Powered by Deep Web Technologies
Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of  

Broader source: Energy.gov (indexed) [DOE]

Argonne Lab's Breakthrough Cathode Technology Powers Electric Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today February 14, 2011 - 6:15pm Addthis Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy The Department of Energy has been investing in vehicle electrification for more than a decade, with results that speak for themselves: The battery technologies in almost all of the electric vehicles and hybrids on the road today were developed with support from the Department. As you may have read

2

Argonne Labs Breakthrough Cathode Technology Powers Electric Vehicles of Today  

Broader source: Energy.gov [DOE]

Jeff Chamberlain, who leads Argonne's Energy Storage Initiative, explains what goes into taking advanced battery technologies from the lab to the marketplace.

3

Buildings R&D Breakthroughs: Technologies and Products Supported...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program Buildings R&D Breakthroughs: Technologies and Products Supported by the...

4

Argonne Lab's Breakthrough Cathode Technology Powers Electric...  

Energy Savers [EERE]

in June of 2000; the inventors included Michael Thackeray, Khalil Amine, Christopher Johnson and Jaekook Kim. But the story really begins more than 30 years ago. In 1980, Argonne...

5

Breakthrough Cutting Technology Promises to Reduce Solar Costs | Department  

Broader source: Energy.gov (indexed) [DOE]

Breakthrough Cutting Technology Promises to Reduce Solar Costs Breakthrough Cutting Technology Promises to Reduce Solar Costs Breakthrough Cutting Technology Promises to Reduce Solar Costs March 1, 2010 - 4:34am Addthis Using SiGen's new cutting process, less material is wasted in creating solar products like this, a breakthrough that is expected to help make solar power more affordable. | Photo courtesy SiGen Using SiGen's new cutting process, less material is wasted in creating solar products like this, a breakthrough that is expected to help make solar power more affordable. | Photo courtesy SiGen Joshua DeLung Silicon Genesis is a San Jose, Calif., company that is advancing the field of solar energy by developing a process that will virtually eliminate all waste when cutting materials needed to implement solar technology.

6

Breakthrough Water Cleaning Technology Could Lessen Environmental Impacts  

Broader source: Energy.gov (indexed) [DOE]

Breakthrough Water Cleaning Technology Could Lessen Environmental Breakthrough Water Cleaning Technology Could Lessen Environmental Impacts from Shale Production Breakthrough Water Cleaning Technology Could Lessen Environmental Impacts from Shale Production April 28, 2011 - 1:00pm Addthis Washington, DC - A novel water cleaning technology currently being tested in field demonstrations could help significantly reduce potential environmental impacts from producing natural gas from the Marcellus shale and other geologic formations, according to the Department of Energy's (DOE) National Energy Technology Laboratory (NETL). ABSMaterial's Osorb® technology, which uses swelling glass to remove impurities, has been shown to clean flow back water and produced water from hydraulically fractured oil and gas wells. Produced waters are by far the

7

A Technology Breakthrough for Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Technology Breakthrough for Geothermal A Technology Breakthrough for Geothermal A Technology Breakthrough for Geothermal April 25, 2012 - 4:08pm Addthis The Energy Department's Oak Ridge National Laboratory, in partnership with ClimateMaster, has developed a highly efficient ground-source heat pump appliance for heating and cooling interior spaces. Learn more about this clean energy technology by watching the video above. | Video by the U.S. Department of Energy. Alexis Abramson Acting Emerging Technologies Supervisor, Building Technologies Program What does this project do? Oak Ridge National Laboratory and ClimateMaster have developed a more efficient process for using ground-source heat pumps to heat and cool homes. Instead of just pushing or pulling heat around to cool or heat your house, the ClimateMaster integrated heat pump also uses that heat to

8

Breakthrough Berkeley Mist Sealant Technology: Potential to Save Americans  

Broader source: Energy.gov (indexed) [DOE]

Breakthrough Berkeley Mist Sealant Technology: Potential to Save Breakthrough Berkeley Mist Sealant Technology: Potential to Save Americans $5B Per Year Breakthrough Berkeley Mist Sealant Technology: Potential to Save Americans $5B Per Year November 7, 2011 - 4:33pm Addthis A diagram of the Aeroseal sealant technology. | Image courtesy of Aeroseal LLC A diagram of the Aeroseal sealant technology. | Image courtesy of Aeroseal LLC Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What does this mean for me? Air duct system leaks cost Americans $5 billion every year. A simple mist now on the market -- developed by Berkeley Lab -- can seal thousands of leaks in 4 to 8 hours, saving a home owner on average $600 to $850 per year. Who knew leaks could be costing Americans $5 billion every year? And that's

9

A Technology Breakthrough for Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » A Technology Breakthrough for Geothermal A Technology Breakthrough for Geothermal April 25, 2012 - 4:08pm Addthis The Energy Department's Oak Ridge National Laboratory, in partnership with ClimateMaster, has developed a highly efficient ground-source heat pump appliance for heating and cooling interior spaces. Learn more about this clean energy technology by watching the video above. | Video by the U.S. Department of Energy. Alexis Abramson Acting Emerging Technologies Supervisor, Building Technologies Program What does this project do? Oak Ridge National Laboratory and ClimateMaster have developed a more efficient process for using ground-source heat pumps to heat and cool homes. Instead of just pushing or pulling heat around to cool or heat your

10

Lab Breakthrough: Fermilab Accelerator Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fermilab Accelerator Technology Fermilab Accelerator Technology Lab Breakthrough: Fermilab Accelerator Technology May 14, 2012 - 10:51am Addthis At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs Where are these 30,000 particle accelerators? Most of them in medicine and manufacturing fields. They treat cancer, cure inks on cereal boxes, sterilize medical supplies, create better shrink wrap, spot suspicious cargo, clean up dirty drinking water, and help design drugs. Fermi National Accelerator Laboratory scientist Stuart Henderson took some time discuss the role of particle accelerators in basic science,

11

Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO2 Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ionic Liquids: Breakthrough Absorption Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO 2 Capture Background Development of innovative environmental control technologies is key to maintaining coal as an affordable and environmentally sound energy source. Carbon dioxide (CO 2 ) emissions control technologies, specifically post-combustion CO 2 capture, for coal- fired power plants is a major focus area in addressing climate change concerns. Post-

12

Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy Efficiency of Refrigerators  

Office of Energy Efficiency and Renewable Energy (EERE)

New technology funded by the Energy Department has led to a major breakthrough in refrigeration systems that could yield big energy savings for consumers and greatly reduce carbon pollution.

13

DOE Technology Successes - "Breakthrough" Gas Turbines | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE Technology Successes - "Breakthrough" Gas Turbines DOE Technology Successes - "Breakthrough" Gas Turbines DOE Technology Successes - "Breakthrough" Gas Turbines For years, gas turbine manufacturers faced a barrier that, for all practical purposes, capped power generating efficiencies for turbine-based power generating systems. The barrier was temperature. Above 2300 degrees F, available cooling technologies were insufficient to protect the turbine blades and other internal components from heat degradation. Since higher temperatures are the key to higher efficiencies, this effectively limited the generating efficiency at which a turbine power plant could convert the energy in the fuel into electricity. The Department of Energy's Office of Fossil Energy took on the challenge of turbine temperatures in 1992, and nine years later, its private sector

14

Using Magnets to Keep Cool: Breakthrough Technology Boosts Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system. | Photo courtesy of General Electric Antonio Bouza Antonio Bouza HVAC, Water Heating, and Appliances Technology Manager, Building Technologies Office Pat Phelan Pat...

15

Advances in Chip Technology, Packaging Enable White LED Breakthroughs  

Broader source: Energy.gov [DOE]

Significant advances in chip technology have enabled Cree, Inc.'s Santa Barbara Technology Center to demonstrate white LEDs with record efficacies as high as 74 lumens per watt - on par with...

16

Breakthrough Berkeley Mist Sealant Technology: Potential to Save...  

Broader source: Energy.gov (indexed) [DOE]

won in the Home Technology category in This Old House magazine's top 100 Best New Home Products. "Leaky air ducts are responsible for a huge energy loss problem in America and...

17

Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program  

Broader source: Energy.gov (indexed) [DOE]

Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program April 2012 Table of Contents Executive Summary ����������������������������������������������������������������������������������������������������������������������������������������������������������� v 1.0 Introduction���������������������������������������������������������������������������������������������������������������������������������������������������������������� 1-1

18

The Breakthrough Behind the Chevy Volt Battery | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Breakthrough Behind the Chevy Volt Battery The Breakthrough Behind the Chevy Volt Battery Stories of Discovery & Innovation The Breakthrough Behind the Chevy Volt Battery Enlarge Photo Image courtesy of General Motors The 2011 Chevrolet Volt's 16 kWh battery can be recharged using a 120V or 240V outlet. The car's lithium-ion battery is based on technology developed at Argonne National Laboratory. Enlarge Photo Illustration courtesy Argonne National Laboratory This illustration shows the inner workings of a lithium-ion battery. When delivering energy to a device, the lithium ion moves from the anode to the cathode. The ion moves in reverse when recharging. Compared to other rechargeable 03.28.11 The Breakthrough Behind the Chevy Volt Battery A revolutionary breakthrough cathode for lithium-ion batteries-the kind in your

19

Cathodes  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

20

Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell  

Broader source: Energy.gov [DOE]

Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy novel cathode / alloy...

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Electrochemical Society Interface Fall 2009 53 From Laboratory Breakthrough to Technological Realization  

E-Print Network [OSTI]

Realization: The Development Path for Solid Acid Fuel Cells by Calum R.I. Chisholm, Dane A. Boysen, Alex B proton exchange membrane), phosphoric acid, alkali, molten carbonate, and solid oxide. This article deals with a newcomer on the scene of fuel cell science and technology--the superprotonic solid- acid fuel cell1

22

Innovation Impact: Breakthrough Research Results (Brochure)  

SciTech Connect (OSTI)

The Innovation Impact brochure captures key breakthrough results across NREL's primary areas of renewable energy and energy efficiency research: solar, wind, bioenergy, transportation, buildings, analysis, and manufacturing technologies.

Not Available

2013-07-01T23:59:59.000Z

23

Berkeley Lab Energy Breakthroughs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 Lab Breakthroughs that Improved Energy Efficiency Energy Saving Tips Home Energy Saver 11 Lab Breakthroughs that Improved Energy Efficiency Energy Saving Tips Home Energy Saver It all started during the 1973 energy crisis, when scientists from Lawrence Berkeley National Laboratory, a U.S. Department of Energy laboratory managed by the University of California, began to explore ways to improve energy efficiency in buildings and industry. Since then, Berkeley Lab has become a world leader in developing technologies and standards that have slashed energy costs by billions of dollars and helped bring energy-efficient products to your home. That same drive to bring energy efficiency to all facets of our lives continues today. AT BERKELEY LAB WE'VE: windows Turned windows into energy savers. Americans save billions of dollars in energy bills each year thanks to a

24

Breakthrough: Fermilab Accelerator Technology  

SciTech Connect (OSTI)

There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

None

2012-04-23T23:59:59.000Z

25

Breakthrough: Fermilab Accelerator Technology  

ScienceCinema (OSTI)

There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

None

2014-08-12T23:59:59.000Z

26

Novel Composite Cathode Structures  

Broader source: Energy.gov (indexed) [DOE]

Relevance * New cathode materials are required to improve the energy density of Li-ion cells for transportation technologies. * The cathode system in this project directly...

27

Theory, Investigation, and Stability of Cathode Electro-catalytic Activity„Georgia Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Theory, Investigation, and Stability of Theory, Investigation, and Stability of Cathode Electro-catalytic Activity- Georgia Institute of Technology Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of solid oxide fuel cells (SOFCs) for

28

breakthroughs_winter_2004.ind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science. Technology. Innovation. Science. Technology. Innovation. W I N T E R 2 0 0 4 Inside | Page 15 Spectral library helps monitor chemicals Inside | Page 14 PNNL and NASA team on fuel cell research 3 4 14 5 15 16 2 Breakthroughs | Pacific Northwest National Laboratory Published by: Pacific Northwest National Laboratory, a multiprogram research facility operated by Battelle for the U.S. Department of Energy's Office of Science. Staff: Editor: Ginny Sliman

29

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Broader source: Energy.gov (indexed) [DOE]

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system.

30

PNNL: Breakthroughs Magazine - Fall 2004  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 issue Nonproliferation in an evolving world Breakthroughs Magazine Breakthroughs Archive In this issue... Cover Editor's Screen Contents At A Glance Solutions Update Science...

31

Argonne National Laboratory Scientists Invent Breakthrough Technique in  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Scientists Invent Breakthrough Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology March 17, 2011 - 9:36am Addthis Gold and carbon nanoparticles strung together using a breakthrough new technique for materials design known as "optically directed assembly" | Courtesy of Argonne National Laboratory Gold and carbon nanoparticles strung together using a breakthrough new technique for materials design known as "optically directed assembly" | Courtesy of Argonne National Laboratory Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What are the key facts? With a low-power laser, similar in intensity to those in

32

California: Breakthrough in Algae Biology  

Office of Energy Efficiency and Renewable Energy (EERE)

Breakthrough in algae biology will have a significant impact in the economics of algal biofuel production.

33

Design and Evaluation of Novel High Capacity Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials...

34

Invisible Science: Lab Breakthroughs in Our Daily Lives | Department of  

Broader source: Energy.gov (indexed) [DOE]

Invisible Science: Lab Breakthroughs in Our Daily Lives Invisible Science: Lab Breakthroughs in Our Daily Lives Invisible Science: Lab Breakthroughs in Our Daily Lives April 24, 2012 - 2:30pm Addthis The Lab Breakthroughs video series focuses on the array of technological advancements and discoveries that stem from research performed in the National Labs, including improvements in industrial processes, discoveries in fundamental scientific research, and innovative medicines. See the Lab Breakthroughs topic page for the most recent videos and Q&As with researchers. The Lab Breakthroughs video series focuses on the array of technological advancements and discoveries that stem from research performed in the National Labs, including improvements in industrial processes, discoveries

35

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Broader source: Energy.gov (indexed) [DOE]

Desiccant Enhanced Evaporative Air Conditioning Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system. DEVAP uses 90 percent less electricity and up to 80 percent less

36

Lab Breakthroughs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lab Breakthroughs Lab Breakthroughs Lab Breakthroughs The Lab Breakthroughs series brings together video produced by each of the National Labs about their innovations and discoveries, and a Q&A with a project researcher about how they affect Americans. Here you can view the latest Q&As weekly, or view the full playlist on our YouTube page. The Lab Breakthroughs series brings together video produced by each of the National Labs about their innovations and discoveries, and a Q&A with a project researcher about how they affect Americans. Here you can view the latest Q&As weekly, or view the full playlist on our YouTube page. The Energy Department's 17 National Labs are world-class scientific

37

Cathodic Arc Plasma Deposition  

Office of Scientific and Technical Information (OSTI)

Cathodic Arc Plasma Deposition Cathodic Arc Plasma Deposition André Anders Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Mailstop 53, Berkeley, California 94720 aanders@lbl.gov Abstract Cathodic arc plasma deposition is one of oldest coatings technologies. Over the last two decades it has become the technology of choice for hard, wear resistant coatings on cutting and forming tools, corrosion resistant and decorative coatings on door knobs, shower heads, jewelry, and many other substrates. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions are reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. The

38

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

materials, although electro-active compounds containing these metals exist. Todays technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

39

DOE National Laboratory Breakthrough Could Enhance Use of Domestic Natural  

Broader source: Energy.gov (indexed) [DOE]

Breakthrough Could Enhance Use of Domestic Breakthrough Could Enhance Use of Domestic Natural Gas, Methane Hydrate Resources DOE National Laboratory Breakthrough Could Enhance Use of Domestic Natural Gas, Methane Hydrate Resources August 25, 2010 - 1:00pm Addthis Washington, DC - A process and related technology that could enhance the nation's ability to use natural gas and vast methane hydrate energy resources has been developed by researchers at the U.S. Department of Energy's National Energy Technology Laboratory (NETL). The method for rapidly forming methane hydrate, along with concurrent development of specialized nozzles to facilitate the process are breakthroughs that could lead to significant reductions in the cost of storing and transporting natural gas, potentially increasing utilization of

40

Evolutionary theory, web-search technology combine for DNA analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequedex: bioinformatics breakthrough Evolutionary theory, web-search technology combine for DNA analysis Sequedex: bioinformatics breakthrough with clinical & environmental...

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

Process for Low Cost Domestic Production of LIB Cathode Materials Process for Low Cost Domestic Production of LIB Cathode Materials 2010 DOE Vehicle Technologies and Hydrogen...

42

Design and Evaluation of Novel High Capacity Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

Design and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2009 DOE Hydrogen Program and Vehicle Technologies...

43

High Energy Materials for PHEVs: Cathodes (New Project) | Department...  

Broader source: Energy.gov (indexed) [DOE]

Energy Materials for PHEVs: Cathodes (New Project) High Energy Materials for PHEVs: Cathodes (New Project) Presentation from the U.S. DOE Office of Vehicle Technologies "Mega"...

44

President Obama Announces Funding for Breakthroughs in Natural Gas and  

Broader source: Energy.gov (indexed) [DOE]

Funding for Breakthroughs in Natural Gas Funding for Breakthroughs in Natural Gas and Biofuels as Alternative Fuels for Vehicles President Obama Announces Funding for Breakthroughs in Natural Gas and Biofuels as Alternative Fuels for Vehicles February 23, 2012 - 3:18pm Addthis WASHINGTON, D.C. - Today, President Obama announced new funding to catalyze breakthrough technologies for two key alternative fuels - natural gas and biofuels - as part of his all-of-the-above energy strategy to reduce our reliance on foreign oil and provide American families new choices for vehicles that do not rely on conventional gasoline. Through its Advanced Research Projects Agency - Energy (ARPA-E), the Energy Department will make $30 million available for a new research competition in the coming months that will engage our country's

45

Lab Breakthrough: Nanomaterials Discoveries Lead to Possible Cancer  

Broader source: Energy.gov (indexed) [DOE]

Lab Breakthrough: Nanomaterials Discoveries Lead to Possible Cancer Lab Breakthrough: Nanomaterials Discoveries Lead to Possible Cancer Treatment Lab Breakthrough: Nanomaterials Discoveries Lead to Possible Cancer Treatment June 4, 2012 - 3:05pm Addthis Argonne nanoscientist Elena Rozhkova is studying ways to enlist nanoparticles to treat brain cancer. This nano-bio technology may eventually provide an alternative form of therapy that targets only cancer cells and does not affect normal living tissue. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What is a nano-bio catalyst? A nanoparticle that triggers specific reactions in cells. The particle attaches to unwanted (tumor) cells, and when researchers shine light on them, they kill the cells through oxidation.

46

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Broader source: Energy.gov (indexed) [DOE]

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

47

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Broader source: Energy.gov (indexed) [DOE]

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

48

Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design and...

49

Vehicle Technologies Office Merit Review 2014: Design and Synthesis of Advanced High-Energy Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

50

Vehicle Technologies Office Merit Review 2014: Optimization of Ion Transport in High Energy Composite Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by University of California San Diego at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

51

Vehicle Technologies Office Merit Review 2014: Design of High Performance, High Energy Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

52

Vehicle Technologies Office Merit Review 2014: Development of High-Energy Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

53

Lab Breakthrough: How Energy Department Research Saves Lives | Department  

Broader source: Energy.gov (indexed) [DOE]

Lab Breakthrough: How Energy Department Research Saves Lives Lab Breakthrough: How Energy Department Research Saves Lives Lab Breakthrough: How Energy Department Research Saves Lives August 28, 2013 - 12:50pm Addthis Researchers at the National Energy Technology Lab have developed a platinum-chromium alloy that is used to make heart stents that are thin, flexible, corrosion resistant and visible on x-rays. Since their introduction in 2010, coronary stents made from the new alloy have generated more than $4 billion in worldwide sales and captured 45 percent of the U.S. coronary stent market and 33 percent of the global market, generating 450 high-paying, sustainable American jobs. | Video courtesy of National Energy Technology Laboratory. Renie Boyle Renie Boyle Public Affairs Specialist, National Energy Technology Laboratory

54

Vehicle Technologies Office Merit Review 2014: Process Development and Scale-up of Advanced Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process development and scale...

55

Vehicle Technologies Office Merit Review 2014: Lithium-Bearing Mixed Polyanion Glasses as Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lithium-bearing...

56

Vehicle Technologies Office Merit Review 2014: High-Capacity Polyanion Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by The University of Texas at Austin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

57

Breakthrough Institute | Open Energy Information  

Open Energy Info (EERE)

Breakthrough Institute Breakthrough Institute Jump to: navigation, search Logo: Breakthrough Institute Name Breakthrough Institute Address 436 14th Street, Suite 820 Place Oakland, California Zip 94612 Region Bay Area Number of employees 1-10 Year founded 2003 Phone number 510-550-8800 x300 Website http://www.thebreakthrough.org Coordinates 37.80428°, -122.270794° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.80428,"lon":-122.270794,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

Breakthrough Makes LED Lights More Versatile Author: Andrea Thompson  

E-Print Network [OSTI]

Breakthrough Makes LED Lights More Versatile Author: Andrea Thompson Source: http://www.livescience.com/technology/ LEDs have started to blink on all over the place in recent years, from car taillights to roadside these limitations by combining the best of two worlds of LEDs to make ultrathin, ultrasmall and flexible light

Rogers, John A.

59

The Breakthrough Behind a 300% Increase in Photosynthesis Productivity |  

Broader source: Energy.gov (indexed) [DOE]

The Breakthrough Behind a 300% Increase in Photosynthesis The Breakthrough Behind a 300% Increase in Photosynthesis Productivity The Breakthrough Behind a 300% Increase in Photosynthesis Productivity January 31, 2011 - 3:29pm Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does this mean for me? Could lead to cheaper renewable energy sources. Recently, the Department of Energy hosted Dr. Tasios Melis, the UC Berkeley scientist behind a Department of Energy funded innovation that promises to triple the productivity of photosynthesis in plants and algae. If you remember from high school biology class, photosynthesis is the process used by plants and many other organisms to convert sunlight into chemical energy. A molecule called chlorophyll serves to absorb sunlight for use in photosynthesis. Chlorophyll molecules can be stacked in arrays

60

Breakthroughs Report Highlights Energy Department's Efforts to Bring Energy  

Broader source: Energy.gov (indexed) [DOE]

Breakthroughs Report Highlights Energy Department's Efforts to Breakthroughs Report Highlights Energy Department's Efforts to Bring Energy Efficient Options to Your Doorstep Breakthroughs Report Highlights Energy Department's Efforts to Bring Energy Efficient Options to Your Doorstep July 1, 2011 - 10:00am Addthis Roland Risser Roland Risser Program Director, Building Technologies Office Today when you're walking through a home improvement store, you may notice something has changed. As you gaze down those towering aisles, it's clear you have choices for upgrading anything in your home, but more recently many of those options are energy efficient, reasonably priced and can provide benefits such as increasing the comfort and decreasing the health risks of your home or office. By saving energy, you can save money. To help bring these new or improved products to market and provide better

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Breakthroughs Report Highlights Energy Department's Efforts to Bring Energy  

Broader source: Energy.gov (indexed) [DOE]

Breakthroughs Report Highlights Energy Department's Efforts to Breakthroughs Report Highlights Energy Department's Efforts to Bring Energy Efficient Options to Your Doorstep Breakthroughs Report Highlights Energy Department's Efforts to Bring Energy Efficient Options to Your Doorstep July 1, 2011 - 10:00am Addthis Roland Risser Roland Risser Program Director, Building Technologies Office Today when you're walking through a home improvement store, you may notice something has changed. As you gaze down those towering aisles, it's clear you have choices for upgrading anything in your home, but more recently many of those options are energy efficient, reasonably priced and can provide benefits such as increasing the comfort and decreasing the health risks of your home or office. By saving energy, you can save money. To help bring these new or improved products to market and provide better

62

Novel Composite Cathode Structures | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es115johnson2011p.pdf More Documents & Publications Novel Composite Cathode Structures Vehicle...

63

Novel Composite Cathode Structures | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es115johnson2012o.pdf More Documents & Publications Novel Composite Cathode Structures...

64

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

28, 2013 28, 2013 Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization DOE-Supported Project in Texas Demonstrates Viability of CCUS Technology Washington, D.C. - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). MORE INFO Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

65

Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research  

Broader source: Energy.gov (indexed) [DOE]

Supercomputing Power to Accelerate Fossil Energy Supercomputing Power to Accelerate Fossil Energy Research Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research September 30, 2013 - 4:49pm Addthis At the heart of the Simulation-Based Engineering User Center (SBEUC) is a high-performance computer that enables the simulation of processes or technologies that are difficult or impossible to demonstrate using traditional methods. | Video by the National Energy Technology Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs How can I participate? Watch the video and learn more about the National Labs and their work in high performance computing. The Lab Breakthroughs series features videos produced by each of the National Labs about their game-changing innovations and discoveries. To see

66

Energy Department Announces New Investments to Accelerate Breakthrough...  

Broader source: Energy.gov (indexed) [DOE]

Investments to Accelerate Breakthroughs in Cost-Competitive Solar Energy Energy Department Announces New Investments to Accelerate Breakthroughs in Cost-Competitive Solar Energy...

67

Energy Department Announces New Investments to Accelerate Breakthroughs in  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Announces New Investments to Accelerate Energy Department Announces New Investments to Accelerate Breakthroughs in Cost-Competitive Solar Energy Energy Department Announces New Investments to Accelerate Breakthroughs in Cost-Competitive Solar Energy August 29, 2012 - 1:57pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- Building off SunShot Initiative investments in concentrating solar power announced earlier this week, the Energy Department today announced five new research projects to accelerate innovations that could lower the cost of photovoltaic and concentrating solar power technologies. These investments will enable collaborative research teams from industry, universities, and national laboratories to work together at the Department's Scientific User Facilities, a national network of unique

68

Energy Department Announces New Investments to Accelerate Breakthroughs in  

Broader source: Energy.gov (indexed) [DOE]

New Investments to Accelerate New Investments to Accelerate Breakthroughs in Cost-Competitive Solar Energy Energy Department Announces New Investments to Accelerate Breakthroughs in Cost-Competitive Solar Energy August 29, 2012 - 1:57pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- Building off SunShot Initiative investments in concentrating solar power announced earlier this week, the Energy Department today announced five new research projects to accelerate innovations that could lower the cost of photovoltaic and concentrating solar power technologies. These investments will enable collaborative research teams from industry, universities, and national laboratories to work together at the Department's Scientific User Facilities, a national network of unique facilities that provide over 10,000 scientists and engineers each year with

69

NERSC Supports 2013's Top Breakthroughs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supports 2013's Supports 2013's Top Breakthroughs NERSC Supports Top Breakthroughs of 2013 December 20, 2013 | Tags: Astrophysics, Hopper, PDSF, Physics Linda Vu, +1 510 495 2402, lvu@lbl.gov Research supported by NERSC is being honored by end-of-year reviews in two leading magazines: Physics World and WIRED. The IceCube South Pole Neutrino Observatory was notably named to both lists, being honored as the most important discovery by Physics World. Three of Physics World's top 10 breakthroughs of 2013 went to discoveries that used NERSC resources. In addition to the IceCube South Pole Neutrino Observatory's top honor, "breakthrough of the year," the magazine named the European Space Agency's European Planck space telescope, which revealed new information about the age and composition of the universe; and the South

70

Room for increased ambitions? Governing breakthrough research  

E-Print Network [OSTI]

Room for increased ambitions? Governing breakthrough research in Norway 1990 ­ 2013 Report expectations rather than creative energy. In addition, we see the need for a streamlining of the very broad

Løw, Erik

71

Technolog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

72

Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Facility |  

Broader source: Energy.gov (indexed) [DOE]

Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Facility Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Facility May 22, 2012 - 9:38am Addthis Pacific Northwest National Laboratory discovered a viable way to deliver propylene glycol from feedstock, including glycerin byproducts. ADM licensed that technology and in 2010 completed construction and commissioning of its full-scale production facility for the sole purpose of commercializing the PGRS process. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What does this project do? Created a renewable alternative to petroleum-based propylene glycol. Primarily, it found a way to do the chemistry efficiently and

73

Lighting Group: Sources and Ballasts: OLED Cathodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OLED Cathodes OLED Cathodes Development of New Cathodes for OLED's Objective The objective of this project is to develop improved cathodes for use in organic light emitting diodes (OLEDs). Approach A major challenge for organic light emitting diode (OLED) technology is to improve electron injection into the organic electroluminescent layer, which limits the efficiency of the device and the luminous flux per unit area. This project aims at overcoming such barriers by developing “structured cathodes” based on functional materials (nanotubes and nanoclusters) with characteristic size smaller than the optical wavelength. The incorporation of such nanostructured cathodes in OLEDs can significantly improve device efficiency by lowering operating voltage, and increase device stability and light extraction.

74

Vehicle Technologies Office Merit Review 2014: Synthetic Solutions for Correcting Voltage Fade in LMR-NMC Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about synthetic...

75

Breakthrough: Fighting Cancer with Nanoparticles  

ScienceCinema (OSTI)

Argonne nanoscientist Elena Rozhkova is studying ways to enlist nanoparticles to treat brain cancer. This nano-bio technology may eventually provide an alternative form of therapy that targets only cancer cells and does not affect normal living tissue. Read more at http://1.usa.gov/JAXh7Q.

Rozhkova, Elena

2013-04-19T23:59:59.000Z

76

Breakthrough Research on Platinum-Nickel Alloys  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Breakthrough Research on Breakthrough Research on Platinum-Nickel Alloys Breakthrough Research on Platinum-Nickel Alloys Print Wednesday, 28 February 2007 00:00 Two out of three of the kinetic barriers to the practical use of polymer electrolyte membrane (PEM) hydrogen fuel cells in automobiles have been breached: the impractically high amount of extra energy needed for the oxidation reduction reaction (ORR) on the catalyst and the loss of catalytic surface areas available for ORR. Using a combination of probes and calculations, a group of scientists has demonstrated that the Pt3Ni(111) alloy is ten times more active for ORR than the corresponding Pt(111) surface and ninety times more active than the current state-of-the-art Pt/C catalysts used in existing PEM fuel cells. This new variation of the platinum-nickel alloy is the most active oxygen-reducing catalyst ever reported.

77

Vehicle Technologies Office Merit Review 2014: In-situ Solvothermal Synthesis of Novel High-Capacity Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by Brookhaven National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about in-situ...

78

Vehicle Technologies Office Merit Review 2014: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about studies on high...

79

NETL SOFC: Anode-Electrolyte-Cathode (AEC) Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Plan Project Portfolio Project Information Systems Analysis Publications Anode-Electrolyte-Cathode (AEC) Development-This key technology focuses on improving...

80

Development of High Energy Cathode Materials | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Development of High Energy Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process for Low Cost Domestic Production of LIB Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

82

Stabilized Spinels and Polyanion Cathodes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications STABILIZED SPINEL AND POLYANION CATHODES Stabilized Spinels and Nano Olivines Vehicle Technologies Office Merit Review 2014: High-Capacity Polyanion...

83

Nano-Machines Achieve Huge Mechanical Breakthrough  

E-Print Network [OSTI]

NANO TECH Nano-Machines Achieve Huge Mechanical Breakthrough Dublin, Ireland (SPX) Sep 08, 2005 that use molecular 'nano'-machines of this kind to help perform physical tasks. Nano-machines could also owners set to return to battered Orleans l Six dead, two missing after heavy rains hit Page 1 of 3Nano

Leigh, David A.

84

Anode and Cathode Arcs  

Science Journals Connector (OSTI)

... we call an anode arc, produces a circular pit on the anode and a general roughening of the opposed cathode. Photomicrographs of single anode-type arcs were published1 before the ... arcs\tCathode arcs

L. H. GERMER; W. S. BOYLE

1955-11-26T23:59:59.000Z

85

Breakthrough Research on Platinum-Nickel Alloys  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Breakthrough Research on Platinum-Nickel Alloys Print Breakthrough Research on Platinum-Nickel Alloys Print Two out of three of the kinetic barriers to the practical use of polymer electrolyte membrane (PEM) hydrogen fuel cells in automobiles have been breached: the impractically high amount of extra energy needed for the oxidation reduction reaction (ORR) on the catalyst and the loss of catalytic surface areas available for ORR. Using a combination of probes and calculations, a group of scientists has demonstrated that the Pt3Ni(111) alloy is ten times more active for ORR than the corresponding Pt(111) surface and ninety times more active than the current state-of-the-art Pt/C catalysts used in existing PEM fuel cells. This new variation of the platinum-nickel alloy is the most active oxygen-reducing catalyst ever reported.

86

Lab Breakthrough: Microelectronic Photovoltaics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Microelectronic Photovoltaics Microelectronic Photovoltaics Lab Breakthrough: Microelectronic Photovoltaics June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. View the entire YouTube Lab Breakthroughs playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are MEMS? MEMS are microelectromechanical systems. MEMS are made up of components between 1 to 100 micrometers in size. MEMS devices generally range in size from 20 micrometers to a millimeter. Sandia National Lab semiconductor engineer Gregory Nielson and postdoctoral appointee Jose Luis Cruz-Campa recently took some time to discuss their

87

Buildings Technologies | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings Technologies 1-4 of 4 Results June 2014 June 2014 ORNL's inaugural issue of Building Technologies Update highlights a breakthrough in home refrigeration research, the new...

88

[New technology for linear colliders  

SciTech Connect (OSTI)

This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.

McIntyre, P.M.

1992-08-12T23:59:59.000Z

89

Lab Breakthrough: Record-Setting Cavities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Record-Setting Cavities Record-Setting Cavities Lab Breakthrough: Record-Setting Cavities April 24, 2012 - 2:34pm Addthis At Jefferson Lab, researchers have fabricated a niobium cavity for particle accelerators that has set a world record for energy efficiency. Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the Jefferson Lab developed the technology, and how it will be used to impact the energy industry. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What does this project do? With more powerful accelerators, researchers can someday build new power plants that produce little or no nuclear waste. At Jefferson Lab, researchers have fabricated a niobium cavity for particle accelerators that has set a world record for energy efficiency. Gianluigi

90

Low Cost SiOx-Graphite and High Voltage Spinel Cathode | Department...  

Office of Environmental Management (EM)

Cathode Low Cost SiOx-Graphite and High Voltage Spinel Cathode 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

91

Advanced Cathode Catalysts  

Broader source: Energy.gov (indexed) [DOE]

new catalysts, this research program will also target other issues crucial to PEMFC cathode electrocatalysis: novel electrode structures; catalyst durability meeting the...

92

Advanced Cathode Catalysts  

Broader source: Energy.gov [DOE]

This presentation, which focuses on advanced cathode catalysts, was given by Piotr Zelenay of Los Alamos National laboratory at a February 2007 meeting on new fuel cell projects.

93

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

94

An Insulating Breakthrough | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Highlights Archives: 2013 | 2012 | 2011 | 2010 Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed An Insulating Breakthrough JANUARY 8, 2007 Bookmark and Share Tungsten Diselenide A new insulating material with the lowest thermal conductivity ever measured for a fully dense solid has been created at the University of Oregon (UO) and tested at the XOR/UNI 33-BM beamline at the U.S. Department of Energy's Advanced Photon Source (APS) at Argonne. The research was carried out by collaborators from the UO, the University of Illinois at Urbana-Champaign, the Rensselaer Polytechnic Institute, and Argonne. While far from having immediate application, the principles involved, once understood, could lead to improved insulation for a wide variety of uses,

95

Breakthrough in Nanocrystals' Growth | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Step to Drought-Resistant Plants? Next Step to Drought-Resistant Plants? A Boring Material "Stretched" Could Lead to an Electronics Revolution At the Crossroads of Chromosomes Unveiling the Structure of Adenovirus Making Silicon Melt in Reverse Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Breakthrough in Nanocrystals' Growth OCTOBER 22, 2010 Bookmark and Share Silver nanoplates decorated with silver oxy salt nanoparticles along the edges. These nanostructures were grown under irradiation of high-energy x-rays from the APS, which allowed scientists to "watch' them grow in real time. The image is from a scanning electron microscope at the Argonne EMC. Research at the U.S. Department of Energy's Advanced Photon Source (APS),

96

APowerCap Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Jump to: navigation, search Name: APowerCap Technologies Place: Chaiki, Ukraine Zip: 8130 Product: APCT develops breakthrough ultracapacitor-based power modules for...

97

Innovation Impact: Breakthrough Research Results (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INNOVATION INNOVATION IMPACT Breakthrough Research Results NREL's campus in Golden, Colorado, is a model of sustainable energy and energy efficiency. INNOVATION IMPACT NREL has a rich history of scientific innovation and partnering with industry in research and development to bring new products and technologies into manufacturing production. In these pages we have captured key breakthrough results across our primary areas of renewable energy and energy efficiency research: solar, wind, bioenergy, transportation, buildings, analysis, and manufacturing technologies. It is our hope that these examples convey the breadth of research at NREL. Under the stewardship of the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy (DOE), NREL is focused

98

Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries  

Science Journals Connector (OSTI)

Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries ... Three types of FeF3 nanocrystals were synthesized by different chemical routes and investigated as a cathode-active material for rechargeable lithium batteries. ... (1-3) Though many types of metal oxides and phosphates have been tested as alternative cathode materials,(4, 5) no real breakthrough has been achieved in capacity, especially for intercalation cathodes, the capacity-determining electrode in the present LIBs systems. ...

Ting Li; Lei Li; Yu L. Cao; Xin P. Ai; Han X. Yang

2010-01-28T23:59:59.000Z

99

Performance Degradation of LSCF Cathodes  

SciTech Connect (OSTI)

This final report summarizes the progress made during the October 1, 2008 - September 30, 2013 period under Cooperative Agreement DE-NT0004109 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled Performance Degradation of LSCF Cathodes. The primary objective of this program is to develop a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). Strategies to mitigate performance degradation are developed and implemented. In addition, thermal spray manufacturing of SOFCs is explored. Combined, this work establishes a basis for cost-effective SOFC cells.

Alinger, Matthew

2013-09-30T23:59:59.000Z

100

Challenges and Constraints of Using Oxygen Cathodes in Microbial Fuel Cells  

Science Journals Connector (OSTI)

Challenges and Constraints of Using Oxygen Cathodes in Microbial Fuel Cells ... The optimization of the cathode preparation (the choice of binder (5), the binder/catalyst ratio, the catalyst processing etc.) was beyond the scope of this study and should be the focus of further, technological investigations. ... Optimized cathode preparation procedures will most likely help increasing this factor and result in a further improved cathode performance at lower catalyst loads. ...

Feng Zhao; Falk Harnisch; Uwe Schrder; Fritz Scholz; Peter Bogdanoff; Iris Herrmann

2006-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cathodic protection retrofit of an offshore pipeline  

SciTech Connect (OSTI)

The cathodic protection anodes and corrosion coating on two 8-inch (203.2 mm) outside diameter (O.D.) offshore pipelines were damaged during deep water ({minus}380 feet, {minus}116 m) installation. In-situ methods for deep water inspection and repair of the pipelines` cathodic protection and coating systems were developed and performed. Methods are described in which underwater anode retrofits were performed and friction welding technology was used to re-attach anode leads. Standard procedures for underwater pipeline coating repair and remediation of damaged line pipe are provided.

Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

1997-09-01T23:59:59.000Z

102

University Competition Leads to Geothermal Breakthroughs | Department of  

Broader source: Energy.gov (indexed) [DOE]

University Competition Leads to Geothermal Breakthroughs University Competition Leads to Geothermal Breakthroughs University Competition Leads to Geothermal Breakthroughs March 8, 2013 - 11:57am Addthis Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? Apply for the 2013 National Geothermal Student Competition by

103

University Competition Leads to Geothermal Breakthroughs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Competition Leads to Geothermal Breakthroughs Competition Leads to Geothermal Breakthroughs University Competition Leads to Geothermal Breakthroughs March 8, 2013 - 11:57am Addthis Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? Apply for the 2013 National Geothermal Student Competition by visiting the contest page.

104

Breakthrough Technologies AGRONOMICS1: A New Resource for Arabidopsis  

E-Print Network [OSTI]

Weigel, Georg Zeller, and Lars Hennig* Functional Genomics Center Zurich, ETH and University of Zurich Center, ETH Zurich, CH­8092 Zurich, Switzerland (W.G., H.S., L.H.); Department of Molecular Biology, Max, CH­8057 Zurich, Switzerland (H.R., C.A., A.P.); Department of Biology and Zurich-Basel Plant Science

Gent, Universiteit

105

Definition: Cathode | Open Energy Information  

Open Energy Info (EERE)

Cathode Cathode Jump to: navigation, search Dictionary.png Cathode The negative pole of a battery (electrolytic cell), where electrons enter (and current leaves) the system.[1] View on Wikipedia Wikipedia Definition A cathode is an electrode through which electric current flows out of a polarized electrical device. The direction of electric current is, by convention, opposite to the direction of electron flow-thus, electrons are considered to flow toward the cathode electrode while current flows away from it. This convention is sometimes remembered using the mnemonic CCD for cathode current departs. Cathode polarity is not always negative. Although positively charged cations always move towards the cathode (hence their name) and negatively charged anions move away from it, cathode

106

Vehicle Technologies Office Merit Review 2014: Studies on High...  

Broader source: Energy.gov (indexed) [DOE]

Studies on High Capacity Cathodes for Advanced Lithium-ion Systems Vehicle Technologies Office Merit Review 2014: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems...

107

Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Facility |  

Broader source: Energy.gov (indexed) [DOE]

ADM Leads to Petroleum-Free Glycol Production ADM Leads to Petroleum-Free Glycol Production Facility Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Facility May 22, 2012 - 9:38am Addthis Pacific Northwest National Laboratory discovered a viable way to deliver propylene glycol from feedstock, including glycerin byproducts. ADM licensed that technology and in 2010 completed construction and commissioning of its full-scale production facility for the sole purpose of commercializing the PGRS process. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What does this project do? Created a renewable alternative to petroleum-based propylene glycol. Primarily, it found a way to do the chemistry efficiently and

108

U.S. Department of Energy to Invest up to $13.7 Million for Breakthrough  

Broader source: Energy.gov (indexed) [DOE]

to Invest up to $13.7 Million for to Invest up to $13.7 Million for Breakthrough Solar Energy Projects U.S. Department of Energy to Invest up to $13.7 Million for Breakthrough Solar Energy Projects March 12, 2008 - 10:52am Addthis 11 Projects selected from universities across the country WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that DOE will invest up to $13.7 million, over three years (Fiscal Years 2008 - 2010), for 11 university-led projects that will focus on developing advanced solar photovoltaic (PV) technology manufacturing processes and products. These projects are integral to President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity by 2015. Increasing the use of solar energy is also critical to diversifying our nation's energy sources in an

109

DOE Researchers Achieve Important Genetic Breakthroughs to Help Develop  

Broader source: Energy.gov (indexed) [DOE]

Researchers Achieve Important Genetic Breakthroughs to Help Researchers Achieve Important Genetic Breakthroughs to Help Develop Cheaper Biofuels DOE Researchers Achieve Important Genetic Breakthroughs to Help Develop Cheaper Biofuels December 22, 2011 - 2:26pm Addthis Washington D.C. - Researchers at the U.S. Department of Energy's (DOE's) Joint BioEnergy Institute (JBEI) announced today a major breakthrough in engineering systems of RNA molecules through computer-assisted design, which could lead to important improvements across a range of industries, including the development of cheaper advanced biofuels. Scientists will use these new "RNA machines", to adjust genetic expression in the cells of microorganisms. This will enable scientists to develop new strains of Escherichia coli (E. coli) that are better able to digest switchgrass biomass and convert released sugars to

110

Lab Breakthrough: Asteroid Killer Simulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lab Breakthrough: Asteroid Killer Simulation Lab Breakthrough: Asteroid Killer Simulation Lab Breakthrough: Asteroid Killer Simulation July 5, 2012 - 12:07pm Addthis A supercomputer at Los Alamos National Laboratory is helping scientists understand how a nuclear detonation might affect an incoming, Earth-threatening asteroid. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What if we find an Earth-bound asteroid? If time is very short (less than a month), than there is probably nothing mankind can do. If our nuclear intercept is far enough away, then these computer simulations show most asteroid fragments will steer clear. Los Alamos National Laboratory's Bob Weaver took some time recently to talk about how his research would help avert a catastrophic asteroid

111

DOE Researchers Achieve Important Genetic Breakthroughs to Help Develop  

Broader source: Energy.gov (indexed) [DOE]

Researchers Achieve Important Genetic Breakthroughs to Help Researchers Achieve Important Genetic Breakthroughs to Help Develop Cheaper Biofuels DOE Researchers Achieve Important Genetic Breakthroughs to Help Develop Cheaper Biofuels December 22, 2011 - 2:26pm Addthis Washington D.C. - Researchers at the U.S. Department of Energy's (DOE's) Joint BioEnergy Institute (JBEI) announced today a major breakthrough in engineering systems of RNA molecules through computer-assisted design, which could lead to important improvements across a range of industries, including the development of cheaper advanced biofuels. Scientists will use these new "RNA machines", to adjust genetic expression in the cells of microorganisms. This will enable scientists to develop new strains of Escherichia coli (E. coli) that are better able to digest switchgrass biomass and convert released sugars to

112

Breakthrough Industrial Carbon Capture, Utilization and Storage Project  

Broader source: Energy.gov (indexed) [DOE]

Breakthrough Industrial Carbon Capture, Utilization and Storage Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations May 10, 2013 - 11:36am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department's Acting Assistant Secretary for Fossil Energy Christopher Smith today attended a dedication ceremony at the Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas. Supported by a $284 million Energy Department investment, the company has successfully begun capturing carbon dioxide from industrial operations and is now using that carbon for enhanced oil recovery (EOR) and securely storing it underground. This first-of-a-kind, breakthrough project

113

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

114

Argonne National Laboratory Scientists Invent Breakthrough Technique...  

Broader source: Energy.gov (indexed) [DOE]

Digital Technologies, Office of Public Affairs What are the key facts? With a low-power laser, similar in intensity to those in presentation laser pointers, Argonne was able to...

115

Breakthroughs Report Highlights Energy Department's Efforts to...  

Energy Savers [EERE]

with companies like PVT Solar, GE, IntelliChoice Energy, Bard Manufacturing and A.O. Smith to develop products and technologies that include a waste heat recovery system, heat...

116

Electrochemically Stable Cathode Current Collectors for Rechargeable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Abstract:...

117

Tungsten Cathode Catalyst for PEMFC  

SciTech Connect (OSTI)

Final report for project to evaluate tungsten-based catalyst as a cathode catalyst for PEM cell applications.

Joel B. Christian; Sean P. E. Smith

2006-09-22T23:59:59.000Z

118

Miniaturized cathodic arc plasma source  

DOE Patents [OSTI]

A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA)

2003-04-15T23:59:59.000Z

119

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

120

PNNL Breakthrough Leads to Less Foreign Oil, More American Jobs |  

Broader source: Energy.gov (indexed) [DOE]

PNNL Breakthrough Leads to Less Foreign Oil, More American Jobs PNNL Breakthrough Leads to Less Foreign Oil, More American Jobs PNNL Breakthrough Leads to Less Foreign Oil, More American Jobs October 17, 2011 - 2:50pm Addthis A highly efficient catalyst to convert renewable crops into the product propylene glycol was discovered by scientists at the Pacific Northwest National Laboratory (PNNL) and commercialized by the Archer Daniels Midland Company. | Image courtesy of PNNL. A highly efficient catalyst to convert renewable crops into the product propylene glycol was discovered by scientists at the Pacific Northwest National Laboratory (PNNL) and commercialized by the Archer Daniels Midland Company. | Image courtesy of PNNL. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Making Buildings Better: Indie Energy & the Geothermal Breakthrough |  

Broader source: Energy.gov (indexed) [DOE]

Making Buildings Better: Indie Energy & the Geothermal Breakthrough Making Buildings Better: Indie Energy & the Geothermal Breakthrough Making Buildings Better: Indie Energy & the Geothermal Breakthrough March 24, 2011 - 4:26pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How does it work? By combining innovative drilling methods and the cost-effective, user-friendly Smart Geothermal Network, Indie Energy is reducing energy waste in buildings to save consumers money. Indie Energy Smart Geothermal(tm) for Buildings from Indie Energy on Vimeo For the last few weeks, we've told you about the launch of an "Entrepreneurial Mentor Corps," a one-year pilot program to connect clean energy startups with mentors who can help support these companies through early-stage challenges and increase their chance for success. The

122

Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization  

Broader source: Energy.gov (indexed) [DOE]

State Develops Breakthrough Membranes for Carbon Capture, State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage December 20, 2012 - 9:44am Addthis Researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that could efficiently separate carbon dioxide (CO2) from the gas that comes from burning coal at power plants. | Photo courtesy of Office of Fossil Energy. Researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that could efficiently separate carbon dioxide (CO2) from the gas that comes from burning coal at power plants. | Photo courtesy of Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy

123

Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization  

Broader source: Energy.gov (indexed) [DOE]

Ohio State Develops Breakthrough Membranes for Carbon Capture, Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage December 20, 2012 - 9:44am Addthis Researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that could efficiently separate carbon dioxide (CO2) from the gas that comes from burning coal at power plants. | Photo courtesy of Office of Fossil Energy. Researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that could efficiently separate carbon dioxide (CO2) from the gas that comes from burning coal at power plants. | Photo courtesy of Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy

124

PNNL Breakthrough Leads to Less Foreign Oil, More American Jobs |  

Broader source: Energy.gov (indexed) [DOE]

Breakthrough Leads to Less Foreign Oil, More American Jobs Breakthrough Leads to Less Foreign Oil, More American Jobs PNNL Breakthrough Leads to Less Foreign Oil, More American Jobs October 17, 2011 - 2:50pm Addthis A highly efficient catalyst to convert renewable crops into the product propylene glycol was discovered by scientists at the Pacific Northwest National Laboratory (PNNL) and commercialized by the Archer Daniels Midland Company. | Image courtesy of PNNL. A highly efficient catalyst to convert renewable crops into the product propylene glycol was discovered by scientists at the Pacific Northwest National Laboratory (PNNL) and commercialized by the Archer Daniels Midland Company. | Image courtesy of PNNL. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs "Not only can we reduce our use of petroleum, but we can make better use

125

Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EVs Based on Novel, High Voltage Cathode Material Systems  

Broader source: Energy.gov [DOE]

Presentation given by Farasis Energy, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li...

126

Vehicle Technologies Office Merit Review 2014: Solid State NMR Studies of Li-Rich NMC Cathodes: Investigating Structure Change and Its Effect on Voltage Fade Phenomenon  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about solid state NMR...

127

High Performance Cathodes for Li-Air Batteries  

SciTech Connect (OSTI)

The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

Xing, Yangchuan

2013-08-22T23:59:59.000Z

128

IPAS exists to deliver breakthrough science, drive innovation and thus  

E-Print Network [OSTI]

IPAS exists to deliver breakthrough science, drive innovation and thus enable illuminated decision making for a safer, healthier & wealthier world #12;Director's Welcome Our vision is to make IPAS from many areas of science. IPAS has been created to bring together physicists, chemists and biologists

129

Maximizing output from oil reservoirs without water breakthrough  

E-Print Network [OSTI]

Maximizing output from oil reservoirs without water breakthrough S.K. Lucas School of Mathematics, revised May 2003, published 45(3), 2004, 401­422 Abstract Often in oil reservoirs a layer of water lies, for example, Muskat [8], Bear [1]). When oil is removed from the reservoir by an oil well, it will generate

Lucas, Stephen

130

Stabilized Spinel and Polyanion Cathodes  

Broader source: Energy.gov (indexed) [DOE]

nanostructured phosphate and silicate cathodes and their nanocomposites with graphene - To develop a fundamental understanding of the factors that control the...

131

HIGH-CAPACITY POLYANION CATHODES  

Broader source: Energy.gov (indexed) [DOE]

nanostructured phosphate and silicate cathodes as well as their nanocomposites with graphene to overcome the limitations of poor ionic and electronic conductivity - To develop a...

132

Synopsis of Cathode #4 Activation  

E-Print Network [OSTI]

surface. For protection, use UHV grade aluminum foil insteadof lint free paper. The UHV foil shall be essentially freeminutes handling according to UHV practice, cathode surface

Ekdahl, C.

2008-01-01T23:59:59.000Z

133

Investigating late stage biopharmaceutical product loss using novel analytical and process technology  

E-Print Network [OSTI]

The biopharmaceutical industry uses recombinant protein technologies to provide novel therapeutics to patients around the world. These technologies have presented exciting opportunities for breakthrough medical treatments ...

Hunnicutt, Leigh Anne

2008-01-01T23:59:59.000Z

134

[New technology for linear colliders]. Annual progress report and renewal proposal  

SciTech Connect (OSTI)

This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.

McIntyre, P.M.

1992-08-12T23:59:59.000Z

135

Hot hollow cathode gun assembly  

DOE Patents [OSTI]

A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

Zeren, J.D.

1983-11-22T23:59:59.000Z

136

Stabilized Spinel and Nano Olivine Cathodes  

Broader source: Energy.gov (indexed) [DOE]

NANO OLIVINE STABILIZED SPINEL AND NANO OLIVINE CATHODES CATHODES ARUMUGAM MANTHIRAM Electrochemical Energy Laboratory (ECEL) Materials Science and Engineering Program The...

137

A high-pressure nanoimaging breakthrough | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers A high-pressure nanoimaging breakthrough July 16, 2013 Tweet EmailPrint A team of researchers made a major breakthrough in measuring the structure of nanomaterials under extremely high pressures. Bragg coherent x-ray diffraction imaging (CXDI) is a promising tool to probe the internal strains of nanometer-sized crystals. But for high-pressure studies the x-ray beam must pass through a component of the diamond anvil cell, which can significantly affect the coherence properties of the beam. The researchers have developed a technique to deal with this that could lead to

138

Lab Breakthrough: Lead-free Solder | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lead-free Solder Lead-free Solder Lab Breakthrough: Lead-free Solder May 24, 2012 - 10:45am Addthis Iver Anderson, senior metallurgist at Ames Laboratory, explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs "Many creative solutions to problems in one field can be borrowed from another field..." Dr. Iver Anderson, Ames National Lab senior metallurgist Dr. Iver Anderson, Ames National Laboratory materials scientist, developed

139

Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovation: Innovation: Sources of Technical and Commercial Breakthroughs Thomas D. Perry IV and Mackay Miller National Renewable Energy Laboratory Lee Fleming Harvard Business School Kenneth Younge University of Colorado James Newcomb National Renewable Energy Laboratory Current Affiliation: Rocky Mountain Institute Technical Report NREL/TP-6A20-50624 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs

140

Lab Breakthrough: Neutron Science for the Fusion Mission | Department of  

Broader source: Energy.gov (indexed) [DOE]

Neutron Science for the Fusion Mission Neutron Science for the Fusion Mission Lab Breakthrough: Neutron Science for the Fusion Mission May 16, 2012 - 9:52am Addthis An accelerator team lead by Robert McGreevy at Oak Ridge National Laboratory is testing material - a critical role in building an experimental fusion reactor for commercial use. As part of the international coalition, they expect to have an operational reactor by 2050. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What is the difference between fusion and fission? Fission pulls molecules apart. This type of reactor runs nuclear power plants. Fusion puts molecules together. This type of reaction powers the Sun. Oak Ridge National Laboratory scientist Robert McGreevy explains the

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lab Breakthrough: Fusion Research Leads to Antiterrorism Device |  

Broader source: Energy.gov (indexed) [DOE]

Fusion Research Leads to Antiterrorism Device Fusion Research Leads to Antiterrorism Device Lab Breakthrough: Fusion Research Leads to Antiterrorism Device June 26, 2012 - 12:17pm Addthis Researchers at the Princeton Plasma Physics Laboratory developed an antiterrorism device that can detect and identify sources of dangerous radiation that could be used in a dirty bomb. See the other Lab Breakthrough videos on the YouTube playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What is MINDS? MINDS stands for Miniature Integrated Nuclear Detection System The system detects and identifies radiological conditions under a variety of real-world environments - for instance in a shipping yard, at an airport, or public building. Princeton Plasma Physics Laboratory's Charles Gentile, Lead Developer of

142

High Current Density, Long Life Cathodes for High Power RF Sources  

SciTech Connect (OSTI)

This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for the technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the worlds largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.

Ives, Robert Lawrence [Calabazas Creek Research,, Inc.; Collins, George [Calabazas Creek Research, Inc.; Falce, Lou [Consultant; Schwartzkopf, Steve [Ron Witherspoon, Inc.; Busbaher, Daniel [Semicon Associates

2014-01-22T23:59:59.000Z

143

Stabilized Spinels and Polyanion Cathodes  

Broader source: Energy.gov (indexed) [DOE]

process * Synthesis of nano-engineered alloy, carbon-decorated Fe 3 O 4 nanowire, and graphene anodes, but only results on the cathodes are given in the next 11 slides TECHNICAL...

144

Cold cathode vacuum discharge tube  

DOE Patents [OSTI]

A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

Boettcher, Gordon E. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

145

Layered Cathode Materials  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

146

Cathode materials for lithium ion batteries prepared by sol-gel methods  

Science Journals Connector (OSTI)

Improving the preparation technology and electrochemical performance of cathode materials for lithium ion batteries is a current major focus of research and development in the areas of materials, power sources...

H. Liu; Y. P. Wu; E. Rahm; R. Holze; H. Q. Wu

2004-06-01T23:59:59.000Z

147

NETL: News Release - New Projects to Explore Breakthrough Ideas for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6, 2002 6, 2002 New Projects to Explore "Breakthrough" Ideas for Capturing, Storing Carbon Gases DOE's Carbon Sequestration R&D Program Expands With Addition of Three University-Sponsored Projects PITTSBURGH, PA - One of the "breakthroughs" singled out by President Bush and others that could dramatically reduce the threat of global climate change is carbon sequestration - the capture and storage of greenhouse gases that otherwise would be expelled from energy facilities. Already, carbon sequestration is one of the fastest growing areas of research in the U.S. Department of Energy. Now, as part of this effort, the department is preparing to add three new projects to its research portfolio. One project, if successful, will add a new option for capturing carbon gases that could significant reduce the high costs and severe energy penalties that have hindered past approaches. The other two projects will explore ways to store carbon dioxide safely and essentially permanently, again without imposing excessive costs on the energy consumer.

148

Taking the 'Large' out of Large Hadron Collider: Computational Breakthrough  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home » News & Publications » News » Science News » Taking the 'Large' out of Large Hadron Collider Taking the 'Large' out of Large Hadron Collider Computational breakthrough hastens modeling of 'tabletop accelerators' August 9, 2010 | Tags: Accelerator Science Contact: Margie Wylie | mwylie@lbl.gov | 510-486-7421 mori1 This 3D simulation shows how laser pulses create plasma wakes that propel electrons forward, much as a surfer is propelled forward by an ocean wave. Laser wakefield acceleration promises electron accelerators that are thousands of times more powerful than, yet a fraction the size of, conventional radio frequency devices. Particle accelerators like the Large Hadron Collider (LHC) at CERN are the big rock stars of high-energy physics-really big. The LHC cost nearly

149

New Nanoscale Engineering Breakthrough Points to Hydrogen-Powered Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Patterning High-density Arrays of Nanospheres with Self Assembly Patterning High-density Arrays of Nanospheres with Self Assembly Cells Forming Blood Vessels Send Their Copper to the Edge A Molecular Cause for One Form of Deafness Water Theory is Watertight Nanowire Micronetworks from Carbon-Black Nanoparticles Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed New Nanoscale Engineering Breakthrough Points to Hydrogen-Powered Vehicles MARCH 7, 2007 Bookmark and Share Nenad Markovic and Vojislav Stamenkovic with the new three-chamber UHV system at Argonne. Researchers at the U.S. Department of Energy's Argonne National Laboratory have developed an advanced concept in nanoscale catalyst engineering - a

150

Lab Breakthrough: Better Fiber for Better Products | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Better Fiber for Better Products Better Fiber for Better Products Lab Breakthrough: Better Fiber for Better Products May 2, 2012 - 9:47am Addthis Researchers at Idaho National Laboratory have developed a cost-effective method for the continuous production of alpha silicon carbide fiber. The exceptionally strong, lightweight fiber could enable significant performance improvements in many everyday products. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What could Alpha Silicon Carbide Fibers produce? Lighter and longer-lasting vehicle body structures that are 3 to 6 times stronger than those using steel. Utilities could deploy lighter, stronger power lines. Idaho National Laboratory researcher John Garnier recently took some time to explain how the carbon fibers he and George Griffith invented could

151

Cathode Connector For Aluminum Low Temperature Smelting Cell  

DOE Patents [OSTI]

Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

Brown, Craig W. (Seattle, WA); Beck, Theodore R. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA)

2003-07-16T23:59:59.000Z

152

HIGHLY DISPERSED ALLOY CATHODE CATALYST FOR DURABILITY  

E-Print Network [OSTI]

Understanding high performance materials Pt/C cathode B.S.E. Pt PtCo/C cathode IrB.S.E. Pt Co PtIrCo/C cathodeHIGHLY DISPERSED ALLOY CATHODE CATALYST FOR DURABILITY T. D. Jarvi UTC Power Corporation Electrochemical Area Loss Activity at 900 mVRHE (IR-Free) 0.44 A/mg Pt Specific Activity at 900 m

153

High-current-density, high brightness cathodes for free electron laser applications  

SciTech Connect (OSTI)

This report discusses the following topics: brightness and emittance of electron beams and cathodes; general requirements for cathodes in high brightness electron guns; candidate cathode types; plasma and field emission cathodes; true field emission cathodes; oxide cathodes; lanthanum hexaborides cathodes; laser driven thermionic cathodes; laser driven photocathodes; impregnated porous tungsten dispenser cathodes; and choice of best performing cathode types.

Green, M.C. (Varian Associates, Palo Alto, CA (USA). Palo Alto Microwave Tube Div.)

1987-06-01T23:59:59.000Z

154

Note on RF Photo-Cathode Gun  

E-Print Network [OSTI]

E.R. Gray and P.M. Giles, "Photo-cathodes in AcceleratorProceedings Note on RF Photo-Cathode Gun K. -J. Kim August106 LBL-29538 Note on RF Photo-Cathode G un Kwang-Je Kim

Kim, Kwang-Je

2010-01-01T23:59:59.000Z

155

Remote control for anode-cathode adjustment  

DOE Patents [OSTI]

An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

Roose, Lars D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

156

Polyanionic Cathode-Active Materials  

Science Journals Connector (OSTI)

In the 1980s, the layered rock salt types LiCoO2 1 and LiNiO2 2 and spinel-type LiMn2O4 3 were successively proposed as 4-V class cathode-active materials by Goodenough's group...

Shigeto Okada; Jun-ichi Yamaki

2009-01-01T23:59:59.000Z

157

Drug Discovery Approach to Breakthroughs in Batteries September 8th and 9th, 2008  

E-Print Network [OSTI]

for the electrolyte salt and the active cathode material. This dual role allows very high energy to be packed a commercial bi- function air cathode. Educational background: B.S. Chemistry, University of California liquid cathode batteries in which the liquid (e.g., thionyl chloride) serves as both the solvent

Sadoway, Donald Robert

158

Magnetic-cusp, cathodic-arc source  

DOE Patents [OSTI]

A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission. 3 figs.

Falabella, S.

1995-11-21T23:59:59.000Z

159

Cathode Contact Materials for Anode-Supported Cell Development - Lawrence Berkeley National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cathode Contact Materials for Anode- Cathode Contact Materials for Anode- Supported Cell Development- Lawrence Berkeley National Laboratory Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of solid oxide

160

SWNT?MWNT Hybrid Architecture for Proton Exchange Membrane Fuel Cell Cathodes  

Science Journals Connector (OSTI)

SWNT?MWNT Hybrid Architecture for Proton Exchange Membrane Fuel Cell Cathodes ... A thin film of single-wall carbon nanotubes (SWNTs) and SWNT?multiwall carbon nanotube (MWNT) hybrids loaded with Pt have been evaluated as the cathode catalyst layer in proton exchange membrane fuel cells. ... Hydrogen, Fuel Cells & Infrastructure Technologies Program: Multi-Year Research, Development and Demonstration Plan: Planned Program Activities for 2003?2010; U.S. Department of Energy: Energy Efficiency and Renewable Energy: January 21, 2005. ...

Palanisamy Ramesh; Mikhail E. Itkis; Jason M. Tang; Robert C. Haddon

2008-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES  

SciTech Connect (OSTI)

This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is LSCF < PSCF < SSCF < YSCF < LSM. The button cell results agree with this ordering indicating that this is an important tool for use in developing our understanding of electrode behavior in fuel cells.

Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

2002-03-31T23:59:59.000Z

162

Fluoride based cathodes and electrolytes for high energy thermal batteries  

SciTech Connect (OSTI)

A research and development program is being conducted at the Saft Advanced Technologies Division in Hunt Valley, MD to double the energy density of a thermal battery. A study of high voltage cathodes to replace iron disulfide is in progress. Single cells are being studied with a lithium anode and either a copper(II) fluoride, silver(II) fluoride, or iron(III) fluoride cathode. Due to the high reactivity of these cathodes, conventional alkali metal chloride and bromide salt electrolytes must be replaced by alkali metal fluoride electrolytes. Parametric studies using design-of-experiments matrices will be performed so that the best cathode for an improved battery design can be selected. Titanium hardware for the design will provide a higher strength to weight ratio with lower emissivity than conventional stainless steel. The battery will consist of two power sections. The goals are battery activation in less than 0.2 s, 88 Wh/kg, 1,385 W/kg, and 179 Wh/L over an environmental temperature range of {minus}40 C to +70 C.

Briscoe, J.D.

1998-07-01T23:59:59.000Z

163

Filters for cathodic arc plasmas  

DOE Patents [OSTI]

Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA); Bilek, Marcela M. M. (Engadine, AU); Brown, Ian G. (Berkeley, CA)

2002-01-01T23:59:59.000Z

164

Intermittent cathodic protection using solar power  

SciTech Connect (OSTI)

An intermittent impressed current cathodic protection technique using photovoltaic energy was evaluated to determine it`s ability to protect bridge concrete piles in marine environments against corrosion. The technique uses commercially available anode systems to deliver the cathodic protection current to the concrete and onto the reinforcing steel. Cathodic protection current is only applied during the daytime hours. The magnitude of the applied current was based on sunlight availability. An evaluation was conducted on laboratory specimens as well as in the field. The laboratory work was performed on steel reinforced concrete specimens placed in simulated salt water tanks. For the field evaluation, ten prestressed concrete piles of a bridge structure with an existing rectifier powered cathodic protection system were used. In both cases, intermittent cathodic protection was provided. Polarization and depolarization of the steel reinforcement as well as the protection current delivered were monitored to evaluate the cathodic protection performance as well as the behavior of periodic polarization-depolarization.

Kessler, R.J.; Powers, R.G.; Lasa, I.R. [Florida Dept. of Transportation, Gainesville, FL (United States). Corrosion Research Lab.

1998-12-31T23:59:59.000Z

165

Sun powers Libya cathodic-protection system  

SciTech Connect (OSTI)

Well castings and part of the main 300-mile-long, 32-in diameter pipeline from Sarir to Tobruk are cathodically protected by solar power, which prevents galvanic action by applying an electric direct current of appropriate magnitude and polarity to the steel structures. They then act as cathodes and become the recipients of metallic ions. At each cathodic-protection station, the solar-generaor system consists of solar-panel arrays, electronic controls, and batteries.

Currer, G.W.

1982-03-22T23:59:59.000Z

166

Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual World |  

Broader source: Energy.gov (indexed) [DOE]

Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual World Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual World July 11, 2012 - 1:34pm Addthis Mfix is open-source, virtual modeling software that makes coal gasification processes more efficient than was ever possible through lab tests. Modeling reduces the cost and time of testing and building actual systems and ultimately results in lower costs, improved power plant efficiency, and new energy systems that meet or even exceed current or proposed environmental regulations. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What is the future of MFiX? Ultimately, we see MFiX being used to solve industrial-scale

167

Physics World names NIF fuel gain top 10 breakthrough of the...  

National Nuclear Security Administration (NNSA)

of its top 10 breakthroughs of the year. NIF - the world's largest and most energetic laser - is funded by NNSA and is a key element of NNSA's Stockpile Stewardship Program to...

168

Lab Breakthrough: Exploring Matter at the Dawn of Time | Department of  

Broader source: Energy.gov (indexed) [DOE]

Lab Breakthrough: Exploring Matter at the Dawn of Time Lab Breakthrough: Exploring Matter at the Dawn of Time Lab Breakthrough: Exploring Matter at the Dawn of Time May 9, 2012 - 2:55pm Addthis Physicist Paul Sorensen describes discoveries made at the Relativistic Heavy Ion Collider (RHIC), a particle accelerator at Brookhaven National Laboratory. At RHIC, scientists from around the world study what the universe may have looked like in the first microseconds after its birth, helping us to understand more about why the physical world works the way it does - from the smallest particles to the largest stars. See the other Lab Breakthrough videos on the YouTube playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs "To me, it's like the first steps on the moon."

169

AC corrosion on cathodically protected steel.  

E-Print Network [OSTI]

?? This report deals with the effect of alternating current on cathodically protected steel. AC corrosion has become relevant in the offshore industry due to (more)

Torstensen, Andreas

2012-01-01T23:59:59.000Z

170

Highly Dispersed Alloy Cathode Catalyst for Durability  

Broader source: Energy.gov [DOE]

This presentation, which focuses on alloy cathode catalysts, was given by T. D. Jarvi of UTC Power at a February 2007 meeting on new fuel cell projects.

171

HIGH-VOLTAGE SPINEL AND POLYANION CATHODES  

Broader source: Energy.gov (indexed) [DOE]

POLYANION CATHODES ARUMUGAM MANTHIRAM Electrochemical Energy Laboratory (ECEL) Materials Science and Engineering Program The University of Texas at Austin May 14, 2012 Project ID...

172

A analysis of the cathode coupled amplifier  

E-Print Network [OSTI]

AN ANALySIS 0 TH CATHODE COOFL D ~iPLIPIER A Thesis by FORREST JACKS RETLING-. . R Approved as to style and content by: Chairman of Committee 'Head of Department August, 1951 AN ANALYSIS OF THE CATHODE COUPLED. AMPLIFIER by FORHEST JAMES.... The Cathode-Coupled Amplif 1er Circuit 2. The Cathode-Coupled Amplif ier Circuit shnwing a. c. components only 3. The Approximate A. C. Fquivalent, Circuit Page 17 4 ~ Aoproximate Equivalent C1rcu its f' or Calculating Output Impedances 22 5...

Hetlinger, Forrest James

2012-06-07T23:59:59.000Z

173

Cathodic Arc Deposition of Copper Oxide Thin Films  

E-Print Network [OSTI]

plasma source with a copper cathode was operated in an oxygen atmosphereplasma source with a copper cathode in an oxygen atmosphere.plasma source with a copper cathode (5 cm diameter) operated in an oxygen atmosphere.

MacGill, R.A.

2011-01-01T23:59:59.000Z

174

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

A new cathode material for batteries of high energy density.high-energy cathode for rechargeable lithium batteries. Advanced Materialsmaterials are promising cathodes, as they can provide high power and high energy,

Zhu, Jianxin

2014-01-01T23:59:59.000Z

175

President Obama Announces Funding for Breakthroughs in Natural...  

Energy Savers [EERE]

support more than 600,000 U.S. jobs. Today's natural gas vehicle technologies require tanks that can withstand high pressures, are cumbersome and either too large or too...

176

Developing Standards for Breakthrough Therapy Designation in Oncology  

Science Journals Connector (OSTI)

...Phases of drug development process Potential uses of biomarkers...the biomarker development process include discovery, qualification...clinical validation, and commercialization (2). The role of biomarkers...establishment of a concrete validation process that addresses technology...

Sandra J. Horning; Daniel A. Haber; Wendy K.D. Selig; S. Percy Ivy; Samantha A. Roberts; Jeff D. Allen; Ellen V. Sigal; and Charles L. Sawyers

2013-08-15T23:59:59.000Z

177

Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)  

SciTech Connect (OSTI)

The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

Guenther, Chris

2013-09-26T23:59:59.000Z

178

Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)  

ScienceCinema (OSTI)

The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

Guenther, Chris

2014-05-21T23:59:59.000Z

179

Cathodes  

Broader source: Energy.gov (indexed) [DOE]

100- 120 mAhg at a 0.08 mAg rate. Autogenic reactions to be pursued further in the search for advanced electrode materials and architectures 16 3. Simulation of Atomic...

180

Non-Platinum Bimetallic Cathode Electrocatalysts  

E-Print Network [OSTI]

Non-Platinum Bimetallic Cathode Electrocatalysts Debbie Myers ­ Argonne National Laboratory-platinum cathode electrocatalyst for polymer electrolyte fuel cells to meet DOE targets that: ­ Promotes the direct not contain any proprietary or confidential information #12;Objective and Technical Targets Develop a non

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced Cathode Catalysts and Supports for  

E-Print Network [OSTI]

;3 Objectives: Development of a durable, low cost, high performance cathode electrode (catalyst and support and Approach Approach: Development of advanced cathode catalysts and supports based on 3M's nanostructured thin Review (6/8/10) Water management for cool/wet transient operation (Task 5.2) Developed key strategy

182

Additives and Cathode Materials for High-Energy Lithium Sulfur...  

Broader source: Energy.gov (indexed) [DOE]

Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

183

Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

184

Conflicting Roles Of Nickel In Controlling Cathode Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries. Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries....

185

Cathode Synthesis and Voltage Fade: Designed Solutions Based...  

Broader source: Energy.gov (indexed) [DOE]

Cathode Synthesis and Voltage Fade: Designed Solutions Based on Theory Cathode Synthesis and Voltage Fade: Designed Solutions Based on Theory 2013 DOE Hydrogen and Fuel Cells...

186

Degradation of Ionic Pathway in PEM Fuel Cell Cathode. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Degradation of Ionic Pathway in PEM Fuel Cell Cathode. Degradation of Ionic Pathway in PEM Fuel Cell Cathode. Abstract: The degradation of the ionic pathway throughout the catalyst...

187

Development of High-Capacity Cathode Materials with Integrated...  

Broader source: Energy.gov (indexed) [DOE]

Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures 2013 DOE Hydrogen and Fuel Cells...

188

Development of high-capacity cathode materials with integrated...  

Broader source: Energy.gov (indexed) [DOE]

Development of high-capacity cathode materials with integrated structures Development of high-capacity cathode materials with integrated structures 2009 DOE Hydrogen Program and...

189

Design and Evaluation of Novel High Capacity Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

190

Advanced Cathode Catalysts and Supports for PEM Fuel Cells |...  

Energy Savers [EERE]

Advanced Cathode Catalysts and Supports for PEM Fuel Cells Advanced Cathode Catalysts and Supports for PEM Fuel Cells 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

191

Cathode Effects in Cylindrical Hall Thrusters  

SciTech Connect (OSTI)

Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

2008-09-12T23:59:59.000Z

192

Optical and electrical investigations into cathode ignition and diode closure  

SciTech Connect (OSTI)

The temporal behavior of high-power diodes is closely related to the impedance collapse caused by the movement of the cathode and/or anode plasmas. This impedance collapse can be especially problematic when a constant power electron beam is required. This is the case for the very large area (square meters) diodes used to pump the amplifiers within the Aurora KrF laser system. The electron beam technology development program at Los Alamos utilizes the Electron Beam Test Facility (EGTF) to study diode physics in an attempt to better understand the basic phenomenology of ignition and closure. A combination of optical and electric diagnostics has been fielded on the Electron Beam Test Facility to study ignition and closure in large area electron beam diodes. A four-channel framing camera is used to observe the formation of microplasmas on the surface of the cathode and the subsequent movement of these plasmas toward the anode. Additionally, a perveance model is used to extract information about this plasma from voltage and current profiles. Results from the two diagnostics are compared. Closure velocity measurements are presented showing little dependence on applied magnetic field for both velvet and carbon felt emitters. We also report the first observation of the screening effect in large area cold cathode diodes. 13 refs., 11 figs.

Coogan, J.J.; Rose, E.A.; Shurter, R.P.

1991-01-01T23:59:59.000Z

193

PNNL pushing scientific discovery through data intensive computing breakthroughs  

ScienceCinema (OSTI)

The Pacific Northwest National Laboratorys approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architectures, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

Deborah Gracio; David Koppenaal; Ruby Leung

2012-12-31T23:59:59.000Z

194

Microsoft Word - Poster Abstract_2010_GATech_LSM-Infiltrated LSCF Cathodes.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Interfaces and Interfaces in LSM-Infiltrated LSCF Cathodes Wentao Qin, Mingfei Liu, Matthew E. Lynch, Jong-jin Choi and Meilin Liu Center for Innovative Fuel Cell and Battery Technologies School of Materials Science and Engineering Georgia Institute of Technology 771 Ferst Dr., Atlanta, GA 30332-0245 Telephone: 404-894-6114 Email: meilin.liu@mse.gatech.edu Recent studies suggest that the stability and performance of a porous La x Sr 1-x Co y Fe 1-y O 3- (LSCF) cathode may be enhanced by the infiltration of a thin-film La x Sr 1-x MnO 3- (LSM) coating. However, the mechanism of the observed enhancement is still unknown. This poster will present our recent findings in microanalyses of the structure, composition, and morphology of the LSM and LSCF surfaces as well as the LSM/LSCF interfaces in LSM-infiltrated LSCF cathodes. Results indicate that a

195

Cathode for an electrochemical cell  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

2001-01-01T23:59:59.000Z

196

Stabilized Spinel and Polyanion Cathodes  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

197

Toda Cathode Materials Production Facility  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

198

STABILIZED SPINEL AND POLYANION CATHODES  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

199

Studies on Oxide Cathode Crystals  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

200

Nickel-Cathoded Perovskite Solar Cells  

Science Journals Connector (OSTI)

Nickel-Cathoded Perovskite Solar Cells ... Current lead halide perovskite solar cells use high work function (?) precious metals, such as gold (? = 5.1 eV), as the back cathode to maximize the attainable photovoltage. ... We report herein a set of perovskite-type solar cells that use nickel (? = 5.04 eV), an earth-abundant element and non-precious metal, as back cathode and achieve the same open-circuit voltage as gold and an efficiency of 10.4%. ...

Qinglong Jiang; Xia Sheng; Bing Shi; Xinjian Feng; Tao Xu

2014-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

K2CsSb Cathode Development  

SciTech Connect (OSTI)

K{sub 2}CsSb is an attractive photocathode for high current applications. With a quantum efficiency of >4% at 532nm and >10% at 355nm, it is the only cathode to have demonstrated an average current of 35mA in an accelerator environment We describe ongoing cathode development work. for the energy recovery linac being constructed at BNL Several cathodes have been created on both copper and stainless steel substrates, and their spatial uniformity and spectral response have been characterized. Preliminary lifetime measurements have been performed at high average current densities (>1 mA/mm{sup 2}).

Smedley,J.; Rao, T.; Wang, E.

2008-10-01T23:59:59.000Z

202

Cells having cathodes containing polycarbon disulfide materials  

DOE Patents [OSTI]

The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.

Okamoto, Yoshi (Fort Lee, NJ); Skotheim, Terje A. (Shoreham, NY); Lee, Hung S. (Rocky Point, NY)

1995-08-15T23:59:59.000Z

203

Cells having cathodes containing polycarbon disulfide materials  

DOE Patents [OSTI]

The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.

Okamoto, Y.; Skotheim, T.A.; Lee, H.S.

1995-08-15T23:59:59.000Z

204

DOE to Invest up to $24 Million for Breakthrough Solar Energy Products |  

Broader source: Energy.gov (indexed) [DOE]

4 Million for Breakthrough Solar Energy 4 Million for Breakthrough Solar Energy Products DOE to Invest up to $24 Million for Breakthrough Solar Energy Products August 12, 2008 - 2:40pm Addthis Twelve Industry Teams Partner with DOE to Advance Integration of Solar Energy Systems into Electrical Grid WASHINGTON - U.S. Department of Energy (DOE) Principal Deputy Assistant Secretary for Energy Efficiency and Renewable Energy John Mizroch announced today that DOE will invest up to $24 million in Fiscal Year 2008 and beyond-subject to the availability of funds-to develop solar energy products to significantly accelerate penetration of solar photovoltaic (PV) systems in the United States. The Solar Energy Grid Integration Systems (SEGIS) projects will provide critical research and development (R&D)

205

On the Path to Low Cost Renewable Fuels, an Important Breakthrough |  

Broader source: Energy.gov (indexed) [DOE]

On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough April 18, 2013 - 4:10pm Addthis NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. A researcher examines a strain of the fermentation microorganism Zymomonas mobilis on a culture plate. NREL has genetically engineered and patented its own strains of Zymomonas mobilis to more effectively ferment the multiple sugars found in biomass as part of the cellulosic ethanol-to-renewable fuel conversion process. | Photo by Dennis Schroeder, NREL.

206

Energy Department Invests $14 Million in Innovative Building Efficiency Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced up to $14 million in funding for 15 research and development projects to support technologies that will contribute to advancing early-stage, breakthrough energy-efficient solutions for buildings and homes.

207

Heat Integrated Distillation through Use of Microchannel Technology  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

208

Greening Coal: Breakthroughs and Challenges in Carbon Capture and Storage  

Science Journals Connector (OSTI)

(1) This plan requires that globally, billions of tonnes of carbon dioxide (GtCO2) each year must be captured, concentrated, and stored to keep it out of the atmosphere for hundreds to thousands of years. ... Ciferno, J. P.; Fout, T. E.; Jones, A. P.; Murphy, J. T.Capturing carbon from existing coal-fired power plants Chem. ... Nelson, T.; Coleman, L.; Anderson, M.; Herr, J.; Pavani, M.The dry carbonate process: Carbon dioxide recovery from power plant flue gas, In CO2 Capture Technology for Existing Plants, NETL R&D Meeting, Pittsburgh, PA, 2009. ...

Philip H. Stauffer; Gordon N. Keating; Richard S. Middleton; Hari S. Viswanathan; Kathryn A. Berchtold; Rajinder P. Singh; Rajesh J. Pawar; Anthony Mancino

2011-09-09T23:59:59.000Z

209

Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations  

E-Print Network [OSTI]

Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights to drive fast ionic transport. 1. Introduction The interest in Solid Oxide Fuel Cell (SOFC) technology. Current targets of cost and durability necessitate solid oxide fuel cells to operate in the intermediate

Yildiz, Bilge

210

Supporting Information Power generation by packed-bed air-cathode microbial fuel cells  

E-Print Network [OSTI]

1 Supporting Information Power generation by packed-bed air-cathode microbial fuel cells Xiaoyuan b a State Key Joint Laboratory of Environment Simulation and Pollution Control, THU­ VEOLIA Informatics, China University of Mining and Technology, Xuzhou 221116, PR China * Corresponding author: E

211

Interaction of cathode plasma with the cathode surface in an electron source with explosive electron emission  

Science Journals Connector (OSTI)

The interaction of the plasma formed at emission centers of an electron source using explosive electron emission with the cathode surface is studied....

. N. Abdullin; G. P. Bazhenov

1981-11-01T23:59:59.000Z

212

Cathode applications to high-current diodes  

SciTech Connect (OSTI)

A principal limitation of pulse length for high electron current density diodes is the gap closure due to plasma propagation. This closure is due to plasma formed on the cathode and anode in the process of explosive field emission created by the required high field stresses of the high current diode. Experimental results of high current density T-F'' cathode and a plasma cathode will be presented. Current densities of greater than 300 A/cm2 were obtained for pulse lengths of 3 {mu}sec. Typical closure velocities were less than 2 mm/usec compared with the typical 2 cm/{mu}sec for explosive emission cathodes. 4 refs., 7 figs.

Pincosy, P.A.; Poulsen, P.; Greenwood, D.

1990-05-31T23:59:59.000Z

213

Development of High Energy Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

deposits). Al-coated cell can is suitable for high-voltage cathodes. Polyethylene-based separators (such as Celgard K1640) are stable at high V. Carbon Additives...

214

Non-Platinum Bimetallic Cathode Electrocatalysts  

Broader source: Energy.gov [DOE]

This presentation, which focuses on non-platinum bimetallic cathode electrocatalysts, was given by Debbie Myers of Argonne National Laboratory at a February 2007 meeting on new fuel cell projects.

215

Engineering of High Energy Cathode Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engineering of High energy cathode material K. Amine (PI) H. Wu, I. Belharouak, Y.K. Sun Argonne National Laboratory DOE merit review May 14-18 , 2012 This presentation does not...

216

Breakthroughs in Practical-Sized, High Quality OLED Light Panel Source  

Broader source: Energy.gov [DOE]

General Electric Global Research has achieved a major breakthrough, developing a fully functional 2 ft. x 2 ft. light panel that produces more than 1200 lumens of quality white light with an efficacy of 15 lumens per watt. This device offers 50% better energy performance than their previous device, breaking two world records.

217

Standards and innovation in emerging fields: Pushing breakthrough innovation or enrolling actors?  

E-Print Network [OSTI]

1 Standards and innovation in emerging fields: Pushing breakthrough innovation or enrolling actors? An analysis of eco-district standards in France and Denmark Aurélien Acquier ESCP Europe 79, av are grateful to PUCA in France for providing research funding for this project. #12;2 Abstract Standards

Paris-Sud XI, Université de

218

NREL: Technology Transfer - Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Available for Licensing Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing, visit the EERE Innovation Portal and search for NREL. Learn about our licensing agreement process. Contact For more information about licensing NREL-developed technologies, contact Eric Payne, 303-275-3166. Ombuds NREL strives to quickly resolve any issue or concern you may have regarding

219

Schumpeterian Patterns of Innovation and the Sources of Breakthrough Inventions: Evidence from a Data-set of R&D Awards  

Science Journals Connector (OSTI)

This paper examines the relationship between Schumpeterian patterns of innovation and the generation of breakthrough inventions. Our data source for breakthrough inventions is the R&D 100 awards competition org...

Roberto Fontana; Alessandro Nuvolari; Hiroshi Shimizu

2013-01-01T23:59:59.000Z

220

Schumpeterian patterns of innovation and the sources of breakthrough inventions: evidence from a data-set of R&D awards  

Science Journals Connector (OSTI)

This paper examines the relationship between Schumpeterian patterns of innovation and the generation of breakthrough inventions. Our data source for breakthrough inventions is the R&D 100 awards competition org...

Roberto Fontana; Alessandro Nuvolari; Hiroshi Shimizu

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evolutionary theory, web-search technology combine for DNA analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequedex: bioinformatics breakthrough Sequedex: bioinformatics breakthrough Evolutionary theory, web-search technology combine for DNA analysis Sequedex: bioinformatics breakthrough with clinical & environmental applications. October 4, 2012 From left, Los Alamos scientists Joel Berendzen, Ben McMahon, Mira Dimitrijevic, Nick Hengartner and Judith Cohn From left, Los Alamos scientists Joel Berendzen, Ben McMahon, Mira Dimitrijevic, Nick Hengartner and Judith Cohn Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email The Sequedex team was originally tasked with investigating DNA analysis on the Laboratory's Roadrunner supercomputer, but quickly realized that improvements in the algorithm made having so much hardware unnecessary. "They asked us to build a rocket ship," Berendzen said, "but instead

222

A method for detecting breakthrough of organic solvent vapors in a charcoal tube using semiconductor gas sensors  

SciTech Connect (OSTI)

This study developed a method for detecting organic vapors that break through charcoal tubes, using semiconductor gas sensors as a breakthrough detector of vapors. A glass column equipped with two sensors was inserted in Teflon tubing, and air containing organic vapor was introduced at a constant flow rate. After the output signal of the sensors became stable, a charcoal tube was inserted into the tubing at the upstream of the sensors. The resistance of the sensors was collected temporally in an integrated circuit (IC) card. The vapor concentration of the air near the sensors was measured with a gas chromatograph (GC) equipped with a flame ionization detector (FID) at intervals of 5 minutes to obtain the breakthrough curve. When the relative humidity was zero, the output signals of the sensors began to change before the breakthrough point (1% breakthrough time). This tendency was almost the same for methyl acetate, ethyl acetate, isopropyl alcohol (IPA), toluene, and chloroform. For dichloromethane and 1,1,1-trichloroethane, the time when the sensor output signals began to rise was almost the same as the breakthrough point. When the relative humidity was 80 percent, the sensors could also detect many vapors before the breakthrough point, but they could not perceive dichloromethane and chloroform vapors. A personal sampling system with a breakthrough detector was developed and its availability is discussed.

Hori, Hajime; Noritake, Yuji; Murobushi, Hisako; Higashi, Toshiaki; Tanaka, Isamu

1999-08-01T23:59:59.000Z

223

A plasma cathode for a radio-frequency gun  

Science Journals Connector (OSTI)

A plasma ferroelectric cathode is used to form electron ... high charge in an electron bunch in an rf electron gun of a 10-cm wavelength ... . The operation of the cathode in the rf gun was studied experimentally...

V. A. Kushnir; I. V. Khodak

2008-09-01T23:59:59.000Z

224

Determination of Selenium in Nuts by Cathodic Stripping Potentiometry (CSP)  

Science Journals Connector (OSTI)

Determination of Selenium in Nuts by Cathodic Stripping Potentiometry (CSP) ... In this work, cathodic stripping potentiometry (CSP) (14) is used to determine the selenium content of nuts that were studied. ... CSP Analysis. ...

Giacomo Dugo Lara La Pera; Vincenzo Lo Turco; Ekaterini Mavrogeni; Maria Alfa

2003-05-20T23:59:59.000Z

225

Development of Ultra-low Platinum Alloy Cathode Catalyst for...  

Energy Savers [EERE]

Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells These slides were presented...

226

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

lithium battery cathode. Electrochemical and Solid Statebattery performance of LiMn2O4 cathode. Solid State Ionics,

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

227

A High-Pressure Nano-imaging Breakthrough | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protein Structure Could Lead to Better Treatments for HIV, Early Aging Protein Structure Could Lead to Better Treatments for HIV, Early Aging The Superpower behind Iron Oxyfluoride Battery Electrodes Watching a Protein as it Functions Shedding Light on Chemistry with a Biological Twist Teasing Out the Nature of Structural Instabilities in Ceramic Compounds Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed A High-Pressure Nano-imaging Breakthrough APRIL 11, 2013 Bookmark and Share Bragg CXDI measurements were performed at 0.8, 1.7, 2.5, 3.2, and 6.4 GPa on the same crystal. The reconstructed images (both top and bottom views) are shown above. From W. Yang et al., Nat. Comm. 4 (2013). A team of researchers has made a major breakthrough in measuring the

228

Lab Breakthrough: X-ray Laser Captures Atoms and Molecules in Action |  

Broader source: Energy.gov (indexed) [DOE]

X-ray Laser Captures Atoms and Molecules in X-ray Laser Captures Atoms and Molecules in Action Lab Breakthrough: X-ray Laser Captures Atoms and Molecules in Action July 18, 2012 - 12:51pm Addthis The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser, which helps researchers understand the extreme conditions found in the hearts of stars and giant planets guiding research into nuclear fusion, the mechanism that powers the sun. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs How is the LCLS different? Rather than accelerate particles to collide them, it accelerates particles in a special way to create extremely bright bunches of photons. These pulses are about 10 billion times brighter and one thousand

229

Lab Breakthrough: Exploring Matter at the Dawn of Time | Department of  

Broader source: Energy.gov (indexed) [DOE]

Exploring Matter at the Dawn of Time Exploring Matter at the Dawn of Time Lab Breakthrough: Exploring Matter at the Dawn of Time May 9, 2012 - 2:55pm Addthis Physicist Paul Sorensen describes discoveries made at the Relativistic Heavy Ion Collider (RHIC), a particle accelerator at Brookhaven National Laboratory. At RHIC, scientists from around the world study what the universe may have looked like in the first microseconds after its birth, helping us to understand more about why the physical world works the way it does - from the smallest particles to the largest stars. See the other Lab Breakthrough videos on the YouTube playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs "To me, it's like the first steps on the moon." Physicist Paul Sorensen discussing his work with fundamental

230

Heat Sweep Analysis of Thermal Breakthrough at Los Humeros and La Primavera Fields, Mexico  

SciTech Connect (OSTI)

Early evaluation of the potential for geothermal breakthrough of reinjected fluids in newly developed geothermal fields can be obtained with the SGP one-dimensional heat sweep model. The model was used to estimate fluid cooldown from wells selected for the first wellhead generating units to be installed at the Los Humeros and La Primavera geothermal fields in Mexico, based on staff-compiled geometric and geologic data, thermal properties of the reservoir rock, and expected production conditions. Geometric considerations were evaluated with respect to known and postulated fault zones and return flow angle of the reinjected fluid. The results show the range of parameter values that affect the rate of thermal breakthrough to an abandonment temperature of 170 C corresponding to the minimum inlet pressure to the CFE 5-MW wellhead generator units. 9 figs., 4 tabs., 11 refs.

Kruger, P.; Lam, S.; Molinar, R.; Aragon, A.

1987-01-20T23:59:59.000Z

231

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES  

SciTech Connect (OSTI)

This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates. However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

Harlan U. Anderson

2000-03-31T23:59:59.000Z

232

Los Alamos Team Demonstrates Bottle Scanner Technology  

SciTech Connect (OSTI)

Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

Espy, Michelle; Schultz, Larry

2014-05-06T23:59:59.000Z

233

Los Alamos Team Demonstrates Bottle Scanner Technology  

ScienceCinema (OSTI)

Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

Espy, Michelle; Schultz, Larry

2014-06-02T23:59:59.000Z

234

Photo cathode laser timing response measurements  

E-Print Network [OSTI]

Photo cathode laser timing response measurements F. Löhl, H. Schlarb, E. Vogel, W. Koprek, V on the gun phase 2.) Arrival time change of photo injector laser pulses #12;Florian Löhl FLASH Seminar, June 19th, 2007 photo injector laser ~ 1.3 GHz vector modulator DAC I Q DOOCS Courtesy of I. Will #12

235

A new profile control design based on quantitative identification of steam breakthrough channel in heavy oil reservoirs  

Science Journals Connector (OSTI)

Steam breakthrough has a great negative influence on the development of steam flooding in heavy oil reservoirs. In this article, a new profile control design based on quantitative identification of steam break...

Chuan Lu; Huiqing Liu; Zhanxi Pang

2014-03-01T23:59:59.000Z

236

Cathode depth sensing in CZT detectors  

E-Print Network [OSTI]

Measuring the depth of interaction in thick Cadmium-Zinc-Telluride (CZT) detectors allows improved imaging and spectroscopy for hard X-ray imaging above 100 keV. The Energetic X-ray Imaging Survey Telescope (EXIST) will employ relatively thick (5 - 10 mm) CZT detectors, which are required to perform the broad energy-band sky survey. Interaction depth information is needed to correct events to the detector "focal plane" for correct imaging and can be used to improve the energy resolution of the detector at high energies by allowing event-based corrections for incomplete charge collection. Background rejection is also improved by allowing low energy events from the rear and sides of the detector to be rejected. We present experimental results of interaction depth sensing in a 5 mm thick pixellated Au-contact IMARAD CZT detector. The depth sensing was done by making simultaneous measurements of cathode and anode signals, where the interaction depth at a given energy is proportional to the ratio of cathode/anode signals. We demonstrate how a simple empirical formula describing the event distributions in the cathode/anode signal space can dramatically improve the energy resolution. We also estimate the energy and depth resolution of the detector as a function of the energy and the interaction depth. We also show a depth-sensing prototype system currently under development for EXIST in which cathode signals from 8, 16 or 32 crystals can be read-out by a small multi-channel ASIC board that is vertically edge-mounted on the cathode electrode along every second CZT crystal boundary. This allows CZT crystals to be tiled contiguously with minimum impact on throughput of incoming photons. The robust packaging is crucial in EXIST, which will employ very large area imaging CZT detector arrays.

J. Hong; E. C. Bellm; J. E. Grindlay; T. Narita

2003-10-16T23:59:59.000Z

237

Dual-bonded catalyst layer structure cathode for PEMFC  

Science Journals Connector (OSTI)

Novel electrode structure based on dual-bonded catalyst layer structure is reported to elevate proton exchange membrane fuel cell (PEMFC) cathode performance. Differing from conventional cathode with simplex PTFE or ionomer as binder material in catalyst layer (CL), dual-bonded CL combines those two types of binders, respectively, in a composite structure. In order to develop a cathode possessing the superior merits of both mass transport and proton transfer, a PTFE-rich CL and an ionomer-rich CL were fabricated on gas diffusion layer in proper order. Polarization characteristic of cathodes with dual-bonded CL, conventional PTFE-bonded CL and ionomer-bonded CL were evaluated at ambient pressure in oxygen/air. Better performance of cathode was achieved with dual-bonded, compared with conventional structures. Electric yield rate of dual-bonded cathode was about 50%, whilst that of conventional cathodes was about 40%.

Xuewei Zhang; Pengfei Shi

2006-01-01T23:59:59.000Z

238

Virtual cathode microwave generator having annular anode slit  

DOE Patents [OSTI]

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

Kwan, Thomas J. T. (Los Alamos, NM); Snell, Charles M. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

239

The Ethics of Early Evidence Preparing for a Possible Breakthrough in Alzheimer's Disease  

Science Journals Connector (OSTI)

Being on the cusp of a potential medical breakthrough for a serious disease can pose substantial ethical challenges. One current example arises from a recent study demonstrating in a single mouse model in one laboratory that the drug bexarotene is effective in treating Alzheimer's disease (see... A recent study demonstrated, in a mouse model in one lab, that bexarotene (FDA-approved for use in non-Hodgkin's lymphoma) is effective against Alzheimer's disease. What should physicians do if patients with Alzheimer's disease begin seeking off-label prescriptions?

Lowenthal J.Hull S.C.Pearson S.D.

2012-08-09T23:59:59.000Z

240

Cathodic protection requirements for deepwater systems  

SciTech Connect (OSTI)

Field and laboratory experience related to requirements for cathodic protection (CP) in deep water are reviewed with emphasis on identification of the major variables that need to be specified for successful deepwater CP designs for offshore structures. The subject is addressed based on the historical development of cathodic protection design methodologies for offshore structures focusing on sacrificial anode systems and trends that have resulted in specific changes in design requirements. Three main subjects are discussed: (1) application of existing industry standards such as NACE RP0176; (2) environmental factors--dissolved oxygen, temperature, salinity, pH, water velocity and fouling; and (3) calcareous deposits--difference between shallow and deep waters. Current practice of design criteria and systems for deepwater applications is assessed, including initial polarization, use of coatings and anode materials. The results from laboratory tests are compared with available documented service experiences and field tests results.

Menendez, C.M.; Hanson, H.R.; Kane, R.D.; Farquhar, G.B.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION  

SciTech Connect (OSTI)

Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.

Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

2011-11-01T23:59:59.000Z

242

Magnetron cathodes in plasma electrode pockels cells  

DOE Patents [OSTI]

Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

Rhodes, Mark A. (Pleasanton, CA)

1995-01-01T23:59:59.000Z

243

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode  

Science Journals Connector (OSTI)

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode ... To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development. ... A full Li-ion battery (Figure 4a) is obtained by coupling the Cu-supported graphene nanoflake anode with a lithium iron phosphate, LiFePO4, that is, a cathode commonly used in commercial batteries. ...

Jusef Hassoun; Francesco Bonaccorso; Marco Agostini; Marco Angelucci; Maria Grazia Betti; Roberto Cingolani; Mauro Gemmi; Carlo Mariani; Stefania Panero; Vittorio Pellegrini; Bruno Scrosati

2014-07-15T23:59:59.000Z

244

Cathode power distribution system and method of using the same for power distribution  

DOE Patents [OSTI]

Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

2014-11-11T23:59:59.000Z

245

WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?  

E-Print Network [OSTI]

1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech.genet@grenoble-em.com Website: www.nanoeconomics.eu Abstract. Nanotechnologies are often presented as breakthrough innovations. This article investigates the model of knowledge transfer in the nanotechnologies in depth, by comparing

Paris-Sud XI, Université de

246

Master's Program Cognitive Sciences and Technologies  

E-Print Network [OSTI]

and functioning of the mind, brain, and intelligence. Our Program is focused on perception, the control solving. Cognitive neuroscience Recent breakthroughs in brain imaging technology allow cognitive neuroscientists to see a live human brain at work using state-of-the-art methods like functional magnetic

Greifswald, Ernst-Moritz-Arndt-Universität

247

Sulfur-Graphene Oxide Nanocomposite Cathodes for Lithium/Sulfur...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Find More Like This Return to Search Sulfur-Graphene Oxide Nanocomposite Cathodes for LithiumSulfur Cells Lawrence Berkeley National...

248

Cathode fall measurement in a dielectric barrier discharge in helium  

SciTech Connect (OSTI)

A method based on the zero-length voltage extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the zero-length voltage gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.

Hao, Yanpeng; Zheng, Bin; Liu, Yaoge [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)] [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)

2013-11-15T23:59:59.000Z

249

Innovative Cathode Coating Enables Faster Battery Charging, Dischargin...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

available for licensing: Coating increases electrical conductivity of cathode materials Coating does not hinder battery performance Provides two coating processes that...

250

Development of sulfur cathode material for Li-S batteries.  

E-Print Network [OSTI]

??M.S. Efforts were taken to fabricate a cathode material having Sulfur as the active material. First step is composed of identifying potential ways of fabricating (more)

Dharmasena, Ruchira Ravinath, 1984-

2014-01-01T23:59:59.000Z

251

Development of spray coated cathodes for RITS-6.  

SciTech Connect (OSTI)

This report documents work conducted in FY13 to conduct a feasibility study on thermal spray coated cathodes to be used in the RITS-6 accelerator in an attempt to improve surface uniformity and repeatability. Currently, the cathodes are coated with colloidal silver by means of painting by hand. It is believed that improving the cathode coating process could simplify experimental setup and improve flash x-ray radiographic performance. This report documents the experimental setup and summarizes the results of our feasibility study. Lastly, it describes the path forward and potential challenges that must be overcome in order to improve the process for creating uniform and repeatable silver coatings for cathodes.

Simpson, Sean; Leckbee, Joshua J.; Miller, Stephen Samuel

2013-09-01T23:59:59.000Z

252

Cell Analysis ? High-Energy Density Cathodes and Anodes  

Broader source: Energy.gov (indexed) [DOE]

* Investigate the relationships of structure, morphology and performance of cathode and anode materials. * Explore kinetic barriers and utilize the knowledge gained to design and...

253

Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance Alkaline Fuel Cell Membranes Improving Fuel Cell...

254

Design and Evaluation of Novel High Capacity Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Design and Evaluation of Novel High Capacity Cathode Materials Christopher Johnson and Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE...

255

ORNL Bioenergy technologies  

SciTech Connect (OSTI)

ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

2014-07-02T23:59:59.000Z

256

A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)  

SciTech Connect (OSTI)

High power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in this review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.

Anders, Andre

2014-08-17T23:59:59.000Z

257

Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices.  

E-Print Network [OSTI]

??Empirical models for estimating the breakthrough time and regained permeability for selected nondamaging drill-in fluids (DIF's) give a clear indication of formation damage and proper (more)

Serrano, Gerardo Enrique

2012-01-01T23:59:59.000Z

258

Effect of Cathode Position on Hall-Effect Thruster Performance and Cathode Coupling Voltage  

E-Print Network [OSTI]

ionization fraction I Anode supply current m Anode mass flow mi Mass of a xenon ion nq Density of xenon neutral or ion with charge state q q Average xenon species charge number T Thrust t Time Tf Final. In the laboratory, this parameter is the potential difference between the cathode and ground, i.e. the tank walls

King, Lyon B.

259

Effect of Cathode Position on Hall-Effect Thruster Performance and Cathode Coupling Voltage  

E-Print Network [OSTI]

losses e Electronic charge fi Propellent ionization fraction I Anode supply current mi Mass of a xenon ion nq Density of xenon neutral or ion with charge state q q Average xenon species charge number is the potential difference between the cathode and ground, i.e. the tank walls, and is ME-EM Dept., 815 R.L. Smith

King, Lyon B.

260

Shorting pipeline and jacket cathodic protection systems  

SciTech Connect (OSTI)

The benefits of shorting pipeline and jacket cathodic protection (CP) systems for the external protection of subsea pipelines based on data from operations in the Gulf of Mexico, Persian Gulf, North Sea, and Indonesia are discussed. Shorting, as opposed to traditional electrical isolation, is cost effective because CP surveys and future retrofits are greatly simplified. Jacket CP systems can provide protection of coated pipelines for distances much greater than normally anticipated. Some simple modeling of jacket/pipeline CP systems is used to illustrate the effect of various design parameters.

Thomason, W.H. (Conoco Inc., Ponca City, OK (United States)); Evans, S. (Conoco Inc., Houston, TX (United States)); Rippon, I.J. (Conoco Ltd., Aberdeen (United Kingdom)); Maurin, A.E. III (Conoco Inc., Lafayette, LA (United States))

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Cathodic protection retrofit of an offshore pipeline  

SciTech Connect (OSTI)

Cathodic protection (CP) anodes and corrosion coating on two offshore pipelines were damaged during deep water installation. In-situ methods for deep-water inspection and repair of the pipelines` CP and coating systems were developed and used. High-pressure natural gas Pipeline. A design was 5.6 miles of 8.625 in. OD by 0.406 in. W.T. API SL, Grade X-42, seamless line pipe. Pipeline B design was 0.3 miles of similar specification pipe. Both pipelines were mill-coated with 14 mil of fusion-bonded epoxy (FBE) corrosion coating. Girth welds were field-coated with FBE.

Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

1997-09-01T23:59:59.000Z

262

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

develop the high energy high power cathode materials for LIBNew Cathode Material for Batteries of High- Energy Density.High Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

263

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

as cathode materials for Li-ion battery. Physica B-CondensedHigh Energy High Power Li-ion Battery Cathode Materials AHigh Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

264

Breakthrough: X-ray Laser Captures Atoms and Molecules in Action  

SciTech Connect (OSTI)

The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser. Just two years after turning on in 2009, breakthrough science is emerging from the LCLS at a rapid pace. A recent experiment used the X-rays to create and probe a 2-million-degree piece of matter in a controlled way for the first time-a significant leap toward understanding the extreme conditions found in the hearts of stars and giant planets, and a finding which could further guide research into nuclear fusion, the mechanism that powers the sun. Upcoming experiments will investigate the fundamental, atomic-scale processes behind such phenomena as superconductivity and magnetism, as well as peering into the molecular workings of photosynthesis in plants.

Bergmann, Uwe

2012-04-26T23:59:59.000Z

265

Grounding of Six Sigma's Breakthrough Cookbook: how to research a methodology?  

Science Journals Connector (OSTI)

The Six Sigma programme has developed into a standard for quality and efficiency improvement in business and industry. This fact makes scientific research into the validity and applicability of this methodology important. This article explores the possibilities of a scientific study of the methodological aspects of the Six Sigma programme, and its Breakthrough Cookbook in particular. The objective of the paper is to provide researchers with a scientifically sound approach for studying the validity and applicability of a methodology such as Six Sigma. Several research methodologies are considered, whereupon a grounding research approach is developed. A comparison of the results of a literature review and the proposed research plan learns that current literature on the methodological aspects of Six Sigma does not meet scientific standards of precision and consistency.

Henk De Koning; Jeroen De Mast

2005-01-01T23:59:59.000Z

266

Breakthrough: X-ray Laser Captures Atoms and Molecules in Action  

ScienceCinema (OSTI)

The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser. Just two years after turning on in 2009, breakthrough science is emerging from the LCLS at a rapid pace. A recent experiment used the X-rays to create and probe a 2-million-degree piece of matter in a controlled way for the first time-a significant leap toward understanding the extreme conditions found in the hearts of stars and giant planets, and a finding which could further guide research into nuclear fusion, the mechanism that powers the sun. Upcoming experiments will investigate the fundamental, atomic-scale processes behind such phenomena as superconductivity and magnetism, as well as peering into the molecular workings of photosynthesis in plants.

Bergmann, Uwe

2014-05-21T23:59:59.000Z

267

Studies of local degradation phenomena in composite cathodes for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Studies of local degradation phenomena in composite cathodes for Studies of local degradation phenomena in composite cathodes for lithium-ion batteries Title Studies of local degradation phenomena in composite cathodes for lithium-ion batteries Publication Type Journal Article Year of Publication 2007 Authors Kerlau, Marie, Marek Marcinek, Venkat Srinivasan, and Robert Kostecki Journal Electrochimica Acta Volume 52 Pagination 5422-5429 Keywords cathode, degradation, li-ion battery, raman microscopy Abstract LiNi0.8Co0.15Al0.05O2 and LiNi1/3Co1/3Mn1/3O2 composite cathodes were cycled in model cells to study interfacial phenomena that could lead to electrode degradation. Ex situ spectroscopic analysis of the tested cathodes, which suffered substantial power and capacity loss, showed that the state of charge (SOC) of oxide particles on the cathode surface was highly non-uniform despite the deep discharge of the Li-ion cell at the end of the test. The inconsistent kinetic behavior of individual oxide particles was attributed to the degradation of electronic pathways within the composite cathodes. A simple theoretical model based on a distributed network showed that an increase of the contact resistance between composite electrode particles may be responsible for non-uniform local kinetic behavior of individual oxide particles and the overall degradation of electrochemical performance of composite electrodes.

268

Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode  

E-Print Network [OSTI]

Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode Effect of Humidity and Temperature Hydrogen peroxide H2O2 formation rates in a proton exchange membrane fuel cell PEMFC anode and cathode were catalyst onto the disk and by varying the temperature, dissolved O2 concentration, and the acidity levels

Weidner, John W.

269

Self-contained hot-hollow cathode gun source assembly  

DOE Patents [OSTI]

A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

Zeren, Joseph D. (Boulder, CO)

1986-01-01T23:59:59.000Z

270

Self-contained hot-hollow cathode gun source assembly  

DOE Patents [OSTI]

A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

Zeren, J.D.

1984-08-01T23:59:59.000Z

271

CHROMIUM POISONING OF COMPOSITE LSM/YSZ CATHODES  

E-Print Network [OSTI]

-Lin Liu and Mogens Mogensen Risø National Laboratory, Materials Research Department, DK-4000 Roskilde, Denmark Introduction Degradation of composite SOFC cathodes consisting of lanthanum strontium manganate during simulated SOFC operation at ~850°C with current densities from 0 to 0.5 A/cm2. The cathodes were

272

Nanofiber Scaffold for Cathode of Solid Oxide Fuel Cell  

SciTech Connect (OSTI)

A high performance solid oxide fuel cell cathode using the yttria-stabilized zirconia (YSZ) nanofibers scaffold with the infiltrated La1-xSrxMnO3 (LSM) shows an enhanced catalytic activity toward oxygen reduction. Such a cathode offers a continuous path for charge transport and an increased number of triple-phase boundary sites.

Mingjia Zhi; Nicholas Mariani; Randall Gemmen; Kirk Gerdes; Nianqiang Wu

2010-10-01T23:59:59.000Z

273

Aqueous Cathode for Next-Generation Alkali-Ion Batteries  

Science Journals Connector (OSTI)

The aqueous cathode in the flow-through mode can be individually stored in a fuel tank, which reduces the volume of the battery and increases the design flexibility of the battery structure, as shown in Figure 1. ... Unlike previous lithium?water batteries, the aqueous cathode is not plagued by H2 evolution from the solution, and the battery is efficiently rechargeable. ...

Yuhao Lu; John B. Goodenough; Youngsik Kim

2011-03-28T23:59:59.000Z

274

Ion Exchange Membrane Cathodes for Scalable Microbial Fuel Cells  

Science Journals Connector (OSTI)

Ion Exchange Membrane Cathodes for Scalable Microbial Fuel Cells ... The optimum amount of graphite fibers needed for these brush electrodes has not yet been optimized, and the cathode remains the greatest challenge for MFC designs. ... Different catalyst locations (inside versus outside) and loadings, specific surface areas, and solution chemistry (solution conductivity) were examined to optimize performance. ...

Yi Zuo; Shaoan Cheng; Bruce E. Logan

2008-08-13T23:59:59.000Z

275

PolymerGraphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

PolymerGraphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries ... Lithium battery; cathode; polymer; graphene; nanocomposite ...

Zhiping Song; Terrence Xu; Mikhail L. Gordin; Ying-Bing Jiang; In-Tae Bae; Qiangfeng Xiao; Hui Zhan; Jun Liu; Donghai Wang

2012-03-26T23:59:59.000Z

276

Solid State NMR Studies of Li-Rich NMC Cathodes: Investigating...  

Broader source: Energy.gov (indexed) [DOE]

voltage fade * Electrochemical characterization of LMR-NMC cathode materials with fully lithium-6 enriched cells (enriched electrolyte, enriched Li-metal and enriched cathode) *...

277

Sitraer 7 (2008) LXIV-LXXIV TECHNOLOGY ROADMAP FOR THE FUTURE AIR TRANSPORT SYSTEM  

E-Print Network [OSTI]

Sitraer 7 (2008) LXIV- LXXIV LXIV TECHNOLOGY ROADMAP FOR THE FUTURE AIR TRANSPORT SYSTEM BEING to the burden for the airline industry. The following paper will present a technology roadmap for the future air of new aircraft and new operational concepts with breakthrough technology improvements. Given

Berlin,Technische Universität

278

News ScienceInsider Physics Fusion "Breakthrough" at NIF? Uh, Not Really ... AAAS.ORG FEEDBACK HELP LIBRARIANS  

E-Print Network [OSTI]

on a report on the BBC News website. The National Ignition Facility (NIF) at Lawrence Livermore National ... 15 Comments Lawrence Livermore National Laboratory/Wikimedia Science reporting breakdown? PressNews » ScienceInsider » Physics » Fusion "Breakthrough" at NIF? Uh, Not Really ... AAAS

279

HigHligHts and BreaktHrougHs Pauling's rules, in a world of non-spherical atoms  

E-Print Network [OSTI]

HigHligHts and BreaktHrougHs Pauling's rules, in a world of non-spherical atoms roBert t. downs tenet of Pauling's Rules, which is that atoms are spheres of a single fixed size.Their analysis provides, explains the older ones. Keywords: Electron density distribution, Paulings rules, non-spherical atoms Jerry

Downs, Robert T.

280

Cathodic Vacuum Arc Plasma of Thallium  

SciTech Connect (OSTI)

Thallium arc plasma was investigated in a vacuum arc ionsource. As expected from previous consideration of cathode materials inthe Periodic Table of the Elements, thallium plasma shows lead-likebehavior. Its mean ion charge state exceeds 2.0 immediately after arctriggering, reaches the predicted 1.60 and 1.45 after about 100 microsecand 150 microsec, respectively. The most likely ion velocity is initially8000 m/s and decays to 6500 m/s and 6200 m/s after 100 microsec and 150microsec, respectively. Both ion charge states and ion velocities decayfurther towards steady state values, which are not reached within the 300microsec pulses used here. It is argued that the exceptionally high vaporpressure and charge exchange reactions are associated with theestablishment of steady state ion values.

Yushkov, Georgy Yu.; Anders, Andre

2006-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High Temperature Membrane & Advanced Cathode Catalyst Development  

SciTech Connect (OSTI)

Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

Protsailo, Lesia

2006-04-20T23:59:59.000Z

282

Electrorefining cell with parallel electrode/concentric cylinder cathode  

DOE Patents [OSTI]

A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two.

Gay, Eddie C. (Park Forest, IL); Miller, William E. (Naperville, IL); Laidler, James J. (Burr Ridge, IL)

1997-01-01T23:59:59.000Z

283

Electrorefining cell with parallel electrode/concentric cylinder cathode  

DOE Patents [OSTI]

A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two. 12 figs.

Gay, E.C.; Miller, W.E.; Laidler, J.J.

1997-07-22T23:59:59.000Z

284

Mixed polyanion glass cathodes: Iron phosphate vanadate glasses  

SciTech Connect (OSTI)

Mixed polyanion (MP) glasses have been investigated for use as cathodes in lithium ion batteries. MP glass cathodes are similar in composition to theoretically promising crystalline polyanionic (CP) cathodes (e.g., lithium cobalt phosphate, lithium manganese silicate), but with proper polyanion substitution, they can be designed to overcome the key shortcomings of CP cathodes, such as poor electrical conductivity and irreversible phase changes. Iron phosphate/vanadate glasses were chosen as a first demonstration of the MP glass concept. Polyanion substitution with vanadate was shown to improve the intercalation capacity of an iron phosphate glass from almost zero to full theoretical capacity. In addition, the MP glass cathodes also exhibited an unexpected second high-capacity electrochemical reaction. X-ray absorption near-edge structure (XANES) and x-ray diffraction (XRD) of cathodes from cells having different states of charge suggested that this second electrochemical reaction is a glass-state conversion reaction. With a first demonstration established, MP glass materials utilizing an intercalation and/or glass-state conversion reaction are promising candidates for future high-energy cathode research.

Kercher, Andrew K [ORNL; Ramey, Joanne Oxendine [ORNL; Carroll, Kyler J [Massachusetts Institute of Technology (MIT); Kiggans Jr, James O [ORNL; Veith, Gabriel M [ORNL; Meisner, Roberta [Oak Ridge National Laboratory (ORNL); Boatner, Lynn A [ORNL; Dudney, Nancy J [ORNL

2014-01-01T23:59:59.000Z

285

Alternative Fuels Data Center: Technology Bulletins  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Technology Bulletins Technology Bulletins to someone by E-mail Share Alternative Fuels Data Center: Technology Bulletins on Facebook Tweet about Alternative Fuels Data Center: Technology Bulletins on Twitter Bookmark Alternative Fuels Data Center: Technology Bulletins on Google Bookmark Alternative Fuels Data Center: Technology Bulletins on Delicious Rank Alternative Fuels Data Center: Technology Bulletins on Digg Find More places to share Alternative Fuels Data Center: Technology Bulletins on AddThis.com... Technology Bulletins The Alternative Fuels Data Center provides technology bulletins to inform transportation industry decision makers about technological breakthroughs, issues, and news about alternative fuels and advanced vehicles. For more information, read: E15 Approved for Use in 2001 and Newer Vehicles Updated 2/11

286

Development of High Energy Cathode Materials  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

287

New High Energy Gradient Concentration Cathode Material  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

288

High Energy Novel Cathode / Alloy Automotive Cell  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

289

New High Energy Gradient Concentration Cathode Material  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

290

Engineering of High Energy Cathode Materials  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

291

High Energy Novel Cathode / Alloy Automotive Cell  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

292

Design and Evaluation of High Capacity Cathodes  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

293

HIGH-VOLTAGE SPINEL AND POLYANION CATHODES  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

294

Functionally Graded Cathodes for Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

This DOE SECA project focused on both experimental and theoretical understanding of oxygen reduction processes in a porous mixed-conducting cathode in a solid oxide fuel cell (SOFC). Elucidation of the detailed oxygen reduction mechanism, especially the rate-limiting step(s), is critical to the development of low-temperature SOFCs (400 C to 700 C) and to cost reduction since much less expensive materials may be used for cell components. However, cell performance at low temperatures is limited primarily by the interfacial polarization resistances, specifically by those associated with oxygen reduction at the cathode, including transport of oxygen gas through the porous cathode, the adsorption of oxygen onto the cathode surface, the reduction and dissociation of the oxygen molecule (O{sub 2}) into the oxygen ion (O{sup 2-}), and the incorporation of the oxygen ion into the electrolyte. In order to most effectively enhance the performance of the cathode at low temperatures, we must understand the mechanism and kinetics of the elementary processes at the interfaces. Under the support of this DOE SECA project, our accomplishments included: (1) Experimental determination of the rate-limiting step in the oxygen reduction mechanism at the cathode using in situ FTIR and Raman spectroscopy, including surface- and tip-enhanced Raman spectroscopy (SERS and TERS). (2) Fabrication and testing of micro-patterned cathodes to compare the relative activity of the TPB to the rest of the cathode surface. (3) Construction of a mathematical model to predict cathode performance based on different geometries and microstructures and analyze the kinetics of oxygen-reduction reactions occurring at charged mixed ionic-electronic conductors (MIECs) using two-dimensional finite volume models with ab initio calculations. (4) Fabrication of cathodes that are graded in composition and microstructure to generate large amounts of active surface area near the cathode/electrolyte interface using a novel combustion chemical vapor deposition (CCVD) technique. (5) Application of advanced quantum chemical calculations to interpret measured spectroscopic information, as well as to guide design of high efficient cathode materials.

YongMan Choi; Meilin Liu

2006-09-30T23:59:59.000Z

295

Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder  

E-Print Network [OSTI]

on Li2S cathodes to date.22­28 Most efforts have been focused on the active material itself-lithiated Li2S represents a more attractive cathode material because it enables pairing with safer, lithium-generation cathode materials with much higher specic capacities. Sulfur is a promising cathode material with a high

Cui, Yi

296

Science magazine names Supernova Cosmology Project "Breakthrough of the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 17, 1998 December 17, 1998 Go to Berkeley Lab Home Page Contacts: Saul Perlmutter, (510) 486-5203, s_perlmutter@lbl.gov Paul Preuss, (510) 486-6249, paul_preuss@lbl.gov Lynn Yarris, (510) 486-5375, lcyarris@lbl.gov Additional Information: Down-to-Earth Benefits from Far-Out Science Supernova Cosmology Project Research Site Jan 98 news release: Universe To Last Forever Search for Omega: Will the Universe Last Forever Fate of the Universe and the Cosmological Constant Revolution in Telescopes: The Keck The oldest, farthest supernova NERSC: Computers and Cosmology Images: High-resolution versions of image on this page Still images from the Supernova Cosmology Project website Online movie clip BERKELEY, CA -- By observing distant, ancient exploding stars, physicists and astronomers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and elsewhere have determined that the universe is expanding at an accelerating rate -- an observation that implies the existence of a mysterious, self-repelling property of space first proposed by Albert Einstein, which he called the cosmological constant. This extraordinary finding has been named Science magazine's "Breakthrough of the Year for 1998."

297

Adsorption of tetrahydrothiophene on faujasite type zeolites: Breakthrough curves and FTIR spectroscopy study  

Science Journals Connector (OSTI)

Adsorption of tetrahydrothiophene (THT) on NaX, CaX, AgX, and H-USY was studied by dynamic adsorption method and FTIR spectroscopy. The stoichiometric adsorption capacities are not very different for all materials, which is indicative of a complete micropore filling. In contrast, the overall rate constant of adsorption, determined from fitting the breakthrough curves with BohartAdams equation, is two times greater for H-USY than for type X zeolites. For NaX, CaX and H-USY, heating under N2 flow at 300C allows to restore completely their initial adsorption capacities. In the case of AgX the same treatment results in a twofold lose of capacity accompanied by a collapse of the zeolite structure as evidenced by XRD. The nature of interaction between THT molecules and zeolites was characterized by FTIR spectroscopy. Only a weak interaction through hydrogen bonding was observed for THT on H-USY leading to an almost complete desorption at 100C. For NaX and CaX adsorbed molecules are gradually eliminated when heated to 300C while completely different pattern was observed for THT adsorbed on AgX on which the amount of the adsorbate remains nearly constant between 25 and 200C, but rapidly decreases on further heating. Such a behavior is indicative of much stronger interaction between THT molecules and Ag+ cations in agreement with the data on the regeneration of the adsorbents.

Igor Bezverkhyy; Kamel Bouguessa; Christophe Geantet; Michel Vrinat

2006-01-01T23:59:59.000Z

298

Microsoft PowerPoint - Cathode contact materials PNNL.ppt [Compatibility Mode]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cathode Cathode Contact Development of Cathode Contact Materials for SOFC J.W. Stevenson, G.G. Xia, Z. Lu, X. Li, Z. Nie, T. Oh, and J.D.Templeton Pacific Northwest National Laboratory Pacific Northwest National Laboratory Richland, WA 99352 July 27-29, 2010 July 27 29, 2010 11 th Annual SECA Workshop Pittsburgh, PA Cathode/Interconnect Contact Materials Cathode/Interconnect Contact Materials Cathode Chromia-forming Protective Coating Contact layer Chromia-forming alloy interconnect 2 Cathode/Interconnect Contact Materials Cathode/Interconnect Contact Materials Requirements: High electrical conductivity to reduce interfacial electrical resistance between cathode and interconnect Contact layer Chemical and structural stability in air at SOFC operating temperature Chemical compatibility with adjacent materials (perovskite cathode,

299

Process for Low Cost Domestic Production of LIB Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Received 472K * FY10 Funding Expected 890K Barriers * Reduce the production cost of Cathode Material * Meet PHEV battery requirements for a 40 mile all-electric range *...

300

Characterization of New Cathode Materials using Synchrotron-based...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Techniques and the Studies of Li-Air Batteries Characterization of New Cathode Materials using Synchrotron-based X-ray Techniques and the Studies of Li-Air Batteries 2009 DOE...

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

Graphene-enhanced hybrid phase change materials for thermalphase, capacity and volume change information. 12 .. 12 Table 2 Summary of cathode and anode materialsphase, capacity and volume change information. 12 The last method involved seeking new materials.

Zhu, Jianxin

2014-01-01T23:59:59.000Z

302

Burst Radio-Frequency Excited Pulsed Hollow-Cathode Lamp  

Science Journals Connector (OSTI)

Transient emission characteristics of a hollow-cathode lamp driven by a pulsed current in combination with a radio-frequency burst signal are described. The radio-frequency field...

Araki, Tsutomu; Walters, John P; Minami, Shigeo

1980-01-01T23:59:59.000Z

303

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

battery used for hybrid electric vehicles (HEVs) or electric vehicles (EVs) due to its low cost, low toxicity, thermal andthermal stability. 109-112 Thus, it proves to be a promising candidate cathode in battery

Zhu, Jianxin

2014-01-01T23:59:59.000Z

304

Advanced Cathode Catalysts and Supports for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

This presentation, which focuses on advanced cathode catalysts and supports for PEM fuel cells, was given by Mark Debe of 3M at a February 2007 meeting on new fuel cell projects.

305

Design and Evaluation of Novel High Capacity Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

17johnson2011p.pdf More Documents & Publications Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High Performance Li-ion Cells Lithium Source...

306

Cathode Synthesis and Voltage Fade: Designed Solutions Based...  

Broader source: Energy.gov (indexed) [DOE]

like to work with others * Li-rich Mn-rich cathodes have a VF - Theory focuses on thermodynamics of structures and components - Mechanism likely driven by the kinetics * Can we...

307

Cathodic Arc Deposition of Copper Oxide Thin Films  

E-Print Network [OSTI]

in the range 1-1.25 GHz, UHV compatible, and very adhesivefulfill the requirements for UHV compatibility. A cathodic85 MPa) and fulfill all UHV requirements. The deposition

MacGill, R.A.

2011-01-01T23:59:59.000Z

308

This report was a collaborative effort by staff of the Breakthrough Technologies Institute, Inc., in Washington, Acknowledgement  

E-Print Network [OSTI]

........................................................................................................................18 Micro Combined Heat and Power........................................................................................22 Backup and Remote Power

309

Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries  

SciTech Connect (OSTI)

Rechargeable Mg batteries are attractive energy storage systems and could bring cost-effective energy solutions. Currently, however, no practical cathode current collectors that can withstand high voltages in Mg2+ electrolytes has been identified and therefore cathode research is greatly hindered. Here we identified that two metals, Mo and W, are electrochemically stable through formation of surface passive layers. The presented results could have significant impacts on the developments of high voltage Mg batteries.

Cheng, Yingwen; Liu, Tianbiao L.; Shao, Yuyan; Engelhard, Mark H.; Liu, Jun; Li, Guosheng

2014-01-01T23:59:59.000Z

310

Effect of the inner glove environment on permeation rates and breakthrough times of selected solvent/glove combinations  

E-Print Network [OSTI]

, humidity and a near static air movement in conjunction with a zero pressure drop across the protective garment material, representing the environment in a glove during its use in the field, affect permeation rates and breakthrough times. The permeation... performance of protective materials, ACKNOWLEDGEMENTS I wish to express my sincere thanks to Prof. Harry J. Suggs for his guidance and counsel during this research. I would also like to thank Dr. Ralph J. Vernon and Dr. Richard D. Huchingson...

Mathurin, David Ring

2012-06-07T23:59:59.000Z

311

Search for High Energy Density Cathode Materials  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

312

New High Energy Gradient Concentration Cathode Material  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

313

Engineering of high energy cathode material  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

314

Engineering of High Energy Cathode Material  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

315

Investigations of Cathode Architecture using Graphite Fibers  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

316

Stabilized Spinel and Nano Olivine Cathodes  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

317

Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells{  

E-Print Network [OSTI]

Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes materials in order to optimize and extend the lifetime of AC cathodes in MFCs. 1. Introduction A microbial, with the cathode typically limiting power production.5,6 Catalysts can be used to reduce the activation energy

318

Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices  

E-Print Network [OSTI]

LABORATORY TESTS) STATISTICAL ANALYSIS AND CORRELATIONS FOR REGAINED PERMEABILITY AND BREAKTHROUGH TIME IN UNCONSOLIDATED SANDS FOR IMPROVED DRILL-IN FLUID CLEANUP PRACTICES A Thesis GERARDO ENRIQUE SERRANO Submitted to the Office of Graduate... AND BREAKTHROUGH TIME IN UNCONSOLIDATED SANDS FOR IMPROVED DRILL-IN FLUID CLEANUP PRACTICES A Thesis by GERARDO ENRIQUE SERRANO Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved...

Serrano, Gerardo Enrique

2012-06-07T23:59:59.000Z

319

Cathodes manufacturing processes for high-rate Li/SOCl/sub 2/ batteries  

SciTech Connect (OSTI)

Influence of type of carbon black, wetting agent, teflon content (up to 50 %), and carbon paste processing on cathodes characteristics and performances were evaluated. Single cell tests at 30 mA/cm/sup 2/ indicated that high cathode efficiencies could be achieved with various cathode formulations, even with a teflon content of 50 %. Discharge performances on glassy carbon cathodes and analysis of pores size distribution in the porous cathode provided baselines for the interpretation of the above-mentioned results as well as a better understanding of carbon cathode behaviour in Li/SOCl/sub 2/ cells.

Danel, V.; Descroix, J.P.; Petit, A.

1983-10-01T23:59:59.000Z

320

Degradation characteristics of air cathode in zinc air fuel cells  

Science Journals Connector (OSTI)

Abstract The zinc air fuel cell (ZAFC) is a promising candidate for electrical energy storage and electric vehicle propulsion. However, its limited durability has become a major obstacle for its successful commercialization. In this study, 2-cell stacks, 25cm cells and three-electrode half-cells are constructed to experimentally investigate the degradation characteristics of the air cathode. The results of electrochemical tests reveal that the peak power density for the 25cm2 cell with a new air cathode is 454mWcm?2, which is twice as the value of the used air cathode. The electrochemical impedance analysis shows that both the charge transfer resistance and the mass transfer resistance of the used air cathodes have increased, suggesting that the catalyst surface area and gas diffusion coefficient have decreased significantly. Additionally, the microstructure and morphology of the catalytic layer (CL) and gas diffusion layer (GDL) are characterized by scanning electron microscopes (SEM). SEM results confirm that the micropores in CL and GDL of the used air cathode are seriously clogged, and many catalyst particles are lost. Therefore, the performance degradation is mainly due to the clogging of micropores and loss of catalyst particles. Furthermore, hypotheses of degradation mechanism and mitigation strategies for GDL and CL are discussed briefly.

Ze Ma; Pucheng Pei; Keliang Wang; Xizhong Wang; Huachi Xu; Yongfeng Liu; Guanlin peng

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

2011 Fuel Cell Technologies Market Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 FUEL CELL 2011 FUEL CELL TECHNOLOGIES MARKET REPORT ii Authors This report was a collaborative effort by staff of the Breakthrough Technologies Institute, Inc., in Washington, DC. Acknowledgement The authors relied upon the hard work and valuable contributions of many men and women in government and in the fuel cell industry. The authors especially wish to thank Sunita Satyapal and the staff of the US Department of Energy's Fuel Cell Technologies Program for their support and guidance. The authors also wish to thank Rachel Gelman of the National Renewable Energy Laboratory and the many others who made this report possible. iii Contents List of Figures .....................................................................................................................................................v

322

Sr doped Co substituted Li nickelate cathode materials for Li cells with improved cycling and thermal stability  

Science Journals Connector (OSTI)

Samples of cathode material were synthesized from a highly dispersed precursor ... thin film of Li-borate glass. The cathode active material (CAM) was mixed with 15wt. ... and pressed on thin Al discs. The cathodes

R. Moshtev; P. Zlatilova; S. Vassilev

2006-07-01T23:59:59.000Z

323

Advanced cathode material for high power applications.  

SciTech Connect (OSTI)

In our efforts to develop low cost high-power Li-ion batteries with excellent safety, as well as long cycle and calendar life, lithium manganese oxide spinel and layered lithium nickel cobalt manganese oxide cathode materials were investigated. Our studies with the graphite/LiPF{sub 6}/spinel cells indicated a very significant degradation of capacity with cycling at 55 C. This degradation was caused by the reduction of manganese ions on the graphite surface which resulted in a significant increase of the charge-transfer impedance at the anode/electrolyte interface. To improve the stability of the spinel, we investigated an alternative salt that would not generate HF acid that may attack the spinel. The alternative salt we selected for this work was lithium bisoxalatoborate, LiB(C{sub 2}O{sub 4}){sub 2} ('LiBoB'). In this case, the graphite/LiBoB/spinel Li-ion cells exhibited much improved cycle/calendar life at 55 C and better abuse tolerance, as well as excellent power. A second system based on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} layered material was also investigated and its performance was compared to commercial LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}. Cells based on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} showed lower power fade and better thermal safety than the LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}-based commercial cells under similar test conditions. Li-ion cells based on the material with excess lithium (Li{sub 1.1}Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2}) exhibited excellent power performance that exceeded the FreedomCAR requirements.

Amine, K.; Belharouak, I.; Kang, S. H.; Liu, J.; Vissers, D.; Henriksen, G.; Chemical Engineering

2005-01-01T23:59:59.000Z

324

Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2009 DOE EERE Kick-off Meeting 2009 DOE EERE Kick-off Meeting Announcement No: DE-PS36-08GO98010 Topic: 1A Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading Argonne National Laboratory Materials Science Division PI: Nenad M. Markovic Co-PI: Vojislav R. Stamenkovic Subcontractors: * Oak Ridge National Laboratory - Karren More * Jet Propulsion Laboratory - NASA - S.R. Narayan * Brown University - Shouheng Sun * Indiana University Purdue - Goufeng Wang * 3M Company - Radoslav Atanasoski Overview Timeline * Project start: 9/2009 * Project end: 9/2012 Barriers ~ 30-40% (!!!) Cathode kinetics * The main losses: CATHODE 1) High content of Pt 2) Poor activity: Pt/C = Pt-poly/10 3) Durability (Pt dissolves: power loss) 4) Carbon support corrosion Budget * Total Project funding $ 6.5M

325

Process system and method for fabricating submicron field emission cathodes  

DOE Patents [OSTI]

A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

Jankowski, Alan F. (Livermore, CA); Hayes, Jeffrey P. (Ripon, CA)

1998-01-01T23:59:59.000Z

326

Electrosprayed polyaniline as cathode material for lithium secondary batteries  

SciTech Connect (OSTI)

Doped polyaniline with LiPF{sub 6} is electrosprayed onto aluminum foil using electrospinning technique, and evaluated as cathode active material for application in room-temperature lithium batteries. Doping level is characterized using FTIR and UV-vis spectroscopy. In FTIR Spectra, characteristic peaks of PANI are shifted to lower bands as a result of doping which indicates the effectiveness of doping. Doping level is also confirmed by UV-vis spectra. Surface morphology of the cathode is studied using scanning electron microscope. Electrochemical evaluation of the cell using electrosprayed PANI as cathode show good cycling properties. The cell delivers a high discharge value of 142.5 mAh/g which is about 100% of theoretical capacity, and the capacity is lowered during cycle and reached 61% of theoretical capacity after 50 cycles. The cell delivers a stable but lower discharge capacity at higher C-rates.

Manuel, James; Raghavan, Prasanth; Shin, Chorong; Heo, Min-Yeong [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)] [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)] [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Noh, Jung-Pil; Cho, Gyu-Bong; Ryu, Ho-Suk; Ahn, Hyo-Jun [School of Nano and Advanced Materials Engineering, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)] [School of Nano and Advanced Materials Engineering, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)

2010-03-15T23:59:59.000Z

327

High-Efficiency, Magnetized, Virtual-Cathode Microwave Generator  

Science Journals Connector (OSTI)

Microwave generation by electron beams in virtual-cathode configurations can achieve significant power levels. However, most designs inherently have two competing mechanisms generating microwaves: the oscillating virtual cathode and the reflexing electrons. These mechanisms interfere destructively with each other. This paper reports investigation of a novel idea of using an external axial magnetic field and a thick anode with an appropriate collimating slot to extract the electron beam and to suppress the reflexing electrons. It was found that high-power, narrow-band, monochromatic microwaves could be generated with efficiency of 10% to 20%.

Thomas J. T. Kwan

1986-10-13T23:59:59.000Z

328

Numerical Investigation of the Effect of the Cathode Geometry on the Characteristics of an Electric Arc  

Science Journals Connector (OSTI)

The effect of the cathode geometry on the characteristics of an electric arc is treated. It is found that the characteristics of plasma in discharges with cathodes of different geometry (cone, ... . It is assumed...

R. M. Urusov; T. E. Urusova

329

Template Free Synthesis of LiV3O8 Nanorods as a Cathode Material...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Template Free Synthesis of LiV3O8 Nanorods as a Cathode Material for High-Rate Secondary Lithium Batteries . Template Free Synthesis of LiV3O8 Nanorods as a Cathode Material for...

330

SUPPLEMENTAL INFORMATION The Use and Optimization of Stainless Steel Mesh Cathodes in  

E-Print Network [OSTI]

SUPPLEMENTAL INFORMATION The Use and Optimization of Stainless Steel Mesh Cathodes in Microbial (or cm2 / cm2 ) Specific area per 7 cm2 cathode: 2 cm45.107 =?S Specific area per reactor volume: 3232

331

Factors affecting the discharge lifetime of lithium-molten nitrate thermal battery cells using soluble cathode materials  

Science Journals Connector (OSTI)

The use of soluble cathode materials in molten nitrate electrolyte thermal battery cells presents several problems related to cathode...? rich separator layer.

G. E. McManis; A. N. Fletcher; M. H. Miles

1986-09-01T23:59:59.000Z

332

Three-Dimensional Reconstruction of Porous LSCF Cathodes D. Gostovic,*,z  

E-Print Network [OSTI]

In this initial study the electrochemically active region of a La0.8Sr0.2Co0.2Fe0.8O3- LSCF cathodeThree-Dimensional Reconstruction of Porous LSCF Cathodes D. Gostovic,*,z J. R. Smith,* D. P and heat.1 They consist of three basic layers: cathode, electrolyte, and anode. The cathode is a porous

Florida, University of

333

Theory, Investigation and Stability of Cathode Electrocatalytic Activity  

SciTech Connect (OSTI)

The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.

Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

2012-09-30T23:59:59.000Z

334

Modeling Studies of a Cylindrical Polymer Electrolyte Membrane Fuel Cell Cathode  

Science Journals Connector (OSTI)

The cathode catalyst layer is modeled using spherical agglomerate characterization. ... (16-19) In the present work, we have developed a two-dimensional (2-D) steady-state model of a cylindrical PEMFC cathode under air-breathing and pressurized conditions. ... We adopt an agglomerate catalyst layer model and recast it into a compact form for optimization of polymer electrolyte fuel cell cathodes. ...

Srinivasarao Modekurti; Brian Bullecks; Debangsu Bhattacharyya; Raghunathan Rengaswamy

2012-03-12T23:59:59.000Z

335

Study of Ionic Conductivity Profiles of the Air Cathode of a PEMFC by AC Impedance Spectroscopy  

E-Print Network [OSTI]

Study of Ionic Conductivity Profiles of the Air Cathode of a PEMFC by AC Impedance Spectroscopy membrane fuel cell PEMFC cathode by ac impedance measurement at open-circuit potential conditions by impregnating a proton-conducting ionomer in the catalyst active layer of the cathode of a polymer electrolyte

336

Methanol adsorbates on the DMFC cathode and their effect on the cell performance  

E-Print Network [OSTI]

Methanol adsorbates on the DMFC cathode and their effect on the cell performance J. Prabhuram, T performance was due to the permeated methanol adsorbates on platinum sites of the cathode, which impede utilized to get rid of the methanol adsorbates from the cathode electrochemically by sweeping from 0 to 1

Zhao, Tianshou

337

A reduced temperature solid oxide fuel cell with three-dimensionally ordered macroporous cathode  

SciTech Connect (OSTI)

Three-dimensionally ordered macroporous cathode was fabricated for a zirconia based micro-tubular solid oxide fuel cells (SOFCs). Three different cathodes (cathode A, no pore former; cathode B, with pore former (1.5 {micro}m in diameter); cathode C, with pore former (0.8 {micro}m in diameter)) were compared to investigate how the microstructure of it affected the cell performance at various operating temperatures. Micro-sized pores were well distributed within cathode B and C. The total porosity of cathode A is 35%, while it respectively reached 42 and 50% for cathodes B and C. At the same time, the specific surface area of them was 28.8 and 52.0% larger than that of the cathode A. As a result, the peak power density of the zirconia based cell, with cathode C, was 0.25 and 0.56 W cm{sup -2} at 550 and 600 C, while the respective value was just 0.11 and 0.30 W cm{sup -2} for the cell with cathode A. Thus, optimizing microstructure of cathode should be one of the best approaches for lowering the operating temperature for SOFCs.

Liang, B.; Suzuki, T.; Hamamoto, K.; Yamaguchi, T.; Sumi, H.; Fujishiro, Y.; Ingram, B. J.; Carter, J. D. (Chemical Sciences and Engineering Division); (National Institute of Advanced Industrial Science and Technology)

2012-01-01T23:59:59.000Z

338

Divalent Iron Nitridophosphates: A New Class of Cathode Materials for Li-Ion Batteries  

Science Journals Connector (OSTI)

(4-6) Here we demonstrate the design of a battery cathode material incorporating N3 anions as a distinct structural building block. ... Lithium transition metal phosphates are of interest as storage cathodes for rechargeable Li batteries because of their high energy d., low raw materials cost, environmental friendliness and safety. ... The reversible specific capacities for the cathode and anode active materials were detd. ...

Jue Liu; Xiqian Yu; Enyuan Hu; Kyung-Wan Nam; Xiao-Qing Yang; Peter G. Khalifah

2013-09-18T23:59:59.000Z

339

Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)  

E-Print Network [OSTI]

not been previously examined. Three different types of cathode materials were tested here with increasingly of catalyst used with more saline wastewaters. While Pt oxygen reduction activity is reduced, CoTMPP cathodeImpact of salinity on cathode catalyst performance in microbial fuel cells (MFCs) Xi Wang

340

Single-layer graphene cathodes for organic photovoltaics Marshall Cox,1,a  

E-Print Network [OSTI]

using graphene as the cathode material. © 2011 American Institute of Physics. doi:10 study that has utilized graphene as a cathode material.15 In this work, multilayer graphene modified as a cathode, yielding an active area of 0.16 cm2 . I-V measurements were performed under AM 1.5 solar simu

Kim, Philip

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electrochemical characterization of cobalt-encapsulated nickel as cathodes for MCFC  

E-Print Network [OSTI]

the operating life of the cell. Apart from this, cathode dissolution results in loss of active material and in decrease of the active surface area available for the oxygen reduction reaction (cathodic reac- tion problem is focused on varying the molten salt constituents [6,7] or using alternate cathode materials [8

Popov, Branko N.

342

CHINA CLIMATE CHANGE US The climate breakthrough in Beijing gives the world a  

E-Print Network [OSTI]

of the century. To avoid catastrophe, and stay below the 2 degree upper limit, CO2 emissions from energy use need's largest emitter by far in absolute terms (roughly 28 per cent of the world's CO2 emissions in 2014) has&D) of low-carbon energy technologies. Specifically, China and the US committed to joint R&D in building

343

The fractal nature of vacuum arc cathode spots  

SciTech Connect (OSTI)

Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.

Anders, Andre

2005-05-27T23:59:59.000Z

344

Cathode porous transport irreversibility model for PEM fuel cell design  

Science Journals Connector (OSTI)

The influence is studied of slip-irreversibility at the interface between the gas diffusion layer, also referred to here as the porous transport layer, and the catalyst layer of a proton exchange membrane fuel cell (PEMFC). A two-dimensional cathode ... Keywords: catalyst layer, exergy, gas diffusion layer, slip flow irreversibility

E. O. B. Ogedengbe; M. A. Rosen

2009-02-01T23:59:59.000Z

345

Operational test report -- Project W-320 cathodic protection systems  

SciTech Connect (OSTI)

Washington Administrative Code (WAC) 173-303-640 specifies that corrosion protection must be designed into tank systems that treat or store dangerous wastes. Project W-320, Waste Retrieval Sluicing System (WRSS), utilizes underground encased waste transfer piping between tanks 241-C-106 and 241-AY-102. Corrosion protection is afforded to the encasements of the WRSS waste transfer piping through the application of earthen ionic currents onto the surface of the piping encasements. Cathodic protection is used in conjunction with the protective coatings that are applied upon the WRSS encasement piping. WRSS installed two new two rectifier systems (46 and 47) and modified one rectifier system (31). WAC 173-303-640 specifies that the proper operation of cathodic protection systems must be confirmed within six months after initial installation. The WRSS cathodic protection systems were energized to begin continuous operation on 5/5/98. Sixteen days after the initial steady-state start-up of the WRSS rectifier systems, the operational testing was accomplished with procedure OTP-320-006 Rev/Mod A-0. This operational test report documents the OTP-320-006 results and documents the results of configuration testing of integrated piping and rectifier systems associated with the W-320 cathodic protection systems.

Bowman, T.J.

1998-06-16T23:59:59.000Z

346

Hydrogen Evolution at Activated Nisx-Cathodes in Water Electrolysis  

Science Journals Connector (OSTI)

NiSx-coated nickel cathodes are used for commercial water electrolysis in concentrated KOH solutions. Such electrodes have ... to 5 mol% during 16 days of electrolysis and to about 0.7 mol% after...1.001.03. The...

B. Brresen; A. Bjrgum; G. Hagen; R. Tunold

1998-01-01T23:59:59.000Z

347

Brian KarrerPPDyL Lithium-fed Cathode Experiment  

E-Print Network [OSTI]

and light � Big picture: develop a thruster that could be used for a Mars mission #12;Brian KarrerPPDyL Outline � Introduction to electric propulsion and plasma � Objectives of the Li-fed cathode research � Introduction to Multi-color Video Pyrometry � Data and analysis method � Results � Conclusions #12;Brian Karrer

Petta, Jason

348

Functionally Graded Cathodes for Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

One primary suspected cause of long-term performance degradation of solid oxide fuels (SOFCs) is the accumulation of chromium (Cr) species at or near the cathode/electrolyte interface due to reactive Cr molecules originating from Cr-containing components (such as the interconnect) in fuel cell stacks. To date, considerable efforts have been devoted to the characterization of cathodes exposed to Cr sources; however, little progress has been made because a detailed understanding of the chemistry and electrochemistry relevant to the Cr-poisoning processes is still lacking. This project applied multiple characterization methods - including various Raman spectroscopic techniques and various electrochemical performance measurement techniques - to elucidate and quantify the effect of Cr-related electrochemical degradation at the cathode/electrolyte interface. Using Raman microspectroscopy the identity and location of Cr contaminants (SrCrO{sub 4}, (Mn/Cr){sub 3}O{sub 4} spinel) have been observed in situ on an LSM cathode. These Cr contaminants were shown to form chemically (in the absence of current flowing through the cell) at temperatures as low as 625 C. While SrCrO{sub 4} and (Mn/Cr){sub 3}O{sub 4} spinel must preferentially form on LSM, since the LSM supplies the Sr and Mn cations necessary for these compounds, LSM was also shown to be an active site for the deposition of Ag{sub 2}CrO{sub 4} for samples that also contained silver. In contrast, Pt and YSZ do not appear to be active for formation of Cr-containing phases. The work presented here supports the theory that Cr contamination is predominantly chemically-driven and that in order to minimize the effect, cathode materials should be chosen that are free of cations/elements that could preferentially react with chromium, including silver, strontium, and manganese.

Harry Abernathy; Meilin Liu

2006-12-31T23:59:59.000Z

349

The slope parameter approach to marine cathodic protection design and its application to impressed current systems  

SciTech Connect (OSTI)

The recently developed slope parameter approach to design of galvanic anode cathodic protection (cp) systems for marine structures constitutes an advancement in this technology compared to current practice, primarily because the former is first principles based and the latter is an empirical algorithm. In this paper, the slope parameter approach is reviewed; and related applications for which it can be utilized, including (1) design of new and retrofit cp systems, (2) evaluation of potential survey data, and (3) cp system design for complex geometries, are mentioned. The design current density is identified as the single remaining parameter for which values must be projected solely by experience or experimentation. In addition, the slope parameter approach is applied to the results of impressed current cp experiments, and it is shown how parameters for this can be interrelated with those of galvanic anode cp. Advantages of this capability are identified and discussed.

Hartt, W.H.

1999-07-01T23:59:59.000Z

350

Electricity generation from sediment microbial fuel cells with algae-assisted cathodes  

Science Journals Connector (OSTI)

Abstract One major limiting factor for sediment microbial fuel cells (SMFC) is the low oxygen reduction rate in the cathode. The use of the photosynthetic process of the algae is an effective strategy to increase the oxygen availability to the cathode. In this study, \\{SMFCs\\} were constructed by introducing the algae (Chlorella vulgaris) to the cathode, in order to generate oxygen in situ. Cyclic voltammetry and dissolved oxygen analysis confirmed that C. vulgaris in the cathode can increase the dissolved oxygen concentration and the oxygen reduction rate. We showed that power generation of SMFC with algae-assisted cathode was 21mWm?2 and was further increased to 38mWm?2 with additional carbon nanotube coating in the cathode, which was 2.4 fold higher than that of the SMFC with bare cathode. This relatively simple method increases the oxygen reduction rate at a low cost and can be applied to improve the performance of SMFCs.

De-Bin Wang; Tian-Shun Song; Ting Guo; Qinglu Zeng; Jingjing Xie

2014-01-01T23:59:59.000Z

351

Modular cathode assemblies and methods of using the same for electrochemical reduction  

DOE Patents [OSTI]

Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

2014-12-02T23:59:59.000Z

352

Anode-cathode power distribution systems and methods of using the same for electrochemical reduction  

DOE Patents [OSTI]

Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

2014-01-28T23:59:59.000Z

353

Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser, Cathodes  

SciTech Connect (OSTI)

Thermionic dispenser cathodes are widely used in modern high-power microwave tubes. Use of these cathodes has led to significant improvement in performance. In recent years these cathodes have been used in electron linear accelerators (LINACs), particularly in induction LINACs, such as the Experimental Test Accelerator at Lawrence Livermore National Laboratory and the Relativistic Test Accelerator at Lawrence Berkeley National Laboratory. For induction LINACs, the thermionic dispenser cathode provides greater reproducibility, longer pulse lengths, and lower emittance beams than does a field emission cathode. Los Alamos National Laboratory is fabricating a dual-axis X-ray radiography machine called dual-axis radiograph hydrodynamic test (DARHT). The second axis of DARHT consists of a 2-kA, 20-MeV induction LINAC that uses a 3.2-MeV electron gun with a tungsten thermionic-dispenser cathode. Typically the DARHT cathode current density is 10 A/cm{sup 2} at 1050 C. Under these conditions current density is space-charge limited, which is desirable since current density is independent of temperature. At lower temperature (the temperature-limited regime) there are variations in the local current density due to a nonuniform temperature profile. To obtain the desired uniform current density associated with space-charge limited operation, the coolest area on the cathode must be at a sufficiently high temperature so that the emission is space-charge limited. Consequently, the rest of the cathode is emitting at the same space-charge-limited current density but is at a higher temperature than necessary. Because cathode lifetime is such a strong function of cathode temperature, there is a severe penalty for nonuniformity in the cathode temperature. For example, a temperature increase of 50 C means cathode lifetime will decrease by a factor of at least four. Therefore, we are motivated to measure the temperature profiles of our large-area cathodes.

D.F. Simmons; C.M. Fortgang; D.B. Holtkamp

2001-09-01T23:59:59.000Z

354

Information Technology and Intangible Output: The Impact of IT Investment on Innovation Productivity  

Science Journals Connector (OSTI)

Prior research concerning IT business value has established a link between firm-level IT investment and tangible returns such as output productivity. Research also suggests that IT is vital to intermediate processes such as those that produce intangible ... Keywords: IT business value, breakthrough innovation, information technology, innovation, knowledge production function, patents, productivity, research and development

Landon Kleis; Paul Chwelos; Ronald V. Ramirez; Iain Cockburn

2012-03-01T23:59:59.000Z

355

Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells  

E-Print Network [OSTI]

A general physics-based model is developed for heterogeneous electrocatalysis in porous electrodes and used to predict and interpret the impedance of solid oxide fuel cells. This model describes the coupled processes of oxygen gas dissociative adsorption and surface diffusion of the oxygen intermediate to the triple phase boundary, where charge transfer occurs. The model accurately captures the Gerischer-like frequency dependence and the oxygen partial pressure dependence of the impedance of symmetric cathode cells. Digital image analysis of the microstructure of the cathode functional layer in four different cells directly confirms the predicted connection between geometrical properties and the impedance response. As in classical catalysis, the electrocatalytic activity is controlled by an effective Thiele modulus, which is the ratio of the surface diffusion length (mean distance from an adsorption site to the triple phase boundary) to the surface boundary layer length (square root of surface diffusivity div...

Fu, Y; Bertei, A; Qi, C; Mohanram, A; Pietras, J D; Bazant, M Z

2014-01-01T23:59:59.000Z

356

Performance of Magnesium Cathode in the S Band RF Gun  

SciTech Connect (OSTI)

In this paper, we present the preliminary results of the performance of magnesium cathode in a high frequency RF gun. The quantum efficiency of magnesium showed a dramatic improvement upon laser cleaning, increasing from 10{sup -5} to 4x10{sup -4} after two hours of cleaning. The spatial uniformity of emission also improved from a spot to spot variation of 10 to a variation of 2. Measurements with charges >1 nC indicate that the transient variation of the field due to the shielding effect of the electron in the vicinity of the cathode may play a critical role in the efficient extraction of electrons. Comprehensive theory that includes the electron emission in the presence of a time dependent Schottky effect and RF effects will be discussed.

Srinivasan-Rao, T.; /Brookhaven; Palmer, D.T.; /SLAC; Ben-Zvi, I.; /Brookhaven; Miller, R.H.; /SLAC; Wang, X.J.; Woodle, M.; /Brookhaven

2011-09-01T23:59:59.000Z

357

Field testing the criteria for cathodic protection of buried pipelines  

SciTech Connect (OSTI)

Five criteria for cathodic protection of buried pipelines were studied by a review of the literature, and by experimentation in the laboratory and in the field in soil environments. The five criteria studied were the following: (1) {minus}850-mV on and polarized (IR-compensated) potential, (2) 300-mV voltage shift, (3) 100-mV polarization, (4) Tafel potential, and (5) net cathodic current. Each criterion was found to provide an indication of corrosion and its control. Environmental conditions (the type of soil and its physical constituents, moisture content, oxygen level, temperature; and the presence of anaerobic bacteria) were found to be important in affecting the actual requirements and modifications to the presently accepted minimum values for the criteria. Determination of IR-voltage drops in the soil was concluded to be important for accurate interpretation of the {minus}850-mV potential and 300-mV voltage-shift criteria.

Barlo, T.J. [Northwestern Univ., Evanston, IL (United States)

1995-12-31T23:59:59.000Z

358

Negative ion source with hollow cathode discharge plasma  

DOE Patents [OSTI]

A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

Hershcovitch, Ady (Mt. Sinai, NY); Prelec, Krsto (Setauket, NY)

1983-01-01T23:59:59.000Z

359

Fuel cell having dual electrode anode or cathode  

DOE Patents [OSTI]

A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

Findl, E.

1984-04-10T23:59:59.000Z

360

Negative ion source with hollow cathode discharge plasma  

DOE Patents [OSTI]

A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

Hershcovitch, A.; Prelec, K.

1980-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel cell having dual electrode anode or cathode  

DOE Patents [OSTI]

A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

Findl, Eugene (Coram, NY)

1985-01-01T23:59:59.000Z

362

Transformational Technologies to Expedite Space Access and Development  

Science Journals Connector (OSTI)

Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power nuclear energy and turbojet engines. At the systems level success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high?temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states?of?the?art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum which summarizes the principles and consequences of StarTram showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon Mars and the outer solar system. StarTram can implement cost?effective solar power from space simple utilization of asteroid material to protect humans from ionizing radiation and effective defense of the Earth from devastating cosmic impacts. Synergistically StarTram technologies will revolutionize ground transportation on the Earth leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

John D. G. Rather

2010-01-01T23:59:59.000Z

363

Nuclear Waste Management using Electrometallurgical Technology - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Technology Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Bookmark and Share The NE system engineering activities involve the conceptual design, through the manufacturing and qualification testing of the Mk-IV and Mk-V electrorefiner and the cathode processor. These first-of-a-kind large scale

364

Apparatus and method for treating a cathode material provided on a thin-film substrate  

DOE Patents [OSTI]

An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

Hanson, Eric J. (Hudson, WI); Kooyer, Richard L. (Hastings, MN)

2003-01-01T23:59:59.000Z

365

Apparatus and method for treating a cathode material provided on a thin-film substrate  

DOE Patents [OSTI]

An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

Hanson, Eric J. (Hudson, WI); Kooyer, Richard L. (Hastings, MN)

2001-01-01T23:59:59.000Z

366

Advanced Cathode Catalysts and Supports for PEM Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cathode Catalysts and Cathode Catalysts and Supports for PEM Fuel Cells DE-FG36-07GO17007 Mark K. Debe 3M Company Feb. 13, 2007 2007 DOE HFCIT Kick-off Meeting This presentation does not contain any proprietary or confidential information Overview Advanced Cathode Catalysts and Supports for PEM FC's - 2007 DOE HFCIT Kick-off, Feb. 13-14, 2007 2 3 Barriers A. Electrode and MEA Durability B. Stack Material & Mfg Cost C. Electrode and MEA Performance DOE Technical Targets Electrocatalyst (2010, 2015) * Durability w/cycling: hrs < 80 o C - (5000, 5000) > 80 o C - (2000, 5000) * Cost: $/kW (5,4) * Mass activity: A/mg ( 0.44, 0.44) * PGM Total, g/ kW rated: (0.3, 0.2) MEA (2010, 2015) * Cost: $/kW (10,5) * Performance: W/cm 2 at Rated Pwr. (1,1) ; 0.8V (0.25, 0.25) Budget * Total Project funding $10.43MM

367

A knife-edge array field emission cathode  

SciTech Connect (OSTI)

many cathode applications require a new type of cathode that is able to produce short pulsed electron beams at high emission current. Gated field emitter arrays of micrometer size are recognized as candidates to meet this need and have become the research focus of vacuum microelectronics. Existing fabrication methods produce emitters that are limited either in frequency response or in current emission. One reason is that the structure of these emitters are not sufficiently optimized. In this study, the author investigated the factors that affect the performance of field emitters. An optimum emitter structure, the knife-edge field emitter array, was developed from the analysis. Large field enhancement factor, large effective emission area, and small emitter capacitance are the advantages of the structure. The author next explored various options of fabricating the knife-edge emitter structure. He proposed a unique thin film process procedure and developed the fabrication techniques to build the emitters on (110) silicon wafers. Data from the initial cathode tests showed very low onset voltages and Fowler-Nordheim type emission. Emission simulation based on the fabricated emitter structure indicated that the knife-edge emitter arrays have the potential to produce high performance in modulation frequency and current emission. Several fabrication issues that await further development are discussed and possible solutions are suggested.

Lee, B.

1994-08-01T23:59:59.000Z

368

2008 Fuel Cell Technologies Market Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FUEL CELL TECHNOLOGIES FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2010 2008 FUEL CELL TECHNOLOGIES MARKET REPORT i Authors This report was written primarily by Bill Vincent of the Breakthrough Technologies Institute in Washington, DC, with significant assistance from Jennifer Gangi, Sandra Curtin, and Elizabeth Delmont. Acknowledgments This report was the result of hard work and valuable contributions from government staff and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland, and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance in the preparation of this report. The authors also wish to thank Robert Rose and Bud DeFlaviis of the U.S. Fuel Cell Council; Lisa Callaghan-Jerram of Fuel Cell Today; Alison Wise and Rachel Gelman

369

EU, Japan call for dialogue amid row on breakthrough nuclear project The European Union and Japan each called Wednesday for dialogue among the six partners on  

E-Print Network [OSTI]

EU, Japan call for dialogue amid row on breakthrough nuclear project 01/12/2004 The European Union and Japan each called Wednesday for dialogue among the six partners on a multibillion-dollar nuclear energy project amid a deepening row over whether Japan or France will host the site. The EU, whose bid is backed

370

Novel Composite Materials for SOFC Cathode-Interconnect Contact  

SciTech Connect (OSTI)

This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling that the specimens were subjected to during testing. The Ag-LSCF composite contact materials proved more effective in trapping Cr within the contact material and preventing Cr migration into the cathode than the Ag-LSM composites. Ag-perovskite composite contact materials are promising candidates for use in intermediate-temperature SOFC stacks with ferritic stainless steel interconnects due to their ability to maintain acceptably low ASRs while reducing Cr migration into the cathode material.

J. H. Zhu

2009-07-31T23:59:59.000Z

371

NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES  

SciTech Connect (OSTI)

This project involved the synthesis of nanowire -MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing -MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the -MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the -MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into -MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the -MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.

John Olson, PhD

2004-07-21T23:59:59.000Z

372

Large area directly heated lanthanum hexaboride cathode structure having predetermined emission profile  

DOE Patents [OSTI]

A large area directly heated lanthanum hexaboride (LaB.sub.6) cathode system (10) is disclosed. The system comprises a LaB.sub.6 cathode element (11) generally circular in shape about a central axis. The cathode element (11) has a head (21) with an upper substantially planar emission surface (23), and a lower downwardly and an intermediate body portion (26) which diminishes in cross-section from the head (21) towards the base (22) of the cathode element (11). A central rod (14) is connected to the base (22) of the cathode element (11) and extends along the central axis. Plural upstanding spring fingers (37) are urged against an outer peripheral contact surface (24) of the head end (21) to provide a mechanical and electrical connection to the cathode element (11).

Leung, Ka-Ngo (Hercules, CA); Gordon, Keith C. (Berkeley, CA); Kippenham, Dean O. (Castro Valley, CA); Purgalis, Peter (San Francisco, CA); Moussa, David (San Francisco, CA); Williams, Malcom D. (Danville, CA); Wilde, Stephen B. (Pleasant Hill, CA); West, Mark W. (Albany, CA)

1989-01-01T23:59:59.000Z

373

Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells  

Science Journals Connector (OSTI)

Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600? C the interfacial polarization resistances of a porous YSBAg cathode is about 0.3??? cm 2 more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example the interfacial resistances of a traditional YSZlanthanum maganites composite cathode is about 11.4??? cm 2 at 600? C . Impedance analysis indicated that the performance of an YSBAg composite cathode fired at 850? C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSBAg cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600? C .

Changrong Xia; Yuelan Zhang; Meilin Liu

2003-01-01T23:59:59.000Z

374

Characterization of Atomic and Electronic Structures of Electrochemically Active SOFC Cathode Surfaces  

SciTech Connect (OSTI)

The objective of this project is to gain a fundamental understanding of the oxygen-reduction mechanism on mixed conducting cathode materials by means of quantum-chemical calculations coupled with direct experimental measurements, such as vibrational spectroscopy. We have made progress in the elucidation of the mechanisms of oxygen reduction of perovkite-type cathode materials for SOFCs using these quantum chemical calculations. We established computational framework for predicting properties such as oxygen diffusivity and reaction rate constants for adsorption, incorporation, and TPB reactions, and formulated predictions for LSM- and LSC-based cathode materials. We have also further developed Raman spectroscopy as well as SERS as a characterization tool for SOFC cathode materials. Raman spectroscopy was used to detect chemical changes in the cathode from operation conditions, and SERS was used to probe for pertinent adsorbed species in oxygen reduction. However, much work on the subject of unraveling oxygen reduction for SOFC cathodes remains to be done.

Kevin Blinn; Yongman Choi; Meilin Liu

2009-08-11T23:59:59.000Z

375

Effect of cathode structure on neutron yield performance of a miniature plasma focus device  

Science Journals Connector (OSTI)

In this Letter we report the effect of two different cathode structures tubular and squirrel cage, on neutron output from a miniature plasma focus device. The squirrel cage cathode is typical of most DPF sources, with an outer, tubular envelope that serves as a vacuum housing, but does not carry current. The tubular cathode carries the return current and also serves as the vacuum envelope, thereby minimizing the size of the DPF head. The maximum average neutron yield of ( 1.82 0.52 ) 10 5 n / shot for the tubular cathode at 4 mbar was enhanced to ( 1.15 0.2 ) 10 6 n / shot with squirrel cage cathode at 6 mbar operation. These results are explained on the basis of a current sheath loading/mass choking effect. The penalty for using a non-transparent cathode negates the advantage of the smaller size of the DPF head.

Rishi Verma; R.S. Rawat; P. Lee; S. Lee; S.V. Springham; T.L. Tan; M. Krishnan

2009-01-01T23:59:59.000Z

376

FTIR and Raman Study of the LixTiyMn1-yO2 (y = 0, 0.11) Cathodes in Methylpropyl Pyrrolidinium Bis(fluoro-sulfonyl)imide, LiTFSI Electrolyte  

E-Print Network [OSTI]

response of the cathode active material could be examinedComposite cathodes with active material loading between 8composite cathode, as well as loss of active material and

Hardwick, L.J.

2010-01-01T23:59:59.000Z

377

Performance and Stability of Barium Strontium Cobaltite Composite Cathodes for SOFC  

E-Print Network [OSTI]

and 50 wt% Ce0.9Gd0.1O2 (CGO) was used as the composite cathode material. Symmetric cells were prepared composite cathode by keeping the samples at 700 °C for 1600 hours. It showed very similar passivation/activation cathode materials than LSM. Studies of the (La,Sr)(Co,Fe)O3 (LSCF) have been one of the most popular

378

Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries  

DOE Patents [OSTI]

The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W

2014-05-20T23:59:59.000Z

379

Simulations of multipacting in the cathode stalk and FPC of 112 MHz superconducting electron gun  

SciTech Connect (OSTI)

A 112 MHz superconducting quarter-wave resonator electron gun will be used as the injector of the Coherent Electron Cooling (CEC) proof-of-principle experiment at BNL. Furthermore, this electron gun can be used for testing of the performance of various high quantum efficiency photocathodes. In a previous paper, we presented the design of the cathode stalks and a Fundamental Power Coupler (FPC). In this paper we present updated designs of the cathode stalk and FPC. Multipacting in the cathode stalk and FPC was simulated using three different codes. All simulation results show no serious multipacting in the cathode stalk and FPC.

Xin T.; Ben-Zvi, I.; Belomestnykh, S.; Chang, X.; Rao, T.; Skaritka, J.; Wu, Q.; Wang, E.; Liang, X.

2012-05-20T23:59:59.000Z

380

Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

This presentation, which focuses on cathode supports for PEM fuel cells, was given by Yong Wang of PNNL at a February 2007 meeting on new fuel cell projects.

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network [OSTI]

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

382

A Micro-Scale Model for Oxygen Reduction on LSM-YSZ Cathode  

SciTech Connect (OSTI)

In this study, a micro-scale model is developed to simulate the oxygen reduction on LSM-YSZ composite cathode. The model incorporates the effects of cathode microstructural properties on the local transport phenomena and electrochemistry inside the cathode. A detailed reaction mechanism is used in the model which has two parallel routes for oxygen conversion into oxide ions, namely two-phase boundary and three-phase boundary pathways. The model predicts field distributions of local thermodynamic values, over-potential, Faradaic current and other parameters relevant to cathode performance. Electrochemical impedance simulations are performed using the current model to analyze the contribution of various processes to the overall impedance.

Pakalapati, Suryanarayana Raju; Celik, Ismail; Finklea, Harry; Gong, Mingyang; Liu, Xingbo

2011-05-01T23:59:59.000Z

383

Phosphazene groups modified sulfur composites as active cathode materials for rechargeable lithium/sulfur batteries  

Science Journals Connector (OSTI)

A novel phosphazene groups modified sulfur composites cathode [triphosphazene sulfide composite (PS) or nitroanilinetriphosphazene disulfide composite (NPS)] which can give good affinity with electrolytes was...

J. D. Liu; S. Q. Zhang; S. B. Yang; Z. F. Shi; S. T. Zhang; L. K. Wu

2013-11-01T23:59:59.000Z

384

Chargedischarge characteristics of polythiopheneas a cathode active material in a rechargeable battery  

Science Journals Connector (OSTI)

Polythiophene films were electrochemically deposited on glassy carbon substrates under potentiostatic control and used as cathode active material together with a Zn anode in a...

G. Ciric-Marjanovic; S. Mentus

1998-01-01T23:59:59.000Z

385

Development of High Energy Cathode for Li-ion Batteries | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

es056zhang2010p.pdf More Documents & Publications Phase Behavior and Solid State Chemistry in Olivines Development of High Energy Cathode Materials Interfacial Processes -...

386

Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials  

Science Journals Connector (OSTI)

Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials ... Department of Energy Engineering, School of

Pilgun Oh; Seungjun Myeong; Woongrae Cho; Min-Joon Lee; Minseong Ko; Hu Young Jeong; Jaephil Cho

2014-09-02T23:59:59.000Z

387

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2, No. 1 [http://eetd.lbl.gov/newsletter/nl44/] 2, No. 1 [http://eetd.lbl.gov/newsletter/nl44/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SUMMER 2013: VOL. 12, NO. 1 Buildings Performance Database EnergyIQ Wind Technologies Report Lighting Testbeds Q&A with Ed Vine SEAD Report - India Efficient A/C Li/S Cathode Technology Conductive Binder for Li-ion Batteries Research Highlights Sources and Credits We cover a lot of ground in the issue of EETD News you're now reading. Investing in energy performance upgrades for your commercial building? Read about the Building Performance Database. Wondering about the state of wind power in the U.S.? We've got you covered with the

388

ARPA-E Awards $130 Million for 66 Transformational Energy Technology  

Broader source: Energy.gov (indexed) [DOE]

E Awards $130 Million for 66 Transformational Energy E Awards $130 Million for 66 Transformational Energy Technology Projects ARPA-E Awards $130 Million for 66 Transformational Energy Technology Projects November 28, 2012 - 1:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, Energy Secretary Steven Chu announced 66 cutting-edge research projects selected by the Energy Department's Advanced Research Projects Agency - Energy (ARPA-E) to receive a total of $130 million in funding through its "OPEN 2012" program. ARPA-E seeks out transformational, breakthrough technologies that show fundamental technical promise but are too early for private-sector investment. These projects have the potential to produce game-changing breakthroughs in energy technology, form the foundation for entirely new industries, and have large

389

Electrocatalysis of anodic and cathodic oxygen-transfer reactions  

SciTech Connect (OSTI)

The electrocatalysis of oxygen-transfer reactions is discussed in two parts. In Part I, the reduction of iodate (IO{sub 3}{sup {minus}}) is examined as an example of cathodic oxygen transfer. On oxide-covered Pt electrodes (PtO), a large cathodic current is observed in the presence of IO{sub 3}{sup {minus}} to coincide with the reduction of PtO. The total cathodic charge exceeds the amount required for reduction of PtO and IO{sub 3}{sup {minus}} to produce an adsorbed product. An electrocatalytic link between reduction of IO{sub 3}{sup {minus}} and reduction of PtO is indicated. In addition, on oxide-free Pt electrodes, the reduction of IO{sub 3}{sup {minus}} is determined to be sensitive to surface treatment. The electrocatalytic oxidation of CN{sup {minus}} is presented as an example of anodic oxygen transfer in Part II. The voltametric response of CN{sup {minus}} is virtually nonexistent at PbO{sub 2} electrodes. The response is significantly improved by doping PbO{sub 2} with Cu. Cyanide is also oxidized effectively at CuO-film electrodes. Copper is concluded to serve as an adsorption site for CN{sup {minus}}. It is proposed that an oxygen tunneling mechanism comparable to electron tunneling does not occur at the electrode-solution interface. The adsorption of CN{sup {minus}} is therefore considered to be a necessary prerequisite for oxygen transfer. 201 refs., 23 figs., 2 tabs.

Wels, B.R.

1990-09-21T23:59:59.000Z

390

Miniature quadrupole mass spectrometer having a cold cathode ionization source  

DOE Patents [OSTI]

An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

Felter, Thomas E. (Livermore, CA)

2002-01-01T23:59:59.000Z

391

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

September 18, 2013 September 18, 2013 CX-010933: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory September 18, 2013 CX-010932: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory August 23, 2013 CX-010779: Categorical Exclusion Determination Predictive Large Eddy Simulation (LES) Modeling and Validation for High-Pressure Turbulent Flames and Flashback in Hydrogen-Enriched Gas

392

Illinois: High-Energy, Concentration-Gradient Cathode Material...  

Office of Environmental Management (EM)

friendly highway transportation technologies that will enable America to use less petroleum. These technologies will provide Americans with greater freedom of mobility and...

393

Plasma parameters of an active cathode during relativistic magnetron operation  

SciTech Connect (OSTI)

The results of time- and space-resolved spectroscopic studies of the plasma produced at the surface of the ferroelectric cathode during the operation of an S-band relativistic magnetron generating approx50 MW microwave power at f=3005 MHz and powered by a linear induction accelerator (LIA) (150 kV, 1.5 kA, 250 ns) are presented. The surface plasma was produced by a driving pulse (3 kV, 150 ns) prior to the application of the LIA accelerating high-voltage pulse. The cathode plasma electron density and temperature were obtained by analyzing hydrogen H{sub a}lpha and H{sub b}eta, and carbon ions CII and CIII spectral lines, and using the results of nonstationary collision radiative modeling. It was shown that the microwave generation causes an increase in plasma ion and electron temperature up to approx4 and approx7 eV, respectively, and the plasma density increases up to approx7x10{sup 14} cm{sup -3}. Estimates of the plasma transport parameters and its interaction with microwave radiation are also discussed.

Hadas, Y.; Kweller, T.; Sayapin, A.; Krasik, Ya. E. [Department of Physics, Technion, Haifa 32000 (Israel); Bernshtam, V. [Department of Physics, Weizmann Institute of Sciences, 61000 Rehovot (Israel)

2009-09-15T23:59:59.000Z

394

Degradation of Ionic Pathway in PEM Fuel Cell Cathode  

SciTech Connect (OSTI)

The degradation of the ionic pathway throughout the catalyst layer in proton exchange membrane fuel cells was studied under an accelerated stress test of catalyst support (potential hold at 1.2 V). Electrochemical behaviors of the cathode based on graphitic mesoporous carbon supported Pt catalyst were examined using electrochemical impedance spectroscopy and cyclic voltammetry. Impedance data were plotted and expressed in the complex capacitance form to determine useful parameters in the transmission line model: the double-layer capacitance, peak frequency, and ionic resistance. Electrochemical surface area and hydrogen crossover current through the membrane were estimated from cyclic voltammogram, while cathode Faradaic resistance was compared with ionic resistance as a function of test time. It was observed that during an accelerated stress test of catalyst support, graphitic mesoporous carbon becomes hydrophilic which increases interfacial area between the ionomer and the catalyst up to 100 h. However, the ionic resistance in the catalyst layer drastically increases after 100 h with further carbon support oxidation. The underlying mechanism has been studied and it was found that significant degradation of ionic pathway throughout the catalyst layer due to catalyst support corrosion induces uneven hydration and mechanical stress in the ionomer.

Park, Seh Kyu; Shao, Yuyan; Wan, Haiying; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Wang, Yong

2011-11-12T23:59:59.000Z

395

Reprint of "Studies of local degradation phenomena in composite cathodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reprint of "Studies of local degradation phenomena in composite cathodes Reprint of "Studies of local degradation phenomena in composite cathodes for lithium-ion batteries" Title Reprint of "Studies of local degradation phenomena in composite cathodes for lithium-ion batteries" Publication Type Journal Article Year of Publication 2007 Authors Kerlau, Marie, Marek Marcinek, Venkat Srinivasan, and Robert Kostecki Journal Electrochimica Acta Volume 53 Pagination 1385-1392 Keywords cathode, degradation, li-ion battery, raman microscopy Abstract LiNi0.8Co0.15Al0.05O2 and LiNi1/3Co1/3Mn1/3O2 composite cathodes were cycled in model cells to study interfacial phenomena that could lead to electrode degradation. Ex situ spectroscopic analysis of the tested cathodes, which suffered substantial power and capacity loss, showed that the state of charge (SOC) of oxide particles on the cathode surface was highly non-uniform despite the deep discharge of the Li-ion cell at the end of the test. The inconsistent kinetic behavior of individual oxide particles was attributed to the degradation of electronic pathways within the composite cathodes. A simple theoretical model based on a distributed network showed that an increase of the contact resistance between composite electrode particles may be responsible for non-uniform local kinetic behavior of individual oxide particles and the overall degradation of electrochemical performance of composite electrodes.

396

Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells  

SciTech Connect (OSTI)

Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Four regimes of water distribution and transport are classified by defining three threshold current densities and a maximum current density. They correspond to first appearance of liquid water at the membrane/cathode interface, extension of the gas-liquid two-phase zone to the cathode/channel interface, saturated moist air exiting the gas channel, and complete consumption of oxygen by the electrochemical reaction. When the cell operates above the first threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multi-component mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A/cm{sup 2}.

WANG,Z.H.; WANG,C.Y.; CHEN,KEN S.

2000-03-20T23:59:59.000Z

397

Low Loading Pt Cathode Catalysts for Direct Methanol Fuel Cell Derived from the Particle Size Effect  

Science Journals Connector (OSTI)

Recent results have shown that with sputtered Pt cathode catalysts, the metal loading in PEMFC can be reduced to cathode metal loading in PEMFC, less attention has been paid to DMFC. ... The long-term performance of catalyst Pt14-050 in DMFC was examined to explore the stability of the small-sized Pt catalysts. ...

Fei Wen; Ulrich Simon

2007-06-16T23:59:59.000Z

398

Effect of A-site Non-stoichiometry on LSCF Cathodes  

SciTech Connect (OSTI)

LSCF Cathodes were explored when effected with A-site non-stoichiometry. At 700-800 C, the operating temperatures of intermediate temperature (IT-) SOFCs have enabled the use of stainless steels in the SOFC framework and current collectors, allowing significant reductions in cost. However, the lower operating temperatures of IT-SOFC's also result in significant decreases in power densities of cells with LSM cathodes due to their high activation energies. LSCF is a mixed ionic electronic conducting perovskite that exhibits higher performance than LSM/YSZ composites and shows potential as a replacement cathode. This study investigates the effect of A-site stoichiometry on the performance of LSCF cathodes. Cell tests showed that A-site and Sr-deficient LSCF cathodes consistently outperformed stoichiometric LSCF cathodes, exhibiting up to 10% higher cell power densities. It was also observed that all stoichiometric, A-site, and Sr-deficient LSCF cathodes degraded over time at similar rates. Contributions of ohmic and electrode polarization losses to cell degradation rates were similar regardless of cathode composition.

Templeton, Jared W.; Lu, Zigui; Stevenson, Jeffry W.; Hardy, John S.

2011-09-01T23:59:59.000Z

399

Mesoporous composite cathode materials prepared from inverse micelle structures for high  

E-Print Network [OSTI]

active materials in LIBs. Manganese oxide-based compounds are particularly attrac- tive as cathodes owingMesoporous composite cathode materials prepared from inverse micelle structures for highCoO2) is the most common active material.1 However, since natural deposits of cobalt are scarce

Cao, Guozhong

400

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black  

E-Print Network [OSTI]

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black-based materials that have good catalytic activity, but the electrical conductivity of the AC is poor compared as a binder, as opposed to Nafion with Pt, which greatly reduces the cost of the cathode materials. AC

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Calculations of Oxygen Stability in Lithium-Rich Layered Cathodes Penghao Xiao,  

E-Print Network [OSTI]

Calculations of Oxygen Stability in Lithium-Rich Layered Cathodes Penghao Xiao, Z. Q. Deng, A ABSTRACT: Oxygen loss can lead to high-capacity Li2MnO3-based lithium- rich layered cathodes. Substitution The stabilized compounds have a similar structure as LiMO2 except that excess Li populates the transition

Henkelman, Graeme

402

What performance would non-Pt cathode catalysts need to achieve  

E-Print Network [OSTI]

require development of x2 more active cathode catalyst MEA/DM optimization required but less criticalWhat performance would non-Pt cathode catalysts need to achieve to be practical Motors Fuel Cell Activities Honeoye Falls, NY DOE Workshop on Non-Platinum Electrocatalysts 21

403

The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells  

E-Print Network [OSTI]

for water electrolysis) [1,2], hydrogen can be evolved on the cathode under anoxic conditions, usually for the hydrogen evolution reaction (HER) in water electrolysis [13,14]. Hu et al. * Corresponding author. Tel.: þ1The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells Yimin

404

Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs  

E-Print Network [OSTI]

an actual cathode and the polarization resistance of the signi cant elementary steps of the cathodic transfer resistance and oxygen adsorption. A direct relationship between microstructural parameters from resistance and the adsorption polarization resistance display a power law relationship with LTPB and pore

Florida, University of

405

RF Plasma Cathode-Neutralizer for Space Applications IEPC-2007-266  

E-Print Network [OSTI]

Raitses and Nathaniel J. Fisch Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA AbstractRF Plasma Cathode-Neutralizer for Space Applications IEPC-2007-266 Presented at the 30th: A new plasma cathode-neutralizer based on electron extraction from inductively coupled plasma (ICP

406

Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials  

Science Journals Connector (OSTI)

Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials ... Collected particles were lithiated, and one promising material was evaluated as the active cathode component in a lithium-ion battery. ...

Gary M. Koenig, Jr.; Ilias Belharouak; Haixai Deng; Yang-Kook Sun; Khalil Amine

2011-03-09T23:59:59.000Z

407

Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same  

DOE Patents [OSTI]

A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.

Rao, Triveni; Walsh, John; Gangone, Elizabeth

2014-12-30T23:59:59.000Z

408

Impact of active material surface area on thermal stability of LiCoO2 cathode  

Science Journals Connector (OSTI)

Abstract Thermal stability of charged LiCoO2 cathodes with various surface areas of active material is investigated in order to quantify the effect of LiCoO2 surface area on thermal stability of cathode. Thermogravimetric analyses and calorimetry have been conducted on charged cathodes with different active material surface areas. Besides reduced thermal stability, high surface area also changes the active material decomposition reaction and induces side reactions with additives. Thermal analyses of LiCoO2 delithiated chemically without any additives or with a single additive have been conducted to elaborate the effect of particle size on side reactions. Stability of cathodeelectrolyte system has been investigated by accelerating rate calorimetry (ARC). Arrhenius activation energy of cathode decomposition has been calculated as function of conversion at different surface area of active material.

Jan Geder; Harry E. Hoster; Andreas Jossen; Jrgen Garche; Denis Y.W. Yu

2014-01-01T23:59:59.000Z

409

Technology makes reds "pop" in LED displays | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Televisions Research breakthrough will vastly improve color and crispness of images on LED devices NISKAYUNA, NY, July, 24, 2014 - GE announced today a research breakthrough that...

410

A Steady-State Impedance Model for a PEMFC Cathode Qingzhi Guo* and Ralph E. White**,z  

E-Print Network [OSTI]

electrolyte membrane fuel cell PEMFC cathode is presented. The catalyst layer of the electrode is assumedA Steady-State Impedance Model for a PEMFC Cathode Qingzhi Guo* and Ralph E. White**,z Center in an air/H2 PEMFC.1 Two common models are available in the literature for the study of a PEMFC air cathode

411

Four Cellulosic Ethanol Breakthroughs  

Broader source: Energy.gov [DOE]

Today, the nation's first ever commercial-scale cellulosic ethanol biorefinery to use corn waste as a feedstock officially opened for business in Emmetsburg, Iowa. POET-DSMs Project LIBERTY is the second of two Energy Department-funded cellulosic ethanol biorefineries to come on line within the past year. Learn more about how the Energy Department is helping the nation reduce its dependence on foreign oil and move the clean energy economy forward.

412

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

413

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

414

Building Technologies Office: Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

415

Argonne licenses diamond semiconductor discoveries to AKHAN Technologies |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

licenses diamond semiconductor discoveries to AKHAN Technologies licenses diamond semiconductor discoveries to AKHAN Technologies By Joseph Bernstein * By Jared Sagoff * March 4, 2013 Tweet EmailPrint LEMONT, Ill. - The U.S. Department of Energy's Argonne National Laboratory announced today that the laboratory has granted AKHAN Technologies exclusive diamond semiconductor application licensing rights to breakthrough low-temperature diamond deposition technology developed by Argonne's Center for Nanoscale Materials (CNM). The Argonne-developed technology allows for the deposition of nanocrystalline diamond on a variety of wafer substrate materials at temperatures as low as 400 degrees Celsius. The combination of the Argonne's low-temperature diamond technology with AKHAN's Miraj Diamond(tm) process represents the state of the art in diamond semiconductor

416

An Optical Streak Diagnostic for Observing Anode-Cathode Plasmas for Radiographic Source Development  

SciTech Connect (OSTI)

National Security Technologies, LLC, and Sandia National Laboratories are collaborating in the development of pulsed powerdriven flash x-ray radiographic sources that utilize high-intensity electron beam diodes. The RITS 6 (Radiographic Integrated Test Stand) accelerator at Sandia is used to drive a self magnetic pinch diode to produce a Bremsstrahlung x-ray source. The high electric fields and current densities associated with these short A-K gap pinch beam diodes present many challenges in diode development. Plasmas generated at both the anode and cathode affect the diode performance, which is manifested in varying spot (source) sizes, total dose output, and impedance profiles. Understanding the nature of these plasmas including closure rates and densities is important in modeling their behavior and providing insight into their mitigation. In this paper we describe a streak camerabased optical diagnostic that is capable of observing and measuring plasma evolution within the A-K gap. By imaging a region of interest onto the input slit of a streak camera, we are able to produce a time-resolved one-dimensional image of the evolving plasma. Typical data are presented.

Droemer, Darryl W. [National Security Technologies, LLC; Crain, Marlon D.; Lare, Gregory A. [National Security Technologies, LLC; Bennett, Nichelle L. [National Security Technologies, LLC; Johnston, Mark D. [Sandia National Laboratories

2013-06-13T23:59:59.000Z

417

Hot hollow cathode and its applications in vacuum coating: A concise review  

Science Journals Connector (OSTI)

A concise description of the hollow cathode (HC) effect is given to clarify the confusing terminology and their diverse applications. The cold and hot types of HCs are then discussed. It is followed by a summary of the behavior of the hot HC as an arc generating device with emphasis on its use for vacuum coating purposes. Two major coating devices one developed by Ulvac Corp. (Japan) and the other at the Rocky Flats Plant (RFP) of Rockwell International (USA) are then reviewed with their respective applications. Review of the latter includes recent results of plume effect upon both the unusual deposition rate distribution and the extremely high substrate (ion) current. The coating morphology and microstructure can be best explained using the Krikorian concept and when optimized can help to render very high bonding strength (as high as 90 ksi for 304 stainless steel substrates) with the coatings used as the bonding interlayer. Finally comments are made concerning the directions of future technology development based on the system features reviewed.

Y. S. Kuo; R. F. Bunshah; D. Okrent

1986-01-01T23:59:59.000Z

418

Taking Battery Technology from the Lab to the Big City  

SciTech Connect (OSTI)

Urban Electric Power, a startup formed by researchers from the City University of New York (CUNY) Energy Institute, is taking breakthroughs in battery technology from the lab to the market. With industry and government funding, including a grant from the Energy Department, Urban Electric Power developed a zinc-nickel oxide battery electrolyte that circulates constantly, eliminating dendrite formation and preventing battery shortages. Their new challenge is to take this technology to the market, where they can scale up the batteries for reducing peak energy demand in urban areas and storing variable renewable electricity.

Banerjee, Sanjoy; Shmukler, Michael; Martin, Cheryl

2013-07-29T23:59:59.000Z

419

Building Science and Technology Solutions for National Problems  

SciTech Connect (OSTI)

The nation's investment in Los Alamos has fostered scientific capabilities for national security missions. As the premier national security science laboratory, Los Alamos tackles: (1) Multidisciplinary science, technology, and engineering challenges; (2) Problems demanding unique experimental and computational facilities; and (3) Highly complex national security issues requiring fundamental breakthroughs. Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) ensure the safety, security, and reliability of the US nuclear deterrent; (2) protect against the nuclear threat; and (3) solve national security challenges.

Bishop, Alan R. [Los Alamos National Laboratory

2012-06-05T23:59:59.000Z

420

Cathodic protection deployment on space shuttle solid rocket boosters  

SciTech Connect (OSTI)

Corrosion protection of the space shuttle solid rocket boosters incorporates the use of cathodic protection (anodes) in concert with several coatings systems. The SRB design has large carbon/carbon composite (motor nozzle) electrically connected to an aluminum alloy structure. Early in the STS program, the aluminum structures incurred tremendous corrosive attack at coating damage locations due primarily to galvanic coupling with the carbon/carbon nozzle. Also contributing to the galvanic corrosion problem were stainless steel and titanium alloy components housed within the aluminum structures and electrically connected to the aluminum structures. This paper highlights the evolution in the protection of the aluminum structures, providing historical information and summary data from the operation of the corrosion protection systems. Also, data and information are included regarding the evaluation and application of inorganic zinc rich primers to provide anode area on the aluminum structures.

Zook, L.M.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect (OSTI)

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

422

Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4V-class cathode active materials  

Science Journals Connector (OSTI)

Abstract Poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI-Pyr14TFSI)-based 4V-class composite cathodes, incorporating either Li(Ni1/3Co1/3Mn1/3)O2 or Li(Ni0.8Co0.15Al0.05)O2 were prepared by a hot-pressing process and successively investigated in terms of their morphological, thermal, and electrochemical properties. Thereby, excellent mechanical and thermal properties could be demonstrated for all composite cathodes. The electrochemical performance of truly dry all-solid-state Li/P(EO)10LiTFSI-(Pyr14TFSI)2/composite cathode batteries at temperatures as low as 40C revealed high delivered capacities. However, in comparison with LiFePO4, the 4V-class composite cathodes also indicated much lower capacity retention. In-depth investigations on the interfacial properties of Li(Ni0.8Co0.15Al0.05)O2 composite cathodes revealed a strong dependence on the anodic cut-off potential and the presence of current flow through the cell, whereby different degradation mechanisms could be characterized upon cycling, according to which the finite growth of a surface films at both electrode/polymer electrolyte interfaces inhibited continuous decomposition of the polymer electrolyte even at potentials as high as 4.3V. Moreover, the presence of Pyr14TFSI in the 4V-class composite cathodes sustainably reduced the cathode interfacial resistance and presumably diminished the corrosion of the aluminum current collector.

Morten Wetjen; Guk-Tae Kim; Mario Joost; Giovanni B. Appetecchi; Martin Winter; Stefano Passerini

2014-01-01T23:59:59.000Z

423

Lithium-Bearing Mixed Polyanion (LBMP) Glasses as Cathode Materials  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

424

Advanced Cathode Material Development for PHEV Lithium Ion Batteries  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

425

Studies on High Voltage Lithium Rich MNC Composite Cathodes  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

426

Development of High-Capacity Cathode Materials with Integrated Structures  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

427

Studies on Lithium Manganese Rich MNC Composite Cathodes  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

428

Design of High Performance, High Energy Cathode Materials  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

429

Design and Evaluation of Novel High Capacity Cathode Materials  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

430

Development of High-Capacity Cathode Materials with Integrated Structures  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

431

Cathode Synthesis and Voltage Fade: Designed Solutions Based on Theory  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

432

Process Development and Scale-up of Advanced Cathode Materials  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

433

Process Development and Scale-up of Advanced Cathode Materials  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

434

Design and Evaluation of Novel High Capacity Cathode Materials  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

435

Development of High-Capacity Cathode Materials with Integrated Structures  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

436

Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries  

DOE Patents [OSTI]

The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

Manthiram, Arumugam; Choi, Wongchang

2014-05-13T23:59:59.000Z

437

PolymerGraphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries  

SciTech Connect (OSTI)

Electroactive polymers are a new generation of 'green' cathode materials for rechargeable lithium batteries. We have developed nanocomposites combining graphene with two promising polymer cathode materials, poly(anthraquinonyl sulfide) and polyimide, to improve their high-rate performance. The polymer-graphene nanocomposites were synthesized through a simple in-situ polymerization in the presence of graphene sheets. The highly dispersed graphene sheets in the nanocomposite drastically enhanced the electronic conductivity and allowed the electrochemical activity of the polymer cathode to be efficiently utilized. This allows for ultrafast charging and discharging - the composite can deliver more than 100 mAh/g within just a few seconds.

Song, Zhiping; Xu, Terrence (Tianren) [Tianren; Gordin, Mikhail; Jiang, Yingbing; Bae, In-Tae; Xiao, Qiangfeng; Zhan, Hui; Liu, Jun; Wang, Donghai

2012-05-09T23:59:59.000Z

438

IN-SITU XRD OF OPERATING LSFC CATHODES: DEVELOPMENT OF A NEW ANALYTICAL CAPABILITY  

SciTech Connect (OSTI)

A solid oxide fuel cell (SOFC) research capability has been developed that facilitates measuring the electrochemical performance of an operating SOFC while simultaneously performing x-ray diffraction on its cathode. The evolution of this research tools development is discussed together with a description of the instrumentation used for in-situ x-ray diffraction (XRD) measurements of operating SOFC cathodes. The challenges that were overcome in the process of developing this capability, which included seals and cathode current collectors, are described together with the solutions that are presently being applied to mitigate them.

Hardy, John S.; Templeton, Jared W.; Stevenson, Jeffry W.

2012-11-19T23:59:59.000Z

439

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials  

Science Journals Connector (OSTI)

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials ... The electrochemically inert layered defect-rocksalt compound Li2MnO3 has been structurally integrated with more electrochemically active layered compounds in order to enhance Li-ion-battery cathode stability. ... Cathodes of the material had a discharge capacity of 200 mA-h/g, based on the mass of the Li-Mn oxide; an electrode capacity of >140 mA-h/g was achieved on cycling in a room-temp. ...

R. Benedek; M. M. Thackeray; A. van de Walle

2008-08-06T23:59:59.000Z

440

ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS  

SciTech Connect (OSTI)

This report summarizes the work done during the third quarter of the project. Effort was directed in two areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries, and its relationship to cathode polarization. Included indirectly through the grain boundary effect is the effect of space charge. (2) Synthesis of LSC + SDC composite cathode powders by combustion synthesis. (3) Fabrication and testing of anode-supported single cells made using synthesized LSC + ScDC composite cathodes.

Anil V. Virkar

2003-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The evidence of cathodic micro-discharges during plasma electrolytic oxidation process  

SciTech Connect (OSTI)

Plasma electrolytic oxidation (PEO) processing of EV31 magnesium alloy has been carried out in fluoride containing electrolyte under bipolar pulse current regime. Unusual PEO cathodic micro-discharges have been observed and investigated. It is shown that the cathodic micro-discharges exhibit a collective intermittent behavior, which is discussed in terms of charge accumulations at the layer/electrolyte and layer/metal interfaces. Optical emission spectroscopy is used to determine the electron density (typ. 10{sup 15}?cm{sup ?3}) and the electron temperature (typ. 7500?K) while the role of F{sup ?} anions on the appearance of cathodic micro-discharges is pointed out.

Nomin, A., E-mail: alexandre.nomine@univ-lorraine.fr [Institut Jean Lamour, UMR 7198 CNRS, Universit de Lorraine, Parc de Saurupt, 54011 Nancy (France); National Institute of Science and Technology MISiS, 4, Leninskij Prospekt, Moscow 119049 (Russian Federation); Martin, J.; Nol, C.; Henrion, G.; Belmonte, T. [Institut Jean Lamour, UMR 7198 CNRS, Universit de Lorraine, Parc de Saurupt, 54011 Nancy (France); Bardin, I. V.; Kovalev, V. L.; Rakoch, A. G. [National Institute of Science and Technology MISiS, 4, Leninskij Prospekt, Moscow 119049 (Russian Federation)

2014-02-24T23:59:59.000Z

442

First International Symposium on Cold Cathodes Dielectric Science and Technology/Electronics/Luminescent and Display Materials  

E-Print Network [OSTI]

/Electronics/Luminescent and Display Materials 198th Meeting of the Electrochemical Society Date: October 22­27, 2000 Location: Phoenix Noise (flicker, shot), ffl Emitters (e.g., Spindt­type field emitters, Negative electron affinity abstract to the ECS headquarters and also to K. L. Jensen at the address below. #12; Electrochemical

Cahay, Marc

443

ARPA-E Issues Open Call for Transformational Energy Technologies |  

Broader source: Energy.gov (indexed) [DOE]

ARPA-E Issues Open Call for Transformational Energy Technologies ARPA-E Issues Open Call for Transformational Energy Technologies ARPA-E Issues Open Call for Transformational Energy Technologies March 2, 2012 - 2:31pm Addthis Washington, D.C. - Today, the Advanced Research Projects Agency - Energy (ARPA-E) issued a $150 million funding opportunity open to all transformational energy technologies to support the Obama Administration's all-of-the-above approach to solving our nation's most pressing energy challenges. This Open Funding Opportunity Announcement is a call to our country's brightest scientists, engineers and entrepreneurs to propose early-stage research projects that would not otherwise be able to attract private investment, but could lead to breakthrough energy technologies. This is the second open funding opportunity released under

444

ARPA-E Issues Open Call for Transformational Energy Technologies |  

Broader source: Energy.gov (indexed) [DOE]

Issues Open Call for Transformational Energy Technologies Issues Open Call for Transformational Energy Technologies ARPA-E Issues Open Call for Transformational Energy Technologies March 2, 2012 - 2:31pm Addthis Washington, D.C. - Today, the Advanced Research Projects Agency - Energy (ARPA-E) issued a $150 million funding opportunity open to all transformational energy technologies to support the Obama Administration's all-of-the-above approach to solving our nation's most pressing energy challenges. This Open Funding Opportunity Announcement is a call to our country's brightest scientists, engineers and entrepreneurs to propose early-stage research projects that would not otherwise be able to attract private investment, but could lead to breakthrough energy technologies. This is the second open funding opportunity released under

445

NETL: News Release - Department of Energy Supported Technologies Recognized  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, 2007 9, 2007 Department of Energy Supported Technologies Recognized with R&D 100 Awards R&D 100 Award Logo Washington, DC - Three technologies developed with support from the Office of Fossil Energy's National Energy Technology Laboratory (NETL) have won prestigious R&D 100 Awards from R&D Magazine for 2007. "Once again, we are at the cutting edge of innovation with new technology developments that enhance America's economic and national security," said Thomas Shope, DOE's Acting Assistant Secretary for Fossil Energy. "My heartiest congratulations to the NETL researchers and scientists that have won R&D Magazine's prestigious awards this year." According to R&D Magazine, the goal of the awards is to spotlight major breakthroughs - products and processes with the capacity to improve the standard of living for many people. Since 1963, R&D Magazine has annually awarded R&D 100 Awards to the 100 most technologically significant new products to hit the market.

446

A review of "How Modern Science Came into the World. Four Civilizations, One 17th-Century Breakthrough" by H. Floris Cohen  

E-Print Network [OSTI]

147 #2;#3;#4;#3;#5;#6;#3;#3;#5;#6;#7;-#8;#3;#5;#6; #11; #5;#3;#12;#2; H. Floris Cohen. How Modern Science Came into the World. Four Civilizations, One 17th-Century Breakthrough. Amsterdam: Amsterdam University Press, 2010. xl + 784 pp. + 53... toward mi- crohistories or tightly focused, empirically grounded histories, Cohen o#25; ers a big-picture that spans two millennia, four civilizations, and presents a causal explanation for the rise of modern science. #22; is magisterial book...

Hayton, Darin

2012-01-01T23:59:59.000Z

447

Preparation and characterization of Pt/C catalysts for PEMFC cathode: effect of different reduction methods  

Science Journals Connector (OSTI)

Three Pt/C catalysts for PEMFC cathode were prepared by impregnation-reduction method using...4, and N2H4...as reductant, respectively, and characterized by BET, CV and XRD. The effect of reduction methods on the...

Jianlu Zhang; Xiaoli Wang; Chuan Wu

448

Organic photovoltaic devices with the bilayer cathode interfacial structure of pyromellitic dianhydride and lithium fluoride  

Science Journals Connector (OSTI)

In this study, we fabricated and characterized an organic photovoltaic (OPV) device with a pyromellitic dianhydride (PMDA)/lithium fluoride (LiF) cathode interfacial layer between poly(3-hexylthiophene?2,5-diyl)(P3HT)+[6,6]-phenyl C61butyric acid methyl ester (PCBM) and Al. Compared to the OPV device with a LiF-only cathode interfacial layer having a power conversion efficiency (PCE) of 2.7%, the OPV device with the bilayer cathode interfacial structure [PMDA (0.3nm)/LiF (0.7nm)] exhibited a reduced resistance and a PCE value enhanced to 3.9% under an illumination condition of 100 mW cm?2(AM1.5). The observed improvement of the OPV characteristics was attributed to the reduced leakage current of the device by the bilayer cathode interfacial layer.

Eunkyoung Nam; Seungsik Oh; Donggeun Jung; Hyoungsub Kim; Heeyeop Chae; Junsin Yi

2012-01-01T23:59:59.000Z

449

Designing cathodic protection systems for marine structures and vehicles. ASTM special technical publication 1370  

SciTech Connect (OSTI)

Cathodic protection is an important method of protecting structures and ships from the corrosive effects of seawater. Poor designs can be far more costly to implement than optimal designs, Improper design can cause overprotection, with resulting paint blistering and accelerated corrosion of some alloys, underprotection, with resultant structure corrosion, or stray current corrosion of nearby structures. The first ASTM symposium specifically aimed at cathodic protection in seawater was intended to compile all the criteria and philosophy for designing both sacrificial and impressed current cathodic protection systems for structures and vehicles in seawater. The papers which are included in this STP are significant in that they summarize the major seawater cathodic protection system design philosophies. Papers have been processed separately for inclusion on the database.

Hack, H.P. [ed.

1999-07-01T23:59:59.000Z

450

Graphene-based composites as cathode materials for lithium ion batteries  

Science Journals Connector (OSTI)

Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode ...

Libao Chen; Ming Zhang; Weifeng Wei

2013-01-01T23:59:59.000Z

451

SURFACE RECONSTRUCTION AND CHEMICAL EVOLUTION OF STOICHIOMETRIC LAYERED CATHODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

CATHODE MATERIALS FOR LITHIUM-ION BATTERIES Feng Lin, 1*As shown in Figure 2, in lithium-metal half-cells, capacitypredominantly occurs along the lithium diffusion channels,

Lin, Feng

2014-01-01T23:59:59.000Z

452

Numerical computation of electric arc with annular attachment on the cathode butt end  

Science Journals Connector (OSTI)

The results of computing a stationary arc with annular attachment on the butt end of a solid cylindrical cathode are presented. The influence of the discharge external parameters on the characteristics of arc ...

A. Zh. Zhainakov; R. M. Urusov; T. E. Urusova

2006-12-01T23:59:59.000Z

453

The current-voltage characteristic of a hot-cathode electric arc at low pressures  

Science Journals Connector (OSTI)

It has been shown that in a hot-cathode electric arc operating at low pressures of the working ... drop arises that results in an increase in discharge voltage with current even before the transition of the discharge

C. P. Nikulin

2011-03-01T23:59:59.000Z

454

SURFACE SEGREGATION STUDIES OF SOFC CATHODES: COMBINING SOFT X-RAYS AND ELECTROCHEMICAL IMPEDENCE SPECTROSCOPY  

SciTech Connect (OSTI)

A system to grow heteroepitaxial thin-films of solid oxide fuel cell (SOFC) cathodes on single crystal substrates was developed. The cathode composition investigated was 20% strontium-doped lanthanum manganite (LSM) grown by pulsed laser deposition (PLD) on single crystal (111) yttria-stabilized zirconia (YSZ) substrates. By combining electrochemical impedance spectroscopy (EIS) with x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy XAS measurements, we conclude that electrically driven cation migration away from the two-phase gas-cathode interface results in improved electrochemical performance. Our results provide support to the premise that the removal of surface passivating phases containing Sr2+ and Mn2+, which readily form at elevated temperatures even in O2 atmospheric pressures, is responsible for the improved cathodic performance upon application of a bias.

Miara, Lincoln J.; Piper, L.F.J.; Davis, Jacob N.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Basu, Soumendra; Smith, K. E.; Pal, Uday B.; Gopalan, Srikanth

2010-12-01T23:59:59.000Z

455

Hafnium metallocene compounds used as cathode interfacial layers for enhanced electron transfer in organic solar cells  

Science Journals Connector (OSTI)

We have used hafnium metallocene compounds as cathode interfacial layers for organic solar cells [OSCs]. A metallocene compound consists of...6, 6]-phenyl C61 butyric acid methyl ester, bis-(ethylcyclopentadienyl...

Keunhee Park; Seungsik Oh; Donggeun Jung; Heeyeop Chae

2012-01-01T23:59:59.000Z

456

Polyaniline: characterization as a cathode active material in rechargeable batteries in aqueous electrolytes  

Science Journals Connector (OSTI)

An analytically pure form of chemically synthesized polyaniline having the emeraldine oxidation state has been used as a cathode active material together with a Zn anode in the...2 electrolyte (pH?4). The experim...

N. L. D. Somasiri; A. G. Macdiarmid

1988-01-01T23:59:59.000Z

457

LiCoO2-and LiMn2O4-based composite cathode materials  

Science Journals Connector (OSTI)

We have prepared composite cathode materials based on two electrochemically active compounds, LiCoO2 and LiMn2O4..., and investigated their properties. The results indicate that the discharge capacities of all th...

Ya. V. Shatilo; E. V. Makhonina; V. S. Pervov; V. S. Dubasova

2006-07-01T23:59:59.000Z

458

Hydrous oxide species as inhibitors of oxygen reduction at platinum activated fuel cell cathodes  

Science Journals Connector (OSTI)

The successful development of a methanol/air fuel cell requires optimum performance of the air/ oxygen cathode at about 0.8 V vs RHE. ... oxygen gas reduction on platinum (the best electrocatalyst for this reacti...

L. D. Burke; J. K. Casey; J. A. Morrissey

1994-01-01T23:59:59.000Z

459

Approaches to methanol-tolerant air cathodes for methanol-air fuel cells  

SciTech Connect (OSTI)

The achievement of truly methanol-tolerant oxygen cathodes will greatly assist the development of direct methanol-air fuel cells, because the cathode performance will not be affected by the presence of methanol or its oxidation products, which can diffuse across the cell from the anode. In addition, methanol will not be consumed at the cathode. Although platinum-based oxygen cathodes can continue to perform well in the presence of methanol under certain conditions, methanol can be consumed rapidly at such electrodes. Oxygen electrocatalysts were examined in the present work which are largely inactive for methanol oxidation and are also not affected significantly by the presence of methanol. These included heat-treated transition metal macrocycles and hydrated ruthenium dioxide. The most promising electrocatalyst examines thus far is heat-treated iron tetramethoxyphenylporphyrin supported on high area carbon.

Tryk, D.A.; Gupta, S.L.; Aldred, W.H.; Yeager, E.B. [Case Western Reserve Univ., Cleveland, OH (United States)

1994-12-31T23:59:59.000Z

460

Study of Anodic and Cathodic Catalysts for Water Electrolysis Activation of Membranes and Diaphragms  

Science Journals Connector (OSTI)

Optimization of the anodic and cathodic catalysts developed under the previous contract 06776-EHI, with a view to identifying the best candidate for alkaline and acid electrolysis at temperatures up to 140C,...

Placido M. Spaziante

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Thermal instabilities of organic carbonates with discharged cathode materials in lithium-ion batteries  

Science Journals Connector (OSTI)

Thermal instability of lithiated cathode materials with organic...4, LiMn2O4, and LiCoO2...were mixed with diethyl carbonate, dimethyl carbonate, ethylene carbonate, ethyl methyl carbonate, and propylene carbonat...

Wei-Jie Ou; Chen-Shan Kao; Yih-Shing Duh

2014-06-01T23:59:59.000Z

462

Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector  

SciTech Connect (OSTI)

To fabricate LiFePO4 battery cathodes, highly conductive carbon fibers of 10-20 m in diameter have been used to replace a conventional aluminum (Al) foil current collector. This disperses the current collector throughout the cathode sheet and increases the contact area with the LiFePO4 (LFP) particles. In addition, the usual organic binder plus carbon-black can be replaced by a high temperature binder of <5 weight % carbonized petroleum pitch (P-pitch). Together these replacements increase the specific energy density and energy per unit area of the electrode. Details of the coating procedure, characterization and approach for maximizing the energy density are discussed. In a side-by-side comparison with conventional cathodes sheets of LFP on Al foil, the carbon fiber composite cathodes have a longer cycle life, higher thermal stability, and high capacity utilization with little sacrifice of the rate performance.

Martha, Surendra K [ORNL; Kiggans, Jim [ORNL; Nanda, Jagjit [ORNL; Dudney, Nancy J [ORNL

2011-01-01T23:59:59.000Z

463

Supply and demand in the material recovery system for cathode ray tube glass  

E-Print Network [OSTI]

This paper presents an analysis of the material recovery system for leaded glass from cathode ray tubes (CRTs). In particular, the global mass flow of primary and secondary CRT glass and the theoretical capacities for using ...

Nadeau, Marie-Claude

464

High-voltage pulsed discharge in an electron source with a plasma cathode  

Science Journals Connector (OSTI)

The nature of and mechanism for producing a high-voltage discharge in an electron source with a plasma cathode are investigated. The possibility of generating pulsed electron currents with an amplitude of 103104

S. P. Bugaev; F. Ya. Zagulov

1973-10-01T23:59:59.000Z

465

A Plasma-Cathode Electron Source for Ribbon-Beam Generation at Forevacuum Pressures  

Science Journals Connector (OSTI)

A plasma electron source producing a ribbon beam at pressures of ... cathode is used as a plasma generator. Electrons are extracted through the emission slit in ... covered by a metal mesh. The maximum electron-b...

V. A. Burdovitsin; Yu. A. Burachevskii

2003-03-01T23:59:59.000Z

466

Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells IV. On the Ohmic loss in anode supported button cells with LSM or LSCF cathodes  

SciTech Connect (OSTI)

Anode-supported solid oxide fuel cells (SOFC) with a variety of YSZ electrolyte thicknesses were fabricated by tape casting and lamination. The preparation of the YSZ electrolyte tapes with various thicknesses was accomplished by using doctor blades with different gaps between the precision machined, polished blade and the casting surface. The green tape was cut into discs, sintered at 1385C for 2 h, and subsequently creep-flattened at 1350C for 2 h. Either LSCF with an SDC interlayer or LSM+YSZ composite was used as the cathode material for the fuel cells. The ohmic resistances of these anode-supported fuel cells were characterized by electrochemical impedance spectroscopy at temperatures from 500C to 750C. A linear relationship was found between the ohmic resistance of the fuel cell and the YSZ electrolyte thickness at all the measuring temperatures for both LSCF and LSM+YSZ cathode fuel cells. The ionic conductivities of the YSZ electrolyte, derived for the fuel cells with LSM+YSZ or LSCF cathodes, were independent of the cathode material and cell configuration. The ionic conductivities of the YSZ electrolyte was slightly lower than that of the bulk material, possibly due to Ni-doping into the electrolyte. The fuel cell with a SDC interlayer and LSCF cathode showed larger intercept resistance than the fuel cell with LSM+YSZ cathode, which was possibly due to the imperfect contact between the SDC interlayer and the YSZ electrolyte and the migration of Zr into the SDC interlayer to form an insulating solid solution during cell fabrication. Calculations of the contribution of the YSZ electrolyte to the total ohmic resistance showed that YSZ was still a satisfactory electrolyte at temperatures above 650C. Explorations should be directed to reduce the intercept resistance to achieve significant improvement in cell performance.

Lu, Zigui; Zhou, Xiao Dong; Templeton, Jared W.; Stevenson, Jeffry W.

2010-05-08T23:59:59.000Z

467

Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells  

Science Journals Connector (OSTI)

Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells ... On the basis of this structure, we then demonstrate graphene cathode-based hybrid solar cells using two different photoactive materials, PbS quantum dots and the conjugated polymer P3HT, with AM 1.5G power conversion efficiencies of 4.2% and 0.5%, respectively, approaching the performance of ITO-based devices with similar architectures. ... graphene; ZnO nanowires; solar cells; ITO ...

Hyesung Park; Sehoon Chang; Joel Jean; Jayce J. Cheng; Paulo T. Araujo; Mingsheng Wang; Moungi G. Bawendi; Mildred S. Dresselhaus; Vladimir Bulovi?; Jing Kong; Silvija Grade?ak

2012-12-03T23:59:59.000Z

468

Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell  

E-Print Network [OSTI]

. Researchers all over the world are focusing on optimizing this system to be cost competitive with energy conversion devices currently available. It is a well known fact that the cathode of the PEM fuel cell is the performance limiting component due...THREE DIMENSIONAL EFFECTS OF LIQUID WATER FLOODING IN THE CATHODE OF A PEM FUEL CELL by Dilip Natarajan and Trung Van Nguyen* Department of Chemical and Petroleum Engineering University of Kansas Lawrence, KS 66045, USA Submitted...

Natarajan, Dilip; Van Nguyen, Trung

2003-03-27T23:59:59.000Z

469

Development of a cold cathode ion source for a mass spectrometer type vacuum leak detector  

E-Print Network [OSTI]

DEVELOPMENT OF A COLD CATHODE ION SOURCE FOR A MASS SPECTROL'ETER TYPE VACUUM LEAK DETECTOR A Dissertation By Harold A. Thomas June 1947 Approval as to style and content recommended* Head Deparanent of Electrical Engineering DEVELOPMENT OF A... Investigation of Ion Source ? .......... 6 III. Investigation of Ion Energies ...................... 21 IV. Development of Lrass Spectrometer Tube Utilizing the Cold Cathode Ion S o u r c e ........ 41 V* Conclusions...

Thomas, Harold Albert

2013-10-04T23:59:59.000Z

470

A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery  

Science Journals Connector (OSTI)

Abstract Cathode structure plays a vital role in lithium-air battery for that it can provide space for discharged products accommodation and free path for oxygen, e? and Li+ transport. However, pore blockage, cathode passivation and degradation all result in low discharge rates and poor cycling capability. To get rid of these predicaments, a novel highly conductive dual pore carbon aerogel based air cathode is fabricated to construct a lithium-air battery, which exhibits 18 to 525 cycles in the LiTFSI/sulfolane electrolyte at a current density varying from 1.00mAcm?2 to 0.05mAcm?2, accompanied by a high energy efficiency of 78.32%. We postulate that the essence lies in that the as-prepared air cathode inventively create a suitable tri-phase boundary reaction zone, facilitating oxygen and Li+ diffusion in two independant pore channels, thus realizing a relative higher discharge rate capability, lower pore blockage and cathode passivation. Further, pore structure, carbon loading, rate capability, discharge depth and the air's effect are exploited and coordinated, targeting for a high power and reversible lithium-air battery. Such nano-porous carbon aerogel air cathode of novel dual pore structure and material design is expected to be an attractive alternative for lithium-air batteries and other lithium based batteries.

Fang Wang; Yang-Hai Xu; Zhong-Kuan Luo; Yan Pang; Qi-Xing Wu; Chun-Sheng Liang; Jing Chen; Dong Liu; Xiang-hua Zhang

2014-01-01T23:59:59.000Z

471

S-band relativistic magnetron operation with an active plasma cathode  

SciTech Connect (OSTI)

Results of experimental research on a relativistic S-band magnetron with a ferroelectric plasma source as a cathode are presented. The cathode plasma was generated using a driving pulse (approx3 kV, 200 ns) applied to the ferroelectric cathode electrodes via inductive decoupling prior to the beginning of an accelerating pulse (200 kV, 150 ns) delivered by a linear induction accelerator. The magnetron and generated microwave radiation parameters obtained for the ferroelectric plasma cathode and the explosive emission plasma were compared. It was shown that the application of the ferroelectric plasma cathode allows one to avoid a time delay in the appearance of the electron emission to achieve a better matching between the magnetron and linear induction accelerator impedances and to increase significantly (approx30%) the duration of the microwave pulse with an approx10% increase in the microwave power. The latter results in the microwave radiation generation being 30% more efficient than when the explosive emission cathode is used, where efficiency does not exceed 20%.

Hadas, Y.; Sayapin, A.; Kweller, T.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

2009-04-15T23:59:59.000Z

472

The design of a cathode to operate in an oxygen-rich environment  

SciTech Connect (OSTI)

The primary problem with Hall plasma accelerator operation on oxygen is poor cathode performance and short lifetime. The primary problem with micro Hall thrusters is the absence of a stable low power cathode. Cathodes traditionally used for both applications employ thermionic emitters which are not efficient and which are easily oxidized in an oxygen-rich environment. The field emitter cathode presented in this report has the potential of filling both vacancies since it does not require a high-power heater and can be scaled down with the size of the thruster. The advantages to using Hf and HfC as emitting materials are low work functions and high resistance to oxygen poisoning. Preliminary investigations proved that HfC emitters can operate in 7.6 mTorr oxygen pressure environments. The initial cathode design employs an electrostatic lens that also acts as an ion filter to prevent thruster ions from bombarding the field emitters while decelerating the electron beam and keeping it focused to ensure efficient performance. Electron trajectories through the cathode and ion filtering capabilities are presented in this report as predicted by the charged particle code, MAGIC.

Marrese, Colleen M.; Gallimore, Alec D.; Mackie, William A.; Evans, David E. [Plasmadynamic and Electric Propulsion Lab., University of Michigan Dept. of Aerospace Engineering FXB Building, 1320 Beal Ann Arbor, Michigan 48109-2118 (United States); Linfield Research Institute 900 Baker St. McMinnville, Oregon 97128-6894 (United States)

1997-01-10T23:59:59.000Z

473

Cell Analysis ? High-Energy Density Cathodes and Anodes  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

474

Developing new high energy gradient concentration cathode material  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

475

Advanced Cathode Material Development for PHEV Lithium Ion Batteries  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

476

Process for Low Cost Domestic Production of LIB Cathode Materials  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

477

Design and Evaluation of Novel High Capacity Cathode Materials  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

478

Design and Evaluation of Novel High Capacity Cathode Materials  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

479

Development of high-capacity cathode materials with integrated structures  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

480

Evaluation of Li2MnSiO4 Cathode  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

Note: This page contains sample records for the topic "breakthrough cathode technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Construction of a Li Ion Battery (LIB) Cathode Production Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt008esdicarlo2011p.pdf More Documents & Publications...

482

Excimer emission from pulsed microhollow cathode discharges in xenon  

SciTech Connect (OSTI)

Direct current (dc) microhollow cathode discharge (MHCD) is an intense source for excimer radiation in vacuum ultraviolet at a wavelength of 172 nm in a high pressure xenon (Xe) gas. The concentration of precursors for the excimer formation, i.e., excited and ionized gas atoms, increases significantly by applying high voltage pulse onto the dc MHCD over the pulse duration range from 20 to 100 ns. The intensity of the excimer emission for the voltage pulse of 20 ns duration exceeds that of the emission intensity obtained from the same MHCD operated only in the dc mode, by one order of magnitude. In addition, the emission intensity increases by one order of magnitude over the pulse duration range from 20 to 100 ns. It can be assumed that the emission intensity of the MHCD source increases as long as the duration of the high voltage pulse is shorter than the electron relaxation time. For the high voltage pulse of 100 ns duration, the emission intensity has been found to be further enhanced by a factor of three when the gas pressure is increased from 200 to 800 mbar.

Lee, B.-J.; Nam, S. H. [Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784 (Korea, Republic of)] [Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784 (Korea, Republic of); Rahaman, H. [CSIRCEERI Pilani, Rajasthan 333031 (India)] [CSIRCEERI Pilani, Rajasthan 333031 (India); Iberler, M.; Jacoby, J. [Institute of Applied Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)] [Institute of Applied Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Frank, K. [Physics Department 1, University of Erlangen Nuremberg, 91058 Erlangen (Germany)] [Physics Department 1, University of Erlangen Nuremberg, 91058 Erlangen (Germany)

2013-12-15T23:59:59.000Z

483

Ignition and extinction phenomena in helium micro hollow cathode discharges  

SciTech Connect (OSTI)

Micro hollow cathode discharges (MHCD) were produced using 250??m thick dielectric layer of alumina sandwiched between two nickel electrodes of 8??m thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2??s long current peak as high as 24?mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400?Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few ?s relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.

Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R. [GREMI, CNRS/Universit d'Orlans (UMR7344), Orlans (France); Sadeghi, N. [LIPhy, CNRS and Universite Joseph Fourier (UMR5588), Grenoble (France); Overzet, L. J. [GREMI, CNRS/Universit d'Orlans (UMR7344), Orlans (France); PSAL, UTDallas, Richardson, Texas 75080-3021 (United States)

2013-12-28T23:59:59.000Z

484

Argonne CNM News: State-of-the-Art Diamond Semiconductor Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State-of-the-Art Diamond Semiconductor Technology Licensed to AKHAN Technologies State-of-the-Art Diamond Semiconductor Technology Licensed to AKHAN Technologies The U.S. Department of Energy's Argonne National Laboratory announced today that the laboratory has granted AKHAN Technologies, Inc., exclusive diamond semiconductor application licensing rights to breakthrough low-temperature diamond deposition technology developed by Argonne's Center for Nanoscale Materials (CNM). The method allows for the deposition of nanocrystalline diamond on a variety of wafer substrate materials at temperatures as low as 400°C, highly advantageous for integration with processed semiconductor electronic materials and resulting in the deposition of low-defect nanocrystalline diamond (NCD) thin films. The combination of CNM's low-temperature diamond technology with the AKHAN Miraj Diamond(tm) process represents the state of the art in diamond semiconductor thin-film technology.

485

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

486

Queen's researchers play part in laser breakthrough A new approach that will pave the way for a range of  

E-Print Network [OSTI]

for a range of scientific, medical and technological applications to harness the potential from areas, For example, there is potential for future use in cancer therapy," commented Professor Ciaran achieved employing conventional, larger-scale accelerators. By using short, intense electric fields

Paxton, Anthony T.

487

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

23, 2012 23, 2012 CX-008929: Categorical Exclusion Determination Fundamental Investigations and Rational Design of Durable, High-Performance Cathode Materials CX(s) Applied: B3.6 Date: 08/23/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory August 23, 2012 CX-008928: Categorical Exclusion Determination High Efficiency Molten-Bed Oxy-Coal Combustion with Low Flue Gas Recirculation CX(s) Applied: B3.6 Date: 08/23/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory August 22, 2012 CX-008930: Categorical Exclusion Determination Recovery Act: Clean Cities Transportation Petroleum Reduction Technologies Program CX(s) Applied: A1 Date: 08/22/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory August 21, 2012 CX-008931: Categorical Exclusion Determination

488

Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning, The Spectrum of Clean Energy Innovation (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative Evaporative and Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way-with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVap), also controls humidity more effectively to improve the comfort of people in buildings. Desiccants are an example of a thermally activated technology (TAT) that relies on heat instead

489

Biofuels technology blooms in Iowa | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biofuels technology blooms in Iowa Biofuels technology blooms in Iowa Biofuels technology blooms in Iowa May 7, 2010 - 4:45pm Addthis Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from corn harvests into renewable biofuels could help America produce billions of gallons of cellulosic biofuels in the upcoming decade. Addthis Related Articles NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. On the Path to Low Cost Renewable Fuels, an Important Breakthrough

490

Evaluation of sterling silver as a contacting material for the cathode chamber of the solid-oxide fuel cell.  

E-Print Network [OSTI]

??This research focuses on the development and testing of contact paste materials for the SOFC, utilizing silver, in a simulated cathode environment. Test specimens were (more)

Sakacsi, John.

2006-01-01T23:59:59.000Z

491

Aerosol Synthesis Of Cathode Materials For Li-Ion Batteries.  

E-Print Network [OSTI]

??Rapid advancement of technologies for production of next-generation Li-ion batteries will be critical to address the Nation's need for clean, efficient and secure transportation system (more)

Zhang, Xiaofeng

2011-01-01T23:59:59.000Z

492

Block Copolymer Cathode Binder to Simultaneously Transport Electronic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Volume 50, pp. 9848-9851. (566 KB) Technology Marketing Summary A Berkeley Lab team led by Nitash Balsara has developed a highly efficient lithium ion battery in which a...

493

FY10 Engineering Innovations, Research and Technology Report  

SciTech Connect (OSTI)

This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

2011-01-11T23:59:59.000Z

494

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

495

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

496

Simulative research on the expansion of cathode plasma in high-current electron beam diode  

SciTech Connect (OSTI)

The expansion of cathode plasma has long been recognized as a limiting factor in the impedance lifetime of high-current electron beam diode. Realistic modeling of such plasma is of great necessity in order to discuss the dynamics of cathode plasma. Using the method of particle-in-cell, the expansion of cathode plasma is simulated in this paper by a scaled-down diode model. It is found that the formation of cathode plasma increases the current density in the diode. This consequently leads to the decrease of the potential at plasma front. Once the current density has been increased to a certain value, the potential at plasma front would then be equal to or lower than the plasma potential. Then the ions would move towards the anode, and the expansion of cathode plasma is thereby formed. Different factors affecting the plasma expansion velocity are discussed in this paper. It is shown that the decrease of proton genatation rate has the benefit of reducing the plasma expansion velocity.

Xu Qifu; Liu Lie [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

2012-09-15T23:59:59.000Z

497

Microbial fuel cell with an algae-assisted cathode: A preliminary assessment  

Science Journals Connector (OSTI)

Abstract A microbial fuel cell (MFC) with an algae-assisted cathode, i.e., a system where the oxygen required by the cathode is not provided by aeration but by the photosynthetic process of the algae (Chlorella vulgaris), has been studied. The cathode was illuminated for 12h each day (from 8:00h to 20:00h). 25 days was necessary to achieve steady state conditions. The time evolution of dissolved oxygen and cell voltage were assessed over the course of each day. As expected, the dissolved oxygen values were not constant throughout the day, reaching maximum values between 14:00h and 20:00h when dark phase reactions began and the algae started to consume oxygen. Cell voltage (Rext 120?) followed the same trend as the oxygen profile. The supply of CO2 in the cathode was also studied, and half an hour was enough time to get the system working properly. During the acclimation stage, power density increased up to 13.5mWm?2 at steady state conditions. However, impedance analysis showed that polarization resistance was higher at the cathode than at the anode. Nevertheless, it canbe concluded that the studied system is a feasible method to treat wastewater in a self-sustainable way.

Araceli Gonzlez del Campo; Pablo Caizares; Manuel A. Rodrigo; Francisco J. Fernndez; Justo Lobato

2013-01-01T23:59:59.000Z

498

Experimental investigation of a capacitive blind hollow cathode discharge with central gas injection  

Science Journals Connector (OSTI)

The operating parameters and resulting plasma properties of a blind hollow cathode (BHC) discharge have been investigated. The hollow cathode was driven capacitively with a pulsed dc signal of 200kHz in a power range between 50 and 100W at an ambient pressure of about 10Pa. The working gas was argon, which was introduced with a ceramic capillary at different positions of the longitudinal axis of the hollow cathode with flow rates of between 30 and 1000sccm. The currentvoltage characteristics were recorded.The pressure at the end of the BHC was measured with a miniaturized pressure transducer with varying volumetric flow rate and axial position of the capillary in the hollow cathode. To characterize the ignition behaviour of the system, the measured breakdown voltages were compared with phenomenological Paschen curves calculated from the pressure data.Optical emission spectroscopy was used to examine the origins of the light emission, comparing the glow mode and hollow cathode mode in particular.A high-speed camera recorded some plasma processes. A mounting with an indium tin oxide coated glass was used to observe the inner volume of the BHC along the longitudinal axis, while the plasma was operated with different parameters. The optical observations revealed an inhomogeneous plasma condition along the axis.

D Hoffmann; M Mller; D Petkow; G Herdrich; S Lein

2014-01-01T23:59:59.000Z

499

Application of cathodic arc deposited amorphous hard carbon films to the head/disk tribology  

SciTech Connect (OSTI)

Amorphous hard carbon films deposited by filtered cathodic arc deposition exhibit very high hardness and elastic modulus, high mass density, low coefficient of friction, and the films are very smooth. All these properties are beneficial to applications of these films for the head/disk interface tribology. The properties of cathodic arc deposited amorphous carbon films are summarized, and they are compared to sputter deposited, hydrogenated (CH{sub x}), and nitrogenated (CN{sub x}) carbon films which are the present choice for hard disk and slider coatings. New developments in cathodic arc coaters are discussed which are of interest to the disk drive industry. Experiments on the nanotribology, mass density and hardness, corrosion behavior, and tribochemical behavior of cathodic arc films are reported. A number of applications of cathodic arc deposited films to hard disk and slider coatings are described. It is shown that their tribological performance is considerably better compared to CH{sub x} and CN{sub x} films.

Anders, S. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.; Bhatia, C.S. [SSD/IBM, San Jose, CA (United States); Fong, W.; Lo, R.Y.; Bogy, D.B. [Univ. of California, Berkeley, CA (United States). Computer Mechanics Lab.

1998-04-01T23:59:59.000Z

500

Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests  

SciTech Connect (OSTI)

In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

Johnson, W.H.

1992-07-01T23:59:59.000Z