National Library of Energy BETA

Sample records for brine brine string

  1. Viscous heavy brines

    SciTech Connect (OSTI)

    House, R.F.; Hoover, L.D.

    1984-07-10

    Hydroxyethyl cellulose and a sequestrant are added to a heavy brine containing one or more salts selected from calcium chloride, calcium bromide, and zinc bromide to increase the viscosity of the brine. Preferably the brine contains zinc bromide, has a density in the range from about 14.2-19.2 pounds per gallon, and the sequestrant is a polyphosphonic acid or water soluble salt thereof.

  2. Thickened heavy brines

    SciTech Connect (OSTI)

    House, R.F.; Hoover, L.D.

    1983-12-13

    A thickened brine solution useful as a well servicing fluid is prepared, said solution consisting essentially of water, at least 20% by weight zinc bromide, calcium bromide, and a viscosifying amount of hydroxyethyl cellulose.

  3. Brine stability study

    SciTech Connect (OSTI)

    Gary Garland

    2015-04-15

    This is a study of the brine formulations that we were using in our testing were stable over time. The data includes charts, as well as, all of the original data from the ICP-MS runs to complete this study.

  4. Gas evolution from geopressured brines

    SciTech Connect (OSTI)

    Matthews, C.S.

    1980-06-01

    The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

  5. Brine Sampling and Evaluation Program, 1991 report

    SciTech Connect (OSTI)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J.; Belski, D.S.

    1993-09-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

  6. Viscous heavy brine completion fluids. [Oil wells

    SciTech Connect (OSTI)

    Darlington, R.K.; Hunter, D.V.

    1982-01-01

    An activated hydroxyethyl cellulose (HEC) has been developed which will viscosify brines of any density up to 19.2 lb/gal containing calcium chloride, calcium bromide and/or zinc bromide. The use of activated hydroxyethyl cellulose allows preparation of viscosified brines at ambient emperature and without undissolved polymer solids. The time required to prepare a viscosified brine is greatly reduced. In addition, the rheology of brines viscosified with activated HEC can be accurately predicted allowing brines with equivalent solution rheology properties to be prepared batch after batch. 29 refs.

  7. Improved Water Flooding through Injection Brine Modification

    SciTech Connect (OSTI)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman

    2003-01-01

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  8. Batteries from Brine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In fact, minerals like lithium, manganese, and zinc supply the raw materials for cathodes, ... demonstration facility there and mine lithium, manganese, and zinc from geothermal brines. ...

  9. Brine Migration Experimental Studies for Salt Repositories

    Broader source: Energy.gov [DOE]

    Experiments were used to examine water content in Permian salt samples including impact of variation in thermal regime on water content of evaporites and other mineral species, behavior of brine inclusions in salt, and evolution of the gas/liquid brine/salt system.

  10. Raft River Geothermal Field Well Head Brine Sample

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Lanyk

    2015-12-18

    Raw data and data workup of assay for real-world brine sample. Brine sample was taken at the well head.

  11. Property:BrineConstituents | Open Energy Information

    Open Energy Info (EERE)

    Chloride type brine, "The content of potassium and calcium are high, while that of lithium, boron and sulfate is very low", See table 1 of Izquierdo et al. (2006). + Chena...

  12. How temperature and pressure affect clear brines

    SciTech Connect (OSTI)

    Hubbard, J.T.

    1984-04-01

    The correct application of the expansivity and compressibility of brine fluids under the influence of temperature and pressure is needed to calculate the actual hydrostatic pressure in a well. Well operations can benefit by reducing unintentional overbalance, lessening fluid losses, and lowering recommended fluid densities, hence reducing fluid costs. Since the early 1970s, the effects of temperature and pressure on the density of clear brine fluids have been questioned. As early as 1973, studies were started to define density loss with increased temperature in zinc bromide brines. This article describes a continuing study, begun in 1978, which has characterized the expansivity and compressibility of single salt brine solutions, such as are used in workover and completion fluids.

  13. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  14. Portable brine evaporator unit, process, and system

    DOE Patents [OSTI]

    Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  15. Fate of Magnesium Chloride Brine Applied to Suppress Dust from...

    Office of Scientific and Technical Information (OSTI)

    Title: Fate of Magnesium Chloride Brine Applied to Suppress Dust from Unpaved Roads at the INEEL Subsurface Disposal Area Between 1984 and 1993, MgCl2 brine was used to suppress ...

  16. Summary Results for Brine Migration Modeling Performed by LANL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program Summary Results for Brine Migration Modeling Performed by LANL, LBNL and SNL ...

  17. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect (OSTI)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  18. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    Title: Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Abstract not provided. Authors: Tenney, Craig M ; Cygan, ...

  19. Reduce completion fluid costs with on-site brine tests

    SciTech Connect (OSTI)

    Thomas, D.C.; Darlington, R.K.; Kinney, W.R.; Lowell, J.L.

    1982-09-01

    A newly developed field kit makes on-site brine completion fluid testing practical. Simple titration procedures are used to analyze brine for calcium, zinc, chloride and bromide with an accuracy and repeatability that compares favorably with expensive laboratory techniques. This article describes the field testing theory and details analytical procedures used.

  20. Radionuclide transport in sandstones with WIPP brine

    SciTech Connect (OSTI)

    Weed, H.C.; Bazan, F.; Fontanilla, J.; Garrison, J.; Rego, J.; Winslow, A.M.

    1981-02-01

    Retardation factors (R) have been measured for the transport of /sup 3/H, /sup 95m/Tc, and /sup 85/Sr in WIPP brine using St. Peter, Berea, Kayenta, and San Felipe sandstone cores. If tritium is assumed to have R=1, /sup 95m/Tc has R=1.0 to 1.3 and therefore is essentially not retarded. Strontium-85 has R = 1.0 to 1.3 on St. Peter, Berea, and Kayenta, but R=3 on San Felipe. This is attributed to sorption on the matrix material of San Felipe, which has 45 volume % matrix compared with 1 to 10 volume % for the others. Retardation factors (R/sub s/) for /sup 85/Sr calculated from static sorption measurements are unity for all the sandstones. Therefore, the static and transport results for /sup 85/Sr disagree in the case of San Felipe, but agree for St. Peter, Berea, and Kayenta.

  1. Technique for thermodynamic crystallization temperature of brine fluids

    SciTech Connect (OSTI)

    Clark, D.E.; Hubbard, J.T.

    1983-03-01

    The application of high density solids free brine fluids has proven to be technically and economically successful in hydrocarbon completion and workover operations. The use of inorganic salts such as calcium chloride, calcium bromide, zinc bromide, and sodium bromide has contributed to the development of complex salt systems. As the density and complexity of these systems becomes more detailed, the requirement for proper fluid design becomes increasingly important. When a brine solution is cooled sufficiently, a temperature is reached where the solution will be saturated. A further decrease in temperature will result in the precipitation of salt from the solution. The temperature at which this transpires, provided no super-cooling occurs, is the crystallization point of the solution. A correctly formulated solids free brine should have the optimum crystallization point for the temperature conditions it will encounter. A recently developed semiautomatic procedure constructs a cooling curve plot of each brine tested. This cooling curve plot allows the determination of the super-cooling potential, the Thermodynamic Crystallization Temperature, and the Last Crystal To Dissolve Temperature. The device provides a permanent record of the cooling curve with repeatable accuracy, which assists in the development of error free brine formulation tables, brine density, and/or crystallization point adjustments, and brine analysis.

  2. Formate brines -- New fluids for drilling and completions

    SciTech Connect (OSTI)

    Ramsey, M.S.; Shipp, J.A.

    1996-01-01

    The term ``formate brines`` refers broadly to three primary compounds dissolved in water -- sodium formate (NaCOOH), potassium formate (KCOOH) and cesium formate (CsCOOH). Each is chemically classified as an alkali-metal salt of formic acid. They offer properties that in many respects are superior to their predecessors, halide brines such as zinc bromide and calcium bromide, without the undesirable side effects of those more common halide brine systems. This article introduces the technology and provides an overview of published work to date regarding formates.

  3. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions

    Office of Scientific and Technical Information (OSTI)

    and Determination of Contact Angles. (Journal Article) | SciTech Connect Journal Article: Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Abstract not provided. Authors: Tenney, Craig M ; Cygan, Randall T. Publication Date: 2013-08-01 OSTI Identifier: 1106710 Report Number(s):

  4. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic

    Office of Scientific and Technical Information (OSTI)

    Leakage into an Unconfined, Oxidizing Limestone Aquifer (Journal Article) | SciTech Connect Journal Article: Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer Citation Details In-Document Search Title: Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer An important risk at CO2 storage sites is the potential for groundwater quality impacts. As

  5. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    SciTech Connect (OSTI)

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  6. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Office of Environmental Management (EM)

    Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a 1...

  7. Brine pH Modification Scale Control Technology. 2. A Review.pdf...

    Open Energy Info (EERE)

    Brine pH Modification Scale Control Technology. 2. A Review.pdf Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brine pH Modification Scale...

  8. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    SciTech Connect (OSTI)

    Lucchini, Jean-francois; Khaing, Hnin; Reed, Donald T

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

  9. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect (OSTI)

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 C).

  10. Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be usedmore » directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.« less

  11. Pre-injection brine production for managing pressure in compartmentalized CO? storage reservoirs

    SciTech Connect (OSTI)

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO? storage that combines CO? injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO?. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO? injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO? injection directly informs reservoir managers about CO? storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be used directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.

  12. Summary Results for Brine Migration Modeling Performed by LANL, LBNL and

    Energy Savers [EERE]

    SNL for the Used Fuel Disposition Program | Department of Energy Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program Summary Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program The report summarizes laboratory and field observations and numerical modeling related to coupled processes involving brine and vapor migration in geologic salt, focusing on recent developments and studies

  13. HIGH-PRESSURE SOLVENT EXTRACTION OF METHANE FROM GEOPRESSURED BRINES:

    Office of Scientific and Technical Information (OSTI)

    PRESSURE SOLVENT EXTRACTION OF METHANE FROM GEOPRESSURED BRINES: TECHNICAL EVALUATION AND COST ANALYSIS R. Quong H. H. Otsuki F. E. Locke July 1981 This is an informal report intended primarily for internal or limited extcrual dirtribdk.. 1Lc opinions and condusions stated are tbose of the antbor and m y or may m o t be tbosc of tbe Laboratory. Work performed under the ampices of the U S . Department of Elnrgy by tbe Lawrence Livermore Laboratory under Cwbsct W-7405-Er498. 7 DISTRIBUTIUN OF THIS

  14. Community Geothermal Technology Program: Electrodeposition of minerals in geothermal brine

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    Objective was to study the materials electrodeposited from geothermal brine, from the HGP-A well in Puna, Hawaii. Due to limitations, only one good set of electrodeposited material was obtained; crystallography indicates that vaterite forms first, followed by calcite and then perhaps aragonite as current density is increased. While the cost to weight ratio is reasonable, the deposition rate is very slow. More research is needed, such as reducing the brittleness. The electrodeposited material possibly could be used as building blocks, tables, benches, etc. 49 figs, 4 tabs, 7 refs.

  15. Chemical-equilibrium calculations for aqueous geothermal brines

    SciTech Connect (OSTI)

    Kerrisk, J.F.

    1981-05-01

    Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.

  16. Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

    2013-10-01

    Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are %E2%80%9Csour%E2%80%9D by SPR standards indicating they contain total sulfur > 0.50 wt %.

  17. Fate of Magnesium Chloride Brine Applied to Suppress Dust from Unpaved

    Office of Scientific and Technical Information (OSTI)

    Roads at the INEEL Subsurface Disposal Area (Journal Article) | SciTech Connect Fate of Magnesium Chloride Brine Applied to Suppress Dust from Unpaved Roads at the INEEL Subsurface Disposal Area Citation Details In-Document Search Title: Fate of Magnesium Chloride Brine Applied to Suppress Dust from Unpaved Roads at the INEEL Subsurface Disposal Area Between 1984 and 1993, MgCl2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl-

  18. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    SciTech Connect (OSTI)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  19. Recovery of energy from geothermal brine and other hot water sources

    DOE Patents [OSTI]

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  20. Behavior of natural uranium, thorium, and radium isotopes in the Wolfcamp brine aquifers, Palo Duro Basin, Texas

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Hubbard, N.

    1984-10-01

    Previously reported results for Palo Duro deep brines show that Ra is highly soluble and not retarded. Relative to Ra, U and Th are highly sorbed. Uranium, like thorium, is in the +4 valence state, indicating a reducing environment. Additional data reported here support these results. However, one Wolfcamp brine sample gives somewhat different results. Radium appears to be somewhat sorbed. Uranium is largely in the +6 valence state, indicating a less reducing condition. In all brines, kinetics for sorption (/sup 228/Th) and desorption (/sup 224/Ra) are rapid. This Wolfcamp brine was tested for the effects of colloids for Ra, U, and Th concentrations. No effects were found.

  1. Silica separation from reinjection brines at Monte Amiata geothermal plants, Italy

    SciTech Connect (OSTI)

    Vitolo, S.; Cialdella, M.L. . Dipartimento di Ingegneria Chimica)

    1994-06-01

    A process for the separation of silica from geothermal reinjection brines is reported, in which the phases of coagulation, sedimentation and filtration of silica are involved. The effectiveness of lime and calcium chloride as coagulating agents has been investigated and the separating operations have been set out. Attention has been focused on Monte Amiata reinjection geothermal brines, whose scaling effect causes serious problems in the operation and maintenance of reinjection facilities. The study has been conducted using different amounts of added coagulants and at different temperatures, to determine optimal operating conditions. Though calcium chloride was revealed to be effective as a coagulant of the polymeric silica fraction, lime has also proved capable of removing monomeric dissolved silica at high dosages. Investigation on the behavior of coagulated brine has revealed the feasibility of separating the coagulated silica by sedimentation and filtration.

  2. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  3. ASSESSMENT OF TECHNETIUM LEACHABILITY IN CEMENT STABILIZED BASIN 43 GROUNDWATER BRINE

    SciTech Connect (OSTI)

    COOKE GA; DUNCAN JB; LOCKREM LL

    2008-09-30

    This report is an initial report on the laboratory effort executed under RPP-PLAN-33338, Test Plan for the Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine. This report delineates preliminary data obtained under subcontract 21065, release 30, from the RJ Lee Group, Inc., Center for Laboratory Sciences. The report is predicated on CLS RPT-816, Draft Report: Assessment of Technetium Leachability in Cement Stabilized Basin 43 Groundwater Brine. This document will be revised on receipt of the final RJ Lee Group, Inc., Center for Laboratory Sciences report, which will contain data subjected to quality control and quality assurance criteria.

  4. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a $1 million EERE investment, heat from geothermal fluids-a byproduct of gold mining-will be generating electricity this year for less than $0.06 per kilowatt hour with ElectraTherm's new plug-and-play technology. Building on this first-of-its-kind success, this emission-free electricity is the

  5. RealGasBrine v1.0 option of TOUGH+ v1.5

    SciTech Connect (OSTI)

    2015-02-27

    RealGasBrine v1.0 is a numerical code that for the simulation of the behavior of gas-bearing porous and/fractured geologic media. It is an option of TOUGH+ v1.5 [Moridis, 2014], a successor to the TOUGH2 [Pruess et al., 1999; 2012] family of codes for multi-component, multiphase ?uid and heat ?ow developed at the Lawrence Berkeley National Laboratory. RealGasBrine v1.0 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. RealGasBrine v1.0 describes the non-isothermal two- (for pure water) or three-phase (for brine) flow of an aqueous phase and a real gas mixture in a gas-bearing medium, with a particular focus in ultra-tight (such as tight-sand and shale gas) systems. Up to 12 individual real gases can be tracked, and salt can precipitate as solid halite. The capabilities of the code include coupled flow and thermal effects, real gas behavior, Darcy and non-Darcy flow, several isotherm options of gas sorption onto the grains of the porous media, complex fracture descriptions, gas solubility into water, and geomechanical effects on flow properties. RealGasBrine v1.0 allows the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in any problem involving the flow of gases in geologic media, including the geologic storage of greenhouse gas mixtures, the behavior of geothermal reservoirs with multi-component condensable (H2O and CO2) and non-condensable gas mixtures, the transport of water and released H2 in nuclear waste storage applications, etc.

  6. RealGasBrine v1.0 option of TOUGH+ v1.5

    Energy Science and Technology Software Center (OSTI)

    2015-02-27

    RealGasBrine v1.0 is a numerical code that for the simulation of the behavior of gas-bearing porous and/fractured geologic media. It is an option of TOUGH+ v1.5 [Moridis, 2014], a successor to the TOUGH2 [Pruess et al., 1999; 2012] family of codes for multi-component, multiphase ?uid and heat ?ow developed at the Lawrence Berkeley National Laboratory. RealGasBrine v1.0 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRANmore95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. RealGasBrine v1.0 describes the non-isothermal two- (for pure water) or three-phase (for brine) flow of an aqueous phase and a real gas mixture in a gas-bearing medium, with a particular focus in ultra-tight (such as tight-sand and shale gas) systems. Up to 12 individual real gases can be tracked, and salt can precipitate as solid halite. The capabilities of the code include coupled flow and thermal effects, real gas behavior, Darcy and non-Darcy flow, several isotherm options of gas sorption onto the grains of the porous media, complex fracture descriptions, gas solubility into water, and geomechanical effects on flow properties. RealGasBrine v1.0 allows the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in any problem involving the flow of gases in geologic media, including the geologic storage of greenhouse gas mixtures, the behavior of geothermal reservoirs with multi-component condensable (H2O and CO2) and non-condensable gas mixtures, the transport of water and released H2 in nuclear waste storage applications, etc.less

  7. Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration

    SciTech Connect (OSTI)

    Goddard, William

    2012-11-30

    To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

  8. Targeted Pressure Management During CO2 Sequestration: Optimization of Well Placement and Brine Extraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco

    2014-12-31

    Large-scale pressure increases resulting from carbon dioxide (CO2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement and injection/ extractionmore » control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing ‘Area of Review’, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.« less

  9. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

  10. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  11. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir conditions. Our research has shown that the REE signature imparted to the formation fluid by the introduction of CO₂ to the formation, can be measured and tracked as part of an MMV program. Additionally, this REE fingerprint may serve as an ideal tracer for fluid migration, both within the CCS target formation, and should formation fluids migrate into overlying aquifers. However application of REE and other trace elements to CCS system is complicated by the high salt content of the brines contained within the target formations. In the United States by regulation, in order for a geologic reservoir to be considered suitable for carbon storage, it must contain formation brine with total dissolved solids (TDS) > 10,000 ppm, and in most cases formation brines have TDS well in excess of that threshold. The high salinity of these brines creates analytical problems for elemental analysis, including element interference with trace metals in Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) (i.e. element mass overlap due to oxide or plasma phenomenon). Additionally, instruments like the ICP-MS that are sensitive enough to measure trace elements down to the parts per trillion level are quickly oversaturated when water TDS exceeds much more than 1,000 ppm. Normally this problem is dealt with through dilution of the sample, bringing the water chemistry into the instruments working range. However, dilution is not an option when analyzing these formation brines for trace metals, because trace elements, specifically the REE, which occur in aqueous solutions at the parts per trillion levels. Any dilution of the sample would make REE detection impossible. Therefore, the ability to use trace metals as in situ natural tracers in high TDS brines environments requires the development of methods for pre-concentrating trace elements, while reducing the salinity and associated elemental interference such that the brines can be routinely analyzed by standard ICP-MS methods. As part of the Big Sky Carbon Sequestration Project the INL-CAES has developed a rapid, easy to use process that pre-concentrates trace metals, including REE, up to 100x while eliminating interfering ions (e.g. Ba, Cl). The process is straightforward, inexpensive, and requires little infrastructure, using only a single chromatography column with inexpensive, reusable, commercially available resins and wash chemicals. The procedure has been tested with synthetic brines (215,000 ppm or less TDS) and field water samples (up to 5,000 ppm TDS). Testing has produced data of high quality with REE capture efficiency exceeding 95%, while reducing interfering elements by > 99%.« less

  12. RealGasBrine v1.0 option of TOUGH+ v1.5

    Energy Science and Technology Software Center (OSTI)

    2015-02-27

    RealGasBrine v1.0 is a numerical code that for the simulation of the behavior of gas-bearing porous and/fractured geologic media. It is an option of TOUGH+ v1.5 [Moridis, 2014], a successor to the TOUGH2 [Pruess et al., 1999; 2012] family of codes for multi-component, multiphase ?uid and heat ?ow developed at the Lawrence Berkeley National Laboratory. RealGasBrine v1.0 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRANmore » 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. RealGasBrine v1.0 describes the non-isothermal two- (for pure water) or three-phase (for brine) flow of an aqueous phase and a real gas mixture in a gas-bearing medium, with a particular focus in ultra-tight (such as tight-sand and shale gas) systems. Up to 12 individual real gases can be tracked, and salt can precipitate as solid halite. The capabilities of the code include coupled flow and thermal effects, real gas behavior, Darcy and non-Darcy flow, several isotherm options of gas sorption onto the grains of the porous media, complex fracture descriptions, gas solubility into water, and geomechanical effects on flow properties. RealGasBrine v1.0 allows the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in any problem involving the flow of gases in geologic media, including the geologic storage of greenhouse gas mixtures, the behavior of geothermal reservoirs with multi-component condensable (H2O and CO2) and non-condensable gas mixtures, the transport of water and released H2 in nuclear waste storage applications, etc.« less

  13. PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT

    SciTech Connect (OSTI)

    Burnett, David

    2012-12-31

    The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for pre-treatment of field waste brine. The project consisted of constructing s mobile field laboratory incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine softening $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field trials and subcontractor research have been summarized in this Final Report. Individual field trial reports and research reports are contained in the companion volume titled Appendices

  14. The sup 36 Cl ages of the brines in the Magadi-Natron basin, east Africa

    SciTech Connect (OSTI)

    Kaufman, A.; Margaritz, M.A.; Hollos, G. ); Paul, M.; Boaretto, E. ); Hillaire-Marcel, C. ); Taieb, M. )

    1990-10-01

    The depression in the East African Rift which includes both Lake Magadi and Lake Natron forms a closed basin within which almost all the dissolved chloride originates in precipitation, since there is no important source of very ancient sedimentary chloride. This provides an ideal setting for the evaluation of the {sup 36}Cl methodology as a geochemical and hydrological tracer. The main source of recent water, as represented by the most dilute samples measured, is characterized by a {sup 36}Cl/Cl ratio of 2.5 {times} 10{sup {minus}14}, in agreement with the calculated value expected in precipitation. Surface evaporation increases the chlorinity of the local freshwater inflow by about a factor of 110 without changing the isotopic ratio, indicating that little chloride enters the system in the form of sediment leachate. A second type of brine found in the basin occurs in a hot deep groundwater reservoir and is characterized by lower {sup 36}Cl/Cl ratios (<1.2 {times} 10{sup {minus}14}). By comparing this value with the 2.5 {times} 10{sup {minus}14} in recent recharge, one obtains an approximate salt accumulation age of 760 Ka which is consistent with thee time of the first appearance of the lake. These older brines also have lower {sup 18}O and {sup 2}H values which indicate that they were recharged during a climatically different era. The {sup 36}Cl/Cl ratios in the inflowing waters and in the accumulated brine, together with the known age of the Lake Magadi basin, may be used to estimate the importance of the hypogene and epigene, as opposed to the meteoric, mode of {sup 36}Cl production. Such a calculation shows that the hypogene and epigene processes together contribute less than 6% of the total {sup 36}Cl present in the lake.

  15. Brine migration test for Asse Mine, Federal Republic of Germany: final test plan

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    The United States and the Federal Republic of Germany (FRG) will conduct a brine migration test in the Asse Salt Mine in the FRG as part of the US/FRG Cooperative Radioactive Waste Management Agreement. Two sets of two tests each will be conducted to study both liquid inclusion migration and vapor migration in the two salt types chosen for the experiments: (1) pure salt, for its characteristics similar to the salt that might occur in potential US repositories, and (2) transitional salt, for its similarity to the salt that might occur in potential repositories in Germany.

  16. Gas Content of Gladys McCall Reservoir Brine A Topical Report

    Office of Scientific and Technical Information (OSTI)

    Gas Content of Gladys McCall Reservoir Brine A Topical Report C-G- Hayden P.L- Randolph Institute of Gas Technology 3424 South State Street Chicago, Illinois 606 16 Submitted t o Eaton Operating Company 1980 Post Oak Boulevard, Suite 2000 Houston, Texas 77056 Under Sub-contract No. EOC 85-4 ( E O U I G T ) Under Prime Contract No. DE-AC07-851D12578 ([IOElEOC 1 IGT Project No. 65071 May 1987 Prepared by DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

  17. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    SciTech Connect (OSTI)

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  18. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more » leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less

  19. Summary Results for Brine Migration Modeling Performed by LANL LBNL and SNL for the UFD Program.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L

    2014-09-01

    This report summarizes laboratory and field observations and numerical modeling related to coupled processes involving brine and vapor migration in geologic salt, focusing on recent developments and studies conducted at Sandia, Los Alamos, and Berkeley National Laboratories. Interest into the disposal of heat-generating waste in salt has led to interest into water distribution and migration in both run-of-mine crushed and intact geologic salt. Ideally a fully coupled thermal-hydraulic-mechanical-chemical simulation is performed using numerical models with validated constitutive models and parameters. When mechanical coupling is not available, mechanical effects are prescribed in hydraulic models as source, boundary, or initial conditions. This report presents material associated with developing appropriate initial conditions for a non-mechanical hydrologic simulation of brine migration in salt. Due to the strong coupling between the mechanical and hydrologic problems, the initial saturation will be low for the excavation disturbed zone surrounding the excavation. Although most of the material in this report is not new, the author hopes it is presented in a format making it useful to other salt researchers.

  20. Brine migration test report: Asse Salt Mine, Federal Republic of Germany: Technical report

    SciTech Connect (OSTI)

    Coyle, A.J.; Eckert, J.; Kalia, H.

    1987-01-01

    This report presents a summary of Brine Migration Tests which were undertaken at the Asse mine of the Federal Republic of Germany (FRG) under a bilateral US/FRG agreement. This experiment simulates a nuclear waste repository at the 800-m (2624-ft) level of the Asse salt mine in the Federal Republic of Germany. This report describes the Asse salt mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are selected test data (for the first 28 months of operation) on the following: brine migration rates, thermomechaical behavior of the salt (including room closure, stress reading, and thermal profiles), borehole gas pressures, and borehole gas analyses. In addition to field data, laboratory analyses of pretest salt properties are included in this report. The operational phase of these experiments was completed on October 4, 1985, with the commencement of cooldown and the start of posttest activities. 7 refs., 68 figs., 48 tabs.

  1. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNLs work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  2. Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

    2007-02-07

    In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

  3. Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981

    SciTech Connect (OSTI)

    Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

    1982-07-01

    The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

  4. Reduced order models for prediction of groundwater quality impacts from CO₂ and brine leakage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Liange; Carroll, Susan; Bianchi, Marco; Mansoor, Kayyum; Sun, Yunwei; Birkholzer, Jens

    2014-12-31

    A careful assessment of the risk associated with geologic CO₂ storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO₂ and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO₂ leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highlymore » efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO₂ and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO₂ storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO₂ storage projects.« less

  5. Reduced order models for prediction of groundwater quality impacts from CO? and brine leakage

    SciTech Connect (OSTI)

    Zheng, Liange; Carroll, Susan; Bianchi, Marco; Mansoor, Kayyum; Sun, Yunwei; Birkholzer, Jens

    2014-12-31

    A careful assessment of the risk associated with geologic CO? storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO? and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO? leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highly efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO? and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO? storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO? storage projects.

  6. REE Sorption Study on sieved -50 +100 mesh fraction of Media #1 in Brine #1 with Different Starting pH's at 70C

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gary Garland

    2015-09-29

    This is a continuation of the REE sorption study for shaker bath tests on 2g media #1 in 150mL brine #1 with different starting pH's at 70C. In a previous submission we reported data for shaker bath tests for brine #1 with starting pH's of 3.5, 4.5 and 5.5. In this submission we these pH's compared to starting brine #1 pH's of 6, and 7.

  7. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    SciTech Connect (OSTI)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).

  8. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore » wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).« less

  9. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    Office of Scientific and Technical Information (OSTI)

    3 (2014) 4684 - 4707 Energy Procedia GHGT-12 Geochemical impacts of carbon dioxide, brine, trace metal and organic leakage into an unconfined, oxidizing limestone aquifer Diana H. Bacon3'* *, Zhenxue Daib, Liange Zhengc "Pacific Northwest National Laboratory, Richland, Washington, USA bLos Alamos National Laboratory, Los Alamos, New Mexico, USA cLawrence Berkeley National Laboratory, Berkeley, California, USA Abstract An important risk at CO2 storage sites is the potential for groundwater

  10. Targeted Pressure Management During CO2 Sequestration: Optimization of Well Placement and Brine Extraction

    SciTech Connect (OSTI)

    Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco

    2014-12-31

    Large-scale pressure increases resulting from carbon dioxide (CO2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement and injection/ extraction control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing Area of Review, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.

  11. Evaluation of brine disposal from the Bryan Mound site of the strategic petroleum reserve program. Final report

    SciTech Connect (OSTI)

    Case, Robert J.; Chittenden, Jr, Mark E.; Harper, Jr, Donald E.; Kelly, Jr, Francis J.; Loeblich, Laurel A.; McKinney, Larry D.; Minello, Thomas J.; Park, E. Taisoo; Randall, Robert E.; Slowey, J. Frank

    1981-01-01

    On March 10, 1980, the Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging the resulting brine into the coastal waters off Freeport, Texas. During the months of March and April, a team of scientists and engineers from Texas A and M University conducted an intensive environmental study of the area surrounding the diffuser site. A pipeline has been laid from the Bryan Mound site to a location 12.5 statute miles (20 km) offshore. The last 3060 ft (933 m) of this pipeline is a 52-port diffuser through which brine can be discharged at a maximum rate of 680,000 barrels per day. Initially, 16 ports were open which permitted a maximum discharge rate of 350,000 barrels per day and a continuous brine discharge was achieved on March 13, 1980. The purpose of this report is to describe the findings of the project team during the intensive postdisposal study period of March and April, 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management.

  12. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  13. Experiments and modeling of variably permeable carbonate reservoir samples in contact with CO₂-acidified brines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Megan M.; Hao, Yue; Mason, Harris E.; Carroll, Susan A.

    2014-12-31

    Reactive experiments were performed to expose sample cores from the Arbuckle carbonate reservoir to CO₂-acidified brine under reservoir temperature and pressure conditions. The samples consisted of dolomite with varying quantities of calcite and silica/chert. The timescales of monitored pressure decline across each sample in response to CO₂ exposure, as well as the amount of and nature of dissolution features, varied widely among these three experiments. For all samples cores, the experimentally measured initial permeability was at least one order of magnitude or more lower than the values estimated from downhole methods. Nondestructive X-ray computed tomography (XRCT) imaging revealed dissolution featuresmore » including “wormholes,” removal of fracture-filling crystals, and widening of pre-existing pore spaces. In the injection zone sample, multiple fractures may have contributed to the high initial permeability of this core and restricted the distribution of CO₂-induced mineral dissolution. In contrast, the pre-existing porosity of the baffle zone sample was much lower and less connected, leading to a lower initial permeability and contributing to the development of a single dissolution channel. While calcite may make up only a small percentage of the overall sample composition, its location and the effects of its dissolution have an outsized effect on permeability responses to CO₂ exposure. The XRCT data presented here are informative for building the model domain for numerical simulations of these experiments but require calibration by higher resolution means to confidently evaluate different porosity-permeability relationships.« less

  14. Evaluation of brine disposal from the Bryan Mound site of the Strategic Petroleum Reserve Program. Final report

    SciTech Connect (OSTI)

    Hann, R.W. Jr.; Randall, R.E.

    1980-12-01

    The purpose of this report is to describe the environmental conditions found by the principal investigators during the predisposal study conducted from September 1977 through February 1980 prior to the start of brine discharge in March 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management. Volume 1 describes the results of the predisposal study, and it is divided into eight chapters entitled: Physical Oceanography, Analysis of the Discharge Plume, Water and Sediment Quality, Nekton, Benthos, Zooplankton, Phytoplankton, and Data Management. Volume 2 consists of appendices which contain additional supporting data in the form of figures and tables.

  15. Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow

    SciTech Connect (OSTI)

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-01

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including comb-tooth structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

  16. GEOCHEMICAL INVESTIGATIONS OF CO?-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Yoksoulian, Lois; Berger, Peter; Freiburg, Jared; Butler, Shane; Leetaru, Hannes

    2014-09-30

    Increased output of greenhouse gases, particularly carbon dioxide (CO?), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO? emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO?. The Knox Group-Maquoketa Shale reservoir and seal system, located stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO? without the potential for the release of harmful contaminants liberated by the reaction between CO?-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (91019860 kPa [13201430 psi] and 3242C [90 108F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO? as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this study suggests only limited potential for the release of United States Environmental Protection Agency regulated inorganic contaminants into potable water sources. Short-term core flood experiments further verify that the carbonate reactions occurring in Knox Group reservoir samples reach equilibrium rapidly. The core flood experiments also lend insight to pressure changes that may occur during CO? injection. The Maquoketa Shale experiments reveal that this rock is initially chemically reactive when in contact with CO? and brine. However, due to the conservative nature of silicate and clay reaction kinetics and the rapid equilibration of carbonate reactions that occur in the shale, these reactions would not present a significant risk to the competency of the shale as an effective seal rock.

  17. Evaporite Caprock Integrity. An experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Megan M.; Sholokhova, Yelena; Hao, Yue; Carroll, Susan A.

    2012-07-25

    Characterization and geochemical data are presented from a core-flooding experiment on a sample from the Three Fingers evaporite unit forming the lower extent of caprock at the Weyburn-Midale reservoir, Canada. This low-permeability sample was characterized in detail using X-ray computed microtomography before and after exposure to CO 2-acidified brine, allowing mineral phase and voidspace distributions to be quantified in three dimensions. Solution chemistry indicated that CO 2-acidified brine preferentially dissolved dolomite until saturation was attained, while anhydrite remained unreactive. Dolomite dissolution contributed to increases in bulk permeability through the formation of a localized channel, guided by microfractures as well asmore » porosity and reactive phase distributions aligned with depositional bedding. An indirect effect of carbonate mineral reactivity with CO 2-acidified solution is voidspace generation through physical transport of anhydrite freed from the rock matrix following dissolution of dolomite. The development of high permeability fast pathways in this experiment highlights the role of carbonate content and potential fracture orientations in evaporite caprock formations considered for both geologic carbon sequestration and CO 2-enhanced oil recovery operations.« less

  18. Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

  19. Wetting behavior of selected crude oil/brine/rock systems. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Zhou, X.; Morrow, N.R.; Ma, S.

    1996-12-31

    Previous studies of crude oil/brine/rock (COBR) and related ensembles showed that wettability and its effect on oil recovery depend on numerous complex interactions. In the present work, the wettability of COBR ensembles prepared using Prudhoe Bay crude oil, a synthetic formation brine, and Berea Sandstone was varied by systematic change in initial water saturation and length of aging time at reservoir temperature (88 C). All displacement tests were run at ambient temperature. Various degrees of water wetness were achieved and quantified by a modified Amott wettability index to water, the relative pseudo work of imbibition, and a newly defined apparent advancing dynamic contact angle. Pairs of spontaneous imbibition (oil recovery by spontaneous imbibition of water) and waterflood (oil recovery vs. pore volumes of water injected) curves were measured for each of the induced wetting states. Several trends were observed. Imbibition rate, and hence water wetness, decreased with increase in aging time and with decrease in initial water saturation. Breakthrough recoveries and final oil recovery by waterflooding increased with decrease in water wetness. Correlations between water wetness and oil recovery by waterflooding and spontaneous imbibition are presented.

  20. REE Sorption Study for Media #1 and Media #2 in Brine #1 and #2 at different Liquid to Solid Ratio's at Ambient Temperature

    SciTech Connect (OSTI)

    Gary Garland

    2015-03-27

    This data set shows the different loading capacities of Media #1 and Media #2 in a high and low salt content brine matrix at different liquid to solid ratio's. These data sets are shaker bath tests on media #1 and media #2 in brine's #1 and #2 at 500mL-.5g(1000-1 ratio), 150mL-.75g(200-1 ratio), and 150mL-2.5g(60-1 ratio) at ambient temperature.

  1. REE Sorption Study of Sieved -50 +100 mesh Media #1 in Brine #1 with Different Starting pH's at 70C

    SciTech Connect (OSTI)

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  2. Rare-earth elements in hot brines (165 to 190 degree C) from the Salton Sea geothermal field

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.; Smith, M.R.

    1988-01-01

    Rare-earth element (REE) concentrations are important indicators for revealing various chemical fractionation processes (water/rock interactions) and source region geochemistry. Since the REE patterns are characteristic of geologic materials (basalt, granite, shale, sediments, etc.) and minerals (K-feldspar, calcite, illite, epidote, etc.), their study in geothermal fluids may serve as a geothermometer. The REE study may also enable us to address the issue of groundwater mixing. In addition, the behavior of the REE can serve as analogs of the actinides in radioactive waste (e.g., neodymium is an analog of americium and curium). In this paper, the authors port the REE data for a Salton Sea Geothermal Field (SSGF) brine (two aliquots: port 4 at 165{degree}C and port 5 at 190{degree}C) and six associated core samples.

  3. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot

    SciTech Connect (OSTI)

    Kharaka, Y.K; Doughty, C.; Freifeld, B.M.; Daley, T.M.; Xu, T.

    2009-11-01

    To demonstrate the potential for geologic storage of CO{sub 2} in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO{sub 2} were injected into a high-permeability sandstone and the resulting subsurface plume of CO{sub 2} was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO{sub 2} injection for baseline geochemical characterization, during the CO{sub 2} injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO{sub 2} breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO{sub 3}{sup -} and aqueous Fe, and significant shifts in the isotopic compositions of H{sub 2}O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO{sub 2} plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO{sub 2} concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO{sub 2} could ultimately be sequestered as carbonate minerals.

  4. Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report

    SciTech Connect (OSTI)

    Beauheim, R.L. ); Saulnier, G.J. Jr.; Avis, J.D. )

    1991-08-01

    Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

  5. Effect of Oxygen Co-Injected with Carbon Dioxide on Gothic Shale Caprock-CO2-Brine Interaction during Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.

    2013-09-16

    Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10 MPa and ~75 C. A range of relative volume percentages of O2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO42H2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~814 ?g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.

  6. REE Sorption Study of Seived -50 +100 Mesh Fraction of Media #1 in Brine #1 at Different Concentrations of REE at 70C

    SciTech Connect (OSTI)

    Gary Garland

    2015-06-29

    This dataset shows the sorption capacities of smaller grain size (-50 +100 mesh) of media #1 in brine #1 at different starting concentrations of REE's at elevated temperature of 70C. The experimental conditions are 2g of -50 +100 mesh media #1 to 150mL of REE solution at concentartions of .2ppm each, 2ppm each, and 20ppm each. The pH of the solution is 5.5, and the temperature was at 70C.

  7. Evaluation of experimentally measured and model-calculated pH for rock-brine-CO2 systems under geologic CO2 sequestration conditions

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-01

    pH is an essential parameter for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies conducted under geological CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH. The accuracy of these model predictions is typically uncertain. In our previous work, we have developed a method for pH determination by in-situ spectrophotometry. In the present work, we expanded the applicable pH range for this method and measured the pH of several rock-brine-CO2 systems at GCS conditions for five rock samples collected from ongoing GCS demonstration projects. Experimental measurements were compared with pH values calculated using several geochemical modeling approaches. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. Results indicate that the accuracy of model calculations is rock-dependent. For rocks comprised of carbonate and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models failure to fully account for certain reaction occurring between the basalt minerals the CO2-saturated brine solutions.

  8. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect (OSTI)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  9. Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ilgen, A. G.; Cygan, R. T.

    2015-12-07

    During the Frio-I Brine Pilot CO2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation “C”. Particularly, we evaluate whether dissolution of pyrite and oligoclase (anorthitemore » component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation “C” sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.« less

  10. Accident Investigation of the February 7, 2013, Scissor Lift Accident in the West Hackberry Brine Tank-14 Resulting in Injury, Strategic Petroleum Reserve West Hackberry, LA

    Broader source: Energy.gov [DOE]

    On February 15, 2013, an Accident Investigation Board (the Board) was appointed to investigate an accident that resulted in serious injuries caused when a scissor lift tipped over in Brine Tank-14 (WHT-14) at the Strategic Petroleum Reserve, West Hackberry, Louisiana, site on February 7, 2013. The Board’s responsibilities have been completed with respect to this investigation. The analysis and the identification of the direct cause, root causes, contributing causes, and judgments of need resulting from this investigation were performed in accordance with the Department of Energy (DOE) Order 225.1B, Accident Investigations.

  11. Estimates of the solubilities of waste element radionuclides in waste isolation pilot plant brines: A report by the expert panel on the source term

    SciTech Connect (OSTI)

    Hobart, D.E.; Bruton, C.J.; Millero, F.J.; Chou, I.M.; Trauth, K.M.; Anderson, D.R.

    1996-05-01

    Evaluation of the long-term performance of the WIPP includes estimation of the cumulative releases of radionuclide elements to the accessible environment. Nonradioactive lead is added because of the large quantity expected in WIPP wastes. To estimate the solubilities of these elements in WIPP brines, the Panel used the following approach. Existing thermodynamic data were used to identify the most likely aqueous species in solution through the construction of aqueous speciation diagrams. Existing thermodynamic data and expert judgment were used to identify potential solubility-limiting solid phases. Thermodynamic data were used to calculate the activities of the radionuclide aqueous species in equilibrium with each solid. Activity coefficients of the radionuclide-bearing aqueous species were estimated using Pitzer`s equations. These activity coefficients were then used to calculate the concentration of each radionuclide at the 0.1 and 0.9 fractiles. The 0.5 fractile was chosen to represent experimental data with activity coefficient corrections as described above. Expert judgment was used to develop the 0.0, 0.25, 0.75, and 1.0 fractiles by considering the sensitivity of solubility to the potential variability in the composition of brine and gas, and the extent of waste contaminants, and extending the probability distributions accordingly. The results were used in the 1991 and 1992 performance assessment calculations. 68 refs.

  12. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-03-31

    The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite sorption sites proving to be of secondary importance. The Groundwater Geochemistry ROM was developed using nonlinear regression to fit the response surface with a quadratic polynomial. The goodness of fit was excellent for the CO2 flux to the atmosphere, and very good for predicting the volumes of groundwater exceeding the pH, TDS, As, Cd and Pb threshold values.

  13. An integrated experimental and numerical study: Developing a reaction transport model that couples chemical reactions of mineral dissolution/precipitation with spatial and temporal flow variations in CO2/brine/rock systems

    Broader source: Energy.gov [DOE]

    Project objectives: Generate and characterize mineral dissolution/precipitation reactions in supercritical CO2/brine/rock systems under pressure-temperature-chemistry conditions resembling CO2injection into EGS. Characterize three-dimensional spatial and temporal distributions of rock structures subject to mineral dissolution/precipitation processes by X-ray tomography, SEM imaging, and Microprobe analysis.

  14. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    SciTech Connect (OSTI)

    Myint, P. C.; Hao, Y.; Firoozabadi, A.

    2015-03-27

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO2 activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO2, pure water, and both CO2-rich and aqueous (H2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Suns model yields accurate results for the partial molar enthalpy of CO2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H2O-CO2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  15. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

  16. West Hackberry Strategic Petroleum Reserve site brine disposal monitoring, Year I report. Volume V. Supporting data for estuarine hydrology, discharge plume analysis, chemical oceanography, biological oceanography, and data management. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J.

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume V contains appendices for the following: supporting data for estuarine hydrology and hydrography; supporting data analysis of discharge plume; supporting data for water and sediment chemistry; CTD/DO and pH profiles during biological monitoring; supporting data for nekton; and supporting data for data management.

  17. Use of data obtained from core tests in the design and operation of spent brine injection wells in geopressured or geothermal systems

    SciTech Connect (OSTI)

    Jorda, R.M.

    1980-03-01

    The effects of formation characteristics on injection well performance are reviewed. Use of data acquired from cores taken from injection horizons to predict injectivity is described. And methods for utilizing data from bench scale testing of brine and core samples to optimize injection well design are presented. Currently available methods and equipment provide data which enable the optimum design of injection wells through analysis of cores taken from injection zones. These methods also provide a means of identifying and correcting well injection problems. Methods described in this report are: bulk density measurement; porosity measurement; pore size distribution analysis; permeability measurement; formation grain size distribution analysis; core description (lithology) and composition; amount, type and distribution of clays and shales; connate water analysis; consolidatability of friable reservoir rocks; grain and pore characterization by scanning electron microscopy; grain and pore characterization by thin section analysis; permeability damage and enhancement tests; distribution of water-borne particles in porous media; and reservoir matrix acidizing effectiveness. The precise methods of obtaining this information are described, and their use in the engineering of injection wells is illustrated by examples, where applicable. (MHR)

  18. The deep hydrogeologic flow system underlying the Oak Ridge Reservation -- Assessing the potential for active groundwater flow and origin of the brine

    SciTech Connect (OSTI)

    Nativ, R.; Halleran, A.; Hunley, A.

    1997-08-01

    The deep hydrogeologic system underlying the Oak Ridge Reservation (ORR) contains contaminants such as radionuclides, heavy metals, nitrates, and organic compounds. The groundwater in the deep system is saline and has been considered to be stagnant in previous studies. This study was designed to address the following questions: is groundwater in the deep system stagnant; is contaminant migration controlled by diffusion only or is advection a viable mechanism; where are the potential outlet points? On the basis of existing and newly collected data, the nature of saline groundwater flow and potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial and temporal temperature variations at depth, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. The observations suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active, freshwater-bearing units. Influx of recent water does occur. Groundwater volumes involved in this flow are likely to be small. The origin of the saline groundwater was assessed by using existing and newly acquired chemical and isotopic data. The proposed model that best fits the data is modification of residual brine from which halite has been precipitated. Other models, such as ultrafiltration and halite dissolution, were also evaluated.

  19. {gamma}-Radiolysis of NaCl Brine in the Presence of UO{sub 2}(s): Effects of Hydrogen and Bromide

    SciTech Connect (OSTI)

    Metz, Volker; Bohnert, Elke; Kelm, Manfred; Schild, Dieter; Kienzler, Bernhard

    2007-07-01

    A concentrated NaCl solution was {gamma}-irradiated in autoclaves under a pressure of 25 MPa. A set of experiments were conducted in 6 mol (kg H{sub 2}O){sup -1} NaCl solution in the presence of UO{sub 2}(s) pellets; in a second set of experiments, {gamma}-radiolysis of the NaCl brine was studied without UO{sub 2}(s). Hydrogen, oxygen and chlorate were formed as long-lived radiolysis products. Due to the high external pressure, all radiolysis products remained dissolved. H{sub 2} and O{sub 2} reached steady state concentrations in the range of 5.10{sup -3} to 6.10{sup -2} mol (kg H{sub 2}O){sup -1} corresponding to a partial gas pressure of {approx}2 to {approx}20 MPa. Radiolytic formation of hydrogen and oxygen increased with the concentration of bromide added to solution. Both, in the presence of bromide, resulting in a relatively high radiolytic yield, and in the absence of bromide surfaces of the UO{sub 2}(s) samples were oxidized, and concentration of dissolved uranium reached the solubility limit of the schoepite / NaUO{sub 2}O(OH)(cr) transition. At the end of the experiments, the pellets were covered by a surface layer of a secondary solid phase having a composition close to Na{sub 2}U{sub 2}O{sub 7}. The experimental results demonstrate that bromide counteracts an H{sub 2} inhibition effect on radiolysis gas production, even at a concentration ratio of [H{sub 2}] / [Br{sup -}] > 100. The present observations are related to the competitive reactions of OH radicals with H{sub 2}, Br{sup -} and Cl{sup -}. A similar competition of hydrogen and bromide, controlling the yield of {gamma}-radiolysis products, is expected for solutions of lower Cl{sup -} concentration. (authors)

  20. Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis

    SciTech Connect (OSTI)

    Ilgen, A. G.; Cygan, R. T.

    2015-12-07

    During the Frio-I Brine Pilot CO2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation C. Particularly, we evaluate whether dissolution of pyrite and oligoclase (anorthite component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation C sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.

  1. CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in Chloride Brines at 12-100 °C and 1-600 bar.

    Office of Scientific and Technical Information (OSTI)

    CO 2 -H 2 O Mixtures in the Geological Sequestration of CO 2 . II. Partitioning in Chloride Brines at 12-100°C and up to 600 bar. Nicolas Spycher and Karsten Pruess Lawrence Berkeley National Laboratory, MS 90-1116, 1 Cyclotron Road, Berkeley, California, USA September 2004 ABSTRACT Correlations presented by Spycher et al. (2003) to compute the mutual solubilities of CO 2 and H 2 O are extended to include the effect of chloride salts in the aqueous phase. This is accomplished by including, in

  2. Development Operations Hypersaline Geothermal Brine Utilization...

    Open Energy Info (EERE)

    Abstract NA Authors Whitescarver and Olin D. Published U.S. Department of Energy, 1984 Report Number NA DOI Not Provided Check for DOI availability: http:crossref.org...

  3. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 63; Journal Issue: C; Journal ID: ISSN 1876-6102 Publisher: Elsevier Research Org: Pacific Northwest National Laboratory (PNNL), ...

  4. GEOTHERMAL ENERGY; 59 BASIC BIOLOGICAL SCIENCES; BRINES; DETOXIFICATIO...

    Office of Scientific and Technical Information (OSTI)

    PROCESSING; BACTERIA; BIOCHEMISTRY; BIOREACTORS; BIOTECHNOLOGY; GEOCHEMISTRY; GEOTHERMAL ENERGY; METALS; SLUDGES; TOXIC MATERIALS; CHEMISTRY; ELEMENTS; ENERGY; ENERGY SOURCES;...

  5. Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Energy Frontier Research Centers (EFRC); Center for Frontiers of Subsurface Energy Security (CFSES) Sponsoring Org: USDOE SC Office of Basic Energy Sciences (SC-22) ...

  6. Drill string enclosure

    DOE Patents [OSTI]

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  7. Drill string enclosure

    DOE Patents [OSTI]

    Jorgensen, Douglas K. (Idaho Falls, ID); Kuhns, Douglass J. (Idaho Falls, ID); Wiersholm, Otto (Idaho Falls, ID); Miller, Timothy A. (Idaho Falls, ID)

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  8. Repetitive Regeneration of Media #1 in a Dynamic Column Extraction using Brine #1

    SciTech Connect (OSTI)

    Gary Garland

    2015-10-14

    This data is from a regeneration study from a dynamic column extraction experiment where we ran a solution of REE's through a column of media #1 then stripped the REE's off the media using 2M HNO3 solution. We then re-equilibrated the media and repeated the process of running a REE solution through the column and stripping the REE's off the media and comparing the two runs.

  9. The role of wellbore remediation on the evolution of groundwater quality from CO₂ and brine leakage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mansoor, Kayyum; Carroll, Susan A.; Sun, Yunwei

    2014-12-31

    Long-term storage of CO₂ in underground reservoirs requires a careful assessment to evaluate risk to groundwater sources. The focus of this study is to assess time-frames required to restore water quality to pre-injection levels based on output from complex reactive transport simulations that exhibit plume retraction within a 200-year simulation period. We examined the relationship between plume volume, cumulative injected CO₂ mass, and permeability. The role of mitigation was assessed by projecting falloffs in plume volumes from their maximum peak levels with a Gaussian function to estimate plume recovery times to reach post-injection groundwater compositions. The results show a strongmore » correlation between cumulative injected CO₂ mass and maximum plume pH volumes and a positive correlation between CO₂ flux, cumulative injected CO₂, and plume recovery times, with secondary dependence on permeability.« less

  10. Repetitive Regeneration of Media #1 after REE Sorption from Brine #1 at 70C

    SciTech Connect (OSTI)

    Gary Garland

    2015-07-23

    This dataset shows the ability of media #1 to be loaded with REE's, stripped of the REE's sequestered, regenerated, and reused over many cycles.

  11. The role of wellbore remediation on the evolution of groundwater quality from CO? and brine leakage

    SciTech Connect (OSTI)

    Mansoor, Kayyum; Carroll, Susan A.; Sun, Yunwei

    2014-12-31

    Long-term storage of CO? in underground reservoirs requires a careful assessment to evaluate risk to groundwater sources. The focus of this study is to assess time-frames required to restore water quality to pre-injection levels based on output from complex reactive transport simulations that exhibit plume retraction within a 200-year simulation period. We examined the relationship between plume volume, cumulative injected CO? mass, and permeability. The role of mitigation was assessed by projecting falloffs in plume volumes from their maximum peak levels with a Gaussian function to estimate plume recovery times to reach post-injection groundwater compositions. The results show a strong correlation between cumulative injected CO? mass and maximum plume pH volumes and a positive correlation between CO? flux, cumulative injected CO?, and plume recovery times, with secondary dependence on permeability.

  12. EERE Success Story—Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential

    Broader source: Energy.gov [DOE]

    Utilizing EERE funds, ElectraTherm developed a geothermal technology that will generate electricity for less than $0.06 per kilowatt hour.

  13. Draft Test Plan for Brine Migration Experimental Studies in Run-of-Mine Salt Backfill

    SciTech Connect (OSTI)

    Jordan, Amy B.; Stauffer, Philip H.; Reed, Donald T.; Boukhalfa, Hakim; Caporuscio, Florie Andre; Robinson, Bruce Alan

    2015-02-02

    The primary objective of the experimental effort described here is to aid in understanding the complex nature of liquid, vapor, and solid transport occurring around heated nuclear waste in bedded salt. In order to gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that (a) hydrological and physiochemical parameters and (b) processes are correctly simulated. The experiments proposed here are designed to study aspects of the system that have not been satisfactorily quantified in prior work. In addition to exploring the complex coupled physical processes in support of numerical model validation, lessons learned from these experiments will facilitate preparations for larger-scale experiments that may utilize similar instrumentation techniques.

  14. ASSESSMENT OF TECHNETIUM LEACHABILITY IN CEMENT-STABILIZED BASIN 43 GROUNDWATER BRINE

    SciTech Connect (OSTI)

    DUNCAN JB; COOKE GA; LOCKREM LL

    2009-07-20

    This report documents the effort to sequester technetium by the use of getters, reductants (tin(II) apatite and ferrous sulfate), sorbents (A530E and A532E ion exchange resins), and cementitious waste form. The pertechnetate form of technetium is highly soluble and mobile in aerobic (oxidizing) environments.

  15. Galvanic corrosion of a copper alloy in lithium bromide heavy brine environments

    SciTech Connect (OSTI)

    Itzhak, D.; Greenberg, T.

    1999-08-01

    Galvanic corrosion of the copper alloy 84% Cu-15% Zn-1% Ni was studied in 55 wt% lithium bromide (LiBr) environments. The galvanic couples studied were: 84% Cu-15% Zn-1% Ni-Ti2, 84% Cu-15% Zn-1% Ni-Ti7, 84% Cu-15% Zn-1% Ni-30% Cu-70% Ni, 84% Cu-15% Zn-1% Ni-Pb, 84% Cu-15% Zn-1% Ni-Ag, and 84% Cu-15% Zn-1% Ni-Sn. Potentiodynamic polarization measurements, open-circuit potential (OCP), and weight change measurements were carried out to evaluate the galvanic effect. Results indicated that Ti alloys and 30% Cu-70% Ni were the most passive alloys tested, and they behaved as cathodes. Although galvanic corrosion was expected, a negligible effect was measured because of an effective passivation layer on the surface of Ti alloys and 30% Cu-70% Ni. Pb, Ag, and Sn showed anodic behavior as compared to 84% Cu-15% Zn-1% Ni. As a result of the galvanic coupling, significant weight loss of these metals was measured. Sn was the most effective anode as compared to the other tested alloys; it acted as a sacrificial anode. Sn provided effective cathodic protection to 84% Cu-15% Zn-1% Ni in 55 wt% LiBr environments at 140 C.

  16. Geothermal Brine Brings Low-Cost Power with Big Potential | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanks to a 1 million Geothermal Technologies Office investment, heat from geothermal fluids--a byproduct of gold mining--is generating electricity this year for less than 6 a ...

  17. EERE Success Story-Nevada: Geothermal Brine Brings Low-Cost Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Utilizing a 1 million EERE investment, heat from geothermal fluids-a byproduct of gold mining-will be generating electricity this year for less than 0.06 per kilowatt ...

  18. Hydrogen chloride in superheated steam and chloride in deep brine at The Geysers geothermal field, California

    SciTech Connect (OSTI)

    Haizlip, J.R.; Truesdell, A.H.

    1988-01-01

    Chloride (Cl) concentrations of 10-120 ppm{sub w} have been measured in superheated steam produced by wells at The Geysers, a vapor-dominated geothermal field in northern California. Corrosion of the well casing and steam-gathering system has been recognized in some parts of The Geysers, and is apparently related to the presence of Cl. Cl in the steam is in a volatile form, generated with the steam at reservoir temperatures, and probably travels to the wellhead as HCl gas. Published experimental data for partial pressures of HCl in steam over aqueous HCl solutions and for dissociation constants of HCl were used to calculate distribution coefficients for HCl. Reservoir liquid Cl concentrations capable of generating steam with the observed Cl concentrations were then calculated as a function of pH and temperatures from 250 to 350 C. Equilibrium mineral/liquid reactions with the K-mica and K-feldspar assemblage found in the wells limit the reservoir liquid pH values at various Cl concentrations to about 5 to 6 (near neutral at 250 to 350 C). Within this pH range, liquid at 250 C could not produce steam containing the high Cl concentrations observed. However, liquid at higher temperatures (300 to 350 C) with chloride concentrations greater than 10,000 ppm{sub w} could generate steam with 10 to over 200 ppm{sub w} Cl. There is a positive correlation between pH and the chloride concentrations required to generate a given Cl concentration in steam. The concentration of Cl in superheated steam constrains not only the reservoir liquid composition, but the temperature at which the steam last equilibrated with liquid.

  19. APPLIED PHYTO-REMEDIATION TECHNIQUES USING HALOPHYTES FOR OIL AND BRINE SPILL SCARS

    SciTech Connect (OSTI)

    M.L. Korphage; Bruce G. Langhus; Scott Campbell

    2003-03-01

    Produced salt water from historical oil and gas production was often managed with inadequate care and unfortunate consequences. In Kansas, the production practices in the 1930's and 1940's--before statewide anti-pollution laws--were such that fluids were often produced to surface impoundments where the oil would segregate from the salt water. The oil was pumped off the pits and the salt water was able to infiltrate into the subsurface soil zones and underlying bedrock. Over the years, oil producing practices were changed so that segregation of fluids was accomplished in steel tanks and salt water was isolated from the natural environment. But before that could happen, significant areas of the state were scarred by salt water. These areas are now in need of economical remediation. Remediation of salt scarred land can be facilitated with soil amendments, land management, and selection of appropriate salt tolerant plants. Current research on the salt scars around the old Leon Waterflood, in Butler County, Kansas show the relative efficiency of remediation options. Based upon these research findings, it is possible to recommend cost efficient remediation techniques for slight, medium, and heavy salt water damaged soil. Slight salt damage includes soils with Electrical Conductivity (EC) values of 4.0 mS/cm or less. Operators can treat these soils with sufficient amounts of gypsum, install irrigation systems, and till the soil. Appropriate plants can be introduced via transplants or seeded. Medium salt damage includes soils with EC values between 4.0 and 16 mS/cm. Operators will add amendments of gypsum, till the soil, and arrange for irrigation. Some particularly salt tolerant plants can be added but most planting ought to be reserved until the second season of remediation. Severe salt damage includes soil with EC values in excess of 16 mS/cm. Operators will add at least part of the gypsum required, till the soil, and arrange for irrigation. The following seasons more gypsum will be added and as the soil EC is reduced, plants can be introduced. If rapid remediation is required, a sufficient volume of topsoil, or sand, or manure can be added to dilute the local salinity, the bulk amendments tilled into the surface with added gypsum, and appropriate plants added. In this case, irrigation will be particularly important. The expense of the more rapid remediation will be much higher.

  20. Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon

    SciTech Connect (OSTI)

    Wander, M. C. F.; Shuford, K. L.

    2010-12-09

    In this paper, studies of aqueous electrolyte solutions in contact with a family of porous carbon geometries using classical molecular dynamics simulations are presented. These simulations provide an atomic scale depiction of ion transport dynamics in different environments to elucidate power of aqueous electrolyte supercapacitors. The electrolyte contains alkali metal and halide ions, which allow for the examination of size trends within specific geometries as well as trends in concentration. The electrode pores are modeled as planar graphite sheets and carbon nanotubes with interstices ranging from one to four nanometers. Ordered layers form parallel to the carbon surface, which facilitates focused ion motion under slightly confining conditions. As a result, the ions diffusivities are enhanced in the direction of the slit or pore. Further confining the system leads to decreased ion diffusivities. The ions are fully hydrated in all but the smallest slits and pores with those sizes showing increased ion pairing. There is strong evidence of charge separation perpendicular to the surface at all size scales, concentrations, and ion types, providing a useful baseline for examining differential capacitance behavior and future studies on energy storage. These systems show promise as high-power electrical energy storage devices.

  1. PT-symmetric strings

    SciTech Connect (OSTI)

    Amore, Paolo; Fernndez, Francisco M.; Garcia, Javier; Gutierrez, German

    2014-04-15

    We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)??{sub n=1}{sup ?}1/E{sub n}{sup p}, with p=1,2, and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. We study PT-symmetric strings with complex density. They exhibit regions of unbroken PT symmetry. We calculate the critical parameters at the boundaries of those regions. There are exact real sum rules for some particular complex densities.

  2. Subsurface drill string

    DOE Patents [OSTI]

    Casper, William L. (Rigby, ID); Clark, Don T. (Idaho Falls, ID); Grover, Blair K. (Idaho Falls, ID); Mathewson, Rodney O. (Idaho Falls, ID); Seymour, Craig A. (Idaho Falls, ID)

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  3. Hydroball string sensing system

    DOE Patents [OSTI]

    Hurwitz, Michael J. (Pittsburgh, PA); Ekeroth, Douglas E. (Delmont, PA); Squarer, David (Pittsburgh, PA)

    1991-01-01

    A hydroball string sensing system for a nuclear reactor that includes stainless tubes positioned to guide hydroball strings into and out of the nuclear reactor core. A sensor such as an ultrasonic transducer transmitter and receiver is positioned outside of the nuclear reactor core and adjacent to the tube. The presence of an object such a bullet member positioned at an end a hydroball string, or any one of the hydroballs interrupts the transmission of ultrasound from the transmitter to the receiver. Alternatively, if the bullet member and hydroballs include a ferritic material, either a Hall effect sensor or other magnetic field sensors such as a magnetic field rate of change sensor can be used to detect the location and position of a hydroball string. Placing two sensors along the tube with a known distance between the sensors enables the velocity of a hydroball string to be determined. This determined velocity can be used to control the flow rate of a fluid within the tube so as to control the velocity of the hydroball string.

  4. Final Report Strings 2014

    SciTech Connect (OSTI)

    Witten, Edward

    2015-10-21

    DOE Final Report Strings 2014 PI: Edward Witten, Institute for Advanced Study, Princeton, NJ 08540 CO-PI: Igor Klebanov, Princeton University, Princeton, NJ 08540 DOE Grant Number: DE-SC0011919 The Strings 2014 meeting was held at Princeton University in June 2014, co-sponsored by Princeton University and the Institute for Advanced Study. Plenary lectures at Strings 2014 were held in Richardson Auditorium of Princeton University. This comfortable and spacious facility easily accommodated the 616 participants registered participants at Strings 2014. The rental fee for the auditorium was $11,000. This grant provided $5,500 from the Department of Energy to pay for one-half of the cost of the facility rental and videotaping. Speakers were supported with funds from the National Science Foundation Clay Mathematics Institute, the Institute for Advanced Study and Princeton University. The organization of Strings 2014 consisted of an International Organizing Committee of 60 prominent scientists around the world, and a Local Advisory Committee consisting of an additional 15 distinguished scientists from neighboring institutions. Additionally, the Local Organizing Committee assisted them with about 15 members (mostly faculty at Princeton University and the Institute for Advanced Study). These groups (which are listed at the end of this narrative) offered important input concerning the selection of speakers and helped to ensure that the speakers were selected from the broadest possible pool. The conference was held on June 23-7 at Princeton University and the Institute for Advanced Study. The 616 registered participants included 272 participants from the United States and 344 from 32 institutions outside of the U.S. We believe that we were successful at providing a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. There were a total of 45 plenary speakers and 27 speakers at parallel sessions. (Parallel sessions were held at the Institute for Advanced Study.) Overall the speakers did an excellent job of presenting their topics and some presented surprising and novel results. The talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml. One important facet of Strings 2014 and one of the reasons it was so well-attended was that it had a strong educational component. The week before the meeting, there was a summer school, Prospects in Theoretical Physics (PiTP), held at the Institute for Advanced Study on the subject of string theory. 260 graduate students attended both PiTP and Strings 2014. The group consisted of 25 females and 235 males; 208 graduate students and 52 postdocs. 129 participants were from the United States, and 131 participants came from institutions in 25 countries outside of the U.S. The Institute for Advanced Study substantially subsidized the summer school for students. Over two dozen students had the chance to give short (six minute) talks at the gong shows that were held at PiTP and Strings 2014, and nearly 60 students and postdocs made poster presentations at Strings 2014.

  5. Probing the String Landscape

    ScienceCinema (OSTI)

    Keith Dienes

    2010-01-08

    We are currently in the throes of a potentially huge paradigm shift in physics. Motivated by recent developments in string theory and the discovery of the so-called "string landscape", physicists are beginning to question the uniqueness of fundamental theories of physics and the methods by which such theories might be understood and investigated. In this colloquium, I will give a non-technical introduction to the nature of this paradigm shift and how it developed. I will also discuss some of the questions to which it has led, and the nature of the controversies it has spawned.

  6. Remarks on string solitons

    SciTech Connect (OSTI)

    Loginov, E. K.

    2008-05-15

    We consider generalized self-duality equations for U(2r) Yang-Mills theory on R{sup 8} with quaternionic structure. We employ the extended ADHM method in eight dimensions to construct exact soliton solutions of the low-energy effective theory of the heterotic string.

  7. Current balancing for battery strings

    DOE Patents [OSTI]

    Galloway, James H. (New Baltimore, MI)

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  8. Device for balancing parallel strings

    DOE Patents [OSTI]

    Mashikian, Matthew S. (Storrs, CT)

    1985-01-01

    A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.

  9. The String of Pearls

    Energy Science and Technology Software Center (OSTI)

    2006-07-01

    A team of collaborators within the Southwest Regional Partnership (SRP) on Carbon Sequestration developed an interactive software tool to help facilitate discussions involving the science, engineering, economic and policy considerations for a carbon sequestration pilot project. This model illustrates the "String of Pearls" algorithm used to develop a hypothetical carbon dioxide (CO2) transportation network in sequence with existing infrastructure. The "String of Pearls" model can assess geological sink combinations according to their distance from themore » point source (e.g., power plant), relative size (to maintain a useful fill lifetime for a project), relative distance from existing CO2 transportation infrastructure, and other salient project attributes. The results indicate that the cost to capture CO2 at point sources (e.g. power plants) is the largest component of the overall CO2 capture, transportation and storage system's initial cost estimate. The "String of Pearls" Integrated Assessment model can help planners assess these issues using an integrated, systems view when deciding where to develop future carbon sequestration pilot projects. Likely users of this model include partners within the SRP, other regional partnerships and interested individuals, and private industry interested in carbon sequestration systems. The model seeks to improve understanding of the economic viability and emission trade-offs associated with all stages of carbone sequestration systems analysis.« less

  10. Coulomb string tension, asymptotic string tension, and the gluon chain

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  11. Acoustic data transmission through a drill string

    DOE Patents [OSTI]

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  12. Metastable cosmic strings in realistic models

    SciTech Connect (OSTI)

    Holman, R.; Hsu, S.; Vachaspati, T.; Watkins, R. |

    1992-11-01

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2){sub L} {times} SU(2) {sub R} {times} U(1){sub B-L} are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed.

  13. Metastable cosmic strings in realistic models

    SciTech Connect (OSTI)

    Holman, R. . Dept. of Physics); Hsu, S. . Lyman Lab. of Physics); Vachaspati, T. . Dept. of Physics and Astronomy); Watkins, R. Fermi National Accelerator Lab., Batavia, IL )

    1992-01-01

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2)[sub L] [times] SU(2) [sub R] [times] U(1)[sub B-L] are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed.

  14. Filter for a drill string

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Briscoe, Michael (Lehi, UT); McPherson, James (Sandy, UT)

    2007-12-04

    A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

  15. Covariant functional diffusion equation for Polyakov's bosonic string

    SciTech Connect (OSTI)

    Botelho, L. C. L.

    1989-07-15

    I write a covariant functional diffusion equation for Polyakov's bosonic string with the string's world-sheet area playing the role of proper time.

  16. Extraordinary vacuum black string solutions

    SciTech Connect (OSTI)

    Kim, Hyeong-Chan; Lee, Jungjai

    2008-01-15

    In addition to the boosted static solution there are two other classes of stationary stringlike solutions of the vacuum Einstein equation in (4+1) dimensions. Each class is characterized by three parameters of mass, tension, and momentum flow along the fifth coordinate. We analyze the metric properties of one of the two classes, which was previously assumed to be naked singular, and show that the solution spectrum contains black string and wormhole in addition to the known naked singularity as the momentum flow to mass ratio increases. Interestingly, there does not exist new zero momentum solution in these cases.

  17. Melt dumping in string stabilized ribbon growth

    DOE Patents [OSTI]

    Sachs, Emanuel M. (42 Old Middlesex Rd., Belmont, MA 02178)

    1986-12-09

    A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.

  18. Effects of overlapping strings in pp collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif; Tarasov, Andrey

    2015-03-26

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less

  19. Effects of overlapping strings in pp collisions

    SciTech Connect (OSTI)

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif; Tarasov, Andrey

    2015-03-26

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possible effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.

  20. Apparatus in a drill string

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Dahlgren, Scott (Alpine, UT); Hall, Jr., Tracy H. (Provo, UT); Fox, Joe (Lehi, UT); Pixton, David S. (Provo, UT)

    2007-07-17

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

  1. Charged rotating dilaton black strings

    SciTech Connect (OSTI)

    Dehghani, M.H.; Farhangkhah, N.

    2005-02-15

    In this paper we, first, present a class of charged rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with zero and Liouville-type potentials. We find that these solutions can present a black hole/string with two regular horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitable. We also compute the conserved and thermodynamic quantities, and show that they satisfy the first law of thermodynamics. Second, we obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. We find that these solutions can present black branes, naked singularities or spacetimes with cosmological horizon if one chooses the parameters of the solutions correctly. Again, we find that the thermodynamic quantities of these solutions satisfy the first law of thermodynamics.

  2. The pomeron in closed bosonic string theory

    SciTech Connect (OSTI)

    Fazio, A. R.

    2010-12-22

    We compute the couplings of the pomeron to the first few mass levels of closed bosonic string states in flat space. We recognize the deviation from the linearity of the Regge trajectories in a five dimensional anti De Sitter background.

  3. Puna Geothermal Venture 8MW Expantion | Open Energy Information

    Open Energy Info (EERE)

    potential brine in a state-of-the-art binary plant, development of highly reliable brine pH monitoring and control system, and brine injection management in a high energy resource....

  4. Coiled tubing velocity strings keep wells unloaded

    SciTech Connect (OSTI)

    Wesson, H.R.; Shursen, J.L.

    1989-07-01

    Liquid loading is a problem in many older and even some newer gas wells, particularly in pressure depletion type reservoirs. This liquid loading results in decreased production and may even kill the well. The use of coiled tubing as a velocity string (or siphon string) has proved to be an economically viable alternative to allow continued and thus, increased cumulative production for wells experiencing liquid loading problems. Coiled tubing run inside the existing production string reduces the flow area, whether the well is produced up the tubing or up the annulus. This reduction in flow area results in an increase in flow velocity and thus, an increase in the well's ability to unload fluids.

  5. Nonuniform black strings in various dimensions

    SciTech Connect (OSTI)

    Sorkin, Evgeny

    2006-11-15

    The nonuniform black-strings branch, which emerges from the critical Gregory-Laflamme string, is numerically constructed in dimensions 6{<=}D{<=}11 and extended into the strongly nonlinear regime. All the solutions are more massive and less entropic than the marginal string. We find the asymptotic values of the mass, the entropy and other physical variables in the limit of large horizon deformations. By explicit metric comparison we verify that the local geometry around the waist of our most nonuniform solutions is conelike with less than 10% deviation. We find evidence that in this regime the characteristic length scale has a power-law dependence on a parameter along the branch of the solutions, and estimate the critical exponent.

  6. Diffractive Scattering and Gauge/String Duality

    ScienceCinema (OSTI)

    Tan, Chung-I [Brown University, Providence, Rhode Island, United States

    2009-09-01

    High-energy diffractive scattering will be discussed based on Gauge/String duality. As shown by Brower, Polchinski, Strassler and Tan, the ubiquitous Pomeron emerges naturally in gauge theories with string-theoretical descriptions. Its existence is intimately tied to gluons, and also to the energy-momentum tensor. With a confining dual background metric, the Pomeron can be interpreted as a 'massive graviton'. In a single unified step, both its infrared and ultraviolet properties are dealt with, reflecting confinement and conformal symmetry respectively. An effective field theory for high-energy scattering can be constructed. Applications based on this approach will also be described.

  7. Cosmic strings: A problem or a solution

    SciTech Connect (OSTI)

    Bennett, D.P.; Bouchet, F.R.

    1987-10-01

    The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis. 6 refs., 2 figs.

  8. Coupled Model for Heat and Water Transport in a High Level Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and dissolutionprecipitation of the salt in the brine inclusion are simulated; effects of initial inclusion size and temperature gradient on the brine behavior are investigated. ...

  9. Have You Used LED Light Strings? | Department of Energy

    Office of Environmental Management (EM)

    Used LED Light Strings? Have You Used LED Light Strings? December 3, 2009 - 7:30am Addthis This week, you read about LED holiday light strings, which can use 90% less energy than regular incandescent light strings. You may even be able to save on the initial costs with rebates from stores or your utility; check to find out what's being offered in your area. Have you used LED light strings? Tell us what you think of them. Each Thursday, you have the chance to share your thoughts on a question

  10. Signal connection for a downhole tool string

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe; Briscoe, Michael

    2006-08-29

    A signal transmission connection for a tool string used in exploration and production of natural resources, namely: oil, gas, and geothermal energy resources. The connection comprises first and second annular elements deployed in cooperative association with each other. The respective elements comprise inductive transducers that are capable of two-way signal transmission between each other, with downhole components of the tool string, and with ground-level equipment. The respective inductive transducers comprise one or more conductive loops housed within ferrite troughs, or within ferrite trough segments. When energized, the conductive loops produce a magnetic field suitable for transmitting the signal. The second element may be rotational in drilling applications. The respective elements may be fitted with electronic equipment to aid and manipulate the transmission of the signal. The first element may also be in communication with the World Wide Web.

  11. Obstacle to populating the string theory landscape

    SciTech Connect (OSTI)

    Johnson, Matthew C; Larfors, Magdalena

    2008-12-15

    We construct domain walls and instantons in a class of models with coupled scalar fields, determining, in agreement with previous studies, that many such solutions contain naked timelike singularities. Vacuum bubble solutions of this type do not contain a region of true vacuum, obstructing the ability of eternal inflation to populate other vacua. We determine a criterion that potentials must satisfy to avoid the existence of such singularities and show that many domain wall solutions in type IIB string theory are singular.

  12. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect (OSTI)

    Long, Andrew J.; Vachaspati, Tanmay E-mail: tvachasp@asu.edu

    2014-12-01

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV . Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  13. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect (OSTI)

    Long, Andrew J.; Vachaspati, Tanmay

    2014-12-18

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV. Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  14. Supersymmetry of Green-Schwarz superstring and matrix string theory

    SciTech Connect (OSTI)

    Hyun, Seungjoon; Shin, Hyeonjoon

    2001-08-15

    We study the dynamics of a Green-Schwarz superstring on the gravitational wave background corresponding to the matrix string theory and the supersymmetry transformation rules of the superstring. The dynamics is obtained in the light-cone formulation and is shown to agree with that derived from matrix string theory. The supersymmetry structure has corrections due to the effect of the background and is identified with that of the low-energy one-loop effective action of matrix string theory in a two superstring background in the weak string coupling limit.

  15. Property:Incentive/StartDateString | Open Energy Information

    Open Energy Info (EERE)

    Pages using the property "IncentiveStartDateString" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) +...

  16. The Hubble Web: The Dark Matter Problem and Cosmic Strings

    SciTech Connect (OSTI)

    Alexander, Stephon

    2009-07-06

    I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.

  17. CMB ISW-lensing bispectrum from cosmic strings

    SciTech Connect (OSTI)

    Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro E-mail: sendouda@cc.hirosaki-u.ac.jp

    2014-02-01

    We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, G? << 10{sup -7}, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.

  18. From Decay to Complete Breaking: Pulling the Strings in SU(2) Yang-Mills Theory

    SciTech Connect (OSTI)

    Pepe, M.; Wiese, U.-J.

    2009-05-15

    We study (2Q+1) strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental (2) string between two charges Q=(1/2) is unbreakable, the adjoint (3) string connecting two charges Q=1 can break. When a (4) string is stretched beyond a critical length, it decays into a (2) string by gluon pair creation. When a (5) string is stretched, it first decays into a (3) string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  19. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  20. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  1. String stabilized ribbon growth a method for seeding same

    DOE Patents [OSTI]

    Sachs, Emanuel M. (39 Harding Ave., Belmont, MA 02178)

    1987-08-25

    This invention is a method of initiating or seeding the growth of a crystalline or polycrystalline ribbon by the String Stabilized Ribbon Growth Method. The method for seeding the crystal growth comprises contacting a melt surface with a seed and two strings used in edge stabilization. The wetted strings attach to the wetted seed as a result of the freezing of the liquid melt. Upon drawing the seed, which is attached to the strings, away from the melt surface a melt liquid meniscus, a seed junction, and a growth interface forms. Further pulling of the attached seed causes a crystal ribbon to grow at the growth interface. The boundaries of the growing ribbon are: at the top the seed junction, at the bottom the freezing boundary of the melt liquid meniscus, and at the edges frozen-in strings.

  2. Conformable apparatus in a drill string

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2007-08-28

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

  3. Width of the Confining String in Yang-Mills Theory

    SciTech Connect (OSTI)

    Gliozzi, F.; Pepe, M.; Wiese, U.-J.

    2010-06-11

    We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.

  4. Shooting string holography of jet quenching at RHIC and LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ficnar, Andrej; Gubser, Steven S.; Gyulassy, Miklos

    2014-10-13

    We derive a new formula for jet energy loss using finite endpoint momentum shooting strings initial conditions in SYM plasmas to overcome the difficulties of previous falling string holographic scenarios. We apply the new formula to compute the nuclear modification factor RAA and the elliptic flow parameter v2 of light hadrons at RHIC and LHC. We show furthermore that GaussBonnet quadratic curvature corrections to the AdS5 geometry improve the agreement with the recent data.

  5. Dynamics of cosmic strings with higher-dimensional windings

    SciTech Connect (OSTI)

    Yamauchi, Daisuke; Lake, Matthew J.

    2015-06-11

    We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string length lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.

  6. Cosmic super-strings and Kaluza-Klein modes

    SciTech Connect (OSTI)

    Dufaux, Jean-Franois

    2012-09-01

    Cosmic super-strings interact generically with a tower of relatively light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. In this paper, we study the production of spin-2 KK particles by cusps on loops of cosmic F- and D-strings. We consider cosmic super-strings localized either at the bottom of a warped throat or in a flat internal space with large volume. The total energy emitted by cusps in KK modes is comparable in both cases, although the number of produced KK modes may differ significantly. We then show that KK emission is constrained by the photo-dissociation of light elements and by observations of the diffuse gamma ray background. We show that this rules out regions of the parameter space of cosmic super-strings that are complementary to the regions that can be probed by current and upcoming gravitational wave experiments. KK modes are also expected to play an important role in the friction-dominated epoch of cosmic super-string evolution.

  7. Theoretical Research in Cosmology, High-Energy Physics and String Theory

    SciTech Connect (OSTI)

    Ng, Y Jack; Dolan, Louise; Mersini-Houghton, Laura; Frampton, Paul

    2013-07-29

    The research was in the area of Theoretical Physics: Cosmology, High-Energy Physics and String Theory

  8. Save Money with LED Holiday Light Strings | Department of Energy

    Energy Savers [EERE]

    Money with LED Holiday Light Strings Save Money with LED Holiday Light Strings December 1, 2009 - 11:19am Addthis Allison Casey Senior Communicator, NREL It's hard to believe, but the holidays are in full swing and many of you are starting to decorate your homes. Those of you who started around Halloween are probably feeling pretty smart because you got your decorating done while the weather was nice. I see you there, snacking on your Thanksgiving leftovers, laughing at me shivering in the cold

  9. Flux-induced Isometry Gauging in Heterotic Strings

    SciTech Connect (OSTI)

    Chuang, Wu-yen; Gao, Peng

    2007-01-05

    We study the effect of flux-induced isometry gauging of the scalar manifold in N = 2 heterotic string compactification with gauge fluxes. We show that a vanishing theorem by Witten provides the protection mechanism. The other ungauged isometries in hyper moduli space could also be protected, depending on the gauge bundle structure. We also discuss the related issue in IIB setting.

  10. Test report for drill string seal pressure test

    SciTech Connect (OSTI)

    McCormick, J.F.

    1996-02-06

    A basic question was asked concerning the drill string which is used in rotary Mode coring operations: ``...what is the volume leak rate loss in a drill rod string under varying condiditons of the joint boxes and pins being either dry or coated with lubricant...``. A Variation of this was to either have an o-ring installed or absent on the drill rod that was grooved on the pin. A series of tests were run with both the o-ring grooved Longyear drill rod and the plain pin end rod manufactured by Diamond Drill. Test results show that drill rod leakage of both types is lowered dramatically when thread lubricant is applied to the threaded joints and the joints made up tight. The Diamond Drill rod with no o-ring groove has virtually no leakage when used with thread lubricant and the joints are properly tightened.

  11. Modeling coiled tubing velocity strings for gas wells

    SciTech Connect (OSTI)

    Martinez, J.; Martinez, A.

    1995-12-31

    Multiphase flowing pressure and velocity prediction models are necessary to coiled tubing velocity string design. A model used by most of the coiled tubing service companies or manufacturers is reviewed. Guidance is provided for selecting a coiled tubing of the proper size. The steps include: (1) Measured data matching; (2) Fluid property adjustment; (3) Pressure, velocity, and holdup selection; (4) Correlation choice; (5) Coiled tubing selection. A velocity range for the lift of liquid is given.

  12. Geometric Transitions, Topological Strings, and Generalized Complex Geometry

    SciTech Connect (OSTI)

    Chuang, Wu-yen; /SLAC /Stanford U., Phys. Dept.

    2007-06-29

    Mirror symmetry is one of the most beautiful symmetries in string theory. It helps us very effectively gain insights into non-perturbative worldsheet instanton effects. It was also shown that the study of mirror symmetry for Calabi-Yau flux compactification leads us to the territory of ''Non-Kaehlerity''. In this thesis we demonstrate how to construct a new class of symplectic non-Kaehler and complex non-Kaehler string theory vacua via generalized geometric transitions. The class admits a mirror pairing by construction. From a variety of sources, including super-gravity analysis and KK reduction on SU(3) structure manifolds, we conclude that string theory connects Calabi-Yau spaces to both complex non-Kaehler and symplectic non-Kaehler manifolds and the resulting manifolds lie in generalized complex geometry. We go on to study the topological twisted models on a class of generalized complex geometry, bi-Hermitian geometry, which is the most general target space for (2, 2) world-sheet theory with non-trivial H flux turned on. We show that the usual Kaehler A and B models are generalized in a natural way. Since the gauged supergravity is the low energy effective theory for the compactifications on generalized geometries, we study the fate of flux-induced isometry gauging in N = 2 IIA and heterotic strings under non-perturbative instanton effects. Interestingly, we find we have protection mechanisms preventing the corrections to the hyper moduli spaces. Besides generalized geometries, we also discuss the possibility of new NS-NS fluxes in a new doubled formalism.

  13. Experiences with string matching on the Fermi Architecture

    SciTech Connect (OSTI)

    Tumeo, Antonino; Secchi, Simone; Villa, Oreste

    2011-02-25

    String matching is at the core of many real-world applications, such as security, bioinformatic, data mining. All these applications requires the ability to match always growing data sets against large dictionaries effectively, fastly and possibly in real time. Unfortunately, string matching is a computationally intensive procedure which poses significant challenges on current software and hardware implementations. Graphic Processing Units (GPU) have become an interesting target for such high-throughput applications, but the algorithms and the data structures need to be redesigned to be parallelized and adapted to the underlining hardware, coping with the limitations imposed by these architectures. In this paper we present an efficient implementation of the Aho-Corasick string matching algorithm on GPU, showing how we progressively redesigned the algorithm and the data structures to fit on the architecture. We then evaluate the implementation on single and multiple Tesla C2050 (T20 ``Fermi'' based) boards, comparing them to the previous Tesla C1060 (T10 based) solutions and equivalent multicore implementations on x86 CPUs. We discuss the various tradeoffs of the different architectures.

  14. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema (OSTI)

    None

    2011-10-06

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  15. Interpolating the Coulomb phase of little string theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi

    2015-12-03

    We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity onmore » the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.« less

  16. Portable apparatus and method for assisting in the removal and emplacement of pipe strings in boreholes

    DOE Patents [OSTI]

    Mitchell, Brian R.

    2005-03-22

    A portable pipe installation/removal support apparatus for assisting in the installation/removal of a series of connectable pipe strings from a ground-level borehole. The support apparatus has a base, an upright extending from the base, and, in an exemplary embodiment, a pair of catch arms extending from the upright to define a catch platform. The pair of catch arms serves to hold an upper connector end of a pipe string at an operator-convenient standing elevation by releasably catching an underside of a pipe coupler connecting two pipe strings of the series of connectable pipe strings. This enables an operator to stand upright while coupling/uncoupling the series of connectable pipe strings during the installation/removal thereof from the ground-level borehole. Additionally, a process for installing and a process for removing a series of connectable pipe strings is disclosed utilizing such a support apparatus.

  17. Operating Experience Summary, 2014-04

    Broader source: Energy.gov (indexed) [DOE]

    that store brine used to displace stored crude oil when the oil is withdrawn from underground caverns. The brine tanks must be repaired and repainted every 3 to 5 years to...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    fuel cycle and fuel materials (2) radioactive wastes (2) sensitivity (2) simulation (2) water (2) arsenic (1) bentonite (1) boom clay (1) brine leakage (1) brines (1) buffers (1)...

  19. Column Sorption Uptake and Regeneration Study; Rare Earth Element Sorbent Uptake and Sorbent Stripping

    SciTech Connect (OSTI)

    Tim Lanyk

    2015-12-18

    Study of rare earth element (REE) uptake from geothermal brine simulant by column loading, metal recovery through stripping, and regeneration of column for re-loading. Simulated brine testing.

  20. CX-010404: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Brine Disposal System Header to West Hackberry Brine Tanks, Government Furnished Equipment CX(s) Applied: B1.3 Date: 04/22/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  1. CX-010401: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Brine Disposal System Header to West Hackberry Brine Tanks CX(s) Applied: B1.3 Date: 04/22/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  2. CX-009718: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Brine Disposal System Header to Bryan Mound Brine Tank, GFE CX(s) Applied: B1.3 Date: 12/11/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  3. Geochemical engineering reference manual

    SciTech Connect (OSTI)

    Owen, L.B.; Michels, D.E.

    1984-01-01

    The following topics are included in this manual: physical and chemical properties of geothermal brine and steam, scale and solids control, processing spent brine for reinjection, control of noncondensable gas emissions, and goethermal mineral recovery. (MHR)

  4. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOE Patents [OSTI]

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  5. U-092: Sudo Format String Bug Lets Local Users Gain Elevated Privileges

    Broader source: Energy.gov [DOE]

    A local user can supply a specially crafted command line argument to trigger a format string flaw and execute arbitrary commands on the target system with root privileges.

  6. Five-dimensional black strings in Einstein-Gauss-Bonnet gravity

    SciTech Connect (OSTI)

    Kobayashi, Tsutomu; Tanaka, Takahiro

    2005-04-15

    We consider black-string-type solutions in five-dimensional Einstein-Gauss-Bonnet gravity. Numerically constructed solutions under static, axially symmetric and translationally invariant metric ansatz are presented. The solutions are specified by two asymptotic charges: mass of a black string and a scalar charge associated with the radion part of the metric. Regular black string solutions are found if and only if the two charges satisfy a fine-tuned relation, and otherwise the spacetime develops a singular event horizon or a naked singularity. We can also generate bubble solutions from the black strings by using a double Wick rotation.

  7. Topological fermionic string representation for Chern-Simons non-Abelian gauge theories

    SciTech Connect (OSTI)

    Botelho, L.C.L. )

    1990-05-15

    We show that loop wave equations in non-Abelian Chern-Simons gauge theory are exactly solved by a conformally invariant topological fermionic string theory.

  8. HIGH-PRESSURE SOLVENT EXTRACTION OF METHANE FROM GEOPRESSURED...

    Office of Scientific and Technical Information (OSTI)

    . . . . . . . . . . . . . . . . . . 4 Process Design . . . . . . . . . . . . . . . . . . . . ... 1. The capital costs of an extraction plant sized to process 40,000 bblday of brine ...

  9. EA-1482: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Pilot Experiment for Geological Sequestration of Carbon Dioxide in Saline Aquifer Brine Formations, Frio Formation, Liberty County, Texas

  10. Efficient Aho-Corasick String Matching on Emerging Multicore Architectures

    SciTech Connect (OSTI)

    Tumeo, Antonino; Villa, Oreste; Secchi, Simone; Chavarra-Miranda, Daniel

    2013-12-12

    String matching algorithms are critical to several scientific fields. Beside text processing and databases, emerging applications such as DNA protein sequence analysis, data mining, information security software, antivirus, ma- chine learning, all exploit string matching algorithms [3]. All these applica- tions usually process large quantity of textual data, require high performance and/or predictable execution times. Among all the string matching algorithms, one of the most studied, especially for text processing and security applica- tions, is the Aho-Corasick algorithm. 1 2 Book title goes here Aho-Corasick is an exact, multi-pattern string matching algorithm which performs the search in a time linearly proportional to the length of the input text independently from pattern set size. However, depending on the imple- mentation, when the number of patterns increase, the memory occupation may raise drastically. In turn, this can lead to significant variability in the performance, due to the memory access times and the caching effects. This is a significant concern for many mission critical applications and modern high performance architectures. For example, security applications such as Network Intrusion Detection Systems (NIDS), must be able to scan network traffic against very large dictionaries in real time. Modern Ethernet links reach up to 10 Gbps, and malicious threats are already well over 1 million, and expo- nentially growing [28]. When performing the search, a NIDS should not slow down the network, or let network packets pass unchecked. Nevertheless, on the current state-of-the-art cache based processors, there may be a large per- formance variability when dealing with big dictionaries and inputs that have different frequencies of matching patterns. In particular, when few patterns are matched and they are all in the cache, the procedure is fast. Instead, when they are not in the cache, often because many patterns are matched and the caches are continuously thrashed, they should be retrieved from the system memory and the procedure is slowed down by the increased latency. Efficient implementations of string matching algorithms have been the fo- cus of several works, targeting Field Programmable Gate Arrays [4, 25, 15, 5], highly multi-threaded solutions like the Cray XMT [34], multicore proces- sors [19] or heterogeneous processors like the Cell Broadband Engine [35, 22]. Recently, several researchers have also started to investigate the use Graphic Processing Units (GPUs) for string matching algorithms in security applica- tions [20, 10, 32, 33]. Most of these approaches mainly focus on reaching high peak performance, or try to optimize the memory occupation, rather than looking at performance stability. However, hardware solutions supports only small dictionary sizes due to lack of memory and are difficult to customize, while platforms such as the Cell/B.E. are very complex to program.

  11. Norm removal from frac water

    DOE Patents [OSTI]

    Silva, James Manio; Matis, Hope; Kostedt, IV, William Leonard

    2014-11-18

    A method for treating low barium frac water includes contacting a frac water stream with a radium selective complexing resin to produce a low radium stream, passing the low radium stream through a thermal brine concentrator to produce a concentrated brine; and passing the concentrated brine through a thermal crystallizer to yield road salt.

  12. Experimental and theoretical investigation of the production of HCl and some metal chlorides in magmatic/hydrothermal systems

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The theoretical analysis is given for calculating the composition of the aqueous vapor and the saline brine (hydrosaline liquid) present at run pressure and temperature in the experiment. The mixture of aqueous vapor and brine is homogenized upon quench. The method for calculating the concentration of HCl and NaCl in the coexisting aqueous vapor and brine is shown.

  13. Ripple distribution in magnet strings of Super Collider

    SciTech Connect (OSTI)

    Smedley, K. ); Jayasuriya, A. ); Christiansen, C. ); Shafer, R. )

    1994-08-01

    The voltage ripple in the power supplies of the Collider generate ripple current in the magnet coil that, in turn, generates ripple in the magnetic field of dipoles and quadrupoles. The ripple in the magnetic field will be a function of time and space due to the transmission line effect. The work reported in this paper gives a thorough analysis the frequency spectrum and the spatial propagation pattern of the differential mode ripple in the magnet strings for the injection mode and the collider mode.

  14. Is it really naked? On cosmic censorship in string theory

    SciTech Connect (OSTI)

    Frolov, Andrei V.

    2004-11-15

    We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the 'no black hole' argument breaks.

  15. Is it Really Naked? On Cosmic Censorship in String Theory

    SciTech Connect (OSTI)

    Frolov, A

    2004-09-30

    We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counter example to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the ''no black hole'' argument breaks.

  16. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison

    2012-08-14

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  17. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison

    2011-08-16

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  18. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison

    2014-03-04

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  19. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison

    2008-05-27

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  20. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison

    2007-05-22

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  1. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison

    2015-02-03

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  2. High redshift signatures in the 21 cm forest due to cosmic string wakes

    SciTech Connect (OSTI)

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph E-mail: toyokazu.sekiguchi@nagoya-u.jp

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ''21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (z?>10), even if the string tension is below the current upper bound, G? < 1.5 10{sup ?7}. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with G? ? 7.5 10{sup ?8} for the single frequency band case and 4.0 10{sup ?8} for the multi-frequency band case.

  3. Cosmic strings in hidden sectors: 1. Radiation of standard model particles

    SciTech Connect (OSTI)

    Long, Andrew J.; Hyde, Jeffrey M.; Vachaspati, Tanmay E-mail: jmhyde@asu.edu

    2014-09-01

    In hidden sector models with an extra U(1) gauge group, new fields can interact with the Standard Model only through gauge kinetic mixing and the Higgs portal. After the U(1) is spontaneously broken, these interactions couple the resultant cosmic strings to Standard Model particles. We calculate the spectrum of radiation emitted by these ''dark strings'' in the form of Higgs bosons, Z bosons, and Standard Model fermions assuming that string tension is above the TeV scale. We also calculate the scattering cross sections of Standard Model fermions on dark strings due to the Aharonov-Bohm interaction. These radiation and scattering calculations will be applied in a subsequent paper to study the cosmological evolution and observational signatures of dark strings.

  4. A new string model (VENUS 2) for hadronic collisions based on color exchange between quarks and antiquarks

    SciTech Connect (OSTI)

    Werner, K.

    1989-05-01

    We describe the latest version of the string model VENUS, taking also into account antiquarks as participants in the color exchange (string flip) process, the basic mechanism to form strings. An important consequence is a rapidity plateau for protons and lambdas in symmetric heavy ion collision contradicting the assumption of transparency. 10 refs., 7 figs.

  5. Implications of fast radio bursts for superconducting cosmic strings

    SciTech Connect (OSTI)

    Yu, Yun-Wei; Cheng, Kwong-Sang; Shiu, Gary; Tye, Henry E-mail: hrspksc@hku.hk E-mail: iastye@ust.hk

    2014-11-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch.

  6. Cosmological and astrophysical constraints on superconducting cosmic strings

    SciTech Connect (OSTI)

    Miyamoto, Koichi; Nakayama, Kazunori E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp

    2013-07-01

    We investigate the cosmological and astrophysical constraints on superconducting cosmic strings (SCSs). SCS loops emit strong bursts of electromagnetic waves, which might affect various cosmological and astrophysical observations. We take into account the effect on the CMB anisotropy, CMB blackbody spectrum, BBN, observational implications on radio wave burst and X-ray or ?-ray events, and stochastic gravitational wave background measured by pulsar timing experiments. We then derive constraints on the parameters of SCS from current observations and estimate prospects for detecting SCS signatures in on-going observations. As a result, we find that these constraints exclude broad parameter regions, and also that on-going radio wave observations can probe large parameter space.

  7. Nonreciprocal wave scattering on nonlinear string-coupled oscillators

    SciTech Connect (OSTI)

    Lepri, Stefano; Pikovsky, Arkady

    2014-12-01

    We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a chaotic diode, where transmission is periodic in one direction and chaotic in the opposite one, is reported.

  8. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M. (Richmond, CA)

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  9. Methods and systems for determining angular orientation of a drill string

    DOE Patents [OSTI]

    Cobern, Martin E. (Cheshire, CT)

    2010-03-23

    Preferred methods and systems generate a control input based on a periodically-varying characteristic associated with the rotation of a drill string. The periodically varying characteristic can be correlated with the magnetic tool face and gravity tool face of a rotating component of the drill string, so that the control input can be used to initiate a response in the rotating component as a function of gravity tool face.

  10. Lectures on the gauge/string duality with emphasis on spectroscopy

    SciTech Connect (OSTI)

    Mateos, David

    2010-11-12

    I review recent progress on the connection between string theory and quantum chromo-dynamics in the context of the gauge/string duality. Emphasis is placed on conciseness and conceptual aspects rather than on technical details. Topics covered include the large-N{sub c} limit of gauge theories, the gravitational description of gauge theory thermodynamics and hydrodynamics, and the physics of quarks and mesons in the quark-gluon plasma.

  11. Coiled tubing velocity string hangoff method and apparatus

    SciTech Connect (OSTI)

    Gipson, T.C.

    1991-07-02

    This patent describes a method for hanging off a coiled tube velocity string in an active gas production well tubing run, the run having at least a master valve and a first line valve. It includes installing a hangoff assembly in the production well tubing run between the master valve and the first line valve the hangoff assembly comprising a hangoff head, a second line valve, an upper valve, and a hydraulic packoff valve, the hangoff head further comprising a threaded body member, a slip bowl and a threaded cap; inserting through the hydraulic packoff valve, the upper valve, and the hangoff head, coiled tubing for fluid communication with well gases and fluids in the production well tubing run, the coiled tubing having a first downhole end being open to immediately receive and conduct the gases and fluids; opening gas and fluid communication between the production well tubing run and the open end of the coiled tubing whereby the well gases and fluid may pass up through the coiled tubing, the hangoff head sealing the gases and fluids from passing to the hydraulic packoff valve, the upper valve and the second line valve; further inserting the coiled tubing to a desired depth in the production well tubing run; and rotating the cap of the hangoff head to expose the slip bowl.

  12. Strings of liquid beads for gas-liquid contact operations

    SciTech Connect (OSTI)

    Hattori, Kenji; Ishikawa, Mitsukuni; Mori, Y.H. . Dept. of Mechanical Engineering)

    1994-12-01

    Energy recovery from hot gases exhausted from power plants, garbage incineration facilities, and many industrial processes has been growing due to demands for saving the primary-energy consumption. A novel device for gas-liquid contact operations is proposed to feed a liquid onto wires (or threads) hanging down in a gas stream is proposed. The liquid disintegrates into beads strung on each wire at regular intervals; if the wire is moderately wettable, a thin film forms to sheathe the wire, thereby interconnecting the beads. Since the beads fall down slowly, which possibly renews the film flowing down even more slowly, a sufficient gas-liquid contact time is available even in a contactor with considerably limited height. An approximate calculation method is developed for predicting the variation in the temperature effectiveness for the liquid (the fractional approach of the liquid exit temperature to the gas inlet temperature) with the falling distance, assuming an applicability of strings-of-beads contactors to thermal energy recovery from hot gas streams.

  13. Coiled tubing velocity string set at record 20,500 ft

    SciTech Connect (OSTI)

    Adams, L.S. )

    1992-04-13

    This paper reports that coiled tubing, set at record depth, significantly reduced costs and posed lower mechanical failure risk for recompleting a gas well in the Delaware basin of West Texas. Alternative completions such as replacing the existing tubing string with smaller diameter conventional API production tubing was deemed less economical and effective. The gas well, George M. Shelton No. 2, was recompleted on July 18, 1991, by Chevron U.S.A. Production Co. The gas is produced from the deep, low-pressure Ellenburger formation in the Gomez field. The hang-off depth of 20,500 ft set a world record for the deepest permanently installed coiled tubing. The 1-1/2 in. coiled tubing velocity string, run within the existing 4-1/2 and 4-in. tapered production tubing string, consists of seven segments that vary in wall thickness from 0.087 to 0.156 in.

  14. The 21 cm signature of shock heated and diffuse cosmic string wakes

    SciTech Connect (OSTI)

    Hernndez, Oscar F.; Brandenberger, Robert H. E-mail: rhb@physics.mcgill.ca

    2012-07-01

    The analysis of the 21 cm signature of cosmic string wakes is extended in several ways. First we consider the constraints on G? from the absorption signal of shock heated wakes laid down much later than matter radiation equality. Secondly we analyze the signal of diffuse wake, that is those wakes in which there is a baryon overdensity but which have not shock heated. Finally we compare the size of these signals to the expected thermal noise per pixel which dominates over the background cosmic gas brightness temperature and find that the cosmic string signal will exceed the thermal noise of an individual pixel in the Square Kilometre Array for string tensions G? > 2.5 10{sup ?8}.

  15. String loops in the field of braneworld spherically symmetric black holes and naked singularities

    SciTech Connect (OSTI)

    Stuchlk, Z.; Kolo, M. E-mail: martin.kolos@fpf.slu.cz

    2012-10-01

    We study motion of current-carrying string loops in the field of braneworld spherically symmetric black holes and naked singularities. The spacetime is described by the Reissner-Nordstrm geometry with tidal charge b reflecting the non-local tidal effects coming from the external dimension; both positive and negative values of the spacetime parameter b are considered. We restrict attention to the axisymmetric motion of string loops when the motion can be fully governed by an appropriately defined effective potential related to the energy and angular momentum of the string loops. In dependence on these two constants of the motion, the string loops can be captured, trapped, or can escape to infinity. In close vicinity of stable equilibrium points at the centre of trapped states the motion is regular. We describe how it is transformed to chaotic motion with growing energy of the string loop. In the field of naked singularities the trapped states located off the equatorial plane of the system exist and trajectories unable to cross the equatorial plane occur, contrary to the trajectories in the field of black holes where crossing the equatorial plane is always admitted. We concentrate our attention to the so called transmutation effect when the string loops are accelerated in the deep gravitational field near the black hole or naked singularity by transforming the oscillatory energy to the energy of the transitional motion. We demonstrate that the influence of the tidal charge can be substantial especially in the naked singularity spacetimes with b > 1 where the acceleration to ultrarelativistic velocities with Lorentz factor ? ? 100 can be reached, being more than one order higher in comparison with those obtained in the black hole spacetimes.

  16. Full-power test of a string of magnets comprising a half-cell of the Superconducting Super Collider

    SciTech Connect (OSTI)

    Burgett, W.; Christianson, M.; Coombes, R.

    1992-10-01

    In this paper we describe the full-powered operation of a string of industrially-fabricated magnets comprising a half-cell of the Superconducting Super Collider (SSC). The completion of these tests marks the first successful operation of a major SSC subsystem. The five 15-m long dipole magnets in the string had an aperture of 50 mm and the single 5-m long quadrupole aperture was 40 mm. Power and cryogenic connections were made to the string through spool pieces that are prototypes for SSC operations. The string was cooled to cryogenic temperatures in early July, 1992, and power tests were performed at progressively higher currents up to the nominal SSC operating point above 6500 amperes achieved in mid-August. In this paper we report on the electrical and cryogenic performance of the string components and the quench protection system during these initial tests.

  17. Passive injection: A strategy for mitigating reservoir pressurization,

    Office of Scientific and Technical Information (OSTI)

    induced seismicity and brine migration in geologic CO2 storage (Journal Article) | SciTech Connect Journal Article: Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Citation Details In-Document Search Title: Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Authors: Dempsey, David ; Kelkar, Sharad ; Pawar, Rajesh Publication

  18. Apparatus and method for recharging a string a avalanche transistors within a pulse generator

    DOE Patents [OSTI]

    Fulkerson, E. Stephen (Livermore, CA)

    2000-01-01

    An apparatus and method for recharging a string of avalanche transistors within a pulse generator is disclosed. A plurality of amplification stages are connected in series. Each stage includes an avalanche transistor and a capacitor. A trigger signal, causes the apparatus to generate a very high voltage pulse of a very brief duration which discharges the capacitors. Charge resistors inject current into the string of avalanche transistors at various points, recharging the capacitors. The method of the present invention includes the steps of supplying current to charge resistors from a power supply; using the charge resistors to charge capacitors connected to a set of serially connected avalanche transistors; triggering the avalanche transistors; generating a high-voltage pulse from the charge stored in the capacitors; and recharging the capacitors through the charge resistors.

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (2) flotation (2) performance (2) reservoir rock (2) salinity (2) water (2) api gravity (1) aqueous solutions (1) brines (1) carbonate rocks (1) chemistry (1) computerized...

  20. Geothermal Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lakes, California. August 21, 2013 Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Utilizing EERE funds, ElectraTherm developed a geothermal technology that...

  1. Li and Mn uptake data from initial set of imprinted polymers

    SciTech Connect (OSTI)

    Susanna Ventura

    2015-03-27

    Batch tests of crosslinked lithium and manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C .

  2. Simbol Mining Corp | Open Energy Information

    Open Energy Info (EERE)

    company commercialising zero waste, zero carbon footprint production processes for lithium, EMD, and zinc battery chemicals produced from geothermal brines. Coordinates:...

  3. THERMAL CONDUCTIVITY OF AQUEOUS NaCl SOLUTIONS

    Office of Scientific and Technical Information (OSTI)

    and uti1 ization of geothermal energy, petroleum recovery, desalination of sea water, and other energy systems involving water containing dissolved salts. brines contain a...

  4. Lithium uptake data of lithium imprinted polymers

    SciTech Connect (OSTI)

    Susanna Ventura

    2015-12-04

    Batch tests of lithium imprinted polymers of variable composition to assess their ability to extract lithium from synthetic brines at T=45C. Initial selectivity data are included

  5. State Oil and Gas Boards | Open Energy Information

    Open Energy Info (EERE)

    and protect the correlative rights of ownership associated with the production of oil, natural gas and brine, while protecting the environment during the production process,...

  6. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TX; Trimeric Corporation: Champaign, IL and Buda, TX. FESCCStorage Division Bruce Brown Brine Extraction and Treatment Strategies to Enhance Pressure Management... Project...

  7. Microsoft Word - Annual Report 2009_Final.docx

    Broader source: Energy.gov (indexed) [DOE]

    ... and the lowering of a 24-inch brine disposal pipeline. ... and planned projects for the Strategic Petroleum Reserve. ... Reserve contained 726.6 million barrels of crude oil. ...

  8. Microsoft Word - Annual Report 2010 Master_Nov22_2011.docx

    Broader source: Energy.gov (indexed) [DOE]

    and planned projects for the Strategic ... oil terminal in Pascagoula, Mississippi; and the location of the brine discharge pipeline ... oil at competitive prices to fill the ...

  9. Proposed "OneEERE" Work Plan Structure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Lithium * Manganese * Tellurium * Zinc Uses for Geothermal Strategic Materials * ... lithium, manganese, and zinc from geothermal brines during the power production process. ...

  10. EERE Success Story-California: Geothermal Plant to Help Meet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines. ...

  11. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process. ...

  12. DOE-EA-1116 | Open Energy Information

    Open Energy Info (EERE)

    storage tanks and transferring geothermal brine at the power plant. imposed Dames & Moore completed a detailed risk assessment to evaluate potential impacts from an accidental...

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (2) performance (2) reservoir rock (2) salinity (2) water (2) aqueous solutions (1) bacteria (1) bioremediation (1) brines (1) buffers (1) carbon sources (1) carbonate rocks (1)...

  14. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Reduced Order Model for the Geochemical Impacts of Carbon Dioxide Brine and Trace Metal Leakage into an Unconfined Oxidizing Carbonate Aquifer Version Bacon Diana H carbon...

  15. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Citation Details...

  16. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1","Bacon, Diana...

  17. Abe Van Luik

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doctorate from Utah State University. His dissertation involved studying and modeling the solubility of heavy metals in the brines of Utah's Great Salt Lake: evaporate chemistry...

  18. Categorical Exclusion Determination Forn1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Modification (not expansion)abandonment of oil storage access brine injectiongasgeothermal wells; no site closure OBS.4 - Repairreplacement of pipeline sections within...

  19. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...

    Office of Scientific and Technical Information (OSTI)

    can be obtained from wastewater treatment facilities, irrigation rights, or reverse osmosis of the geothermal brine. No geothermal steam-cycle plants are air-cooled. Instead,...

  20. FE0003616_PSU | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for remediation and re-vegetation of brine contaminated soils A pumperwell tender Smartphone software program Demonstration of the Hyper-scratcher well clean-out tool Technology...

  1. Microsoft Word - NRAP-TRS-III-002-2014_Second-Generation Reduced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    permeability and depth, and reservoir pressure and CO 2 brine saturation that feed the reservoir and wellbore leakage ROMs. This result supports the intuitive notion that...

  2. Impact and Detection of Pyranometer Failure on PV Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZrO2 Experimental and Modeling Investigation of Radionuclide Interaction and Transport in Representative Geologic Media Brine Migration Experimental Studies for Salt Repositories

  3. Department of Energy Announces 15 Projects Aimed at Secure CO2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capacity, plume migration, and containment by caprock and other trapping mechanisms. ... how interface properties affect brine migration into caprock, and how fractures at the ...

  4. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 Summary Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel ...

  5. Probabilistic evaluation of shallow groundwater resources at...

    Office of Scientific and Technical Information (OSTI)

    atmosphere. This study first develops an integrated Monte Carlo method for simulating CO2 and brine leakage from carbon sequestration and subsequent geochemical interactions in...

  6. Ohio Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    division's responsibilities include regulation of Ohio's oil and gas drilling operations oil and gas production operations brine disposal operations solution mining operations...

  7. Li and Mn uptake data from initial set of imprinted polymers

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Susanna Ventura

    Batch tests of crosslinked lithium and manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C .

  8. EIS-0385: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at two or three existing sites. Storage capacity would be developed by solution mining of salt domes and disposing of the resulting salt brine by ocean discharge or...

  9. EIS-0385: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at two or three existing sites. Storage capacity would be developed by solution mining of salt domes and disposing of the resulting salt brine by ocean discharge or...

  10. - Compliance Recertification Application 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Support Of Panel Gas Pressurization Due To Creep Closure Appendix PCS C: FLAC Modeling Of The Panel Closure System Appendix PCS D: BrineCement Interactions Appendix...

  11. Untitled Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs,...

  12. Accident Investigation of the February 7, 2013, Scissor Lift...

    Office of Environmental Management (EM)

    February 7, 2013, Scissor Lift Accident in the West Hackberry Brine Tank-14 Resulting in Injury, Strategic Petroleum Reserve West Hackberry, LA Accident Investigation of the...

  13. 08-02-2010 NNSA-B-10-0311

    National Nuclear Security Administration (NNSA)

    B5.1 - Actions to conserve energy, no indoor air quality degradation B5.2 - Modification ... (not expansion)abandonment of oil storage access brine injectiongasgeothermal ...

  14. 04-06-2010 ARRA-10-0162

    National Nuclear Security Administration (NNSA)

    B5.1 - Actions to conserve energy, no indoor air quality degradation B5.2 - Modification ... (not expansion)abandonment of oil storage access brine injectiongasgeothermal ...

  15. 06-14-2010 ARRA-10-0185

    National Nuclear Security Administration (NNSA)

    B5.1 - Actions to conserve energy, no indoor air quality degradation B5.2 - Modification ... (not expansion)abandonment of oil storage access brine injectiongasgeothermal ...

  16. 05-19-2010 NNSA-B-10-0126

    National Nuclear Security Administration (NNSA)

    B5.1 - Actions to conserve energy, no indoor air quality degradation B5.2 - Modification ... (not expansion)abandonment of oil storage access brine injectiongasgeothermal ...

  17. 06-14-2010 NNSA-B-10-0199

    National Nuclear Security Administration (NNSA)

    B5.1 - Actions to conserve energy, no indoor air quality degradation B5.2 - Modification ... (not expansion)abandonment of oil storage access brine injectiongasgeothermal ...

  18. 06-07-2010 NNSA-B-10-0195

    National Nuclear Security Administration (NNSA)

    B5.1 - Actions to conserve energy, no indoor air quality degradation B5.2 - Modification ... (not expansion)abandonment of oil storage access brine injectiongasgeothermal ...

  19. 05-19-2010 ARRA-10-0238

    National Nuclear Security Administration (NNSA)

    B5.1 - Actions to conserve energy, no indoor air quality degradation B5.2 - Modification ... (not expansion)abandonment of oil storage access brine injectiongasgeothermal ...

  20. 03-09-2010 NNSA-B-10-0113

    National Nuclear Security Administration (NNSA)

    B5.1 - Actions to conserve energy, no indoor air quality degradation B5.2 - Modification ... (not expansion)abandonment of oil storage access brine injectiongasgeothermal ...

  1. Circuit for echo and noise suppression of accoustic signals transmitted through a drill string

    DOE Patents [OSTI]

    Drumheller, Douglas S. (P.O. Box 676, Cedar Crest, NM 87008); Scott, Douglas D. (12911 Kachima Place N.E., Apt. A, Albuquerque, NM 37112)

    1993-01-01

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output.

  2. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string

    DOE Patents [OSTI]

    Drumheller, D.S.; Scott, D.D.

    1993-12-28

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  3. Input-independent, Scalable and Fast String Matching on the Cray XMT

    SciTech Connect (OSTI)

    Villa, Oreste; Chavarra-Miranda, Daniel; Maschhoff, Kristyn J.

    2009-05-25

    String searching is at the core of many security and network applications like search engines, intrusion detection systems, virus scanners and spam ?lters. The growing size of on-line content and the increasing wire speeds push the need for fast, and often real- time, string searching solutions. For these conditions, many software implementations (if not all) targeting conventional cache-based microprocessors do not perform well. They either exhibit overall low performance or exhibit highly variable performance depending on the types of inputs. For this reason, real-time state of the art solutions rely on the use of either custom hardware or Field-Programmable Gate Arrays (FPGAs) at the expense of overall system ?exibility and programmability. This paper presents a software based implementation of the Aho-Corasick string searching algorithm on the Cray XMT multithreaded shared memory machine. Our so- lution relies on the particular features of the XMT architecture and on several algorith- mic strategies: it is fast, scalable and its performance is virtually content-independent. On a 128-processor Cray XMT, it reaches a scanning speed of ? 28 Gbps with a performance variability below 10 %. In the 10 Gbps performance range, variability is below 2.5%. By comparison, an Intel dual-socket, 8-core system running at 2.66 GHz achieves a peak performance which varies from 500 Mbps to 10 Gbps depending on the type of input and dictionary size.

  4. Aho-Corasick String Matching on Shared and Distributed Memory Parallel Architectures

    SciTech Connect (OSTI)

    Tumeo, Antonino; Villa, Oreste; Chavarra-Miranda, Daniel

    2012-03-01

    String matching is at the core of many critical applications, including network intrusion detection systems, search engines, virus scanners, spam filters, DNA and protein sequencing, and data mining. For all of these applications string matching requires a combination of (sometimes all) the following characteristics: high and/or predictable performance, support for large data sets and flexibility of integration and customization. Many software based implementations targeting conventional cache-based microprocessors fail to achieve high and predictable performance requirements, while Field-Programmable Gate Array (FPGA) implementations and dedicated hardware solutions fail to support large data sets (dictionary sizes) and are difficult to integrate and customize. The advent of multicore, multithreaded, and GPU-based systems is opening the possibility for software based solutions to reach very high performance at a sustained rate. This paper compares several software-based implementations of the Aho-Corasick string searching algorithm for high performance systems. We discuss the implementation of the algorithm on several types of shared-memory high-performance architectures (Niagara 2, large x86 SMPs and Cray XMT), distributed memory with homogeneous processing elements (InfiniBand cluster of x86 multicores) and heterogeneous processing elements (InfiniBand cluster of x86 multicores with NVIDIA Tesla C10 GPUs). We describe in detail how each solution achieves the objectives of supporting large dictionaries, sustaining high performance, and enabling customization and flexibility using various data sets.

  5. Global strings in extra dimensions: The full map of solutions, matter trapping, and the hierarchy problem

    SciTech Connect (OSTI)

    Bronnikov, K. A.; Meierovich, B. E.

    2008-02-15

    We consider (d{sub 0} + 2)-dimensional configurations with global strings in two extra dimensions and a flat metric in d{sub 0} dimensions, endowed with a warp factor e{sup 2{gamma}} depending on the distance l from the string center. All possible regular solutions of the field equations are classified by the behavior of the warp factor and the extradimensional circular radius r(l). Solutions with r {yields} {infinity} and r {yields} const > 0 as l {yields} {infinity} are interpreted in terms of thick brane-world models. Solutions with r {yields} 0 as l {yields} l{sub c} > 0, i.e., those with a second center, are interpreted as either multibrane systems (which are appropriate for large enough distances l{sub c} between the centers) or as Kaluza-Klein-type configurations with extra dimensions invisible due to their smallness. In the case of the Mexican-hat symmetry-breaking potential, we build the full map of regular solutions on the ({epsilon}, {Gamma}) parameter plane, where {epsilon} acts as an effective cosmological constant and {Gamma} characterizes the gravitational field strength. The trapping properties of candidate brane worlds for test scalar fields are discussed. Good trapping properties for massive fields are found for models with increasing warp factors. Kaluza-Klein-type models are shown to have nontrivial warp factor behaviors, leading to matter particle mass spectra that seem promising from the standpoint of hierarchy problems.

  6. Global strings in extra dimensions: The full map of solutions, matter trapping, and the hierarchy problem

    SciTech Connect (OSTI)

    Bronnikov, K. A.; Meierovich, B. E.

    2008-02-15

    We consider (d{sub 0} + 2)-dimensional configurations with global strings in two extra dimensions and a flat metric in d{sub 0} dimensions, endowed with a warp factor e{sup 2{gamma}} depending on the distance l from the string center. All possible regular solutions of the field equations are classified by the behavior of the warp factor and the extradimensional circular radius r(l). Solutions with r {sup {yields}} {infinity} and r {sup {yields}} const > 0 as l {sup {yields}} {infinity} are interpreted in terms of thick brane-world models. Solutions with r {sup {yields}} 0 as l {sup {yields}} l{sub c} > 0, i.e., those with a second center, are interpreted as either multibrane systems (which are appropriate for large enough distances l{sub c} between the centers) or as Kaluza-Klein-type configurations with extra dimensions invisible due to their smallness. In the case of the Mexican-hat symmetry-breaking potential, we build the full map of regular solutions on the ({epsilon}, {gamma}) parameter plane, where {epsilon} acts as an effective cosmological constant and {gamma} characterizes the gravitational field strength. The trapping properties of candidate brane worlds for test scalar fields are discussed. Good trapping properties for massive fields are found for models with increasing warp factors. Kaluza-Klein-type models are shown to have nontrivial warp factor behaviors, leading to matter particle mass spectra that seem promising from the standpoint of hierarchy problems.

  7. CX-010712: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace West Hackberry Brine Disposal System Header from MOV-51’s to WHT-14/15 Brine Tanks with HDPE Pipe CX(s) Applied: B5.2 Date: 07/03/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  8. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Progress report for the period November 1989 through December 1992

    SciTech Connect (OSTI)

    Telander, M.R.; Westerman, R.E.

    1993-09-01

    The corrosion and gas-generation characteristics of three material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base materials, and Ti-base materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments included anoxic brine and anoxic brine with overpressures of CO{sub 2}, H{sub 2}S, and H{sub 2}. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of a protective iron sulfide reaction product. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  9. Natural radionuclides in groundwaters

    SciTech Connect (OSTI)

    Laul, J.C.

    1990-01-01

    The U-234 and Th-230 radionuclides are highly retarded by factors of 10{sup 4} to 10{sup 5} in basalt groundwater (Hanford) and briny groundwaters from Texas and geothermal brine from the Salton Sea Geothermal Field (SSGF). In basalt groundwaters (low ionic strength), Ra is highly sorbed, while in brines (high ionic strength), Ra is soluble. This is probably because the sorption sites are saturated with Na{sup +} and Cl{sup {minus}} ions and RaCl{sub 2} is soluble in brines. Pb-210 is soluble in SSGF brine, probably as a chloride complex. The U-234/Th-230 ratios in basalt groundwaters and brines from Texas and SSGF are nearly unity, indicating that U is in the +4 state, suggesting a reducing environment for these aquifers. 19 refs., 3 figs.

  10. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    SciTech Connect (OSTI)

    Visnen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara

    2014-12-20

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-law distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.

  11. String or branelike solutions in four-dimensional Einstein gravity in the presence of a cosmological constant

    SciTech Connect (OSTI)

    Lee, Youngone; Kang, Gungwon; Kim, Hyeong-Chan; Lee, Jungjai

    2011-10-15

    We investigate string or branelike solutions for four-dimensional vacuum Einstein equations in the presence of a cosmological constant. For the case of negative cosmological constant, the Banados-Teitelboim-Zanelli black string is the only warped stringlike solution. The general solutions for nonwarped branelike configurations are found and they are characterized by the Arnowitt-Deser-Misner mass density and two tensions. Interestingly, the sum of these tensions is equal to the minus of the mass density. Other than the well-known black string and soliton spacetimes, all the static solutions possess naked singularities. The time-dependent solutions can be regarded as the anti-de Sitter extension of the well-known Kasner solutions. The speciality of those static regular solutions and the implication of singular solutions are also discussed in the context of cylindrical matter collapse. For the case of positive cosmological constant, the Kasner-de Sitter spacetime appears as time-dependent solutions and all static solutions are found to be naked singular.

  12. System and method for damping vibration in a drill string using a magnetorheological damper

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth (Houston, TX); Burgess, Daniel E. (Portland, CT); Barbely, Jason R. (East Islip, NY)

    2012-01-03

    A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil for inducing a magnetic field that alters the resistance of the magnetorheological fluid to flow between the first and second chambers, thereby increasing the damping provided by the valve. A remnant magnetic field is induced in one or more components of the magnetorheological fluid valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils during operation except temporarily when changing the amount of damping required, thereby eliminating the need for a turbine alternator power the magnetorheological fluid valve. A demagnetization cycle can be used to reduce the remnant magnetic field when necessary.

  13. Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-04-28

    A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

  14. Overview of fundamental geochemistry basic research at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Anovitz, L.M.; Benezeth, P.; Blencoe, J.G.

    1996-01-01

    Researchers in ORNL`s Geochemistry and High Temperature Aqueous Chemistry groups are conducting detailed experimental studies of physicochemical properties of the granite-melt-brine system; sorption of water on rocks from steam-dominated reservoirs; partitioning of salts and acid volatiles between brines and steam; effects of salinity on H and O isotope partitioning between brines, minerals, and steam; and aqueous geochemistry of Al. These studies contribute in many ways to cost reductions and improved efficiency in the discovery, characterization, and production of energy from geothermal resources.

  15. EIS-0165: Strategic Petroleum Reserve Alabama, Louisiana, Mississippi, and Texas

    Broader source: Energy.gov [DOE]

    This EIS assesses the impacts of construction and operation for the range of alternatives being considered and focuses on oil and brine spill risk and impacts of brine disposal. The proposed action entails the development of a plan for 250 million barrels of new crude oil storage capacity in two Gulf Coast salt domes to expand the Strategic Petroleum Reserve pursuant to Congressional directive (PL I 01-383 and PL 101-512). Storage capacity would be developed by solution-mining the salt which would require about two billion barrels of surface water and would generate about two billion barrels of salt brine.

  16. Geothermal research at the Puna Facility

    SciTech Connect (OSTI)

    Chen, B.

    1986-05-01

    Chemical analyses were conducted on the flocculated silica samples obtained during previous field experiments at HGP-A on both flashed and unflashed brines to determine the composition of the recovered silica for specific constituents of the brine which seem to often be entrapped in the silica during the flocculation process. Metals added as flocculants to the brine were also analyzed in order to evaluate the ease or difficulty with which these can be removed from the precipitated silica under varying conditions. Conditions employed included simple distilled water and acid washing (HCl of varying concentration).

  17. The effect of voltage waveform and tube diameter on transporting cold plasma strings through a flexible dielectric tube

    SciTech Connect (OSTI)

    Sohbatzadeh, Farshad; Omran, Azadeh Valinataj

    2014-11-15

    In this work, we developed transporting atmospheric pressure cold plasma using single electrode configuration through a sub-millimetre flexible dielectric tube beyond 100?cm. It was shown that the waveform of the applied high voltage is essential for controlling upstream and downstream plasma inside the tube. In this regard, sawtooth waveform enabled the transport of plasma with less applied high voltage compared to sinusoidal and pulsed form voltages. A cold plasma string as long as 130?cm was obtained by only 4?kV peak-to-peak sawtooth high voltage waveform. Optical emission spectroscopy revealed that reactive chemical species, such as atomic oxygen and hydroxyl, are generated at the tube exit. The effect of tube diameter on the transported plasma was also examined: the smaller the diameter, the higher the applied voltage. The device is likely to be used for sterilization, decontamination, and therapeutic endoscopy as already suggested by other groups in recent past years.

  18. CX-100008: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Selective Recovery of Metals from Geothermal Brines Award Number: DE-EE0006747 CX(s) Applied: A9, B3.6 Geothermal Technologies Date: 08/28/2014 Location(s): California Office(s): Golden Field Office

  19. REPOSITORY RECONFIGURATION OF PANELS 9 AND 10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    brine at depths corresponding to the Castile Formation in portions of the area and to the Bell Canyon Formation in the rest of the area, some 400 to 600 meters below the mined...

  20. Energy Department Selects Five Projects in First Step to Produce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the flow of CO2 - also known as a plume steering- brine can be extracted from the formation at specific points, where fresh water can be separated in a process known as...

  1. CX-006250: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Blast and Paint Bayou Choctaw Brine Pump Pad and Associate PipingCX(s) Applied: B1.3Date: 06/20/2011Location(s): Iberville Parish, LouisianaOffice(s): Strategic Petroleum Reserve Field Office

  2. CX-005370: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Clean and Inspect West Hackberry (WHT-14) Brine TankCX(s) Applied: B1.3Date: 02/22/2011Location(s): West Hackberry, LouisianaOffice(s): Strategic Petroleum Reserve Field Office

  3. Underground Injection Control Permit Applications for FutureGen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 -Brine Mixtures at Elevated Temperatures and Pressures: Application to CO 2 -Enhanced Geothermal Systems." Transport in Porous Media 82:173-196. doi:10.1007s11242-009-9425-y....

  4. CX-007505: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Record of Categorical Exclusion for Big Hill Raw Water Brine header Piping Inspection CX(s) Applied: B1.3 Date: 11/28/2011 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  5. Manganese uptake of imprinted polymers

    SciTech Connect (OSTI)

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  6. Energy Department Selects Five Projects in First Step to Produce Fresh Water from CO2 Storage Sites

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy announced the selection of five projects that will study the feasibility of using salty water – or brine – from carbon dioxide (CO2) storage sites to produce fresh water.

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Laboratory (NETL) and Oak Ridge National Laboratory (ORNL) will expand the lessons learned at the Frio Brine Pilot (as part of the GEO-SEQ project) to prepare a...

  8. The Petascale Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (6 OpenMP threads per NUMA node) OpenMP support (b) . . 5 5 a) Isosurfaces of CO 2 density in the brine, this image highlights the structure of the 3D fingers. b)...

  9. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Bacon, Diana H. carbon...

  10. CX-010606: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Subsurface Brine Disposal Framework in the Northern Appalachian Basin CX(s) Applied: B3.1 Date: 07/25/2013 Location(s): Kentucky Offices(s): National Energy Technology Laboratory

  11. Dixie Valley Bottoming Binary Cycle

    Broader source: Energy.gov [DOE]

    Project objective: Prove the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from low-temperature brine at the Dixie Valley Geothermal Power Plant.

  12. CX-005610: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Soil Amendment Product for Oilfield Brine Contaminated Soil ? Field Testing Part IICX(s) Applied: B3.7Date: 04/12/2011Location(s): Rosalia, KansasOffice(s): Fossil Energy, National Energy Technology Laboratory

  13. CX-011223: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bryan Mound Brine Disposal Pump Replacement (Install) CX(s) Applied: B5.2 Date: 10/28/2013 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  14. EMPLOYMENT IMPACTS OF GEOTHERMAL ELECTRIC PROJECTS

    Office of Scientific and Technical Information (OSTI)

    ... It did not include estimates for the costs or jobs associated with the geothermal field. The plant cost was estimated for a 400 degree-F reservoir with minimal brine chemistry ...

  15. EERE PowerPoint 97-2004 Template: Green Version

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is uncertain at EGS conditions because key rate reactions are unknown Increased fracture permeability after reaction with CO 2 -brine at 200C (Smith et al, 2013) 2 | US DOE...

  16. EERE PowerPoint 97-2004 Template: Green Version

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refrigerant selection Two-phase flows How to lower pressure drop? Brine flow Silica precipitation 5 | US DOE Geothermal Office eere.energy.gov ScientificTechnical Approach Item...

  17. Investigations of α-helix↔β-sheet transition pathways in a miniprotein using the finite-temperature string method

    SciTech Connect (OSTI)

    Ovchinnikov, Victor; Karplus, Martin; Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, 67000 Strasbourg

    2014-05-07

    A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15–20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes.

  18. Research News January 2015, Issue 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments and Models Help Predict CO2 Solubility in Brines page 2 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY From NETL's Office of Research & Development Researchnews June 2015, Issue 9 2 Contents June 2015, Issue 9 2 Feature Story: Experiments and Models Help Predict CO2 Solubility in Brines 4 Novel Techniques for Field Measurement of CO2 in Groundwater 5 New Tool Predicts Behavior of Materials Used in CO2 Capture Processes 6 New Capability Takes Sensor Fabrication to a New

  19. Disequilibrium study of natural radionuclides of uranium and thorium series in cores and briny groundwaters from Palo Duro Basin, Texas

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.

    1988-05-01

    The concentrations of natural radionuclides of the /sup 238/U and /232/Th series are reported in several cores and in ten deep and five shallow briny groundwaters from various formations in the Palo Duro Basin. The formations include Granite Wash, Pennsylvanian Granite Wash, Wolfcamp Carbonate, Pennsylvanian Carbonate, Seven River, Queen Grayburg, San Andres, Yates and Salado. The natural radionuclide data in cores suggest that the radionuclides have not migrated or been leached for at least a period of about 1 million years. Relative to the U and Th concentrations in cores, the brines are depleted by a factor of 10/sup 4/ to 10/sup 5/, indicating extremely low solubility of U and Th in brines. The natural radionuclide data in brines suggest that radium is not sorbed significantly and thus not retarded in nine deep brines. Radium is somewhat sorbed in one deep brine of Wolfcamp Carbonate and significantly sorbed in shallow brines. Relative to radium, the U, Th, Pb, Bi, and Po radionuclides are highly retarded by sorption. The retardation factors for /sup 228/Th range from 10/sup 2/ to 10/sup 3/, whereas those for /sup 230/Th and /sup 234/U range from 10/sup 3/ to 10/sup 5/, depending on the formation. The /sup 234/U//sup 238/U ratios in these brines are constant at about 1.5. The magnitude of the /sup 234/U//sup 230/Th ratio appears to reflect the degree of redox state of the aquifer's environment. The /sup 234/U//sup 230/Th ratio in nine deep brines is about unity, suggesting that U, like Th/sup +4/, is in the +4 state, which in turn suggests a reduced environment. 49 refs., 23 figs., 18 tabs.

  20. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  1. Nevada manufacturer installing geothermal power plant | Department of

    Office of Environmental Management (EM)

    Energy Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles

  2. Sequestration of CO2 in Mixtures of Bauxite Residue and Saline Wastewater

    SciTech Connect (OSTI)

    Dilmore, R.M.; Lu, Peng; Allen, D.E.; Soong, Yee; Hedges, S.W.; Fu, J.K.; Dobbs, C.L.; DeGalbo, A.D.; Zhu, Chen

    2008-01-01

    Experiments were conducted to explore the concept of beneficially utilizing mixtures of caustic bauxite residue slurry (pH 13) and produced oil-field brine to sequester carbon dioxide from flue gas generated from industrial point sources. Data presented herein provide a preliminary assessment of the overall feasibility of this treatment concept. The Carbonation capacity of bauxite residue/brine mixtures was considered over the full range of reactant mixture combinations in 10% increments by volume. A bauxite residue/brine mixture of 90/10 by volume exhibited a CO2 sequestration capacity of greater than 9.5 g/L when exposed to pure CO2 at 20 C and 0.689 MPa (100 psig). Dawsonite and calcite formation were predicted to be the dominant products of bauxite/brine mixture carbonation. It is demonstrated that CO2 sequestration is augmented by adding bauxite residue as a caustic agent to acidic brine solutions and that trapping is accomplished through both mineralization and solubilization. The product mixture solution was, in nearly all mixtures, neutralized following carbonation. However, in samples (bauxite residue/brine mixture of 90/10 by volume) containing bauxite residue solids, the pH was observed to gradually increase to as high as 9.7 after aging for 33 days, suggesting that the CO2 sequestration capacity of the samples increases with aging. Our geochemical models generally predicted the experimental results of carbon sequestration capacities and solution pH.

  3. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    SciTech Connect (OSTI)

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir pressure can indeed be used to drive the reverse osmosis process. Our initial conclusions from the work to date are encouraging: (1) The concept of aquifer-pressured RO to provide fresh water associated with carbon dioxide storage appears feasible. (2) Concentrated brines such as those found in Wyoming are amenable to RO treatment. We have looked at sodium chloride brines from the Nugget Formation in Sublette County. 20-25% removal with conventional methods is realistic; higher removal appears achievable with NF. The less concentrated sulfate-rich brines from the Tensleep Formation in Sublette County would support >80% removal with conventional RO. (3) Brines from other proposed sequestration sites can now be analyzed readily. An osmotic pressure curve appropriate to these brines can be used to evaluate cost and equipment specifications. (4) We have examined a range of subsurface brine compositions that is potentially pertinent to carbon sequestration and noted the principal compositional trends pertinent to evaluating the feasibility of freshwater extraction. We have proposed a general categorization for the feasibility of the process based on total dissolved solids (TDS). (5) Withdrawing pressurized brine can have a very beneficial effect on reservoir pressure and total available storage capacity. Brine must be extracted from a deeper location in the aquifer than the point of CO{sub 2} injection to prevent CO{sub 2} from migrating to the brine extraction well.

  4. Charged black holes in string-inspired gravity II. Mass inflation and dependence on parameters and potentials

    SciTech Connect (OSTI)

    Hansen, Jakob; Yeom, Dong-han

    2015-09-07

    We investigate the relation between the existence of mass inflation and model parameters of string-inspired gravity models. In order to cover various models, we investigate a Brans-Dicke theory that is coupled to a U(1) gauge field. By tuning a model parameter that decides the coupling between the Brans-Dicke field and the electromagnetic field, we can make both of models such that the Brans-Dicke field is biased toward strong or weak coupling directions after gravitational collapses. We observe that as long as the Brans-Dicke field is biased toward any (strong or weak) directions, there is no Cauchy horizon and no mass inflation. Therefore, we conclude that to induce a Cauchy horizon and mass inflation inside a charged black hole, either there is no bias of the Brans-Dicke field as well as no Brans-Dicke hair outside the horizon or such a biased Brans-Dicke field should be well trapped and controlled by a potential.

  5. Results of industry experience survey on coiled tubing uses and failures

    SciTech Connect (OSTI)

    Maldonado, J.G.; Cayard, M.S.; Kane, R.D.

    1999-11-01

    A survey of coiled tubing failures in various field applications was conducted. The survey included the collection of information on failure type, number of strain cycles to failure, service environment, well depth, failure location on the coiled tubing string, and coiled tubing grade employed. The most prevalent causes of failures and the impact of localized corrosion on the performance of coiled tubing were assessed from over thirty case studies herein reported. Pitting and tensile overload were the primary causes for failure in fifty percent of the cases reported from the field. Fatigue and weld area failures were the next most common types of failure. Most failures occurred within the range of 10 to 50 strain cycles. H{sub 2}S and brine/water containing environments were the most prevalent service conditions. Most failures occurred at well depths between 5,001 to 10,000 feet (1,524.3 to 3,048 meters). Also, most failures occurred in the coiled tubing string near the surface (less than 1,000 feet (304.8 meters)). Failures in roughly similar numbers were reported in 70, 80 and 100 coiled tubing grades. The understanding of the principal modes of failure herein reported should help in the development of improved handling and running procedures to minimize coiled tubing failures.

  6. A novel 3D structure composed of strings of hierarchical TiO{sub 2} spheres formed on TiO{sub 2} nanobelts with high photocatalytic properties

    SciTech Connect (OSTI)

    Jiang, Yongjian; Li, Meicheng; Song, Dandan; Li, Xiaodan; Yu, Yue

    2014-03-15

    A novel hierarchical titanium dioxide (TiO{sub 2}) composite nanostructure with strings of anatase TiO{sub 2} hierarchical micro-spheres and rutile nanobelts framework (TiO{sub 2} HSN) is successfully synthesized via a one-step hydrothermal method. Particularly, the strings of hierarchical spheres are assembled by very thin TiO{sub 2} nanosheets, which are composed of highly crystallized anatase nanocrystals. Meanwhile, the HSN has a large surface area of 191 m{sup 2}/g, which is about 3 times larger than Degussa P25. More importantly, the photocatalytic activity of HSN and P25 were evaluated by the photocatalytic oxidation decomposition of methyl orange (MO) under UV light illumination, and the TiO{sub 2} HSN shows enhanced photocatalytic activity compared with Degussa P25, as result of its continuous hierarchical structures, special conductive channel and large specific surface area. With these features, the hierarchical TiO{sub 2} may have more potential applications in the fields of dye-sensitized solar cells and lithium ion batteries. -- Graphical abstract: Novel TiO{sub 2} with anatase micro-spheres and rutile nanobelts is synthesized. Enhanced photocatalysis is attributed to hierarchical structures (3D spheres), conductive channel (1D nanobelts) and large specific surface area (2D nanosheet). Highlights: • The novel TiO{sub 2} nanostructure (HSN) is fabricated for the first time. • HSN is composed of strings of anatase hierarchical spheres and rutile nanobelt. • HSN presents a larger S{sub BET} of 191 m{sup 2}/g, 3 times larger than the Degussa P25 (59 m{sup 2}/g). • HSN owns three kinds of dimensional TiO{sub 2} (1D, 2D and 3D) simultaneously. • HSN exhibits better photocatalytic performance compared with Degussa P25.

  7. Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Abbasi, R.; al., et

    2009-10-23

    A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 - 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

  8. Two-phase convective CO2 dissolution in saline aquifers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  9. String | Open Energy Information

    Open Energy Info (EERE)

    rty:CommunityEnergyToolsCostRange Property:CompanyOwnership Property:CompanyType Property:Component Integration Property:ConditionMonitoringAttribute Property:Contact...

  10. [Mathematics and string theory

    SciTech Connect (OSTI)

    Jaffe, A.; Yau, Shing-Tung.

    1993-01-01

    Work on this grant was centered on connections between non- commutative geometry and physics. Topics covered included: cyclic cohomology, non-commutative manifolds, index theory, reflection positivity, space quantization, quantum groups, number theory, etc.

  11. Drill string transmission line

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Bradford, Kline (Orem, UT); Fox, Joe (Spanish Fork, UT)

    2006-03-28

    A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

  12. Stringing and Sagging (1950)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shaheen Nancy Mitman Cathy Ehli Administrators of BPA Mary Jensen Mission Vision Values History Film Vault Film Collection Volume One Film Collection Volume Two 75th Anniversary...

  13. Effect of water in salt repositories. Final report

    SciTech Connect (OSTI)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  14. Multilayer insulation for the interconnect region in the Accelerator System String Test: A practical engineering approach for a new scheme of design and installation bridges

    SciTech Connect (OSTI)

    Baritchi, D.; Jalloh, A.

    1993-04-01

    In order to minimize the heat leak in the Accelerator System String Test (ASST) inter-connect region, shield bridges and multilayer insulation (MLI) are provided. A sliding joint between shield bridges on adjacent magnets accommodates the contraction that occurs during cooldown. In the original design of the MLI bridges, thermal contraction was provided for by compressing the MLI. During assembly of the interconnect region, it was realized that there was not enough room for the required compression. This resulted in a redesign of the MLI bridges. The new scheme involves splitting and overlapping the MLI. This scheme has worked very well in subsequent assembly of the interconnect region. In this paper, we are going to present the new design scheme. We will also compare this design with the original design and present its advantages.

  15. Hydraulic accumulator-compressor for geopressured enhanced oil recovery

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1988-01-01

    A hydraulic accumulator-compressor vessel using geothermal brine under pressure as a piston to compress waste (CO.sub.2 rich) gas is used in a system having a plurality of gas separators in tandem to recover pipeline quality gas from geothermal brine. A first high pressure separator feeds gas to a membrance separator which separates low pressure waste gas from high pressure quality gas. A second separator produces low pressure waste gas. Waste gas from both separators is combined and fed into the vessel through a port at the top as the vessel is drained for another compression cycle. High pressure brine is then admitted into the vessel through a port at the bottom of the vessel. Check valves control the flow of low pressure waste gas into the vessel and high pressure waste gas out of the vessel.

  16. Sensitivity of CO2 migration estimation on reservoir temperature and pressure uncertainty

    SciTech Connect (OSTI)

    Jordan, Preston; Doughty, Christine

    2008-11-01

    The density and viscosity of supercritical CO{sub 2} are sensitive to pressure and temperature (PT) while the viscosity of brine is sensitive primarily to temperature. Oil field PT data in the vicinity of WESTCARB's Phase III injection pilot test site in the southern San Joaquin Valley, California, show a range of PT values, indicating either PT uncertainty or variability. Numerical simulation results across the range of likely PT indicate brine viscosity variation causes virtually no difference in plume evolution and final size, but CO{sub 2} density variation causes a large difference. Relative ultimate plume size is almost directly proportional to the relative difference in brine and CO{sub 2} density (buoyancy flow). The majority of the difference in plume size occurs during and shortly after the cessation of injection.

  17. Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems

    SciTech Connect (OSTI)

    Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

    2007-10-24

    If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

  18. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  19. Overfilling of cavern blamed for LPG blasts

    SciTech Connect (OSTI)

    Not Available

    1992-07-06

    Three explosions and a fire Apr. 7 at an LPG salt dome storage cavern near Brenham, Tex., were triggered when the cavern was overfilled, the Texas Railroad Commission (TRC) has reported. This paper reports that a TRC investigation found that LPG escaped to the surface at the Brenham site through brine injection tubing after excessive fill from an LPG line forced the cavern's water level below the brine tubing's bottom. At the surface, LPG was released into a brine storage pit where it turned into a dense, explosive vapor. At 7:08 a.m., the vapor was ignited by an unknown source. The resulting blast killed three persons and injured 19 and brought operations at the site to a halt.

  20. Final report on Weeks Island Monitoring Phase : 1999 through 2004.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Munson, Darrell Eugene

    2005-05-01

    This Final Report on the Monitoring Phase of the former Weeks Island Strategic Petroleum Reserve crude oil storage facility details the results of five years of monitoring of various surface accessible quantities at the decommissioned facility. The Weeks Island mine was authorized by the State of Louisiana as a Strategic Petroleum Reserve oil storage facility from 1979 until decommissioning of the facility in 1999. Discovery of a sinkhole over the facility in 1992 with freshwater inflow to the facility threatened the integrity of the oil storage and led to the decision to remove the oil, fill the chambers with brine, and decommission the facility. Thereafter, a monitoring phase, by agreement between the Department of Energy and the State, addressed facility stability and environmental concerns. Monitoring of the surface ground water and the brine of the underground chambers from the East Fill Hole produced no evidence of hydrocarbon contamination, which suggests that any unrecovered oil remaining in the underground chambers has been contained. Ever diminishing progression of the initial major sinkhole, and a subsequent minor sinkhole, with time was verification of the response of sinkholes to filling of the facility with brine. Brine filling of the facility ostensively eliminates any further growth or new formation from freshwater inflow. Continued monitoring of sinkhole response, together with continued surface surveillance for environmental problems, confirmed the intended results of brine pressurization. Surface subsidence measurements over the mine continued throughout the monitoring phase. And finally, the outward flow of brine was monitored as a measure of the creep closure of the mine chambers. Results of each of these monitoring activities are presented, with their correlation toward assuring the stability and environmental security of the decommissioned facility. The results suggest that the decommissioning was successful and no contamination of the surface environment by crude oil has been found.

  1. A method for quick assessment of CO2 storage capacity in closedand semi-closed saline formations

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J.; Tsang, C.F.; Rutqvist, J.

    2008-02-10

    Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO{sub 2}) injection into and storage in such 'closed' systems with impervious seals, or 'semi-closed' systems with nonideal (low-permeability) seals, is different from that in 'open' systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO{sub 2} injection may have a limiting effect on CO{sub 2} storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO{sub 2} storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO{sub 2} occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With nonideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO{sub 2} storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the 'true' values obtained using detailed numerical simulations of CO{sub 2} and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage-formation-seal systems of various geometric and hydrogeological properties.

  2. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect (OSTI)

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  3. Sequestration of CO2 in Mixtures of Bauxite Residue and Saline Wastewater

    SciTech Connect (OSTI)

    Dilmore, Robert; Lu, Peng; Allen, Douglas; Soong, Yee; Hedges, Sheila; Fu, Jaw K.; Dobbs, Charles L.; Degalbo, Angelo; Zhu, Chen

    2008-01-01

    Experiments were conducted to explore the concept of beneficially utilizing mixtures of caustic bauxite residue slurry (pH 13) and produced oil-field brine to sequester carbon dioxide from flue gas generated from industrial point sources. Data presented herein provide a preliminary assessment of the overall feasibility of this treatment concept. The Carbonation capacity of bauxite residue/brine mixtures was considered over the full range of reactant mixture combinations in 10% increments by volume. A bauxite residue/brine mixture of 90/10 by volume exhibited a CO2 sequestration capacity of greater than 9.5 g/L when exposed to pure CO2 at 20 C and 0.689 MPa (100 psig). Dawsonite and calcite formation were predicted to be the dominant products of bauxite/brine mixture carbonation. It is demonstrated that CO2 sequestration is augmented by adding bauxite residue as a caustic agent to acidic brine solutions and that trapping is accomplished through both mineralization and solubilization. The product mixture solution was, in nearly all mixtures, neutralized following carbonation. However, in samples (bauxite residue/brine mixture of 90/10 by volume) containing bauxite residue solids, the pH was observed to gradually increase to as high as 9.7 after aging for 33 days, suggesting that the CO2 sequestration capacity of the samples increases with aging. Our geochemical models generally predicted the experimental results of carbon sequestration capacities and solution pH.

  4. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    SciTech Connect (OSTI)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke; Asano, Takashi; Tamata, Shin

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it was used for the column testing to obtain breakthrough curves under various conditions of pH and brine concentration. The breakthrough point had a dependency on pH and the brine concentration. We found that when the pH was higher or the brine concentration was lower, the longer it took to reach the breakthrough point. The inhibition of strontium adsorption by alkali earth metals would be diminished for conditions of higher pH and lower brine concentration. (authors)

  5. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect (OSTI)

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 F. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 F, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 F brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the piggyback demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required process conditions for the TGH demonstration. Operation of the TGH with and without the ABS system will demonstrate an increase in geothermal resource productivity for the VPC from 1 MW/(million lb) of brine to 1.75 MW/(million lb) of brine, a 75% increase.

  6. Colloid formation study of U, Th, Ra, Pb, Po, Sr, Rb, and Cs in briny (high ionic strength) groundwaters

    SciTech Connect (OSTI)

    Maiti, T.C.; Smith, M.R.; Laul, J.C.

    1989-01-01

    Colloid formation of uranium, thorium, radium, lead, polonium, strontium, rubidium, and cesium in briny (high ionic strength) groundwaters is studied to predict their capability as vectors for transporting radionuclides. This knowledge is essential in developing models to infer the transport of radionuclides from the source region to the surrounding environment. Except polonium, based on the experimental results, colloid formation of uranium, thorium, radium, lead, strontium, rubidium, and cesium is unlikely in brines with compositions similar to the synthetic Palo Duro Basin brine. This observation of no colloid formation is explained by electrokinetic theory and inorganic solution chemistry.

  7. Gravity monitoring of CO2 movement during sequestration: Model studies

    SciTech Connect (OSTI)

    Gasperikova, E.; Hoversten, G.M.

    2008-07-15

    We examine the relative merits of gravity measurements as a monitoring tool for geological CO{sub 2} sequestration in three different modeling scenarios. The first is a combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the second is sequestration in a brine formation, and the third is for a coalbed methane formation. EOR/sequestration petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO{sub 2}). Coal formations undergoing methane extraction tend to be thin (3-10 m), but shallow compared to either EOR or brine formations. The injection of CO{sub 2} into the oil reservoir produced a bulk density decrease in the reservoir. The spatial pattern of the change in the vertical component of gravity (G{sub z}) is directly correlated with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G{sub z} clearly identified the vertical section of the reservoir where fluid saturations are changing. The CO{sub 2}-brine front, on the order of 1 km within a 20 m thick brine formation at 1900 m depth, with 30% CO{sub 2} and 70% brine saturations, respectively, produced a -10 Gal surface gravity anomaly. Such anomaly would be detectable in the field. The amount of CO{sub 2} in a coalbed methane test scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrated that the general position of density changes caused by CO{sub 2} can be recovered, but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic measurements.

  8. Innovative Approaches to Low-Cost Module Manufacturing of String Ribbon Si PV Modules; Final Subcontract Report, March 2002 - January 2005

    SciTech Connect (OSTI)

    Hanoka, J. I.

    2005-10-01

    As a result of this work, Evergreen Solar, Inc., is now poised to take String Ribbon technology to new heights. In the ribbon growth area, Project Gemini-the growth of dual ribbons from a single crucible-has reached or exceeded all the manufacturing goals set for it. This project grew from an R&D concept to a production pilot phase and finally to a full production phase, all within the span of this subcontract. A major aspect of the overall effort was the introduction of controls and instrumentation as in-line diagnostic tools. In the ribbon production area, the result has been a 12% increase in yields, a 10% increase in machine uptime, and the flattest ribbon ever grown at Evergreen. In the cell area, advances in process development and robotic handling of Gemini wafers have contributed, along with the advances in crystal growth, to a yield improvement of 6%. Particularly noteworthy in the cell area was the refinement of the no-etch process whereby the as-grown ribbon surface could be controlled sufficiently to allow this process to succeed as well as it has. This process obviates any need for wet chemistry or etching between ribbon growth and diffusion.

  9. Kalispel Resident Fish Project : Tribal Hatchery Operations and Maintenance Annual Report, 2002.

    SciTech Connect (OSTI)

    Nenema, David

    2003-03-01

    The Kalispel Tribal hatchery successfully spawned largemouth bass broodfish in spring 2002. Approximately 150,000 eggs were produced and hatched. These fry were started on brine shrimp for a period of ten days. At this time, the fry needed more abundance food supply. Cannibalism started and the hatchery staff transferred the remaining fry to the river in hopes that some fish would survive.

  10. CX-100019: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Rare Earths in Geothermal Brines and Evaluation of Potential Extraction Techniques CX(s) Applied: A9, B3.1, B3.6 Date: 08/18/2014 Location(s): California Offices(s): Golden Field Office Technology Office: Geothermal Technologies Award Number: DE-EE0006750

  11. CX-001190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    An Integrated Experimental and Numerical Study: Developing a Reaction Transport Model that Couples Chemical Reactions of Mineral Dissolution/Precipitation with Spatial and Temporal Flow Variations in Carbon Dioxide/Brine/Rock SystemsCX(s) Applied: A9, B3.6Date: 03/21/2010Location(s): Minneapolis, MinnesotaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  12. EIS-0001: Strategic Petroleum Reserve, Bryan Mound Salt Dome, Brazoria County, Texas

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserve prepared this SEIS to address the environmental impacts of construction and operation of two types of brine disposal systems and a new water supply system. This EIS supplements FES 76/77-6, Bryan Mound Storage Site.

  13. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOE Patents [OSTI]

    Daniels, Edward J. (Oak Lawn, IL); Jody, Bassam J. (Chicago, IL); Bonsignore, Patrick V. (Channahon, IL)

    1994-01-01

    A process and system for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled.

  14. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOE Patents [OSTI]

    Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.

    1994-07-19

    A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.

  15. Final Technical Report, DE-SC0000581

    SciTech Connect (OSTI)

    Douglas C. Lynn, Executive Director

    2010-12-28

    The focus of the CEHMM award was alternative energy research and education. The objective of the CEHMM algae to biodiesel project was to determine the viability and feasibility of using algae as a feedstock for commercial biodiesel production. The project investigated the propagation, harvesting and extraction of oil from a salt/brine water algae in open raceway ponds.

  16. Risk Reduction and Soil Ecosystem Restoration in an Active Oil Producing Area in an Ecologically Sensitive Setting

    SciTech Connect (OSTI)

    Kerry L. Sublette; Greg Thoma; Kathleen Duncan

    2006-01-01

    The empowerment of small independent oil and gas producers to solve their own remediation problems will result in greater environmental compliance and more effective protection of the environment as well as making small producers more self-reliant. In Chapter 1 we report on the effectiveness of a low-cost method of remediation of a combined spill of crude oil and brine in the Tallgrass Prairie Preserve in Osage County, OK. Specifically, we have used hay and fertilizer as amendments for remediation of both the oil and the brine. No gypsum was used. Three spills of crude oil plus produced water brine were treated with combinations of ripping, fertilizers and hay, and a downslope interception trench in an effort to demonstrate an inexpensive, easily implemented, and effective remediation plan. There was no statistically significant effect of treatment on the biodegradation of crude oil. However, TPH reduction clearly proceeded in the presence of brine contamination. The average TPH half-life considering all impacted sites was 267 days. The combination of hay addition, ripping, and a downslope interception trench was superior to hay addition with ripping, or ripping plus an interception trench in terms of rates of sodium and chloride leaching from the impacted sites. Reductions in salt inventories (36 months) were 73% in the site with hay addition, ripping and an interception trench, 40% in the site with hay addition and ripping only, and < 3% in the site with ripping and an interception trench.

  17. SImbol Materials Lithium Extraction Operating Data From Elmore and Featherstone Geothermal Plants

    SciTech Connect (OSTI)

    Stephen Harrison

    2015-07-08

    The data provided in this upload is summary data from its Demonstration Plant operation at the geothermal power production plants in the Imperial Valley. The data provided is averaged data for the Elmore Plant and the Featherstone Plant. Included is both temperature and analytical data (ICP_OES). Provide is the feed to the Simbol Process, post brine treatment and post lithium extraction.

  18. Multi-stage flash degaser

    DOE Patents [OSTI]

    Rapier, P.M.

    1980-06-26

    A multi-stage flash degaser is incorporated in an energy conversion system having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger in order that the heat exchanger and a turbine and condenser of the system can operate at optimal efficiency.

  19. CX-011808: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Analytical Methods for Air and Stray Gas Emissions and Produced Brine Characterization CX(s) Applied: A9, A11, B3.6 Date: 01/27/2014 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  20. CX-011807: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Analytical Methods for Air and Stray Gas Emissions and Produced Brine Characterization CX(s) Applied: A9, A11, B3.1, B3.6 Date: 01/27/2014 Location(s): Pennsylvania, Pennsylvania Offices(s): National Energy Technology Laboratory

  1. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect (OSTI)

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  2. Balanced-activity improved inverse emulsion to inhibit brittle lutite hydration in oil fields

    SciTech Connect (OSTI)

    Olmedo, E. P.; de J. Hernandez Alvarez, R.; Barrera, C. D.; Ramos, J. D. G.

    1984-10-02

    An improved inverse emulsion for use as a drilling fluid that inhibits brittle lutite hydration. The emulsion includes a heavy oil; brine; a viscosity agent with thermostabilizing properties; an emulsifying agent; a thickening agent; a gelatinizing additive; and an alkaline earth metal hydroxide. The emulsion avoids hole collapsing and improves well gage stability.

  3. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect (OSTI)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  4. I

    Office of Scientific and Technical Information (OSTI)

    CALCULATION OF BRINE PROPERTIElS , Gerald L. Dittman I i February 16, 1977 , This i s ... ABSTRACT Simple a n a l y t i c a l expressions a r e presented f o r e s t i m a t i n g ...

  5. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    SciTech Connect (OSTI)

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  6. Results of site validation experiments. Volume II. Supporting documents 5 through 14

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Volume II contains the following supporting documents: Summary of Geologic Mapping of Underground Investigations; Logging of Vertical Coreholes - ''Double Box'' Area and Exploratory Drift; WIPP High Precision Gravity Survey; Basic Data Reports for Drillholes, Brine Content of Facility Internal Strata; Mineralogical Content of Facility Interval Strata; Location and Characterization of Interbedded Materials; Characterization of Aquifers at Shaft Locations; and Permeability of Facility Interval Strate.

  7. California Geothermal Power Plant to Help Meet High Lithium Demand

    Broader source: Energy.gov [DOE]

    Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

  8. Process chemistry monitoring at the HGP-A power plant: analytical results, process problems and modifications

    SciTech Connect (OSTI)

    Thomas, D.M.

    1982-10-01

    The HGP-A generator plant began operations on June 12, 1981 and came on-line on a continuous basis on March 1, 1982. During this period process problems were identified and, in most cases, plant modifications have eliminated the difficulties. Silica in the brine was stable at a pH 7.5, however, at a pH above 9.5 deposition of silica was triggered in a brine disposal system and required abandonment of the hydrogen sulfide abatement process originally proposed for the brine system. The steam phase sulfide abatement system for standby conditions was 90% effective, although superheat in the treatment system reduced abatement efficiency. Brine carryover through the separator was very low; however, scale deposition on the turbine blades resulted in substantial damage to the turbine. Non-condensable gases in the condenser were weakly partitioned into the liquid phase, and about 99% were carried into the off-gas treatment system which was found to be approximately 99% effective.

  9. An analysis of weep holes as a product detection device for underground compensated LPG storage systems

    SciTech Connect (OSTI)

    Sarica, C.; Demir, H.M.; Brill, J.P.

    1996-09-01

    Weep holes have been used widely to detect the presence of Liquefied Petroleum Gases (LPG) in brine for underground compensated storage systems. When the brine level drops below the weep hole, LPG product enters the brine production system causing an increase in both tubing head pressure and flow rate. To prevent cavern overfill, a cavern shutdown is initiated upon detection of LPG in the surface brine system by pressure or flow instruments at the tubing head. In this study, we have investigated the multiphase flow characteristics of weep hole LPG detection systems to correctly estimate the operating limits. A simple and easy to use model has been developed to predict the tubing head pressure and flow rate increases. The model can be used to implement safer and more efficient operation procedures for underground compensated LPG storage systems. The model predictions for a typical field case are presented. An analysis of weep holes as product detection devices for LPG storage reservoirs has been carried out. It was found that the increases in pressure and flow rates at the tubing head change as a function of injection flow rate of the product. Therefore, a thorough consideration of cavern operating parameters is necessary to evaluate the use constant pressure and flow rate values to initiate emergency shut down of the cavern.

  10. CX-007510: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Record of Categorical Exclusion for Tear Down, Inspect and Repair Bayou Choctaw Brine Filters at BDW Pad 1 CX(s) Applied: B1.3 Date: 11/29/2011 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  11. CX-000459: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine Carbon Dioxide SequestrationCX(s) Applied: A9, B3.6Date: 12/07/2009Location(s): Pasadena, CaliforniaOffice(s): Fossil Energy, National Energy Technology Laboratory

  12. SImbol Materials Lithium Extraction Operating Data From Elmore and Featherstone Geothermal Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stephen Harrison

    The data provided in this upload is summary data from its Demonstration Plant operation at the geothermal power production plants in the Imperial Valley. The data provided is averaged data for the Elmore Plant and the Featherstone Plant. Included is both temperature and analytical data (ICP_OES). Provide is the feed to the Simbol Process, post brine treatment and post lithium extraction.

  13. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  14. Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-11-01

    Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-termatching recovery trends for laboratory and single-well tests.

  15. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    SciTech Connect (OSTI)

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  16. Offshore oceanographic and environmental monitoring services for the Strategic Petroleum Reserve. Volume I. Appendices. Annual report for the Bryan Mound Site, September 1982-August 1983

    SciTech Connect (OSTI)

    1984-03-01

    The Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging brine into the coastal waters offshore of Freeport, Texas on March 10, 1980. This report describes the findings of a team of Texas A and M University scientists and engineers who have conducted a study to evaluate the effects of the Bryan Mound brine discharge on the marine environment. The study addresses the areas of physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos and data management. It focuses on the period from September 1982 through August 1983. The ambient physical environment and its temporal and spatial variability were studied by means of continuously recording in situ current/conductivitiy/temperature meters and twelve, one-day synoptic hydrographic cruises. The quarterly water and sediment quality data show a small increase in salinity, sodium and chloride ions occurs in the bottom waters and sediment pore waters near the diffuser relative to those values measured at stations farther away. Data from the brine plume study for this reporting study show the largest areal extent within the +1 o/oo above ambient salinity contour was 40.0 km/sup 2/ which occurred on August 11, 1983. It appears that brine disposal at Bryan Mound has had neglible if any influence on the nekton community surrounding the diffuser. The benthic quarterly data from 26 stations, including 7 collections made after the diffuser outflow rate was increased to 1,000,000 barrels/day, show the total numbers of species at the diffuser station were higher than most other nearfield stations as well as many farfield stations in both the pre- and post-1,000,000 barrels/day brine flow periods. 138 references, 175 figures, 53 tables.

  17. Flow tests of the Gladys McCall well

    SciTech Connect (OSTI)

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A. )

    1992-04-01

    This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor pills'' directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

  18. Flow tests of the Gladys McCall well. Appendix A, Gladys McCall Site (Cameron Parish, LA): Final report, October 1985--October 1990

    SciTech Connect (OSTI)

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-04-01

    This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor ``pills`` directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

  19. Microbial characterization for the Source-Term Waste Test Program (STTP) at Los Alamos

    SciTech Connect (OSTI)

    Leonard, P.A.; Strietelmeier, B.A.; Pansoy-Hjelvik, M.E.; Villarreal, R.

    1999-04-01

    The effects of microbial activity on the performance of the proposed underground nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico are being studied at Los Alamos National Laboratory (LANL) as part of an ex situ large-scale experiment. Actual actinide-containing waste is being used to predict the effect of potential brine inundation in the repository in the distant future. The study conditions are meant to simulate what might exist should the underground repository be flooded hundreds of years after closure as a result of inadvertent drilling into brine pockets below the repository. The Department of Energy (DOE) selected LANL to conduct the Actinide Source-Term Waste Test Program (STTP) to confirm the predictive capability of computer models being developed at Sandia National Laboratory.

  20. Solubility and Surface Adsorption Characteristics of Metal Oxides to High Temperature

    SciTech Connect (OSTI)

    D.J. Wesolowski; M.L. Machesky; S.E. Ziemniak; C. Xiao; D.A. Palmer; L.M. Anovitz; P. Benezeth

    2001-05-04

    The interaction of high temperature aqueous solutions with mineral surfaces plays a key role in many aspects of fossil, geothermal and nuclear energy production. This is an area of study in which the subsurface geochemical processes that determine brine composition, porosity and permeability changes, reservoir integrity, and fluid flow rates overlap with the industrial processes associated with corrosion of metal parts and deposition of solids in pipes and on heat exchanger surfaces. The sorption of ions on mineral surfaces is also of great interest in both the subsurface and ''above ground'' regimes of power production, playing a key role in subsurface migration of contaminants (nuclear waste disposal, geothermal brine re-injection, etc.) and in plant operations (corrosion mitigation, migration of radioactive metals from reactor core to heat exchanger, etc.). In this paper, results of the solubility and surface chemistry of metal oxides relevant to both regimes are summarized.

  1. Development history of the Tiwi geothermal field, Philippines

    SciTech Connect (OSTI)

    Gambill, D.T.; Beraquit, D.B.

    1993-10-01

    Commercial production of electricity from the Tiwi geothermal system began in 1979. In 1982, Tiwi became the world`s first water-dominated system to produce more than 160 MWe. Today the field supplies about 11% of Luzon`s electricity. Initially, the reservoir was single-phase liquid with a small, shallow steam zone on the east side. Temperature reversals in the first wells showed the east to be an outflow zone. As production began, reservoir pressure declined, two-phase conditions developed, and groundwater entered the reservoir from the east. As many productions wells cooled, brine production increased and generation decreased from about 280 MWe in 1983 to about 190 MWe in 1986. Improvements to surface facilities and new wells drilled farther west raised generation to about 280 MWe by mid-1993. Separated brine was first injected into the reservoir, but this lowered steam production; injection is now outside the field.

  2. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power frommore » the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less

  3. Sampling and analytical methods development at the HGP-a generator facility

    SciTech Connect (OSTI)

    Thomas, D.M.

    1982-10-01

    During shakedown operations for the HGP-A generator plant sampling and analytical problems were encountered during the process chemistry monitoring effort. Acid-preservation of brine for cation analysis required the use of nitrous oxideacetylene flame for accurate A-A analysis of calcium. Analysis of gases for carbonate and sulfide was by specific ion electrode and alkalinity titration, respectively. Sulfide caused substantial interferences with the alkalinity method and corrections for sulfide were required. Sulfide also interfered with chloride analyses in the steam phase requiring removal of the sulfide by boiling. Analysis of dissolved silica in the brine was complicated by the presence of colloidal silica which produced erratic analytical results. An accurate evaluation of the hydrogen sulfide abatement system was possible only when the hydrogen sulfide concentrations in the treated and untreated steam were compared with a second component in the steam phase that was unaffected by caustic injection.

  4. Chemistry, scale, and performance of the Hawaii geothermal project-A plant

    SciTech Connect (OSTI)

    Baughman, E.C.; Uemura, R.T.

    1985-12-01

    The objective of this study was to determine the effects of scale, corrosion, and erosion of the geothermal resource on HGP-A Geothermal Wellhead Power Plant. Analysis of the fluid chemistry was made to interpret the cause of corrosion and scale deposition in the brine and steam systems. It was found that metal sulfide scale formation occurred in the steam system and silica type scale formation in the brine system. The rate of scale deposition was strongly influenced by the chemical conditions in those systems. Although scale and corrosion did occur in the plant piping systems and equipment, they did not appreciably affect the performance of the plant. The results of this study will make the utilities more aware of the effects of geothermal fluid chemistry on scale deposition and corrosion which may increase plant efficiency and reduce maintenance of future plants. 7 refs., 67 figs., 13 tabs.

  5. Desalination Plant Optimization

    Energy Science and Technology Software Center (OSTI)

    1992-10-01

    MSF21 and VTE21 perform design and costing calculations for multistage flash evaporator (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. An optimization capability is available, if desired. The MSF plant consists of a recovery section, reject section, brine heater, and associated buildings and equipment. Operating costs and direct and indirect capital costs for plant, buildings, site, and intakes are calculated. Computations are based on the first and last stages of each section and amore » typical middle recovery stage. As a result, the program runs rapidly but does not give stage by stage parameters. The VTE plant consists of vertical tube effects, multistage flash preheater, condenser, and brine heater and associated buildings and equipment. Design computations are done for each vertical tube effect, but preheater computations are based on the first and last stages and a typical middle stage.« less

  6. 500-kW DCHX pilot-plant evaluation testing

    SciTech Connect (OSTI)

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  7. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    SciTech Connect (OSTI)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.

  8. Isothermal evaporation process simulation using the Pitzer model for the Quinary system LiCl–NaCl–KCl–SrCl2–H2O at 298.15 K

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meng, Lingzong; Gruszkiewicz, Miroslaw S.; Deng, Tianlong; Guo, Yafei; Li, Dan

    2015-08-05

    In this study, the Pitzer thermodynamic model for solid-liquid equilibria in the quinary system LiCl–NaCl–KCl–SrCl2–H2O at 298.15 K was constructed by selecting the proper parameters for the subsystems in the literature. The solubility data of the systems NaCl–SrCl2–H2O, KCl–SrCl2–H2O, LiCl–SrCl2–H2O, and NaCl–KCl–SrCl2–H2O were used to evaluate the model. Good agreement between the experimental and calculated solubilities shows that the model is reliable. The Pitzer model for the quinary system at 298.15 K was then used to calculate the component solubilities and conduct computer simulation of isothermal evaporation of the mother liquor for the oilfield brine from Nanyishan district in themore » Qaidam Basin. The evaporation-crystallization path and sequence of salt precipitation, change in concentration and precipitation of lithium, sodium, potassium, and strontium, and water activities during the evaporation process were demonstrated. The salts precipitated from the brine in the order : KCl, NaCl, SrCl2∙6H2O, SrCl2∙2H2O, and LiCl∙H2O. The entire evaporation process may be divided into six stages. In each stage the variation trends for the relationships between ion concentrations or water activities and the evaporation ratio are different. This result of the simulation of brines can be used as a theoretical reference for comprehensive exploitation and utilization of this type of brine resources.« less

  9. Beowawe Binary Bottoming Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beowawe Binary Bottoming Cycle Beowawe Binary Bottoming Cycle Project objectives: Demonstrate the technical and economic feasibility of electricity generation from the nonconventional geothermal resources of 205°F by extracting waste heat from the brine to power a binary power plant. PDF icon low_mcdonald_beowawe_binary_bottoming_cycle.pdf More Documents & Publications Dixie Valley Bottoming Binary Cycle track 1: Low Temp | geothermal 2015 peer review Hybrid and Advanced Air Cooling

  10. Comparison between two Lysholm engines

    SciTech Connect (OSTI)

    Frau, B.A.

    1983-01-01

    The University of California at Berkeley (UCB) and the Jet Propulsion Laboratory (JPL) both have been working on the Lysholm engine as an expander of two phase geothermal brine. The sizes of the machines, (The machine at UCB is rated at 25 kW, and the machine that JPL tested is rated at 1MW) as well as the approaches, are different. Here, some comparisons are made in order to clarify the direction in which future efforts should be conducted.

  11. Multi-stage flash degaser

    DOE Patents [OSTI]

    Rapier, Pascal M. (Richmond, CA)

    1982-01-01

    A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.

  12. Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters with Advanced Sorbent Structures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Pamela M. Kinsey

    2015-09-30

    The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.

  13. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop platform to study subsurface reservoir conditions March 7, 2016 Los Alamos researchers have developed a high pressure and temperature microfluidic experimental system to investigate pore-scale fluid flow and transport within geo- materials encountered in subsurface energy resource applications. The experiments can be conducted with brine, oil, and carbon dioxide (CO 2 ) at temperatures and pressures similar to naturally occurring reservoirs. The information gained from this system could

  14. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    SciTech Connect (OSTI)

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  15. Advanced Reservoir Characterization and Evaluation of C02 Gravity Drainage in the Naturally Fractured Sprayberry Trend Area

    SciTech Connect (OSTI)

    David S. Schechter

    1998-04-30

    The objective is to assess the economic feasibility of CO2 flooding of the naturally fractured Straberry Trend Area in west Texas. Research is being conducted in the extensive characterization of the reservoirs, the experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, the analytical and numerical simulation of Spraberry reservoirs, and the experimental investigations on CO2 gravity drainage in Spraberry whole cores.

  16. Selected Project City State Project Description Proposed DOE Share

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    projects below represent Selected Projects for award negotiations, for an award up to the Selection Statement amount. Selected Project City State Project Description Proposed DOE Share (up to amount listed) Southern Research Institute Birmingham AL Southern Research Institute will be working to develop an innovative Geothermal Thermoelectric Generation (G-TEG) system specially designed to both generate electricity and extract high-value lithium from low-temperature geothermal brines. The

  17. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-09-01

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  18. Corrosion and environmental-mechanical characterization of iron-base nuclear waste package structural barrier materials. Annual report, FY 1984

    SciTech Connect (OSTI)

    Westerman, R.E.; Haberman, J.H.; Pitman, S.G.; Pulsipher, B.A.; Sigalla, L.A.

    1986-03-01

    Disposal of high-level nuclear waste in deep underground repositories may require the development of waste packages that will keep the radioisotopes contained for up to 1000 y. A number of iron-base materials are being considered for the structural barrier members of waste packages. Their uniform and nonuniform (pitting and intergranular) corrosion behavior and their resistance to stress-corrosion cracking in aqueous environments relevant to salt media are under study at Pacific Northwest Laboratory. The purpose of the work is to provide data for a materials degradation model that can ultimately be used to predict the effective lifetime of a waste package overpack in the actual repository environment. The corrosion behavior of the candidate materials was investigated in simulated intrusion brine (essentially NaCl) in flowing autoclave tests at 150/sup 0/C, and in combinations of intrusion/inclusion (high-Mg) brine environments in moist salt tests, also at 150/sup 0/C. Studies utilizing a /sup 60/Co irradiation facility were performed to determine the corrosion resistance of the candidate materials to products of brine radiolysis at dose rates of 2 x 10/sup 3/ and 1 x 10/sup 5/ rad/h and a temperature of 150/sup 0/C. These irradiation-corrosion tests were ''overtests,'' as the irradiation intensities employed were 10 to 1000 times as high as those expected at the surface of a thick-walled waste package. With the exception of the high general corrosion rates found in the tests using moist salt containing high-Mg brines, the ferrous materials exhibited a degree of corrosion resistance that indicates a potentially satisfactory application to waste package structural barrier members in a salt repository environment.

  19. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J. T.

    2011-05-01

    The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

  20. September 2015 Most Viewed Documents for Renewable Energy Sources | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy, Office of Scientific and Technical Information September 2015 Most Viewed Documents for Renewable Energy Sources Calculation of brine properties. [Above 80/sup 0/F and for salt content between 5 and 25%] Dittman, G.L. (1977) 257 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 217 Thermal conductivity of aqueous NaCl solutions

  1. Method of determining interwell oil field fluid saturation distribution

    DOE Patents [OSTI]

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  2. Silica recovery and control in Hawaiian geothermal fluids. Final report

    SciTech Connect (OSTI)

    Thomas, D.M.

    1992-06-01

    A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

  3. Water and gas chemistry from HGP-A geothermal well: January 1980 flow test

    SciTech Connect (OSTI)

    Thomas, D.M.

    1980-09-01

    A two-week production test was conducted on the geothermal well HGP-A. Brine chemistry indicates that approximately six percent of the well fluids are presently derived from seawater and that this fraction will probably increase during continued production. Reservoir production is indicated to be from two chemically distinct aquifers: one having relatively high salinity and low production and the other having lower salinity and producing the bulk of the discharge.

  4. Silica recovery and control in Hawaiian geothermal fluids

    SciTech Connect (OSTI)

    Thomas, D.M.

    1992-06-01

    A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

  5. December 2015 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dept of Energy, Office of Scientific and Technical Information December 2015 Most Viewed Documents for Renewable Energy Sources Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 307 Calculation of brine properties. [Above 80/sup 0/F and for salt content between 5 and 25%] Dittman, G.L. (1977) 228 Temperature coefficients for PV modules and

  6. FE00880_RBDMS | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk Based Data Management System (RBDMS) and Cost Effective Regulatory Approaches (CERA) Related to Hydraulic Fracturing and Geologic Sequestration of Carbon Dioxide (CO2) Last Reviewed 11/30/2015 DE-FE0000880 Goal The goal of this project is to enhance the RBDMS by adding new components relevant to environmental topics associated with hydraulic fracturing (HF), and by management of myriad data regarding oil and natural gas well histories, brine disposal, production, enhanced recovery,

  7. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect (OSTI)

    Karamalidis, Athanasios K.; Torres, Sharon G.; Hakala, J. Alexandra; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan

    2013-01-01

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO{sub 2} or CO{sub 2}-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO{sub 2}, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO{sub 2}. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  8. Meet CMI Researcher Parans Paranthaman | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parans Paranthaman Image of Parans Paranthaman, CMI researcher at Oak Ridge National Laboratory Parans Paranthaman at Oak Ridge National Laboratory is a CMI researcher focused on additive manufacturing of permanent magnets, lithium separation from geothermal brine and lithium and sodium ion battery development. In February 2016, the AAAS inducted Paranthaman as an AAAS Fellow for chemistry. AAAS Fellows are recognized for meritorious efforts to advance science or its applications. In 2015,

  9. COATINGS FOR PROTECTION OF EQUIPMENT FOR BIOCHEMICAL PROCESSING OF GEOTHERMAL RESIDUES: PROGRESS REPORT FY 97

    SciTech Connect (OSTI)

    ALLAN,M.L.

    1997-11-01

    Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. The findings are also relevant to other moderate temperature brine environments where corrosion is a problem. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobadus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Long-term tests on the durability of ceramic-epoxy coatings in brine and bacteria are ongoing. Initial indications are that this coating has suitable characteristics. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.

  10. Microsoft Word - AL2005-13.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3.doc Microsoft Word - AL2005-13.doc PDF icon Microsoft Word - AL2005-13.doc More Documents & Publications PBA2007 Presentation-short-6-19-07DOE&#0; Accident Investigation of the February 7, 2013, Scissor Lift Accident in the West Hackberry Brine Tank-14 Resulting in Injury, Strategic Petroleum Reserve West Hackberry, LA Microsoft Word - AcqGuide37pt1 binney Nov 2010

  11. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM

    Broader source: Energy.gov [DOE]

    This targeted initiative focuses on critical mineral extraction as a path to optimize the value stream of low-to-moderate temperature resources. The FOA aims to promote the advancement of thermal energy processes capable of converting geothermal heat sources into power, in conjunction with the development or exploitation of technologies capable of capturing, concentrating, and/or purifying valuable materials contained within geothermal brines to economically extract resources that can provide additional revenue streams to geothermal operators.

  12. NREL: Geothermal Technologies - Neil Popovich

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Popovich Chemical Engineer-Multi Discipline On staff since 2010 Phone number: 303-275-3074 E-mail: Neil.Popovich@nrel.gov General Profile Neil Popovich is a member of the Systems Engineering and Program Integration Office (SEPIO). Areas of expertise Low temperature geothermal power production systems Mineral recovery from geothermal brines Data and instrumentation systems Fuel cell systems, manufacturing and engineering Education and background training M.S. in chemical engineering, University

  13. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect (OSTI)

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  14. Testing of the Pleasant Bayou Well through October 1990

    SciTech Connect (OSTI)

    Randolph, P.L.; Hayden, C.G.; Mosca, V.L.; Anhaiser, J.L.

    1992-08-01

    Pleasant Bayou location was inactive from 1983 until the cleanout of the production and disposal wells in 1986. The surface facilities were rehabilitated and after shakedown of the system, additional repair of wellhead valves, and injection of an inhibitor pill, continuous long-term production was started in 1988. Over two years of production subsequent to that are reviewed here, including: production data, brine sampling and analysis, hydrocarbon sampling and analysis, solids sampling and analysis, scale control and corrosion monitoring and control.

  15. Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2

    SciTech Connect (OSTI)

    Downing, J.C.

    1990-01-01

    The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.

  16. Microsoft Word - NRAP-TRS-III-005-2012_ROMDevelopment_20121018.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduced-Order Model Development for CO 2 Storage in Brine Reservoirs 17 October 2012 Office of Fossil Energy NRAP-TRS-III-005-2012 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

  17. March 2015 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dept of Energy, Office of Scientific and Technical Information 5 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 386 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 234 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 159 Calculation of brine

  18. Categorical Exclusion Determinations: B5.12 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Categorical Exclusion Determinations: B5.12 Existing Regulations B5.12: Workover of existing wells Workover (operations to restore production, such as deepening, plugging back, pulling and resetting lines, and squeeze cementing) of existing wells (including, but not limited to, activities associated with brine, carbon dioxide, coalbed methane, gas hydrate, geothermal, natural gas, and oil) to restore functionality, provided that workover operations are restricted to the existing wellpad and do

  19. Categorical Exclusion Determinations: B5.2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Categorical Exclusion Determinations: B5.2 Existing Regulations B5.2: Modifications to pumps and piping Modifications to existing pump and piping configurations (including, but not limited to, manifolds, metering systems, and other instrumentation on such configurations conveying materials such as air, brine, carbon dioxide, geothermal system fluids, hydrogen gas, natural gas, nitrogen gas, oil, produced water, steam, and water). Covered modifications would not have the potential to cause

  20. Categorical Exclusion Determinations: B5.4 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Categorical Exclusion Determinations: B5.4 Existing Regulations B5.4: Repair or replacement of pipelines Repair, replacement, upgrading, rebuilding, or minor relocation of pipelines within existing rights-of-way, provided that the actions are in accordance with applicable requirements (such as Army Corps of Engineers permits under section 404 of the Clean Water Act). Pipelines may convey materials including, but not limited to, air, brine, carbon dioxide, geothermal system fluids, hydrogen

  1. Categorical Exclusion Determinations: B5.5 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Categorical Exclusion Determinations: B5.5 Existing Regulations B5.5: Short pipeline segments Construction and subsequent operation of short (generally less than 20 miles in length) pipeline segments conveying materials (such as air, brine, carbon dioxide, geothermal system fluids, hydrogen gas, natural gas, nitrogen gas, oil, produced water, steam, and water) between existing source facilities and existing receiving facilities (such as facilities for use, reuse, transportation, storage, and

  2. Puna Geothermal Research Facility technology transfer program. Final report, August 23, 1985--August 23, 1989

    SciTech Connect (OSTI)

    Takahashi, P.

    1989-12-31

    The funds were used in a series of small grants to entrepreneurs demonstrating the direct use of geothermal heat supplied by Hawaii`s HGP-A well; this effort was known as the Community Geothermal Technology Program. Summaries are presented of the nine completed projects: fruit dehydration, greenhouse bottom heating, lumber kiln, glass making, cloth dyeing, aquaculture (incomplete), nursery growing media pasteurization, bronze casting, and electrodeposition from geothermal brine.

  3. Final report on Technical Demonstration and Economic Validation of Geothermally-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    SciTech Connect (OSTI)

    Luchini, Chris B.

    2015-06-01

    The initial geothermal brine flow rate and temperature from the re-worked well were insufficient, after 2.5 days of flow testing, to justify advancing past Phase I of this project. The flow test was terminated less than 4 hours from the Phase I deadline for activity, and as such, additional flow tests of 2+ months may be undertaken in the future, without government support.

  4. California: Geothermal Plant to Help Meet High Lithium Demand | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Geothermal Plant to Help Meet High Lithium Demand California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the American Recovery and Reinvestment Act of 2009, EERE's Geothermal Technologies Office is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines. Simbol has the potential to power 300,000-600,000 electric vehicles

  5. E-Alerts: Environmental pollution and control (solid waste pollution and control). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    The paper discusses pollution by solid wastes including garbage, scrap, junked automobiles, spoil, sludge, containers; Disposal methods such as composts or land application, injection wells, incineration, sanitary landfills; Mining wastes; Processing for separation and materials recovery; Solid waste utilization; Recycling; Biological and ecological effects; Superfund (Records of Decision, etc.); SITE technology; Laws, legislation, and regulations; Public administration; Economics; Land use. The discussion includes disposal of concentrated or pure liquids such as brines, oils, chemicals, and hazardous materials.

  6. DOE-Sponsored Project Tests Novel Method to Increase Oil Recovery |

    Office of Environmental Management (EM)

    Department of Energy Tests Novel Method to Increase Oil Recovery DOE-Sponsored Project Tests Novel Method to Increase Oil Recovery February 3, 2015 - 8:11am Addthis DOE-Sponsored Project Tests Novel Method to Increase Oil Recovery Successful laboratory tests at the Energy Department's National Energy Technology Laboratory (NETL) have verified that the use of a brine-soluble ionic surfactant could improve the efficiency of carbon dioxide enhanced oil recovery (CO2-EOR). Surfactants stabilize

  7. Demonstration of a Variable Phase Turbine Power System for Low Temperature

    Office of Environmental Management (EM)

    Geothermal Resources | Department of Energy Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources Project objectives: Demonstrate a 1 megawatt Variable Phase Turbine and Variable Phase Cycle with low temperature brine. PDF icon low_hays_variable_phase_turbine.pdf More Documents & Publications track 1: Low Temp | geothermal 2015 peer review track 3:

  8. EERE Success Story-California: Geothermal Plant to Help Meet High Lithium

    Office of Environmental Management (EM)

    Demand | Department of Energy Geothermal Plant to Help Meet High Lithium Demand EERE Success Story-California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the American Recovery and Reinvestment Act of 2009, EERE's Geothermal Technologies Office is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines. Simbol has the potential to

  9. Fully Autonomous Multiplet Event Detection: Application to Local-Distance Monitoring of Blood Falls Seismicity

    SciTech Connect (OSTI)

    Carmichael, Joshua Daniel; Carr, Christina; Pettit, Erin C.

    2015-06-18

    We apply a fully autonomous icequake detection methodology to a single day of high-sample rate (200 Hz) seismic network data recorded from the terminus of Taylor Glacier, ANT that temporally coincided with a brine release episode near Blood Falls (May 13, 2014). We demonstrate a statistically validated procedure to assemble waveforms triggered by icequakes into populations of clusters linked by intra-event waveform similarity. Our processing methodology implements a noise-adaptive power detector coupled with a complete-linkage clustering algorithm and noise-adaptive correlation detector. This detector-chain reveals a population of 20 multiplet sequences that includes ~150 icequakes and produces zero false alarms on the concurrent, diurnally variable noise. Our results are very promising for identifying changes in background seismicity associated with the presence or absence of brine release episodes. We thereby suggest that our methodology could be applied to longer time periods to establish a brine-release monitoring program for Blood Falls that is based on icequake detections.

  10. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    SciTech Connect (OSTI)

    Elders, W.A.; Cohen, L.H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  11. Inhibition of slug front corrosion in multiphase flow conditions

    SciTech Connect (OSTI)

    Chen, H.J.; Jepson, W.P.

    1998-12-31

    Corrosion at the slug front at the bottom of a pipeline is identified as one of the worst cases of corrosion occurring in the pipeline which carries unprocessed multiphase production with a high level of CO{sub 2} gas. One objective of the study in recommending a subsea completion to shore was to determine if commercial corrosion inhibitors can control this type of corrosion using carbon steel pipeline. Thus, inhibitors which showed excellent performance in the lab using the Rotating Cylinder Electrode system (RCE) were further evaluated to confirm their performance in a flow loop simulating the test conditions predicted from the flow modeling for the proposed pipeline. The performance profile of two commercial inhibitors were determined in a 4 in. flow loop at 7O C, 100 psig CO{sub 2} partial pressure in corrosive brines with or without ethylene glycol and/or light hydrocarbon. Results showed that the carbon steel pipeline could be adequately protected at low temperature using a commercial corrosion inhibitor to meet the designed life of the pipeline. Ethylene glycol, which is used in the pipeline to prevent hydrate formation, reduces the corrosivity of the brine and gives no effect on inhibitor performance under the slug flow conditions. A good agreement in inhibitor performance was observed between the flow loop and the RCE testing. The uninhibited corrosion rate of the test brine in this study is in good agreement with the predicted value using deWaard and Williams correlation for CO{sub 2} corrosion.

  12. Method for sequestering CO.sub.2 and SO.sub.2 utilizing a plurality of waste streams

    DOE Patents [OSTI]

    Soong, Yee; Allen, Douglas E.; Zhu, Chen

    2011-04-12

    A neutralization/sequestration process is provided for concomitantly addressing capture and sequestration of both CO.sub.2 and SO.sub.2 from industrial gas byproduct streams. The invented process concomitantly treats and minimizes bauxite residues from aluminum production processes and brine wastewater from oil/gas production processes. The benefits of this integrated approach to coincidental treatment of multiple industrial waste byproduct streams include neutralization of caustic byproduct such as bauxite residue, thereby decreasing the risk associated with the long-term storage and potential environmental of storing caustic materials, decreasing or obviating the need for costly treatment of byproduct brines, thereby eliminating the need to purchase CaO or similar scrubber reagents typically required for SO.sub.2 treatment of such gasses, and directly using CO.sub.2 from flue gas to neutralize bauxite residue/brine mixtures, without the need for costly separation of CO.sub.2 from the industrial byproduct gas stream by processes such as liquid amine-based scrubbers.

  13. Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments

    SciTech Connect (OSTI)

    David Burnett; Harold Vance

    2007-08-31

    The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texas A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.

  14. Downhole fluid sampling at the SSSDP (Salton Sea Scientific Drilling Project) California State 2-14 well, Salton Sea, California

    SciTech Connect (OSTI)

    Goff, F.; Shevenell, L.; Grigsby, C.O.; Dennis, B.

    1987-07-01

    In situ fluid sampling activities were conducted at the Salton Sea Scientific Drilling Project (SSSDP) well during late December 1985 and late March 1986 to obtain unflashed samples of Salton Sea brine. In late December, three sampling runs were made to depths of approximately 1800 m and temperatures of 300/sup 0/C. In late March, 10 sampling runs were made to depths of approximately 3150 m and temperatures of 350/sup 0/C. In brief, the Los Alamos tool obtained samples from four of eight runs; the Lawrence Berkeley tool obtained samples from one of one run; the Leutert Instruments, Inc., tool obtained samples from zero of three runs; and the USGS quartz crystal experiment was lost in the well. The most complete sample was obtained from run No. 11, using the Los Alamos sampler and Sandia battery pack/controller on a wireline. About 1635 ml of brine, two noble gas samples, and two bulk gas samples were collected from this run. Samples of brine and gas from productive runs have been distributed to about 15 researchers for various types of analyses. Chemical analyses by the Los Alamos and US Geological Survey analytical teams are presented in this report, although they are not corrected for flashing and precipitation.

  15. Advances in Geological CO{sub 2} Sequestration and Co-Sequestration with O{sub 2}

    SciTech Connect (OSTI)

    Verba, Circe A; O'Connor, William K.; Ideker, J.H.

    2012-10-28

    The injection of CO{sub 2} for Enhanced Oil Recovery (EOR) and sequestration in brine-bearing formations for long term storage has been in practice or under investigation in many locations globally. This study focused on the assessment of cement wellbore seal integrity in CO{sub 2}- and CO{sub 2}-O{sub 2}-saturated brine and supercritical CO{sub 2} environments. Brine chemistries (NaCl, MgCl{sub 2}, CaCl{sub 2}) at various saline concentrations were investigated at a pressure of 28.9 MPa (4200 psi) at both 50{degree}C and 85{degree}C. These parameters were selected to simulate downhole conditions at several potential CO{sub 2} injection sites in the United States. Class H portland cement is not thermodynamically stable under these conditions and the formation of carbonic acid degrades the cement. Dissociation occurs and leaches cations, forming a CaCO{sub 3} buffered zone, amorphous silica, and other secondary minerals. Increased temperature affected the structure of C-S-H and the hydration of the cement leading to higher degradation rates.

  16. Reducing injection loss in drill strings

    DOE Patents [OSTI]

    Drumheller, Douglas S.

    2004-09-14

    A system and method for transferring wave energy into or out of a periodic structure having a characteristic wave impedance profile at a prime frequency, the characteristic wave impedance profile comprising a real portion and an imaginary portion, comprising: locating one or more energy transfer elements each having a wave impedance at the prime frequency approximately equal to the real portion of the characteristic wave impedance at one or more points on the periodic structure with the imaginary portion approximately equaling zero; and employing the one or more energy transfer elements to transfer wave energy into or out of the periodic structure. The energy transfer may be repeaters. Quarter-wave transformers can be provided at one or more points on the periodic structure with the imaginary portion approximately equaling zero to transmit waves across one or more discontinuities. A terminator can be employed for cancellation of waves. The invention substantially eliminates reflections of the wave energy at the prime frequency by joints between sections of the periodic structure.

  17. Improving Gas Flooding Efficiency

    SciTech Connect (OSTI)

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability changes during CO{sub 2} flooding due to saturation changes, dissolution, and precipitation.

  18. Mobilization of Metals from Eau Claire Siltstone and the Impact of Oxygen under Geological Carbon Dioxide Sequestration Conditions

    SciTech Connect (OSTI)

    Shao, Hongbo; Kukkadapu, Ravi K.; Krogstad, Eirik J.; Newburn, Matthew K.; Cantrell, Kirk J.

    2014-09-01

    Geologic CO2 sequestration (GCS) has been proposed as a viable strategy to reduce anthropogenic CO2 emission; however, the increased cost that will be incurred by fossil energy production facilities is a deterrent to implementation of this technology. Allowing impurities in the effluent CO2 stream could result in significant financial and energy savings for CO2 capture and separation. However, impurities such as O2 have the potential to influence the redox state and alter the geochemical interactions that occur within GCS reservoirs, which increases the concern for CO2 and brine leakage from the storage reservoir as well as the overlying groundwater contamination. In this work, to investigate the impact of O2 co-injected with CO2 on the geochemical interactions, especially the trace metal mobilization from a GCS reservoir rock, batch studies were conducted with Eau Claire siltstone collected from CO2 sequestration sites. The rock was reacted with synthetic brines in contact with either 100% CO2 or a mixture of 95 mole% CO2-5 mole% O2 at 10.1 MPa and 75 C. Both microscopic and spectroscopic measurements, including 57Fe-Mssbauer spectroscopy, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, powder X-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and chemical extraction were combined in this study to investigate reaction mechanisms. The Eau Claire siltstone contains quartz (52 wt%), fluorapatite (40%), and aluminosilicate (5%) as major components, and dolomite (2%), pyrite (1%), and small-particle-/poorly-crystalline Fe-oxides as minor components. With the introduction of CO2 into the reaction vessel containing rock and brine, the leaching of small amounts of fluorapatite, aluminosilicate, and dolomite occurred. Trace metals of environmental concern, including Pb, As, Cd, and Cu were detected in the leachate with concentrations up to 400 ppb in the CO2-brine-rock reaction system within 30 days. In the presence of O2, the mobilization of Pb, Cd, and Cu was significantly enhanced, whereas As concentrations decreased, compared with the reaction system without oxygen. The presence of oxygen resulted in the formation of secondary Fe-oxides which appear to be Fe(II)-substituted P-containing ferrihydrite. Although the rock contained only 1.04 wt% total Fe, oxidative dissolution of pyrite, leaching and oxidation of structural Fe(II) in fluorapatite, and precipitation of Fe-oxides significantly decreased the pH in brine with oxygen(pH 3.3-3.7), compared with the reaction system without oxygen (pH 4.2-4.4). In the CO2-rock-brine system without O2, the majority of As remained in the rock, with about 1.1% of the total As being released from intrinsic Fe-oxides to the aqueous phase. The release behavior of As to solution was consistent with competitive adsorption between phosphate/fluoride and As on Fe-oxide surfaces. In the presence of O2 the mobility of As was reduced due to enhanced adsorption onto both intrinsic and secondary Fe-oxide surfaces.When O2 was present, the dominant species in solution was the less toxic As(V). This work will advance our understanding of the geochemical reaction mechanisms that occur under GCS conditions and help to evaluate the risks associated with geological CO2 sequestration.

  19. A modeling of buoyant gas plume migration

    SciTech Connect (OSTI)

    Silin, D.; Patzek, T.; Benson, S.M.

    2008-12-01

    This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. Ideally, the injected greenhouse gas stays in the injection zone for a geologic time, eventually dissolves in the formation brine and remains trapped by mineralization. However, one of the potential problems associated with the geologic method of sequestration is that naturally present or inadvertently created conduits in the cap rock may result in a gas leakage from primary storage. Even in a supercritical state, the carbon dioxide viscosity and density are lower than those of the formation brine. Buoyancy tends to drive the leaked CO{sub 2} plume upward. Theoretical and experimental studies of buoyancy-driven supercritical CO{sub 2} flow, including estimation of time scales associated with plume evolution and migration, are critical for developing technology, monitoring policy, and regulations for safe carbon dioxide geologic sequestration. In this study, we obtain simple estimates of vertical plume propagation velocity taking into account the density and viscosity contrast between CO{sub 2} and brine. We describe buoyancy-driven countercurrent flow of two immiscible phases by a Buckley-Leverett type model. The model predicts that a plume of supercritical carbon dioxide in a homogeneous water-saturated porous medium does not migrate upward like a bubble in bulk water. Rather, it spreads upward until it reaches a seal or until it becomes immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration (Silin et al., 2007). In a layered reservoir, the simplified solution predicts a slower plume front propagation relative to a homogeneous formation with the same harmonic mean permeability. In contrast, the model yields much higher plume propagation estimates in a high-permeability conduit like a vertical fracture.

  20. The reduction of Np(VI) and Pu(VI) by organic chelating agents.

    SciTech Connect (OSTI)

    Reed, D.T.; Aase, S.B.; Banaszak, J.E.

    1998-03-19

    The reduction of NpO{sup 2+} and PuO{sub 2}{sup 2+} by oxalate. citrate, and ethylenediaminetetraacetic acid (EDTA) was investigated in low ionic strength media and brines. This was done to help establish the stability of the An(VI) oxidation state in the presence of organic complexants. The stability of the An(VI) oxidation state depended on the pH and relative strength of the various oxidation state-specific complexes. At low ionic strength and pH 6, NpO{sub 2}O{sup 2+} was rapidly reduced to form NpO{sub 2}{sup +} organic complexes. At longer times, Np(IV) organic complexes were observed in the presence of citrate. PuO{sub 2}{sup 2+} was predominantly reduced to Pu{sup 4+}, resulting in the formation of organic complexes or polymeric/hydrolytic precipitates. The relative rates of reduction to the An(V) complex were EDTA > citrate > oxalate. Subsequent reduction to An(IV) complexes, however, occurred in the following order: citrate > EDTA > oxalate because of the stability of the An(V)-EDTA complex. The presence of organic complexants led to the rapid reduction of NpO{sub 2}{sup 2+} and PuO{sub 2}P{sup 2+} in G-seep brine at pHs 5 and 7. At pHs 8 and 10 in ERDA-6 brine, carbonate and hydrolytic complexes predominated and slowed down or prevented the reduction of An(VI) by the organics present.

  1. Global Sampling for Integrating Physics-Specific Subsystems and Quantifying Uncertainties of CO2 Geological Sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; Lu, C.; Mansoor, K.; Carroll, S. A.

    2012-12-20

    The risk of CO2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO2/brine saturation are connected to the fault-leakage model as a boundary condition. CO2 andmore » brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less

  2. Development of improved mobility control agents for surfactant/polymer flooding. Second annual report, October 1, 1979-September 30, 1980

    SciTech Connect (OSTI)

    Martin, F.D.; Donaruma, L.G.; Hatch, M.J.

    1981-04-01

    The objective of this laboratory work is to develop improved mobility control agents that are more effective than the commercial polymers currently used in this process. During the second year of the project, the baseline testing of commercial products was completed. These baseline tests with polymers include studies on mobility control, retention, and shear degradation in Berea cores, the effect of common ions on rheological properties, thermal stability, microbial degradation, and surfactant-polymer interactions. These data are used for comparison of the commercial agents at standardized sets of conditions, and are also used to evaluate new, modified, or improved polymers. Work was also initiated on the synthesis, characterization, and preliminary screening of new and modified polymers. Testing of these analogs provides systematic correlations of polymer performance with polymer structure. This preliminary testing consists of measurements of shear degradation and viscosity loss in NaCl brines by the use of a simplified screening procedure. To date, a number of potential structure-utility relationships have been observed. Solution viscosities of all nonionic polymers tested are essentially insensitive to changes in NaCl concentration. Increasing the charge-to-mass ratio (degree of hydrolysis) of either polyacrylamides or N-alkyl analogs enhances the ability of these polymers to build viscosity in low salinity NaCl brines. However, such polymers are increasingly subject to viscosity loss as the salinity is increased. Above a certain critical molecular weight, polymers become more susceptible to shear degradation. Many of the polymers that possess stiffer backbones exhibit improved brine and shear stability. The results of these studies will be used to develop an improved mobility control polymer in the next phase of this project.

  3. Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review

    SciTech Connect (OSTI)

    Burant, Aniela; Lowry, Gregory V.; Karamalidis, Athanasios K.

    2013-01-13

    Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oilbrinesc-CO{sub 2} system under carbon storage conditions. The solubility of pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by cosolvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oilbrinesc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and cosolvency, which will require more experimental data from key classes of organic compounds.

  4. Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review

    SciTech Connect (OSTI)

    Burant, Aniela; Lowry, Gregory V.; Karamalidis, Athanasios K.

    2013-01-01

    Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oilbrinesc-CO{sub 2} system under carbon storage conditions. The solubility of pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by co-solvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oil-brine-sc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and co-solvency, which will require more experimental data from key classes of organic compounds.

  5. Global Sampling for Integrating Physics-Specific Subsystems and Quantifying Uncertainties of CO2 Geological Sequestration

    SciTech Connect (OSTI)

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; Lu, C.; Mansoor, K.; Carroll, S. A.

    2012-12-20

    The risk of CO2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO2/brine saturation are connected to the fault-leakage model as a boundary condition. CO2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.

  6. Using coiled tubing in HP/HT corrosive gas wells

    SciTech Connect (OSTI)

    1997-06-01

    High-yield-strength (100,000 psi) coiled tubing (CT) material has allowed for CT intervention in Mobile Bay Norphlet completions. These wells are approximately 22,000-ft-vertical-depth, high-pressure, hydrogen sulfide (H{sub 2}S) gas wells. Operations performed on the Norphlet wells include a scale cleanout to approximately 22,000 ft, a hydrochloric acid (HCl) job at 415 F, and buildup removal from a safety valve. The scale cleanout was performed first with a spiral wash tool. The well was killed with 10-lbm/gal sodium bromide (NaBr) brine; the same brine was used for cleanout fluid. Cost savings of 60% were realized. A HCl matrix acid job at 415 F was performed next, followed by a scale cleanout across the downhole safety valve. The safety valve was cleared of debris in 1 operational day. Estimated cost of the CT operation was 5 to 10% less than that of a rig workover. The 100,000-psi-yield Ct material used for the Mobile Bay operations does not comply with the (NACE) Standard MR-0175. But on the basis of extensive laboratory testing by the CT manufacturer, the decision was made that the material would pass a modified test performed with decreased H{sub 2}S levels. A maximum level of 400 ppm H{sub 2}S was determined as the safe working limit. Because the maximum H{sub 2}S content in the wells described later was 120 ppm, the risk of sulfide-stress cracking (SSC) was considered acceptably low. Elevated bottomhole temperatures (BHT`s) increase the corrosion rate of metals exposed to corrosives. Extensive laboratory testing of corrosion inhibitors allowed for design of a matrix-acidizing treatment to remove near-wellbore damage caused by lost zinc bromide (ZnBr) completion brine.

  7. Modeling Leaking Gas Plume Migration

    SciTech Connect (OSTI)

    Silin, Dmitriy; Patzek, Tad; Benson, Sally M.

    2007-08-20

    In this study, we obtain simple estimates of 1-D plume propagation velocity taking into account the density and viscosity contrast between CO{sub 2} and brine. Application of the Buckley-Leverett model to describe buoyancy-driven countercurrent flow of two immiscible phases leads to a transparent theory predicting the evolution of the plume. We obtain that the plume does not migrate upward like a gas bubble in bulk water. Rather, it stretches upward until it reaches a seal or until the fluids become immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration that does not lend itself to a simple analytical solution (Silin et al., 2006). The range of applicability of the simplified solution is assessed and provided. This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. One of the potential problems associated with the geologic method of sequestration is leakage of CO{sub 2} from the underground storage reservoir into sources of drinking water. Ideally, the injected green-house gases will stay in the injection zone for a geologically long time and eventually will dissolve in the formation brine and remain trapped by mineralization. However, naturally present or inadvertently created conduits in the cap rock may result in a gas leak from primary storage. Even in supercritical state, the carbon dioxide viscosity and density are lower than those of the indigenous formation brine. Therefore, buoyancy will tend to drive the CO{sub 2} upward unless it is trapped beneath a low permeability seal. Theoretical and experimental studies of buoyancy-driven supercritical CO{sub 2} flow, including estimation of time scales associated with plume evolution, are critical for developing technology, monitoring policy, and regulations for carbon dioxide geologic sequestration protecting the sources of potable water.

  8. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect (OSTI)

    Karamalidis, Athanasios; Torres, Sharon G.; Hakala, Jacqueline A.; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan A.

    2013-01-01

    ABSTRACT: Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO2 or CO2-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define to provide a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO2. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs byan order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality.

  9. Strategic petroleum reserve site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    1996-05-31

    The purpose of this Site Environmental Report (SER) is to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts. Included in this report is a description of each site`s environment, an overview of the Strategic Petroleum Reserve (SPR) environmental program, and a recapitulation of special environmental activities and events associated with each SPR site during 1995. Two of these highlights include decommissioning of 3 the weeks Island facility, involving the disposition of 11.6 million m{sup 3} (73 million barrels) of crude oil inventory, as well as the degasification of over 4.5 million m{sup 3} (30 million barrels) of crude oil inventory at the Bryan Mound and West Hackberry facilities. The decision to decommission the weeks Island facility is a result of diminishing mine integrity from ground water intrusion. Transfer of Weeks Island oil began in November, 1995 with 2.0 million m{sup 3} (12.5 million barrels) transferred by December 31, 1995. Degasifying the crude oil is a major pollution prevention initiative because it will reduce potentially harmful emissions that would occur during oil movements by three or more orders of magnitude. Spills to the environment, another major topic, indicates a positive trend. There were only two reportable oil and three reportable brine spills during 1995, down from a total of 10 reportable spills in 1994. Total volume of oil spilled in 1995 was 56.3 m{sup 3} (354 barrels), and the total volume of brine spilled was 131.1 m{sup 3} (825 barrels). The longer term trend for oil and brine spills has declined substantially from 27 in 1990 down to five in 1995. All of the spills were reported to appropriate agencies and immediately cleaned up, with no long term impacts observed.

  10. Environmental impacts during geothermal development: Some examples from Central America

    SciTech Connect (OSTI)

    Goff, S.; Goff, F.

    1997-04-01

    The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development.

  11. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect (OSTI)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline formation waters. Therefore, they are expected to be representative of saline formation waters at actual and potential future CCS sites. We are using a produced waters database (Breit, 2002) covering most of the United States compiled by the U.S. Geological Survey (USGS). In one instance to date, we have used this database to find a composition corresponding to the brine expected at an actual CCS site (Big Sky CSP, Nugget Formation, Sublette County, Wyoming). We have located other produced waters databases, which are usually of regional scope (e.g., NETL, 2005, Rocky Mountains basins).

  12. Geothermal pump down-hole energy regeneration system

    DOE Patents [OSTI]

    Matthews, Hugh B. (Boylston, MA)

    1982-01-01

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

  13. Use of geothermal heat for sugar refining in Imperial County. Pilot Plant Implementation

    SciTech Connect (OSTI)

    Not Available

    1984-09-01

    This report summarizes activities carried out during phase two of a program aimed at replacing fossil fuels with geothermal energy for the processing of sugar beets. Drilling of an exploratory production well was carried out. The well reached a total depth of about 10,000 feet. Static hole bottom temperatures as high as 393/sup 0/F were calculated. However, the well did not produce a free flow of more than 2-3 barrels of brine per hour. Attempts were made to stimulate the well by gas lift and circulation. These procedures were unsuccessful in promoting flow, and the well was shut in. 2 refs., 7 figs., 2 tabs.

  14. Method for formation of subsurface barriers using viscous colloids

    DOE Patents [OSTI]

    Apps, J.A.; Persoff, P.; Moridis, G.; Pruess, K.

    1998-11-17

    A method is described for formation of subsurface barriers using viscous liquids where a viscous liquid solidifies at a controlled rate after injection into soil and forms impermeable isolation of the material enclosed within the subsurface barriers. The viscous liquid is selected from the group consisting of polybutenes, polysiloxanes, colloidal silica and modified colloidal silica of which solidification is controlled by gelling, cooling or cross-linking. Solidification timing is controlled by dilution, addition of brines, coating with alumina, stabilization with various agents and by temperature. 17 figs.

  15. Method for formation of subsurface barriers using viscous colloids

    DOE Patents [OSTI]

    Apps, John A. (Lafayette, CA); Persoff, Peter (Piedmont, CA); Moridis, George (Oakland, CA); Pruess, Karsten (Berkeley, CA)

    1998-01-01

    A method for formation of subsurface barriers using viscous liquids where a viscous liquid solidifies at a controlled rate after injection into soil and forms impermeable isolation of the material enclosed within the subsurface barriers. The viscous liquid is selected from the group consisting of polybutenes, polysilotanes, colloidal silica and modified colloidal silica of which solidification is controlled by gelling, cooling or cross-linking. Solidification timing is controlled by dilution, addition of brines, coating with alumina, stabilization with various agents and by temperature.

  16. Threshold Values for Identification of Contamination Predicted by Reduced-Order Models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Last, George V.; Murray, Christopher J.; Bott, Yi-Ju; Brown, Christopher F.

    2014-12-31

    The U.S. Department of Energy’s (DOE’s) National Risk Assessment Partnership (NRAP) Project is developing reduced-order models to evaluate potential impacts on underground sources of drinking water (USDWs) if CO2 or brine leaks from deep CO2 storage reservoirs. Threshold values, below which there would be no predicted impacts, were determined for portions of two aquifer systems. These threshold values were calculated using an interwell approach for determining background groundwater concentrations that is an adaptation of methods described in the U.S. Environmental Protection Agency’s Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

  17. Appendix PA: Performance Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Waste Isolation Pilot Plant Appendix PA-2014 Performance Assessment United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix PA Table of Contents PA-1.0 Introduction PA-1.1 Changes since the CRA-2009 PA PA-1.1.1 Replacement of Option D with the ROMPCS PA-1.1.2 Additional Mined Volume in the Repository North End PA-1.1.3 Refinement to the Probability of Encountering Pressurized Brine

  18. Threshold Values for Identification of Contamination Predicted by Reduced-Order Models

    SciTech Connect (OSTI)

    Last, George V.; Murray, Christopher J.; Bott, Yi-Ju; Brown, Christopher F.

    2014-12-31

    The U.S. Department of Energys (DOEs) National Risk Assessment Partnership (NRAP) Project is developing reduced-order models to evaluate potential impacts on underground sources of drinking water (USDWs) if CO2 or brine leaks from deep CO2 storage reservoirs. Threshold values, below which there would be no predicted impacts, were determined for portions of two aquifer systems. These threshold values were calculated using an interwell approach for determining background groundwater concentrations that is an adaptation of methods described in the U.S. Environmental Protection Agencys Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

  19. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. First annual technical progress report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Schechter, D.S.

    1996-12-17

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

  20. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    SciTech Connect (OSTI)

    Knight, Bill; Schechter, David S.

    2002-07-26

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  1. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Schechter, D.S.

    1997-12-01

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding in the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

  2. Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area

    SciTech Connect (OSTI)

    Schechter, D.S.

    1999-02-03

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and, (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This report provides results of the third year of the five-year project for each of the four areas including a status report of field activities leading up to injection of CO2.

  3. Mesoscopic modeling of multi-physicochemical transport phenomena in porous media

    SciTech Connect (OSTI)

    Kang, Qinjin; Wang, Moran; Mukherjee, Partha P; Lichtner, Peter C

    2009-01-01

    We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth, and environmental systems.

  4. Apparatus for the measurement of radionuclide transport rates in rock cores

    SciTech Connect (OSTI)

    Weed, H.C.; Koszykowski, R.F.; Dibley, L.L.; Murray, I.

    1981-09-01

    An apparatus and procedure for the study of radionuclide transport in intact rock cores are presented in this report. This equipment more closely simulates natural conditions of radionuclide transport than do crushed rock columns. The apparatus and the procedure from rock core preparation through data analysis are described. The retardation factors measured are the ratio of the transport rate of a non-retarded radionuclide, such as /sup 3/H, to the transport rate of a retarded radionuclide. Sample results from a study of the transport of /sup 95m/Tc and /sup 85/Sr in brine through a sandstone core are included.

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Barraclough, Bruce" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything5 Electronic Full Text5 Citations0 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject apparatus (3) hydrocarbon (3) method (3) recovering (3) brine (2) brought (2) bubbles (2) carbon vapor /166/ (2)

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 2 Search for: All records Creators/Authors contains: "Dai, Zhenxue" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 1 of 2 1 » Next » Everything14 Electronic Full Text11 Citations3 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject simulation (4) aquifers (3) brines (2) earth sciences (2) energy sciences (2)

  7. petascale_final2013.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coe cients for the 193 IZA zeolite structures. . . 4 4 Weak scaling studies of a Coarray shifter and two MPI particle shifter algorithms with no (a) and full (6 OpenMP threads per NUMA node) OpenMP support (b) . . 5 5 a) Isosurfaces of CO 2 density in the brine, this image highlights the structure of the 3D fingers. b) Block-structured adaptive mesh refinement in carbon sequestration calculation. Finest grids are concentrated near edges of the fingers, while coarse grids are used in the fluid,

  8. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    SciTech Connect (OSTI)

    Sheng Wu

    2012-08-03

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  9. Cause not found for Texas LPG site blast

    SciTech Connect (OSTI)

    Not Available

    1992-04-20

    This paper reports that National Transportation Safety Board investigators completed the first phase of tests at Seminole Pipeline Co.'s liquid petroleum gas storage dome near Brenham, Tex., without finding the cause of an explosion there Apr. 7. But in a week of investigation, NTSB determined that a release of brine and product occurred at the 350,000 bbl LPG storage dome, about 45 miles northwest of Houston, just before the blast. The explosion sent shock waves felt as far as 130 miles away. Three persons have died from injuries suffered in the accident. Another 18 were injured.

  10. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  11. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  12. 20140101-0131_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  13. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  14. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  15. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  16. 20131001-1031_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  17. 20140301-0331_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  18. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  19. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  20. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  1. 20140701-0731_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  2. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  3. 20140201-0228_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  4. 20140601-0630_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  5. 20131101-1130_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  6. June 2015 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dept of Energy, Office of Scientific and Technical Information June 2015 Most Viewed Documents for Renewable Energy Sources Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 240 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 192 Calculation of brine properties. [Above 80/sup 0/F and for salt content between 5 and 25%]

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 2 of 2 Search for: All records Creators/Authors contains: "Dai, Zhenxue" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 2 of 2 2 » Next » Everything14 Electronic Full Text11 Citations3 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject simulation (4) aquifers (3) brines (2) earth sciences (2) energy sciences (2)

  8. Two-Phase Mass Flow Measurement Using Noise Analysis (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: Two-Phase Mass Flow Measurement Using Noise Analysis Citation Details In-Document Search Title: Two-Phase Mass Flow Measurement Using Noise Analysis The purpose of this work is to develop a low cost, non-intrusive, mass flow measurement sensor for two-phase flow conditions in geothermal applications. The emphasis of the work to date has been on a device that will monitor two-phase flow in the above-ground piping systems. The flashing brines have the potential for

  9. H. R. 1476: A bill to amend the Internal Revenue Code of 1986 to clarify the application of the credit for producing fuel from a nonconventional source with respect to gas produced from a tight formation and to make such credit permanent with respect to such gas and gas produced from Devonian shale. Introduced in the House of Representatives, One Hundredth First Congress, First Session, March 16, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The determination of whether gas is produced from geopressured brines, Devonian shales, coal seams, or a tight formation is made from section 503 of the Natural Gas Policy Act of 1978. Permanent credit is for gas produced from a tight formation or Devonian shale only and applies to gas sold after July 1, 1987. The credit allowed for any taxable year shall not exceed the sum of the regular tax reduced by the sum of other credits allowable under other subsections of the Internal Revenue Code.

  10. Chemical durability and degradation mechanisms of HT9 based alloy waste forms with variable Zr content

    SciTech Connect (OSTI)

    Olson, L. N.

    2015-10-30

    In Corrosion studies were undertaken on alloy waste forms that can result from advanced electrometallurgical processing techniques to better classify their durability and degradation mechanisms. The waste forms were based on the RAW3-(URe) composition, consisting primarily of HT9 steel and other elemental additions to simulate nuclear fuel reprocessing byproducts. The solution conditions of the corrosion studies were taken from an electrochemical testing protocol, and meant to simulate conditions in a repository. The alloys durability was examined in alkaline and acidic brines.

  11. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-05-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  12. 20140301-0331_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-04-07

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  13. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-01-08

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  14. 20140101-0131_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-02-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  15. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-04-24

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  16. 20140501-0531_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-06-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  17. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-06-18

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  18. 20140701-0731_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-07-31

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  19. 20140201-0228_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-03-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  20. Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-07-15

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  1. 20140601-0630_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-06-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  2. 20131101-1130_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-12-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  3. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-09-10

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  4. 20131001-1031_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-11-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  5. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-08-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  6. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2013-10-25

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  7. Carbon Storage R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Carbon Storage R&D Carbon dioxide storage in geologic formations includes oil and gas reservoirs, unmineable coal seams, and deep saline reservoirs. These are structures that have stored crude oil, natural gas, brine and CO2 over millions of years. The primary goal of our carbon storage research is to understand the behavior of CO2 when stored in geologic formations. For example, studies are being conducted to determine the extent to which the CO2 moves within the geologic formation,

  8. Property:Incentive/ExpireDtString | Open Energy Information

    Open Energy Info (EERE)

    Appliance Rebate Program (Alabama) + 2010-05-09 + Alameda Municipal Power - Solar Photovoltaics Rebate Program (California) + 2017-12-31 + Alcohol Fuels Exemption (Hawaii)...

  9. Modeling coiled-tubing velocity strings for gas wells

    SciTech Connect (OSTI)

    Martinez, J.; Martinez, A.

    1998-02-01

    Because of its ability to prolong well life, its relatively low expense, and the relative ease with which it is installed, coiled tubing has become a preferred remedial method of tubular completion for gas wells. Of course, the difficulty in procuring wireline-test data is a drawback to verifying the accuracy of the assumptions and predictions used for coiled-tubing selection. This increases the importance of the prediction-making process, and, as a result, places great emphasis on the modeling methods that are used. This paper focuses on the processes and methods for achieving sound multiphase-flow predictions by looking at the steps necessary to arrive at coiled-tubing selection. Furthermore, this paper examines the variables that serve as indicators of the viability of each tubing size, especially liquid holdup. This means that in addition to methodology, emphasis is placed on the use of a good wellbore model. The computer model discussed is in use industry wide.

  10. Three-Dimensional Crystallization of Vortex Strings in Frustrated...

    Office of Scientific and Technical Information (OSTI)

    This content will become publicly available on August 31, 2016 Title: Three-Dimensional ... become publicly available on August 31, 2016 Publisher's Version of Record 10.1103...

  11. Axion dark matter: strings and their cores (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Authors: Fleury, Leesa 1 ; Moore, Guy D. 2 + Show Author Affiliations McGill University, Department of Physics,3600 rue University, Montral QC H3A 2T8 (Canada) Institut fr ...

  12. Sequence information signal processor for local and global string comparisons

    DOE Patents [OSTI]

    Peterson, John C. (Alta Loma, CA); Chow, Edward T. (San Dimas, CA); Waterman, Michael S. (Culver City, CA); Hunkapillar, Timothy J. (Pasadena, CA)

    1997-01-01

    A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.

  13. Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-09-26

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

  14. Dessicant materials screening for backfill in a salt repository

    SciTech Connect (OSTI)

    Simpson, D.R.

    1980-10-01

    Maintaining an anhydrous environment around nuclear waste stored in a salt repository is a concern which can be alleviated by using a desiccant material for backfilling. Such a desiccant should desiccate a brine yet be non deliquescent, the hydrated product should have moderate thermal stability, and the desiccant should have a high capacity and be readily available. From a literature search MgO and CaO were identified for detailed study. These oxides, and an intimate mixture of the two obtained by calcining dolomite, were used in experiments to further determine their suitability. They proved to be excellent desiccants with a high water capacity. The hydrates of both have moderate thermal stability and a high water content. Both MgO and CaO react in an alkaline chloride brine forming oxychloride compounds with different waters of crystallization. Some of these compounds are the Sorel Cements. CaO hydrates to Ca(OH)/sub 2/ which carbonates with CO/sub 2/ in air to form CaCO/sub 3/ and release the hydrated water. Thus the intimate mixture of CaO and MgO from calcined dolomite may serve as a desiccant and remove CO/sub 2/ from the repository atmosphere.

  15. Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier

    SciTech Connect (OSTI)

    T. Wolery

    2005-02-22

    This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks.

  16. Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents

    SciTech Connect (OSTI)

    Moazeni, Maryam; Hajipour, Hengameh; Askari, Masoud; Nusheh, Mohammad

    2015-01-15

    The ion exchange process is a promising method for lithium extraction from brine and seawater having low concentrations of this element. To achieve this goal, it is vital to use an effective adsorbent with maximum lithium adsorption potential together with a stable structure during extraction and insertion of the ions. In this study, titanium dioxide and then lithium titanate spinel with nanotube morphology was synthesized via a simple two-step hydrothermal process. The produced Li{sub 4}Ti{sub 5}O{sub 12} spinel ternary oxide nanotube with about 70 nm diameter was then treated with dilute acidic solution in order to prepare an adsorbent suitable for lithium adsorption from local brine. Morphological and phase analysis of the obtained nanostructured samples were done by using transmission and scanning electron microscopes along with X-ray diffraction. Lithium ion exchange capacity of this adsorbent was finally evaluated by means of adsorption isotherm. The results showed titanium dioxide adsorbent could recover 39.43 mg/g of the lithium present in 120 mg/L of lithium solution.

  17. Delineating Area of Review in a System with Pre-injection Relative Overpressure

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Cihan, Abdullah; Zhou, Quanlin; Fairweather, Stacey; Spangler, Lee H.

    2014-12-31

    The Class VI permit application for geologic carbon sequestration (GCS) requires delineation of an area of review (AoR), defined as the region surrounding the (GCS) project where underground sources of drinking water (USDWs) may be endangered. The methods for estimating AoR under the Class VI regulation were developed assuming that GCS reservoirs would be in hydrostatic equilibrium with overlying aquifers. Here we develop and apply an approach to estimating AoR for sites with preinjection relative overpressure for which standard AoR estimation methods produces an infinite AoR. The approach we take is to compare brine leakage through a hypothetical open flow path in the base-case scenario (no-injection) to the incrementally larger leakage that would occur in the CO2-injection case. To estimate AoR by this method, we used semi-analytical solutions to single-phase flow equations to model reservoir pressurization and flow up (single) leaky wells located at progressively greater distances from the injection well. We found that the incrementally larger flow rates for hypothetical leaky wells located 6 km and 4 km from the injection well are ~20% and 30% greater, respectively, than hypothetical baseline leakage rates. If total brine leakage is considered, the results depend strongly on how the incremental increase in total leakage is calculated, varying from a few percent to up to 40% greater (at most at early time) than base-case total leakage.

  18. A PACIFIC-WIDE GEOTHERMAL RESEARCH LABORATORY: THE PUNA GEOTHERMAL RESEARCH FACILITY

    SciTech Connect (OSTI)

    Takahashi, P.; Seki, A.; Chen, B.

    1985-01-22

    The Hawaii Geothermal Project (HGP-A) well, located in the Kilauea volcano east rift zone, was drilled to a depth of 6450 feet in 1976. It is considered to be one of the hot-test producing geothermal wells in the world. This single well provides 52,800 pounds per hour of 371 F and 160 pounds per square inch-absolute (psia) steam to a 3-megawatt power plant, while the separated brine is discharged in percolating ponds. About 50,000 pounds per hour of 368 F and 155 psia brine is discharged. Geothermal energy development has increased steadily in Hawaii since the completion of HGP-A in 1976: (1) a 3 megawatt power plant at HGP-A was completed and has been operating since 1981; (2) Hawaiian Electric Company (HECO) has requested that their next increment in power production be from geothermal steam; (3) three development consortia are actively, or in the process of, drilling geothermal exploration wells on the Big Island; and (4) engineering work on the development of a 400 megawatt undersea cable for energy transmission is continuing, with exploratory discussions being initiated on other alternatives such as hydrogen. The purpose for establishing the Puna Geothermal Research Facility (PGRF) is multifold. PGRF provides a facility in Puna for high technology research, development, and demonstration in geothermal and related activities; initiate an industrial park development; and examine multi-purpose dehydration and biomass applications related to geothermal energy utilization.

  19. Geothermal fracture stimulation technology. Volume IV. Proppant analysis at geothermal conditions

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Crushing and degradation mechanisms of proppants are examined to characterize proppants and assess their usability in geothermal wells. Short-term tests can tell the physical strength of a proppant, but long-term tests are required to ascertain any interrelated chemical effects. Degradation of proppants is measured as a loss in permeability and can be correlated to temperature, time, and closure stress. Sand is a common proppant which is strongly affected by higher temperature and closure stress. Even at low stress levels, sand degrades in brine or hot water with long-term exposure. Most geothermal waters and their pH levels can also be detrimental to sand. There are some proppants with desirable properties at geothermal conditions. These are resistant to the crushing loads or closure stress in geothermal wells and will not react or dissolve in high temperature brines. While there are limits to these proppants, an unqualified list of possible geothermal proppants is given: aluminum oxide, garnet, resin-coated proppants, and sintered bauxite.

  20. Geopressured geothermal drilling and completions technology development needs

    SciTech Connect (OSTI)

    Maish, A.B.

    1981-03-01

    Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.