National Library of Energy BETA

Sample records for brazil based wind

  1. Wind Energy Atlas of Brazil | Open Energy Information

    Open Energy Info (EERE)

    Atlas of Brazil Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Atlas of Brazil Focus Area: Renewable Energy Topics: Potentials & Scenarios Website:...

  2. Wind Power Energia | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Energia Place: Fortaleza, Ceara, Brazil Zip: 60160-230 Sector: Wind energy Product: Brazil-based small scale wind turbine manufacturer. Coordinates: -3.718404,...

  3. Energy Department Releases New Land-Based/Offshore Wind Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases New Land-BasedOffshore Wind Resource Map Energy Department Releases New Land-BasedOffshore Wind Resource Map May 1, 2012 - 2:23pm Addthis This is an excerpt from the ...

  4. F.E. Warren Air Force Base Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    F.E. Warren Air Force Base Wind Farm Jump to: navigation, search Name F.E. Warren Air Force Base Wind Farm Facility F.E. Warren Air Force Base Sector Wind energy Facility Type...

  5. RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES

    SciTech Connect (OSTI)

    Nichols, R.

    2013-10-14

    Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

  6. Brazil Timber | Open Energy Information

    Open Energy Info (EERE)

    Timber Jump to: navigation, search Name: Brazil Timber Place: Sao Paulo, Brazil Zip: 04562-030 Product: Brazil-based forestry industry consultancy. References: Brazil Timber1...

  7. United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters

    Broader source: Energy.gov [DOE]

    Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.

  8. Community Based Approach to Wind Energy Information Dissemination

    SciTech Connect (OSTI)

    Innis, S.

    2003-09-26

    The purpose of the Department of Energy's grant was to transfer to New Mexico and Utah a national award-winning market-based strategy to aggregate demand for wind energy. Their experiences over the past few years in New Mexico and utah have been quite different. In both states they have developed stronger relationships with utilities and policymakers which will increase the effectiveness of the future advocacy efforts.

  9. WINDExchange: Utility-Scale Land-Based 80-Meter Wind Maps

    Wind Powering America (EERE)

    Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the

  10. Suzlon Energia Eolica do Brazil Ltda | Open Energy Information

    Open Energy Info (EERE)

    Suzlon Energia Eolica do Brazil Ltda Jump to: navigation, search Name: Suzlon Energia Eolica do Brazil Ltda Place: Fortaleza, Ceara, Brazil Zip: 60175-145 Sector: Wind energy...

  11. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis Production | Department of Energy Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Download the presentation slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Wind-to-Hydrogen Cost Modeling and Project Findings," held on January 17, 2013. PDF icon Wind-to-Hydrogen Cost Modeling and Project Findings Webinar

  12. Two Colorado-Based Electric Cooperatives Selected as 2014 Wind Cooperatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Year. | Department of Energy Two Colorado-Based Electric Cooperatives Selected as 2014 Wind Cooperatives of the Year. Two Colorado-Based Electric Cooperatives Selected as 2014 Wind Cooperatives of the Year. March 24, 2015 - 10:55am Addthis Huerfano River Wind project; Photo courtesy of San Isabel Electric Association , Inc. Huerfano River Wind project; Photo courtesy of San Isabel Electric Association , Inc. Tri-State Generation and Transmissions Association (Tri-State) and San Isabel

  13. Wind turbine blade testing system using base excitation

    DOE Patents [OSTI]

    Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay

    2014-03-25

    An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).

  14. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Genevieve Saur (PI), Chris Ainscough (Presenter), Kevin Harrison, Todd Ramsden National ...

  15. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; Martin-Martinez, Sergio; Zhang, Jie; Hodge, Bri -Mathias; Molina-Garcia, Angel

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  16. Energy Department Releases New Land-Based/Offshore Wind Resource Map |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Releases New Land-Based/Offshore Wind Resource Map Energy Department Releases New Land-Based/Offshore Wind Resource Map May 1, 2012 - 2:23pm Addthis This is an excerpt from the Second Quarter 2012 edition of the Wind Program R&D Newsletter. The Energy Department recently released a new wind resource map compiled by the National Renewable Energy Laboratory (NREL) and AWS Truepower that combines land-based with offshore resources. The new combined map, posted on the

  17. Land-Based Wind Turbine Transportation and Logistics Barriers and Their Effects on U.S. Wind Markets (Presentation)

    SciTech Connect (OSTI)

    Cotrell, J.; Stehly, T.; Johnson, J.; Roberts, J.O.; Parker, Z.; Scott, G.; Heimiller, D.

    2014-05-01

    The average size of land based wind turbines installed in the United States has increased dramatically over time. As a result wind turbines are facing new transportation and logistics barriers that limit the size of utility scale land based wind turbines that can be deployed in the United States. Addressing these transportation and logistics barriers will allow for even further increases in U.S. turbine size using technologies under development for offshore markets. These barriers are important because larger taller turbines have been identified as a path to reducing the levelized cost of energy for electricity. Additionally, increases in turbine size enable the development of new low and moderate speed markets in the U.S. In turn, wind industry stakeholder support, market stability, and ultimately domestic content and manufacturing competitiveness are potentially affected. In general there is very little recent literature that characterizes transportation and logistics barriers and their effects on U.S. wind markets and opportunities. Accordingly, the objective of this paper is to report the results of a recent NREL study that identifies the barriers, assesses their impact and provides recommendations for strategies and specific actions.

  18. Horn Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Horn Wind Place: Windthorst, Texas Zip: 76389 Sector: Wind energy Product: Texas-based company that develops community-based industrial wind...

  19. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  20. Jasper Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Jasper Wind Place: Athens, Greece Sector: Solar, Wind energy Product: Athens-based wind and solar project developer. Coordinates: 37.97615,...

  1. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hour-by-Hour Cost ... Download the presentation slides from the U.S. Department of Energy Fuel ...

  2. Energy Department Names Two Colorado-based Electric Cooperatives as Wind

    Office of Environmental Management (EM)

    Cooperatives of the Year for 2014 | Department of Energy Two Colorado-based Electric Cooperatives as Wind Cooperatives of the Year for 2014 Energy Department Names Two Colorado-based Electric Cooperatives as Wind Cooperatives of the Year for 2014 February 26, 2015 - 2:00pm Addthis The Energy Department and the National Rural Electric Cooperative Association (NRECA) today recognized the Tri-State Generation and Transmission Association (Tri-State) and San Isabel Electric Association (San

  3. Greenergy Brazil | Open Energy Information

    Open Energy Info (EERE)

    search Name: Greenergy Brazil Place: Sao Paulo, Brazil Product: Brazil-based biothanol joint venture. References: Greenergy Brazil1 This article is a stub. You can help OpenEI...

  4. Tecsis Wind | Open Energy Information

    Open Energy Info (EERE)

    Place: Sorocaba, Sao Paulo, Brazil Zip: 18087-220 Sector: Wind energy Product: Wind blade producer located in Sorocaba, in the state of Sao Paulo. Coordinates: -23.506059,...

  5. Synchrophasor Measurement-Based Wind Plant Inertia Estimation: Preprint

    SciTech Connect (OSTI)

    Zhang, Y.; Bank, J.; Wan, Y. H.; Muljadi, E.; Corbus, D.

    2013-05-01

    The total inertia stored in all rotating masses that are connected to power systems, such as synchronous generations and induction motors, is an essential force that keeps the system stable after disturbances. To ensure bulk power system stability, there is a need to estimate the equivalent inertia available from a renewable generation plant. An equivalent inertia constant analogous to that of conventional rotating machines can be used to provide a readily understandable metric. This paper explores a method that utilizes synchrophasor measurements to estimate the equivalent inertia that a wind plant provides to the system.

  6. Land-Based Wind Plant Balance-of-System Cost Drivers and Sensitivities (Poster)

    SciTech Connect (OSTI)

    Mone, C.; Maples, B.; Hand, M.

    2014-04-01

    With Balance of System (BOS) costs contributing up to 30% of the installed capital cost, it is fundamental to understand the BOS costs for wind projects as well as potential cost trends for larger turbines. NREL developed a BOS model using project cost estimates developed by industry partners. Aspects of BOS covered include engineering and permitting, foundations for various wind turbines, transportation, civil work, and electrical arrays. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and geographic characteristics. Based on the new BOS model, an analysis to understand the non?turbine wind plant costs associated with turbine sizes ranging from 1-6 MW and wind plant sizes ranging from 100-1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of wind project BOS, and explores the sensitivity of the capital investment cost and the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrate the potential impact of turbine size and project size on the cost of energy from US wind plants.

  7. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and...

  8. Pioneer Asia Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Asia Wind Turbines Jump to: navigation, search Name: Pioneer Asia Wind Turbines Place: Madurai, Tamil Nadu, India Zip: 625 002 Sector: Wind energy Product: Madurai-based wind...

  9. Wave Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    Wave Wind LLC Jump to: navigation, search Name: Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and...

  10. Northwestern Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Jump to: navigation, search Name: Northwestern Wind Power Place: Wasco, Oregon Zip: OR 97065 Sector: Wind energy Product: US-based wind project developer. Coordinates:...

  11. Heilongjiang Lishu Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

  12. Gansu Xinhui Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Xinhui Wind Power Jump to: navigation, search Name: Gansu Xinhui Wind Power Place: China Sector: Wind energy Product: China-based joint venture engaged in developing wind projects....

  13. Inox Wind Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Ltd Jump to: navigation, search Name: Inox Wind Ltd Place: Noida, Uttar Pradesh, India Sector: Wind energy Product: Uttar Pradesh-based wind power project developer. Inox...

  14. American Wind Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: American Wind Capital Place: Essex, Connecticut Zip: 64260 Sector: Wind energy Product: Connecticut-based American Wind Capital buys wind...

  15. Geronimo Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Geronimo Wind Energy Jump to: navigation, search Name: Geronimo Wind Energy Place: Edina, Minnesota Zip: 55436 Sector: Wind energy Product: Based in Minnesota, this wind energy...

  16. Navajo Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Navajo Wind Energy Jump to: navigation, search Name: Navajo Wind Energy Place: Atlanta, Georgia Zip: 30318 Sector: Wind energy Product: Atalanta-based but China-focused wind...

  17. Modular Wind | Open Energy Information

    Open Energy Info (EERE)

    Signal Hill, California Sector: Wind energy Product: California-based wind turbine blade designer in stealth mode. References: Modular Wind1 This article is a stub. You can...

  18. Wind 7 | Open Energy Information

    Open Energy Info (EERE)

    Name: Wind 7 Place: Eckernfoerde, Schleswig-Holstein, Germany Zip: 24340 Sector: Wind energy Product: Eckernfoerde-based company that develops & operates wind power projects in...

  19. NASTRAN-based computer program for structural dynamic analysis of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Lobitz, D.W.

    1984-01-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWTs). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower and rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWTs driven by turbulent winds.

  20. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  1. ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE

    SciTech Connect (OSTI)

    Galib Abumeri; Frank Abdi

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relati

  2. US Wind Farming Inc | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: A Chicago-based windfarm developer focused on building small wind cooperatives (up to 15 MW), based around agricultural users, using GE Wind Power...

  3. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing...

  4. Wind load design methods for ground-based heliostats and parabolic dish collectors

    SciTech Connect (OSTI)

    Peterka, J A; Derickson, R G

    1992-09-01

    The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.

  5. Gamesa Wind Turbines Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gamesa Wind Turbines Pvt Ltd Jump to: navigation, search Name: Gamesa Wind Turbines Pvt. Ltd. Place: Chennai, Tamil Nadu, India Sector: Wind energy Product: Chennai-based wind...

  6. Tianjin Jinneng Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Co Ltd Jump to: navigation, search Name: Tianjin Jinneng Wind Power Co Ltd Place: Tianjin Municipality, China Sector: Wind energy Product: Tianjin-based wind power...

  7. Lanco Wind Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Pvt Ltd Jump to: navigation, search Name: Lanco Wind Power Pvt. Ltd. Place: Hyderabad, Andhra Pradesh, India Sector: Wind energy Product: Hyderabad-based wind division...

  8. Lake Country Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy LLC Jump to: navigation, search Name: Lake Country Wind Energy LLC Place: Minnesota Zip: 56209 Sector: Renewable Energy, Wind energy Product: Minnesota-based wind...

  9. Controlling Wind Turbines for Secondary Frequency Regulation: An Analysis of AGC Capabilities Under New Performance Based Compensation Policy: Preprint

    SciTech Connect (OSTI)

    Aho, J.; Pao, L. Y.; Fleming, P.; Ela, E.

    2015-02-01

    As wind energy becomes a larger portion of the world's energy portfolio there has been an increased interest for wind turbines to control their active power output to provide ancillary services which support grid reliability. One of these ancillary services is the provision of frequency regulation, also referred to as secondary frequency control or automatic generation control (AGC), which is often procured through markets which recently adopted performance-based compensation. A wind turbine with a control system developed to provide active power ancillary services can be used to provide frequency regulation services. Simulations have been performed to determine the AGC tracking performance at various power schedule set-points, participation levels, and wind conditions. The performance metrics used in this study are based on those used by several system operators in the US. Another metric that is analyzed is the damage equivalent loads (DELs) on turbine structural components, though the impacts on the turbine electrical components are not considered. The results of these single-turbine simulations show that high performance scores can be achieved when there is sufficient wind resource available. The capability of a wind turbine to rapidly and accurately follow power commands allows for high performance even when tracking rapidly changing AGC signals. As the turbine de-rates to meet decreased power schedule set-points there is a reduction in the DELs, and the participation in frequency regulation has a negligible impact on these loads.

  10. Granite Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    Wind, LLC Place: Redlands, California Zip: 92373 Sector: Wind energy Product: An Apple Valley, California based wind developer. Coordinates: 34.055282, -117.18258 Show...

  11. Apex Wind Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Apex Wind Energy Inc. Place: Charlottesville, Virginia Zip: 22902 Sector: Wind energy Product: Virginia-based wind farm project developer....

  12. Pathfinder Renewable Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Pathfinder Renewable Wind Energy Jump to: navigation, search Name: Pathfinder Renewable Wind Energy Place: Casper, Wyoming Zip: 82601 Sector: Wind energy Product: Wyoming-based...

  13. Atlantic Wind Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Atlantic Wind & Solar Inc. Place: Coconut Groove, Florida Zip: 33133 Sector: Solar, Wind energy Product: Florida-based installer of distributed wind and solar systems...

  14. Southwest Wind Consulting LLC | Open Energy Information

    Open Energy Info (EERE)

    Consulting LLC Jump to: navigation, search Name: Southwest Wind Consulting, LLC Place: Tyler, Minnesota Zip: MN 56178 Sector: Wind energy Product: Minnesota based wind project...

  15. Marquiss Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Marquiss Wind Power Jump to: navigation, search Name: Marquiss Wind Power Place: Folsom, California Zip: 95630 Sector: Wind energy Product: US-based manufacturer of patented ducted...

  16. UpWind Solutions | Open Energy Information

    Open Energy Info (EERE)

    Zip: 97504 Sector: Wind energy Product: Oregon-based full service operations and maintenance service provider for utility-scale wind energy projects. References: UpWind...

  17. Wind Farm Capital | Open Energy Information

    Open Energy Info (EERE)

    Farm Capital Jump to: navigation, search Name: Wind Farm Capital Place: Connecticut Sector: Wind energy Product: US-based company that buys wind leases from farmers and landowners,...

  18. Wind Capital Group | Open Energy Information

    Open Energy Info (EERE)

    Capital Group Jump to: navigation, search Name: Wind Capital Group Place: St. Louis, Missouri Zip: 63101 Sector: Wind energy Product: Missouri-based wind project developer, focused...

  19. Berrendo Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Berrendo Wind Energy Jump to: navigation, search Name: Berrendo Wind Energy Place: Boulder, Colorado Zip: 80304 Sector: Wind energy Product: Colorado-based firm developing utility...

  20. Wind Energy Group WEG | Open Energy Information

    Open Energy Info (EERE)

    Group WEG Jump to: navigation, search Name: Wind Energy Group (WEG) Place: Irvine, California Zip: CA 92618 Sector: Wind energy Product: California based wind turbine manufacturer....

  1. Foresight Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Foresight Wind Energy LLC Jump to: navigation, search Name: Foresight Wind Energy LLC Place: San Francisco, California Zip: 94105 Sector: Wind energy Product: San Francisco-based...

  2. Astraeus Wind Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Astraeus Wind Energy Inc Jump to: navigation, search Name: Astraeus Wind Energy Inc Place: Eaton Rapids, Michigan Sector: Wind energy Product: Michigan-based manufacturer of large...

  3. GE Wind Energy Germany | Open Energy Information

    Open Energy Info (EERE)

    Energy Germany Jump to: navigation, search Name: GE Wind Energy Germany Place: Salzbergen, Germany Zip: 48499 Sector: Wind energy Product: Germany-based, division of GE Wind Energy...

  4. Wind Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: Wind Energy Corporation Place: Elizabethtown, Kentucky Zip: 42701 Sector: Wind energy Product: Kentucky-based wind harvesting firm...

  5. Comparison of strength and load-based methods for testing wind turbine blades

    SciTech Connect (OSTI)

    Musial, W.D.; Clark, M.E.; Egging, N.

    1996-11-01

    The purpose of this paper is to compare two methods of blade test loading and show how they are applied in an actual blade test. Strength and load-based methods were examined to determine the test load for an Atlantic Orient Corporation (AOC) 15/50 wind turbine blade for fatigue and static testing. Fatigue load-based analysis was performed using measured field test loads extrapolated for extreme rare events and scaled to thirty-year spectra. An accelerated constant amplitude fatigue test that gives equivalent damage at critical locations was developed using Miner`s Rule and the material S-N curves. Test load factors were applied to adjust the test loads for uncertainties, and differences between the test and operating environment. Similar analyses were carried, out for the strength-based fatigue test using the strength of the blade and the material properties to determine the load level and number of constant amplitude cycles to failure. Static tests were also developed using load and strength criteria. The resulting test loads were compared and contrasted. The analysis shows that, for the AOC 15/50 blade, the strength-based test loads are higher than any of the static load-based cases considered but were exceeded in the fatigue analysis for a severe hot/wet environment.

  6. NREL: Wind Research - Grid Integration of Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in

  7. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Land-Based Wind Potential Changes in the Southeastern United States (Presentation)

    SciTech Connect (OSTI)

    Roberts, J. O.

    2013-09-01

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  9. Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling

    SciTech Connect (OSTI)

    Liu, Z.S.; Chen, W.B.; Hair, J.W.; She, C.Y.

    1996-12-31

    A new incoherent lidar for measuring atmospheric wind using iodine molecular filter is proposed. A unique feature of the proposed lidar lies in its capability for simultaneous measurement of aerosol mixing ratio, with which the radial wind can be determined uniquely from lidar return. A preliminary laboratory experiment using a dye laser at 589 nm and a rotating wheel has been performed demonstrating the feasibility of the proposed wind measurement.

  10. Base excitation testing system using spring elements to pivotally mount wind turbine blades

    DOE Patents [OSTI]

    Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott

    2013-12-10

    A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.

  11. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  12. Evance Wind | Open Energy Information

    Open Energy Info (EERE)

    England, United Kingdom Zip: LE11 5RN Sector: Wind energy Product: England-based small wind turbine manufacturer. References: Evance Wind1 This article is a stub. You can...

  13. Beaufort Wind Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Ltd Jump to: navigation, search Name: Beaufort Wind Ltd Place: United Kingdom Sector: Renewable Energy, Wind energy Product: UK-based operator of a portfolio of wind farms...

  14. Bluewater Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Place: New York, New York Zip: 10018 Sector: Wind energy Product: New York-based offshore wind farm developer and operator. References: Bluewater Wind LLC1 This article...

  15. WindTronics | Open Energy Information

    Open Energy Info (EERE)

    WindTronics Jump to: navigation, search Name: WindTronics Place: Muskegon, Michigan Zip: 49440 Sector: Wind energy Product: Michigan-based WindTronics has acquired the right to...

  16. HTH Wind Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    HTH Wind Energy Inc Jump to: navigation, search Name: HTH Wind Energy Inc Place: Casper, Wyoming Zip: 82636 Sector: Biomass, Wind energy Product: Casper-based developer of wind and...

  17. AMEC Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    AMEC Wind Energy Jump to: navigation, search Name: AMEC Wind Energy Place: Cheshire, England, United Kingdom Zip: WA16 8QZ Sector: Wind energy Product: A UK-based commercial wind...

  18. Certificate-Based Approach to Marketing Green Power and Constructing New Wind Energy Facilities: Preprint

    SciTech Connect (OSTI)

    Blank, E.; Bird, L.; Swezey, B.

    2002-05-01

    The availability of wind energy certificates in Pennsylvania's retail electricity market has made a critical difference in the economic feasibility of developing 140 MW of new wind energy projects in the region. Certificates offer important benefits to both green power suppliers and buyers by reducing transaction barriers and thus lowering the cost of renewable energy. Buyers also benefit through the increased flexibility offered by certificate products. The experience described in this paper offers important insights for selling green power certificates and achieving new wind energy development in other areas of the country.

  19. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  20. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  1. Wind Power Career Chat, Wind And Water Power Program (WWPP)

    Wind Powering America (EERE)

    WIND AND WATER POWER PROGRAM Wind Power Career Chat Overview Students will learn about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. In

  2. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. PV based systems, with wind, diesel or LPG genset backup, supplying small TV rebroadcast stations in Portugal

    SciTech Connect (OSTI)

    Ramos, H.F.

    1994-12-31

    This paper describes the implementation of a program intended to introduce PV based hybrid power systems to supply electrical power to small size TV rebroadcast stations in Portugal. Reliability is a major concern to this type of application, as well as economical and social constraints, so wind or diesel/LPG genset backup are used. This paper includes a description of the systems behavior, comparison among these topologies and economical viability data from a users viewpoint.

  4. Wind Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

  5. Investigation of Various Condition Monitoring Techniques Based on a Damaged Wind Turbine Gearbox

    SciTech Connect (OSTI)

    Sheng, S.

    2011-10-01

    This paper is a continuation of a 2009 paper presented at the 7th International Workshop on Structural Health Monitoring that described various wind turbine condition-monitoring techniques. This paper presents the results obtained by various condition- monitoring techniques from a damaged Gearbox Reliability Collaborative test gearbox.

  6. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  7. Super Wind Project Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Project Pvt Ltd Jump to: navigation, search Name: Super Wind Project Pvt. Ltd. Place: Pune, Maharashtra, India Zip: 411001 Sector: Wind energy Product: Pune-based wind project...

  8. POWER4 Amstel Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    POWER4 Amstel Wind Energy Jump to: navigation, search Name: POWER4 Amstel Wind Energy Place: Bangalore, Karnataka, India Zip: 560034 Sector: Wind energy Product: Bangalore-based...

  9. Jeevandhara Wind Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Pvt.Ltd. Place: Satara, Maharashtra, India Zip: 415001 Sector: Solar, Wind energy Product: Satara-based wind and solar project developer. Coordinates: 17.68731,...

  10. Lone Star Wind Alliance LSWA | Open Energy Information

    Open Energy Info (EERE)

    Wind Alliance LSWA Jump to: navigation, search Name: Lone Star Wind Alliance (LSWA) Place: Houston, Texas Sector: Wind energy Product: Texas-based research centres, focusing on...

  11. Zhejiang Xingxing Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xingxing Wind Power Co Ltd Jump to: navigation, search Name: Zhejiang Xingxing Wind Power Co Ltd Place: Taizhou, Zhejiang Province, China Sector: Wind energy Product: Taizhou-based...

  12. Dongbai Mountain Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dongbai Mountain Wind Power Co Ltd Jump to: navigation, search Name: Dongbai Mountain Wind Power Co Ltd Place: Zhejiang Province, China Sector: Wind energy Product: Dongyang-based...

  13. Xilinguole Guotai Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xilinguole Guotai Wind Power Co Ltd Jump to: navigation, search Name: Xilinguole Guotai Wind Power Co Ltd Place: China Sector: Wind energy Product: Hong Kong-based project...

  14. Inner Mongolia Sansheng Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Sansheng Wind Power Jump to: navigation, search Name: Inner Mongolia Sansheng Wind Power Place: Inner Mongolia Autonomous Region, China Sector: Wind energy Product: China-based...

  15. South Carolina Opens Nation's Largest Wind Drivetrain Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new turbines, particularly for offshore wind-helping to speed deployment of next ... conduct research on stronger, more durable wind drivetrains for land-based wind farms. ...

  16. South Carolina Opens Nation's Largest Wind Drivetrain Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The facility will help test and validate new turbines, particularly for offshore wind- ... conduct research on stronger, more durable wind drivetrains for land-based wind farms. ...

  17. WindPower Innovations Inc | Open Energy Information

    Open Energy Info (EERE)

    Arizona Zip: 85142 Sector: Wind energy Product: Arizona-based company focused on refurbishment and repair of wind turbine gearboxes. References: WindPower Innovations Inc1...

  18. Shree Jai Brahmanvel Bundled Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Maharashtra, India Zip: 441 614 Sector: Wind energy Product: Gondia-based SPV for wind project development. References: Shree Jai Brahmanvel Bundled Wind Project1 This article...

  19. Offshore Wind Technologie GmbH OWT | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Offshore Wind Technologie GmbH (OWT) Place: Leer, Germany Zip: 26789 Sector: Wind energy Product: Germany-based wind project developer....

  20. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  1. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy - CompositeTesting-BNaughton Permalink Gallery New report highlights key composite testing trends for more reliable and lower cost wind blade designs News, Partnership, Publications, Renewable Energy, Research & Capabilities, Wind Energy, Wind News New report highlights key composite testing trends for more reliable and lower cost wind blade designs Sandia National Laboratories recently published "Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind Turbine Blade

  2. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  3. Fact Sheet: 2012 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Alice Orrell, Bret Barker

    2013-04-06

    This fact sheet summarizes findings from the forthcoming 2012 Distributed Wind Market Report, offering a snapshot of the distributed wind market based on 2012 data.

  4. Westwind Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Ireland based small scale wind turbine manufacturer which originally started in Australia. References: Westwind Wind Turbines1 This article is a stub. You can help OpenEI...

  5. India Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Ltd Place: Ahmedabad, Gujarat, India Zip: 380054 Product: Ahmedabad-based turbine manufacturer and project developer. References: India Wind Power Ltd1 This article is...

  6. Sonne Wind Beteiligungen AG | Open Energy Information

    Open Energy Info (EERE)

    AG Jump to: navigation, search Name: Sonne+Wind Beteiligungen AG Place: Berlin, Germany Zip: 10715 Sector: Efficiency, Solar, Wind energy Product: Berlin-based VC firm...

  7. Standardized Software for Wind Load Forecast Error Analyses and Predictions Based on Wavelet-ARIMA Models - Applications at Multiple Geographically Distributed Wind Farms

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.

    2013-03-19

    Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (stochastic) model with the weather forecast model (deterministic) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.

  8. Magic Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Jump to: navigation, search Name: Magic Wind, LLC Place: Buhl, Idaho Zip: 83316 Sector: Wind energy Product: A small Idaho-based limited liability company developing the...

  9. Nass Wind SAS | Open Energy Information

    Open Energy Info (EERE)

    Nass Wind SAS Jump to: navigation, search Name: Nass & Wind SAS Place: PL'MEUR, France Zip: 56270 Sector: Renewable Energy, Wind energy Product: Ploemeur-based renewable energy...

  10. PNE WIND UK | Open Energy Information

    Open Energy Info (EERE)

    search Name: PNE WIND UK Place: United Kingdom Sector: Wind energy Product: UK-based joint venture between PNE Wind and New Energy Development Ltd for the development of 300MW...

  11. PNE UK Wind | Open Energy Information

    Open Energy Info (EERE)

    search Name: PNE UK Wind Place: United Kingdom Sector: Wind energy Product: UK-based joint venture looking to develop a 300MW portfolio of wind farm projects across England,...

  12. PNE Wind USA Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc Jump to: navigation, search Name: PNE Wind USA Inc Place: Chicago, Illinois Zip: 60601 Sector: Wind energy Product: Chicago-based subsidiary of wind farm project developer,...

  13. What is Distributed Wind?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind? Distributed wind energy systems are commonly installed on residential, agricultural, commercial, institutional, and industrial sites connected either physically or virtually on the customer side of the meter (to serve on-site load) or directly to the local distribution or micro grid (to support local grid operations or offset nearby loads). Because the definition is based on a wind project's location relative to end-use and power-distribution infrastructure, rather than on

  14. South Trent Wind Farm LLC | Open Energy Information

    Open Energy Info (EERE)

    South Trent Wind Farm LLC Jump to: navigation, search Name: South Trent Wind Farm, LLC Place: Texas Sector: Wind energy Product: US-based wind project developer and special purpose...

  15. Changchun Woer Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Woer Wind Power Co Ltd Jump to: navigation, search Name: Changchun Woer Wind Power Co Ltd Place: Changchun, Jilin Province, China Sector: Wind energy Product: China-based wind...

  16. Chahar Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Chahar Wind Power Co Ltd Jump to: navigation, search Name: Chahar Wind Power Co Ltd Place: China Sector: Wind energy Product: Inner Mongolia, Shangyi-based wind project developer...

  17. Om Sakthi Wind Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sakthi Wind Power Pvt Ltd Jump to: navigation, search Name: Om Sakthi Wind Power Pvt. Ltd. Place: Chennai, Tamil Nadu, India Sector: Wind energy Product: Chennai-based wind project...

  18. Simran Wind Project P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Simran Wind Project P Ltd Jump to: navigation, search Name: Simran Wind Project (P) Ltd. Place: Pune, Maharashtra, India Zip: 411001 Sector: Wind energy Product: Pune-based wind...

  19. China Lao Gaixian Wind L P | Open Energy Information

    Open Energy Info (EERE)

    Lao Gaixian Wind L P Jump to: navigation, search Name: China Lao Gaixian Wind L.P. Place: China Sector: Wind energy Product: China-based wind farm developer. References: China Lao...

  20. Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2012-03-01

    This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

  1. Cisco Wind Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  3. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

  4. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Wind Energy - Wind EnergyTara Camacho-Lopez2016-02-16T22:30:00+00:00 Conducting applied research to increase the viability of wind technology by improving wind turbine performance, reliability, and reducing the cost of energy. Advancing the state of knowledge in the areas of materials, structurally efficient airfoil designs, active-flow aerodynamic control, and sensors. Rotor Innovation Advancing rotor technology such that they capture more energy,

  5. Fact Sheet: 2013 Distributed Wind Market Report | Department of Energy

    Energy Savers [EERE]

    Fact Sheet: 2013 Distributed Wind Market Report Fact Sheet: 2013 Distributed Wind Market Report This fact sheet summarizes findings from the forthcoming 2013 Distributed Wind Market Report, offering a snapshot of the distributed wind market based on 2013 data. PDF icon Fact Sheet: 2013 DISTRIBUTED WIND MARKET REPORT More Documents & Publications 2013 Distributed Wind Market Report 2014 Distributed Wind Market Report 2012 Market Report on U.S. Wind Technologies in Distributed Applications

  6. Wind Resource Assessment and Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Wind Resource Assessment and Characterization Wind Resource Assessment and Characterization A crucial factor in the development, siting, and operation of a wind farm is the ability to assess and characterize available wind resources. The Wind Program supports efforts to accurately define, measure, and forecast the nation's land-based and offshore wind resources. More accurate prediction and measurement of wind speed and direction allow wind farms to supply clean,

  7. 2014 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  8. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind

  9. A Habitat-based Wind-Wildlife Collision Model with Application to the Upper Great Plains Region

    SciTech Connect (OSTI)

    Forcey, Greg, M.

    2012-08-28

    Most previous studies on collision impacts at wind facilities have taken place at the site-specific level and have only examined small-scale influences on mortality. In this study, we examine landscape-level influences using a hierarchical spatial model combined with existing datasets and life history knowledge for: Horned Lark, Red-eyed Vireo, Mallard, American Avocet, Golden Eagle, Whooping Crane, red bat, silver-haired bat, and hoary bat. These species were modeled in the central United States within Bird Conservation Regions 11, 17, 18, and 19. For the bird species, we modeled bird abundance from existing datasets as a function of habitat variables known to be preferred by each species to develop a relative abundance prediction for each species. For bats, there are no existing abundance datasets so we identified preferred habitat in the landscape for each species and assumed that greater amounts of preferred habitat would equate to greater abundance of bats. The abundance predictions for bird and bats were modeled with additional exposure factors known to influence collisions such as visibility, wind, temperature, precipitation, topography, and behavior to form a final mapped output of predicted collision risk within the study region. We reviewed published mortality studies from wind farms in our study region and collected data on reported mortality of our focal species to compare to our modeled predictions. We performed a sensitivity analysis evaluating model performance of 6 different scenarios where habitat and exposure factors were weighted differently. We compared the model performance in each scenario by evaluating observed data vs. our model predictions using spearmans rank correlations. Horned Lark collision risk was predicted to be highest in the northwestern and west-central portions of the study region with lower risk predicted elsewhere. Red-eyed Vireo collision risk was predicted to be the highest in the eastern portions of the study region and in the forested areas of the western portion; the lowest risk was predicted in the treeless portions of the northwest portion of the study area. Mallard collision risk was predicted to be highest in the eastern central portion of the prairie potholes and in Iowa which has a high density of pothole wetlands; lower risk was predicted in the more arid portions of the study area. Predicted collision risk for American Avocet was similar to Mallard and was highest in the prairie pothole region and lower elsewhere. Golden Eagle collision risk was predicted to be highest in the mountainous areas of the western portion of the study area and lowest in the eastern portion of the prairie potholes. Whooping Crane predicted collision risk was highest within the migration corridor that the birds follow through in the central portion of the study region; predicted collision risk was much lower elsewhere. Red bat collision risk was highly driven by large tracts of forest and river corridors which made up most of the areas of higher collision risk. Silver-haired bat and hoary bat predicted collision risk were nearly identical and driven largely by forest and river corridors as well as locations with warmer temperatures, and lower average wind speeds. Horned Lark collisions were mostly influenced by abundance and predictions showed a moderate correlation between observed and predicted mortality (r = 0.55). Red bat, silver-haired bat, and hoary bat predictions were much higher and shown a strong correlations with observed mortality with correlations of 0.85, 0.90, and 0.91 respectively. Red bat collisions were influenced primarily by habitat, while hoary bat and silver-haired bat collisions were influenced mainly by exposure variables. Stronger correlations between observed and predicted collision for bats than for Horned Larks can likely be attributed to stronger habitat associations and greater influences of weather on behavior for bats. Although the collision predictions cannot be compared among species, our model outputs provide a convenient and easy landscape-level tool to quickly screen for siting issues at a high level. The model resolution is suitable for state or multi-county siting but users are cautioned against using these models for micrositing. The U.S. Fish and Wildlife Service recently released voluntary land-based wind energy guidelines for assessing impacts of a wind facility to wildlife using a tiered approach. The tiered approach uses an iterative approach for assessing impacts to wildlife in levels of increasing detail from landscape-level screening to site-specific field studies. Our models presented in this paper would be applicable to be used as tools to conduct screening at the tier 1 level and would not be appropriate to complete smaller scale tier 2 and tier 3 level studies. For smaller scale screening ancillary field studies should be conducted at the site-specific level to validate collision predictions.

  10. Wind Measurements from Arc Scans with Doppler Wind Lidar

    SciTech Connect (OSTI)

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

  11. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  12. Wind Measurements from Arc Scans with Doppler Wind Lidar

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less

  13. WindStrom Innovative Energiesysteme GmbH | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: WindStrom Innovative Energiesysteme GmbH Place: Edemissen, Germany Zip: 31234 Sector: Wind energy Product: Germany-based wind project developer and...

  14. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect (OSTI)

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  15. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  16. Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Twitter Google + Vimeo GovDelivery SlideShare Offshore Wind ...

  17. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  18. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  19. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  20. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  1. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  3. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  4. WINDExchange: Wind Economic Development

    Wind Powering America (EERE)

    Development WINDExchange provides software applications and publications to help individuals, developers, local governments, and utilities make decisions about wind power. Projecting costs and benefits of new installations, including the economic development impacts created, is a key element in looking at potential wind applications. Communities, states, regions, job markets (i.e., construction, operations and maintenance), the tax base, tax revenues, and others can be positively affected. These

  5. A CFD-based wind solver for a fast response transport and dispersion model

    SciTech Connect (OSTI)

    Gowardhan, Akshay A; Brown, Michael J; Pardyjak, Eric R; Senocak, Inanc

    2010-01-01

    In many cities, ambient air quality is deteriorating leading to concerns about the health of city inhabitants. In urban areas with narrow streets surrounded by clusters of tall buildings, called street canyons, air pollution from traffic emissions and other sources is difficult to disperse and may accumulate resulting in high pollutant concentrations. For various situations, including the evacuation of populated areas in the event of an accidental or deliberate release of chemical, biological and radiological agents, it is important that models should be developed that produce urban flow fields quickly. For these reasons it has become important to predict the flow field in urban street canyons. Various computational techniques have been used to calculate these flow fields, but these techniques are often computationally intensive. Most fast response models currently in use are at a disadvantage in these cases as they are unable to correlate highly heterogeneous urban structures with the diagnostic parameterizations on which they are based. In this paper, a fast and reasonably accurate computational fluid dynamics (CFD) technique that solves the Navier-Stokes equations for complex urban areas has been developed called QUIC-CFD (Q-CFD). This technique represents an intermediate balance between fast (on the order of minutes for a several block problem) and reasonably accurate solutions. The paper details the solution procedure and validates this model for various simple and complex urban geometries.

  6. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2010-01-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  7. Danielson Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  8. Kawailoa Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  9. Palouse Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  10. Harbor Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  11. Kahuku Wind | Open Energy Information

    Open Energy Info (EERE)

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  12. Wiota Wind | Open Energy Information

    Open Energy Info (EERE)

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  13. Bravo Wind | Open Energy Information

    Open Energy Info (EERE)

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  14. Auwahi Wind | Open Energy Information

    Open Energy Info (EERE)

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  15. Traer Wind | Open Energy Information

    Open Energy Info (EERE)

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  16. Sheffield Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  17. Rollins Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  18. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  19. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Resources Wind Prospector A web-based GIS applications designed to support resource assessment and data exploration associated with wind development. Wind Maps NREL's Geospatial Data Science Team offers both a national wind resource assessment of the United States and high-resolution wind data. The national wind resource assessment was created for the U.S. Department of Energy in 1986 by the Pacific Northwest Laboratory and is documented in the Wind Energy Resource Atlas of the United

  20. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  1. WindCat Workboats Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Lancashire-based vessel operators of specific vessels for offshore wind farms. These vessels can transfer personnel in rough seas. Coordinates: 53.86121,...

  2. Acciona Wind Energy Pvt Ltd AWEPL | Open Energy Information

    Open Energy Info (EERE)

    Pvt Ltd AWEPL Jump to: navigation, search Name: Acciona Wind Energy Pvt. Ltd. (AWEPL) Place: Bangalore, Karnataka, India Zip: 560008 Sector: Wind energy Product: Bangalore-based...

  3. Global Wind Power AS GWP | Open Energy Information

    Open Energy Info (EERE)

    Product: A Denmark-based company specialising in the development, installation and administration of wind farms whose wind turbines are sold to investors. Coordinates: 56.955614,...

  4. Helix Wind Inc formerly ClearView Acquisitions | Open Energy...

    Open Energy Info (EERE)

    (formerly ClearView Acquisitions) Place: San Diego, California Zip: 92113 Sector: Wind energy Product: California-based manufacturer of small scale wind turbines. References: Helix...

  5. Baoding Hengyi Wind Power Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baoding Hengyi Wind Power Equipment Co Ltd Jump to: navigation, search Name: Baoding Hengyi Wind Power Equipment Co Ltd Place: Baoding, Hebei Province, China Product: Baoding-based...

  6. U.S. Leads International Collaborative to Address Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the environmental challenges pertaining to land-based and offshore wind energy development. ... effects on wildlife around wind farms to population impacts, and reconciling ...

  7. BA Tirunelveli Bundled Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Chhattisgarh, India Zip: 492001 Sector: Wind energy Product: Raipur-based SPV for wind project development. Coordinates: 20.38971, 76.15055 Show Map Loading map......

  8. World Wind and Water Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    and Water Energy LLC Jump to: navigation, search Name: World Wind and Water Energy LLC Place: Delaware Sector: Wind energy Product: Delaware-based company focused on developing...

  9. Shenyang Tianrui Wind Equipments Sales Company Co Ltd | Open...

    Open Energy Info (EERE)

    China Sector: Wind energy Product: Lianoning Province-based JV responsible for the marketing and sales of the wind components made by Shenyang Tianxiang. References: Shenyang...

  10. New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)

    SciTech Connect (OSTI)

    Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

    2010-09-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

  11. WINDExchange: Selling Wind Power

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  12. Indian Wind Energy Association InWEA | Open Energy Information

    Open Energy Info (EERE)

    InWEA Jump to: navigation, search Name: Indian Wind Energy Association (InWEA) Place: New Delhi, Delhi (NCT), India Zip: 110016 Sector: Wind energy Product: Delhi-based wind...

  13. JW Great Lakes Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    JW Great Lakes Wind LLC Jump to: navigation, search Name: JW Great Lakes Wind LLC Place: Cleveland, Ohio Zip: 44114-4420 Sector: Wind energy Product: Ohio based subsidiary of Juwi...

  14. Fuxin Huashun Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fuxin Huashun Wind Power Co Ltd Jump to: navigation, search Name: Fuxin Huashun Wind Power Co Ltd Place: Fuxin, Liaoning Province, China Sector: Wind energy Product: Fuxin-based JV...

  15. Maoming Zhong ao Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Maoming Zhong ao Wind Power Co Ltd Jump to: navigation, search Name: Maoming Zhong'ao Wind Power Co Ltd Place: Guangdong Province, China Sector: Wind energy Product: Maoming-based...

  16. Jilin Tongli Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tongli Wind Power Co Ltd Jump to: navigation, search Name: Jilin Tongli Wind Power Co Ltd Place: Baicheng, Jilin Province, China Sector: Wind energy Product: Jilin-based company...

  17. Jilin Licheng Xiehe Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Licheng Xiehe Wind Power Co Ltd Jump to: navigation, search Name: Jilin Licheng Xiehe Wind Power Co Ltd Place: Jilin Province, China Sector: Wind energy Product: Baicheng-based JV...

  18. Argonne National Laboratory Develops Extreme-Scale Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of energy. ...

  19. DeWind GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: DeWind GmbH Place: Lubeck, Germany Zip: D - 23569 Sector: Wind energy Product: Germany-based large scale wind turbine manufacturer....

  20. Stable Wind Energy Ltd SWEL | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Ltd SWEL Jump to: navigation, search Name: Stable Wind Energy Ltd (SWEL) Place: Tirunelveli, Tamil Nadu, India Zip: 627011 Sector: Wind energy Product: Tamil Nadu-based...

  1. wind turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  2. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  3. U.S. DOE Collegiate Wind Competition

    Broader source: Energy.gov [DOE]

    The U.S. DOE Collegiate Wind Competition challenges teams to design a wind-driven system based on market research, develop a business plan to market the product, build and test the system against...

  4. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  5. Solar Wind Europe SL | Open Energy Information

    Open Energy Info (EERE)

    Europe SL Jump to: navigation, search Name: Solar Wind Europe SL Place: Madrid, Spain Zip: 28028 Product: Spain-based distributor of Russia-made PV modules. References: Solar Wind...

  6. AG Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: UK-based company focused on wind turbine erection and maintenance. Coordinates: 53.38311, -1.464544 Show Map Loading map... "minzoom":false,"map...

  7. AWEA Wind Energy Regional Summit: Northeast

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Energy Northeast Regional Summit will connect you with New England-area wind energy professionals and offers the opportunity to discuss significant issues related to land-based and...

  8. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  9. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species. Our work focused on the design and development of custom built marine radar that used t-bar and parabolic dish antennas. The marine radar used in the project was Furuno (XANK250) which was coupled with a XIR3000B digitizing card from Russell Technologies for collection of the radar data. The radar data was processed by open source radR processing software using different computational techniques and methods. Additional data from thermal IR imaging cameras were collected to detect heat emitted from objects and provide information on movements of birds and bats, data which we used for different animal flight behavior analysis. Lastly, the data from the acoustic recorders were used to provide the number of bird calls for assessing patterns and peak passage rates during migration. The development of the geospatial database included collection of different data sources that are used to support offshore wind turbine development. Many different data sets were collected and organized using initial version of web-based repository software tools that can accommodate distribution of rectified pertinent data sets such as the lake depth, lake bottom engineering parameters, extent of ice, navigation pathways, wind speed, important bird habitats, fish efforts and other layers that are relevant for supporting robust offshore wind turbine developments. Additional geospatial products developed during the project included few different prototypes for offshore wind farm suitability which can involve different stakeholders and participants for solving complex planning problems and building consensus. Some of the prototypes include spatial decision support system (SDSS) for collaborative decision making, a web-based Participatory Geographic Information System (PGIS) framework for evaluating importance of different decision alternatives using different evaluation criteria, and an Android application for collection of field data using mobile and tablet devices . In summary, the simulations of two- and three-blade wind turbines suggested that two-bladed machines could produce comparable annual energy as the three-blade wind turbines but have a lighter tower top weight, which leads to lower cost of energy. In addition, the two-blade rotor configuration potentially costs 20% less than a three blade configuration that produces the same power at the same site. The cost model analysis predicted a potential cost savings of approximately 15% for offshore two-blade wind turbines. The foundation design for a wind turbine in Lake Erie is likely to be driven by ice loads based on the currently available ice data and ice mechanics models. Hence, for Lake Eire, the cost savings will be somewhat smaller than the other lakes in the Great Lakes. Considering the size of cranes and vessels currently available in the Great Lakes, the cost optimal wind turbine size should be 3 MW, not larger. The surveillance data from different monitoring systems suggested that bird and bat passage rates per hour were comparable during heavy migrations in both spring and fall seasons while passage rates were significantly correlated to wind directions and wind speeds. The altitude of migration was higher during heavy migrations and higher over water relative to over land. Notable portions of migration on some spring nights occurred parallel the shoreline, often moving perpendicular to southern winds. The birds approaching the Western basin have a higher propensity to cross than birds approaching the Central basin of Lake Erie and as such offshore turbine development might be a better option further east towards Cleveland than in the Western basin. The high stopover density was more strongly associated with migration volume the following night rather than the preceding night. The processed mean scalar wind speeds with temporal resolutions as fine as 10-minute intervals near turbine height showed that August is the month with the weakest winds while December is the month, which typically has the strongest winds. The ice data suggests that shallow western basin of Lake Erie has higher ice cover duration many times exceeding 90 days during some winters.

  10. JD Wind 6 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. JD Wind 7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  13. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Garnet Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  15. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  16. Fairhaven Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  17. Scituate Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  18. Pacific Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  19. Galactic Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  20. Rockland Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  1. Greenfield Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  2. Willmar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  3. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  4. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  5. Technical Assessment for the CPC FD-7x-1500 Wind Turbine located at Tooele Army Base, Tooele Utah

    SciTech Connect (OSTI)

    Robert J. Turk; Kurt S. Myers; Jason W. Bush

    2012-08-01

    The CPC FD-7x-1500 Wind Turbine was installed with funding from the Energy Conservation Investment Program (ECIP). Since its installation, the turbine has been plagued with multiple operational upsets causing unacceptable down time. In an effort to reduce down time, the Army Corps of Engineers requested the Idaho National Laboratory conduct an assessment of the turbine to determine its viability as an operational turbine.

  6. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  7. Small Wind Electric Systems | Department of Energy

    Energy Savers [EERE]

    Wind Electric Systems Small Wind Electric Systems Wind power is the fastest growing source of energy in the world -- efficient, cost effective, and non-polluting. If you have enough wind resource in your area and the situation is right, small wind electric systems are one of the most cost-effective home-based renewable energy systems -- with zero emissions and pollution. Small wind electric systems can: Lower your electricity bills by 50%-90% Help you avoid the high costs of having utility power

  8. Small Wind Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Electric Systems Small Wind Electric Systems Wind power is the fastest growing source of energy in the world -- efficient, cost effective, and non-polluting. If you have enough wind resource in your area and the situation is right, small wind electric systems are one of the most cost-effective home-based renewable energy systems -- with zero emissions and pollution. Small wind electric systems can: Lower your electricity bills by 50%-90% Help you avoid the high costs of having utility power

  9. NREL: International Activities - Philippines Wind Resource Maps and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A map depicting wind resources at 100 meters of the republic of the Philippines. Additional Resources Wind Prospector A web-based GIS applications designed to support resource assessment and data exploration associated with wind development. Philippines Wind Viewer Tutorial Learn how to navigate, display, query and download Philippines data in the Wind Prospector. Philippines Geospatial Toolkit EXE 926.5 MB Philippines Wind Resource Maps and Data In 2014, under the Enhancing Capacity for Low

  10. About the Collegiate Wind Competition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Collegiate Wind Competition About the Collegiate Wind Competition About the Collegiate Wind Competition The U.S. Department of Energy Collegiate Wind Competition challenges undergraduate students to design a wind turbine based on market research, develop a business plan to market the product, build and test the turbine against set requirements, and demonstrate knowledge of siting constraints and location challenges for product installation. The objective of the Collegiate Wind

  11. NREL: Wind Research - International Wind Resource Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the recognition of higher class winds in areas where none were thought to exist. This page provides access to NREL-developed wind resource maps and atlases for several countries. NREL's wind mapping projects have been supported by the U.S. Department of Energy, U.S. Agency for International Development, and

  12. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data acquisition system integrated for offshore...

  13. Wind Integration National Dataset (WIND) Toolkit

    Broader source: Energy.gov [DOE]

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  14. AWEA Regional Wind Energy Conference—Northeast

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association (AWEA) will be hosting a conference that focuses on the key issues in the northeast region. The event will provide attendees with a comprehensive view of the critical issues for wind power’s growth in this part of the country and cover both land-based wind power development, as well as the nascent efforts to develop off-shore wind power off the New England coast.

  15. Method and apparatus for wind turbine braking

    DOE Patents [OSTI]

    Barbu, Corneliu (Laguna Hills, CA); Teichmann, Ralph (Nishkayuna, NY); Avagliano, Aaron (Houston, TX); Kammer, Leonardo Cesar (Niskayuna, NY); Pierce, Kirk Gee (Simpsonville, SC); Pesetsky, David Samuel (Greenville, SC); Gauchel, Peter (Muenster, DE)

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  16. Wind for Schools Project Curriculum Brief (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  17. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  18. Voltage control for a wind power plant based on the available reactive current of a DFIG and its impacts on the point of interconnection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol

    2016-01-01

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less

  19. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  1. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. North Dakota Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Venture Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  4. MinWind I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I & II Wind Farm Jump to: navigation, search Name MinWind I & II Wind Farm Facility MinWind I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  5. JD Wind 4 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  6. JD Wind 5 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    5 Wind Farm Jump to: navigation, search Name JD Wind 5 Wind Farm Facility JD Wind 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  7. Cow Branch Wind Energy Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility...

  8. JD Wind 1 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name JD Wind 1 Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWSJohn...

  9. National Wind Technology Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  10. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  11. GL Wind | Open Energy Information

    Open Energy Info (EERE)

    GL Wind Jump to: navigation, search Name GL Wind Facility GL Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GL Wind Developer Juhl...

  12. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    Wind energy (Redirected from Wind power) Jump to: navigation, search Wind energy is a form of solar energy.1 Wind energy (or wind power) describes the process by which wind is...

  13. Energy Department Announces 2016 Collegiate Wind Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    teams of undergraduate students to design and build a model wind turbine based on market research ... Conference and Exhibition in New Orleans, Louisiana, from May 23 to 26, ...

  14. Vestas Wind Systems AS | Open Energy Information

    Open Energy Info (EERE)

    energy Product: Denmark-based manufacturer of large-scale wind turbines. Coordinates: 56.459375, 10.035795 Show Map Loading map... "minzoom":false,"mappingservice":"googlem...

  15. WindTamer Corp | Open Energy Information

    Open Energy Info (EERE)

    Product: US-based developer and manufacturer of small-scale, diffuser augmented wind turbines (DAWT). Coordinates: 42.793381, -77.81616 Show Map Loading map......

  16. Southern Wind Farms Ltd | Open Energy Information

    Open Energy Info (EERE)

    Services Product: Chennai-based firm involved in manufacturing, installation and marketing of WEGs on turnkey basis. Also offers O&M services. References: Southern Wind Farms...

  17. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    First Wind (Formerly UPC Wind) Address: 1001 S.W. Fifth Avenue Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Sector: Wind energy Product: Wind power developer...

  18. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  19. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind...

  20. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Energy Savers [EERE]

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its ...

  1. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  2. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - ...

  3. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November ...

  4. For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine For Cape Wind, Summer Breeze Makes ... one of the world's largest wind farms, the Department's Loan Programs Office ...

  5. Brazos Wind Ranch Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyMitsui Developer Cielo Wind PowerOrion Energy Energy Purchaser Green...

  6. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The Wind-Wildlife Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic, power lines, and communication and television towers on wildlife.

  7. Wind Power Plant Prediction by Using Neural Networks: Preprint

    SciTech Connect (OSTI)

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  8. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  9. National Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: National Wind Place: Minneapolis, Minnesota Zip: 55402 Sector: Wind energy Product: Wind project developer in the upper Midwest and Plains...

  10. Coriolis Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Logo: Coriolis Wind Name: Coriolis Wind Place: Great Falls, Virginia Zip: 22066 Product: Mid-Scale Wind Turbine Year Founded: 2007 Website:...

  11. Royal Wind | Open Energy Information

    Open Energy Info (EERE)

    Name: Royal Wind Place: Denver, Colorado Sector: Wind energy Product: Vertical Wind Turbines Year Founded: 2008 Website: www.RoyalWindTurbines.com Coordinates: 39.7391536,...

  12. Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of ...

  13. WINDExchange: Siting Wind Turbines

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  14. Wind for Schools Affiliate Programs: Wind and Hydropower Technologies Program (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01

    The U.S. Department of Energy's (DOE's) Wind for Schools program is designed to raise awareness about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. To accommodate the many stakeholders who are interested in the program, a Wind for Schools affiliate program has been implemented. This document describes the affiliate program and how interested schools may participate.

  15. An Exploration of Wind Energy & Wind Turbines

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This unit, which includes both a pre and post test on wind power engages students by allowing them to explore connections between wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade length, blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind energy unit.

  16. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the

  17. Brazil Ethanol Inc | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Inc Jump to: navigation, search Name: Brazil Ethanol Inc. Place: New York, New York Zip: 10021 Product: A New York City-based firm that had raised USD 10.4m as of 1 May...

  18. Crow Lake Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  19. Wildcat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  20. Radial Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  1. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Technology Center at NREL provides a number of wind news sources to help you stay up-to-date with its activities, research, and new developments. NREL Wind News See...

  2. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  3. Model Wind Ordinance

    Broader source: Energy.gov [DOE]

    In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model wind ordinance to provide guidance for...

  4. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  5. Solar and Wind Easements

    Broader source: Energy.gov [DOE]

    In April 2011, the provisions related to wind easements were repealed by House Bill 295 (2011) and replaced with more extensive wind easements provisions.  This legislation defines wind energy ri...

  6. 2014 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers'...

  7. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Clifton, A.; McCaa, J.

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.

  8. The Great Plains Wind Power Test Facility

    SciTech Connect (OSTI)

    Schroeder, John

    2014-01-31

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  9. Wind Energy Integration: Slides

    Wind Powering America (EERE)

    provide information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  10. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind research and development projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our

  11. NREL Enters Wind Energy Research Partnership in Hawaii - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL NREL Enters Wind Energy Research Partnership in Hawaii April 1, 2008 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has signed a memorandum of understanding with UPC Wind to establish a Remote Research Affiliate Partner Site at UPC Wind's Kaheawa Wind Farm on Maui. It is the first such partner site for the National Renewable Energy Laboratory's wind technology program outside of its base in Colorado. Hawaii Gov. Linda Lingle announced the collaborative

  12. Energy Department Announces 2016 Collegiate Wind Competition Participants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2016 Collegiate Wind Competition Participants Energy Department Announces 2016 Collegiate Wind Competition Participants February 18, 2015 - 1:30pm Addthis The Energy Department today announced the twelve collegiate teams that have been selected to participate in the Department's second Collegiate Wind Competition. The Collegiate Wind Competition challenges teams of undergraduate students to design and build a model wind turbine based on market research and siting

  13. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to...

  14. Wind Vision Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224, -92.888816 Show Map Loading map... "minzoom":false,"mappings...

  15. Cherokee Wind

    Office of Environmental Management (EM)

    Cherokee Wind Presenter: Carol Wyatt Cherokee Nation Businesses, Inc. DOE Tribal Energy Program October 26, 2010 KA W PA W N EE TO NK AW A PO NC A OT OE -M IS S OU RI CH E RO KE E Acr es: 2,633 .348 CH E RO KE E Acr es: 1,641 .687 CHEROKEE NATION Kay County Chilocco Property DATA SOU RC ES: US Census Bureau (T iger Files ) D OQQ's , USGS D RG's, USGS Cherokee Nation Realty D epartment C herokee N ation GeoD ata C enter Date: 12/19/01 e:\project\land\c hilocc o N E W S Tribal Land Chilocco

  16. Wind Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Publications Advanced Search Browse by Topic Mail Requests Help Energy Basics Wind Energy FAQs Small Wind Systems FAQs Multimedia Related Links Feature featured...

  17. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  18. Wind energy bibliography

    SciTech Connect (OSTI)

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  19. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  20. Requirements for Wind Development

    Broader source: Energy.gov [DOE]

    In 2015 Oklahoma amended the Oklahoma Wind Energy Development Act. The amendments added new financial security requirements, setback requirements, and notification requirements for wind energy...

  1. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A...

  2. NREL: Wind Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications The NREL wind research program develops publications about its R&D projects, accomplishments, and goals in wind energy technologies. Here you will find links to some...

  3. Sandia Energy Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility http:energy.sandia.govsandia-wake-imaging-system-successfully-deployed-at-scaled-wind-fa...

  4. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  5. Articles about Wind Siting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy.gov Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse http:energy.goveerewindarticlesmodel-examines-cumulative-impacts-wind-ener...

  6. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center (NWTC), the country's premier wind energy technology research facility. September 23, 2015 Small Businesses Invited to Participate in DOE National...

  7. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  8. Small Wind Conference 2015

    Broader source: Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  9. Wind | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind research and development projects, both on land and...

  10. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the

  11. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Environmental Management (EM)

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  12. Chaninik Wind Group: Wind Heat Smart Grids

    Office of Environmental Management (EM)

    Systems in Kongiganak, Kwigillingok and Tuntutuliak *95 kW Windmatic wind turbines *Electric Thermal Storage(ETS) devices *Community-wide Smart Metering and Smart Grid control Wind Heat System Components * ETS heat output at high is equivalent to a Toyostove Laser 56 * $.10 per kwh is equivalent to buying diesel at $2.90 per gallon * Current diesel price in Kongiganak: $6.95 per gallon Chaninik Wind Group Wind Heat System SCADA Kongiganak Energy Summary 2013 Example - Kongiganak ETS Fuel

  13. Hull Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Hull Wind II Wind Farm Facility Hull II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hull...

  14. Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet), Wind

    Energy Savers [EERE]

    Program (WP) | Department of Energy Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet), Wind Program (WP) Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet), Wind Program (WP) This fact sheet provides a brief description of the Wind Energy Market and describes the U.S. Department of Energy's Wind Program research and development efforts. PDF icon eere_wind_water.pdf More Documents & Publications Wind Program Accomplishments Offshore Wind Projects Wind

  15. WIND VARIABILITY IN BZ CAMELOPARDALIS

    SciTech Connect (OSTI)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W. E-mail: skafka@dtm.ciw.edu

    2013-02-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the H{alpha} line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted H{alpha} emission components in their BZ Cam spectra. We have attributed these emission components in H{alpha} to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I {lambda}5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non-axisymmetric nature of the stream/disk interaction. Simultaneous photometry and spectroscopy were acquired on three nights in order to test the possible connection between flickering continuum light and the strength of the front-side wind. We found strong agreement on one night, some agreement on another, and no agreement on the third. We suggest that some flickering events lead to only back-side winds which will not have associated P-Cygni profiles.

  16. History of Wind Energy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History of Wind Energy History of Wind Energy

  17. Offshore Wind Funding | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Funding Offshore Wind Funding View All Maps Addthis

  18. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Wind Energy History of Wind Energy

  19. Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

  20. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  1. DeWind Inc formerly EU Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: DeWind Inc (formerly EU Energy Ltd) Place: Central Milton Keynes, United Kingdom Zip: MK9 1LH Sector: Wind energy Product: UK-based wind turbine...

  2. China WindPower Jilin Power Share JV | Open Energy Information

    Open Energy Info (EERE)

    WindPower Jilin Power Share JV Jump to: navigation, search Name: China WindPower & Jilin Power Share JV Place: Jilin Province, China Sector: Wind energy Product: China-based...

  3. Overview of the first Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment: Conversion of a ground-based lidar for airborne applications

    SciTech Connect (OSTI)

    Howell, J.N.; Hardesty, R.M.; Rothermel, J.; Menzies, R.T.

    1996-12-31

    The first Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) field experiment demonstrated an airborne high energy TEA CO{sub 2} Doppler lidar system for measurement of atmospheric wind fields and aerosol structure. The system was deployed on the NASA DC-8 during September 1995 in a series of checkout flights to observe several important atmospheric phenomena, including upper level winds in a Pacific hurricane, marine boundary layer winds, cirrus cloud properties, and land-sea breeze structure. The instrument, with its capability to measure three-dimensional winds and backscatter fields, promises to be a valuable tool for climate and global change, severe weather, and air quality research. In this paper, the authors describe the airborne instrument, assess its performance, discuss future improvements, and show some preliminary results from September experiments.

  4. Experiments with Wind to Produce Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nat EXPERIMENTS WITH WIND TO PRODUCE ENERGY Curriculum: Wind Power (simple machines, weather/climatology, aerodynamics, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: K-5 Small groups (3 to 4) Time: Constructing equipment needed in these activities varies based on student ability levels. Activities can be done in 1 or 2 class periods. Summary: There are five activities. The first activity demonstrates wind as energy, and that energy causes

  5. WINDExchange: Motivations for Buying Wind Power

    Wind Powering America (EERE)

    Photo of a wind turbine taken looking through a field of grains. Motivations for Buying Wind Power Electricity consumers may have a variety of motivations for buying wind power, including helping the environment, capturing long-term price stability, securing lower-cost energy, improving public relations, and reducing the need for imported fuels in remote communities. In general, however, the decision is usually based on the following three motivations. Voluntary Purchases Voluntary renewable

  6. WINDExchange: Wind for Schools Affiliate Projects

    Wind Powering America (EERE)

    Wind for Schools Affiliate Projects Although the Wind for Schools project is supported in a limited number of states, Wind for Schools affiliate projects allow K-12 schools or state-based programs to leverage existing materials to implement activities in their areas. On this page, you will find information about affiliate projects for individual K-12 schools and for states. Affiliate projects do not receive financial support from the U.S. Department of Energy and the National Renewable Energy

  7. NREL: Innovation Impact - Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive machines. Close NREL's work with industry has improved the efficiency and durability of turbine blades and gearboxes. Innovations include: Specialized airfoils Variable-speed turbines

  8. Wind Energy Benefits: Slides

    Wind Powering America (EERE)

    1. Wind energy is cost competitive. *Wiser, R.; Bolinger, M. (2015). 2014 Wind Technologies Market Report. U.S. Department of Energy. Wind Energy Benefits Photo from DOE Flickr. 465 020 003 In 2014, the average levelized price of signed wind power purchase agreements was about 2.35 cents per kilowatt-hour. This price is cost competitive with new gas-fired power plants and projects compare favorably through 2040.* 2. Wind energy creates jobs. American Wind Energy Association. (2015). U.S. Wind

  9. Distributed Wind Policy Comparison Tool

    SciTech Connect (OSTI)

    2011-12-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOEs '20% Wind Energy by 2030' report and helping to meet COE targets.

  10. Pfleiderer Wind Energy GmbH | Open Energy Information

    Open Energy Info (EERE)

    Pfleiderer Wind Energy GmbH Jump to: navigation, search Name: Pfleiderer Wind Energy GmbH Place: Germany Zip: 92318 Product: Germany-based, subsidiary of Pfleiderer whose...

  11. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  12. Global Wind Power Ltd GWP | Open Energy Information

    Open Energy Info (EERE)

    Ltd GWP Jump to: navigation, search Name: Global Wind Power Ltd. (GWP) Place: Mumbai, Maharashtra, India Zip: 400 059 Sector: Wind energy Product: Mumbai-based firm involved in...

  13. Utility-Scale Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    turbines as greater than 1 megawatt. This technology class includes land-based and offshore wind projects. 1 Learn more about utility-scale wind at the links below....

  14. Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    state of California-with another 10,000 MW of additional wind farms under construction. ... Our efforts target both land-based and offshore wind power to fully support the clean ...

  15. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained

  16. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  17. ARM - Wind Chill Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  18. WINDExchange: Collegiate Wind Competition

    Wind Powering America (EERE)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate students from a variety of programs to offer a unique solution to a complex wind energy project; providing each student with

  19. WINDExchange: Wind Energy Ordinances

    Wind Powering America (EERE)

    Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The nature of the project and its location will largely drive the levels of regulation required. Wind energy ordinances adopted by counties, towns, and other types of municipalities are one of the best ways for local governments to identify conditions and priorities for all types of wind development. These ordinances regulate aspects of wind projects such as their location, permitting

  20. Wind Program: WINDExchange

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WINDExchange Printable Version Bookmark and Share A photo of a green pasture with pine trees in the foreground and four wind turbine in the background, as well as two silos and two homes. WINDExchange is the U.S. Department of Energy Wind Program's platform for disseminating credible information about wind energy. The purpose of WINDExchange is to help communities weigh the benefits and costs of wind energy, understand the deployment process, and make wind development decisions supported by the

  1. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  2. Collegiate Wind Competition Wind Tunnel Specifications | Department of

    Office of Environmental Management (EM)

    Energy Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of Energy Collegiate Wind Competition must design a prototype wind turbine that fits inside the wind tunnel created to test the performance of each team's project. The tunnel has a "draw down" configuration, introduced by the fan, that sucks air through the box. There are

  3. National Wind Assessments formerly Romuld Wind Consulting | Open...

    Open Energy Info (EERE)

    Assessments formerly Romuld Wind Consulting Jump to: navigation, search Name: National Wind Assessments (formerly Romuld Wind Consulting) Place: Minneapolis, Minnesota Zip: 55416...

  4. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply ...

  5. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... analyzes the potential for continued wind industry growth in all 50 states, as wind turbines with taller towers and larger rotors make wind economically viable nationwide. ...

  6. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  7. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  8. NREL: Wind Research - Wind Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As shown in these videos, the center's impact is industry-wide, ranging from the creation and testing of award-winning components to helping partners develop the nation's most commercially successful renewable energy technologies. Overview NREL Supports Small Businesses in the Wind and Water Power Sectors Next Generation

  9. Chaninik Wind Group Wind Heat Smart Grid

    Office of Environmental Management (EM)

    Chaninik Wind Group Wind Heat Smart Grid Our Presentation * William Igkurak, President Chaninik Wind Group * the harness renewables to lower energy costs, * create economic opportunities * build human capacity * Dennis Meiners * Principal Intelligent Energy Systems, Anchorage Ak. * How it all works Program Highlights ²Award Tribal Energy funding 2009, Village Smart Grid ²Received funds November 2010 ²Project to be complete June 2011 ²Theme: "communities working together we can become

  10. A high-entropy-wind r-process study based on nuclear-structure quantities from the new finite-range droplet model FRDM(2012)

    SciTech Connect (OSTI)

    Kratz, Karl-Ludwig; Farouqi, Khalil; Mller, Peter E-mail: kfarouqi@lsw.uni-heidelberg.de

    2014-09-01

    Attempts to explain the source of r-process elements in our solar system (S.S.) by particular astrophysical sites still face entwined uncertainties, stemming from the extrapolation of nuclear properties far from stability, inconsistent sources of different properties (e.g., nuclear masses and ?-decay properties), and the poor understanding of astrophysical conditions, which are hard to disentangle. In this paper we present results from the investigation of r-process in the high-entropy wind (HEW) of core-collapse supernovae (here chosen as one of the possible scenarios for this nucleosynthesis process), using new nuclear-data input calculated in a consistent approach, for masses and ?-decay properties from the new finite-range droplet model FRDM(2012). The accuracy of the new mass model is 0.56 MeV with respect to AME2003, to which it was adjusted. We compare the new HEW r-process abundance pattern to the latest S.S. r-process residuals and to our earlier calculations with the nuclear-structure quantities based on FRDM(1992). Substantial overall and specific local improvements in the calculated pattern of the r-process between A ? 110 and {sup 209}Bi, as well as remaining deficiencies, are discussed in terms of the underlying spherical and deformed shell structure far from stability.

  11. Spring Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Gray County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  13. Spanish Fork Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Fork Wind Farm Jump to: navigation, search Name Spanish Fork Wind Farm Facility Spanish Fork Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. First State Marine Wind | Open Energy Information

    Open Energy Info (EERE)

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  15. Green Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Gulf Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  17. Stetson Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Stetson Wind Farm Facility Stetson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  18. Zirbel Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Zirbel Wind Farm Facility Zirbel Wind Farm (Glenmore Wind Energy Facility) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Beebe Community Wind | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Beebe Community Wind Facility Beebe Community Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind...

  20. Woodstock Municipal Wind | Open Energy Information

    Open Energy Info (EERE)

    search Name Woodstock Municipal Wind Facility Woodstock Municipal Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  1. Winona County Wind | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Winona County Wind Facility Winona County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind...

  2. Story City Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Story City Wind Facility Story City Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Hamilton Wind Energy...

  3. Luther College Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind...

  4. Williams Stone Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Stone Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status...

  5. Portsmouth Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service...

  6. Charlestown Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Palmetto Wind Research Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  8. Kansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  9. Idaho/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  10. Nevada/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  11. Iowa/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. Small Wind Guidebook | Open Energy Information

    Open Energy Info (EERE)

    Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  13. Maine/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  14. Hawaii/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. Oregon/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  16. Alaska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  17. Don Sneve Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Sneve Wind Project Jump to: navigation, search Name Don Sneve Wind Project Facility Don Sneve Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Fenner Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Shane Cowell Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Shane Cowell Wind Farm Jump to: navigation, search Name Shane Cowell Wind Farm Facility Shane Cowell Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Antelope Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Locust Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Rosiere Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  3. Paynes Ferry Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Paynes Ferry Wind Farm Jump to: navigation, search Name Paynes Ferry Wind Farm Facility Paynes Ferry Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Marengo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marengo Wind Farm Jump to: navigation, search Name Marengo Wind Farm Facility Marengo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  5. Stoney Corners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stoney Corners Wind Farm Jump to: navigation, search Name Stoney Corners Wind Farm Facility Stoney Corners Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Marshall Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marshall Wind Farm Jump to: navigation, search Name Marshall Wind Farm Facility Marshall Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  7. Laredo Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Nine Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nine Canyon Wind Farm Jump to: navigation, search Name Nine Canyon Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  9. Casper Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Casper Wind Farm Jump to: navigation, search Name Casper Wind Farm Facility Casper Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  10. Wallys Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wallys Wind Farm Jump to: navigation, search Name Wallys Wind Farm Facility Wallys Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. Cassia Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cassia Wind Farm Jump to: navigation, search Name Cassia Wind Farm Facility Cassia Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Hatchet Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Cedar Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  14. Allegheny Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Allegheny Ridge Wind Farm Jump to: navigation, search Name Allegheny Ridge Wind Farm Facility Allegheny Ridge wind farm Sector Wind energy Facility Type Commercial Scale Wind...

  15. Greensburg Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Greensburg Wind Farm Jump to: navigation, search Name Greensburg Wind Farm Facility Greensburg Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Wheatfield Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wheatfield Wind Farm Jump to: navigation, search Name Wheatfield Wind Farm Facility Wheatfield Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Ewington Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ewington Wind Farm Jump to: navigation, search Name Ewington Wind Farm Facility Ewington Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  18. Uilk Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Uilk Wind Farm Jump to: navigation, search Name Uilk Wind Farm Facility Uilk Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  19. Octotillo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Octotillo Wind Farm Jump to: navigation, search Name Octotillo Wind Farm Facility Octotillo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Flat Water Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  1. Star Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Turkey Track Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Track Wind Farm Jump to: navigation, search Name Turkey Track Wind Farm Facility Turkey Track Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Blue Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. Adams Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Project Jump to: navigation, search Name Adams Wind Project Facility Adams Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  5. Hopkins Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hopkins Ridge Wind Farm Facility Hopkins Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. Springview II Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind...

  7. Sigel Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Sigel Wind Park Jump to: navigation, search Name Sigel Wind Park Facility Sigel Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Minden Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Minden Wind Park Jump to: navigation, search Name Minden Wind Park Facility Minden Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Fossil Gulch Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Criterion Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Criterion Wind Park Jump to: navigation, search Name Criterion Wind Park Facility Criterion Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Golden Valley Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Wind Park Jump to: navigation, search Name Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Red Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canyon Wind Farm Jump to: navigation, search Name Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Shiloh Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Fenton Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Madison Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. Somerset Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Desert Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Jump to: navigation, search Name Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer...

  18. Moraine Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  20. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  1. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  2. Olsen Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Olsen Wind Farm Jump to: navigation, search Name Olsen Wind Farm Facility Olsen Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Condon Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Condon Wind Project Jump to: navigation, search Name Condon Wind Project Facility Condon Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. Tuana Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  5. Thousand Springs Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Minco Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Minco Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Dunlap Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind...

  8. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  9. Howard Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status...

  10. Cape Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Project Jump to: navigation, search Name Cape Wind Project Facility Cape Wind Sector Wind energy Facility Type Offshore wind Facility Status Proposed Owner Cape Wind Developer Cape...

  11. Wales Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wales Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  12. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Turbine Loads Database Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Sandia Wind Turbine Loads Database Sandia Wind...

  13. Wyoming Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Vantage Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Vantage Wind Energy Center Facility Vantage Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Bayonne Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Bayonne Wind Energy Project Jump to: navigation, search Name Bayonne Wind Energy Project Facility Bayonne Wind Energy Project Sector Wind energy Facility Type Community Wind...

  16. Gary Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Gary Wind Energy Project Jump to: navigation, search Name Gary Wind Energy Project Facility Gary Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  17. Havoco Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Havoco Wind Energy LLC Jump to: navigation, search Name: Havoco Wind Energy LLC Place: Dallas, Texas Zip: 75206 Sector: Wind energy Product: Wind developer of Altamont Pass wind...

  18. Oliver Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Oliver Wind Energy Center Facility Oliver Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Montfort Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  20. Wildcat 1 Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wildcat 1 Wind Project Jump to: navigation, search Name Wildcat 1 Wind Project Facility Wildcat 1 Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. AWEA Wind Energy Fall Symposium

    Broader source: Energy.gov [DOE]

    The AWEA Wind Energy Fall Symposium gathers wind energy professionals for informal yet productive interactions with industry peers. Jose Zayas, Director, Wind & Water Power Technologies Office,...

  2. Wind Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wind Power (Updated June 16, 2014) Project Descriptions Foote Creek I Wind Project (Carbon...

  3. DOE Science Showcase - Wind Power

    Office of Scientific and Technical Information (OSTI)

    Wind and Turbine Dynamics Wind Stresses Control, the Power Grid, and the Grids Economics ... Future, Niketa Kumar, DOE Office of Public Affairs National Wind Technology Center, ...

  4. Wind energy information guide

    SciTech Connect (OSTI)

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  5. WINDExchange: Potential Wind Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. Enlarge image This map shows the wind potential at a 110-m height for the United States. Download a printable map. Click on a state to view the wind map for that state. * Grid Granularity = 400 sq km* 35% Gross Capacity

  6. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  7. AMF Deployment, Manacapuru, Brazil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manacapuru, Brazil Manacapuru Deployment AMF Home Manacapuru Home GOAMAZON Website Experiment Planning Abstract and Related Campaigns Science Plan (PDF, 1.4MB) Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press GOAMAZON Blog Images Contacts Kim Nitschke, AMF Operations Scot Martin, Principal Investigator AMF Deployment, Manacapuru, Brazil This view shows the location of the Manacapuru, Brazil, ARM Mobile Facility. Main site (T3): 3° 12'

  8. Wind Energy Resource Assessment of the Caribbean and Central America

    SciTech Connect (OSTI)

    DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

    1987-04-01

    A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered sites and were thus not very useful in assessing the wind resource at locations that are well exposed to the winds. Ship data were determined to be the most useful for estimating the large-scale wind flow and assessing the spatial distribution of the wind resource throughout the region. Techniques were developed for analyzing and correcting ship wind data and extrapolating these data to coastal and inland areas by considering terrain influences on the large-scale wind flow. In areas where extrapolation of ship wind data was not entirely feasible, such as interior areas of Central America, other techniques were developed for estimating the wind flow and distribution of the wind resource. Through the application of the various innovative techniques developed for assessing the wind resource throughout the Caribbean and Central America region, many areas with potentially good to outstanding wind resource were identified that had not been previously recognized. In areas where existing site data were available from exposed locations, the measured wind resource was compared with the estimated wind resource that was derived using the assessment techniques. In most cases, there was good agreement between the measured wind resource and the estimated wind resource. This assessment project supported activities being pursued by the U.S. Committee for Renewable Energy Commerce and Trade (CORECT), the U.S. government's interagency program to assist in overseas marketing and promote renewable energy exports. An overall goal of the program is to improve U.S. competitiveness in the world renewable energy market. The Caribbean and Central America assessment, which is the first of several possible follow-on international wind energy resource assessments, provides valuable information needed by the U.S. wind energy industry to identify suitable wind resource areas and concentrate their efforts on these areas.

  9. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply More Documents & Publications 20% Wind Energy by 2030 - Chapter 2: Wind Turbine ...

  10. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final ...

  11. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  12. Community Wind Handbook/Conduct a Wind Resource Estimate | Open...

    Open Energy Info (EERE)

    "Windustry. Wind Resource Assessment" "AWS Scientific for the National Renewable Energy Laboratory. Wind Resource Assessment Handbook" Retrieved from "http:...

  13. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional anemometer cup technology. • During storms, mean Turbulent Kinetic Energy (TKE) increases with height above water; • Sufficient wind resources exist over Lake Michigan to generate 7,684 kWh of power using a 850 kW rated turbine at elevations between 90 - 125 meters, a height lower than originally anticipated for optimum power generation; • Based on initial assessments, wind characteristics are not significantly different at distant (thirty-two mile) offshore locations as compared to near-shore (six mile) locations; • Significant cost savings can be achieved in generation wind energy at lower turbine heights and locating closer to shore. • Siting must be sufficiently distant from shore to minimize visual impact and to address public sentiment about offshore wind development; • Project results show that birds and bats do frequent the middle of Lake Michigan, bats more so than birds; • Based on the wind resource assessment and depths of Lake Michigan encountered during the project, future turbine placement will most likely need to incorporate floating or anchored technology; • The most appropriate siting of offshore wind energy locations will enable direct routing of transmission cables to existing generating and transmission facilities located along the Michigan shoreline; • Wind turbine noise propagation from a wind energy generating facility at a five mile offshore location will not be audible at the shoreline over normal background sound levels.

  14. NREL: Wind Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. December 2015 Wind and Water Power Small Business Voucher Open House December 2, 2015, 9:00 - 1:00 MST Boulder,...

  15. NREL: Wind Research - Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards NREL has received many awards for its technical innovations in wind energy. In addition, the research conducted at the National Wind Technology Center (NWTC) at NREL has led...

  16. Articles about Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations.

    Mon, 07 Dec 2015 18:52:00 +0000...

  17. WINDExchange: Wind Events

    Wind Powering America (EERE)

    calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http:www.windpoweringamerica.govimageswpalogosm.jpg WINDExchange: Wind Events...

  18. WINDExchange: Learn About Wind

    Wind Powering America (EERE)

    wind turbines in a row at sunset. The sky is varying hues of orange and the sun is halfway past the horizon. Wind power comes in many sizes. Here, several...

  19. WindWaveFloat

    SciTech Connect (OSTI)

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  20. See the Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Engineers are also concerned about wind shear and turbulence as this can cause a great deal of stress on their gearbox and bearings in their turbines. Characterizing Shear and Wind ...

  1. Distributed Wind Energy Workshop

    Broader source: Energy.gov [DOE]

    Join instructor Brent Summerville for a fun and interactive workshop at Appalachian State University's Small Wind Research and Demonstration Site. Learn about a variety of distributed wind energy...

  2. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  3. Guide to Using the WIND Toolkit Validation Code

    SciTech Connect (OSTI)

    Lieberman-Cribbin, W.; Draxl, C.; Clifton, A.

    2014-12-01

    In response to the U.S. Department of Energy's goal of using 20% wind energy by 2030, the Wind Integration National Dataset (WIND) Toolkit was created to provide information on wind speed, wind direction, temperature, surface air pressure, and air density on more than 126,000 locations across the United States from 2007 to 2013. The numerical weather prediction model output, gridded at 2-km and at a 5-minute resolution, was further converted to detail the wind power production time series of existing and potential wind facility sites. For users of the dataset it is important that the information presented in the WIND Toolkit is accurate and that errors are known, as then corrective steps can be taken. Therefore, we provide validation code written in R that will be made public to provide users with tools to validate data of their own locations. Validation is based on statistical analyses of wind speed, using error metrics such as bias, root-mean-square error, centered root-mean-square error, mean absolute error, and percent error. Plots of diurnal cycles, annual cycles, wind roses, histograms of wind speed, and quantile-quantile plots are created to visualize how well observational data compares to model data. Ideally, validation will confirm beneficial locations to utilize wind energy and encourage regional wind integration studies using the WIND Toolkit.

  4. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Wildlife Impacts Literature Database (WILD) What is WILD? The Wind-Wildlife Impacts Literature Database (WILD), developed and main- tained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic power systems, power lines, and communication and television towers on wildlife. For the wind energy sector, WILD serves as an

  5. Three DOE Reports Analyze U.S. Wind Energy Growth | Department of Energy

    Energy Savers [EERE]

    Three DOE Reports Analyze U.S. Wind Energy Growth Three DOE Reports Analyze U.S. Wind Energy Growth September 11, 2014 - 3:40pm Addthis DOE recently released three reports that provide a detailed analysis of the markets for utility-scale land-based technologies, offshore wind technologies, and distributed wind technologies: the Offshore Wind Market and Economic Analysis, produced by Navigant Consulting, Inc.; the 2013 Wind Technologies Market Report, produced by the Lawrence Berkeley National

  6. Wind Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy.

  7. Growing a Wind Workforce: The National Wind Energy Skills Assessment Report (Poster)

    SciTech Connect (OSTI)

    Tegen, S.

    2014-05-01

    This poster summarizes results from the first published investigation into the detailed makeup of the wind energy workforce as well as a glance at the educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce allow the private sector, educational institutions, and federal and state governments to make better informed workforce-related decisions based on the current data and future projections.

  8. Wind Energy Markets, 2. edition

    SciTech Connect (OSTI)

    2007-11-15

    The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

  9. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  10. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  11. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  12. WINDExchange: Wind Maps and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Maps and Data WINDExchange provides wind maps and anemometer data to help homeowners, communities, states, and regions learn more about their available wind resources and plan wind energy projects. WINDExchange also maintains more than a decade of installed capacity maps showing how wind energy has progressed across the United States over time as advances in wind technology and materials make wind resources more available. A map illustration of the United States showing the various wind

  13. Wind for Schools Curriculum Brief

    SciTech Connect (OSTI)

    2010-08-01

    This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  14. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Wind Vision Wind Vision Wind Vision About In support of the President's strategy to diversify our nation's clean energy mix, an elite team of researchers, academics, scientists, engineers, and wind industry experts revisited the findings of the Energy Department's 2008 20% Wind by 2030 report and built upon its findings to conceptualize a new vision for wind energy through 2050. The Wind Vision Report takes America's current installed wind power capacity across all

  15. Small Wind Electric Systems: A New Hampshire Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A New Hampshire Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a New Hampshire wind resource map and information about state incentives and contacts for more information.

  16. Exploring the Wind Manufacturing Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploring the Wind Manufacturing Map Exploring the Wind Manufacturing Map August 15, 2012 - 5:01pm Addthis America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? The domestic wind manufacturing industry has grown dramatically in the last 5 years, and now nearly 70 percent of the turbines installed

  17. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A Maine Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a wind resource map for the state of Maine and information about state incentives and contacts for more information.

  18. New Wind Turbine Dynamometer Test Facility Dedicated at NREL - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL New Wind Turbine Dynamometer Test Facility Dedicated at NREL November 19, 2013 Today, the Energy Department (DOE) and its National Renewable Energy Laboratory (NREL) dedicated a new 5-megawatt (MW) Dynamometer Test Facility at NREL's National Wind Technology Center (NWTC). The $20 million facility enables NREL to work closely with industry engineers to enhance the drive trains and other electrical systems in the country's largest land based wind turbines. "Although wind

  19. From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind |

    Office of Environmental Management (EM)

    Department of Energy From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind November 2, 2010 - 5:02pm Addthis Jacques Beaudry-Losique Director, Wind & Water Program Last week, Clemson University broke ground on a facility critical to the expansion of domestic wind power. At a converted Navy base in North Charleston, this one-of-a-kind center will test large drivetrains - the machinery that converts

  20. Collegiate Wind Competition 2016 Notice of Intent | Department of Energy

    Office of Environmental Management (EM)

    2016 Notice of Intent Collegiate Wind Competition 2016 Notice of Intent September 18, 2014 - 12:33pm Addthis DOE's National Renewable Energy Laboratory (NREL) has announced that it will release a request for proposals (RFP) seeking teams of undergraduate students to participate in the 2016 DOE Collegiate Wind Competition. The Collegiate Wind Competition challenges teams to design a wind-driven system based on market research, develop a business plan to market the product, build and test the

  1. Wind Turbine Drivetrain Condition Monitoring - An Overview

    SciTech Connect (OSTI)

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  2. Global Wind Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Global Wind Systems, Inc. Place: Novi, Michigan Zip: 48375 Product: Michigan-based startup company that plans to develop a turbine assembly plant in the town of Novi, using a...

  3. Energy Department Announces Offshore Wind Demonstration Awardees...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baryonyx Corporation, based in Austin, Texas, plans to install three 6-megawatt direct-drive wind turbines in state waters near Port Isabel, Texas. The project will demonstrate an ...

  4. Wind Project Siting Tools | Open Energy Information

    Open Energy Info (EERE)

    and Lucille Packard Foundation, is working with BLM, CDFG, and USFWS to develop a science-based regional planning framework for the high wind resource region of the eastern...

  5. Independence Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    energy Product: Maine-based company formed to develop large-scale wind power projects in New England. Coordinates: 44.743513, -71.630893 Show Map Loading map......

  6. Arkansas/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Arkansas Wind Resources Arkansas Energy Office: Wind AWEA State Wind Energy Statistics: Arkansas Southeastern Wind Coalition...

  7. Wind Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects WIND ENERGY 4 PROJECTS in 5 LOCATIONS 1,025 MW GENERATION CAPACITY 2,190,000 MWh PROJECTED ANNUAL GENERATION * 1,225,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL

  8. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  9. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  10. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

    2014-02-01

    Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

  11. Wind Energy Program overview, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    Wind energy research has two goals: (1) to gain a fundamental understanding of the interactions between wind and wind turbines; and (2) to develop the basic design tools required to develop advanced technologies. A primary objective of applied research activities is to develop sophisticated computer codes and integrate them into the design, testing, and evaluation of advanced components and systems, Computer models have become a necessary and integral part of developing new high-tech wind energy systems. A computer-based design strategy allows designers to model different configurations and explore new designs before building expensive hardware. DOE works closely with utilities and the wind industry in setting its applied research agenda. As soon as research findings become available, the national laboratories transfer the information to industry through workshops, conferences, and publications.

  12. Wind Vision | Department of Energy

    Office of Environmental Management (EM)

    Wind Vision Wind Vision Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era for Wind Power in the United States The Wind Vision report updates the Department of Energy's 2008 20% Wind Energy by 2030 through analysis of scenarios of wind power supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050. With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with

  13. Wind Vision | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Vision Wind Vision Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era for Wind Power in the United States The Wind Vision report updates the Department of Energy's 2008 20% Wind Energy by 2030 through analysis of scenarios of wind power supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050. With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with

  14. WINDExchange: Where Is Wind Power?

    Wind Powering America (EERE)

    Where Is Wind Power? WINDExchange offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These

  15. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Vision Wind Vision Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era for Wind Power in the United States The Wind Vision report updates the Department of Energy's 2008 20% Wind Energy by 2030 through analysis of scenarios of wind power supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050. With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with

  16. A National Offshore Wind Strategy: Creating an Offshore Wind Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry in the United States | Department of Energy A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States Strategic plan for accelerating the responsible deployment of offshore wind energy in the United States. PDF icon A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States. More Documents & Publications

  17. DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation

    Office of Environmental Management (EM)

    Project | Department of Energy Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - 3:26pm Addthis The U.S. Department of Energy (DOE) recently announced the first step toward issuing a $150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The project could be the first

  18. Minuano Energias Alternativas Ltda | Open Energy Information

    Open Energy Info (EERE)

    Minuano Energias Alternativas Ltda Jump to: navigation, search Name: Minuano Energias Alternativas Ltda Place: Brazil Sector: Wind energy Product: Brazil based wind project...

  19. Sowitec do Brasil Energia Alternativas Ltda | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Sowitec do Brasil Energia Alternativas Ltda Place: Salvador, Bahia, Brazil Zip: 40.140-130 Sector: Wind energy Product: Brazil based wind farm...

  20. Braselco | Open Energy Information

    Open Energy Info (EERE)

    Braselco Jump to: navigation, search Name: Braselco Place: Fortaleza, Ceara, Brazil Sector: Wind energy Product: Brazil based consultancy office, focused on wind projects....

  1. CW Empreendimento Ltda | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: CW Empreendimento Ltda Place: Recife, Pernambuco, Brazil Sector: Wind energy Product: Brazil based wind project developer. References: CW...

  2. Rosa dos Ventos Ltda | Open Energy Information

    Open Energy Info (EERE)

    Ltda Jump to: navigation, search Name: Rosa dos Ventos Ltda Place: Fortaleza, Ceara, Brazil Sector: Renewable Energy, Wind energy Product: Brazil-based wind farm developer and...

  3. EOL Energy Ltda | Open Energy Information

    Open Energy Info (EERE)

    EOL Energy Ltda Jump to: navigation, search Name: EOL Energy Ltda Place: Brazil Sector: Wind energy Product: Brazil based wind project developer. References: EOL Energy Ltda1...

  4. Energio | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Energio Place: Rio de Janeiro, Rio de Janeiro, Brazil Zip: 20050-030 Sector: Wind energy Product: Brazil based wind project developer....

  5. Wobben Windpower | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Wobben Windpower Place: Sorocaba, Sao Paulo, Brazil Zip: Cep 18087-149 Sector: Wind energy Product: Brazil based wind turbine producer...

  6. APH Engenharia Ltda | Open Energy Information

    Open Energy Info (EERE)

    Ltda Jump to: navigation, search Name: APH Engenharia Ltda Place: Curitiba, Parana, Brazil Zip: 80.420-900 Sector: Wind energy Product: Brazil based wind project developer....

  7. Geracao de Energia Ltda | Open Energy Information

    Open Energy Info (EERE)

    Geracao de Energia Ltda Jump to: navigation, search Name: Geracao de Energia Ltda Place: Sao Paulo, Sao Paulo, Brazil Sector: Wind energy Product: Brazil based wind project...

  8. Aracati Energia Renovavel Ltda | Open Energy Information

    Open Energy Info (EERE)

    Energia Renovavel Ltda Jump to: navigation, search Name: Aracati Energia Renovavel Ltda Place: Cuiaba, Mato Grosso, Brazil Sector: Wind energy Product: Brazil based wind project...

  9. Santa Cruz Energia | Open Energy Information

    Open Energy Info (EERE)

    Energia Jump to: navigation, search Name: Santa Cruz Energia Place: Brazil Sector: Wind energy Product: Brazilian wind developer based in the state of Santa Catarina, Brazil....

  10. Dobreve Empreendimentos e Participacoes | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Dobreve Empreendimentos e Participacoes Place: Jaragua do Sul, Santa Catarina, Brazil Zip: 89260-500 Sector: Wind energy Product: Brazil-based wind project...

  11. Ventus Participacoes Ltda | Open Energy Information

    Open Energy Info (EERE)

    Participacoes Ltda Jump to: navigation, search Name: Ventus Participacoes Ltda Place: Santa Catarina, Brazil Sector: Wind energy Product: Brazil-based wind project developer....

  12. Ventos Brasil Comercio e Representacoes | Open Energy Information

    Open Energy Info (EERE)

    Comercio e Representacoes Jump to: navigation, search Name: Ventos Brasil Comercio e Representacoes Place: Fortaleza, Ceara, Brazil Sector: Wind energy Product: Brazil-based wind...

  13. Central Eolica Trairi Ltda | Open Energy Information

    Open Energy Info (EERE)

    Trairi Ltda Jump to: navigation, search Name: Central Eolica Trairi Ltda Place: Fortaleza, Ceara, Brazil Sector: Wind energy Product: Brazil based wind project developer....

  14. Usina Geradora Delta Eolica Ltda | Open Energy Information

    Open Energy Info (EERE)

    Usina Geradora Delta Eolica Ltda Jump to: navigation, search Name: Usina Geradora Delta Eolica Ltda Place: Fortaleza, Ceara, Brazil Sector: Wind energy Product: Brazil-based wind...

  15. Eolica Faisa Ltda | Open Energy Information

    Open Energy Info (EERE)

    Eolica Faisa Ltda Jump to: navigation, search Name: Eolica Faisa Ltda Place: Fortaleza, Ceara, Brazil Sector: Wind energy Product: Brazil based wind project developer. Coordinates:...

  16. Eolica Industrial | Open Energy Information

    Open Energy Info (EERE)

    Industrial Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel...

  17. Usina Geradora Eolica Taiba Ltda | Open Energy Information

    Open Energy Info (EERE)

    Eolica Taiba Ltda Jump to: navigation, search Name: Usina Geradora Eolica Taiba Ltda Place: Fortaleza, Ceara, Brazil Sector: Wind energy Product: Brazil-based wind project...

  18. Eolica Paraipaba Ltda | Open Energy Information

    Open Energy Info (EERE)

    Paraipaba Ltda Jump to: navigation, search Name: Eolica Paraipaba Ltda Place: Paraipaba, Ceara, Brazil Sector: Renewable Energy, Wind energy Product: Brazil based wind project...

  19. Central Eolica Rosada Ltda | Open Energy Information

    Open Energy Info (EERE)

    Rosada Ltda Jump to: navigation, search Name: Central Eolica Rosada Ltda Place: Mossoro, Rio Grande do Norte, Brazil Sector: Wind energy Product: Brazil based wind project...

  20. Miassaba Geradora Eolica | Open Energy Information

    Open Energy Info (EERE)

    Miassaba Geradora Eolica Jump to: navigation, search Name: Miassaba Geradora Eolica Place: Brazil Sector: Wind energy Product: Brazil based wind project developer. References:...