1954 through 1963, a number of tests were conducted on the Nevada Test Site (NTS) and Tonopah Test Range (TTR) to determine the safety of nuclear devices with respect to storage, handling, transport, and accidents. These tests were referred to as ``safety shots.`` ``Safety`` in this context meant ``safety against fission reaction.`` The safety tests were comprised of chemical high explosive detonations with components of nuclear devices. The conduct of these tests resulted in the dispersion of plutonium, and some americium over areas ranging from several tens to several hundreds of hectares. Of the various locations used for safety tests, the site referred to as ``Plutonium Valley`` was subject to a significant amount of plutonium contamination. Plutonium Valley is located in Area 11 on the eastern boundary of the NTS at an elevation of about 1036 m (3400 ft). Plutonium Valley was the location of four safety tests (A,B,C, and D) conducted during 1956. A major environmental, health, and safety concern is the potential for inhalation of Pu{sup 239,240} by humans as a result of airborne dust containing Pu particles. Thus, the wind transport of Pu{sup 239,240} particles has been the subject of considerable research. This annotated bibliography was created as a reference guide to assist in the better understanding of the environmental characteristics of Plutonium Valley, the safety tests performed there, the processes and variables involved with the wind transport of dust, and as an overview of proposed clean-up procedures.

Lancaster, N.; Bamford, R.

1993-12-01T23:59:59.000Z

207

Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil  

SciTech Connect (OSTI)

The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume of the Systems Design Study contain four Appendixes that were part of the study. Appendix A is an EG G Idaho, Inc., report that represents a review and compilation of previous reports describing the wastes and quantities disposed in the Subsurface Disposal Area of the Idaho National Engineering Laboratory. Appendix B contains the process flowsheets considered in this study, but not selected for detailed analysis. Appendix C is a historical tabulation of radioactive waste incinerators. Appendix D lists Department of Energy facilities where cementation stabilization systems have been used.

Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

1992-01-01T23:59:59.000Z

208

Pressure Buildup and Brine Migration During CO2 Storage in Multilayered Aquifers  

E-Print Network [OSTI]

leakage of brine into shallow groundwater resources. Pressurized brine can also be pushed into overlying. Introduction Carbon dioxide capture combined with geologic stor- age (CCS) in suitable subsurface formations of resident brine caused by CCS operations require modeling/analysis tools of considerable complexity (Celia

Zhou, Quanlin

209

Advanced biochemical processes for geothermal brines: Current developments  

SciTech Connect (OSTI)

A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the r and D effort identified a combination of biochemical and chemical processes which became the basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource, the emerging technology has to be flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

Premuzic, E.T.; Lin, M.S.; Bohenek, M. [Brookhaven National Lab., Upton, NY (United States). Energy Science and Technology Div.; Bajsarowicz, V. [CET Environmental Services, Inc., Richmond, CA (United States); McCloud, M. [C.E. Holt/California Energy, Pasadena, CA (United States)

1997-07-07T23:59:59.000Z

210

EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI  

SciTech Connect (OSTI)

Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal should be reviewed. This investigation also suggests 23 specific components of best practice which are designed to provide a guide to safe handling of NORM in the hydrocarbon industry. The components of best practice include both worker safety and suggestions to maintain waste isolation from the environment.

Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

2004-03-01T23:59:59.000Z

211

Oil production enhancement through a standardized brine treatment. Final report  

SciTech Connect (OSTI)

In order to permit the environmentally safe discharge of brines produced from oil wells in Pennsylvania to the surface waters of the Commonwealth and to rapidly brings as many wells as possible into compliance with the law, the Pennsylvania Oil and Gas Association (POGAM) approached the Pennsylvania State University to develop a program designed to demonstrate that a treatment process to meet acceptable discharge conditions and effluent limitations can be standardized for all potential stripper wells brine discharge. After the initial studies, the first phase of this project was initiated. A bench-scale prototype model was developed for conducting experiments in laboratory conditions. The experiments pursued in the laboratory conditions were focused on the removal of ferrous iron from synthetically made brine. Iron was selected as the primary heavy metals for studying the efficiency of the treatment process. The results of a number of experiments in the lab were indicative of the capability of the proposed brine treatment process in the removal of iron. Concurrent with the laboratory experiments, a comprehensive and extensive kinetic study was initiated. This study was necessary to provide the required data base for process modeling. This study included the investigation of the critical pH as well as the rate and order of reactions of the studied elements: aluminum, lead, zinc, and copper. In the second phase of this project, a field-based prototype was developed to evaluate and demonstrate the treatment process effectiveness. These experiments were conducted under various conditions and included the testing on five brines from different locations with various dissolved constituents. The outcome of this research has been a software package, currently based on iron`s reactivity, to be used for design purposes. The developed computer program was refined as far as possible using the results from laboratory and field experiments.

Adewumi, A.; Watson, R.; Tian, S.; Safargar, S.; Heckman, S.; Drielinger, I.

1995-08-01T23:59:59.000Z

212

The identification and quantitative analysis of the very toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin in the presence of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) contaminated soil samples  

SciTech Connect (OSTI)

This research describes the nature and extent of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) contamination in the soil samples from a waste cable incineration plant. The samples are collected at different places in the nearest and far away points of the soil around the incineration plant. A procedure which is described for the selective separation of 2,3,7,8-TCDD from all other PCDDs and PCDFs fractionated on Alumina Woelm B Super 1 in such a manner that all PCDDs are eluted prior to 2,3,7,8-TCDD. This procedure allows more sensitive quantitative determination of 2,3,7,8-TCDD in the soil samples.

Pehlivan, M.; Pehlivan, E. [Selcuk Univ., Konya (Turkey); Oezler, M.A. [Muola Univ., Mugla (Turkey); Barlas, H. [Istanbul Univ. (Turkey)

1999-02-01T23:59:59.000Z

213

Subsurface contaminants focus area  

SciTech Connect (OSTI)

The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

NONE

1996-08-01T23:59:59.000Z

214

Bioremediation of contaminated groundwater  

DOE Patents [OSTI]

Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

215

Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL  

SciTech Connect (OSTI)

A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were {sup 137}Cs and {sup 90}Sr, with lesser amounts of {sup 6O}Co, {sup 241}Am, and {sup 239,240}Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the {sup 137}Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of {sup 90}Sr, {sup 241}Am, or {sup 239,240}Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500{degrees}C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

Spalding, B.P.; Jacobs, G.K.; Naney, M.T. [Oak Ridge National Lab., TN (United States); Dunbar, N.W. [New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States); Tixier, J.S.; Powell, T.D. [Pacific Northwest Lab., Richland, WA (United States)

1992-11-01T23:59:59.000Z

216

Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL  

SciTech Connect (OSTI)

A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were [sup 137]Cs and [sup 90]Sr, with lesser amounts of [sup 6O]Co, [sup 241]Am, and [sup 239,240]Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the [sup 137]Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of [sup 90]Sr, [sup 241]Am, or [sup 239,240]Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500[degrees]C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

Spalding, B.P.; Jacobs, G.K.; Naney, M.T. (Oak Ridge National Lab., TN (United States)); Dunbar, N.W. (New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States)); Tixier, J.S.; Powell, T.D. (Pacific Northwest Lab., Richland, WA (United States))

1992-11-01T23:59:59.000Z

217

Modeling acid-gas generation from boiling chloride brines  

SciTech Connect (OSTI)

This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 C).

Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

2009-11-16T23:59:59.000Z

218

2 INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 EXPERIMENTAL STUDY OF CRUDE/BRINE/ROCK INTERACTION AT  

E-Print Network [OSTI]

as the temperature increased. The aging of low permeability cores saturated with oil had little effect in the rate44 2 INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 EXPERIMENTAL STUDY OF CRUDE in this section and expand the understanding of the interactions of the Spraberry reservoir rock, oil and brine

Schechter, David S.

219

E-Print Network 3.0 - alpha contaminated wastes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and solid radioactively contaminated wastes in unlined... that uses electrical power to heat and melt contaminated soil, fusing the ... Source: Pint, Bruce A. - Materials...

220

In situ bioremediation of petrol contaminated groundwater  

E-Print Network [OSTI]

) Bacterial Diversity and Aerobic Biodegradation Potential in a BTEX-Contaminated Aquifer Water Air Soil21/11/08 1 In situ bioremediation of petrol contaminated groundwater Guido Miguel Delgadillo EVS and facts · Likelihood of contamination · Benefits of in situ bioremediation So... Ask not what groundwater

Blouin-Demers, Gabriel

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline  

E-Print Network [OSTI]

Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline lake for RSL formation, CaCl2 brines and chloride deposits in basins may provide clues to the origin of ancient,2,10­14 , the composition of the brine is unlike any other body of water in the world, as ,90% of the salt is CaCl2 1

Marchant, David R.

222

The efficacy of oxidative coupling for promoting in-situ immobilization of hydroxylated aromatics in contaminated soil and sediment systems. Progress report, September 15, 1996--September 14, 1997  

SciTech Connect (OSTI)

'The principal objective for Year 1 of this study has included sorbent collection, preparation and characterization, as well as investigation of the efficacy of abiotic/enzymatic coupling reactions on the irreversible binding of phenolic compounds on natural soils and sediments. In response to a budget reduction request specific modifications were made without compromising the integrity of the proposed work. The modified Phase 1 experimental matrix consists of four natural sorbents and three phenolic sorbates. Preliminary experiments with Chelsea soil indicated excessive release of soil organic matter (SOM) into solution, thereby complicating determination of aqueous phase phenol concentrations. It was therefore decided to substitute Lachine shale for the Chelsea soil. This shale is a well-characterized natural sorbent used previously in the laboratory. Additionally two field soils having similar soil morphology were identified based on their particle size distribution and organic matter content. These soils were located from US Department of Agriculture soil survey data and collected aseptically from a forested and a grassland site. Another deviation from the proposed schedule of tasks was the initiation of work from Phase 2 and Phase 3. In addition to experiments with natural systems, preliminary work with model and engineered systems was initiated earlier than scheduled in order to integrate and relate all three aspects of the study and provide a more robust perspective of field applications of this remediation technology.'

Weber, W.J. Jr.; Bhandari, A.

1997-08-25T23:59:59.000Z

223

Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium  

SciTech Connect (OSTI)

mRNA extraction from soil and quantitation by competitive reverse transcription-PCR were combined to study the expression of three manganese peroxidase (MnP) genes during removal of polycyclic aromatic hydrocarbons from cultures of Phanerochaete chrysosporium grown in presterilized soil. Periods of high mnp transcript levels and extractable MnP enzyme activity were temporally correlated, although separated by a short (1- to 2-day) lag period. This time frame also coincided with maximal rates of fluorene oxidation and chrysene disappearance in soil cultures, supporting the hypothesis that high ionization potential polycyclic aromatic hydrocarbons are oxidized in soil via MnP-dependent mechanisms. The patterns of transcript abundance over time in soil-grown P. chrysosporium were similar for all three of the mnp mRNAs studied, indicating that transcription of this gene family may be coordinately regulated under these growth conditions. 47 refs., 6 figs., 1 tab.

Bogan, B.W. [Univ. of Wisconsin, Madison, WI (United States); Schoenike, B.; Lamar, R.T.; Cullen, D. [Forest Service Forest Products Lab., Madison, WI (United States)

1996-07-01T23:59:59.000Z

224

The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil  

E-Print Network [OSTI]

be achieved when the concentrations of organic pollutants are less than 30 mg/L. 2. SITE, MATERIAL AND METHODS The soil strata consisted of top soil, made ground, natural drift deposits and coal bedrock at depth. The top soil has a depth of ~ 0.1-0.35 m... in triplicate based on ASTM D4219 -08 using a Uniframe 70 -T0108/E loading frame. The crushed samples were then subjected to batch leaching following BS 12457 -2 [ 18]. A liquid to solid ratio (L/S) of 10:1 was used by adding 50 g of crushed core sample...

Wang, Fei; Wang, Hailing; Jin, Fei; Al-Tabbaa, Abir

2014-11-06T23:59:59.000Z

225

Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine  

SciTech Connect (OSTI)

The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies, (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites.

Barton, G.J.; Burruss, R.C.; Ryder, R.T.

1998-12-31T23:59:59.000Z

226

Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in southwest Montana uplands contaminated by smelter emissions. 1: Field evaluation  

SciTech Connect (OSTI)

Concentrations of arsenic and metals in soils surrounding a smelter in southwest Montana were correlated with vegetative community structure and composition and wildlife habitat quality. Soils in the uplands surrounding the smelter were highly enriched with arsenic and metals. Concentrations of these analytes decreased with distance from the smelter and with soil depth, suggesting that the smelter is the source of the enrichment. In enriched areas, marked modifications to the native vegetation community structure and composition were observed. These included replacement of evergreen forest with bare unvegetated ground; species impoverishment and increased dominance by weed species in grasslands; and reductions in the vertical complexity of the habitat. Significant negative correlations existed between soil arsenic and metals concentrations and the extent of vegetative cover and the vertical diversity of plant communities. Loss of vegetative cover in the affected areas has been accompanied by reductions in their capacity to support indigenous wildlife populations.

Galbraith, H.; LeJeune, K.; Lipton, J. [Hagler Bailly Consulting, Inc., Boulder, CO (United States)

1995-11-01T23:59:59.000Z

227

RIS-M-2260 HEAT GRADIENT INDUCED MIGRATION OF BRINE INCLUSIONS IN ROCK SALT  

E-Print Network [OSTI]

RISŘ-M-2260 HEAT GRADIENT INDUCED MIGRATION OF BRINE INCLUSIONS IN ROCK SALT Mathematical treatment project. Abstract. A mathematical model for the brine migration in rock salt around an infinite line heat source is set up. The tempera- ture field around the time dependent heat source is calculated by use

228

Brine fluxes from growing sea ice A. J. Wells,1,2  

E-Print Network [OSTI]

. Introduction [2] The spatiotemporal distribution of the liquid phase within sea ice, a porous array of iceBrine fluxes from growing sea ice A. J. Wells,1,2 J. S. Wettlaufer,1,2,3 and S. A. Orszag2] It is well known that brine drainage from growing sea ice has a controlling influence on its mechanical

Wettlaufer, John S.

229

Biodegradation of petroleum hydrocarbons in contaminated aqueous and sediment environments  

E-Print Network [OSTI]

Six bioremediation methods were tested in laboratory microcosms using field soil and water samples from within the fire-wall area of a petroleum storage tank. This soil had been intermittently contaminated with Bunker C fuel oil and other petroleum...

Mills, Marc Allyn

1994-01-01T23:59:59.000Z

230

Weeks Island brine diffuser site study: baseline conditions and environmental assessment technical report  

SciTech Connect (OSTI)

This technical report presents the results of a study conducted at two alternative brine diffuser sites (A and B) proposed for the Weeks Island salt dome, together with an analysis of the potential physical, chemical, and biological effects of brine disposal for this area of the Gulf of Mexico. Brine would result from either the leaching of salt domes to form or enlarge oil storage caverns, or the subsequent use of these caverns for crude oil storage in the Strategic Petroleum Reserve (SPR) program. Brine leached from the Weeks Island salt dome would be transported through a pipeline which would extend from the salt dome either 27 nautical miles (32 statute miles) for Site A, or 41 nautical miles (47 statute miles) for Site B, into Gulf waters. The brine would be discharged at these sites through an offshore diffuser at a sustained peak rate of 39 ft/sup 3//sec. The disposal of large quantities of brine in the Gulf could have a significant impact on the biology and water quality of the area. Physical and chemical measurements of the marine environment at Sites A and B were taken between September 1977 and July 1978 to correlate the existing environmental conditions with the estimated physical extent of tthe brine discharge as predicted by the MIT model (US Dept. of Commerce, 1977a). Measurements of wind, tide, waves, currents, and stratification (water column structure) were also obtained since the diffusion and dispersion of the brine plume are a function of the local circulation regime. These data were used to calculate both near- and far-field concentrations of brine, and may also be used in the design criteria for diffuser port configuration and verification of the plume model. Biological samples were taken to characterize the sites and to predict potential areas of impact with regard to the discharge. This sampling focused on benthic organisms and demersal fish. (DMC)

None

1980-12-12T23:59:59.000Z

231

Soil Testing Following Flooding, Overland Flow of Wastewater and other Freshwater Disasters  

E-Print Network [OSTI]

Freshwater flooding can seriously affect soil fertility and the physical and chemical properties of soil. This publication explains how to reclaim flooded soil. Having the soil tested for microbes, pesticides, hydrocarbons and other contaminants...

Provin, Tony; Feagley, Sam E.; Pitt, John L.; McFarland, Mark L.

2009-05-26T23:59:59.000Z

232

Cleanup Verification Package for the 118-H-6:2, 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils; the 118-H-6:3, 105-H Reactor Fuel Storage Basin and Underlying Soils; The 118-H-6:3 Fuel Storage Basin Deep Zone Side Slope Soils; the 100-H-9, 100-H-10, and 100-H-13 French Drains; the 100-H-11 and 100-H-12 Expansion Box French Drains; and the 100-H-14 and 100-H-31 Surface Contamination Zones  

SciTech Connect (OSTI)

This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31).

M. J. Appel

2006-06-29T23:59:59.000Z

233

Hybrid electrodialysis reverse osmosis system design and its optimization for treatment of highly saline brines  

E-Print Network [OSTI]

The demand is rising for desalination technologies to treat highly saline brines arising from hydraulic fracturing processes and inland desalination. Interest is growing in the use of electrical desalination technologies ...

McGovern, Ronan Killian

234

Behavior of type 304 and type 316 austenitic stainless in 55% lithium bromide heavy brine environments  

SciTech Connect (OSTI)

Cylindrical tensile specimens of AISI type 304 (UNS S30400) and type 316 (UNS S31600) stainless steels (SS) were tested under constant-load conditions in 55% lithium bromide (LiBr) heavy brines at temperatures of 120 C and 140 C. Elongation and open-circuit potential (OCP) were recorded during the tensile test. Potentiodynamic polarization measurements were conducted, and the failed surface fractures were examined by scanning electron microscopy. The tested SS were subjected to stress corrosion under the test environments. Sensitivity was affected strongly by pH values. In LiBr brine of pH = 11.6, the passivation processes were more effective than in brine of pH = 6 [approximately] 8. Because of effective passivation behavior in brine of pH = 11.6, lower values of [delta]l[sub 0] were measured, indicating lower dislocation relaxation processes and high resistance to stress corrosion cracking.

Itzhak, D.; Elias, O. (Ben-Gurion Univ., Beer-Sheva (Israel). Dept. of Materials Engineering)

1994-02-01T23:59:59.000Z

235

E-Print Network 3.0 - acartia tonsa brine Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: acartia tonsa brine Page: << < 1 2 3 4 5 > >> 1 Vol. 114: 203-208,1994 MARINE ECOLOGY PROGRESS SERIES Summary: . divergens attacking it. Ingestion rates of P, cf....

236

Seizing a species : the story of the Great Salt Lake brine shrimp harvest  

E-Print Network [OSTI]

In the early 1950s, C.C. "Sparkplug" Sanders began harvesting brine shrimp from Utah's Great Salt Lake. Sanders built up a small business selling their eggs, called "cysts, to aquarium stores across the country. During the ...

Wotipka, Samuel Alex

2014-01-01T23:59:59.000Z

237

Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau  

SciTech Connect (OSTI)

Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

2013-04-01T23:59:59.000Z

238

Bioavailability of Cadmium and Zin to Two Earthworm Species in High-metal Soils  

E-Print Network [OSTI]

sludge, and those receiving smelter emission, which are alland Zn bioavailability in smelter-contaminated soils by aof Cd contamination: Zn smelter emissions, long-term sewage

Liu, Ying

2012-01-01T23:59:59.000Z

239

Study of thermal-gradient-induced migration of brine inclusions in salt. Final report  

SciTech Connect (OSTI)

Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

Olander, D.R.

1984-08-01T23:59:59.000Z

240

New Energy Efficient Method for Cleaning Oilfield Brines with Carbon Dioxide  

E-Print Network [OSTI]

NEW ENERGY EFFICIENT METHOD FOR CLEANING OILFIELD BRINES WITH CARBON DIOXIDE C. T. LITTLE A. F. SEIBERT Research Engineer Technical Manager Amoco Oil Company Separations Research Program Naperville, Illinois The University of Texas Austin... dioxide to clean oilfield brines. The new treatment method, described in this work, is actually an enhancement of existing gas flotation technology. The enhancement results from the use of carbon dioxide as the sweeping gas combined with its ability...

Little, C. T.; Seibert, A. F.; Bravo, J. L.; Fair, J. R.

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hard-bottom macrofauna of the East Flower Garden brine seep: impact of a long term, point-source brine discharge  

E-Print Network [OSTI]

canyon transect were sta- tions R6 and R7, both of which were on top of Cottonwick Rock, ap- proximately 2 m above the canyon floor. Figure 5 (p. 12) shows that salinity and sulfide at these stations were at normal marine levels. Though the total...HARD-BOT1'OM MACROFAUNA OF THE EAST FLOWER GARDEN BRINE SEEP: IMPACT OF A LONG TERM, POINT-SOURCE BRINE DISCHARGE A Thesis by STEPHEN REED GITTINGS Submitted to the Graduate College of Texas A&M University in partial fulfillment...

Gittings, Stephen Reed

1983-01-01T23:59:59.000Z

242

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research  

E-Print Network [OSTI]

-aqueous phase liquids (DNAPLs) in contaminated subsurface systems through the introduction of brine solutions remediation of contaminated soils using brine solutions and during the geological sequestration of CO2. The success of such techniques relies on the accurate prediction of the location of the brine during

Anderson, Daniel M.

243

Containment of subsurface contaminants  

DOE Patents [OSTI]

A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

Corey, J.C.

1994-09-06T23:59:59.000Z

244

Containment of subsurface contaminants  

DOE Patents [OSTI]

A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

Corey, John C. (Aiken, SC)

1994-01-01T23:59:59.000Z

245

Risk-Based Remediation Approach for Cs-137 Contaminated Sediment/Soils at the Savannah River Site (SRS) Lower Three Runs Tail (U) - 13348 - SRNS-RP-2012-00546  

SciTech Connect (OSTI)

Lower Three Runs is a large blackwater stream that runs through the eastern and southern portion of the Savannah River Site. The Lower Three Runs watershed includes two SRS facility areas: P Area (P Reactor) and R Area (R Reactor) that provided effluent discharges to Lower Three Runs. During reactor operations, effluent discharges were well above natural (pre-industrial) or present day stream discharges. The watershed contains a 2,500-acre mainstream impoundment (PAR Pond), several smaller pre-cooler ponds, and a canal system that connects the pre-cooler ponds and discharges surface water to PAR Pond. From the PAR Pond dam, Lower Three Runs flows approximately 36 kilometers braiding through bottom-land/flood-plain forests before it enters the Savannah River. About eight kilometers downstream from the PAR Pond dam, the SRS boundary narrows (termed the Lower Three Runs tail) providing a limited buffer of DOE property for the Lower Three Runs stream and associated flood-plain. Previous screening characterization efforts revealed Cs-137 contamination in the sediment/soils of the flood-plain. As a part of the American Recovery and Reinvestment Act stimulus package, a comprehensive characterization effort was executed on the sediment/soils of the Lower Three Runs tail flood-plain providing a comprehensive look at the contaminant signature of the area. As a follow-up to that characterization, a regulatory decision Core Team, comprised of members of the South Carolina Department of Health and Environmental Control, Environmental Protection Agency - Region IV, and DOE, conducted negotiations on a risk-based approach to address the level of contamination found in the tail flood-plain as an early action that provided a long-term solution to exposure scenarios. For evaluation purposes, the adolescent trespasser was selected as the most likely human receptor for the Lower Three Runs tail portion because of the natural attractiveness of the area for recreational activities (i.e., hunting, fishing, hiking etc.) and access from public property. Exposure of the adolescent trespasser to Cs-137 contaminated sediment/soil at concentrations greater than 23.7 pico curies per gram have been calculated to result in an unacceptable cancer risk (> 1 x 10{sup -4}). Comparing the characterization sampling results conducted in 2009 with the benchmark concentration of 23.7 pCi/g, identified elevated risk levels along three sampling areas in the Lower Three Runs tail portion. On January 5, 2012, it was agreed by the core team that a Removal Action in the Lower Three Runs tail was to be conducted for the identified soil/sediment locations in the three identified areas that exceed the 1 x 10{sup -4} risk (23.7 pCi/g) for the adolescent trespasser receptor. The addition of Land Use Controls following the Removal Action was appropriate to protect human health and the environment. A systematic screening matrix was initiated at the identified hot spots (i.e., sampling points with Cs-137 activities greater than 23.7 pCi/g) to identify the limits of the excavation area. Sediment/soil within the defined removal areas would be excavated to the depth necessary to achieve the cleanup goal and disposed of in a CERCLA Off-Site Rule approved disposal facility. It was agreed that this removal action would adequately reduce the volume of available Cs-137 in the Lower Three Runs tail and consequently residual activities of the Cs-137 would decay over time reducing the amount of Cs-137 available in the tail which would curtail risk. The Land Use Controls consist of installation of an additional seven miles of fencing at major road crossings, utility easements, and at areas that showed a higher probability of access. In addition, signs were placed along the entire SRS perimeter of the Lower Three Runs tail approximately every 200 feet. Sign posts included both a No Trespassing sign and a Contaminant Warning sign. The project initiated a subcontract for both the removal action and the installation of fencing and signs on May 1, 2012. All field activities were completed

Freeman, Candice [Department of Energy- Savannah River Site, Aiken, SC (United States)] [Department of Energy- Savannah River Site, Aiken, SC (United States); Bergren, Christopher; Blas, Susan; Kupar, James [Area Completion Projects, Savannah River Nuclear Solutions, LLC (United States)] [Area Completion Projects, Savannah River Nuclear Solutions, LLC (United States)

2013-07-01T23:59:59.000Z

246

Numerical simulations of lab-scale brine-water mixing experiments.  

SciTech Connect (OSTI)

Laboratory-scale experiments simulating the injection of fresh water into brine in a Strategic Petroleum Reserve (SPR) cavern were performed at Sandia National Laboratories for various conditions of injection rate and small and large injection tube diameters. The computational fluid dynamic (CFD) code FLUENT was used to simulate these experiments to evaluate the predictive capability of FLUENT for brine-water mixing in an SPR cavern. The data-model comparisons show that FLUENT simulations predict the mixing plume depth reasonably well. Predictions of the near-wall brine concentrations compare very well with the experimental data. The simulated time for the mixing plume to reach the vessel wall was underpredicted for the small injection tubes but reasonable for the large injection tubes. The difference in the time to reach the wall is probably due to the three-dimensional nature of the mixing plume as it spreads out at the air-brine or oil-brine interface. The depth of the mixing plume as it spreads out along the interface was within a factor of 2 of the experimental data. The FLUENT simulation results predict the plume mixing accurately, especially the water concentration when the mixing plume reaches the wall. This parameter value is the most significant feature of the mixing process because it will determine the amount of enhanced leaching at the oil-brine interface.

Khalil, Imane; Webb, Stephen Walter

2006-10-01T23:59:59.000Z

247

Recovery of energy from geothermal brine and other hot water sources  

DOE Patents [OSTI]

Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

1981-01-01T23:59:59.000Z

248

Brine Sampling and Evaluation Program 1992--1993 report and summary of BSEP data since 1982  

SciTech Connect (OSTI)

This report is the last one that is currently scheduled in the sequence of reports of new data, and therefore, also includes summary comments referencing important data obtained by BSEP since 1983. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the (WIPP) Waste Isolation Pilot Plant. A project concern is that enough brine might be present after sealing and closure to generate large quantities of hydrogen gas by corroding the metal in the waste drums and waste inventory. This report describes progress made during the calendar years 1992 and 1993 and focuses on four major areas: (1) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes from the underground drifts; (2) observations of weeps in the Air Intake Shaft (AIS); (3) further characterization of brine geochemistry; and (4) additional characterization of the hydrologic conditions in the fractured zone beneath the excavations.

Deal, D.E.; Abitz, R.J. [I. T. Corp., Carlsbad, NM (United States); Belski, D.S. [USDOE Albuquerque Operations Office, Carlsbad, NM (United States). Waste Isolation Pilot Plant Project Office

1995-04-01T23:59:59.000Z

249

In-situ air injection, soil vacuum extraction and enhanced biodegradation: A case study in a JP-4 jet fuel contaminated site  

SciTech Connect (OSTI)

The US Environmental Protection Agency (US EPA) and the US Coast Guard (USCG) conducted a joint demonstration of in situ remediation of a JP-4 jet fuel spill at the USCG Support Center in Elizabeth City, North Carolina. The jet fuel was trapped beneath a clay layer that extended from the surface to a depth of 1.5 in. The water table was 2.0 in below land surface, and jet fuel extended from a depth of 1.0 to 3.5 in. Air was injected under pressure to depress the water table and bring the entire spill into the unsaturated zone, where hydrocarbons could be removed by volatilization and biodegradation. The injected air was recovered through soil vacuum extraction (SVE) at the treatment area. To document actual removal of hydrocarbons, core samples were acquired in August 1992 before air injection, and September 1994 at the end of the demonstration. The spill originally contained 3600 kg of JP-4. Between the core sampling events, only 55 % of the total petroleum hydrocarbons were removed, but more than 98% of benzene was removed. The initial goal was to reduce the concentration of total petroleum hydrocarbons (TPH) to concentrations less than 100 mg/kg soil. This was not accomplished within 18 months of operation. During the period of operation, ground water was monitored for the concentration of benzene, toluene, ethylbenzene, and the xylene isomers (BTEX), and methyl tertiary butyl ether (MTBE). The concentration of BTEX and MTBE in the subsurface was reduced to a very low level, but concentrations of benzene and MTBE in ground water did not meet the EPA drinking water standards in the most heavily impacted wells. The effluent gas from SVE was monitored for the concentration of total hydrocarbon vapors. 12 refs., 7 figs., 5 tabs.

Cho, Jong Soo; DiGiulio, D.C.; Wilson, J.T. [National Risk Management Lab., Ada, OK (United States)

1997-12-31T23:59:59.000Z

250

West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report  

SciTech Connect (OSTI)

The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

1983-02-01T23:59:59.000Z

251

Sorption of cesium and strontium from concentrated brines by backfill barrier materials  

SciTech Connect (OSTI)

The sorption of radionuclides from potentially intruding groundwater at a nuclear waste repository is a major chemical function of backfill barriers. In this study, various materials (including clays, zeolites and an inorganic ion exchanger) were screened for the sorption of the fission products cesium and strontium in concentrated brines. Representative brines A and B for the Waste Isolation Pilot Plant (WIPP), a proposed radioactive waste repository and test facility in bedded salt were used. Sorption properties were quantified using empirical distribution coefficients, k/sub d/. Of the materials examined, sodium titanate had the highest k/sub d/ for the sorption of Sr(II) in both brine A (k/sub d/ = 125 ml/g) and brine B(k/sub d/ = 500 to 600 ml/g). A mordenite-type zeolite was the most effective getter for Cs(I) in brine A (k/sub d = 27 ml/g), while illite yielded the highest k/sub d/ for Cs(I) in brine B (k/sub d/ = 115 ml/g). The relative merit of these k/sub d/ values is evaluated in terms of calculated estimates of breakthrough times for a backfill barrier containing the getter. Results show that a backfill mixture containing these getters is potentially an effective barrier to the migration of Sr(II) and Cs(I), although further study (especially for the sorption of cesium from brine A) is recommended. Initial mechanistic studies revealed competing ion effects which would support an ion exchange mechanism. K/sub d/'s were constant over a Sr(II) concentration range of 10/sup -11/ to 10/sup -5/ M and a Cs(I) concentration range of 10/sup -8/ to 10/sup -5/ M, supporting the choice of a linear sorption isotherm as a model for the results. Constant batch composition was shown to be attained within one week.

Winslow, C D

1981-03-01T23:59:59.000Z

252

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect (OSTI)

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

253

NNSS Soils Monitoring: Plutonium Valley (CAU366)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

2012-02-01T23:59:59.000Z

254

The depth of the oil/brine interface and crude oil leaks in SPR caverns  

SciTech Connect (OSTI)

Monitoring wellhead pressure evolution is the best method of detecting crude oil leaks in SPR caverns while oil/brine interface depth measurements provide additional insight. However, to fully utilize the information provided by these interface depth measurements, a thorough understanding of how the interface movement corresponds to cavern phenomena, such as salt creep, crude oil leakage, and temperature equilibration, as well as to wellhead pressure, is required. The time evolution of the oil/brine interface depth is a function of several opposing factors. Cavern closure due to salt creep and crude oil leakage, if present, move the interface upward. Brine removal and temperature equilibration of the oil/brine system move the interface downward. Therefore, the relative magnitudes of these factors determine the net direction of interface movement. Using a mass balance on the cavern fluids, coupled with a simplified salt creep model for closure in SPR caverns, the movement of the oil/brine interface has been predicted for varying cavern configurations, including both right-cylindrical and carrot-shaped caverns. Three different cavern depths and operating pressures have been investigated. In addition, the caverns were investigated at four different points in time, allowing for varying extents of temperature equilibration. Time dependent interface depth changes of a few inches to a few feet were found to be characteristic of the range of cases studied. 5 refs, 19 figs., 1 tab.

Heffelfinger, G.S.

1991-06-01T23:59:59.000Z

255

Basic radiological studies contamination control experiments  

SciTech Connect (OSTI)

This report describes the results of experiments relating to contamination control performed in support of the Environmental Restoration Programs Retrieval Project. During the years 1950 to 1970 waste contaminated with plutonium and other transuranic radionuclides was disposed of in shallow land-filled pits and trenches at the Idaho National Engineering Laboratory. Due to potential for migration of radionuclides to an existing aquifer the feasibility of retrieving and repackaging the waste for placement in a final repository is being examined as part of a retrieval project. Contamination control experiments were conducted to determine expected respirable and nonrespirable plutonium contaminated dust fractions and the effectiveness of various dust suppression techniques. Three soil types were tested to determine respirable fractions: Rocky Flats Plant generic soil, Radioactive Waste Management Complex generic soil, and a 1:1 blend of the two soil types. Overall, the average respirable fraction of airborne dust was 5.4% by weight. Three contamination control techniques were studied: soil fixative sprays, misting agents, and dust suppression agents. All of the tested agents proved to be effective in reducing dust in the air. Details of product performance and recommended usage are discussed.

Duce, S.W.; Winberg, M.R.; Freeman, A.L.

1989-09-01T23:59:59.000Z

256

Zinc Fertilization Plus Liming to Reduce Cadmium Uptake by Romaine Lettuce on Cd-Mineralized Lockwood Soil  

E-Print Network [OSTI]

by emissions from zinc smelters. Trace Subst. Environ.1999) who studied Zn-smelter or mine waste contaminated orgrowing Romaine lettuce on Zn-smelter contaminated soils in

Chaney, Rufus L; Green, Carrie E.; Ajwa, Husein A; Smith, Richard F

2009-01-01T23:59:59.000Z

257

Repassivation of 13% Cr steel dependent on brine pH  

SciTech Connect (OSTI)

A joint laboratory project, involving an oil production and oil well service company, investigated repassivation of martensitic 13% Cr steel. The rate at which this alloy is repassivated after losing its protective passive oxide layer to hydrochloric acid (HCI) depended on the pH of the spent acid returns. Test samples of 13% Cr cut from oilfield tubing were subjected to a fluid sequence of (1) initial brine, (2) HCI, (3) spent acid, and (4) final brine. In 9 days, the samples regained their passive oxide layers. When spent acid was taken out of the fluid sequence, the samples regained passive oxide layers in 3 days.

Skogsberg, J.W.; Walker, M.L.

2000-02-01T23:59:59.000Z

258

Brine transport studies in the bedded salt of the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

Brine flow has been measured to unheated boreholes for periods of a few days and to heated holes for two years in the WIPP facility. It is suggested that Darcy flow may dominate the observed influx of brine. Exact solutions to a linearized model for one-dimensional, radial flow are evaluated for conditions approximating the field experiments. Flow rates of the correct order of magnitude are calculated for permeabilities in the range 10/sup -21/ to 10/sup -20/ m/sup 2/ (1 to 10 nanodarcy) for both the unheated and heated cases. 20 refs., 3 figs., 1 tab.

McTigue, D.F.; Nowak, E.J.

1987-01-01T23:59:59.000Z

259

Formation of Thetis Deep metal-rich sediments in the absence of brines, Red Sea M.C. Pierret a  

E-Print Network [OSTI]

Formation of Thetis Deep metal-rich sediments in the absence of brines, Red Sea M.C. Pierret a , N October 2009 Available online 23 October 2009 Keywords: Pb­Sr­Nd isotopes REE Metal-rich sediments-rich sediments covered by brine pools. It is generally agreed that these metal-rich deposits precipitated from

Demouchy, Sylvie

260

Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations  

SciTech Connect (OSTI)

Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Formation and character of an ancient 19-m ice cover and underlying trapped brine in an ``ice-sealed'' east  

E-Print Network [OSTI]

Formation and character of an ancient 19-m ice cover and underlying trapped brine in an ``ice bed year-round. New ice-core analysis and tempera- ture data show that beneath 19 m of ice is a water°C. The ice cover thickens at both its base and surface, sealing concentrated brine beneath. The ice

Priscu, John C.

262

Water as a Reagent for Soil Remediation  

SciTech Connect (OSTI)

SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

2003-03-06T23:59:59.000Z

263

Brine release based on structural calculations of damage around an excavation at the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

In a large in situ experimntal circular room, brine inflow was measured over 5 years. After correcting for evaporation losses into mine ventilation air, the measurements gave data for a period of nearly 3 years. Predicted brine accumulation based on a mechanical ``snow plow`` model of the volume swept by creep-induced damage as calculated with the Multimechanism Deformation Coupled Fracture model was found to agree with experiment. Calculation suggests the damage zone at 5 years effectively exends only some 0.7 m into the salt around the room. Also, because the mecahnical model of brine release gives an adequate explanation of the measured data, the hydrological process of brine flow appears to be rapid compared to the mechanical process of brine release.

Munson, D.E.; Jensen, A.L.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States); DeVries, K.L. [RE/SPEC, Inc., Rapid City, SD (United States)

1996-02-01T23:59:59.000Z

264

Programmatic methods for addressing contaminated volume uncertainties  

SciTech Connect (OSTI)

Accurate estimates of the volumes of contaminated soils or sediments are critical to effective program planning and to successfully designing and implementing remedial actions. Unfortunately, data available to support the pre-remedial design are often sparse and insufficient for accurately estimating contaminated soil volumes, resulting in significant uncertainty associated with these volume estimates. The uncertainty in the soil volume estimates significantly contributes to the uncertainty in the overall project cost estimates, especially since excavation and off-site disposal are the primary cost items in soil remedial action projects. The U.S. Army Corps of Engineers Buffalo District's experience has been that historical contaminated soil volume estimates developed under the Formerly Utilized Sites Remedial Action Program (FUSRAP) often underestimated the actual volume of subsurface contaminated soils requiring excavation during the course of a remedial activity. In response, the Buffalo District has adopted a variety of programmatic methods for addressing contaminated volume uncertainties. These include developing final status survey protocols prior to remedial design, explicitly estimating the uncertainty associated with volume estimates, investing in pre-design data collection to reduce volume uncertainties, and incorporating dynamic work strategies and real-time analytics in pre-design characterization and remediation activities. This paper describes some of these experiences in greater detail, drawing from the knowledge gained at Ashland 1, Ashland 2, Linde, and Rattlesnake Creek. In the case of Rattlesnake Creek, these approaches provided the Buffalo District with an accurate pre-design contaminated volume estimate and resulted in one of the first successful FUSRAP fixed-price remediation contracts for the Buffalo District. (authors)

Rieman, C.R.; Spector, H.L. [U.S. Army Corps of Engineers Buffalo District, Buffalo, NY (United States); Durham, L.A.; Johnson, R.L. [Argonne National Laboratory, Environmental Science Div., IL (United States)

2007-07-01T23:59:59.000Z

265

Water and Solute Flow in a Highly-Structured Soil  

E-Print Network [OSTI]

Prevention of groundwater contamination by agricultural activities is a high priority in the United States. Water and contaminants often follow particular flow paths through the soil that lead to rapid movement of pesticides out of the rootzone...

Hallmark, C. Tom; Wilding, Larry P.; McInnes, Kevin J.; Heuvelman, Willem J.

266

E-Print Network 3.0 - arsenic contaminated water Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water Search Powered by Explorit Topic List Advanced Search Sample search results for: arsenic contaminated water Page: << < 1 2 3 4 5 > >> 1 Soil and Water Science Department...

267

Nonlinear Thermal Transport and Brine Convection in First Year Sea Ice  

E-Print Network [OSTI]

Nonlinear Thermal Transport and Brine Convection in First Year Sea Ice M.J. McGuinness \\Lambda , H a programme recently set up to directly measure the thermal conductivity of young sea ice. An array of thermistors frozen into first­year Antarctic sea ice provides temperature against depth data, which is fitted

268

NUMERICAL INVESTIGATION OF TEMPERATURE EFFECTS DURING THE INJECTION OF CARBON DIOXIDE INTO BRINE  

E-Print Network [OSTI]

NUMERICAL INVESTIGATION OF TEMPERATURE EFFECTS DURING THE INJECTION OF CARBON DIOXIDE INTO BRINE for the simulation of carbon dioxide injection into geological formations is currently an intensive field of research for the balance of thermal energy, we can investigate numerically the effects of temperature variations during

Cirpka, Olaf Arie

269

Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines  

E-Print Network [OSTI]

Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines Zhenhao, 2007 A thermodynamic model calculating the solubility of hydrogen sulfide (H2S) in pure water phase. With this specific interaction approach, this model is able to predict H2S solubility in other

Zhu, Chen

270

Analysis of hydrocarbon removal methods for the management of oilfield brines and produced waters  

E-Print Network [OSTI]

and globally, the petroleum industries challenge has been to develop a high-tech and cost effective method to purify the large volumes of oilfield brines and produced water. Currently, most of the produced water requires several pre- and post- treatment methods...

Furrow, Brendan Eugene

2005-11-01T23:59:59.000Z

271

Investigation of oil injection into brine for the Strategic Petroleum Reserve : hydrodynamics and mixing experiments with SPR liquids.  

SciTech Connect (OSTI)

An experimental program was conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal was to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. An earlier report (O'Hern et al., 2003) documented the first stage of the program, in which simulant liquids were used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward into brine. This report documents the final two test series. In the first, the plume hydrodynamics experiments were completed using SPR oil, brine, and sludge. In the second, oil reinjection into brine was run for approximately 6 hours, and sampling of oil, sludge, and brine was performed over the next 3 months so that the long-term effects of oil-sludge mixing could be assessed. For both series, the experiment consisted of a large transparent vessel that is a scale model of the proposed oil-injection process at the SPR. For the plume hydrodynamics experiments, an oil layer was floated on top of a brine layer in the first test series and on top of a sludge layer residing above the brine in the second test series. The oil was injected downward through a tube into the brine at a prescribed depth below the oil-brine or sludge-brine interface. Flow rates were determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface was deflected upward by the impinging oil-brine plume. Videos of this flow were recorded for scaled flow rates that bracket the equivalent pumping rates in an SPR cavern during injection of degassed oil. Image-processing analyses were performed to quantify the penetration depth and width of the oil jet. The measured penetration depths were shallow, as predicted by penetration-depth models, in agreement with the assumption that the flow is buoyancy-dominated, rather than momentum-dominated. The turbulent penetration depth model overpredicted the measured values. Both the oil-brine and oil-sludge-brine systems produced plumes with hydrodynamic characteristics similar to the simulant liquids previously examined, except that the penetration depth was 5-10% longer for the crude oil. An unexpected observation was that centimeter-size oil 'bubbles' (thin oil shells completely filled with brine) were produced in large quantities during oil injection. The mixing experiments also used layers of oil, sludge, and brine from the SPR. Oil was injected at a scaled flow rate corresponding to the nominal SPR oil injection rates. Injection was performed for about 6 hours and was stopped when it was evident that brine was being ingested by the oil withdrawal pump. Sampling probes located throughout the oil, sludge, and brine layers were used to withdraw samples before, during, and after the run. The data show that strong mixing caused the water content in the oil layer to increase sharply during oil injection but that the water content in the oil dropped back to less than 0.5% within 16 hours after injection was terminated. On the other hand, the sediment content in the oil indicated that the sludge and oil appeared to be well mixed. The sediment settled slowly but the oil had not returned to the baseline, as-received, sediment values after approximately 2200 hours (3 months). Ash content analysis indicated that the sediment measured during oil analysis was primarily organic.

Castaneda, Jaime N.; Cote, Raymond O.; Torczynski, John Robert; O'Hern, Timothy John

2004-05-01T23:59:59.000Z

272

Disposal/recovery options for brine waters from oil and gas production in New York State. Final report  

SciTech Connect (OSTI)

Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

1996-03-01T23:59:59.000Z

273

Arsenic distribution in soils surrounding the Utah copper smelter  

SciTech Connect (OSTI)

We investigated the extent of arsenic contamination from a Utah copper smelter as reflected by arsenic residue accumulated in the surface soil. The highest arsenic concentrations occurred within 3 km of the smelter. Arsenic soil contamination was evident up to 10 km from the smelter, with the major transport direction being ESE. Data from the subsurface soil samples indicated that arsenic has also leached through the soil.

Ball, A.L. (Univ. of Utah Coll. of Engineering, Salt Lake City); Rom, W.N.; Glenne, B.

1983-05-01T23:59:59.000Z

274

Biomonitoring of the genotoxic potential of aqueous extracts of soils and bottom ash resulting from municipal solid waste  

E-Print Network [OSTI]

wastes and contaminated sites is an important economic and environmental problem. The regula- tions, France Abstract The management of contaminated soils and wastes is a matter of considerable human concern (Xenopus laevis). Soil A was contaminated by residues of solvents and metals and Soil B by polycyclic

Mailhes, Corinne

275

A unified theory on electro-kinetic extraction of contaminants  

E-Print Network [OSTI]

of contaminants from fine-grained soils. Here, the experimental and the theoretical studies conducted to date are reviewed briefly 2. 3. 1. Experimental Studies The technique of electro-kinetic extraction of salts from alkaline soils was investigated by Puri...A VNIFIED THEORY ON ELECTRO-KINETIC EXTRACTION OF CONTAMINANTS A Thesis by SUBBARAJU DATLA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

Datla, Subbaraju

1994-01-01T23:59:59.000Z

276

Surface Soil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal...

277

Applied Soil Ecology 21 (2002) 7188 Soil invertebrate and microbial communities, and decomposition  

E-Print Network [OSTI]

Applied Soil Ecology 21 (2002) 71­88 Soil invertebrate and microbial communities, and decomposition. Spongberg Department of Earth, Ecological and Environmental Sciences, University of Toledo, Toledo, OH 43606 for quantification of ecological impact of chemical contamination of soils. This study examined the effects

Neher, Deborah A.

278

The effect of stratigraphic dip on brine inflow and gas migration at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The natural dip of the Salado Formation at the Waste Isolation Pilot Plant (WIPP), although regionally only about 111, has the potential to affect brine inflow and gas-migration distances due to buoyancy forces. Current models, including those in WIPP Performance Assessment calculations, assume a perfectly horizontal repository and stratigraphy. With the addition of buoyancy forces due to the dip, brine and gas flow patterns can be affected. Brine inflow may increase due to countercurrent flow, and gas may preferentially migrate up dip. This scoping study has used analytical and numerical modeling to evaluate the impact of the dip on brine inflow and gas-migration distances at the WIPP in one, two, and three dimensions. Sensitivities to interbed permeabilities, two-phase curves, gas-generation rates, and interbed fracturing were studied.

Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Larson, K.W. [INTERA, Inc., Albuquerque, NM (United States)] [INTERA, Inc., Albuquerque, NM (United States)

1996-02-01T23:59:59.000Z

279

Soil Remediation Test  

SciTech Connect (OSTI)

Soils contaminated with petroleum by-products can now be effectively remediated using a variety of technologies. Among these are in-situ bioremediation, land farming, and landfill/replacing of soil. The range of efficiencies and cost effectiveness of these technologies has been well documented. Exsorbet Plus is showing promise as an in-situ bioremediation agent. It is made of naturally grown Spaghnum Peat Moss which has been activated for encapsulation and blended with nitrogen-rich fertilizer. In its initial field test in Caracas, Venezuela, it was able to remediate crude oil-contaminated soil in 90 days at less than half of the cost of competing technologies. Waste Solutions, Corp and the US Department of Energy signed a Cooperative Research and Development Agreement to test Exsorbet Plus at the Rocky Mountain Oilfield Testing Center near Casper, Wyoming. As part of the test, soil contaminated with crude oil was treated with Exsorbet Plus to aid the in-situ bioremediation process. Quantitative total petroleum hydrocarbon (TPH) measurements were acquired comparing the performance of Exsorbet Plus with an adjacent plot undergoing unaided in-situ bioremediation.

Manlapig, D. M.; Williamsws

2002-04-01T23:59:59.000Z

280

Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration  

SciTech Connect (OSTI)

To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

Goddard, William

2012-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

West Hackberry Brine Disposal Project pre-discharge characterization. Final report  

SciTech Connect (OSTI)

The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.) [eds.

1982-01-01T23:59:59.000Z

282

Sulfate Removal from Reject Brined in Inland Desalination with Zero Liquid Discharge  

E-Print Network [OSTI]

SULFATE REMOVAL FROM REJECT BRINED IN INLAND DESALINATION WITH ZERO LIQUID DISCHARGE A Thesis by DEMA ALMASRI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... and help. I am thankful for my colleagues for their inspiration and assistance throughout the years in Texas A&M at Qatar. I am also grateful to my exceptional friends that were always there during my ups and downs. I am thankful for my irreplaceable...

Almasri, Dema A

2013-07-03T23:59:59.000Z

283

Salt Brine Blending to Optimize Deicing and Anti-icing Performance and Cost  

E-Print Network [OSTI]

Chloride (MgCl2) w/additives ·Envirotech Serv., Scotwood Ind., NA Salt ·Calcium Chloride (CaCl2) ·Tiger 135% 90% 115% Thawrox Gold Treated MgCl2 150% 120% 115% Ice Slicer CaCl2 130% 95% 70% Ice Bite @ 3 gal to Salt Brine Material Base @ 12 F @20 F @ 28 F Calcium Chloride CaCl2 160% 185% 135% RGP-8 CaCl2 170% 80

Minnesota, University of

284

Biochemical solubilization of toxic salts from residual geothermal brines and waste waters  

DOE Patents [OSTI]

A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

Premuzic, E.T.; Lin, M.S.

1994-11-22T23:59:59.000Z

285

Biochemical solubilization of toxic salts from residual geothermal brines and waste waters  

DOE Patents [OSTI]

A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1994-11-22T23:59:59.000Z

286

Hydrological and geochemical monitoring for a CO2 sequestration pilot in a brine formation  

SciTech Connect (OSTI)

Hydrological and geochemical monitoring are key components of site characterization and CO2 plume monitoring for a pilot test to inject CO2 into a brine-bearing sand of the fluvial-deltaic Frio formation in the upper Texas Gulf Coast. In situ, injected CO2 forms a supercritical phase that has gas-like properties (low density and viscosity) compared to the surrounding brine, while some CO2 dissolves in the brine. The pilot test employs one injection well and one monitor well, with continuous pressure and flow-rate monitoring in both wells, and continuous surface fluid sampling and periodic down-hole fluid sampling from the monitor well. Pre-injection site-characterization includes pump tests with pressure-transient analysis to estimate single-phase flow properties, establish hydraulic connectivity between the wells, determine appropriate boundary conditions, and analyze ambient phase conditions within the formation. Additionally, a pre-injection tracer test furnishes estimates of kinematic porosity and the geometry of flow paths between injection and monitor wells under single-phase conditions. Pre-injection geochemical sampling provides a baseline for subsequent geochemical monitoring and helps determine the optimal tracers to accompany CO2 injection. During CO2 injection, hydrological monitoring enables estimation of two-phase flow properties and helps track the movement of the injected CO2 plume, while geochemical sampling provides direct evidence of the arrival of CO2 and tracers at the monitor well. Furthermore, CO2-charged water acts as a weak acid, and reacts to some extent with the minerals in the aquifer, producing a distinct chemical signature in the water collected at the monitor well. Comparison of breakthrough curves for the single-phase tracer test and the CO2 (and its accompanying tracers) illuminates two-phase flow processes between the supercritical CO2 and native brine, an area of current uncertainty that must be better understood to effectively sequester CO2 in saline aquifers.

Doughty, Christine; Pruess, Karsten; Benson, Sally M.; Freifeld, Barry M.; Gunter, William D.

2004-05-17T23:59:59.000Z

287

Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle  

SciTech Connect (OSTI)

The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift.

Smith, D.A.

1985-01-01T23:59:59.000Z

288

Hydrogeology, chemical and microbial activity measurement through deep permafrost  

E-Print Network [OSTI]

illustrated that drill brine contamination in permafrostDespite the contamination of drilling brine in the U-tubepermafrost, contamination with drilling brine can be over-

Stotler, R.L.

2010-01-01T23:59:59.000Z

289

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect (OSTI)

This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

David B. Burnett

2005-09-29T23:59:59.000Z

290

Estimating exposure of terrestrial wildlife to contaminants  

SciTech Connect (OSTI)

This report describes generalized models for the estimation of contaminant exposure experienced by wildlife on the Oak Ridge Reservation. The primary exposure pathway considered is oral ingestion, e.g. the consumption of contaminated food, water, or soil. Exposure through dermal absorption and inhalation are special cases and are not considered hereIN. Because wildlife mobile and generally consume diverse diets and because environmental contamination is not spatial homogeneous, factors to account for variation in diet, movement, and contaminant distribution have been incorporated into the models. To facilitate the use and application of the models, life history parameters necessary to estimate exposure are summarized for 15 common wildlife species. Finally, to display the application of the models, exposure estimates were calculated for four species using data from a source operable unit on the Oak Ridge Reservation.

Sample, B.E.; Suter, G.W. II

1994-09-01T23:59:59.000Z

291

Complexity of Groundwater Contaminants at DOE Sites  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites and facilities. Note that Riley and Zachara analyzed the data from only 18 sites/facilities including 91 plumes. In this paper, we present the results of statistical analyses of the data in the GWD as guidance for planning future basic and applied research of groundwater contaminants within the DOE complex. Our analyses include the evaluation of a frequency and ranking of specific contaminants and contaminant groups, contaminant concentrations/activities and total contaminant masses and activities. We also compared the results from analyses of the GWD with those from the 1992 report by Riley and Zachara. The difference between our results and those summarized in the 1992 report by Riley and Zachara could be caused by not only additional releases, but also by the use of modern site characterization methods, which more accurately reveal the extent of groundwater contamination. Contaminated sites within the DOE complex are located in all major geographic regions of the United States, with highly variable geologic, hydrogeologic, soil, and climatic conditions. We assume that the information from the 60 DOE sites included in the GWD are representative for the whole DOE complex. These 60 sites include the major DOE sites and facilities, such as Rocky Flats Environmental Technology Site, Colorado; Idaho National Laboratory, Idaho; Savannah River Site, South Carolina; Oak Ridge Reservation, Tennessee; and Hanford Reservation, Washington. These five sites alone ccount for 71% of the value of the remediation work.

Hazen, T.C.; Faybishenko, B.; Jordan, P.

2010-12-03T23:59:59.000Z

292

In vitro gastrointestinal mimetic protocol for measuring bioavailable contaminants  

DOE Patents [OSTI]

The present invention relates to measurements of contaminants in the soil and other organic or environmental materials, using a biologically relevant chemical analysis that will measure the amount of contaminants in a given sample that may be expected to be absorbed by a human being ingesting the contaminated soil. According to the present invention, environmental samples to be tested are added to a pre-prepared physiological composition of bile salts and lipids. They are thoroughly mixed and then the resulting mixture is separated e.g. by centrifugation. The supernatant is then analyzed for the presence of contaminants and these concentrations are compared to the level of contaminants in the untreated samples. It is important that the bile salts and lipids be thoroughly pre-mixed to form micelles.

Holman, Hoi-Ying N. (Berkeley, CA)

2000-01-01T23:59:59.000Z

293

Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose  

SciTech Connect (OSTI)

This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs.

Kennedy, W.E. Jr.; Peloquin, R.A. (Pacific Northwest Lab., Richland, WA (USA))

1990-01-01T23:59:59.000Z

294

CSMRI Bagged Soil Disposal Summary Report  

E-Print Network [OSTI]

of radioactive/metals-contaminated soils and similar soils to a solid waste landfill in a letter dated August 26 Radioactive Materials License No. 1094-01. This document serves to provide a summary of the disposal as well. During the 2004 remediation work, approximately 1,870 cubic yards (cy) of radioactive

295

PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT  

SciTech Connect (OSTI)

The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field trials and subcontractor research have been summarized in this Final Report. Individual field trial reports and research reports are contained in the companion volume titled “Appendices”

Burnett, David

2012-12-31T23:59:59.000Z

296

2010 19th World Congress of Soil Science, Soil Solutions for a Changing World  

E-Print Network [OSTI]

underestimated in parts of northwestern and central Russia (Boyd et al., 2009). Soil contaminated from smelter concentrations. Native plants like berries and mushrooms growing 3000 km2 around the smelter complex contain

Sparks, Donald L.

297

Author's personal copy Physica D 239 (2010) 18551866  

E-Print Network [OSTI]

, such as those occurring during remediation of contaminated soils using brine solutions and during the geological for containing and/or mobilizing dense non-aqueous phase liquids (DNAPLs) in contaminated subsurface systems through the introduction of brine solutions. The success of such techniques relies on the accurate

McLaughlin, Richard M.

298

Advanced biochemical processes for geothermal brines FY 1998 annual operating plan  

SciTech Connect (OSTI)

As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

NONE

1997-10-01T23:59:59.000Z

299

Soil to plant transfer of 238 Th on a uranium  

E-Print Network [OSTI]

Soil to plant transfer of 238 U, 226 Ra and 232 Th on a uranium mining-impacted soil from species grown in soils from southeastern China contaminated with uranium mine tailings were analyzed The radioactive waste (e.g. tailings) produced by uranium mining activities contains a series of long

Hu, Qinhong "Max"

300

Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides  

E-Print Network [OSTI]

lead, zinc, and cadmium in smelter-contaminated soils usingof metal availability in smelter soil using earthworms andnear a former Zn and Pb smelter to test the ability of soil

Hazen, Terry C.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ENVIRONMENTAL IMPACTS OF PETROLEUM PRODUCTION: THE FATE OF  

E-Print Network [OSTI]

of differing ages near Lake Skiatook, Osage County, Oklahoma, a series of oil, water, brine, and soil samples of the sites is affected by salt scarring, soil salinization, and petroleum contamination. The main pit at this site however, contains relatively fresh asphaltic oil and high salinity brine. Site B

302

Minimum Ultraviolet Light Dose Determination and Characterization of Stress Responses that Affect Dose for Listeria monocytogenes Suspended in Distilled Water, Fresh Brine, and Spent Brine.  

E-Print Network [OSTI]

??Foodborne illnesses caused by Listeria monocytogenes have long been associated with ready-to-eat (RTE) meats contaminated after the primary thermal process has been applied. It is… (more)

McKinney, Julie

2008-01-01T23:59:59.000Z

303

Report on design, construction, and testing of CO/sub 2/ breakout system for geothermal brines  

SciTech Connect (OSTI)

A skid mounted test facility has been built for determining conditions at which CO/sub 2/ flashes from geothermal brines. The system has been checked and operated at one geothermal plant. It performed as designed. The equipment is designed to operate at temperatures and pressures typical of wells near Heber, California. (Nominally 180/sup 0/C and 300 to 500 psig). It has heat exchangers which can cool the brine to less than 70/sup 0/C. (The cooling water is recirculated after being cooled by a forced air heat exchanger). Breakout pressures can be determined for any temperature between 70/sup 0/C and wellhead temperature. An adjustable orifice provides final control on pressure required to initiate flashing. The orifice is at the bottom of a sight glass. A light beam shines through the sight glass and focuses on a photoelectric cell. The presence of bubbles scatters light and decreases the output of the cell. Results using the cell were more reproducible than those using the naked eye. Results from one test show a smooth curve over the temperature range 75/sup 0/C to 165/sup 0/C. Agreement between the experimental values and calculated ones is discussed.

Robertus, R.J.; Shannon, D.W.; Sullivan, R.G.

1984-03-01T23:59:59.000Z

304

Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981  

SciTech Connect (OSTI)

The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

1982-07-01T23:59:59.000Z

305

Summary Results for Brine Migration Modeling Performed by LANL LBNL and SNL for the UFD Program  

SciTech Connect (OSTI)

This report summarizes laboratory and field observations and numerical modeling related to coupled processes involving brine and vapor migration in geologic salt, focusing on recent developments and studies conducted at Sandia, Los Alamos, and Berkeley National Laboratories. Interest into the disposal of heat-generating waste in salt has led to interest into water distribution and migration in both run-of-mine crushed and intact geologic salt. Ideally a fully coupled thermal-hydraulic-mechanical-chemical simulation is performed using numerical models with validated constitutive models and parameters. When mechanical coupling is not available, mechanical effects are prescribed in hydraulic models as source, boundary, or initial conditions. This report presents material associated with developing appropriate initial conditions for a non-mechanical hydrologic simulation of brine migration in salt. Due to the strong coupling between the mechanical and hydrologic problems, the initial saturation will be low for the excavation disturbed zone surrounding the excavation. Although most of the material in this report is not new, the author hopes it is presented in a format making it useful to other salt researchers.

Kuhlman, Kristopher L.

2014-09-01T23:59:59.000Z

306

Development of a flow injection analysis method for the determination of acrylamide copolymers in oilfield brines  

SciTech Connect (OSTI)

An automated method for the determination of acrylamide polymers by flow injection analysis (FIA) has been developed and optimized for routine use. The method has been extensively tested for interferences common in oilfield brines. Potential interferences were examined from Na{sup +}, Ca{sup 2+}, Cr{sup 3+}, Al{sup 3+}, Zr{sup 3+}, NH{sub 4}{sup +}, Cl{sup {minus}}, OH{sup {minus}}, CO{sub 3}{sup 2{minus}}, sample coloration, and commonly used surfactants. The analysis is specific for amides, and the sensitivity to concentration of amide groups in the polymer was shown to be constant as the degree of polymer hydrolysis was varied. The range of the method is 0.1 to 100 mg/L. Sample throughput is 30 samples/h with triplicate analysis. Relative standard deviations of 0.2% are readily obtained from standard solutions and 0.5% from complex samples (at 50 mg/L). The method is applicable to the determination of aqueous, acrylamide-based polymers in process streams, surface waters and oilfield brines.

Taylor, K.C.; Burke, R.A.; Schramm, L.L. [Petroleum Recovery Inst., Calgary, Alberta (Canada); Nasr-El-Din, H.A. [Saudi Aramco, Dhahran (Saudi Arabia)

1995-11-01T23:59:59.000Z

307

Brine migration test report: Asse Salt Mine, Federal Republic of Germany: Technical report  

SciTech Connect (OSTI)

This report presents a summary of Brine Migration Tests which were undertaken at the Asse mine of the Federal Republic of Germany (FRG) under a bilateral US/FRG agreement. This experiment simulates a nuclear waste repository at the 800-m (2624-ft) level of the Asse salt mine in the Federal Republic of Germany. This report describes the Asse salt mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are selected test data (for the first 28 months of operation) on the following: brine migration rates, thermomechaical behavior of the salt (including room closure, stress reading, and thermal profiles), borehole gas pressures, and borehole gas analyses. In addition to field data, laboratory analyses of pretest salt properties are included in this report. The operational phase of these experiments was completed on October 4, 1985, with the commencement of cooldown and the start of posttest activities. 7 refs., 68 figs., 48 tabs.

Coyle, A.J.; Eckert, J.; Kalia, H.

1987-01-01T23:59:59.000Z

308

Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures  

SciTech Connect (OSTI)

In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

2014-08-14T23:59:59.000Z

309

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect (OSTI)

Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

David B. Burnett

2004-09-29T23:59:59.000Z

310

Occurrence of Pesticides in Water, Sediment, and Soil from the Yolo Bypass, California  

E-Print Network [OSTI]

1992. Unusual persistence of DDT in some western USA soils.J. 2001. Bioremediation of DDT contaminated soils: A review.detected, along with DDT and its metabolites. Trifluralin,

Smalling, Kelly L.; Orlando, James L.; Kuivila, Kathryn M.

2007-01-01T23:59:59.000Z

311

Soils Soil Series  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofat HomeAssurance: DOESoil0 Soils Soil

312

In-situ remediation system for groundwater and soils  

DOE Patents [OSTI]

A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.

Corey, J.C.; Kaback, D.S.; Looney, B.B.

1993-11-23T23:59:59.000Z

313

In-situ remediation system for groundwater and soils  

DOE Patents [OSTI]

A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

Corey, John C. (212 Lakeside Dr., Aiken, SC 29803); Kaback, Dawn S. (1932 Cottonwood Dr., Aiken, SC 29803); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

1993-01-01T23:59:59.000Z

314

Multiscale modeling of surfactant phase behavior in the remediation of DNAPL contamination.  

E-Print Network [OSTI]

??The brine barrier remediation technique (BBRT) has been proposed as a novel Brine barrier remediation techniques (BBRT) that use surfactants have been proposed for remediating… (more)

Fan, Xiangyu.

2008-01-01T23:59:59.000Z

315

How to deal with radiologically contaminated vegetation  

SciTech Connect (OSTI)

This report describes the findings from a literature review conducted as part of a Department of Energy, Office of Technology Development Biomass Remediation Task. The principal objective of this project is to develop a process or group of processes to treat radiologically contaminated vegetation in a manner that minimizes handling, processing, and treatment costs. Contaminated, woody vegetation growing on waste sites at SRS poses a problem to waste site closure technologies that are being considered for these sites. It is feared that large sections of woody vegetation (logs) can not be buried in waste sites where isolation of waste is accomplished by capping the site. Logs or large piles of woody debris have the potential of decaying and leaving voids under the cap. This could lead to cap failure and entrance of water into the waste. Large solid objects could also interfere with treatments like in situ mixing of soil with grout or other materials to encapsulate the contaminated sediments and soils in the waste sites. Optimal disposal of the wood includes considerations of volume reduction, treatment of the radioactive residue resulting from volume reduction, or confinement without volume reduction. Volume reduction consists primarily of removing the carbon, oxygen, and hydrogen in the wood, leaving an ash that would contain most of the contamination. The only contaminant that would be released by volume reduction would by small amounts of the radioactive isotope of hydrogen, tritium. The following sections will describe the waste sites at SRS which contain contaminated vegetation and are potential candidates for the technology developed under this proposal. The description will provide a context for the magnitude of the problem and the logistics of the alternative solutions that are evaluated later in the review. 76 refs.

Wilde, E.W.; Murphy, C.E.; Lamar, R.T.; Larson, M.J.

1996-12-31T23:59:59.000Z

316

Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.

ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

1999-10-01T23:59:59.000Z

317

Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Area 8 Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively.

Miller Julianne J.,Mizell Steve A.,Nikolich George,Campbell Scott A.

2012-02-01T23:59:59.000Z

318

Soil Quality Information Sheet Rangeland Soil Quality--Soil Biota  

E-Print Network [OSTI]

powerhouse of soil, include an incredible diversity of organisms. Tons of soil biota, including micro

319

The effects of viscosity and subsurface heterogeneity on a brine barrier approach to DNAPL remediation.  

E-Print Network [OSTI]

??Dense nonaqueous phase liquids (DNAPLs) are a long-term source of groundwater contamination. Difficulties of current remediation methods have led to the study of a novel… (more)

Murphy, Lauren L.

2006-01-01T23:59:59.000Z

320

Engineered Treatment of As-laden Regeneration Brine from Ion Exchange Processes .  

E-Print Network [OSTI]

??Arsenic (As) contamination of drinking water sources has been one of the most challenging global environmental issues. In the United States, the newly revised maximum… (more)

STEINWINDER, THOMAS

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

PII S0016-7037(01)00901-2 Effect of light and brine shrimp on skeletal 13  

E-Print Network [OSTI]

PII S0016-7037(01)00901-2 Effect of light and brine shrimp on skeletal 13 C in the Hawaiian coral, University of Pennsylvania, 240 South 33rd Street, Philadelphia, PA 19104-6316, USA (Received June 7, 2001 skeletal 13 C values decreased when solar intensity was reduced, and increased in the absence

Grottoli, Andréa G.

322

Predicting PVT data for CO2brine mixtures for black-oil simulation of CO2 geological storage  

E-Print Network [OSTI]

Predicting PVT data for CO2­brine mixtures for black-oil simulation of CO2 geological storage efficiency of the black-oil approach promote application of black-oil simulation for large-scale geological into geological formations has been considered as a potential method to mitigate climate change. Accurate

Santos, Juan

323

Energy optimization in ice hockey halls I. The system COP as a multivariable function, brine and design choices  

E-Print Network [OSTI]

This work is the first of a series of articles addressing the energy optimization in ice hockey halls. Here we outline an analytic method to predict in which design and operating conditions the COP of the entire cooling system (refrigerator and cooling tower) ${\\rm COP}_{sys}$ is maximum. ${\\rm COP}_{sys}$ is investigated as a function of several variables, like electric consumption and brine physical properties. With this method, the best configuration and brine choices for the system can therefore be determined in advance. We estimate the optimal design of an average-sized ice rink, including pipe diameter, depth and brine type (ethylene glycol and ammonia). We also single out an optimal brine density and show the impact of the electric consumption of the pump on ${\\rm COP}_{sys}$. Our theoretical predictions are validated with heat flow measurement data obtained at an ice hockey hall in Finland. They are also confronted with technical and cost-related constraints, and implemented by simulations with the pr...

Ferrantelli, Andrea; Räikkönen, Miska; Viljanen, Martti

2012-01-01T23:59:59.000Z

324

Macro-and Microscale Waterflooding Performances of Crudes which form w/o Emulsions upon Mixing with Brines  

E-Print Network [OSTI]

Macro- and Microscale Waterflooding Performances of Crudes which form w/o Emulsions upon Mixing with Brines N. Rezaei and A. Firoozabadi*,, Reservoir Engineering Research Institute, 595 Lytton Avenue, Palo ABSTRACT: We study the micro- and macroscale waterflooding performances of unusual crudes which naturally

Firoozabadi, Abbas

325

2. INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 STUDY OF WATERFLOODING PROCESS IN NATURALLY FRACTURED  

E-Print Network [OSTI]

, followed by waterflooding, were performed at reservoir conditions to investigate rock wettability. A two Berea and Spraberry cores at reservoir conditions to illustrate the actual process of waterflooding- 31 - 2. INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 STUDY OF WATERFLOODING PROCESS

Schechter, David S.

326

Contamination analysis unit  

DOE Patents [OSTI]

The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

Gregg, Hugh R. (Livermore, CA); Meltzer, Michael P. (Livermore, CA)

1996-01-01T23:59:59.000Z

327

Contamination analysis unit  

DOE Patents [OSTI]

The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

Gregg, H.R.; Meltzer, M.P.

1996-05-28T23:59:59.000Z

328

Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve.  

SciTech Connect (OSTI)

Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are %E2%80%9Csour%E2%80%9D by SPR standards indicating they contain total sulfur > 0.50 wt %.

Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

2013-10-01T23:59:59.000Z

329

Volatile organic compound losses from sewage sludge-amended soils  

SciTech Connect (OSTI)

Volatile organic compounds (VOCs) applied to soil in sludge have been assumed to disappear quickly and completely. The VOC behavior in sludge-amended soils has been studied previously only in laboratory systems where the sludged soil has been spiked with compounds of interest. Behavior in these systems may not necessarily represent compound behavior in field soils to which contaminated sludge is added. A series of laboratory microcosm experiments were designed therefore to investigate the behavior of toluene, ethyl benzene, o-, m-, and p-xylene applied to soil in contaminated sludge, and factors influencing loss processes. The VOC loss from sludge-amended soil was well described by a simple one step pseudo-first-order model but in certain soils was better described by a two step first-order model. Volatilization was the predominant loss process. Rates of loss depended on sludge application rate, method of sludge application, soil properties, and on compound characteristics. Experiments indicated that spiking sludge-amended soils gave a reasonable indication of VOC loss rates from systems amended with contaminated sludge at least over a period of 23 d. The majority of VOCs applied to soils in sludge volatilizes quickly to the atmosphere over a few to 10s of days with a small fraction lost more slowly. Potential for VOC crop uptake, livestock ingestion, and contamination of ground water is low under routine, managed applications of sewage sludge to agricultural land.

Wilson, S.C.; Jones, K.C.

1999-08-01T23:59:59.000Z

330

Evaluation of materials for systems using cooled, treated geothermal or high-saline brines  

SciTech Connect (OSTI)

Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. The metals exhibiting corrosion resistance at 50,000 ppM chloride were then evaluated at 100,000 and 200,000 ppM chloride. Since these were screening tests to select materials for components to be used in a cooling system, with primary emphasis on condenser tubing, several materials were exposed for 4 to 10 months in pilot cooling tower test units with heat transfer for further corrosion evaluation. The results of the screening tests indicate that ferritic stainless steels (29-4-2 and SEA-CURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests. This pitting was not apparent, however, after 6 months of exposure in the pilot cooling tower tests. The nickel-base alloys exhibited excellent corrosion resistance, but their high cost prevents their use unless no other material is found feasible. Other materials tested, although unsuitable for condenser tubing material, would be suitable as tube sheet material.

Suciu, D.F.; Wikoff, P.M.

1982-09-01T23:59:59.000Z

331

Recovery Act-Funded Study Assesses Contamination at Former Test Site in California  

Broader source: Energy.gov [DOE]

Workers in a study funded by $38 million from the American Recovery and Reinvestment Act to assess radiological contamination have collected more than 600 soil samples and surveyed 120 acres of...

332

Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility  

E-Print Network [OSTI]

The extent of remobilization of uranium from contaminated soils adjacent to a nuclear weapons processing facility during episodic rain events was investigated. In addition, information on the solid phase associations of U in floodplain and suspended...

Batson, Vicky Lynn

1994-01-01T23:59:59.000Z

333

Saxton soil remediation project  

SciTech Connect (OSTI)

The Saxton Nuclear Experimental Facility (SNEF) consists of a 23-MW(thermal) pressurized light water thermal reactor located in south central Pennsylvania. The Saxton Nuclear Experimental Corporation (SNEC), a wholly owned subsidiary of the General Public Utilities (GPU) Corporation, is the licensee for the SNEF. Maintenance and decommissioning activities at the site are conducted by GPU Nuclear, also a GPU subsidiary and operator of the Three Mile Island and Oyster Creek nuclear facilities. The remediation and radioactive waste management of contaminated soils is described.

Holmes, R.D. [GPU Nuclear Corporation, Middletown, PA (United States)

1995-12-31T23:59:59.000Z

334

Contamination Control Techniques  

SciTech Connect (OSTI)

Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

EBY, J.L.

2000-05-16T23:59:59.000Z

335

WATER AS A REAGENT FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

2001-11-12T23:59:59.000Z

336

Evaluation and prevention of explosions in soil vapor extraction systems  

SciTech Connect (OSTI)

Due to the widespread and long term use of petroleum derived fuels and solvents, many areas have subsurface soils contaminated with petroleum derivatives. This contamination can migrate to groundwater, which is frequently used to supply drinking water needs. A common method of cleaning up that contamination is soil vapor extraction (SVE). SVE is a technique where several extraction wells are installed in the contaminated area, with screens in the appropriate vertical locations. The soil vapors re extracted form the wells using a positive displacement blower. To prevent this subsurface contamination from becoming air pollution, the extracted vapors are then sent to some hydrocarbon removal device, such as a carbon adsorption system or a thermal oxidizer. The data used in this investigation were collected as part of a Radian Corporation project for a client. The site is a former petroleum refinery, and the hydrocarbons are primarily gasoline and diesel.

Hower, J.W. [Radian Corp., El Segundo, CA (United States)

1995-12-31T23:59:59.000Z

337

Erace--an integrated system for treating organic-contaminated sites  

SciTech Connect (OSTI)

The U.S. Department of Energy`s (DOE) Pacific Northwest Laboratory (PNL) is developing a suite of electrical technologies for treating sites contaminated with hazardous organic compounds. These include: (1) Six-Phase Soil Heating (SPSH) to remove volatile and semi-volatile organic compounds from soils; (2) In Situ Corona (ISC) to decompose nonvolatile and bound organic contaminants in soils; (3) High-Energy Corona (HEC) to treat contaminated off-gases; and (4) Liquid Corona (LC) to treat contaminated liquids. These four technologies comprise ERACE (Electrical Remediation at Contaminated Environments), an integrated system for accomplishing site remediation with little or no secondary wastes produced that would require off-site treatment or disposal. Each ERACE technology can be employed individually as a stand-alone treatment process, or combined as a system for total site remediation. For example, an ERACE system for treating sites contaminated with volatile organics would integrate SPSH to remove the contaminants from the soil, LC to continuously treat an aqueous stream condensed out of the soil off-gas, and HEC to treat non-condensibles remaining in the off-gas, before atmospheric release.

Caley, S.M.; Heath, W.O.; Bergsman, T.M.; Gauglitz, P.A.; Pillay, C.; Moss, R.W.; Shah, R.R.; Goheen, S.C.; Camiaoni, D.M.

1994-11-01T23:59:59.000Z

338

Field evaluation of a standard test method for screening fuels in soils at a railroad site  

SciTech Connect (OSTI)

American Society for Testing and Materials (ASTM) Method D-5831-95 is a standard test method for screening fuel contamination in soils. This method uses low-toxicity chemicals and can be used to screen organic-rich soils. It is also fast, easy, and inexpensive to perform. The screening method calls for extracting a sample of soil with isopropyl alcohol (IPA) following treatment with calcium oxide. The resulting extract is filtered, and the ultraviolet (UV) absorbance of the extract is measured at 254 nm. Depending on the information available concerning the contaminant fuel type and availability of the contaminant fuel for calibration, the method can be used to determine the approximate concentration of fuel contamination, an estimated value of fuel contamination, or an indication of the presence or absence of fuel contamination. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and coal oil can be determined. ASTM Method D-5831 was evaluated by using the method to screen soil samples at an actual field site. Soil contaminated with weathered and fresh diesel fuel was sampled and tested for its contaminant concentration. Soil samples were screened in the field using ASTM Method D-5831 and a portable soil test kit. In addition, splits of the soil samples were analyzed in the laboratory using an extractable petroleum hydrocarbon method. Field and laboratory data were compared and show good correlation between field screening and laboratory results.

Schabron, J.F.; Sorini, S.S. [Western Research Institute, Laramie, WY (United States); Butler, E.L. [Gradient Corp., Cambridge, MA (United States); Frisbie, S. [Johnson Co., Inc., Montpelier, VT (United States)

1997-12-31T23:59:59.000Z

339

Decommissioning of the TA-42 plutonium contaminated incinerator facility  

SciTech Connect (OSTI)

During 1978, a plutonium (/sup 239/Pu) contaminated incinerator facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned. The project involved dismantling the facility and burying the debris at an on-site radioactive solid waste disposal/storage area. Contaminated soil from the 5000 m/sup 2/ area was also buried. The facility was constructed in 1951 to incinerate /sup 239/Pu contaminated wastes. It was later used as a decontamination facility. The major features included a 185-m/sup 2/ floor area control building, incinerator, cyclone dust collector, spray cooler, venturi scrubber, air filter bank, ash separator, and two 140 000-liter ash storage tanks. Six-hundred cubic meters of debris and 1200 m/sup 3/ of soil contaminated with less than 10 nCi /sup 239/Pu per gram of soil were buried at the Laboratory disposal area. Five cubic meters of /sup 239/Pu contaminated ash residues containing more than 10 nCi /sup 239/Pu per gram of waste were packaged and stored to meet the Department of Energy's 20-year retrievable storage criteria. The operation consumed 80 work days and 5800 manhours at a cost of $150 000. This report presents the details concerning decommissioning procedures, the health physics, the waste management, the environmental surveillance results, and a cost breakdown for the operation.

Harper, J.R.; Garde, R.

1981-11-01T23:59:59.000Z

340

Quantification of in situ polycyclic aromatic hydrocarbon biodegradation at a petroleum contaminated site  

E-Print Network [OSTI]

contaminated area located in the Port Arthur Refinery of Fina Oil and Chemical Company (FINA). The soil within these area had been chronically contaminated with Bunker C fuel oil spills. As this contamination was considered a potential threat... formed as products of combustion (Gibson, 1977). Their hydrophobic properties and low water solubility make them adsorb to sediments and migrate with them through rivers, lakes and oceans (Cerniglia and Heitkamp, 1989). Polycyclic aromatic hydrocarbons...

Conti, Enzo Mario

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Risk Reduction and Soil Ecosystem Restoration in an Active Oil Producing Area in an Ecologically Sensitive Setting  

SciTech Connect (OSTI)

The empowerment of small independent oil and gas producers to solve their own remediation problems will result in greater environmental compliance and more effective protection of the environment as well as making small producers more self-reliant. In Chapter 1 we report on the effectiveness of a low-cost method of remediation of a combined spill of crude oil and brine in the Tallgrass Prairie Preserve in Osage County, OK. Specifically, we have used hay and fertilizer as amendments for remediation of both the oil and the brine. No gypsum was used. Three spills of crude oil plus produced water brine were treated with combinations of ripping, fertilizers and hay, and a downslope interception trench in an effort to demonstrate an inexpensive, easily implemented, and effective remediation plan. There was no statistically significant effect of treatment on the biodegradation of crude oil. However, TPH reduction clearly proceeded in the presence of brine contamination. The average TPH half-life considering all impacted sites was 267 days. The combination of hay addition, ripping, and a downslope interception trench was superior to hay addition with ripping, or ripping plus an interception trench in terms of rates of sodium and chloride leaching from the impacted sites. Reductions in salt inventories (36 months) were 73% in the site with hay addition, ripping and an interception trench, 40% in the site with hay addition and ripping only, and < 3% in the site with ripping and an interception trench.

Kerry L. Sublette; Greg Thoma; Kathleen Duncan

2006-01-01T23:59:59.000Z

342

Remaining Sites Verification Package for 100-F-38 Stained Soil Site, Waste Site Reclassification Form 2004-093  

SciTech Connect (OSTI)

The 100-F-38 Stained Soil site was an area of yellow stained soil that was discoverd while excavating a trench for the placement of electrical conduit. The 100-F-38 Stained Soil site meets the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils and the contaminant concentrations remaining in the soil are protective of groundwater and the Columbia River.

R. A. Carlson

2006-03-13T23:59:59.000Z

343

LABORATORY ANALYSIS OF SOILS AND SPOILS BPG NOTE 2  

E-Print Network [OSTI]

be very costly to correct later (Bending et al., 1999). Soils on brownfield sites are often considered quantification of important hazards such as contaminants which are very often present on brownfield sites on contaminated land, and the forthcoming Information Note: Greenspace establishment on brownfield land: the site

344

2.4ContaminantTransportandManagement(CONTAM) The ConTAM research area focuses on developing technology to observe and manage mass and energy  

E-Print Network [OSTI]

:cscales.In200809,the contaminant transport group emphasized data assimila:on and modeldriven analysis. In one case,soil transport in soils, emphasis this year turned to pilottes:ng the system at the Palmdale field site. Key Report 55 Center for Embedded Networked Sensing 2.4 Contaminant Transport and Management Figure1

California at Los Angeles, University of

345

Modeling for Airborne Contamination  

SciTech Connect (OSTI)

The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift walls. The gamma-ray scattering properties of concrete are sufficiently similar to those of the host rock and proposed insert material; use of concrete will have no significant impact on the conclusions. The information in this report is presented primarily for use in performing pre-closure radiological safety evaluations of radiological contaminants, but it may also be used to develop strategies for contaminant leak detection and monitoring in the MGR. Included in this report are the methods for determining the source terms and release fractions, and mathematical models and model parameters for contaminant transport and distribution within the repository. Various particle behavior mechanisms that affect the transport of contaminant are included. These particle behavior mechanisms include diffusion, settling, resuspension, agglomeration and other deposition mechanisms.

F.R. Faillace; Y. Yuan

2000-08-31T23:59:59.000Z

346

NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.

Julianne J Miller, Steve A. Mizell, George Nikolich, Greg McCurdy, and Scott Campbell

2013-01-01T23:59:59.000Z

347

Understanding Long-Term Solute Transport in Sedimentary Basins: Simulating Brine Migration in the Alberta Basin. Final Report  

SciTech Connect (OSTI)

Mass transport in deep sedimentary basins places important controls on ore formation, petroleum migration, CO2 sequestration, and geochemical reactions that affect petroleum reservoir quality, but large-scale transport in this type of setting remains poorly understood. This lack of knowledge is highlighted in the resource-rich Alberta Basin, where geochemical and hydrogeologic studies have suggested residence times ranging from hundreds of millions of years to less than 5 My, respectively. Here we developed new hydrogeologic models that were constrained by geochemical observations to reconcile these two very different estimates. The models account for variable-density fluid flow, heat transport, solute transport, sediment deposition and erosion, sediment compressibility, and dissolution of salt deposits, including Cl/Br systematics. Prior interpretations of Cl/Br ratios in the Alberta Basin concluded that the brines were derived from evaporatively-concentrated brines that were subsequently diluted by seawater and freshwater; models presented here show that halite dissolution must have contributed strongly as well, which implies significantly greater rates of mass transport. This result confirms that Cl/Br ratios are subject to significant non-uniqueness and thus do not provide good independent indicators of the origin of brines. Salinity and Cl/Br ratios provided valuable new constraints for basin-scale models, however. Sensitivity studies revealed that permeabilities obtained from core- and field-scale tests were appropriate for basin-scale models, despite the differences in scale between the tests and the models. Simulations of groundwater age show that the residence time of porefluids in much of the basin is less than 100 My. Groundwater age increases with depth and approaches 200 My in the deepest part of the basin, but brines are significantly younger than their host rocks throughout the basin.

Alicia M. Wilson

2009-11-30T23:59:59.000Z

348

Organic contaminant separator  

DOE Patents [OSTI]

A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

Del Mar, P.

1993-12-28T23:59:59.000Z

349

Evaluation of brine disposal from the Bryan Mound site of the strategic petroleum reserve program. Final report  

SciTech Connect (OSTI)

On March 10, 1980, the Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging the resulting brine into the coastal waters off Freeport, Texas. During the months of March and April, a team of scientists and engineers from Texas A and M University conducted an intensive environmental study of the area surrounding the diffuser site. A pipeline has been laid from the Bryan Mound site to a location 12.5 statute miles (20 km) offshore. The last 3060 ft (933 m) of this pipeline is a 52-port diffuser through which brine can be discharged at a maximum rate of 680,000 barrels per day. Initially, 16 ports were open which permitted a maximum discharge rate of 350,000 barrels per day and a continuous brine discharge was achieved on March 13, 1980. The purpose of this report is to describe the findings of the project team during the intensive postdisposal study period of March and April, 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management.

Case, Robert J.; Chittenden, Jr, Mark E.; Harper, Jr, Donald E.; Kelly, Jr, Francis J.; Loeblich, Laurel A.; McKinney, Larry D.; Minello, Thomas J.; Park, E. Taisoo; Randall, Robert E.; Slowey, J. Frank

1981-01-01T23:59:59.000Z

350

Determination of imidazoline and amido-amine type corrosion inhibitors in both crude oil and produced brine from oilfield production  

SciTech Connect (OSTI)

The classical method for the determination of corrosion inhibitors in oilfield brines is the dye transfer method. Within this method are many variations which the analyst may use to determine the amount of corrosion inhibitor in either water or crude oil. These methods, however, suffer from many interferences which result in both false positive and negatives for corrosion inhibitor content. These methods essentially detect all amines as corrosion inhibitors. Improved high pressure liquid chromatography (HPLC) methods have been developed for the analysis of quaternary salt type corrosion inhibitors in brine waters, however, these methods do not appear to work in crude oil or for other forms of corrosion inhibitors such as the imidazolines, and amido-amines. This paper presents a method for the quantitative analysis of the imidazoline and amido-amine type corrosion inhibitors in both oilfield water and crude oil samples by HPLC. The corrosion inhibitor of interest is first separated from the matrix on a small column, then derivatized to form a product which is both sensitive and selective on a fluorescence detector. Detection limits for imidazolines are around 0.2 mg/L, amides and amines are similar. The advantage of this procedure is it can be used to determine the amount of corrosion inhibitor in both oil and brine water phases as well as on solid surfaces.

Matherly, R.M.; Jiao, J. [Baker Performance Chemicals, Houston, TX (United States); Blumer, D.J. [ARCO Alaska Inc., Anchorage, AK (United States); Ryman, J.S. [Baker Performance Chemicals, Anchorage, AK (United States)

1995-12-01T23:59:59.000Z

351

In-situ remediation system for groundwater and soils  

DOE Patents [OSTI]

The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Corey, J.C.; Kaback, D.S.; Looney, B.B.

1991-01-01T23:59:59.000Z

352

Transport in Porous Media 47: 149167, 2002. c 2002 Kluwer Academic Publishers. Printed in the Netherlands.  

E-Print Network [OSTI]

of Civil and Environmental Engineering and Contaminated Land Assessment and Remediation Research Centre, coarse sand, least-squares fitting, brine, soil column, mis- cible displacement, sodium chloride can give rise to instability. On the other hand, upward displacements of fresh water by brine

Hassanizadeh, S. Majid

353

A complete remediation process for a uranium-contaminated site and application to other sites  

SciTech Connect (OSTI)

During the summer of 1996 the authors were able to test, at the pilot scale, the concept of leaching uranium (U) from contaminated soils. The results of this pilot scale operation showed that the system they previously had developed at the laboratory scale is applicable at the pilot scale. The paper discusses these results, together with laboratory scale results using soil from the Fernald Environmental Management Project (FEMP), Ohio. These FEMP results show how, with suitable adaptations, the process is widely applicable to other sites. The purpose of this paper is to describe results that demonstrate remediation of uranium-contaminated soils may be accomplished through a leach scheme using sodium bicarbonate.

Mason, C.F.V.; Lu, N.; Kitten, H.D.; Williams, M.; Turney, W.R.J.R.

1998-12-31T23:59:59.000Z

354

APPLIED PHYTO-REMEDIATION TECHNIQUES USING HALOPHYTES FOR OIL AND BRINE SPILL SCARS  

SciTech Connect (OSTI)

Produced salt water from historical oil and gas production was often managed with inadequate care and unfortunate consequences. In Kansas, the production practices in the 1930's and 1940's--before statewide anti-pollution laws--were such that fluids were often produced to surface impoundments where the oil would segregate from the salt water. The oil was pumped off the pits and the salt water was able to infiltrate into the subsurface soil zones and underlying bedrock. Over the years, oil producing practices were changed so that segregation of fluids was accomplished in steel tanks and salt water was isolated from the natural environment. But before that could happen, significant areas of the state were scarred by salt water. These areas are now in need of economical remediation. Remediation of salt scarred land can be facilitated with soil amendments, land management, and selection of appropriate salt tolerant plants. Current research on the salt scars around the old Leon Waterflood, in Butler County, Kansas show the relative efficiency of remediation options. Based upon these research findings, it is possible to recommend cost efficient remediation techniques for slight, medium, and heavy salt water damaged soil. Slight salt damage includes soils with Electrical Conductivity (EC) values of 4.0 mS/cm or less. Operators can treat these soils with sufficient amounts of gypsum, install irrigation systems, and till the soil. Appropriate plants can be introduced via transplants or seeded. Medium salt damage includes soils with EC values between 4.0 and 16 mS/cm. Operators will add amendments of gypsum, till the soil, and arrange for irrigation. Some particularly salt tolerant plants can be added but most planting ought to be reserved until the second season of remediation. Severe salt damage includes soil with EC values in excess of 16 mS/cm. Operators will add at least part of the gypsum required, till the soil, and arrange for irrigation. The following seasons more gypsum will be added and as the soil EC is reduced, plants can be introduced. If rapid remediation is required, a sufficient volume of topsoil, or sand, or manure can be added to dilute the local salinity, the bulk amendments tilled into the surface with added gypsum, and appropriate plants added. In this case, irrigation will be particularly important. The expense of the more rapid remediation will be much higher.

M.L. Korphage; Bruce G. Langhus; Scott Campbell

2003-03-01T23:59:59.000Z

355

USE OF APATITE FOR CHEMICAL STABILIZATION OF SUBSURFACE CONTAMINANTS  

SciTech Connect (OSTI)

Groundwater at many Federal and civilian industrial sites is often contaminated with toxic metals at levels that present a potential concern to regulatory agencies. The U.S. Department of Energy (DOE) has some unique problems associated with radionuclides (primarily uranium), but metal contaminants most likely drive risk-based cleanup decisions, from the perspective of human health, in groundwater at DOE and U.S. Environmental Protection Agency (EPA) Superfund Sites include lead (Pb), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), zinc (Zn), selenium (Se), antimony (Sb), copper (Cu) and nickel (Ni). Thus, the regulatory ''drivers'' for toxic metals in contaminated soils/groundwaters are very comparable for Federal and civilian industrial sites, and most sites have more than one metal above regulatory action limits. Thus improving the performance of remedial technologies for metal-contaminated groundwater will have ''dual use'' (Federal and civilian) benefit.

Dr. William D. Bostick

2003-05-01T23:59:59.000Z

356

Managing Soil Salinity  

E-Print Network [OSTI]

This publication explains soil salinity, factors that contribute to it, and methods of correcting saline soils....

Provin, Tony; Pitt, John L.

2001-07-13T23:59:59.000Z

357

Distribution of uranium-bearing phases in soils from Fernald  

SciTech Connect (OSTI)

Electron beam techniques have been used to characterize uranium-contaminated soils and the Fernald Site, Ohio. Uranium particulates have been deposited on the soil through chemical spills and from the operation of an incinerator plant on the site. The major uranium phases have been identified by electron microscopy as uraninite, autunite, and uranium phosphite [U(PO{sub 3}){sub 4}]. Some of the uranium has undergone weathering resulting in the redistribution of uranium within the soil.

Buck, E.C.; Brown, N.R.; Dietz, N.L.

1993-12-31T23:59:59.000Z

358

APBI 402 / SOIL 502 SUSTAINABLE SOIL MANAGEMENT  

E-Print Network [OSTI]

1 APBI 402 / SOIL 502 SUSTAINABLE SOIL MANAGEMENT TERM 1 - 2014/15 Lead Instructors*: Maja Krzic indicators to assess sustainability of land management practices. Characterize the soil chemical environment 402-Sustainable Soil Management SOIL 502-Advanced Sustainable Soil Management Final exam 35% Final

Farrell, Anthony P.

359

IMPORTED SOIL OR SOIL-FORMING MATERIALS  

E-Print Network [OSTI]

IMPORTED SOIL OR SOIL-FORMING MATERIALS PLACEMENT BPG NOTE 5 Best Practice Guidance for Land of heavy industry. Soil material initially present on a site may have been removed or stored in bunds the original soil that has been stored or importing a soil from elsewhere or using a soil-forming material

360

Managing contaminated sites  

SciTech Connect (OSTI)

This book summarizes the generic principles of contaminated site management. The book walks the reader through contaminated site identification, risk assessment and the evaluation of remediation alternatives. The book is divided into two major sections, problem diagnosis and development of site restoration. In problem diagnosis, the general principles of site investigation are discussed, including the objectives and differences between tier 1,2, and 3 investigations. The principles of data collection and analysis are presented. A small quantitative discussion of statistical analysis is presented but in keeping with the objectives of the text is not sufficient comprehensive or detailed to provide much of a guide for the practitioner. Chapters on contaminant fate and transport processes and risk assessment help the reader understand the role of these issues in site investigation and remedial planning. A chapter is also included on elements of a site characterization activity, which summarizes some of the key considerations in conducting a site investigation.

Asante-Duah, D.K.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

100 Area soil washing treatability test plan  

SciTech Connect (OSTI)

This test plan describes specifications, responsibilities, and general methodology for conducting a soil washing treatability study as applied to source unit contamination in the 100 Area. The objective ofthis treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. The purpose of separating these fractions is to minimize the volume of soil requiring permanent disposal. It is anticipated that this treatability study will be performed in two phases of testing, a remedy screening phase and a remedy selection phase. The remedy screening phase consists of laboratory- and bench-scale studies performed by Battelle Pacific Northwest laboratories (PNL) under a work order issued by Westinghouse Hanford Company (Westinghouse Hanford). This phase will be used to provide qualitative evaluation of the potential effectiveness of the soil washing technology. The remedy selection phase, consists of pilot-scale testing performed under a separate service contract to be competitively bid under Westinghouse Hanford direction. The remedy selection phase will provide data to support evaluation of the soil washing technology in future feasibility studies for Interim Remedial Measures (IRMs) or final operable unit (OU) remedies. Performance data from these tests will indicate whether applicable or relevant and appropriate requirements (ARARs) or cleanup goals can be met at the site(s) by application of soil washing. The remedy selection tests wig also allow estimation of costs associated with implementation to the accuracy required for the Feasibility Study.

Not Available

1993-03-01T23:59:59.000Z

362

Effect of debonded interfaces on corrosion of mild steel composites in supercritical CO2-saturated brines  

SciTech Connect (OSTI)

The geologic sequestration of CO{sub 2} is a proposed method to limit greenhouse gas emissions and has been the subject of many studies in the last decade. Wellbore systems achieve isolation of the storage reservoir through a combination of steel (generally carbon steel) and Portland cement. CO{sub 2} leakage along the steel-cement interface has the potential to accelerate corrosion. We conduct experiments to assess the corrosion risk at cement-steel interface under in situ wellbore conditions. Wellbore interfaces were simulated by assemblies constructed of J55 mild steel and Portland class G (Epoxy was used in this study to separate) cement and corrosion was investigated in supercritical CO{sub 2} saturated brines, (NaCl = 1 wt%) at T = 50 C, pCO{sub 2} = 1200 psi with interface gap size = 100 {micro}m and {infinity} (open surface). The experiments were carried out in a high-pressure, 1.8 L autoclave. The corrosion kinetics were measured employing electrochemical techniques including linear polarization resistance and electrochemical impedance spectroscopy techniques. The corrosion scales were analyzed using secondary electron microscopy, back scattering electron microscopy, energy dispersive spectroscopy and x-ray diffraction. Corrosion rates decreased as time with or without interface gap. In this case corrosion rates are controlled by scale protectivity through the interface gap. Scaled steel corrosion rates were two orders of magnitude less compared with fresh steel. The corrosion scale is pseudo crystalline at the open interface. Well-crystallized scale was observed at interface gap sizes 100 {micro}m. All corrosion scales were composed of iron carbonates.

John, Han [Los Alamos National Laboratory; Carey, James W [Los Alamos National Laboratory; Zhang, Jinsuo [Los Alamos National Laboratory

2010-10-07T23:59:59.000Z

363

Technology transfer report: feasibility study for the use of geothermal brine in the Ashdod area, Israel  

SciTech Connect (OSTI)

The hydrothermal potential of the Ashdod area, Israel, was evaluated to determine its suitability as the low grade energy source required to operate the Ashdod desalination plant. An estimated 1250 cubic meters per hour of 120/sup 0/C brine would be adequate to supply the hot water necessary for operating the desalination plant. Considerable interest in oil exploration in the Ashdod area resulted in the drilling of six wells into the Jurassic formations by Oil Exploration (Investments) Ltd. (OEL) in 1976-1980. A small amount of oil was found in two wells, Ashdod 2 and 5. The remaining wells were abandoned as ''dry holes''. Evaluation of the drill cuttings, cores, and the electric logs defined two lithologic units of potential interest for hydrothermal exploitation, the Zohar and Shderot Dolomites. Investigation of the hydrothermal potential of the Jurassic formations underlying the Ashdod area has revealed that the aquifer temperatures range between 85 and 92/sup 0/C. The hydrologic parameters are not well defined; however the matrix permeability of the dolomites and limestones is probably between 1 and 10 md. This is insufficient permeability for a large scale pumping operation such as the one required to operate the desalination plant. Therefore, successful utilization of the resource requires the presence of significant fractures and/or connected vugs in the formation. The very low well productivity and formation plugging may indicate that permeability of the fracture zones may easily be impaired, suggesting that the fracture zones are not suitable production intervals. Until a test is conducted on a properly completed well, it is not possible to evaluate the deliverability of wells tapping these aquifers. 14 refs., 8 figs.

Benson, S.M.

1984-08-01T23:59:59.000Z

364

Computational studies of two-phase cement-CO2-brine interaction in wellbore environments  

SciTech Connect (OSTI)

Wellbore integrity is essential to ensuring long-term isolation of buoyant supercritical CO{sub 2} during geologic sequestration of CO{sub 2}. In this report, we summarize recent progress in numerical simulations of cement-brine-CO{sub 2} interactions with respect to migration of CO{sub 2} outside of casing. Using typical values for the hydrologic properties of cement, caprock (shale) and reservoir materials, we show that the capillary properties of good quality cement will prevent flow of CO{sub 2} into and through cement. Rather, CO{sub 2}, if present, is likely to be confined to the casing-cement or cement-formation interfaces. CO{sub 2} does react with the cement by diffusion from the interface into the cement, in which case it produces distinct carbonation fronts within the cement. This is consistent with observations of cement performance at the CO{sub 2}-enhanced oil recovery SACROC Unit in West Texas (Carey et al. 2007). For poor quality cement, flow through cement may occur and would produce a pattern of uniform carbonation without reaction fronts. We also consider an alternative explanation for cement carbonation reactions as due to CO{sub 2} derived from caprock. We show that carbonation reactions in cement are limited to surficial reactions when CO{sub 2} pressure is low (< 10 bars) as might be expected in many caprock environments. For the case of caprock overlying natural CO{sub 2} reservoirs for millions of years, we consider Scherer and Huet's (2009) hypothesis of diffusive steady-state between CO{sub 2} in the reservoir and in the caprock. We find that in this case, the aqueous CO{sub 2} concentration would differ little from the reservoir and would be expected to produce carbonation reaction fronts in cements that are relatively uniform as a function of depth.

Carey, James William [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

365

Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis  

SciTech Connect (OSTI)

Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

2012-07-01T23:59:59.000Z

366

Soils and Environment Soil fertility and soil processes  

E-Print Network [OSTI]

be removed without blasting. Definition of soil #12; Land use planning, urbanization, timber management, landslides, and earthquakes Soils often carry a climatic signal Soil properties related to environmental soil. The fertile soils formed on glacial deposits in the mid-western United States are transported

Pan, Feifei

367

Review of the Vortec soil remediation demonstration program  

SciTech Connect (OSTI)

The principal objective of the METC/Vortec program is to develop and demonstrate the effectiveness of the Vortec CMS in remediating soils contaminated with hazardous materials and/or low levels of radionuclides. To convincingly demonstrate the CMS`s capability, a Demonstration Plant will be constructed and operated at a DOE site that has a need for the remediation of contamination soil. The following objectives will be met during the program: (1) establish the glass chemistry requirements to achieve vitrification of contaminated soils found at the selected DOE site; (2) complete the design of a fully integrated soil vitrification demonstration plant with a capacity to process 25 TPD of soil; (3) establish the cost of a fully integrated soil demonstration plant with a capacity to process 25 TPD of soil; (4) construct and operate a fully integrated demonstration plant; (5) analyze all influent and effluent streams to establish the partitioning of contaminants and to demonstrate compliance with all applicable health, safety, and environmental requirements; (6) demonstrate that the CMS technology has the capability to produce a vitrified product that will immobilize the hazardous and radionuclide materials consistent with the needs of the specific DOE waste repositories.

Patten, J.S.

1994-12-31T23:59:59.000Z

368

Mercury contamination extraction  

DOE Patents [OSTI]

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

369

Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)  

SciTech Connect (OSTI)

This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

Dev, H.

1994-12-28T23:59:59.000Z

370

Subsurface Contamination Control  

SciTech Connect (OSTI)

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-11-16T23:59:59.000Z

371

Subsurface Contamination Control  

SciTech Connect (OSTI)

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-12-12T23:59:59.000Z

372

Summary Results for Brine Migration Modeling Performed by LANL, LBNL, and SNL for the Used Fuel Disposition Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 Recovery Act/BuySummary Max TotalResults for Brine

373

Management of Transuranic Contaminated Material  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

1982-09-30T23:59:59.000Z

374

HYDROLOGIC CONTROLS ON THE SUBSURFACE TRANSPORT OF OIL-FIELD  

E-Print Network [OSTI]

HYDROLOGIC CONTROLS ON THE SUBSURFACE TRANSPORT OF OIL-FIELD BRINE AT THE OSAGE-SKIATOOK PETROLEUM production on the environment, we are investigating the hydrology and the fate and transport of contaminants tank batteries have contaminated soil, ground water, and surface water at this site. Based on soil

375

Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow  

SciTech Connect (OSTI)

Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

2013-08-01T23:59:59.000Z

376

Soil Quality Information Sheet Rangeland Soil Quality--  

E-Print Network [OSTI]

Soil Quality Information Sheet Rangeland Soil Quality-- Physical and Biological Soil Crusts USDA, Natural Resources Conservation Service May 2001 Rangeland Sheet 7 What are soil crusts? A physical crust is a thin layer with reduced porosity and increased density at the surface of the soil. A biological crust

377

Radioactive Contamination of Danish Territory  

E-Print Network [OSTI]

Risø-R-462 Radioactive Contamination of Danish Territory after Core-melt Accidents at the Barsebäck;#12;RIS0-R-462 RADIOACTIVE CONTAMINATION OF DANISH TERRITORY AFTER CORE-MELT ACCIDENTS AT THE BARSEBACK. An assessment is made of the radioactive contamination of Danish territory in the event of a core-melt accident

378

Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessments for the Waste Isolation Pilot Plant: Direct brine release  

SciTech Connect (OSTI)

The following topics related to the treatment of direct brine releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented (1) mathematical description of models, (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty, and (4) uncertainty and sensitivity analysis results for CCDFs. The presented analyses indicate that direct brine releases do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for direct brine releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (4O CFR 191.40 CFR 194).

STOELZEL,D.M.; O'BRIEN,D.G.; GARNER,J.W.; HELTON,JON CRAIG; JOHNSON,J.D.; SCOTT,L.N.

2000-05-19T23:59:59.000Z

379

West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume II. Physical and chemical oceanography. Final report  

SciTech Connect (OSTI)

This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Contents of Volume II include: introduction; physical oceanography; estuarine hydrology and hydrography; analysis of discharge plume; and water and sediment quality.

DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

1983-02-01T23:59:59.000Z

380

West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume IV. Bibliography and supporting data for physical oceanography. Final report. [421 references  

SciTech Connect (OSTI)

This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume IV contains the following: bibliography; appendices for supporting data for physical oceanography, and summary of the physical oceanography along the western Louisiana coast.

DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.) [eds.

1983-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Laboratory determination of gas-side mass transfer coefficients applicable to soil-venting systems for removing petroleum hydrocarbons from vadose-zone soils. Master's thesis  

SciTech Connect (OSTI)

Contamination of the subsurface environment by organic solvents has become a national problem. The EPA's Superfund list (40 CFR Part 300, 1990) continues to grow, with continual discovery of new hazardous waste sites. Various techniques are employed to remediate these sites, including excavation and removal of the contaminated soil for proper disposal, pumping and treatment of contaminated ground water and an organic phase if present, containment by slurried soil-bentonite cut-off barriers, in situ biological treatment of the organic wastes, and vadose zone soil venting for gas absorption of volatiles. Each technique, or combination, may have merit at a given site. The soil venting process, an inexpensive but relatively successful technique for removal of contaminants from the vadose (unsaturated) zone, is the focus of the research.

Van Valkenburg, M.E.

1991-01-01T23:59:59.000Z

382

GROUND WATER CONTAMINATION  

SciTech Connect (OSTI)

As required by the terms of the above referenced grant, the following summary serves as the Final Report for that grant. The grant relates to work performed at two separate sites, the Hoe Creek Underground Coal Gasification Site south of Gillette, Wyoming, and the Rock Springs In-Situ Oil Shale Retort Site near Rock Springs, Wyoming. The primary concern to the State of Wyoming at each site is ground water contamination (the primary contaminants of concern are benzene and related compounds), and the purpose of the grant has been to provide tiding for a Geohydrologist at the appropriate State agency, specifically the Land Quality Division (LQD) of the Wyoming Department of Environmental Quality. The LQD Geohydrologist has been responsible for providing technical and regulatory support to DOE for ground water remediation and subsequent surface reclamation. Substantial progress has been made toward remediation of the sites, and continuation of LQD involvement in the remediation and reclamation efforts is addressed.

Unknown

1999-09-01T23:59:59.000Z

383

Purifying contaminated water  

SciTech Connect (OSTI)

Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

Daughton, Christian G. (San Pablo, CA)

1983-01-01T23:59:59.000Z

384

Understanding Contamination; Twenty Years of Simulating Radiological Contamination  

SciTech Connect (OSTI)

A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

Emily Snyder; John Drake; Ryan James

2012-02-01T23:59:59.000Z

385

Soil Characterization at the Linde FUSRAP Site and the Impact on Soil Volume Estimates  

SciTech Connect (OSTI)

The former Linde site in Tonawanda, New York is currently undergoing active remediation of Manhattan Engineering District's radiological contamination. This remediation is authorized under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The focus of this paper will be to describe the impact of soil characterization efforts as they relate to soil volume estimates and project cost estimates. An additional objective is to stimulate discussion about other characterization and modeling technologies, and to provide a ''Lessons Learned'' scenario to assist in future volume estimating at other FUSRAP sites. Initial soil characterization efforts at the Linde FUSRAP site in areas known to be contaminated or suspected to be contaminated were presented in the Remedial Investigation Report for the Tonawanda Site, dated February 1993. Results of those initial characterization efforts were the basis for soil volume estimates that were used to estimate and negotiate the current remediation contract. During the course of remediation, previously unidentified areas of contamination were discovered, and additional characterization was initiated. Additional test pit and geoprobe samples were obtained at over 500 locations, bringing the total to over 800 sample locations at the 135-acre site. New data continues to be collected on a routine basis during ongoing remedial actions.

Boyle, J.; Kenna, T.; Pilon, R.

2002-02-27T23:59:59.000Z

386

Soil Science Society of America Journal Soil Sci. Soc. Am. J.  

E-Print Network [OSTI]

is a persistent pollutant that adversely affects environmental resourc- es and human health. According to the U) and subsurface (10­20 cm) soils, respective- ly were reported for areas in the vicinity of industrial plants. Examples include Pb contamination due to battery recycling and salvage yards with discharge of waste oil

Sparks, Donald L.

387

Surface Contamination Surface contamination from radioactive isotopes is a source of background in the Borex-  

E-Print Network [OSTI]

Chapter 5 Surface Contamination Surface contamination from radioactive isotopes is a source contamination is primarily a problem because the radioactive contaminants can be trans- ferred from the surfaces detector components that come in contact with the scintillator. Preventing radioactive contamination

388

Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

Not Available

1993-09-01T23:59:59.000Z

389

Wetting behavior of selected crude oil/brine/rock systems. Topical report, March 1, 1995--March 31, 1996  

SciTech Connect (OSTI)

Previous studies of crude oil/brine/rock (COBR) and related ensembles showed that wettability and its effect on oil recovery depend on numerous complex interactions. In the present work, the wettability of COBR ensembles prepared using Prudhoe Bay crude oil, a synthetic formation brine, and Berea Sandstone was varied by systematic change in initial water saturation and length of aging time at reservoir temperature (88 C). All displacement tests were run at ambient temperature. Various degrees of water wetness were achieved and quantified by a modified Amott wettability index to water, the relative pseudo work of imbibition, and a newly defined apparent advancing dynamic contact angle. Pairs of spontaneous imbibition (oil recovery by spontaneous imbibition of water) and waterflood (oil recovery vs. pore volumes of water injected) curves were measured for each of the induced wetting states. Several trends were observed. Imbibition rate, and hence water wetness, decreased with increase in aging time and with decrease in initial water saturation. Breakthrough recoveries and final oil recovery by waterflooding increased with decrease in water wetness. Correlations between water wetness and oil recovery by waterflooding and spontaneous imbibition are presented.

Zhou, X.; Morrow, N.R.; Ma, S.

1996-12-31T23:59:59.000Z

390

Ra-226 radioassay of soil and tailings  

SciTech Connect (OSTI)

Studies of inactive uranium tailings piles have shown that tailings sands containing Ra-226 and other radionuclides may be dispersed by wind and water erosion, causing contamination of adjacent areas. To conduct an effective cleanup operation, it is necessary that boundaries of contamination be well defined. To accomplish this, data from surface gamma-ray surveys made under the Measurement Monitoring Program of the US DOE's Uranium Mill Tailings Remedial Action Project (UMTRAP) are first used to delineate a general outline of the contaminated area. Then, data from portable scintillometer surveys and from sealed-can gamma-ray analyses of soil samples are used to more precisely define the perimeter of Ra-226 contamination. These field measurements are supported by radiochemical analyses of randomly selected samples. Because of its adaptability to the widely varying chemical composition of the material in these samples, the complexing agent EDTA is used in a complexometric leaching procedure to analyze Ra-226. By this procedure, natural concentrations of Ra-226 in soil (approx. 1 pCi/g) can be measured routinely. The potential limit of detection is in the 0.1 to 0.5 pCi/g range. Details of the method, which includes leaching of radium followed by radon de-emanation, are described. Comparative data for various soil and tailings samples are presented.

Sabau, C.S.; Rayno, D.R.; Kretz, N.D.; Zelle, P.W.

1983-01-01T23:59:59.000Z

391

Understanding Mechanisms of Radiological Contamination  

SciTech Connect (OSTI)

Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

Rick Demmer; John Drake; Ryan James, PhD

2014-03-01T23:59:59.000Z

392

Noninvasive Contaminant Site Characterization Using Geophysical Induced Polarization  

SciTech Connect (OSTI)

Results of aspects of a broad foundational study of time domain IP (TDIP) and spectral IP (SIP) for contaminant site characterization are presented. This ongoing study encompassed laboratory studies of coupled effects of rock/soil microgeometry and contaminant chemistry on induced polarization (IP), an investigation of electromagnetic coupling (EMC) noise and development of 3D modeling and inversion codes. SIP requires extensions to higher frequencies (above the typical 100Hz threshold) and EMC becomes the major limitation for field implementation, because conventional correction methods are inadequate at required higher frequencies. A proposed methodology is outlined, based on a model of all EMC components, that addresses the EMC problem by coupling IP and electromagnetic induction in modeling and inversion. Examples of application of IP and SIP to contaminant mapping and detection for TDIP and SIP will be presented for FS-12 plume at Massachusetts Military Reservation and a suspected DNAPL plume at Savannah River Site.

Morgan, F.D.; Sogade, J.; Lesmes, D.; Coles, D.; Vichabian, Y.; Scira-Scappuzzo, F.; Shi, W.; Vandiver, A.; Rodi, W.

2003-03-27T23:59:59.000Z

393

INTERPRETING THE RESULTS OF SOIL TESTS FOR HEAVY METALS Vern Grubinger and Don Ross, University of Vermont  

E-Print Network [OSTI]

toxicity of a heavy metal will be affected by soil texture, organic matter, and pH. The health effects1 INTERPRETING THE RESULTS OF SOIL TESTS FOR HEAVY METALS Vern Grubinger and Don Ross, University of Vermont Agricultural soils normally contain low background levels of heavy metals. Contamination from

Hayden, Nancy J.

394

Bioremediation of Petroleum Hydrocarbon-Contaminated Soils, Comprehensive Report  

SciTech Connect (OSTI)

The US Department of Energy and the Institute for Ecology of Industrial Areas, Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system.

Altman, D.J.

2001-01-12T23:59:59.000Z

395

Phytoremediation of hydrocarbon-contaminated soils: principles and applications  

E-Print Network [OSTI]

Toluene Ethylbenzene CH2CH3 ii) Common Oxygenates MTBE O C CH3CH3 CH3 m-Xylene CH3 CH3 p-Xylene CH3 CH3 CH Ethylbenzene CH2CH3CH2CH3CH2CH3 ii) Common Oxygenates MTBE O C CH3CH3 CH3 m-Xylene CH3 CH3 CH3 CH3 p-Xylene CH3 Ethylbenzene CH2CH3 ii) Common Oxygenates MTBE O C CH3CH3 CH3 m-Xylene CH3 CH3 p-Xylene CH3 CH3 CH3CH2OH

Alvarez, Pedro J.

396

Hanford Deep Dig Removes Contaminated Soil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road mapF Reactor duringHudsonAn

397

The Source of Airborne Lead: Recycling Pb-Contaminated Soils  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceThe An APS newsletter isThe

398

Workers Will Clean Up Groundwater Contamination Source With Deep Soil  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.|Sindhu Jagadamma Women @Telecom

399

Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544  

SciTech Connect (OSTI)

At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill material. This paper describes the ex situ soil segregation methods, the considerations of each method, and the estimated cost savings from minimizing the volume of soil requiring transportation and off-site disposal. (authors)

Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States)] [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Elliott, Robert 'Dan' [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States)] [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)] [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

2013-07-01T23:59:59.000Z

400

APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISKIN OIL-IMPACTED SOILS  

SciTech Connect (OSTI)

The drilling and operation of gas/petroleum exploratory wells and the operations of natural gas and petroleum production wells generate a number of waste materials that are usually stored and/or processed at the drilling/operations site. Contaminated soils result from drilling operations, production operations, and pipeline breaks or leaks where crude oil and petroleum products are released into the surrounding soil or sediments. In many cases, intrinsic biochemical remediation of these contaminated soils is either not effective or is too slow to be an acceptable approach. This project targeted petroleum-impacted soil and other wastes, such as soil contaminated by: accidental release of petroleum and natural gas-associated organic wastes from pipelines or during transport of crude oil or natural gas; production wastes (such as produced waters, and/or fuels or product gas). Our research evaluated the process designated Chemically-Accelerated Biotreatment (CAB) that can be applied to remediate contaminated matrices, either on-site or in situ. The Gas Technology Institute (GTI) had previously developed a form of CAB for the remediation of hydrocarbons and metals at Manufactured Gas Plant (MGP) sites and this research project expanded its application into Exploration and Production (E&P) sites. The CAB treatment was developed in this project using risk-based endpoints, a.k.a. environmentally acceptable endpoints (EAE) as the treatment goal. This goal was evaluated, compared, and correlated to traditional analytical methods (Gas Chromatography (GC), High Precision Liquid Chromatography (HPLC), or Gas Chromatography-Mass Spectrometry (CGMS)). This project proved that CAB can be applied to remediate E&P contaminated soils to EAE, i.e. those concentrations of chemical contaminants in soil below which there is no adverse affect to human health or the environment. Conventional approaches to risk assessment to determine ''how clean is clean'' for soils undergoing remediation have been based on total contaminant concentrations in soil, as determined by laboratory extraction methods that use vigorous physical and chemical procedures. Numerous data collected from bioavailability studies in this study and others carried out by GTI and other organizations conducted on contaminated soils and sediments continue to show that not all contaminants are available to environmental receptors including man or ecologically forms. In short, there exist fractions of contaminants in soil that cannot be released from the soil matrix by normal means. These sequestered contaminant fractions should not be considered a risk to human health or the environment. This project focused on CAB technology to treat soil contaminants to these acceptable levels. Therefore, the primary objective of this project was to determine what these contaminant levels are and to reach or exceed cleanup standards using CAB. These determinations were demonstrated and verified using toxicity and chemical mobility tests. Based on GTI's experience with a form of CAB for the remediation of soils at Manufactured Gas Plant sites, use of the technology demonstrated in this project could save the oil and gas industry an estimated $200 million to $500 million over the next ten years. The merging of CAB with the use of EAE for calibration and evaluation of treatment effectiveness addressed the following research objectives: (1) Determination of the kinetics of contaminant desorption and bioavailability; (2) Further development of CAB technology for the treatment of hydrocarbon-contaminated soils; (3) Finalization of the methods, procedures and processes needed to apply CAB technology using EAE; and (4) Verification of the applicability of EAE for the remediation of contaminated soils.

J.R. Paterek; W.W.Bogan; V. Trbovic; W. Sullivan

2003-01-07T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Technical papers presented at a DOE meeting on criteria for cleanup of transuranium elements in soil  

SciTech Connect (OSTI)

Transuranium element soil contamination cleanup experience gained from nuclear weapons accidents and cleanup at Eniwetok Atoll was reviewed. Presentations have been individually abstracted for inclusion in the data base. (ACR)

Not Available

1984-09-01T23:59:59.000Z

402

Reviews of environmental contamination and toxicology  

SciTech Connect (OSTI)

Review of Environmental Contamination and Toxicology attempts to provide concise, critical reviews of timely advances, philosophy and significant areas of accomplished or needed endeavour in the total field of xenobiotics, in any segment of the environment, as well as toxicological implications. This edition contains a paper 'Health effects of arsenic, fluorine and selenium from indoor burning of Chinese coal, by Liu Guijian, Zheng Liugen, Nurdan S. Duzgoren-Aydin, Gao Lianfen, Liu Junhua, and Peng Zicheng. Other papers are: Chemistry and fate of simazine; Ethanol production: energy, economic, and environmental losses; Arsenic behaviour from groundwater and soil to crops: impacts on agriculture and food safety; Mercury content of hair in different populations relative to fish consumption; and Toxicology of 1,3-butadiene, chloroprene, and isoprene. 15 ills.

Ware, G. (ed.)

2007-07-01T23:59:59.000Z

403

Analytical Electron Microscopy examination of uranium contamination at the DOE Fernald operation site  

SciTech Connect (OSTI)

Analytical Electron Microscopy (AEM) has been used to identify uranium-bearing phases present in contaminated soils from the DOE Fernald operation site. A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and AEM was used in isolating and characterizing uranium-rich regions of the contaminated soils. Soil samples were prepared for transmission electron microscopy (TEM) by ultramicrotomy using an embedding resin previously employed for aquatic colloids and biological samples. This preparation method allowed direct comparison between SEM and TEM images. At the macroscopic level much of the uranium appears to be associated with clays in the soils; however, electron beam analysis revealed that the uranium is present as discrete phases, including iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Only low levels of uranium were actually within the clay minerals. The distribution of uranium phases was inhomogeneous at the submicron level.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1993-02-01T23:59:59.000Z

404

Contaminated nickel scrap processing  

SciTech Connect (OSTI)

The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

1994-12-01T23:59:59.000Z

405

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine operation in Nevada. The mine's production capacity was expanded in 2012, and a new lithium hydroxide plant opened in North

406

Results of brine flow testing and disassembly of a crushed salt/bentonite block seal at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The Small-Scale Seal Performance Tests, Series C, a set of in situ experiments conducted at the Waste Isolation Pilot Plant, are designed to evaluate the performance of various seal materials emplaced in large (0.9-m-diameter) boreholes. This report documents the results of fluid (brine) flow testing and water and clay content analyses performed on one emplaced seal comprised of 100% salt blocks and 50%/50% crushed salt/bentonite blocks and disassembled after nearly three years of brine injection testing. Results from the water content analyses of 212 samples taken from within this seal show uniform water content throughout the 50%/50% salt/bentonite blocks with saturations about 100%. Clay content analyses from the 100% salt endcaps of the seal show a background clay content of about 1% by weight uniformly distributed, with the exception of samples taken at the base of the seal at the borehole wall interface. These samples show clay contents up to 3% by weight, which suggests some bentonite may have migrated under pressure to that interface. Results of the brine-flow testing show that the permeability to brine for this seal was about 2 to 3 {times} 10{sup {minus}4} darcy (2 to 3 {times} 10{sup {minus}16} m{sup 2}).

Finley, R.E. [Sandia National Labs., Albuquerque, NM (United States); Jones, R.L. [Tech. Reps., Inc., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

407

Potential for the localized corrosion of alloy 22 Waste Packages in Multiple-Salt Deliquescent Brines in the Yucca Mountain Repository  

SciTech Connect (OSTI)

It has been postulated that the deliquescence of multiple-salt systems in dust deposits and the consequent localized corrosion in high-temperature brines could lead to premature failure of the Alloy 22 waste packages in the Yucca Mountain repository. EPRI has developed a decision tree approach to determine if the various stages leading to waste package failure are possible and whether the safety of the repository system could be compromised as a result. Through a series of arguments, EPRI has shown that it is highly unlikely that the multiple-salt deliquescent brines will form in the first place and, even if they did, that they would not be thermodynamically stable, that the postulated brines are not corrosive and would not lead to the initiation of localized corrosion of Alloy 22, that even if localized corrosion did initiate that the propagation would stifle and cease long before penetration of the waste package outer barrier, and that even if premature waste package failures did occur from this cause that the safety of the overall system would not be compromised. EPRI concludes, therefore, that the postulated localized corrosion of the waste packages due to high-temperature deliquescent brines is neither a technical nor a safety issue of concern for the Yucca Mountain repository. (authors)

King, F. [Integrity Corrosion Consulting, Ltd., Calgary, AB (Canada); Arthur, R.; Apted, M. [Monitor Scientific LLC, Denver, CO (United States); Kessler, J.H. [Electric Power Research Institute, Charlotte, NC (United States)

2007-07-01T23:59:59.000Z

408

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry  

E-Print Network [OSTI]

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico Keywords: Methane flux Mass spectrometer Brine pool Methane oxidation Gulf of Mexico a b s t r a c t Deep heterogeneity. In particular, biogeochemical fluxes of volatiles such as methane remain largely unconstrained

Girguis, Peter R.

409

Emission Standards for Contaminants (Iowa)  

Broader source: Energy.gov [DOE]

These regulations list emissions standards for various contaminants, and contain special requirements for anaerobic lagoons. These regulations also describe alternative emissions limits, which may...

410

Characterization Plan for Soils Around Drain Line PLA-100115  

SciTech Connect (OSTI)

This Characterization Plan supports the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) closure of soils that may have been contaminated by releases from drain line PLA-100115, located within the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The requirements to address the closure of soils contaminated by a potential release from this line in a characterization plan was identified in the "HWMA/RCRA Less Than 90-day Generator Closure Report for the VES-SFE-126."

D. Shanklin

2006-05-24T23:59:59.000Z

411

Chemical tailoring of steam to remediate underground mixed waste contaminents  

DOE Patents [OSTI]

A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

1999-01-01T23:59:59.000Z

412

Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot  

SciTech Connect (OSTI)

To demonstrate the potential for geologic storage of CO{sub 2} in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO{sub 2} were injected into a high-permeability sandstone and the resulting subsurface plume of CO{sub 2} was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO{sub 2} injection for baseline geochemical characterization, during the CO{sub 2} injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO{sub 2} breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO{sub 3}{sup -} and aqueous Fe, and significant shifts in the isotopic compositions of H{sub 2}O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO{sub 2} plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO{sub 2} concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO{sub 2} could ultimately be sequestered as carbonate minerals.

Kharaka, Y.K; Doughty, C.; Freifeld, B.M.; Daley, T.M.; Xu, T.

2009-11-01T23:59:59.000Z

413

Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report  

SciTech Connect (OSTI)

Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

Beauheim, R.L. (Sandia National Labs., Albuquerque, NM (United States)); Saulnier, G.J. Jr.; Avis, J.D. (INTERA, Inc., Austin, TX (United States))

1991-08-01T23:59:59.000Z

414

Closure End States for Facilities, Waste Sites, and Subsurface Contamination  

SciTech Connect (OSTI)

The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

2012-11-21T23:59:59.000Z

415

Allowable residual-contamination levels for decommissioning facilities in the 100 areas of the Hanford Site  

SciTech Connect (OSTI)

This report contains the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for five generic categories of facilities in the 100 Areas of the Hanford Site. The purpose of this study is to provide ARCL data useful to UNC engineers in conducting safety and cost comparisons for decommissioning alternatives. The ARCL results are based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. These modes of use are restricted, controlled, and unrestricted. The information on ARCL values for restricted and controlled use provided by this report is intended to permit a full consideration of decommissioning alternatives. ARCL results are presented both for surface contamination remaining in facilities (in dpm/100 cm/sup 2/), and for unconfined surface and confined subsurface soil conditions (in pCi/g). Two confined soil conditions are considered: contamination at depths between 1 and 4 m, and contamination at depths greater than or equal to 5 m. A set of worksheets are presented in an appendix for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations, to consider the impacts of radioactive decay, and to predict instrument responses. Finally, a comparison is made between the unrestricted release ARCL values for the 100 Area facilities and existing decommissioning and land disposal regulations. For surface contamination, the comparison shows good agreement. For soil contamination, the comparison shows good agreement if reasonable modification factors are applied to account for the differences in modeling soil contamination and licensed low-level waste.

Kennedy, W.E. Jr.; Napier, B.A.

1983-07-01T23:59:59.000Z

416

Radioactive Contamination of Danish Territory  

E-Print Network [OSTI]

» & Risø-R-462 Radioactive Contamination of Danish Territory after Core-melt Accidents 1982 Risø National Laboratory, DK-4000 Roskilde, Denmark #12;RIS�-R-462 RADIOACTIVE CONTAMINATION. Heikel Vinther, L. Warming and A. Aarkrog Abstract. An assessment is made of the radioactive

417

Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design  

SciTech Connect (OSTI)

Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100{degrees} to 400{degrees}C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85{degrees} to 95{degrees}C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85{degrees} to 95{degrees}C.

Dev, H.

1994-08-16T23:59:59.000Z

418

Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota  

SciTech Connect (OSTI)

This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

NONE

1994-08-01T23:59:59.000Z

419

Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota  

SciTech Connect (OSTI)

This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

Not Available

1994-11-01T23:59:59.000Z

420

Transfer Factors for Contaminant Uptake by Fruit and Nut Trees  

SciTech Connect (OSTI)

Transfer of radionuclides from soils into plants is one of the key mechanisms for long-term contamination of the human food chain. Nearly all computer models that address soil-to-plant uptake of radionuclides use empirically-derived transfer factors to address this process. Essentially all available soil-to-plant transfer factors are based on measurements in annual crops. Because very few measurements are available for tree fruits, samples were taken of alfalfa and oats and the stems, leaves, and fruits and nuts of almond, apple, apricot, carob, fig, grape, nectarine, pecan, pistachio (natural and grafted), and pomegranate, along with local surface soil. The samples were dried, ground, weighed, and analyzed for trace constituents through a combination of induction-coupled plasma mass spectrometry and instrumental neutron activation analysis for a wide range of naturally-occurring elements. Analysis results are presented and converted to soil-to-plant transfer factors. These are compared to commonly used and internationally recommended values. Those determined for annual crops are very similar to commonly-used values; those determined for tree fruits show interesting differences. Most macro- and micronutrients are slightly reduced in fruits; non-essential elements are reduced further. These findings may be used in existing computer models and may allow development of tree-fruit-specific transfer models.

Napier, Bruce A.; Fellows, Robert J.; Minc, Leah D.

2013-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "brine contaminated soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Soil Series  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofat HomeAssurance: DOE NSoftwareSoil0

422

Applied Soil Ecology 23 (2003) 187198 Species diversity and spatial distribution of enchytraeid  

E-Print Network [OSTI]

communities in forest soils: effects of habitat characteristics and heavy metal contamination Pawel Kapusta but was not influenced by heavy metal content in soil. © 2003 Elsevier Science B.V. All rights reserved. Keywords of anthropogenic impacts (such as pollution) upon the structure and ecosystem function of biotic communi- ties

Weiner, January

423

Effects of soil water repellency on infiltration rate and flow instability  

E-Print Network [OSTI]

. They are difficult to manage and pose negative effects on agricultural productivity and environmental sustain the contaminant transport to ground water. The purpose of this paper is to quantify the effects of soil waterEffects of soil water repellency on infiltration rate and flow instability Z. Wanga,*, Q.J. Wua,1

Wang, Zhi "Luke"

424

Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for former waste management units, legacy contamination source areas and distribution of contamination in soils, and environmental infrastructure (e.g., caps, monitoring systems, etc.) that is in place or planned in association with RAs. (3) Regulatory considerations and processes for management and disposition of waste soil upon generation, including regulatory drivers, best management practices (BMPs), waste determination protocols, waste acceptance criteria, and existing waste management procedures and BMPs for Y-12. This Soil Management Plan provides information to project planners to better coordinate their activities with other organizations and programs with a vested interest in soil disturbance activities at Y-12. The information allows project managers and maintenance personnel to evaluate and anticipate potential contaminant levels that may be present at a proposed soil disturbance site prior to commencement of activities and allows a more accurate assessment of potential waste management requirements.

None

2005-03-02T23:59:59.000Z

425

Building Fertile Soil  

E-Print Network [OSTI]

A Backyard Guide to Healthy Soil and Higher Yields, by JohnInstitute. Start with the Soil, by Grace Gershuny. Emmaus,Institute. 1993. The Soul of Soil: A Guide to Ecological

Lindsey, Ann

2008-01-01T23:59:59.000Z

426

Effect of Oxygen Co-Injected with Carbon Dioxide on Gothic Shale Caprock-CO2-Brine Interaction during Geologic Carbon Sequestration  

SciTech Connect (OSTI)

Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10 MPa and ~75 °C. A range of relative volume percentages of O2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO4•2H2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~8–14 ?g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.

Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.

2013-09-16T23:59:59.000Z

427

Analyzing Water Samples for Sources of Contamination using PCR and qPCR Berenise Rivera  

E-Print Network [OSTI]

. Channah Rock Department of Soil, Water and Environmental Science College of Agriculture and Life Sciences Fellowship Program #12;Introduction/Importance: Understanding the origins, transport and fate of contamination is essential to effective management of water resources and public health in resource waters

Fay, Noah

428