Sample records for branch-chain hydrocarbon extracted

  1. Apparatus for hydrocarbon extraction

    DOE Patents [OSTI]

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19T23:59:59.000Z

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  2. Biological enhancement of hydrocarbon extraction

    DOE Patents [OSTI]

    Brigmon, Robin L. (North Augusta, SC); Berry, Christopher J. (Aiken, SC)

    2009-01-06T23:59:59.000Z

    A method of microbial enhanced oil recovery for recovering oil from an oil-bearing rock formation is provided. The methodology uses a consortium of bacteria including a mixture of surfactant producing bacteria and non-surfactant enzyme producing bacteria which may release hydrocarbons from bitumen containing sands. The described bioprocess can work with existing petroleum recovery protocols. The consortium microorganisms are also useful for treatment of above oil sands, ground waste tailings, subsurface oil recovery, and similar materials to enhance remediation and/or recovery of additional hydrocarbons from the materials.

  3. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  4. Disappearance of criticality in a branched-chain thermal explosion with heat loss

    SciTech Connect (OSTI)

    Okoya, S.S. [Department of Mathematics, Obafemi Awolowo University, Ile-Ife, 220005 (Nigeria)

    2006-01-01T23:59:59.000Z

    Branched-chain thermal explosions involving simplified initiation, branching, and termination of chains, as well as heat exchange with the surroundings, are considered, but it is assumed that consumption of fuel is negligible for combustion in a mixture of H{sub 2}+O{sub 2} that covers nth Arrhenius kinetics for the chain-branching step. In particular, the effect of heat loss on the problem is considered, Mostly analytical investigations of the simplified model are presented using standard Semenov's techniques. The analytical method provides expressions for criticality and the transition points. Also, the different qualitative effects of varying the dimensionless parameters are investigated.

  5. Bacterial mutagenicity of polycyclic aromatic hydrocarbons in reconstituted mixtures and crude coal tar extracts and fractions

    E-Print Network [OSTI]

    Onufrock, Amy Mildred

    1994-01-01T23:59:59.000Z

    , coal, and oil shale vary widely in the amount and nature of potentially carcinogenic polycyclic aromatic hydrocarbons. Thus, potential carcinogenicity varies widely between representative PAH fractions derived from complex mixtures. PAH fractions...

  6. Bacterial mutagenicity of polycyclic aromatic hydrocarbons in reconstituted mixtures and crude coal tar extracts and fractions 

    E-Print Network [OSTI]

    Onufrock, Amy Mildred

    1994-01-01T23:59:59.000Z

    7 8 Phenanthrene 8 9 2 6 3 5 4 Fluorene 7 6 Fluoranthene 3 10 I 9 H I, 8 7 I 6 Pyrene Il 2 111 Q 12 5 6 ltenzolclphenanthrene 2 I I 12 4 I H 5 8 7 6 Benz[ajanthracene 12 II 10 8 + ~ 5 7 6 Chrysene I 4 13 14 12 e... are associated with the coal utilization and petroleum refining industries. Polycyclic aromatic hydrocarbons can result as thermal degradative products of combustion, pyrolysis, and pyrosynthesis. They are also derived from a variety of petroleum refining...

  7. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    DOE Patents [OSTI]

    Alford, J. Michael; Diener, Michael D.

    2006-12-19T23:59:59.000Z

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  8. HYDROCARBONS & ENERGY FROM PLANTS

    E-Print Network [OSTI]

    Nemethy, E.K.

    2011-01-01T23:59:59.000Z

    LBL-8596 itr-t C,d.. HYDROCARBONS & ENERGY FROM PLANTS jmethods of isolating the hydrocarbon-like material from I.privatelyownedrights. HYDROCARBONS AND ENERGY FROM PLANTS

  9. Hydrocarbon conversion process

    SciTech Connect (OSTI)

    Buss, W.C.; Field, L.A.; Robinson, R.C.

    1984-06-26T23:59:59.000Z

    A hydrocarbon conversion process is disclosed having a very high selectivity for dehydrocyclization. In one aspect of this process, a hydrocarbon feed is subjected to hydrotreating, then the hydrocarbon feed is passed through a sulfur removal system which reduces the sulfur concentration of the hydrocarbon feed to below 500 ppb, and then the hydrocarbon feed is reformed over a dehydrocyclization catalyst comprising a large pore zeolite containing at least one Group VIII metal to produce aromatics and hydrogen.

  10. Method for producing hydrocarbon and alcohol mixtures. [Patent application

    DOE Patents [OSTI]

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1980-12-01T23:59:59.000Z

    It is an object of this invention to provide an efficient process for extracting alcohols and ketones from an aqueous solution containing the same into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. Another object of the invention is to provide a mixture consisting of hydrocarbon, alcohols or ketones, polyoxyalkylene polymer and water which can be directly added to fuels or further purified. The above stated objects are achieved in accordance with a preferred embodiment of the invention by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5 to 18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is mixed in the presence or one or more of a group of polyoxyalkylene polymers described in detail hereinafter; the fermentation alcohol being extracted into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

  11. Hydrocarbon in Catalyst in

    E-Print Network [OSTI]

    Ladkin, Peter B.

    Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure #12;#12;#12;#12;#12;#12;#12;#12;Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure controller Computer operator

  12. Hydrocarbon in Catalyst in

    E-Print Network [OSTI]

    Ladkin, Peter B.

    #12;Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure controller Computer;#12;Vent 1 Vent 2 Product outHydrocarbon in Steam in Catalyst in light Warning Computer controller Tank

  13. Origin and significance of aromatic hydrocarbons in giant iron ore deposits of the late Archean Hamersley Basin,

    E-Print Network [OSTI]

    Brocks, Jochen J.

    Origin and significance of aromatic hydrocarbons in giant iron ore deposits of the late Archean extractable saturated and aromatic hydrocarbons. The host rocks belong to the $2.5 billion years (Ga) old Mt and Newman (Mt Whaleback). The saturated hydrocarbons in the rock extracts have the composition of highly

  14. 2, 16451664, 2005 Hydrocarbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 2, 1645­1664, 2005 Hydrocarbon emissions from a boreal fen S. Haapanala et al. Title Page Discussions is the access reviewed discussion forum of Biogeosciences Measurements of hydrocarbon emissions Hydrocarbon emissions from a boreal fen S. Haapanala et al. Title Page Abstract Introduction Conclusions

  15. Anaerobic Hydrocarbon Degradation in

    E-Print Network [OSTI]

    California at Berkeley, University of

    Anaerobic Hydrocarbon Degradation in Petroleum-Contaminated Harbor Sediments under Sulfate of iron(III) oxide to stimulate in- situ hydrocarbon degradation in anaerobic petroleum- contaminated did not stimulate anaerobic hydrocarbon oxidation. Exposure of the sediment to air [to reoxidize Fe

  16. Is cyclobutane a hydrocarbon?

    E-Print Network [OSTI]

    Martin, Ralph R.

    Is cyclobutane a hydrocarbon? Biologically interesting entities possibly > 1,000,000 Does cyclobutane have a four- membered ring? Is cyclobutane a hydrocarbon? Expressive and decidable formalism needs to be classified under chemical classes: Is dinitrogen inorganic? Is acetylene a hydrocarbon

  17. Subcontinuum mass transport of condensed hydrocarbons in nanoporous media

    E-Print Network [OSTI]

    Falk, Kerstin

    Although hydrocarbon production from unconventional reservoirs, the so-called shale gas, has exploded recently, reliable predictions of resource availability and extraction are missing because conventional tools fail to ...

  18. Aust. J. Mar. Freshw. Res., 1984, 35, 119-28 Aromatic Hydrocarbons in Waters of

    E-Print Network [OSTI]

    Canberra, University of

    Aust. J. Mar. Freshw. Res., 1984, 35, 119-28 Aromatic Hydrocarbons in Waters of Port Phillip Bay of aromatic hydrocarbons in coastal waters, using solvent extraction and fluorescence emission analysis, shows and the Yarra River estuary. Introduction Pollution of the marine environment by petroleum hydrocarbons

  19. Trace elements and Polycyclic Aromatic Hydrocarbons (PAHs)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Trace elements and Polycyclic Aromatic Hydrocarbons (PAHs) in snow and ice sampled at Colle designed, built and tested. Melt water from inner part of ice core section was pumped to an ICP-SFMS and ICP-OES. Melt water from outer section was on-line extracted by solid-phase cartridges for semi

  20. Engineering Chlorinated hydrocarbons such as

    E-Print Network [OSTI]

    Chemical Engineering Abstract Chlorinated hydrocarbons such as trichloroethylene (TCE) form a class carriers/supports for NZVI particles to address the in situ remediation of chlorinated hydrocarbons. We

  1. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOE Patents [OSTI]

    Mirza, Zia I. (La Verne, CA); Knell, Everett W. (Los Alamitos, CA); Winter, Bruce L. (Danville, CA)

    1980-09-30T23:59:59.000Z

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  2. Hydrocarbon desulfurization process

    SciTech Connect (OSTI)

    Plummer, M.A.; Zimmerman, C.C. Jr.

    1986-04-08T23:59:59.000Z

    A process is described for converting a sour hydrocarbon feedstock having a relatively high sulfur content to a hydrocarbon product having a relatively low sulfur content comprising the steps of: (a) hydrodesulfurizing the feedstock having a relatively high sulfur contact with hydrogen to produce the hydrocarbon product having a relatively low sulfur content and hydrogen sulfide gas; (b) contacting the hydrogen sulfide gas with an anthraquinone dissolved in a polar organic solvent having a polarity greater than about 3 Debye units to produce sulfur and an anthrahydroquinone in the solvent; (c) regenerating the anthraquinone from the anthrahydroquinone upon contact with air to produce the anthraquinone and hydrogen peroxide; (d) recycling the anthraquinone to step (b); (e) reducing the hydrogen peroxide to oxygen and water; (f) partially oxidizing a hydrocarbon fuel with the oxygen to produce carbon dioxide and hydrogen; and (g) recycling the hydrogen to step (a).

  3. NATURAL MARINE HYDROCARBON SEEPAGE

    E-Print Network [OSTI]

    Luyendyk, Bruce

    affects ocean chemistry (Dando and Hovland, 1992) and provides a natural source of petroleum pollution the water column above submarine vents, plumes of hydrocarbon gas bubbles act as acoustic scattering targets

  4. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Funk, Edward W. (Highland Park, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Des Plaines, IL)

    1986-01-01T23:59:59.000Z

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  5. HYDROCARBONS FROM PLANTS: ANALYTICAL METHODS AND OBSERVATIONS

    E-Print Network [OSTI]

    Calvin, Melvin

    2013-01-01T23:59:59.000Z

    molecular weights of various hydrocarbon materials for fuelof oil and alcohol from hydrocarbon-producing plants. Into Die Naturwissenschaften HYDROCARBONS FROM PLANTS: METHODS

  6. Extracting alcohols from aqueous solutions. [USDOE patent application

    DOE Patents [OSTI]

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1981-12-02T23:59:59.000Z

    The objective is to provide an efficient process for extracting alcohols in aqueous solutions into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. This is done by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5-18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is then mixed with one or more of a group of polyoxyalkylene polymers to extract the alcohol into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

  7. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    SciTech Connect (OSTI)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01T23:59:59.000Z

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi Sea, in spite of the fact that these areas do not have highest potential for future hydrocarbon reserves. Opportunities for improving the mapping and assessment of Arctic hydrocarbon resources include: 1) Refining hydrocarbon potential on a basin-by-basin basis, 2) Developing more realistic and detailed distribution of gas hydrate, and 3) Assessing the likely future scenarios for development of infrastructure and their interaction with hydrocarbon potential. It would also be useful to develop a more sophisticated approach to merging conventional and gas hydrate resource potential that considers the technical uncertainty associated with exploitation of gas hydrate resources. Taken together, additional work in these areas could significantly improve our understanding of the exploitation of Arctic hydrocarbons as ice-free areas increase in the future.

  8. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Energy Savers [EERE]

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop: Agenda and Objectives Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop:...

  9. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, Richard L. (Clinton, TN)

    1997-01-01T23:59:59.000Z

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  10. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, R.L.

    1997-03-11T23:59:59.000Z

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  11. Hydrocarbon cracking catalyst

    SciTech Connect (OSTI)

    Lochow, C.F.; Kovacs, D.B.

    1988-12-27T23:59:59.000Z

    This patent describes a catalyst composition for cracking hydrocarbons to maximize gasoline comprising: rare earth exchanged ''Y'' crystalline faujasite dispersed in a clay containing matrix material; and which has been subsequently further ion exchanged to contain 0.20 to 3.0 wt% yttrium, calculated as the oxide, whereby the yttrium is chemically combined in the catalyst composition.

  12. Optrode for sensing hydrocarbons

    DOE Patents [OSTI]

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13T23:59:59.000Z

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  13. Deep-SeaResearch, 1974,Vol.21,pp. 481 to 488.PergamonPress.Printed in Great Britain. Dissolved hydrocarbons in the eastern Gulf of Mexico Loop Current

    E-Print Network [OSTI]

    Iliffe, Thomas M.

    hydrocarbons in the eastern Gulf of Mexico Loop Current and the Caribbean Sea THOMASM. ILIFFE*and JOHNA. CALDER---Concentrations of dissolved non-polar hydrocarbons extracted from waters taken at several stations and depths in the Gulf THEREhave been few studies of the dissolved hydrocarbons in seawater. BLU~R (1970) reported carbon numbers

  14. doi:10.1016/S0016-7037(00)01302-9 Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens

    E-Print Network [OSTI]

    Brocks, Jochen J.

    doi:10.1016/S0016-7037(00)01302-9 Release of bound aromatic hydrocarbons from late Archean, and higher polyaromatic hydrocarbons and alkylated homologues were generated in low relative concentrations of the hydropyrolysates are very similar to aromatic hydrocarbons obtained by solvent extraction of the host rocks

  15. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Chang, Y. Alice (Des Plaines, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

    1986-01-01T23:59:59.000Z

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  16. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04T23:59:59.000Z

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  17. Process for separating an ethylenically unsaturated hydrocarbon from a hydrocarbon mixture

    SciTech Connect (OSTI)

    vanEijl, A.T.

    1986-06-24T23:59:59.000Z

    A process is described for separating an ethylenically unsaturated hydrocarbon from a hydrocarbon mixture characterized by: (a) distilling a hydrocarbon mixture containing the unsaturated hydrocarbon with an N-(aminoalkyl) piperazine; and (b) separating the amine/hydrocarbon mixture into at least two factions, one of which contains the amine and the unsaturated hydrocarbon.

  18. Engineering Chlorinated hydrocarbons such as trichloroethylene

    E-Print Network [OSTI]

    Chemical Engineering Abstract Chlorinated hydrocarbons such as trichloroethylene (TCE) form a class carriers/supports for NZVI particles to address the in situ remediation of chlorinated hydrocarbons. We Remediation of Chlorinated Hydrocarbons Dr. Vijay John Department of Chemical & Biomolecular Engineering

  19. HYDROCARBON CONSTITUENTS OF ICELAND LEAF FOSSIL

    E-Print Network [OSTI]

    Han, Jerry; Calvin, Melvin.

    2008-01-01T23:59:59.000Z

    L.S. (1962) Isoprenoid hydrocarbons in petroleum. Anal.and EVANS E. D. (1965) Hydrocarbons in non-reservo; r-rockVI. Distribution of wax hydrocarbons in plants at different

  20. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    E-Print Network [OSTI]

    Benner, Linda S.

    2013-01-01T23:59:59.000Z

    NV~ August 25-29, 1980 HYDROCARBON FORMATION ON POLYMER-catalyzed reduction of CO to hydrocarbons Tropscb. Among theof CO to saturated linear hydrocarbons and appears to retain

  1. Hydrocarbon conversion catalysts

    SciTech Connect (OSTI)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1989-08-15T23:59:59.000Z

    This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting a hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.35A, a water absorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of at least 8% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; an alumina binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

  2. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop March 18, 2015 8:00AM EDT to...

  3. MULTIPHOTON DISSOCIATION PRODUCTS FROM HALOGENATED HYDROCARBONS

    E-Print Network [OSTI]

    Sudbo, Aa. S.

    2011-01-01T23:59:59.000Z

    FROM HALOGENATED HYDROCARBONS RECE1VED Aa. S. Sudbo, P. A.FROM HALOGENATED HYDROCARBONS LBL-6966 Aa. S. Sudbo, t P. A.

  4. Hydrocarbon sensors and materials therefor

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

  5. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOE Patents [OSTI]

    Fliermans, Carl B. (Augusta, GA)

    1989-01-01T23:59:59.000Z

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  6. Process for the extraction of strontium from acidic solutions

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01T23:59:59.000Z

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  7. Process for the extraction of strontium from acidic solutions

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1994-09-06T23:59:59.000Z

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.

  8. Reducing Energy Usage in Extractive Distillation

    E-Print Network [OSTI]

    Saxena, A. C.; Bhandari, V. A.

    , .. ~ REDUCING ENERGY USAGE IN,EXTRACTIVE DISTILLATION A. C. Saxena V. A. Bhandari Polysar Limited Sarnia, Ontario, Canada Abstract Butadiene 1:3 is separated from other C. hydrocarbons by extractive distillation in a sieve plate tower.... To improve the energy efficiency, butadiene recovery and productivity of the extractive distillation process, many process changes have been made. Their rationale, the methodology used to implement the various changes, and how they affected the process...

  9. HYDROCARBONS FROM AUSTRALIAN OIL, 200 MILLION YEARS OLD

    E-Print Network [OSTI]

    Van Hoeven, William; Haug, Pat; Burlingame, A.L.; Calvin, Kelvin.

    1966-01-01T23:59:59.000Z

    of Moonie Oil "Branched- Cyclic" Hydrocarbon FractionNo. W -7405 -eng -48 HYDROCARBONS FROM AUSTRALIAN OIL, 200and Melvin Calvin July HYDROCARBONS FROM AUSTRALIAN OIL, 200

  10. Enrichment of light hydrocarbon mixture

    DOE Patents [OSTI]

    Yang; Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

    2010-08-10T23:59:59.000Z

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  11. Enrichment of light hydrocarbon mixture

    DOE Patents [OSTI]

    Yang, Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

    2011-11-29T23:59:59.000Z

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  12. Method for producing viscous hydrocarbons

    DOE Patents [OSTI]

    Poston, Robert S. (Winter Park, FL)

    1982-01-01T23:59:59.000Z

    A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.

  13. aromatic hydrocarbon components: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AROMATIC HYDROCARBONS 2005 April 19 ABSTRACT Interstellar polycyclic aromatic hydrocarbon (PAH) infrared emission features 26 Dehydrogenation of polycyclic aromatic...

  14. Fuel Cell Technologies Office Overview: 2015 Hydrogen, Hydrocarbons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview: 2015 Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Fuel Cell Technologies Office Overview: 2015 Hydrogen, Hydrocarbons, and Bioproduct...

  15. Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Abstract: Many...

  16. Clar number of catacondensed benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Clar number of catacondensed benzenoid hydrocarbons Sandi KlavŸzar a,# , Petra Ÿ Zigert a , Ivan hydrocarbon: CL is equal to the minimum number of straight lines required to intersect all hexagons theory; Clar formula; Clar number; Resonance graph; Benzenoid hydrocarbons 1. Introduction Within

  17. Aromaticity of Polycyclic Conjugated Hydrocarbons Milan Randic*

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    Aromaticity of Polycyclic Conjugated Hydrocarbons Milan Randic´* National Institute of Chemistry Chemistry 3462 G. Clar 6n Rule versus Hu¨ckel 4n + 2 Rule 3464 H. Hydrocarbons versus Heteroatomic Systems Ordering 3476 VI. On Enumeration of Benzenoid Hydrocarbons 3477 VII. Kekule´ Valence Structures Count 3479

  18. Clar number of catacondensed benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Clar number of catacondensed benzenoid hydrocarbons Sandi Klavzara, , Petra Zigerta , Ivan Gutmanb sextets in any of the Clar formulae) of a catacondensed benzenoid hydrocarbon: CL is equal to the minimum; Resonance graph; Benzenoid hydrocarbons 1. Introduction Within the theory that was formulated [1, 2

  19. Cuticular Hydrocarbon Research1 Marion Page2

    E-Print Network [OSTI]

    Standiford, Richard B.

    Cuticular Hydrocarbon Research1 Marion Page2 We have been studying existing taxonomies of forest in the utility of cuticular (surface) hydrocarbons as taxonomic characters (Haverty and others 1988, 1989, Page to be genetically fixed. Because the insects studied so far synthesize all or most of their hydrocarbon components

  20. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect (OSTI)

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-01-22T23:59:59.000Z

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  1. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect (OSTI)

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  2. Metagenomics for Greener Production and Extraction of Hydrocarbon Energy

    E-Print Network [OSTI]

    Gieg, Lisa

    ............................................................................11 6.2.1 Oil and Gas Conservation Act..............................................................................................11 6.2.2 Oil and Gas Conservation Regulations.............................14 6.2.4 ERCB Directive 065: Resources Applications for Oil and Gas Reservoirs

  3. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BYAbrasion and Erosion TestingAlgal

  4. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat Pump BasicsAlexander Dane AboutDepartment

  5. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic| NationalAlexanderAlgal Biology

  6. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - BuildinginauguralAlexandria ClarkAlgalofBETOAlgal

  7. Underground caverns for hydrocarbon storage

    SciTech Connect (OSTI)

    Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

    1998-12-31T23:59:59.000Z

    Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

  8. Deep desulfurization of hydrocarbon fuels

    DOE Patents [OSTI]

    Song, Chunshan (State College, PA); Ma, Xiaoliang (State College, PA); Sprague, Michael J. (Calgary, CA); Subramani, Velu (State College, PA)

    2012-04-17T23:59:59.000Z

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  9. Occurrence of chlorinated polynuclear aromatic hydrocarbons in tap water

    SciTech Connect (OSTI)

    Shiraishi, H.; Pilkington, N.H.; Otsuki, A.; Fuwa, K.

    1985-07-01T23:59:59.000Z

    Organic compounds in tap waters were extracted by a modified continuous liquid-liquid extractor and analyzed by computerized gas chromatography/mass spectrometry using a fused silica capillary column. The results indicate the presence of monochlorinated derivatives of naphthalene, dibenzofuran, fluorene, fluorenone, phenanthrene, and fluoranthene and dichlorinated derivatives of naphthalene, phenanthrene, and fluoranthene. The parent polynuclear aromatic hydrocarbons (PAHs) and their oxygenated derivatives such as fluorenone and anthraquinone were also found. It was demonstrated that chlorinated PAHs (Cl-PAHs) were really present in tap waters at 10/sup -1/-10/sup -2/ ng/L levels.

  10. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect (OSTI)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01T23:59:59.000Z

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  11. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, S.S.; Chang, Y.A.; Gatsis, J.G.; Funk, E.W.

    1988-06-14T23:59:59.000Z

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  12. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Westmont, IL); Gatsis, John G. (Des Plaines, IL); Funk, Edward W. (Highland Park, IL)

    1988-01-01T23:59:59.000Z

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  13. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  14. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Digestion and Hydrocarbon Precursor Production Presentation by Meltem Urgun-Demirtas, Argonne National Laboratory, during the "Targeting High-Value Challenges" panel at the...

  15. Hydrocarbon Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project JumpHyEnergyHydrocarbon Technologies

  16. Hydrocarbon-free resonance transition 795 nm rubidium laser

    E-Print Network [OSTI]

    Wu, Sheldon Shao Quan

    2009-01-01T23:59:59.000Z

    and R. J. Beach, "Hydrocarbon-free resonance transition 795-a Reliable Diode-Pumped Hydrocarbon-Free 795-nm Rubidiumand R. J. Beach, "Hydrocarbon-free resonance transition 795-

  17. Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems

    E-Print Network [OSTI]

    Long, Bernard

    hydrothermal alteration to produce hydrocarbons via a Fischer­Tropsch synthesis. As a result, hydrocarbons alteration; Abiogenic hydrocarbons; Fischer­Tropsch; HFSE mineralization; Strange Lake Lithos 91 (2006) 19

  18. Hydrocarbon conversion process and catalysts

    SciTech Connect (OSTI)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1989-08-15T23:59:59.000Z

    This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.40 A, a water adsorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of between 10% and 15% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; am amorphous cracking component, a binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

  19. Conversion of organic solids to hydrocarbons

    DOE Patents [OSTI]

    Greenbaum, Elias (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

  20. Conversion of organic solids to hydrocarbons

    DOE Patents [OSTI]

    Greenbaum, E.

    1995-05-23T23:59:59.000Z

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

  1. Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Breakout Session 2: Frontiers and...

  2. Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Poster presented at the 16th Directions...

  3. Biological Conversion of Sugars to Hydrocarbons Technology Pathway...

    Broader source: Energy.gov (indexed) [DOE]

    for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Biological Conversion of Sugars to Hydrocarbons...

  4. Sampling precautions for the measurement of nitrated polycyclic aromatic hydrocarbons in ambient air

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Sampling precautions for the measurement of nitrated polycyclic aromatic hydrocarbons in ambient of polycyclic aromatic hydrocarbons (PAHs) and of their oxidation products, such as nitrated and oxygenated PAHs hydrocarbons; Nitrated polycyclic aromatic hydrocarbons; Oxygenated polycyclic aromatic hydrocarbons; Sampling

  5. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two aromatic hydrocarbons, 17 nitrated PAHs (NPAHs) and 8 oxygenated PAHs (OPAHs) were carried out during hydrocarbons; Nitrated polycyclic aromatic hydrocarbons; Oxygenated polycyclic aromatic hydrocarbons

  6. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect (OSTI)

    Michael Batzle

    2006-04-30T23:59:59.000Z

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Gas saturated reservoirs change reflection amplitudes significantly. The goal for the final project period was to systematically combine and document these various effects for use in deep water exploration and transfer this knowledge as clearly and effectively as possible.

  7. Effective Viscosity of Confined Hydrocarbons

    E-Print Network [OSTI]

    I. M. Sivebaek; V. N. Samoilov; B. N. J. Persson

    2012-01-24T23:59:59.000Z

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity \\mu eff for nanometer-thin films depends linearly on the logarithm of the shear rate: log(effective viscosity) = C - n log (shear rate), where n varies from 1 (solidlike friction) at very low temperatures to 0 (Newtonian liquid) at very high temperatures, following an inverse sigmoidal curve. Only the shortest chain molecules melt, whereas the longer ones only show a softening in the studied temperature interval 0 < T < 900 K. The results are important for the frictional properties of very thin (nanometer) films and to estimate their thermal durability.

  8. Cesium and strontium extraction using a mixed extractant solvent including crown ether and calixarene extractants

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)

    2007-11-06T23:59:59.000Z

    A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.

  9. Hydrocarbon anomaly in soil gas as near-surface expressions of upflows and outflows in geothermal systems

    SciTech Connect (OSTI)

    Ong, H.L.; Higashihara, M.; Klusman, R.W.; Voorhees, K.J.; Pudjianto, R.; Ong, J

    1996-01-24T23:59:59.000Z

    A variety of hydrocarbons, C1 - C12, have been found in volcanic gases (fumarolic) and in geothermal waters and gases. The hydrocarbons are thought to have come from products of pyrolysis of kerogen in sedimentary rocks or they could be fed into the geothermal system by the recharging waters which may contain dissolved hydrocarbons or hydrocarbons extracted by the waters from the rocks. In the hot geothermal zone, 300°+ C, many of these hydrocarbons are in their critical state. It is thought that they move upwards due to buoyancy and flux up with the upflowing geothermal fluids in the upflow zones together with the magmatic gases. Permeability which could be provided by faults, fissures, mini and micro fractures are thought to provide pathways for the upward flux. A sensitive technique (Petrex) utilizing passive integrative adsorption of the hydrocarbons in soil gas on activated charcoal followed by desorption and analysis of the hydrocarbons by direct introduction mass spectrometry allows mapping of the anomalous areas. Surveys for geothermal resources conducted in Japan and in Indonesia show that the hydrocarbon anomaly occur over known fields and over areas strongly suspected of geothermal potential. The hydrocarbons found and identified were n-paraffins (C7-C9) and aromatics (C7-C8). Detection of permeable, i.e. active or open faults, parts of older faults which have been reactivated, e.g. by younger intersecting faults, and the area surrounding these faulted and permeable region is possible. The mechanism leading to the appearance of the hydrocarbon in the soil gas over upflow zones of the geothermal reservoir is proposed. The paraffins seems to be better pathfinders for the location of upflows than the aromatics. However the aromatics may, under certain circumstances, give better indications of the direction of the outflow of the geothermal system. It is thought that an upflow zone can be defined when conditions exist where the recharging waters containing the hydrocarbons feed into the geothermal kitchen. The existence of open and active faults, fissures, mini and micro fractures allow sufficient permeability for the gases to flux up and express themselves at the surface as hydrocarbon anomaly in the soil gas. When any of the requirements is absent, i.e. in the absence of the recharging waters, hydrocarbons, temperature, or permeability, no anomaly can be expected. It assumes a dynamic convective system, i.e. recharging waters, upflow and outflow. The anomalies however can define to a certain extent, regions of geothermal upflow, buoyant transport of gases, and frequently down-gradient of cooling waters.

  10. Extractant composition including crown ether and calixarene extractants

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocalello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)

    2009-04-28T23:59:59.000Z

    An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.

  11. Solubilization of petroleum hydrocarbons using biosurfactants

    E-Print Network [OSTI]

    Kanga, Shahrukh

    1995-01-01T23:59:59.000Z

    that bioavailability of the crude oil to the microorganisms limited the degradation rates (Mills, 1994). Preliminary experiments at our laboratories have also indicated enhanced solubilities of petroleum hydrocarbons due to the effects of biosurfactants (Kanga et al...

  12. Water solubility data for 151 hydrocarbons

    SciTech Connect (OSTI)

    Yaws, C.L.; Pan, Xiang; Lin, Xiaoyin (Lamar Univ., Beaumont, TX (United States))

    1993-02-01T23:59:59.000Z

    The solubility of a hydrocarbon in water is important from both an environmental and a safety perspective. This information is required by engineers who design or operate stripping processes that remove hydrocarbons from air or water, or who must determine the amount of a hydrocarbon that has dissolved in water following a chemical spill. In particular, the water solubilities of paraffins are increasingly important because of more-stringent government regulations. Paraffins, along with naphthenes and aromatics, are the three major components of unrefined fuels. The water solubilities of 151 paraffins are listed in tables. The data are valid between 25 and 121 C, typical temperature in air- and steam-stripping operations. Also included is a correlation equation that allows users to estimate hydrocarbon solubilities above the given temperature range.

  13. Toxicity Analysis of Polycyclic Aromatic Hydrocarbon Mixtures

    E-Print Network [OSTI]

    Naspinski, Christine S.

    2010-01-16T23:59:59.000Z

    Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment and are generated by many sources. Though the potential of PAH-rich mixtures to cause health effects has been known for almost a century, there are still unanswered...

  14. Solubilization of petroleum hydrocarbons using biosurfactants 

    E-Print Network [OSTI]

    Kanga, Shahrukh

    1995-01-01T23:59:59.000Z

    Low solubility of petroleum hydrocarbons in water is the major factor limiting the degradation rates of these compounds (Zhang and Miller, 1994). The fraction that is more soluble in the aqueous phase is degraded at higher rates, while less soluble...

  15. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    SciTech Connect (OSTI)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18T23:59:59.000Z

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  16. Hydrocarbon habitat of the west Netherlands basin

    SciTech Connect (OSTI)

    De Jager, J. (Nederlandse Aardolie Maatschappij, Assen (Netherlands)); Doyle, M. (Petroleum Development Oman, Muscat (Oman)); Grantham, P. (KSEPL/Shell Research, Rijswijk (Netherlands)); Mabillard, J. (Shell Nigeria, Port Harcourt (Nigeria))

    1993-09-01T23:59:59.000Z

    The complex West Netherlands Basin contains oil and gas in Triassic and Upper Jurassic to Cretaceous clastic reservoir sequences. The understanding has always been that the Carboniferous coal measures have generated only gas and the Jurassic marine Posidonia Shale only oil. However, detailed geochemical analyses show that both source rocks have generated oil and gas. Geochemical fingerprinting established a correlation of the hydrocarbons with the main source rocks. The occurrence of these different hydrocarbons is consistent with migration routes. Map-based charge modeling shows that the main phase of hydrocarbon generation occurred prior to the Late Cretaceous inversion of the West Netherlands Basin. However, along the southwest flank of the basin and in lows between the inversion highs, significant charge continued during the Tertiary. Biodegradation of oils in Jurassic and Cretaceous reservoirs occurred during the earliest Tertiary, but only in reservoirs that were at that time at temperatures of less then 70 to 80[degrees]C, where bacteria could survive. This study shows that also in a mature hydrocarbon province an integrated hydrocarbon habitat study with modern analyses and state-of-the-art technology can lead to a much improved understanding of the distribution of oil and gas in the subsurface. The results of this study will allow a better risk assessment for remaining prospects, and an improved prediction of the type of trapped hydrocarbons in terms of gas, oil, and biodegraded oil.

  17. Evaluation and prevention of explosions in soil vapor extraction systems

    SciTech Connect (OSTI)

    Hower, J.W. [Radian Corp., El Segundo, CA (United States)

    1995-12-31T23:59:59.000Z

    Due to the widespread and long term use of petroleum derived fuels and solvents, many areas have subsurface soils contaminated with petroleum derivatives. This contamination can migrate to groundwater, which is frequently used to supply drinking water needs. A common method of cleaning up that contamination is soil vapor extraction (SVE). SVE is a technique where several extraction wells are installed in the contaminated area, with screens in the appropriate vertical locations. The soil vapors re extracted form the wells using a positive displacement blower. To prevent this subsurface contamination from becoming air pollution, the extracted vapors are then sent to some hydrocarbon removal device, such as a carbon adsorption system or a thermal oxidizer. The data used in this investigation were collected as part of a Radian Corporation project for a client. The site is a former petroleum refinery, and the hydrocarbons are primarily gasoline and diesel.

  18. Isolation, Determination of Absolute Stereochemistry, and Asymmetric Synthesis of Insect Methyl-Branched Hydrocarbons

    E-Print Network [OSTI]

    Bello, Jan Edgar

    2014-01-01T23:59:59.000Z

    d’Ettore, P. In Insect Hydrocarbons: Biology, Biochemistry,A.G. In Insect Hydrocarbons: Biology, Biochemistry, ChemicalMillar, J.G. In Insect Hydrocarbons: Biology, Biochemistry,

  19. Massively-parallel electrical-conductivity imaging of hydrocarbons using the Blue Gene/L supercomputer

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    CONDUCTIVITY IMAGING OF HYDROCARBONS USING THE BLUE GENE/Lidentification of hydrocarbon filled layers in deepwater,”Remote sensing of hydrocarbon layers by seabed logging (

  20. Fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  1. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect (OSTI)

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  2. Using supercritical fluids to refine hydrocarbons

    DOE Patents [OSTI]

    Yarbro, Stephen Lee

    2014-11-25T23:59:59.000Z

    This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

  3. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-11-26T23:59:59.000Z

    A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.

  4. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two;2 Abstract The size distribution of polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives of compounds. Keywords: Polycyclic aromatic hydrocarbons; Nitrated polycyclic aromatic hydrocarbons; Oxygenated

  5. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-03-30T23:59:59.000Z

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of environmental parameters on bioremediation is important in designing a bioremediation system to reduce petroleum hydrocarbon concentrations in impacted soils.

  6. Extractant composition

    DOE Patents [OSTI]

    Smith, Barbara F. (Los Alamos, NM); Jarvinen, Gordon D. (Los Alamos, NM); Ryan, Robert R. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    An organic extracting solution useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  7. Catalysts for synthesizing various short chain hydrocarbons

    DOE Patents [OSTI]

    Colmenares, Carlos (Alamo, CA)

    1991-01-01T23:59:59.000Z

    Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).

  8. Calculating the hyperWiener index of benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Calculating the hyper­Wiener index of benzenoid hydrocarbons Petra Zigert1 , Sandi Klavzar1) is not easy, especially in the case of large polycyclic molecules, such as benzenoid hydrocarbons. Some time

  9. Calculating the hyper--Wiener index of benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Calculating the hyper--Wiener index of benzenoid hydrocarbons Petra Ÿ Zigert 1 , Sandi KlavŸ zar 1. (1) is not easy, especially in the case of large polycyclic molecules, such as benzenoid hydrocarbons

  10. Sustainable treatment of hydrocarbon-contaminated industrial land 

    E-Print Network [OSTI]

    Cunningham, Colin John

    2012-06-25T23:59:59.000Z

    Land contamination by petroleum hydrocarbons is a widespread and global environmental pollution issue from recovery and refining of crude oil and the ubiquitous use of hydrocarbons in industrial processes and applications. ...

  11. Seismic Analysis Using Wavelet Transform for Hydrocarbon Detection

    E-Print Network [OSTI]

    Cai, Rui

    2012-02-14T23:59:59.000Z

    result in successful hydrocarbon finds because abnormal seismic amplitude variations can sometimes be caused by other factors, such as alternative lithology and residual hydrocarbons in certain depositional environments. Furthermore, not all gas fields...

  12. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. acep03rappe.pdf More Documents & Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO...

  13. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (OFCVT). deer07rappe.pdf More Documents & Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO...

  14. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Broader source: Energy.gov (indexed) [DOE]

    rappe.pdf More Documents & Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in...

  15. Effect of surface derived hydrocarbon impurities on Ar plasma properties

    SciTech Connect (OSTI)

    Fox-Lyon, Nick; Oehrlein, Gottlieb S., E-mail: Oehrlein@umd.edu [Department of Materials Science and Engineering and the Institute for Research and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Godyak, Valery [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122 (United States)

    2014-05-15T23:59:59.000Z

    The authors report on Langmuir probe measurements that show that hydrocarbon surfaces in contact with Ar plasma cause changes of electron energy distribution functions due to the flux of hydrogen and carbon atoms released by the surfaces. The authors compare the impact on plasma properties of hydrocarbon species gasified from an etching hydrocarbon surface with injection of gaseous hydrocarbons into Ar plasma. They find that both kinds of hydrocarbon injections decrease electron density and slightly increase electron temperatures of low pressure Ar plasma. For low percentages of impurities (?1% impurity in Ar plasma explored here), surface-derived hydrocarbon species and gas phase injected hydrocarbon molecules cause similar changes of plasma properties for the same number of hydrocarbon molecules injected into Ar with a decrease in electron density of ?4%.

  16. Method and apparatus for low temperature destruction of halogenated hydrocarbons

    DOE Patents [OSTI]

    Reagen, William Kevin (Stillwater, MN); Janikowski, Stuart Kevin (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A method and apparatus for decomposing halogenated hydrocarbons are provided. The halogenated hydrocarbon is mixed with solvating agents and maintained in a predetermined atmosphere and at a predetermined temperature. The mixture is contacted with recyclable reactive material for chemically reacting with the recyclable material to create dehalogenated hydrocarbons and halogenated inorganic compounds. A feature of the invention is that the process enables low temperature destruction of halogenated hydrocarbons.

  17. Hydrocarbon Formation in Metallic Iron/Water Systems

    E-Print Network [OSTI]

    Deng, Baolin

    Hydrocarbon Formation in Metallic Iron/Water Systems B A O L I N D E N G , , § T I M O T H Y J . C-labeled hydrocarbons are produced. In the absence of chlorinated ethenes, however, lower con- centrations of many of the same hydrocarbons (methane and C2-C6 alkanes and alkenes) are also produced. Hardy and Gillham (1996

  18. RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS PART I: ALLENE developed in our laboratory for the reactions of C3-C4 unsaturated hydrocarbons. The main reaction pathways2007 #12;3 INTRODUCTION Soots and polyaromatic hydrocarbons (PAH), which are present in the exhaust gas

  19. The Production of Non-Methane Hydrocarbons by Marine Plankton

    E-Print Network [OSTI]

    The Production of Non-Methane Hydrocarbons by Marine Plankton Stephanie Lyn Shaw Center for Global://web.mit.edu/cgcs/ Printed on recycled paper #12;1 The Production of Non-Methane Hydrocarbons by Marine Plankton by Stephanie of Non-Methane Hydrocarbons by Marine Plankton by Stephanie Lyn Shaw Submitted to the Department of Earth

  20. Binary coding of Kekule structures of catacondensed benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Binary coding of Kekul´e structures of catacondensed benzenoid hydrocarbons Sandi Klavzar of benzenoids Key words: benzenoid hydrocarbons, benzenoid graph, resonance graph, Kekul´e structure, algorithm easily be recovered from its binary code. Key words: benzenoid hydrocarbons, benzenoid graph, resonance

  1. Atomic displacements due to spinspin repulsion in conjugated alternant hydrocarbons

    E-Print Network [OSTI]

    Benzi, Michele

    Atomic displacements due to spin­spin repulsion in conjugated alternant hydrocarbons Ernesto-induced atomic displacements in conjugated alt- ernant hydrocarbons. It appears to be responsible alternant hydrocarbons (CAHs) have played a fun- damental role in the development of theoretical chemistry

  2. Wiener Numbers of Pericondensed Benzenoid Hydrocarbons Sandi Klav zar

    E-Print Network [OSTI]

    Klavzar, Sandi

    Wiener Numbers of Pericondensed Benzenoid Hydrocarbons Sandi Klav#20;zar Department of Mathematics expressions for W for several homologous series of pericondensed benzenoid hydrocarbons. An elementary proof polycyclic systems studied were catacondensed benzenoid hydrocarbons. 11{14 Few years ago the situation

  3. Original article Hydrocarbons and monoesters of propolis waxes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Hydrocarbons and monoesters of propolis waxes from Brazil Giuseppina Negri* Maria yielded mono- esters as main constituents, followed by hydrocarbons. The methyl and acetyl esters of the car- boxylic acids and alcohols, respectively, derived from the monoesters, and the hydrocarbons were

  4. Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are

    E-Print Network [OSTI]

    Bradfield, Christopher A.

    Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different for review June 7, 2005) The aryl hydrocarbon receptor (AHR) plays a role in three areas of biology recombinase ductus venosus endothelial cell hepatocyte dioxin The aryl hydrocarbon receptor (AHR) is a basic

  5. Binary coding of Kekule structures of catacondensed benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Binary coding of Kekulâ??e structures of catacondensed benzenoid hydrocarbons Sandi KlavŸzar, aâ??e structures of benzenoids Key words: benzenoid hydrocarbons, benzenoid graph, resonance graph, Kekul easily be recovered from its binary code. Key words: benzenoid hydrocarbons, benzenoid graph, resonance

  6. Method for removing chlorine compounds from hydrocarbon mixtures

    DOE Patents [OSTI]

    Janoski, E.J.; Hollstein, E.J.

    1984-09-29T23:59:59.000Z

    A process for removing halide ions from a hydrocarbon feedstream containing halogenated hydrocarbons wherein the contaminated feedstock is contacted with a solution of a suitable oxidizing acid containing a lanthanide oxide, the acid being present in a concentration of at least about 50 weight percent for a time sufficient to remove substantially all of the halide ion from the hydrocarbon feedstock.

  7. Production of hydrocarbons from hydrates. [DOE patent application

    DOE Patents [OSTI]

    McGuire, P.L.

    1981-09-08T23:59:59.000Z

    An economical and safe method of producing hydrocarbons (or natural gas) from in situ hydrocarbon-containing hydrates is given. Once started, the method will be self-driven and will continue producing hydrocarbons over an extended period of time (i.e., many days).

  8. Simultaneous analysis of oxygenated and nitrated polycylic aromatic hydrocarbons on standard reference material 1649a (urban dust) and

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Simultaneous analysis of oxygenated and nitrated polycylic aromatic hydrocarbons on standard nitrated polycylic aromatic hydrocarbons (NPAHs) and 9 oxygenated polycylic aromatic hydrocarbons (OPAHs aromatic hydrocarbons; Nitrated polycyclic aromatic hydrocarbons; Oxygenated polycyclic aromatic

  9. Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates

    DOE Patents [OSTI]

    Elliott, G.R.B.; Barraclough, B.L.; Vanderborgh, N.E.

    1981-02-19T23:59:59.000Z

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus, and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  10. Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates

    DOE Patents [OSTI]

    Elliott, Guy R. B. (Los Alamos, NM); Barraclough, Bruce L. (Santa Fe, NM); Vanderborgh, Nicholas E. (Los Alamos, NM)

    1983-01-01T23:59:59.000Z

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  11. Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates

    DOE Patents [OSTI]

    Elliott, Guy R. B. (Los Alamos, NM); Barraclough, Bruce L. (Santa Fe, NM); Vanderborgh, Nicholas E. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  12. Method of dispersing a hydrocarbon using bacteria

    DOE Patents [OSTI]

    Tyndall, Richard L. (Clinton, TN)

    1996-01-01T23:59:59.000Z

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  13. Method of dispersing a hydrocarbon using bacteria

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-09-24T23:59:59.000Z

    A new protozoan derived microbial consortia and method for their isolation are provided. The isolated consortia and bacteria are useful for treating wastes such as trichloroethylene and trinitrotoluene. The isolated consortia, bacteria, and dispersants are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  14. Metal extraction

    SciTech Connect (OSTI)

    Covington, J.W.; Whittemore, R.G.

    1980-10-21T23:59:59.000Z

    In a process according to the present invention uranium is extracted into solution from its ore by leaching with an aqueous solution containing peroxomonosulphuric acid, the peroxoacid oxidizing the uranium through to its hexavalent state. Preferably the leaching is carried out at a temperature in the range of 50* to 100* C. The leach liquor can initially contain additional amounts of sulphuric acid or merely that present by virtue of the method of making the peroxomonosulphuric acid. In a preferred method of operation, the peroxoacid is introduced progressively into the leach liquor during the course of the leaching so as to maintain an electrochemical potential in the range of 450 to 650 mV. By use of the process, uranium is cleanly extracted into solution.

  15. Plasma-assisted conversion of solid hydrocarbon to diamond

    DOE Patents [OSTI]

    Valone, Steven M. (Santa Fe, NM); Pattillo, Stevan G. (Los Alamos, NM); Trkula, Mitchell (Los Alamos, NM); Coates, Don M. (Santa Fe, NM); Shah, S. Ismat (Wilmington, DE)

    1996-01-01T23:59:59.000Z

    A process of preparing diamond, e.g., diamond fiber, by subjecting a hydrocarbon material, e.g., a hydrocarbon fiber, to a plasma treatment in a gaseous feedstream for a sufficient period of time to form diamond, e.g., a diamond fiber is disclosed. The method generally further involves pretreating the hydrocarbon material prior to treatment with the plasma by heating within an oxygen-containing atmosphere at temperatures sufficient to increase crosslinking within said hydrocarbon material, but at temperatures insufficient to melt or decompose said hydrocarbon material, followed by heating at temperatures sufficient to promote outgassing of said crosslinked hydrocarbon material, but at temperatures insufficient to convert said hydrocarbon material to carbon.

  16. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOE Patents [OSTI]

    Knauss, Kevin G. (Livermore, CA); Copenhaver, Sally C. (Livermore, CA); Aines, Roger D. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  17. Development of Extraction Techniques for the Detection of Signature Lipids from Oil

    SciTech Connect (OSTI)

    Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry; Mason, Olivia

    2010-05-17T23:59:59.000Z

    Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.

  18. Method for extracting lanthanides and actinides from acid solutions by modification of purex solvent

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Kalina, Dale G. (Naperville, IL)

    1986-01-01T23:59:59.000Z

    A process for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  19. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOE Patents [OSTI]

    Horwitz, E.P.; Kalina, D.G.

    1986-03-04T23:59:59.000Z

    A process is described for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula as shown in a diagram where [phi] is phenyl, R[sup 1] is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R[sup 2] is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions. 6 figs.

  20. Method and apparatus for synthesizing hydrocarbons

    DOE Patents [OSTI]

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1983-06-21T23:59:59.000Z

    A method and apparatus for synthesizing a mixture of hydrocarbons having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further includes Na present as a substitutional cation in an amount of about 5 to 10 atom %. At a temperature of about 340 to 360/sup 0/C, and at pressures of about 20 to 50 atm, CH/sub 3/OH is produced in an amount of about 90 wt % of the total hydrocarbon mixture, and comprised 1 mole % of the effluent gas.

  1. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01T23:59:59.000Z

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  2. Behavioral toxicology, risk assessment, and chlorinated hydrocarbons

    SciTech Connect (OSTI)

    Evangelista de Duffard, A.M.; Duffard, R. [Laboratorio de Toxicologia Experimental, Santa Fe (Argentina)

    1996-04-01T23:59:59.000Z

    Behavioral end points are being used with greater frequency in neurotoxicology to detect and characterize the adverse effects of chemicals on the nervous system. Behavioral measures are particularly important for neurotoxicity risk assessment since many known neurotoxicants do not result in neuropathology. The chlorinated hydrocarbon class consists of a wide variety of chemicals including polychlorinated biphenyls, clioquinol, trichloroethylene, hexachlorophene, organochlorine insecticides (DDT, dicofol, chlordecone, dieldrin, and lindane), and phenoxyherbicides. Each of these chemicals has effects on motor, sensory, or cognitive function that are detectable using functional measures such as behavior. Furthermore, there is evidence that if exposure occurs during critical periods of development, many of the chlorinated hydrocarbons are developmental neurotoxicants. Developmental neurotoxicity is frequently expressed as alterations in motor function or cognitive abilities or charges in the ontogeny of sensorimotor reflexes. Neurotoxicity risk assessment should include assessments of the full range of possible neurotoxicological effects, including both structural and functional indicators of neurotoxicity. 121 refs., 1 tab.

  3. Conversion method for gas streams containing hydrocarbons

    DOE Patents [OSTI]

    Mallinson, Richard G. (Norman, OK); Lobban, Lance (Norman, OK); Liu, Chang-jun (Tianjin, CN)

    2000-01-01T23:59:59.000Z

    An apparatus and a method of using the apparatus are provided for converting a gas stream containing hydrocarbons to a reaction product containing effluent molecules having at least one carbon atom, having at least one interior surface and at least one exterior surface, a first electrode and a second electrode with the first and second electrodes being selectively movable in relation to each other and positioned within the housing so as to be spatially disposed a predetermined distance from each other, a plasma discharge generator between the first and second electrodes, gas stream introducer and a collector for collecting the reaction product effluent produced by the reaction of the gas stream containing hydrocarbons with the plasma discharge between the first and second electrodes.

  4. Getter pump for hydrogen and hydrocarbon gases

    DOE Patents [OSTI]

    Hsu, Wen Ling

    1987-10-14T23:59:59.000Z

    A gettering device for hydrogen isotopes and gaseous hydrocarbons based on the interaction of a plasma and graphite used as cathodic material. The plasma is maintained at a current density within the range of about 1 to about 1000 mA/cm/sup 2/. The graphite may be heated to a temperature greater than 1000/degree/C. The new device offers high capacity, low noise, and gas species selectivity. 2 figs.

  5. Production of synthetic hydrocarbon fuels from peat

    SciTech Connect (OSTI)

    Bodle, W.W.; Punwani, D.; Weil, S.A.

    1982-06-22T23:59:59.000Z

    A process and apparatus for production of synthetic hydrocarbon fuels from peat providing wide variation of the composite proportion of liquid-gas output while maintaining high overall carbon conversion to useful fuel. The process and apparatus utilizes three process stages in a single vessel providing functions of drying wet peat, provisions for addition of both wet and dry peat to a hydropyrolysis zone and gasification of the peat char.

  6. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOE Patents [OSTI]

    Kung, H.H.; Chaar, M.A.

    1988-10-11T23:59:59.000Z

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  7. Polynuclear aromatic hydrocarbons on the vegetation of a railroad right-of-way

    E-Print Network [OSTI]

    Hancock, James Leonard

    1969-01-01T23:59:59.000Z

    polynuclear aromatic hydrocarbons (PAH) in the epicuticular leaf waxes of selected plant species growing along a railrcad right-of-way was conduct:ed near Bryan, Texas from October 1967 to February 1969, The objectives of the study were to correlate diesel... locomotive exhaust emissions to PAH on Lhe vege tation of the righL- of way and to compar'e PAH levels on right of way piants to levels on similar species growing in an area isolated from locomotive emissions, The PAH were isolated from leaf wax extracts...

  8. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    SciTech Connect (OSTI)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27T23:59:59.000Z

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  9. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    E-Print Network [OSTI]

    Polidori, A.; Hu, S.; Biswas, S.; Delfino, R. J; Sioutas, C.

    2008-01-01T23:59:59.000Z

    of polycyclic aromatic hydrocarbons in coupled out- door/polycyclic aromatic hydrocarbon concentration in combustionbound polycyclic aromatic hydrocarbons K. A. , Morris, J. ,

  10. Toxicity cutoff of aromatic hydrocarbons for luminescence inhibition of Vibrio fischeri

    E-Print Network [OSTI]

    McFall-Ngai, Margaret

    Toxicity cutoff of aromatic hydrocarbons for luminescence inhibition of Vibrio fischeri So Polycyclic aromatic hydrocarbons a b s t r a c t Effects of individual petroleum hydrocarbons hydrocarbons, including benzene and its derivatives and polycyclic aromatic hydrocarbons (PAHs), were chosen

  11. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha

    E-Print Network [OSTI]

    Lu, Jingnan

    Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in ...

  12. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols

    E-Print Network [OSTI]

    Stephanopoulos, Gregory

    Efforts to improve the production of a compound of interest in Saccharomyces cerevisiae have mainly involved engineering or overexpression of cytoplasmic enzymes. We show that targeting metabolic pathways to mitochondria ...

  13. Elevated circulating branched chain amino acids are an early event in pancreatic adenocarcinoma development

    E-Print Network [OSTI]

    Mayers, Jared R.

    Most patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed with advanced disease and survive less than 12 months. PDAC has been linked with obesity and glucose intolerance, but whether changes in circulating ...

  14. Hydrocarbon Inhibition and HC Storage Modeling in Fe-Zeolite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aging, etc. deer09devarakonda.pdf More Documents & Publications The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR Catalyst CLEERS Aftertreatment Modeling and...

  15. Systems and methods for producing hydrocarbons from tar sands formations

    DOE Patents [OSTI]

    Li, Ruijian (Katy, TX); Karanikas, John Michael (Houston, TX)

    2009-07-21T23:59:59.000Z

    A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.

  16. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of catalyst materials to facilitate the low-temperature oxidation of hydrocarbons and CO in homogeneous charge compression ignition (HCCI) emissions. deer08...

  17. Process for making unsaturated hydrocarbons using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Yuschak, Thomas (Lewis Center, OH); LaPlante, Timothy J. (Columbus, OH); Rankin, Scott (Columbus, OH); Perry, Steven T. (Galloway, OH); Fitzgerald, Sean Patrick (Columbus, OH); Simmons, Wayne W. (Dublin, OH); Mazanec, Terry (Solon, OH) Daymo, Eric (Dublin, OH)

    2011-04-12T23:59:59.000Z

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  18. Ozone production and hydrocarbon reactivity in Hong Kong, Southern China

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Middleton, P. , and Wang, T. : Ozone precursor relationshipsJ. Zhang et al. : Ozone production and hydrocarbonKiang, C. S. : Ground- level ozone pollution in Hong Kong,

  19. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with...

  20. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, G.I.; Dietz, R.N.

    1994-04-05T23:59:59.000Z

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  1. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, Gunnar I. (Patchogue, NY); Dietz, Russell N. (Patchogue, NY)

    1994-01-01T23:59:59.000Z

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  2. adsorption equilibria hydrocarbons: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Page Last Page Topic Index 1 Phase equilibria of polydisperse hydrocarbons: moment free energy method analysis Mathematical Physics (arXiv) Summary: We analyze the phase...

  3. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway...

    Broader source: Energy.gov (indexed) [DOE]

    the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium...

  4. Methods for natural gas and heavy hydrocarbon co-conversion

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Nelson, Lee O. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

    2009-02-24T23:59:59.000Z

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  5. aromatic hydrocarbon carcinogenesis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Ecology Websites Summary: ), and there are oil refineries on the shore. In this environment, input of aromatic hydrocarbons from petroleum and the Yarra River Estuary J. David...

  6. aromatic hydrocarbon tracers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Ecology Websites Summary: ), and there are oil refineries on the shore. In this environment, input of aromatic hydrocarbons from petroleum and the Yarra River Estuary J. David...

  7. Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide...

    Broader source: Energy.gov (indexed) [DOE]

    Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Poster Location P-19 Gregory K. Lilik, Andr L. Boehman Department of Energy & Mineral Engineering EMS Energy...

  8. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage Sludge

    Broader source: Energy.gov [DOE]

    Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste FeedstocksEnhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage...

  9. Fundamental measure theory of hydrated hydrocarbons

    E-Print Network [OSTI]

    Victor F. Sokolov; Gennady N. Chuev

    2006-04-13T23:59:59.000Z

    To calculate the solvation of hydrophobic solutes we have developed the method based on the fundamental measure treatment of the density functional theory. This method allows us to carry out calculations of density profiles and the solvation energy for various hydrophobic molecules with a high accuracy. We have applied the method to the hydration of various hydrocarbons (linear, branched and cyclic). The calculations of the entropic and the enthalpic parts are also carried out. We have examined a question about temperature dependence of the entropy convergence. Finally, we have calculated the mean force potential between two large hydrophobic nanoparticles immersed in water.

  10. Evaluating separator performance for hydrocarbon streams

    SciTech Connect (OSTI)

    Barker, W.F.

    1982-12-27T23:59:59.000Z

    The goal for ideal separator selection and design is to separate the hydrocarbon stream into liquid-free gas and gasfree liquid. Separators are mechanical devices for removing and collecting liquids from natural gas. Verticle, horizontal, and spherical separators and their respective capabilities are described. Coalescing gas separators are designed specifically for the removal of mists, oil fogs, rust, and dust from the gas stream. A table lists estimated fabrication and installation cost, performance rating, and time requirements for each filter-coalescer liquid separator based on gas pressure (psig) and gas volumes (MMcfd).

  11. HYDROCARBONS OF BIOLOGICAL ORIGIN FROM A ONE-BILLION YEAR OLD SEDIMENT

    E-Print Network [OSTI]

    Eglinton, Geoffrey.; Scott, P.M.; Belsky, Ted.; Burlingame, A.L.; Calvin, Melvin.; Cloud Jr., Preston E.

    1964-01-01T23:59:59.000Z

    Contract No. W-7405-eng-48 HYDROCARBONS OF BIOLOGICAL ORIGINAbstract The isoprenoid hydrocarbons, phytane (C 20H4Z) andThe identification of these hydrocarbons augurs well for the

  12. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing

    E-Print Network [OSTI]

    Lovley, Derek

    Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments to simulate the degradation of aromatic hydrocarbons in anaerobic contaminated sediments was investigated as the sole electron acceptor. Providing graphite electrodes as an electron acceptor in hydrocarbon

  13. Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons the in situ anaerobic attenuation of hydrocarbons in a contaminated aquifer underly- ing a former refinery. Metabolite profiles associated with anaerobic hydrocarbon decay revealed the microbial utilization

  14. Lasius niger ants discriminate aphids based on their cuticular hydrocarbons Corsin Langa,1

    E-Print Network [OSTI]

    Richner, Heinz

    Lasius niger ants discriminate aphids based on their cuticular hydrocarbons Corsin Langa,1 chemical communication cuticular hydrocarbon interspecific communication Lasius niger mutualism species covered with aphid cuticular hydrocarbons. Neutral control objects were antennated, but the ants quickly

  15. The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrocarbons on NOx Reduction over Fe-based SCR Catalyst The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR Catalyst Study of effects of hydrocarbons on ammonia storage...

  16. Cyclic Versus Linear Isomers Produced by Reaction of the Methylidyne Radical (CH) with Small Unsaturated Hydrocarbons

    E-Print Network [OSTI]

    Goulay, Fabien

    2010-01-01T23:59:59.000Z

    with Small Unsaturated Hydrocarbons Fabien Goulay, 1, †,‡react with the selected hydrocarbon in a helium gas flow.Small cyclic unsaturated hydrocarbons such as c-C 3 H, c-C 3

  17. HYDROCARBON LIQUID FLOW CALIBRATION SERVICE NIST Special Publication 250-1039

    E-Print Network [OSTI]

    Magee, Joseph W.

    HYDROCARBON LIQUID FLOW CALIBRATION SERVICE NIST Special Publication 250-1039 T. T. Yeh, Jesús and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 #12;Hydrocarbon......................................... 3 4.0 Description of the Hydrocarbon Liquid Flow Standard

  18. The Hydrophobic Effect Drives the Recognition of Hydrocarbons by an Anionic Metal-Ligand Cluster

    E-Print Network [OSTI]

    Biros, Shannon

    2009-01-01T23:59:59.000Z

    Drives the Recognition of Hydrocarbons by an Anionic Metal-Drives the Recognition of Hydrocarbons by an Anionic Metal-including saturated hydrocarbons, 11,12 in aqueous solution,

  19. Solubility of hydrocarbons in salt water

    SciTech Connect (OSTI)

    Yaws, C.L.; Lin, X. (Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering)

    1994-01-01T23:59:59.000Z

    In the design and operation of industrial processes, physical and thermodynamic property data are required. Increasingly stringent regulations are making water solubility of substances even more critical. Water solubility data of naphthenes, or cycloalkanes, is applicable for the complete range of salt concentrations, including water without salt to water saturated with salt. The results are intended for use in initial engineering and environmental applications. Solubility values from the correlation are useful in determining the distribution of a hydrocarbon spill on its contact with sea water. Solubility values at other salt concentrations also may be computed. Results are presented for water solubility of hydrocarbons (naphthenes) as a function of salt concentration (log(S) = A + BX + CX[sup 2]). The correlation constants, A, B and C, are displayed in an easy-to-use tabular format that is applicable for rapid engineering use with the personal computer or hand-held calculator. The results for solubility in salt water are applicable for the complete range of salt concentrations. This range covers water without salt, X = 0, to water saturated with salt, X = 358,700 ppM(wt). Correlation and experimental results are in favorable agreement.

  20. Process for the production of liquid hydrocarbons

    DOE Patents [OSTI]

    Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus

    2006-06-27T23:59:59.000Z

    The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.

  1. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOE Patents [OSTI]

    Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

    1999-01-01T23:59:59.000Z

    A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  2. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOE Patents [OSTI]

    Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

    2000-01-01T23:59:59.000Z

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  3. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOE Patents [OSTI]

    Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

    2001-01-01T23:59:59.000Z

    A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  4. Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants Paul BYRNE prototype working with a scroll compressor was built and tested. A near-industrial prototype is today being regarding hydrocarbons as refrigerants, this article reviews scroll compressor modelling studies

  5. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOE Patents [OSTI]

    Frei, H.; Blatter, F.; Sun, H.

    1999-06-22T23:59:59.000Z

    A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

  6. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  7. ADHESION FORCES BETWEEN MICA SURFACES IN UNDERSATURATED VAPORS OF HYDROCARBONS

    E-Print Network [OSTI]

    Matsuoka, Hiroshige

    ADHESION FORCES BETWEEN MICA SURFACES IN UNDERSATURATED VAPORS OF HYDROCARBONS H. MATSUOKA1 , T] or meniscus force [3], which have been neglected in the conventional and relatively large mechani- cal systems forces between mica surfaces in under- saturated vapors of several kind of hydrocarbon liquids are mea

  8. E-Print Network 3.0 - aromatic hydrocarbons resulting Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Res., 1984, 35, 119-28 Aromatic Hydrocarbons in Waters of Summary: fuel. (d) Lubricating oil. - 300 400 Wavelength (nm) Results Concentrations of aromatic hydrocarbons... Aust. J....

  9. E-Print Network 3.0 - aromatic hydrocarbon concentrations Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Res., 1984, 35, 119-28 Aromatic Hydrocarbons in Waters of Summary: fuel. (d) Lubricating oil. - 300 400 Wavelength (nm) Results Concentrations of aromatic hydrocarbons... Bay...

  10. E-Print Network 3.0 - aromatic hydrocarbons concentrations Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Res., 1984, 35, 119-28 Aromatic Hydrocarbons in Waters of Summary: fuel. (d) Lubricating oil. - 300 400 Wavelength (nm) Results Concentrations of aromatic hydrocarbons... Bay...

  11. The Impact of Low Octane Hydrocarbon Blending Streams on "E85...

    Broader source: Energy.gov (indexed) [DOE]

    The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization...

  12. Heating hydrocarbon containing formations in a line drive staged process

    DOE Patents [OSTI]

    Miller, David Scott (Katy, TX)

    2009-07-21T23:59:59.000Z

    Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

  13. Cogeneration systems and processes for treating hydrocarbon containing formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Fowler, Thomas David (Houston, TX); Karanikas, John Michael (Houston, TX)

    2009-12-29T23:59:59.000Z

    A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

  14. Geology and hydrocarbon prospects of Latvia

    SciTech Connect (OSTI)

    Freimanis, A. (Latvian Dept. of Geology, Riga (Latvia)); Margulis, L.; Brangulis, A.; Kanev, S.; Pomerantseva, R. (Inst. of Marine Geology and Geophysics, Riga (Latvia))

    1993-12-06T23:59:59.000Z

    Oil prospects in Latvia are associated with the Baltic syneclise. Latvia occupies about one fourth of that large tectonic depression; zones of oil accumulation continue there from adjacent areas: the Telshai rampart (Lithuania) and the Leba nose (Polish offshore). The oil prospects in separate areas are determined by their position regarding the sources of oil generation--the Gdansk-Kura and Liepaya depressions. The most prospective areas are the Liepaya-Saldus zone of highs and the Pape-Barta trough. The Liepaya-Saldus zone was situated so that the hydrocarbon migration path crossed it. It probably is an important oil accumulation zone. The paper describes the geology of Latvia and the one oil field in Latvia.

  15. Method and apparatus for synthesizing hydrocarbons

    DOE Patents [OSTI]

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1985-04-16T23:59:59.000Z

    A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

  16. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOE Patents [OSTI]

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14T23:59:59.000Z

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  17. Microbial hydrocarbons: back to the future

    SciTech Connect (OSTI)

    Work, Victoria H.; Beliaev, Alex S.; Konopka, Allan; Posewitz, Matthew C.

    2012-03-01T23:59:59.000Z

    The defining challenge of energy research in the 21st century is the development and deployment of technologies for large-scale reconfiguration of global energy infrastructure. Modern society is built upon a concentrated yet finite reservoir of diverse hydrocarbons formed through the photosynthetic transformation of several hundred million years of solar energy. In human history, the fossil energy era will be short lived and never repeated. Although the timing of peak oil is extensively debated, it is an eventuality. It is, therefore, imperative that projections for both when it will occur and the degree to which supply will fall short of demand be taken into serious consideration, especially in the sectors of energy technology development, political and economic decision making, and societal energy usage. The requirement for renewable energy systems is no longer a point for discussion, and swift advances on many fronts are vital to counteract current and impending crises in both energy and the environment.

  18. Hydrocarbon provinces and productive trends in Libya and adjacent areas

    SciTech Connect (OSTI)

    Missallati, A.A. (Agip (N.A.M.E.)Ltd., Tripoli (Libya))

    1988-08-01T23:59:59.000Z

    According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural relief and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.

  19. Non-Sticking of Helium Buffer Gas to Hydrocarbons

    E-Print Network [OSTI]

    Croft, James F E

    2014-01-01T23:59:59.000Z

    Lifetimes of complexes formed during helium-hydrocarbon collisions at low temperature are estimated for symmetric top hydrocarbons. The lifetimes are obtained using a density-of-states approach. In general the lifetimes are less than 10-100 ns, and are found to decrease with increasing hydrocarbon size. This suggests that clustering will not limit precision spectroscopy in helium buffer gas experiments. Lifetimes are computed for noble-gas benzene collisions and are found to be in reasonable agreement with lifetimes obtained from classical trajectories as reported by Cui {\\it et al}.

  20. Direct conversion of light hydrocarbon gases to liquid fuel

    SciTech Connect (OSTI)

    Kaplan, R.D.; Foral, M.J.

    1992-05-16T23:59:59.000Z

    Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

  1. Molecular and Biochemical Characterization of Hydrocarbon Production in the Green Microalga Botryococcus braunii

    E-Print Network [OSTI]

    Weiss, Taylor Leigh

    2012-10-19T23:59:59.000Z

    Algae biofuels ................................................................................ 1 Algae .............................................................................................. 2 Botryococcus braunii... ..................................................................... 4 General biology ........................................................................ 4 Biofuel potential ....................................................................... 9 Hydrocarbon synthesis...

  2. Hydrocarbons on Harvester Ant (Pogonomyrmex barbatus) Middens Guide Foragers to the Nest

    E-Print Network [OSTI]

    Gordon, Deborah

    Hydrocarbons on Harvester Ant (Pogonomyrmex barbatus) Middens Guide Foragers to the Nest Shelby J hydrocarbons are used by social insects in nestmate recognition. Here, we showed that hydrocarbons found-specific hydrocarbons, which ants use to distinguish nestmates from non-nestmates, are found on the midden pebbles

  3. Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium

    SciTech Connect (OSTI)

    Bogan, B.W. [Univ. of Wisconsin, Madison, WI (United States); Schoenike, B.; Lamar, R.T.; Cullen, D. [Forest Service Forest Products Lab., Madison, WI (United States)

    1996-07-01T23:59:59.000Z

    mRNA extraction from soil and quantitation by competitive reverse transcription-PCR were combined to study the expression of three manganese peroxidase (MnP) genes during removal of polycyclic aromatic hydrocarbons from cultures of Phanerochaete chrysosporium grown in presterilized soil. Periods of high mnp transcript levels and extractable MnP enzyme activity were temporally correlated, although separated by a short (1- to 2-day) lag period. This time frame also coincided with maximal rates of fluorene oxidation and chrysene disappearance in soil cultures, supporting the hypothesis that high ionization potential polycyclic aromatic hydrocarbons are oxidized in soil via MnP-dependent mechanisms. The patterns of transcript abundance over time in soil-grown P. chrysosporium were similar for all three of the mnp mRNAs studied, indicating that transcription of this gene family may be coordinately regulated under these growth conditions. 47 refs., 6 figs., 1 tab.

  4. Hydrocarbon biomarkers, thermal maturity, and depositional setting of tasmanite oil shales from Tasmania, Australia

    SciTech Connect (OSTI)

    Revill, A.T.; Volkman, J.K.; O'Leary, T. (CSIRO Division of Oceanography, Tasmania (Australia)); Summons, R.E.; Boreham, C.J. (Australian Geological Survey Organisation, Canberra (Australia)); Banks, M.R.; Denwer, K. (Univ. of Tasmania (Australia))

    1994-09-01T23:59:59.000Z

    This study represents the first geological and organic geochemical investigation of samples of tasmanite oil shale representing different thermal maturities from three separate locations in Tasmania, Australia. The most abundant aliphatic hydrocarbon in the immature oil shale from Latrobe is a C[sub 19] tricyclic alkane, whereas in the more mature samples from Oonah and Douglas River low molecular weight n-alkanes dominate the extractable hydrocarbon distribution. The aromatic hydrocarbons are predominantly derivatives of tricyclic compounds, with 1,2,8-trimethylphenanthrene increasing in relative abundance with increasing maturity. Geological and geochemical evidence suggests that the sediments were deposited in a marine environment of high latitude with associated cold waters and seasonal sea-ice. It is proposed that the organism contributing the bulk of the kerogen, Tasmanites, occupied an environmental niche similar to that of modern sea-ice diatoms and that bloom conditions coupled with physical isolation from atmospheric CO[sub 2] led to the distinctive [open quotes]isotopically heavy[close quotes] [delta][sup 13]C values for the kerogen. [delta][sup 13]C data from modern sea-ice diatoms supports this hypothesis. Isotopic analysis of n-alkanes in the bitumen suggests a multiple source from bacteria and algae. On the other hand, the n-alkanes generated from closed-system pyrolysis of the kerogen are mainly derived from the preserved Tasmanites biopolymer algaenan. The tricyclic compounds (mean -8[per thousand]) both in the bitumen and pyrolysate, have a common precursor. They are consistently enriched in [sup 13]C compared with the kerogen and probably have a different source from the n-alkanes. The identification of a location where the maturity of the tasmanite oil shale approaches the [open quotes]oil window[close quotes] raises the possibility that it may be a viable petroleum source rock.

  5. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOE Patents [OSTI]

    Kansa, Edward J. (Livermore, CA); Anderson, Brian L. (Lodi, CA); Wijesinghe, Ananda M. (Tracy, CA); Viani, Brian E. (Oakland, CA)

    1999-01-01T23:59:59.000Z

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

  6. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOE Patents [OSTI]

    Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.

    1999-05-25T23:59:59.000Z

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.

  7. aromatic hydrocarbon emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Detection of mid-infrared Aromatic Hydrocarbon Emission Features from the Small Magellanic Cloud Astrophysics...

  8. aromatic hydrocarbon cations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 NEAR-INFRARED SPECTROSCOPY OF NITROGENATED POLYCYCLIC AROMATIC HYDROCARBON CATIONS FROM 0.7 TO 2.5...

  9. aromatic hydrocarbon emission: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Detection of mid-infrared Aromatic Hydrocarbon Emission Features from the Small Magellanic Cloud Astrophysics...

  10. Process for conversion of lignin to reformulated hydrocarbon gasoline

    DOE Patents [OSTI]

    Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

    1999-09-28T23:59:59.000Z

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  11. Mathematical modeling of solid oxide fuel cells using hydrocarbon fuels

    E-Print Network [OSTI]

    Lee, Won Yong, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are high efficiency conversion devices that use hydrogen or light hydrocarbon (HC) fuels in stationary applications to produce quiet and clean power. While successful, HC-fueled SOFCs face ...

  12. Whole Ecosystem Measurements of Biogenic Hydrocarbon Emissions Final Report

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Whole Ecosystem Measurements of Biogenic Hydrocarbon Emissions Final Report ARB Award No. 98 of Environmental Science, Policy, and Management Ecosystem Sciences Division 151 Hilgard Hall University Department of Environmental Science, Policy, and Mangement Ecosystem Sciences Division 151 Hilgard Hall

  13. Petroleum hydrocarbon pollution of urban topsoil in Ibadan city, Nigeria

    SciTech Connect (OSTI)

    Onianwa, P.C. [Univ. of Ibadan (Nigeria)] [Univ. of Ibadan (Nigeria)

    1995-08-01T23:59:59.000Z

    The distribution of total petroleum hydrocarbon in topsoils from various parts of Ibadan city, Nigeria, was studied. Samples were selected from around the following zones: (a) railway tracks, (b) petrol stations, (c) refuse dumps, (d) residential areas, (e) high traffic density areas, (f) mechanical workshops, and (g) control zones. Contamination of the topsoil with hydrocarbons was significant only around petrol stations and mechanical workshops where the factors of accumulation were 10.1 and 4.72, respectively. The general trend in hydrocarbon levels was petrol station > mechanical workshop > refuse dumps > high traffic areas {ge} rail tracks > control residential areas. The results highlight the need to monitor urban environments that are remote from petroleum exploration activities for petroleum hydrocarbon contamination. 19 refs., 3 tabs.

  14. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory U.S. Department of Energy Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Ken Rapp, Liyu Li, Jonathan Male, Dave King...

  15. Biodegradability of select polycyclic aromatic hydrocarbon (pah) mixtures

    E-Print Network [OSTI]

    Desai, Anuradha M.

    2007-04-25T23:59:59.000Z

    Polycyclic aromatic hydrocarbons (PAHs) are environmentally significant because of their ubiquity and the toxicity of some. Their recalcitrance and persistence makes them problematic environmental contaminants. Microbial degradation is considered...

  16. Modeling the biodegradability and physicochemical properties of polycyclic aromatic hydrocarbons

    E-Print Network [OSTI]

    Dimitriou-Christidis, Petros

    2006-10-30T23:59:59.000Z

    The biodegradability and physicochemical properties of unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs) were investigated. The focus was on the development of models expressing the influence of molecular structure and properties...

  17. Faults as potential hydrocarbon barriers, Arroyo Grande, California

    E-Print Network [OSTI]

    Switek, Daniel Paul

    1994-01-01T23:59:59.000Z

    Faulting in a sandstone introduces properties which are different from the country rock. Previous work has shown that these new properties can significantly impede the flow of hydrocarbons through the country rock. This thesis seeks to analyze...

  18. Vertimass licenses ORNL biofuel-to-hydrocarbon conversion technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McCorkle Communications and Media Relations 865.574.7308 Vertimass licenses ORNL biofuel-to-hydrocarbon conversion technology Vertimass LLC, a California-based start-up...

  19. Conversion of methane and acetylene into gasoline range hydrocarbons 

    E-Print Network [OSTI]

    Alkhawaldeh, Ammar

    2000-01-01T23:59:59.000Z

    , indene, azulene, fluorene, and biphenyl substituted compounds. Also, lighter hydrocarbons, such as ethylene and isobutene were produced. The reaction was conducted at different operating temperatures and different molar feed composition. The results...

  20. Biodegradability of select polycyclic aromatic hydrocarbon (pah) mixtures 

    E-Print Network [OSTI]

    Desai, Anuradha M.

    2007-04-25T23:59:59.000Z

    Polycyclic aromatic hydrocarbons (PAHs) are environmentally significant because of their ubiquity and the toxicity of some. Their recalcitrance and persistence makes them problematic environmental contaminants. Microbial degradation is considered...

  1. active natural hydrocarbon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 MPa and 6 MPa have been performed on the hydrocarbon fuel pyrolysis to evaluate the coking Paris-Sud XI, Universit de 2 Assessment of natural and anthropogenic...

  2. Kinetics simulation for natural gas conversion to unsaturated C? hydrocarbons

    E-Print Network [OSTI]

    Yang, Li

    2003-01-01T23:59:59.000Z

    ) techniques are being studied to convert natural gas to useful hydrocarbon liquids, which can be transported with far less cost. Direct pyrolysis of methane, followed by catalytic reaction, is a promising technology that can be commercialized in industry...

  3. Petroleum hydrocarbon-degrading bacteria in the Galveston Bay system

    E-Print Network [OSTI]

    Schropp, Steven James

    1979-01-01T23:59:59.000Z

    of Department) (Membge' ) I, (Member) December, 1979 ABSTRACT Petroleum Hydrocarbon-Degrading Bacteria in the Galveston Bay System {December 1979) Steven James Schropp: B. S. , Texas A&M University Co-Chairmen of Advisory Committee: Dr. John R. Schwarz... about the distribution and abundance of petroleum hydrocarbon-degrad- ing bacteria in the Galveston Bay system. Several parts of the Galveston Bay system were sampled during this study. Petroleum input to the study area ranged from relatively small...

  4. Hydrocarbon-enhanced particulate filter regeneration via microwave ignition

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Brown, David B. (Brighton, MI)

    2010-02-02T23:59:59.000Z

    A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

  5. Origin of gaseous hydrocarbons in east-central Texas groundwaters

    E-Print Network [OSTI]

    Coffman, Bryan Keith

    1988-01-01T23:59:59.000Z

    ; Follett, 1974). The high transmissivity and sandy lithology of the Sparta are much like those of the Queen City, as is the quality of water. 40 LIGNITE STREAKS 30 Laminated and discontinuous lenticular. Trough cross bedded siltstones. 20 ROAD l... hydrocarbons simply reflects a difference in the 5 C of the substrate. Sparta lignite is about 7%%do enriched in ' C relative to Yegua lignite, comparable to the difference seen in the gaseous hydrocarbons. ACKNOWLEDGMENTS I would like to thank Dr. Steven...

  6. Polycyclic aromatic hydrocarbon distributions in Mississippi Fan sediments

    E-Print Network [OSTI]

    Sandberg, William Allan

    1986-01-01T23:59:59.000Z

    POLYCYCLIC AROMATIC HYDROCARBON DISTRIBUTIONS IN MISSISSIPPI FAN SEDIMENTS A Thesis by WILLIAM ALLAN SANDBERG Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1986 Major Subject: Oceanography POLYCYCLIC AROMATIC HYDROCARBON DISTRIBUTIONS IN MISSISSIPPI FAN SEDIMENTS A Thesis by WILLIAM ALLAN SANDBERG Approved as to style and content by: James M. Brooks (Chairman of Committee) Leis M...

  7. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Biddy, M.; Jones, S.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

  8. Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane

    SciTech Connect (OSTI)

    Deo, M.D.; Hwang, J.; Hanson, F.V.

    1991-01-01T23:59:59.000Z

    Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

  9. Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane

    SciTech Connect (OSTI)

    Deo, M.D.; Hwang, J.; Hanson, F.V.

    1991-12-31T23:59:59.000Z

    Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

  10. Integrated hydrocarbon reforming system and controls

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Thijssen, Johannes; Davis, Robert; Papile, Christopher; Rumsey, Jennifer W.; Longo, Nathan; Cross, III, James C.; Rizzo, Vincent; Kleeburg, Gunther; Rindone, Michael; Block, Stephen G.; Sun, Maria; Morriseau, Brian D.; Hagan, Mark R.; Bowers, Brian

    2003-11-04T23:59:59.000Z

    A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.

  11. Tailoring hydrocarbon streams for asphaltene removal

    SciTech Connect (OSTI)

    Del Bianco, A.; Stroppa, F.; Bertero, L.

    1995-11-01T23:59:59.000Z

    Oilfield production is often hindered by asphaltene precipitation which tends to fill the pores of the reservoir rocks and plug the wellbore tubing as well as the other auxiliary equipment used during crude oil recovery. Several remedies to remove these deposits have been proposed and patented but the injection of aromatic solvents such as toluene and light petroleum distillates is normally preferred. Previous studies with a number of pure aromatic hydrocarbons have shown that the solvent capacity of these molecules may be very different and that the degree of condensation plays an important role. In this regard, tetralins and naphthalenes are superior to alkylbenzenes. However, because the use of pure compounds is not economically feasible, the authors examined various industrial streams and the authors correlated their chemical composition to the solvent capacity. This work allowed the identification of the pseudo-components whose relative concentration is crucial for evaluating the solvent performances. Based on these data, the authors were able to find new products with ideal characteristics. The efficiency of one of these products was confirmed by the analysis of the data obtained when using this new solvent to remove asphaltene in damaged wells of an Italian field.

  12. Emission of polycyclic aromatic hydrocarbons in China

    SciTech Connect (OSTI)

    Shanshan Xu; Wenxin Liu; Shu Tao [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

    2006-02-01T23:59:59.000Z

    Emission of 16 polycyclic aromatic hydrocarbons (PAHs) listed as U.S. Environmental Protection Agency (U.S. EPA) priority pollutants from major sources in China were compiled. Geographical distribution and temporal change of the PAH emission, as well as emission profiles, are discussed. It was estimated that the total PAH emission in China was 25,300 tons in 2003. The emission profile featured a relatively higher portion of high molecular weight (HMW) species with carcinogenic potential due to large contributions of domestic coal and coking industry. Among various sources, biomass burning, domestic coal combustion, and the coking industry contributed 60%, 20%, and 16% of the total emission, respectively. Total emission, emission density, emission intensity, and emission per capita showed geographical variations. In general, the southeastern provinces were characterized by higher emission density, while those in western and northern China featured higher emission intensity and population-normalized emission. Although energy consumption in China went up continuously during the past two decades, annual emission of PAHs fluctuated depending on the amount of domestic coal consumption, coke production, and the efficiency of energy utilization. 47 refs., 6 figs.

  13. Assessment of non-tailpipe hydrocarbon emissions from motor vehicles. Final report

    SciTech Connect (OSTI)

    Pierson, W.R.; Lawson, D.R.; Schorran, D.E.; Fujita, E.M.; Sagebiel, J.C.

    1997-03-01T23:59:59.000Z

    The report evaluates tailpipe and non-tailpipe hydrocarbon (HC) emissions from light-duty spark-ignition vehicles. The sources of information were unpublished data sets, generated mainly from 1990 through 1994, on emissions from volunteer fleets of in-use vehicles, and published Chemical Mass Balance source apportionments of HC in roadway tunnels and in urban air. The objective was to extract as much existing information as possible about magnitudes of running-loss emissions, hot soak emissions, diurnal emissions, and resting loss emissions, in absolute terms and in terms relative to one another and to tailpipe emissions. Relations between pressure- and purge-test failures and actual non-tailpipe emissions were also examined.

  14. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development

    E-Print Network [OSTI]

    Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development John P. Incardona , Tiffany L. Linbo, Nathaniel L aromatic hydrocarbons (PAHs), commonly occur as com- plex mixtures in the environment. Recent studies using

  15. IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater Revised and Updated. Part 7. C8H12C8H18 Hydrocarbons

    E-Print Network [OSTI]

    IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater Revised and Updated. Part 7. C8H12­C8H18 Hydrocarbons with Water Volume Editors David G. Shawa... University of Alaska on the evaluation of the all experimental data for a given homologous series of aliphatic and aromatic hydrocarbons

  16. Information extraction system

    DOE Patents [OSTI]

    Lemmond, Tracy D; Hanley, William G; Guensche, Joseph Wendell; Perry, Nathan C; Nitao, John J; Kidwell, Paul Brandon; Boakye, Kofi Agyeman; Glaser, Ron E; Prenger, Ryan James

    2014-05-13T23:59:59.000Z

    An information extraction system and methods of operating the system are provided. In particular, an information extraction system for performing meta-extraction of named entities of people, organizations, and locations as well as relationships and events from text documents are described herein.

  17. ORGANIC GEOCHEMICAL STUDIES. II. THE DISTRIBUTION OF ALIPHATIC HYDROCARBONS IN ALGAE, BACTERIA, AND IN A RECENT LAKE SEDIMENT: A PRELIMINARY REPORT

    E-Print Network [OSTI]

    Han, Jerry; McCarthy, E.D.; Van Hoeven Jr., William; Calvin, Melvin; Bradley, W. H.

    2008-01-01T23:59:59.000Z

    significantly to the hydrocarbons of higher molecular weightDISTRIBUTION OF ALIPHATIC HYDROCARBONS IN ALGAE, BACTERIA,T E DISTRIBUTION O ALIPHATIC HYDROCARBONS H F A PRELIMINARY

  18. Long-range transport of particulate polycyclic aromatic hydrocarbons at Cape Hedo remote island site in the East China Sea between 2005 and 2008

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos.of polynuclear aromatic hydrocarbons in ambient air throughpolycyclic aromatic hydrocarbons in urban air of Hong Kong.

  19. Hydrocarbon Seeps of the Mesozoic Great Valley Group Forearc Strata and Franciscan Complex, Northern and Central California, U.S.A.

    E-Print Network [OSTI]

    Keenan, Kristin Euphrat

    2010-01-01T23:59:59.000Z

    and Cretaceous Gastropods from Hydrocarbon Seeps in ForearcPeregrinella-Dominated Hydrocarbon-Seep Deposit on the1999. Signatures of Hydrocarbon Venting in a Middle Devonian

  20. Molecular and isotopic partitioning of low-molecular-weight hydrocarbons during migration and gas hydrate precipitation in deposits of a high-flux seepage site

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Bohrmann, G. , 2007. In situ hydrocarbon concentrations fromM. , Bohrmann, G. , 2003. Hydrocarbon gases in deposits fromMethane and other hydrocarbon gases in marine sediment.

  1. ASSESSMENT OF GENOTOXIC ACTIVITY OF PETROLEUM HYDROCARBON-BIOREMEDIATED SOIL

    SciTech Connect (OSTI)

    BRIGMON, ROBIN

    2004-10-20T23:59:59.000Z

    The relationship between toxicity and soil contamination must be understood to develop reliable indicators of environmental restoration for bioremediation. Two bacterial rapid bioassays: SOS chromotest and umu-test with and without metabolic activation (S-9 mixture) were used to evaluate genotoxicity of petroleum hydrocarbon-contaminated soil following bioremediation treatment. The soil was taken from an engineered biopile at the Czor Polish oil refinery. The bioremediation process in the biopile lasted 4 years, and the toxicity measurements were done after this treatment. Carcinogens detected in the soil, polyaromatic hydrocarbons (PAHs), were reduced to low concentrations (2 mg/kg dry wt) by the bioremediation process. Genotoxicity was not observed for soils tested with and without metabolic activation by a liver homogenate (S-9 mixture). However, umu-test was more sensitive than SOS-chromotest in the analysis of petroleum hydrocarbon-bioremediated soil. Analytical results of soil used in the bioassays confirmed that the bioremediation process reduced 81 percent of the petroleum hydrocarbons including PAHs. We conclude that the combined test systems employed in this study are useful tools for the genotoxic examination of remediated petroleum hydrocarbon-contaminated soil.

  2. Characterization and quantitative analyses of polychlorinated hydrocarbons

    E-Print Network [OSTI]

    Richardson, Robert Leary

    1974-01-01T23:59:59.000Z

    -speed blender. The mixture 2 was blended with frequent scraping and mixing of contents on the walls of the blender. 150ml petroleum ether was then added and blended for two minutes, the wall being scraped after one minute. The blend was decanted through... of acetoni tri le previously saturated with petroleum ether. All three of the extracts were combined in the 1 L separatory funnel. 72 The 1 L separatory was held in a horizontal position and mixed for 30-45 seconds. The layers were allowed to separate...

  3. Quantitative Changes in Hydrocarbons over Time in Fecal Pellets of Incisitermes minor May Predict Whether Colonies Are Alive or Dead

    E-Print Network [OSTI]

    Lewis, Vernard R.; Nelson, Lori J.; Haverty, Michael I.; Baldwin, James A.

    2010-01-01T23:59:59.000Z

    termite species by the hydrocarbons in their feces. J. Chem.effects on the cuticular hydrocarbons of the host-specificG. J. 1990. Cuticular hydrocarbons of eight species of North

  4. Hydrocarbon anions in interstellar clouds and circumstellar envelopes

    E-Print Network [OSTI]

    T. J. Millar; C. Walsh; M. A. Cordiner; R. Ní Chuimín; Eric Herbst

    2007-05-07T23:59:59.000Z

    The recent detection of the hydrocarbon anion C6H- in the interstellar medium has led us to investigate the synthesis of hydrocarbon anions in a variety of interstellar and circumstellar environments. We find that the anion/neutral abundance ratio can be quite large, on the order of at least a few percent, once the neutral has more than five carbon atoms. Detailed modeling shows that the column densities of C6H- observed in IRC+10216 and TMC-1 can be reproduced. Our calculations also predict that other hydrocarbon anions, such as C4H- and C8H-, are viable candidates for detection in IRC+10216, TMC-1 and photon-dominated regions such as the Horsehead Nebula.

  5. Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon

    DOE Patents [OSTI]

    Diener, Michael D.; Alford, J. Michael; Nabity, James; Hitch, Bradley D.

    2007-01-02T23:59:59.000Z

    The present invention provides a combustion apparatus for the production of carbon nanomaterials including fullerenes and fullerenic soot. Most generally the combustion apparatus comprises one or more inlets for introducing an oxygen-containing gas and a hydrocarbon fuel gas in the combustion system such that a flame can be established from the mixed gases, a droplet delivery apparatus for introducing droplets of a liquid hydrocarbon feedstock into the flame, and a collector apparatus for collecting condensable products containing carbon nanomaterials that are generated in the combustion system. The combustion system optionally has a reaction zone downstream of the flame. If this reaction zone is present the hydrocarbon feedstock can be introduced into the flame, the reaction zone or both.

  6. Process for light-driven hydrocarbon oxidation at ambient temperatures

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM)

    1990-01-01T23:59:59.000Z

    A photochemical reaction for the oxidation of hydrocarbons uses molecular oxygen as the oxidant. A reductive photoredox cycle that uses a tin(IV)- or antimony(V)-porphyrin photosensitizer generates the reducing equivalents required to activate oxygen. This artificial photosynthesis system drives a catalytic cycle, which mimics the cytochrome P.sub.450 reaction, to oxidize hydrocarbons. An iron(III)- or manganese(III)-porphyrin is used as the hydrocarbon-oxidation catalyst. Methylviologen can be used as a redox relay molecule to provide for electron-transfer from the reduced photosensitizer to the Fe or Mn porphyrin. The system is long-lived and may be used in photo-initiated spectroscopic studies of the reaction to determine reaction rates and intermediates.

  7. Method and apparatus for producing oxygenates from hydrocarbons

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    A chemical reactor for oxygenating hydrocarbons includes: a) a dielectric barrier discharge plasma cell, the plasma cell comprising a pair of electrodes having a dielectric material and void therebetween, the plasma cell comprising a hydrocarbon gas inlet feeding to the void; b) a solid oxide electrochemical cell, the electrochemical cell comprising a solid oxide electrolyte positioned between a porous cathode and a porous anode, an oxygen containing gas inlet stream feeding to the porous cathode side of the electrochemical cell; c) a first gas passageway feeding from the void to the anode side of the electrochemical cell; and d) a gas outlet feeding from the anode side of the electrochemical cell to expel reaction products from the chemical reactor. A method of oxygenating hydrocarbons is also disclosed.

  8. Method and apparatus for producing oxygenates from hydrocarbons

    DOE Patents [OSTI]

    Kong, P.C.; Lessing, P.A.

    1995-06-27T23:59:59.000Z

    A chemical reactor for oxygenating hydrocarbons includes: (a) a dielectric barrier discharge plasma cell, the plasma cell comprising a pair of electrodes having a dielectric material and void therebetween, the plasma cell comprising a hydrocarbon gas inlet feeding to the void; (b) a solid oxide electrochemical cell, the electrochemical cell comprising a solid oxide electrolyte positioned between a porous cathode and a porous anode, an oxygen containing gas inlet stream feeding to the porous cathode side of the electrochemical cell; (c) a first gas passageway feeding from the void to the anode side of the electrochemical cell; and (d) a gas outlet feeding from the anode side of the electrochemical cell to expel reaction products from the chemical reactor. A method of oxygenating hydrocarbons is also disclosed. 4 figs.

  9. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  10. Phase equilibria of polydisperse hydrocarbons: moment free energy method analysis

    E-Print Network [OSTI]

    Alessandro Speranza; Francesca Di Patti; Alessandro Terenzi

    2010-12-14T23:59:59.000Z

    We analyze the phase equilibria of systems of polydisperse hydrocarbons by means of the recently introduced moment method. Hydrocarbons are modelled with the Soave-Redlick-Kwong and Peng-Robinson equations of states. Numerical results show no particular qualitative difference between the two equations of states. Furthermore, in general the moment method proves to be an excellent method for solving phase equilibria of polydisperse systems, showing excellent agreement with previous results and allowing a great improvement in generality of the numerical scheme and speed of computation.

  11. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-02-01T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  12. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, J.W.

    1995-01-17T23:59:59.000Z

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.

  13. Low-Temperature Catalytic Process To Produce Hydrocarbons From Sugars

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2005-11-15T23:59:59.000Z

    Disclosed is a method of producing hydrogen from oxygenated hydrocarbon reactants, such as methanol, glycerol, sugars (e.g. glucose and xylose), or sugar alcohols (e.g. sorbitol). The method takes place in the condensed liquid phase. The method includes the steps of reacting water and a water-soluble oxygenated hydrocarbon in the presence of a metal-containing catalyst. The catalyst contains a metal selected from the group consisting of Group VIIIB transitional metals, alloys thereof, and mixtures thereof. The disclosed method can be run at lower temperatures than those used in the conventional steam reforming of alkanes.

  14. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, James L. (Scottsdale, AZ)

    1987-07-07T23:59:59.000Z

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  15. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, J.L.

    1987-07-07T23:59:59.000Z

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  16. Method for recovering light hydrocarbons from coal agglomerates

    DOE Patents [OSTI]

    Huettenhain, Horst (Benicia, CA); Benz, August D. (Hillsborough, CA); Getsoian, John (Ann Arbor, MI)

    1991-01-01T23:59:59.000Z

    A method and apparatus for removing light hydrocarbons, such as heptane, from coal agglomerates includes an enclosed chamber having a substantially horizontal perforate surface therein. The coal agglomerates are introduced into a water bath within the chamber. The agglomerates are advanced over the surface while steam is substantially continuously introduced through the surface into the water bath. Steam heats the water and causes volatilization of the light hydrocarbons, which may be collected from the overhead of the chamber. The resulting agglomerates may be collected at the opposite end from the surface and subjected to final draining processes prior to transportation or use.

  17. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOE Patents [OSTI]

    Gordon, John Howard

    2014-09-09T23:59:59.000Z

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  18. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

    1995-01-01T23:59:59.000Z

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.

  19. Method for determining processability of a hydrocarbon containing feedstock

    DOE Patents [OSTI]

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10T23:59:59.000Z

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  20. Hydrocarbon emission features in the IR spectra of warm supergiants

    SciTech Connect (OSTI)

    Buss, R.H. Jr.; Cohen, M.; Tielens, A.G.G.M.; Werner, M.W.; Bregman, J.D. (NASA, Ames Research Center, Moffett Field, CA (USA))

    1990-12-01T23:59:59.000Z

    Observations in the 3-13 micron range are presented for two objects possessing the unidentified 21-micron feature, IRAS 22272 and IRAS 07134, which were obtained in the course of search for circumstellar aromatic hydrocarbon (PAH) emission bands. The 3.3 and 6.2 micron bands are attributed to circumstellar PAH molecules, and the 6-9 micron plateau and the 12- and 6.9-micron lines are attributed to larger, aromatic hydrocarbon clusters. These are the coolest stars known to exhibit the IR emission bands. The 21-micron feature is conjectured to also originate in a carbonaceous carrier. 29 refs.

  1. Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation

    E-Print Network [OSTI]

    Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation N nature of the polyaromatic hydrocarbons (PAHs) they are mostly bound to the sludge and escape aerobic

  2. Evaluation of biological treatment for the degradation of petroleum hydrocarbons in a wastewater treatment plant 

    E-Print Network [OSTI]

    Basu, Pradipta Ranjan

    2005-08-29T23:59:59.000Z

    Biodegradation of petroleum hydrocarbon can be an effective treatment method applied to control oil pollution in both fresh water and marine environments. Hydrocarbon degraders, both indigenous and exogenous, are responsible for utilizing petroleum...

  3. Asphalt compositions containing spurted polyolefin fibers with improved dispersibility in hydrocarbons

    SciTech Connect (OSTI)

    Jabloner, H.

    1987-07-07T23:59:59.000Z

    A cutback asphalt composition is described comprising asphalt and a hydrocarbon solvent. The improvement composition comprises a water-dispersible spurted polyolefin pulp having precipitated a natural rubber or synthetic elastomer that is swellable in hydrocarbon solvents.

  4. Oil & Chemical Pollution 6 (19'X)} 81-Hydrocarbon Pollution of

    E-Print Network [OSTI]

    Canberra, University of

    distribution offuel distillates is evident with only a small contribution from lubricating and heavier oilOil & Chemical Pollution 6 (19'X)} 81- pollution as all oils contain aromatic hydrocarbons while few, if any, biogenic aromatic hydrocarbons

  5. Interpretation of side-scan sonar images from hydrocarbon seep areas of the Louisiana continental slope

    E-Print Network [OSTI]

    Hou, Rusheng

    2001-01-01T23:59:59.000Z

    Side-scan sonar images from the Louisiana continental slope were examined to study hydrocarbon seepage and related surficial geologic seafloor features. Three study areas are located in the Green Canyon area and the Garden Bank area. Hydrocarbon...

  6. Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum

    E-Print Network [OSTI]

    Cohen, Ronald C.

    structural constraints. The capabilities of this analysis are explored using diesel fuel, in which is more important in diesel fuel than previously shown. The classification of unknown hydrocarbons hydrocarbon mixture. Chemical analyses of environmental contamination often rely on chemical speciation

  7. Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Syngas Conversion to Gasoline-Range Hydrocarbons over PdZnOAl2O3 and ZSM-5 Composite Catalyst System. Syngas Conversion to Gasoline-Range Hydrocarbons over PdZnOAl2O3 and ZSM-5...

  8. Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup 

    E-Print Network [OSTI]

    Ming, Pingjia

    2014-06-05T23:59:59.000Z

    , but cannot be used in sensitive energy conversion systems, like solid oxide fuel cell (SOFC). Utilizing small amount of energy to clean up and reform heavier hydrocarbon into synthesis gas is necessary when using hydrocarbon sources which contain heavier...

  9. Development of in vitro screening assays for potentially neurotoxic polyaromatic hydrocarbons in SY5Y and C6 cells 

    E-Print Network [OSTI]

    Tang, Yan

    1999-01-01T23:59:59.000Z

    Polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) are ubiquitous in the environment. Some congeners produce extreme toxicity in laboratory Animal studies. While much attention has been ...

  10. Fission Product Extraction Process

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    A new INL technology can simultaneously extract cesium and strontium for reuse. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  11. The Organic Rankine Cycle System, Its Application to Extract Energy From Low Temperature Waste Heat

    E-Print Network [OSTI]

    Sawyer, R. H.; Ichikawa, S.

    1980-01-01T23:59:59.000Z

    in a Rankine Cycle to extract The theoretical Rankine Cycle efficiency (~R) is energy from low temperature waste heat. By 1968, a defined as: 3.8 megawatt unit using R-11 refrigerant was placed in commercial operation in Japan (2) and currently ?ZR.... Figure 2 compares the theo The basic Organic Rankine Cycle may be described retical Rankine efficiency for several hydrocarbons, using the Pressure-Enthalpy Diagram of a typical fluorocarbons and water within the evaporating working fluid (R-11). (See...

  12. aliphatic hydrocarbons constitute the largest fraction of cuticular wax in bees and cover

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    aliphatic hydrocarbons constitute the largest fraction of cuticular wax in bees and cover a highly hydrocarbons in the cuticular waxes of bees are widely assumed to func- tion as recognition cues (for nestmate hydrocarbons may label individuals in colonies according to the tasks they under- take and that the compounds

  13. Isomer discrimination of polycyclic aromatic hydrocarbons in the Murchison meteorite by resonant ionization

    E-Print Network [OSTI]

    de Vries, Mattanjah S.

    Isomer discrimination of polycyclic aromatic hydrocarbons in the Murchison meteorite by resonant between isomers of polycyclic aromatic hydrocarbons in the Murchison meteorite. We measured the 2C-R2PI: Resonant ionization; Jet cooling; Mass spectrometry; Polycyclic aromatic hydrocarbons; Murchison meteorite

  14. Rapid uplift of nonmethane hydrocarbons in a cold front over central Europe

    E-Print Network [OSTI]

    Hoskins, Brian

    Rapid uplift of nonmethane hydrocarbons in a cold front over central Europe R. M. Purvis,1 A. C of 21 C2­C7 nonmethane hydrocarbons (NMHCs) has been determined in planetary boundary layer (PBL between the PBL and FT was observed for all short and medium lifetime hydrocarbons (e.g., average iso

  15. Hydrocarbon Signatures of Egg Maternity, Caste Membership and Reproductive Status in the Common Wasp

    E-Print Network [OSTI]

    Wenseleers, Tom

    Hydrocarbon Signatures of Egg Maternity, Caste Membership and Reproductive Status in the Common-laid and worker-laid eggs has never been investigated. Our aim, therefore, was to investigate if hydrocarbons on the surface of newly-laid eggs, and that there are pronounced quantitative differences in the hydrocarbon

  16. Computational Physics (Computational) : Oral Atomistic Simulation of Di#usion of Hydrocarbons in

    E-Print Network [OSTI]

    Adler, Joan

    Computational Physics (Computational) : Oral Atomistic Simulation of Di#usion of Hydrocarbons, due to their unique structure and stability. This project deals with the transport of hydrocarbons to animate di#usion of hydrocarbons inside the carbon nanotube, in order to observe typical features

  17. Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects

    E-Print Network [OSTI]

    Chickos, James S.

    Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid hydrocarbons and their perdeuterated analogues have been determined by correlation-gas chromatography of cyclohexane-d12 and benzene-d6. Other hydrocarbons studied include the perdeuterated forms of hexane, toluene

  18. Cuticular Hydrocarbons: Species and Population-Level Discrimination in Termites1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Cuticular Hydrocarbons: Species and Population-Level Discrimination in Termites1 Michael I. Haverty Marion Page Barbara L. Thorne Pierre Escoubas2 Abstract: Hydrocarbons in the cuticle of insects and the apparent species-specificity of cuticular hydrocarbon mixtures make them excellent taxo nomic characters

  19. Hydrocarbons emitted by waggle-dancing honey bees stimulate colony foraging activity by causing experienced

    E-Print Network [OSTI]

    Hydrocarbons emitted by waggle-dancing honey bees stimulate colony foraging activity by causing of the hydrocarbons emitted by waggle-dancing bees are investigated in this study. First, we test the hypothesis itself. waggle dance / cuticular hydrocarbon / nectar foraging / semiochemical / pheromone 1

  20. Author's personal copy Temporal and spatial trends of total petroleum hydrocarbons in the seawater

    E-Print Network [OSTI]

    Ma, Lena

    Author's personal copy Temporal and spatial trends of total petroleum hydrocarbons in the seawater hydrocarbons Bohai Bay Temporal and spatial trends Seawater a b s t r a c t The temporal and spatial distribution of total petroleum hydrocarbons (TPH) in the seawater of Tianjin Bohai Bay during 1996

  1. Research article The role of cuticular hydrocarbons as chemical cues for nestmate recognition in

    E-Print Network [OSTI]

    Tsutsui, Neil Durie

    Research article The role of cuticular hydrocarbons as chemical cues for nestmate recognition of cuticular hydrocarbons (CHCs) in nestmate recognition of this highly damaging invasive ant using three super of hydrocarbons trans- ferred to individual ants and performed gas chromatogra- phy-mass spectrometry (GC

  2. Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant

    E-Print Network [OSTI]

    Danchin, Etienne

    Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Contributed by Bert Ho¨ lldobler, July 9, 2003 In many species of social insects, the cuticular hydrocarbons of long-chained hydrocarbons present both on the cuticle and in the postpharyngeal gland. The purified

  3. Hydrocarbon Characteristics in Fusion Edge Plasmas from Electron-Molecule and Ion-Surface Collision Experiments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 EX/P4-1 Hydrocarbon Characteristics in Fusion Edge Plasmas from Electron- Molecule and Ion proceeding in the volume before and at the wall. Surface processes involving hydrocarbons and their ions, which are probable vacuum contaminants in plasma devices, and the role of hydrocarbon chemistry

  4. Journal of Chemical Ecology, Vol. 28, No. 5, May 2002 (C 2002) EVALUATION OF SYNTHETIC HYDROCARBONS

    E-Print Network [OSTI]

    Hanks, Lawrence M.

    Journal of Chemical Ecology, Vol. 28, No. 5, May 2002 (C 2002) EVALUATION OF SYNTHETIC HYDROCARBONS of five straight-chain hydrocarbons (C24, C25, C26, C28, C30) to detached elytra of the red milkweed, and placed them in an exposed location outdoors. The amount of hydrocarbons on the elytra did not change over

  5. Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties of BIMEVOX (Me = Ta)

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties for syngas or H2 production from light hydrocarbons. #12;2 Keywords: Dense membrane reactor, BIMEVOX, BITAVOX to decouple the two steps of the redox mechanism that prevails in selective oxidation of hydrocarbons [1

  6. Hydrocarbon filling history from diagenetic evidence: Brent Group, UK North Sea

    E-Print Network [OSTI]

    Haszeldine, Stuart

    U N C O R R EC TED PR O O F Hydrocarbon filling history from diagenetic evidence: Brent Group, UK Reconstruction of the hydrocarbon filling history of a reservoir is important for prediction of field show for only a single phase of hydrocarbon filling, which occurred after the diagenetic reactions had

  7. Quantitative traits loci (QTL) involved in body colour, wing morphometry, cuticular hydrocarbons

    E-Print Network [OSTI]

    Quantitative traits loci (QTL) involved in body colour, wing morphometry, cuticular hydrocarbons for wing morphometry, 12 for cuticular hydrocarbons and five for venom components. We detected 50 QTL / cuticular hydrocarbons / venom 1. INTRODUCTION The first genetic map built from RAPD markers (Hunt and Page

  8. Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons

    E-Print Network [OSTI]

    Chickos, James S.

    of Polyaromatic Hydrocarbons William Hanshaw, Marjorie Nutt, and James S. Chickos* Department of Chemistry and liquid vapor pressures from T ) 298.15 K to T ) 510 K of a series of polyaromatic hydrocarbons have been protocols are also made, and agreement generally is quite good. Introduction Polyaromatic hydrocarbons (PAHs

  9. EIGENVALUES OF SATURATED HYDROCARBONS D. J. KLEIN AND C. E. LARSON

    E-Print Network [OSTI]

    Larson, Craig E.

    EIGENVALUES OF SATURATED HYDROCARBONS D. J. KLEIN AND C. E. LARSON Abstract. A simplified H¨uckel-type molecular-orbital (MO) model for the valence electrons of saturated hydrocarbons is proposed and half negative. Keywords: saturated hydrocarbons, alkanes, stellation, para-line graph. 1. Saturated

  10. UPTAKE AND LOSS OF PETROLEUM HYDROCARBONS BY THE MUSSEL, MYTILUS EDULIS, IN LABORATORY EXPERIMENTS

    E-Print Network [OSTI]

    UPTAKE AND LOSS OF PETROLEUM HYDROCARBONS BY THE MUSSEL, MYTILUS EDULIS, IN LABORATORY EXPERIMENTS ROBERT C. CLARK, JR., AND JOHN S. FINLEY' ABSTRACT Petroleum paraffin hydrocarbons (n-CI4H30 to n-C37H76 system that simulated tides. The mussels were exposed to levels of petroleum hydrocarbons from a surface

  11. Prediction of Solid Polycyclic Aromatic Hydrocarbons Solubility in Water with the NRTL-PR Model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Prediction of Solid Polycyclic Aromatic Hydrocarbons Solubility in Water with the NRTL-PR Model of solid polycyclic aromatic hydrocarbons in water. For this purpose, we first validate our methodology for fluid phase equilibria predictions of aromatic hydrocarbons and gas (CO2, C2H6) mixtures. Finally, we

  12. Quantification of OH and HO2 radicals during the lowtemperature oxidation of hydrocarbons by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Quantification of OH and HO2 radicals during the lowtemperature oxidation of hydrocarbons of hydrocarbons and biofuels is of critical importance to allow the development of new combustion) but has never been applied to real hydrocarbons and lowtemperature oxidation. H atoms (10

  13. 192 IEEE SENSORS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2007 Hydrocarbon and Fluorocarbon Monitoring by MIS

    E-Print Network [OSTI]

    Moritz, Werner

    192 IEEE SENSORS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2007 Hydrocarbon and Fluorocarbon Monitoring of hydrocarbon and fluorocarbon molecules on a Ni coil (CE), the products detectable by metal­ insulator Terms--Fluorocarbons, hydrocarbons, metal­ insulator­semiconductor (MIS) and metal

  14. 2004-01-2299 Elevated Carbon Dioxide Alters Hydrocarbon

    E-Print Network [OSTI]

    Paré, Paul W.

    the enzymatic conversion of alk(en)yl cysteine sulphoxides contribute to flavor differences detected between, unique essential oils, secondary metabolites, and phytochemicals not found in other crop plants1 of low-molecular-weight hydrocarbons and sulfur derivatives. Odd-chain ketones are emitted from onion

  15. Formation mechanism for polycyclic aromatic hydrocarbons in methane flames

    E-Print Network [OSTI]

    Sattler, Klaus

    exhausts,7­17 coal-fired, electricity generating power plants,18,19 tobacco smoke,20 residential wood hydrocarbons PAHs are in our air environment1­3 in the form of volatile and particulate pollutants4 or coal combustion,21­24 burning of plastics,25 and area sources such as forest fires and agricultural

  16. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    DOE Patents [OSTI]

    Moos, Daniel (Houston, TX)

    2010-03-09T23:59:59.000Z

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  17. Chlorinated Hydrocarbon Levels in Fishes and Shellfishes of the

    E-Print Network [OSTI]

    the utilization by humans of the vast protein resources in the sea. Chlorinated hydrocarbons from both agricultural and industrial chemicals have been found repeatedly in marine organisms throughout the world also analyzed a few samples of fish eggs, liver. oil. and meal. Finfishes from the northeastern Pacific

  18. aryl hydrocarbon nuclear: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ACCELERATED COMMUNICATION The Aryl Hydrocarbon...

  19. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    SciTech Connect (OSTI)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01T23:59:59.000Z

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  20. UV Irradiation of Polycyclic Aromatic Hydrocarbons in Ices

    E-Print Network [OSTI]

    . Clemett,3 Richard N. Zare3 Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultra meteorites. Hydrogen and deu- terium atoms exchange readily between the PAHs and the ice, which may explain abundant and widespread class of carbon-car- rying gaseous species is believed to be PAHs (3­5). In dense

  1. Desorption Kinetics for Field-Aged Polycyclic Aromatic Hydrocarbons

    E-Print Network [OSTI]

    Rockne, Karl J.

    Harbor Estuary. Desorption kinetics for PAHs with a log octanol- water partition coefficient greater than This study considers desorption kinetics for 12 field-aged polycyclic aromatic hydrocarbons (PAHs) desorbing 6 were well- described by a one-domain diffusion model that assumes that PAHs are initially

  2. Biodegradation of Bicyclic and Polycyclic Aromatic Hydrocarbons in

    E-Print Network [OSTI]

    Rockne, Karl J.

    solubility of oxygen in water. Therefore, our present understanding of PAH degradation in aerobic polycyclic aromatic hydrocarbons (PAHs) are known to be biodegraded under aerobic conditions, most contaminated sediments are anaerobic. With recent results demonstrating that some bicyclics and PAHs can

  3. Enhanced reactive metal wall for dehalogenation of hydrocarbons

    DOE Patents [OSTI]

    Howson, P.E.; Mackenzie, P.D.; Horney, D.P.

    1996-08-06T23:59:59.000Z

    A method is provided for remediation of contaminated solutions using a tiered metal wall or column. The tiered metal wall or column has at least three zones with graduated sizes of reducing metal particles. Contaminated solutions pass through the tiered wall or column to dehalogenate contaminant halogenated hydrocarbons. 3 figs.

  4. Preliminary investigation of the nature of hydrocarbon migration and entrapment 

    E-Print Network [OSTI]

    Bai, Jianyong

    2004-09-30T23:59:59.000Z

    hydrocarbon accumulation is much longer in oil-water systems than in oil-gas-water systems. Faults are classified into charging faults and 'back doors' faults other than charging faults in stacked fault-bounded reservoirs. The lower the displacement pressure...

  5. Plantwide Energy Management for Hydrocarbon and Petrochemical Industry 

    E-Print Network [OSTI]

    Ahmed, A.; Clinkscales, T.

    1988-01-01T23:59:59.000Z

    Within the hydrocarbon and petrochemical industry the generation and utilization of various forms of energy is a highly complex and dynamic process. The process plant normally generates steam and fuel in the form of process off-gas. The same process...

  6. Finding hydrocarbons in the classroom using "free" seismic interpretation software

    E-Print Network [OSTI]

    Finding hydrocarbons in the classroom using "free" seismic interpretation software WAYNE D Technological Univer- sity, we recently introduced a new course in seismic processing and interpretation of this paper is to pro- vide details of the class assignment in seismic interpretation, and to encourage

  7. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    SciTech Connect (OSTI)

    Westbrook, C.K.

    2000-07-07T23:59:59.000Z

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

  8. The toxicity of certain new chlorinated hydrocarbons to cotton pests

    E-Print Network [OSTI]

    Merkl, Marvin Eugene

    1953-01-01T23:59:59.000Z

    THE TOXICITY OF CERTAIN NEW CHLORINATED HYDROCARBONS TO COTTON PESTS A Dissertation 5y MARVIN EUGENE MERKL Approved as to style and content by: Chairman of CouBlttee Head of Departnent May 19*3 THE TOXICITY OF CERTAIN NEW CHLORINATED... .....................................................78 CONCLUSIONS............................................... ..81 BIBLIOGRAPHI .............................................. ..82 Pag? FIGURES 1* Dosage-?ortality curve for the toxicity of endrin to aphids...

  9. Energy Conservation Opportunities in Hydrocarbon Resin Manufacturing Facilities

    E-Print Network [OSTI]

    Ganji, A. R.; Hackett, B.; Chow, S.; Lonergan, R.; Wimer, J.

    "The results of a plant-wide assessment of the manufacturing facilities of Neville Chemical Company, a manufacturer of hydrocarbon resins will be presented in this paper. The project was co-funded by US Department of Energy under its Plant...

  10. The toxicity of certain new chlorinated hydrocarbons to cotton pests 

    E-Print Network [OSTI]

    Merkl, Marvin Eugene

    1953-01-01T23:59:59.000Z

    THE TOXICITY OF CERTAIN NEW CHLORINATED HYDROCARBONS TO COTTON PESTS A Dissertation 5y MARVIN EUGENE MERKL Approved as to style and content by: Chairman of CouBlttee Head of Departnent May 19*3 THE TOXICITY OF CERTAIN NEW CHLORINATED... .....................................................78 CONCLUSIONS............................................... ..81 BIBLIOGRAPHI .............................................. ..82 Pag? FIGURES 1* Dosage-?ortality curve for the toxicity of endrin to aphids...

  11. Fluid system for controlling fluid losses during hydrocarbon recovery operations

    SciTech Connect (OSTI)

    Johnson, M.H.; Smejkal, K.D.

    1993-07-20T23:59:59.000Z

    A fluid system is described for controlling fluid losses during hydrocarbon recovery operations, comprising: water; a distribution of graded calcium carbonate particle sizes; and at least one modified lignosulfonate, which is a lignosulfonate modified by polymerizing it at least to an extent effective to reduce its water solubility.

  12. Microbial Diversity and Bioremediation of aHydrocarbon-Contaminated Aquifer (Vega Baja, Puerto Rico)

    SciTech Connect (OSTI)

    Rodriguez-Martinez, E.M.; Perez, Ernie X.; Schadt, ChristopherW.; Zhou, Jizhong; Massol-Deya, Arturo A.

    2006-09-30T23:59:59.000Z

    Hydrocarbon contamination of groundwater resources hasbecome a major environmental and human health concern in many parts ofthe world. Our objectives were to employ both culture andculture-independent techniques to characterize the dynamics of microbialcommunity structure within a fluidized bed reactor used to bioremediate adiesel-contaminated groundwater in a tropical environment. Under normaloperating conditions, 97 to 99 percent of total hydrocarbons were removedwith only 14 min hydraulic retention time. Over 25 different cultureswere isolated from the treatment unit (96 percent which utilized dieselconstituents as sole carbon source). Approximately 20 percent of theisolates were also capable of complete denitrification to nitrogen gas.Sequence analysis of 16S rDNA demonstrated ample diversity with mostbelonging to the infinity, beta and gamma subdivision of theProteobacteria, Bacilli, and Actinobacteria groups. Moreover, the geneticconstitution of the microbial community was examined at multiple timepoints with a Functional Gene Array (FGA) containing over 12,000 probesfor genes involved in organic degradation and major biogeochemicalcycles. Total community DNA was extracted and amplified using anisothermal phi29 polymerase-based technique, labeled with Cy5 dye, andhybridized to the arrays in 50 percent formimide overnight at 50 degreesC. Cluster analysis revealed comparable profiles over the course oftreatment suggesting the early selection of a very stable microbialcommunity. A total of 270 genes for organic contaminant degradation(including naphthalene, toluene [aerobic and anaerobic], octane,biphenyl, pyrene, xylene, phenanthrene, and benzene); and 333 genesinvolved in metabolic activities (nitrite and nitrous oxide reductases[nirS, nirK, and nosZ], dissimilatory sulfite reductases [dsrAB],potential metal reducing C-type cytochromes, and methane monooxygenase[pmoA]) were repeatedly detected. Genes for degradation of MTBE,nitroaromatics and chlorinated compounds werealso present, indicating abroad catabolic potential of the treatment unit. FGA's demonstrated theearly establishment of a diverse community with concurrent aerobic andanaerobic processes contributing to the bioremediationprocess.

  13. Moving hydrocarbons through portions of tar sands formations with a fluid

    DOE Patents [OSTI]

    Stegemeier, George Leo; Mudunuri, Ramesh Raju; Vinegar, Harold J.; Karanikas, John Michael; Jaiswal, Namit; Mo, Weijian

    2010-05-18T23:59:59.000Z

    A method for treating a tar sands formation is disclosed. The method includes heating a first portion of a hydrocarbon layer in the formation from one or more heaters located in the first portion. The heat is controlled to increase a fluid injectivity of the first portion. A drive fluid and/or an oxidizing fluid is injected and/or created in the first portion to cause at least some hydrocarbons to move from a second portion of the hydrocarbon layer to a third portion of the hydrocarbon layer. The second portion is between the first portion and the third portion. The first, second, and third portions are horizontally displaced from each other. The third portion is heated from one or more heaters located in the third portion. Hydrocarbons are produced from the third portion of the formation. The hydrocarbons include at least some hydrocarbons from the second portion of the formation.

  14. QSAR model of the phototoxicity of polycyclic aromatic hydrocarbons Fabiana Alves de Lima Ribeiro, Marcia Miguel Castro Ferreira*

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    QSAR model of the phototoxicity of polycyclic aromatic hydrocarbons Fabiana Alves de Lima Ribeiro of 67 polycyclic aromatic hydrocarbons (PAHs) is performed and a prediction rule for the phototoxicity be produced from saturated hydrocarbons under oxygen-deficient conditions. Hydrocarbons with very low

  15. Hydrocarbon reaction with HF-cleaned Si(lOQ) and effects on metal-oxide-semiconductor device quality

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Hydrocarbon reaction with HF-cleaned Si(lOQ) and effects on metal-oxide-semiconductor device-cleaned Si( 100) towards hydrocarbon adsorption is examined by surface analysis; most hydrocarbons adsorb oxidation after HF treatment.4'5 In this letter, passivation against hydrocarbon contamination is studied

  16. INTRODUCTION Asphalt is a mixture of a wide variety of chemical compounds that include aliphatic hydrocarbons and highly fused

    E-Print Network [OSTI]

    Harms, Kyle E.

    hydrocarbons and highly fused aromatic ring systems.They are classified as asphaltenes (medium molecular weight

  17. Quantitative Changes in Hydrocarbons over Time in Fecal Pellets of Incisitermes minor May Predict Whether Colonies Are Alive or Dead

    E-Print Network [OSTI]

    Lewis, Vernard R.; Nelson, Lori J.; Haverty, Michael I.; Baldwin, James A.

    2010-01-01T23:59:59.000Z

    Food utilization and fecal pellet production by drywoodexploring seasonality in pellet production and hydrocarbon

  18. Extraction Utility Design Specification

    Energy Savers [EERE]

    Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All...

  19. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    SciTech Connect (OSTI)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, Ville; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, Alex B.; Hellen, H.; Laakso, L.; Hakola, H.

    2014-07-11T23:59:59.000Z

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours 1 during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass 2 selective detector was used for sample preparation and analysis. Results indicated that the 3 monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. 4 Benzene levels did not exceed local air quality standards. Toluene was the most abundant 5 species, with an annual median concentration of 0.63 ppb. No statistically significant 6 differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be attributed to patterns determining the origin of the air masses sampled. Aromatic hydrocarbon concentrations were in general significantly higher in air masses that passed over anthropocentrically impacted regions. Interspecies correlations and ratios gave some indications of the possible sources for the different aromatic hydrocarbons in the source regions defined in the paper. The highest contribution of aromatic hydrocarbon concentrations to ozone formation potential was also observed in plumes passing over anthropocentrically impacted regions.

  20. Liquid chromatographic extraction medium

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

    1994-01-01T23:59:59.000Z

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  1. Liquid chromatographic extraction medium

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13T23:59:59.000Z

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  2. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1996-02-13T23:59:59.000Z

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  3. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  4. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  5. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1995-10-03T23:59:59.000Z

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  6. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, Wei (Cambridge, MA); Flytzani-Stephanopoulos, Maria (Winchester, MA)

    1996-01-01T23:59:59.000Z

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  7. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, W.; Flytzani-Stephanopoulos, M.

    1996-03-19T23:59:59.000Z

    A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  8. Plasma-induced conversion of surface-adsorbed hydrocarbons

    SciTech Connect (OSTI)

    Sackinger, W.M.

    1992-07-01T23:59:59.000Z

    Experimental results are reported for an electrical device for direct conversion of methane into higher hydrocarbons. A microchannel plate is excited with electrons from a photoemissive source, and electron impact ionization of methane on the inner surfaces of the microchannels creates an ion feedback process. The resulting low-density plasma creates higher hydrocarbons when charged particles impact the surfaces at grazing incidence. The production Of C{sub 2} to C{sub 8}-containing gases was noted, with a selectivity for C{sub 2} of 39% in one case. The proportions of converted products and the conversion rates depend upon the electrical voltage, the microchannel geometry, and the operating pressure. Conversion rates increase with operating pressure.

  9. Plasma-induced conversion of surface-adsorbed hydrocarbons

    SciTech Connect (OSTI)

    Sackinger, W.M.

    1992-01-01T23:59:59.000Z

    Experimental results are reported for an electrical device for direct conversion of methane into higher hydrocarbons. A microchannel plate is excited with electrons from a photoemissive source, and electron impact ionization of methane on the inner surfaces of the microchannels creates an ion feedback process. The resulting low-density plasma creates higher hydrocarbons when charged particles impact the surfaces at grazing incidence. The production Of C{sub 2} to C{sub 8}-containing gases was noted, with a selectivity for C{sub 2} of 39% in one case. The proportions of converted products and the conversion rates depend upon the electrical voltage, the microchannel geometry, and the operating pressure. Conversion rates increase with operating pressure.

  10. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  11. Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation

    SciTech Connect (OSTI)

    Bylaska, Eric J.

    2006-08-01T23:59:59.000Z

    Many different degradation reactions of chlorinated hydrocarbons are possible in natural ground waters. In order to identify which degradation reactions are important, a large number of possible reaction pathways must be sorted out. Recent advances in ab initio electronic structure methods have the potential to help identify relevant environmental degradation reactions by characterizing the thermodynamic properties of all relevant contaminant species and intermediates for which experimental data is usually not available, as well as provide activation energies for relevant pathways. In this paper, strategies based on ab initio electronic structure methods for estimating thermochemical and kinetic properties of reactions with chlorinated hydrocarbons are presented. Particular emphasis is placed on strategies that are computationally fast and can be used for large organochlorine compounds such as 4,4?-DDT.

  12. Process for partial oxidation of a hydrocarbon-containing fuel

    SciTech Connect (OSTI)

    Martens, F.J.A.; Hasenack, H.J.A.

    1988-12-06T23:59:59.000Z

    This patent describes a process for partial oxidation of a hydrocarbon-containing fuel comprising supplying an oxygen-containing gas and a hydrocarbon-containing fuel to a gasification zone through a concentric arrangement of three oxygen channels and one fuel channel, and oxidizing the fuel and producing auto-thermically a gaseous stream containing synthesis gas, the oxygen-containing gas being supplied through the central channel of the concentric arrangement at a velocity of 21-42 m/sec and through the first concentric channel encircling the central channel at a velocity of 60-120 m/sec, fuel being supplied through the second concentric channel encircling the first channel at a velocity of 3.0-3.8 m/sec, and oxygen-containing gas being supplied through the third concentric channel encircling the second channel at a velocity of 60-120 m/sec.

  13. Method for direct conversion of gaseous hydrocarbons to liquids

    DOE Patents [OSTI]

    Kong, Peter C.; Lessing, Paul A.

    2006-03-07T23:59:59.000Z

    A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.

  14. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    SciTech Connect (OSTI)

    Ricca, Alessandra [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Allamandola, Louis J., E-mail: Alessandra.Ricca-1@nasa.gov, E-mail: Charles.W.Bauschlicher@nasa.gov [Space Science Division, Mail Stop 245-6, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-10-10T23:59:59.000Z

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  15. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

    1992-01-01T23:59:59.000Z

    A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and expert riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.

  16. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

    1994-01-01T23:59:59.000Z

    A well tender system for controlling, separating, storing and offloading well fluids produced from subsea hydrocarbon formations. The system comprises a vertically aligned series of tethered cylindrical tanks which are torsionally stabilized by flexible catenary production riser and export riser bundles, and serviced by separate catenary pipe bundles. Piles are secured to the seabed, each pile assembly being pivotally connected to a lower rigid tendon, which is in turn connected to tendons arranged about the periphery of the interconnected cylindrical tanks.

  17. The Formation of Nitriles in Hydrocarbon-Rich Atmospheres

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    as the hydrocarbons ethane (C2H6), acetylene (C2H2), ethyl- ene (C2H4), methylacetylene (CH3CCH), propane (C3H8), methylacetylene (CH3CCH), propane (C3H8), and diacetylene (C4H2).3 Even though the above molecules. Nitriles can be hydrolyzed and react via multistep synthesis ultimately to amino acids, thus pro

  18. A study of the solubility of mercury in liquid hydrocarbons 

    E-Print Network [OSTI]

    McFarlane, David Larimer

    1991-01-01T23:59:59.000Z

    . For these measurements a high power, narrow linewidth, pulsed, multiple laser system was utilized for generating the required UV radiation. The results provide solubility curves for the hydrocarbons which demonstrate the temperature dependence of mercury solubility... Spectrometer . . . 4 Partial Energy Level Diagram of Mercury . . . . . , . . 5 Schematic of the Spectra Physics Model 380D Ring Dye Laser System 6 Four - Stage Pulsed Dye Amplifier 7 Laser System for Detection of Mercury Using Two Photon Absorption 8...

  19. Preliminary investigation of the nature of hydrocarbon migration and entrapment

    E-Print Network [OSTI]

    Bai, Jianyong

    2004-09-30T23:59:59.000Z

    production while another half sealed among them. The Ship Shoal 274 reservoirs have exhibited a complex history of migration and entrapment. An early stage of oil and gas charge was followed and disturbed by late stage gas migration, mainly 8 through growth... structures. The charge time for commercial hydrocarbon accumulation is much longer in oil-water systems than in oil-gas-water systems. Faults are classified into charging faults and ?back doors? ? faults other than charging faults in stacked fault...

  20. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26T23:59:59.000Z

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  1. Irregular spacing of heat sources for treating hydrocarbon containing formations

    DOE Patents [OSTI]

    Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

    2012-06-12T23:59:59.000Z

    A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

  2. Production of valuable hydrocarbons by flash pyrolysis of oil shale

    DOE Patents [OSTI]

    Steinberg, M.; Fallon, P.T.

    1985-04-01T23:59:59.000Z

    A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

  3. Polycyclic aromatic hydrocarbon distributions in Mississippi Fan sediments 

    E-Print Network [OSTI]

    Sandberg, William Allan

    1986-01-01T23:59:59.000Z

    on fractionation of carbon in phytoplankton; 3) the alteration of organic matter's isotopic composition during degradation and diagenesis; 4) upward and/or lateral migration of petrogenic hydrocarbons into shallower sediments; 5) anomalous isotopic compositions... ? acenaphthene fluorene phenanthrene/anthracene Gr-3 rings fluoranthene, pyr'ene benz(a)anthracene, chrysene benzopyrenes, perylene ?drz-perylene dibenzanthracenes (*internal standards) Gas GhromatograIrhv Injector: 300 C, splitless mode Total Run...

  4. Petroleum hydrocarbon-degrading bacteria in the Galveston Bay system 

    E-Print Network [OSTI]

    Schropp, Steven James

    1979-01-01T23:59:59.000Z

    PETROLEUM HYDRQCARBOiV-DEGRADING BACTERIA IN THE GALVESTON BAY SYSTEM A Thesis by STEVEN JAMES SCHROPP Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIFNCE... December 1979 Major Subject: Biology PETROLEUM HYDROCARBON-DEGRADING BACTERIA IN THE GALVESTON BAY SYSTEM A Thesis by STEVEN JAMES SCHROPP Approved as to style and content by: (Co-Chairman of Committee) '( ~CA. ( -Chairman of Committee) (Head...

  5. Hydrocarbon reforming catalyst material and configuration of the same

    DOE Patents [OSTI]

    Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

    1996-06-18T23:59:59.000Z

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

  6. Federal Environmental Regulations Impacting Hydrocarbon Exploration, Drilling, and Production Operations

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27T23:59:59.000Z

    Waste handling and disposal from hydrocarbon exploration, drilling, and production are regulated by the US Environmental Protection Agency (EPA) through federal and state regulations and/or through implementation of federal regulations. Some wastes generated in these operations are exempt under the Resource Conservation and Recovery Act (RCRA) but are not exempt under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Superfund Amendments and Reauthorization Act (SARA), and other federal environmental laws. Exempt wastes remain exempt only if they are not mixed with hazardous wastes or hazardous substances. Once mixture occurs, the waste must be disposed as a hazardous material in an approved hazardous waste disposal facility. Before the Clean Air Act as amended in 1990, air emissions from production, storage, steam generation, and compression facilities associated with hydrocarbon exploration, drilling, and production industry were not regulated. A critical proposed regulatory change which will significantly effect Class II injection wells for disposal of produced brine and injection for enhanced oil recovery is imminent. Federal regulations affecting hydrocarbon exploration, drilling and production, proposed EPA regulatory changes, and a recent significant US Court of Appeals decision are covered in this report. It appears that this industry will, in the future, fall under more stringent environmental regulations leading to increased costs for operators.

  7. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect (OSTI)

    M. Batzle; D-h Han; R. Gibson; O. Djordjevic

    2003-03-20T23:59:59.000Z

    The ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' (Grant/Cooperative Agreement DE-FC26-02NT15342) began September 1, 2002. During this second quarter: A Direct Hydrocarbon Indicator (DHI) symposium was held at UH; Current DHI methods were presented and forecasts made on future techniques; Dr. Han moved his laboratory from HARC to the University of Houston; Subcontracts were re-initiated with UH and TAMU; Theoretical and numerical modeling work began at TAMU; Geophysical Development Corp. agreed to provide petrophysical data; Negotiations were begun with Veritas GDC to obtain limited seismic data; Software licensing and training schedules were arranged with Paradigm; and Data selection and acquisition continues. The broad industry symposium on Direct Hydrocarbon Indicators was held at the University of Houston as part of this project. This meeting was well attended and well received. A large amount of information was presented, not only on application of the current state of the art, but also on expected future trends. Although acquisition of appropriate seismic data was expected to be a significant problem, progress has been made. A 3-D seismic data set from the shelf has been installed at Texas A&M University and analysis begun. Veritas GDC has expressed a willingness to provide data in the deep Gulf of Mexico. Data may also be available from TGS.

  8. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOE Patents [OSTI]

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27T23:59:59.000Z

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  9. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOE Patents [OSTI]

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22T23:59:59.000Z

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  10. DNAPL Extraction/Oleofilter Test Report

    SciTech Connect (OSTI)

    White, R.M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Hazel, C.

    1997-11-03T23:59:59.000Z

    A short term, low flow DNAPL extraction test was performed from May 29 - 30, 1997, to gather additional information about the possibility of using monitoring well MSB-3D to recover source contamination from the M-Area Aquifer. Although no visible, free phase material was recovered, the groundwater did contain perchloroethylene (PCE) at and above aqueous solubility. Improvements in the pumping configuration were identified for future trials. Prior to final treatment in the M1 air stripper, the groundwater was passed through an Oleofiltration system to evaluate its capability as a treatment technology. The Oleofilter uses a combination of conventional gravity assisted separation with coalescing plates and a final polishing filter using proprietary coated granules to remove hydrocarbons. Although free phase DNAPL was not processed through the Oleofilter, the groundwater containing high levels of dissolved PCE was treated efficiently. Initially the Oleofilter removed 99 percent of the PCE. As the test progressed, this removal rate decreased to 83 percent as the granules became loaded with PCE. Longer term testing, perhaps with periodic backflushing, is required to determine the effective granule capacity.

  11. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31T23:59:59.000Z

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

  12. Threshold voltage extraction circuit

    E-Print Network [OSTI]

    Hoon, Siew Kuok

    2000-01-01T23:59:59.000Z

    to that of the saturation method. However, instead of fixing Vos ? Vos, the drain current is measured as a function of Vos while Vns is fixed at a constant low voltage of 100mV to ensure operation in the linear MOSFET region. Neglecting channel length modulation effect... transistors are layout next to the DUT of the NMOS and PMOS Vr extraction circuits respectively for extraction of Vr via graphical means. GRAPHICAL METHOD OF THE THRESHOLD-VOLTAGE MEASUREMENT Using the graphical method, the characteristics of 4n versus Vos...

  13. Supercritical fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

    1994-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  14. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOE Patents [OSTI]

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06T23:59:59.000Z

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  15. Apparatus and method for rapid separation and detection of hydrocarbon fractions in a fluid stream

    DOE Patents [OSTI]

    Sluder, Charles S.; Storey, John M.; Lewis, Sr., Samuel A.

    2013-01-22T23:59:59.000Z

    An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.

  16. aromatic hydrocarbon-degrading marine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aromatic Hydrocarbons in Soil Microcosms: A Review CiteSeer Summary: Copyright 2001 Kansas State University Key words: bioremediation, denitrification, PAHs, sulfidogenesis...

  17. NOAA Data Report ERL PMEL-2 LOW MOLECULAR WEIGHT HYDROCARBON CONCENTRATIONS (C1 -c4),

    E-Print Network [OSTI]

    or imply that the NOAA Environ- mental Research Laboratories approves, recommends, or endorses any pro) variations in the dissolved gaseous hydrocarbon fraction composed of methane, ethane, ethene, propane

  18. E-Print Network 3.0 - aromatic hydrocarbons adducted Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrocarbon... to its high reactivity toward DNA and cellular proteins. The major acrolein-DNA adduct, -hydrox- ypropano... -hy- droxynonenal, and acrolein, that readily form...

  19. Variability of gas composition and flux intensity in natural marine hydrocarbon seeps

    E-Print Network [OSTI]

    Clark, Jordan F.; Washburn, Libe; Schwager Emery, Katherine

    2010-01-01T23:59:59.000Z

    and the fallout plume of heavy oil from strong petroleumCH 4 ) and other heavy hydrocarbons including oil, to the

  20. aromatic hydrocarbon water-soluble: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    naturally into the environment by (more) Bobak, Deanna M. 2010-01-01 12 Zero kinetic energy photoelectron spectroscopy of polycyclic aromatic hydrocarbons. Open Access Theses and...

  1. Nonthermal plasma systems and methods for natural gas and heavy hydrocarbon co-conversion

    DOE Patents [OSTI]

    Kong, Peter C.; Nelson, Lee O.; Detering, Brent A.

    2005-05-24T23:59:59.000Z

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  2. The Impact of Low Octane Hydrocarbon Blending Streams on "E85...

    Broader source: Energy.gov (indexed) [DOE]

    IMPACT OF LOW OCTANE HYDROCARBON BLENDING STREAMS ON "E85" ENGINE OPTIMIZATION Jim Szybist and Brian West Oak Ridge National Laboratory October 19, 2012 Acknowledgement This...

  3. Supercritical Fluid Extraction

    E-Print Network [OSTI]

    Johnston, K. P.; Flarsheim, W. M.

    1984-01-01T23:59:59.000Z

    supercritical tetrahydrofuran (583K, 10 MPa) or toluene (668K, 10 MPa) to remove 95% of the organic matter from Athabasca tar sanrls [4J. Compared to oil shale retorting at 870K which extracted 71% of the kerogen, supercritical toluene at 713K and 10 MPa...

  4. Chlorinated hydrocarbons in flatfishes from the Southern California, USA, Bight

    SciTech Connect (OSTI)

    Schiff, K.; Allen, M.J.

    2000-06-01T23:59:59.000Z

    Although inputs of chlorinated hydrocarbon compounds to the Southern California Bight (SCB) are presently low, historical deposits represent a source of bioaccumulation potential to sediment-associated fauna. To assess this bioaccumulation potential, 14 chlorinated hydrocarbon classes were measured in livers of three species of flatfish collected from 63 randomly selected sites on the coastal shelf between Point Conception and the United States-Mexico international border. Tissue contamination was widespread throughout the SCB, but was limited to just two chlorinated hydrocarbon classes. Virtually 100% of Pacific sanddab (Citharichthys sordidus) and longfin sanddab (Citharichthys xanthostigma) populations were estimated to be contaminated with dichlorodiphenyltrichloroethane (total DDT = sum of o.p{prime} and p,p{prime} isomers of DDT + dichlorodiphenyldichloroethylene [DDE] + dichlorodiphenyldichloroethane [DDD]) and/or polychlorinated biphenyls (total PCBs). Total DDT also contaminated the majority (64%) of the Dover sole (Microstomus pacificus) population in the SCB. Total PCB measurements in tissues of SCB flatfish were dominated by 12 congeners (52, 66, 87, 101, 105, 118, 128, 138, 153, 170, 180, and 187), which averaged 95% of the combined mass of the 27 congeners analyzed. Sediment concentrations accounted for most of the variability observed in tissue concentrations for 8 of these 12 congeners and total PCBs. Normalized sediment concentrations were also significantly correlated to normalized tissue concentrations for total DDT and p,p{prime}-DDE. Tissue concentrations measured in this study from reference areas of the SCB were compared to tissue concentrations measured form reference areas in studies conducted in 1977 and 1985. Total DDT and total PCB liver concentrations were found to have decreased one to two orders of magnitude in pacific and longfin sanddabs between 1985 and 1994. Total DDT and total PCB liver concentrations decreased 5- to 35-fold in Dover sole between 1977 and 1994.

  5. A study of the solubility of mercury in liquid hydrocarbons

    E-Print Network [OSTI]

    McFarlane, David Larimer

    1991-01-01T23:59:59.000Z

    mercury by precipitating HgS out of solution and measuring the metcury activity on a Gieger counter. A second but similar method used by Moser and Voigt used metallic Hg&cs which was obtained by reduction of mercumus nitrate with hypophosphorus acid...A STUDY OF THE SOLUBILITY OF MERCURY IN LIQUID HYDROCARBONS A Thesis by DAVID LARIhKR MCFARLANE Submitted to the Oflice of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  6. Hydrocarbon analysis of shrimp from oil polluted waters

    E-Print Network [OSTI]

    DeWitt, Bernard John

    1982-01-01T23:59:59.000Z

    is unaccounted for (Anon. , 1980b). This oil, plus oil from other sources, could become a potential threat to the Gulf shrimp industry. One problem concerning shrimp is that all Gulf shrimp are harvested using a bottom trawl. Tar, or weathered oil, collects...HYDROCARBON ANALYSIS OF SHRIMP FROM OIL POLLUTED WATERS A Thesis by BERNARD JOHN DEWITT III Submitted to the Graduate College of Texas A&M University in partial fulfilment of the requirement for the degree of MASTER OF SCIENCE May 1982...

  7. Catalysts and process for liquid hydrocarbon fuel production

    DOE Patents [OSTI]

    White, Mark G; Liu, Shetian

    2014-12-09T23:59:59.000Z

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality gasoline components, aromatic compounds, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel molybdenum-zeolite catalyst in high pressure hydrogen for conversion, as well as a novel rhenium-zeolite catalyst in place of the molybdenum-zeolite catalyst, and provides for use of the novel catalysts in the process and system of the invention.

  8. Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has Hydrocarbon Gas Liquids

  9. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOE Patents [OSTI]

    Ruka, R.J.; Basel, R.A.

    1996-03-12T23:59:59.000Z

    A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

  10. Tectonics and hydrocarbon potential of the Barents Megatrough

    SciTech Connect (OSTI)

    Baturin, D.; Vinogradov, A.; Yunov, A. (LARGE International, Moscow (USSR))

    1991-08-01T23:59:59.000Z

    Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostly terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.

  11. Thermal response of process equipment to hydrocarbon fires

    SciTech Connect (OSTI)

    Solberg, D.M.; Borgnes, O.

    1983-01-01T23:59:59.000Z

    Requirements for active fire-fighting equipment such as fixed and portable powder extinguishers, foam generators, water guns, and deluge systems, are given in various codes and standards. However, very little is to be found about fire design conditions and passive fire protection. For safety verification of process plants and for designing adequate passive fire protection it is necessary to know the total incident heat fluxes which can occur under realistic conditions and the effects that such heat fluxes may have on process equipment and structures. During the last few years, Det Norske Veritas has been invloved in investigations aimed at estimating realistic fire loads from different types of hydrocarbon fires and the thermal response of process equipment and structures exposed to such fires. These investigations are still in progress and are especially focused on the conditions on off-shore oil and gas production platforms. However, many fire problems will be the same in the land-based process industry. The present paper concentrates on the thermal response of pipes and vessels exposed to a severe hydrocarbon fire with a defined thermal load. (JMT)

  12. Distillation sequence for the purification and recovery of hydrocarbons

    DOE Patents [OSTI]

    Reyneke, Rian (Katy, TX); Foral, Michael (Aurora, IL); Papadopoulos, Christos G. (Naperville, IL); Logsdon, Jeffrey S. (Naperville, IL); Eng, Wayne W. Y. (League City, TX); Lee, Guang-Chung (Houston, TX); Sinclair, Ian (Warrington, GB)

    2007-12-25T23:59:59.000Z

    This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

  13. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect (OSTI)

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-08-12T23:59:59.000Z

    We are now entering the final stages of our ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342). We have now developed several techniques to help distinguish economic hydrocarbon deposits from false ''Fizz'' gas signatures. These methods include using the proper in situ rock and fluid properties, evaluating interference effects on data, and doing better constrained inversions for saturations. We are testing these techniques now on seismic data from several locations in the Gulf of Mexico. In addition, we are examining the use of seismic attenuation as indicated by frequency shifts below potential reservoirs. During this quarter we have: Began our evaluation of our latest data set over the Neptune Field; Developed software for computing composite reflection coefficients; Designed and implemented stochastic turbidite reservoir models; Produced software & work flow to improve frequency-dependent AVO analysis; Developed improved AVO analysis for data with low signal-to-noise ratio; and Examined feasibility of detecting fizz gas using frequency attenuation. Our focus on technology transfer continues, both by generating numerous presentations for the upcoming SEG annual meeting, and by beginning our planning for our next DHI minisymposium next spring.

  14. Geochemical Prospecting of Hydrocarbons in Frontier Basins of India* By

    E-Print Network [OSTI]

    B. Kumar; D. J. Patil; G. Kalpana; C. Vishnu Vardhan

    India has 26 sedimentary basins with a basinal area of approximately 1.8x 10 6 km 2 (excluding deep waters), out of which seven are producing basins and two have proven potential. Exploration efforts in other basins, called “frontier basins ” are in progress. These basins are characterized by varied geology, age, tectonics, and depositional environments. Hydrocarbon shows in many of these basins are known, and in few basins oil and gas have flowed in commercial /non-commercial quantities. Within the framework of India Hydrocarbon Vision – 2025 and New Exploration Licensing Policy, there is a continuous increase in area under active exploration. The asset management concept with multi-disciplinary teams has created a demand for synergic application of risk-reduction technologies, including surface geochemical surveys. National Geophysical Research Institute (NGRI), Hyderabad, India has initiated/planned surface geochemical surveys composed of gas chromatographic and carbon isotopic analyses in few of the frontier basins of India. The adsorbed soil gas data in one of the basins (Saurashtra basin, Gujarat) has shown varied concentrations of CH4 to C4H10. The C1 concentration varies between 3 to 766 ppb and ??C2+, 1 to 543 ppb. This basin has thin soil cover and the Mesozoic sediments (probable source rocks) are overlain by thick cover of Deccan Traps. The scope and perspective of geochemical surveys in frontier basins of India are presented here.

  15. Hydrous metal oxide catalysts for oxidation of hydrocarbons

    SciTech Connect (OSTI)

    Miller, J.E.; Dosch, R.G.; McLaughlin, L.I. [Sandia National Labs., Albuquerque, NM (United States). Process Research Dept.

    1993-07-01T23:59:59.000Z

    This report describes work performed at Sandia under a CRADA with Shell Development of Houston, Texas aimed at developing hydrous metal oxide (HMO) catalysts for oxidation of hydrocarbons. Autoxidation as well as selective oxidation of 1-octene was studied in the presence of HMO catalysts based on known oxidation catalysts. The desired reactions were the conversion of olefin to epoxides, alcohols, and ketones, HMOs seem to inhibit autoxidation reactions, perhaps by reacting with peroxides or radicals. Attempts to use HMOs and metal loaded HMOs as epoxidation catalysts were unsuccessful, although their utility for this reaction was not entirely ruled out. Likewise, alcohol formation from olefins in the presence of HMO catalysts was not achieved. However, this work led to the discovery that acidified HMOs can lead to carbocation reactions of hydrocarbons such as cracking. An HMO catalyst containing Rh and Cu that promotes the reaction of {alpha}-olefins with oxygen to form methyl ketones was identified. Although the activity of the catalyst is relatively low and isomerization reactions of the olefin simultaneously occur, results indicate that these problems may be addressed by eliminating mass transfer limitations. Other suggestions for improving the catalyst are also made. 57 refs.

  16. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA)

    1996-01-01T23:59:59.000Z

    A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

  17. Catalytic autothermal reforming of hydrocarbon fuels for fuel cells.

    SciTech Connect (OSTI)

    Krumpelt, M.; Krause, T.; Kopasz, J.; Carter, D.; Ahmed, S.

    2002-01-11T23:59:59.000Z

    Fuel cell development has seen remarkable progress in the past decade because of an increasing need to improve energy efficiency as well as to address concerns about the environmental consequences of using fossil fuel for producing electricity and for propulsion of vehicles [1]. The lack of an infrastructure for producing and distributing H{sub 2} has led to a research effort to develop on-board fuel processing technology for reforming hydrocarbon fuels to generate H{sub 2} [2]. The primary focus is on reforming gasoline, because a production and distribution infrastructure for gasoline already exists to supply internal combustion engines [3]. Existing reforming technology for the production of H{sub 2} from hydrocarbon feedstocks used in large-scale manufacturing processes, such as ammonia synthesis, is cost prohibitive when scaled down to the size of the fuel processor required for transportation applications (50-80 kWe) nor is it designed to meet the varying power demands and frequent shutoffs and restarts that will be experienced during normal drive cycles. To meet the performance targets required of a fuel processor for transportation applications will require new reforming reactor technology developed to meet the volume, weight, cost, and operational characteristics for transportation applications and the development of new reforming catalysts that exhibit a higher activity and better thermal and mechanical stability than reforming catalysts currently used in the production of H{sub 2} for large-scale manufacturing processes.

  18. Libyan Paleozoic: A review of the factors limiting hydrocarbon potential

    SciTech Connect (OSTI)

    Kanes, W.H.; Mairn, A.E.M.; Aburawi, R.M.

    1988-08-01T23:59:59.000Z

    Of the three main Paleozoic basins - Ghadames, Murquz, and Kufra - only the Ghadames and its continuation into Algeria, the Illizi (or Fort Polignac) basin, has yielded hydrocarbons in significant quantity. The Paleozoic on the Cyrenaica platform and basement of the Sirte basin has a potential not fully considered. The paleogeography of the Paleozoic system is reviewed to illustrate the extent to which inherited and reactivated basement-controlled structures have influenced later Paleozoic sedimentation and hence the distribution of source rocks, reservoirs, and seals. In all instances, the source rocks are restricted to shales of the Tanezufft Formation or occur in the Upper Devonian Aouinet Oeunine Formation. Multiple fine-grained sequences serve as seals in all the fields. The reservoirs range from the well-cemented but highly fractured Cambrian-Ordovician Gargaf sandstones to the Acacus-Tadrart clastics to the fine-grained Lower Carboniferous Tahara Sandstone. The principal plays are associated with minor structures, and stratigraphic trapping mechanisms play a minor role. The average field size (excluding the Sirte basin) is approximately 80 million bbl of recoverable oil. Paleozoic structural plays in the Sirte basin and the Cyrenaica platform include reactivated infra-Cambrian faults. The lower Paleozoic accumulations of the Murzuq basin are tied to large structures. With the exception of local areas in the Ghadames basin, the Paleozoic succession remains a stratigraphic frontier province - still incompletely explored but with several interesting possibilities for large amounts of stratigraphically trapped hydrocarbons.

  19. Interactive physically-based structural modeling of hydrocarbon systems Mael Bosson a,

    E-Print Network [OSTI]

    Redon, Stephane - NRIA Grenoble

    using scripts and/or modeling tools. For many systems, however, these building methods may models of hydrocarbon systems. As the user edits the geometry of the system, atomic positions are alsoInteractive physically-based structural modeling of hydrocarbon systems Mael Bosson a, , Sergei

  20. Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes

    DOE Patents [OSTI]

    Reilly, Peter T. A.

    2004-10-19T23:59:59.000Z

    The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.

  1. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Luyendyk, Bruce

    geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the worldORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field's largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir

  2. Fracturing controlled primary migration of hydrocarbon fluids during1 heating of organic-rich shales2

    E-Print Network [OSTI]

    understand primary migration of16 hydrocarbon fluids in very low permeability source rock. Cracks nucleate.e. the transport of hydrocarbon fluids from extremely low39 permeability source rocks in which they are generated the source rock is42 formed is buried, the organic material is transformed into complex high molecular weight

  3. MathematicalModelingofCarbonDioxide(CO2)Injection intheSubsurfaceforImprovedHydrocarbonRecoveryand

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    MathematicalModelingofCarbonDioxide(CO2)Injection intheSubsurfaceforImprovedHydrocarbonRecoveryand Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department of Chemical injection for two applications: 1) improved recovery from hydrocarbon reservoirs and 2) sequestration

  4. Atmospheric emissions from the Deepwater Horizon spill constrain airwater partitioning, hydrocarbon fate, and leak rate

    E-Print Network [OSTI]

    Toohey, Darin W.

    Atmospheric emissions from the Deepwater Horizon spill constrain airwater partitioning, hydrocarbon amounts (258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data. Citation: Ryerson, T. B., et al. (2011), Atmo- spheric emissions from the Deepwater Horizon spill constrain

  5. Quantifying Desorption of Saturated Hydrocarbons from Silicon with Quantum Calculations and Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Seideman, Tamar

    Quantifying Desorption of Saturated Hydrocarbons from Silicon with Quantum Calculations hydrocarbon on silicon, desorption is observed at bias magnitudes as low as 2.5 V, albeit the desorption with conventional silicon microelectronic tech- nology [17­22]. A detailed understanding of both the electronic

  6. Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures 

    E-Print Network [OSTI]

    Le, Thuy Minh Hai

    2013-07-13T23:59:59.000Z

    /vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures...

  7. Development of in vitro screening assays for potentially neurotoxic polyaromatic hydrocarbons in SY5Y and C6 cells

    E-Print Network [OSTI]

    Tang, Yan

    1999-01-01T23:59:59.000Z

    Polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) are ubiquitous in the environment. Some congeners produce extreme toxicity in laboratory Animal studies. While much attention has been given to the carcinogenicity...

  8. Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures

    E-Print Network [OSTI]

    Le, Thuy Minh Hai

    2013-07-13T23:59:59.000Z

    /vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures...

  9. CHEM333: Experiment 2: Extraction

    E-Print Network [OSTI]

    Taber, Douglass

    ). Combine the aqueous NaOH extractions and back-extract them with ether (15 ml). Combine the ether extracts the stopcock is closed c. Before you attempt to drain the sepfunnel, remove the stopper. 2. Use a ring stand. You will also find that the funnel will not drain properly (if at all) when the stopper is one. 3

  10. Innovative Drying and Nutrients Extraction

    E-Print Network [OSTI]

    to the extraction process. This method evaporates the water from the products but also drives off up to 70 percent dimethyl ether to extract the water from the material. The new process does not require the addition of heat to evaporate the water during the extraction process. Dimethyl ether has a lower heat

  11. Time sequenced heating of multiple layers in a hydrocarbon containing formation

    DOE Patents [OSTI]

    Goldberg, Bernard (Houston, TX); Hale, Arthur Herman (Houston, TX); Miller, David Scott (Katy, TX); Vinegar, Harold J. (Bellaire, TX)

    2009-12-22T23:59:59.000Z

    A method for treating a hydrocarbon containing formation may include providing heat to a first hydrocarbon layer in the formation from a first heater located in an opening in the formation. The opening and the first heater may have a horizontal or inclined portion located in the first hydrocarbon layer and at least one connecting portion extending between the horizontal or inclined portion and the surface. Isolation material is placed in the opening such that the isolation material partially isolates the layer in which the horizontal or inclined portion of the first heater is located. An additional horizontal or inclined opening portion that extends from at least one of the connecting portions of the opening is formed in a second hydrocarbon layer. A second heater to provide heat the second hydrocarbon formation is placed in the additional substantially horizontal opening portion.

  12. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, P.C.

    1997-05-06T23:59:59.000Z

    A method is described for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap there between. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition. 6 figs.

  13. Biofuel from Bacteria and Sunlight: Shewanella as an Ideal Platform for Producing Hydrocarbons

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: The University of Minnesota is developing clean-burning, liquid hydrocarbon fuels from bacteria. The University is finding ways to continuously harvest hydrocarbons from a type of bacteria called Shewanella by using a photosynthetic organism to constantly feed Shewanella the sugar it needs for energy and hydrocarbon production. The two organisms live and work together as a system. Using Shewanella to produce hydrocarbon fuels offers several advantages over traditional biofuel production methods. First, it eliminates many of the time-consuming and costly steps involved in growing plants and harvesting biomass. Second, hydrocarbon biofuels resemble current petroleum-based fuels and would therefore require few changes to the existing fuel refining and distribution infrastructure in the U.S.

  14. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A method for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap therebetween. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition.

  15. Heavy crude and tar sands: Hydrocarbons for the 21st century. Volume 1, Geology, characterization and mining

    SciTech Connect (OSTI)

    Meyer, R.F. [ed.] [Geological Survey, Washington, DC (United States)

    1991-12-31T23:59:59.000Z

    Volume 1 is concerned with the geology of the resources and with the mining of those occurring at or near the earth`s surface. The chemical characterization of natural bitumens and heavy oil is the subject of 15 papers. These concentrate on those properties which govern the exploitability and use of these hydrocarbons. Six reports deal with exploration for bitumens and certain aspects of their later development. No less than three of the papers investigate the trace metals and their possible role in comprehending the occurrence of the bitumens and, therefore, the clues they may offer for the location of additional deposits. Another eight reports are concerned directly with the geologic occurrence of specific resource accumulations. These deposits are found in Canada, China, Madagascar, Nigeria, and Venezuela. One report describes a model that may be applied in basin analysis for predicting the composition of heavy oils expelled from the sources rocks of the basin. Additional papers then characterize the resources found in Indonesia, Iran, and the USA. Volume 1 concludes with the reports on the many kinds of bitumen extraction and use. Not only are innovative techniques evolving for the extraction of the material but also for its economic enhancement through the exploitation of coproducts. Ten papers deal with bitumen mining and its present, or prospective, utilization in places like the Mongolia Republic, the State of Utah in the USA, Trinidad in Latin America or Nigeria in Africa. Each paper has been processed separately for the Energy Science and Technology Database.

  16. Inverse hydrochemical models of aqueous extracts tests

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    years to improve water extraction methods, develop numericalreactions during water extraction, redox processes were notAranyossy, J.F. , 2001. Extraction of water and solutes from

  17. Evidence of a Pathway to Hydrocarbon Nanoparticle Formation in Fusion Plasmas and its Impact on Tritium Inventory

    E-Print Network [OSTI]

    Evidence of a Pathway to Hydrocarbon Nanoparticle Formation in Fusion Plasmas and its Impact on Tritium Inventory

  18. A 4D Synchrotron X-Ray-Tomography Study of the Formation of Hydrocarbon- Migration Pathways in Heated Organic-Rich Shale

    SciTech Connect (OSTI)

    Hamed Panahi; Paul Meakin; Francois Renard; Maya Kobchenko; Julien Scheibert; Adriano Mazzini; Bjorn Jamtveit; Anders Malthe-Sorenssen; Dag Kristian Dysthe

    2013-04-01T23:59:59.000Z

    Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interest in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low-permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing, and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms have been proposed for the transport of hydrocarbons from the rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures, and a better understanding of this complex process (primary migration) is needed. To characterize these processes, it is imperative to use the latest technological advances. In this study, it is shown how insights into hydrocarbon migration in source rocks can be obtained by using sequential high-resolution synchrotron X-ray tomography. Three-dimensional images of several immature "shale" samples were constructed at resolutions close to 5 um. This is sufficient to resolve the source-rock structure down to the grain level, but very-fine-grained silt particles, clay particles, and colloids cannot be resolved. Samples used in this investigation came from the R-8 unit in the upper part of the Green River shale, which is organic rich, varved, lacustrine marl formed in Eocene Lake Uinta, USA. One Green River shale sample was heated in situ up to 400 degrees C as X-ray-tomography images were recorded. The other samples were scanned before and after heating at 400 degrees C. During the heating phase, the organic matter was decomposed, and gas was released. Gas expulsion from the low-permeability shales was coupled with formation of microcracks. The main technical difficulty was numerical extraction of microcracks that have apertures in the 5- to 30-um range (with 5 um being the resolution limit) from a large 3D volume of X-ray attenuation data. The main goal of the work presented here is to develop a methodology to process these 3D data and image the cracks. This methodology is based on several levels of spatial filtering and automatic recognition of connected domains. Supportive petrographic and thermogravimetric data were an important complement to this study. An investigation of the strain field using 2D image correlation analyses was also performed. As one application of the 4D (space + time) microtomography and the developed workflow, we show that fluid generation was accompanied by crack formation. Under different conditions, in the subsurface, this might provide paths for primary migration.

  19. BOND LENGTH IN BENZENOID HYDROCARBONS Mrcia M. C. Fereira and Rudolf Kiralj, Universidade Estadual de Campinas, Campinas, SP, 13084-

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    1 BOND LENGTH IN BENZENOID HYDROCARBONS Márcia M. C. Fereira and Rudolf Kiralj, Universidade-carbon bond length in organic compounds, especially in aromatic hydrocarbons, is a tradicional subject calculation in planar benzenoid hydrocarbons, we must first to explain concepts like benzenoid system, data

  20. THE IN VITRO INFLUENCE OF THE BURROWING POLYCHAETE NEREIS DIVERSICOLOR ON THE FATE OF PETROLEUM HYDROCARBONS IN MARINE SEDIMENTS.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HYDROCARBONS IN MARINE SEDIMENTS. F. GILBERT a, L. RIVET b and J-C. BERTRAND a a Centre d'Océanologie de, Boite 312, 13397 Marseille Cedex 20 Abstract : The in vitro fate of the saturated hydrocarbon fraction to stimulate both downard and outward transfers of hydrocarbons from sediment reservoirs. In non

  1. Chemisorption of (CHx and C2Hy) Hydrocarbons on Pt(111) Clusters and Surfaces from DFT Studies

    E-Print Network [OSTI]

    Goddard III, William A.

    Chemisorption of (CHx and C2Hy) Hydrocarbons on Pt(111) Clusters and Surfaces from DFT Studies Timo that these hydrocarbons all bind covalently (-bonds) to the surface, in agreement with the studies by Kua and Goddard on small Pt clusters. In nearly every case the structure of the adsorbed hydrocarbon achieves a saturated

  2. Gas-phase study of the reactivity of optical coating materials with hydrocarbons by use of a

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Gas-phase study of the reactivity of optical coating materials with hydrocarbons by use with hydrocarbons is studied in the gas phase by use of mass spectroscopy of metal-oxide clusters. We report-layer materials with hydrocarbons. An increased understanding of these reactions could lead to the development

  3. Ultrafast UV Pump/IR Probe Studies of C-H Activation in Linear, Cyclic, and Aryl Hydrocarbons

    E-Print Network [OSTI]

    Harris, Charles B.

    Ultrafast UV Pump/IR Probe Studies of C-H Activation in Linear, Cyclic, and Aryl Hydrocarbons, cyclic, and aromatic hydrocarbon solvents on a femtosecond to microsecond time scale. These results have revealed that the structure of the hydrocarbon substrate affects the final C-H bond activation step, which

  4. Energetics of C-H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [TpRh(CNneopentyl)] Complex

    E-Print Network [OSTI]

    Jones, William D.

    Energetics of C-H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [Tp activation of fluorinated aromatic hydrocarbons by [TpRh(CNneopentyl)] resulted in the formation of products of homogeneous transition-metal catalysts to activate and functionalize C-H bonds of hydrocarbons for industrial

  5. Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"

    E-Print Network [OSTI]

    Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except of Southern California, Los Angeles, CA 90089-1453 Introduction Hydrocarbon-fueled internal combustion engines towards the use of hydrocarbon fueled internal combustion engines was the discovery of "large" amounts

  6. Supplementary Material A comparison of atomic-level and coarse-grained models for liquid hydrocarbons from

    E-Print Network [OSTI]

    Simons, Jack

    hydrocarbons from molecular dynamics configurational entropy estimates Riccardo Baron, Alex H. de Vries hydrocarbons. Entropies are calculated using 800 configurations collected over simulation periods of different contribution ( )r chs ch (Eq. (3)) of rotational entropy to the total entropy for hydrocarbon chains

  7. Relationship between hydrocarbon measurements and toxicity to a chironomid, fish larva and daphnid for oils and oil spill chemical

    E-Print Network [OSTI]

    Nyman, John

    the extent to which various common hydrocarbon measures can be used to predict toxicity to fresh- water microcosms using two water- column species and a benthic species, were described earlier. The hydrocarbon, and aromatics; specific individual polycyclic aromatic hydrocarbons (PAHs), and the sum of various PAH subsets

  8. Fission product solvent extraction

    SciTech Connect (OSTI)

    Moyer, B.A.; Bonnesen, P.V.; Sachleben, R.A. [and others

    1998-02-01T23:59:59.000Z

    Two main objectives concerning removal of fission products from high-level tank wastes will be accomplished in this project. The first objective entails the development of an acid-side Cs solvent-extraction (SX) process applicable to remediation of the sodium-bearing waste (SBW) and dissolved calcine waste (DCW) at INEEL. The second objective is to develop alkaline-side SX processes for the combined removal of Tc, Cs, and possibly Sr and for individual separation of Tc (alone or together with Sr) and Cs. These alkaline-side processes apply to tank wastes stored at Hanford, Savannah River, and Oak Ridge. This work exploits the useful properties of crown ethers and calixarenes and has shown that such compounds may be economically adapted to practical processing conditions. Potential benefits for both acid- and alkaline-side processing include order-of-magnitude concentration factors, high rejection of bulk sodium and potassium salts, and stripping with dilute (typically 10 mM) nitric acid. These benefits minimize the subsequent burden on the very expensive vitrification and storage of the high-activity waste. In the case of the SRTALK process for Tc extraction as pertechnetate anion from alkaline waste, such benefits have now been proven at the scale of a 12-stage flowsheet tested in 2-cm centrifugal contactors with a Hanford supernatant waste simulant. SRTALK employs a crown ether in a TBP-modified aliphatic kerosene diluent, is economically competitive with other applicable separation processes being considered, and has been successfully tested in batch extraction of actual Hanford double-shell slurry feed (DSSF).

  9. Extraction Utility Design Specification

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |Exelon GenerationExtraction Utility Design

  10. Extracting the Eliashberg Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1,EnergyExploring theExtracellularExtracting the

  11. Extracting the Eliashberg Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1,EnergyExploring theExtracellularExtracting

  12. Extracting the Eliashberg Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE, Ford,Extracting the Eliashberg

  13. Abqaiq Hanifa reservoir: Geologic attributes controlling hydrocarbon production and water injection

    SciTech Connect (OSTI)

    Grover, G. Jr. (Saudi Aramco, Dhahran (Saudi Arabia))

    1993-09-01T23:59:59.000Z

    The Hanifa reservoir at Abqaiq field consists entirely of mudsupported (>90% matrix) limestones that were deposited in the deeper water interior of the Arabian Intrashelf basin. The Hanifa mudstones lack megascopic pore spaces; porosity is evidenced by high porosities (5-32%) within these fine-grained rocks, based on porosity logs and core-plug analyses, absence of visible pore spaces to account for these high pore volumes, and 2000x SEM images that show a crystal framework texture composed of micro-rhombic (clay-size) calcite crystals with 2 - 5 [mu]m-size pore spaces between these calcite crystals. Flow meters indicate that the reservoir is capable of producing/injecting large volumes of oil/water. But there is little stratigraphic predictability to the flow, and thin (2-10 ft) low porosity (<15%) intervals can contribute over 60% of the entire flow. These reservoir attributes, coupled with the low [open quotes]matrix[close quotes] permeabilities (0.1-10 md) of the reservoir indicate the presence of an apparent permeability that is controlling fluid flow. Core studies have revealed that this apparent permeability is in the form of high-angle fractures. These fractures are [le]1 mm wide, contain hydrocarbon residue and calcite cement, and many are in close association with high-amplitude stylolites, suggesting a genetic link between stylolitization and fracturing. Borehole imaging logs are critical for fracture location, abundance, orientation, and size. The Hanifa is separated from the giant Arab-D reservoir by over 450 ft of fine-grained carbonates of the Jubaila Formation. These two reservoirs, however, are in pressure-fluid communication via a network of fractures through the Jubaila carbonates. Reservoir communication and reservoir heterogeneity is a challenge to reservoir geologists and reservoir engineers in formulating a development plan, involving horizontal producer and injector wells, to extract the reserves within the Abqaiq Hanifa reservoir.

  14. Coarse-grained interaction potentials for polyaromatic hydrocarbons

    E-Print Network [OSTI]

    O. Anatole von Lilienfeld; Denis Andrienko

    2005-12-09T23:59:59.000Z

    Using Kohn-Sham density functional theory (KS-DFT), we have studied the interaction between various polyaromatic hydrocarbon molecules. The systems range from mono-cyclic benzene up to hexabenzocoronene (hbc). For several conventional exchange-correlation functionals potential energy curves of interaction of the $\\pi$-$\\pi$ stacking hbc dimer are reported. It is found that all pure local density or generalized gradient approximated functionals yield qualitatively incorrect predictions regarding structure and interaction. Inclusion of a non-local, atom-centered correction to the KS-Hamiltonian enables quantitative predictions. The computed potential energy surfaces of interaction yield parameters for a coarse-grained potential, which can be employed to study discotic liquid-crystalline mesophases of derived polyaromatic macromolecules.

  15. Method and apparatus for hydrocarbon recovery from tar sands

    DOE Patents [OSTI]

    Westhoff, J.D.; Harak, A.E.

    1988-05-04T23:59:59.000Z

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.

  16. Method and apparatus for hydrocarbon recovery from tar sands

    DOE Patents [OSTI]

    Westhoff, James D. (Laramie, WY); Harak, Arnold E. (Laramie, WY)

    1989-01-01T23:59:59.000Z

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.

  17. Heating hydrocarbon containing formations in a spiral startup staged sequence

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Miller, David Scott (Katy, TX)

    2009-12-15T23:59:59.000Z

    Methods for treating a hydrocarbon containing formation are described herein. Methods may include treating a first zone of the formation. Treatment of a plurality of zones of the formation may be begun at selected times after the treatment of the first zone begins. The treatment of at least two successively treated zones may begin at a selected time after treatment of the previous zone begins. At least two of the successively treated zones may be adjacent to the zone treated previously. The successive treatment of the zones proceeds in an outward, substantially spiral sequence from the first zone so that the treatment of the zones may move substantially spirally outwards towards a boundary of the treatment area.

  18. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

    2012-03-13T23:59:59.000Z

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  19. Thermal performance of direct contact heat exchangers for mixed hydrocarbons

    SciTech Connect (OSTI)

    Sharpe, L. Jr.; Coswami, D.Y.; Demuth, O.J.; Mines, G.

    1985-01-01T23:59:59.000Z

    This paper describes a physical and a mathematical model for evaluating the tray efficiencies for a direct contact heat exchanger (DCHX). The model is then used to determine the efficiencies for tests conducted on a 60kW sieve tray DCHX as heat is transferred from a geofluid (brine) to a working fluid (mixed hydrocarbons). It is assumed that there are three distinct regions in the column based on the state of the working fluid, as follows: Region I - Preheating with no vaporization; Region II - Preheating with moderate vaporization; and Region III - Major vaporization. The boundaries of these regions can be determined from the experimental data. In the model, mass balance and energy balance is written for a tray ''N'' in each of these regions. Finally, the ''tray efficiency'' or ''heat transfer'' effectiveness of the tray is calculated based on the definition that it is the ratio of the actual heat transfer to the maximum possible, thermodynamically.

  20. Hydrocarbon cracking with yttrium exchanged zeolite y catalyst

    SciTech Connect (OSTI)

    Lochow, C.F.; Kovacs, D.B.

    1987-05-12T23:59:59.000Z

    A process is described for cracking a gas oil boiling range hydrocarbon feedstock comprising the step of contacting the feedstock in a catalytic cracking zone under catalytic cracking conditions to produce convulsion products comprising gasoline with a catalyst composition. The process comprises: a Y crystalline aluminosilicate zeolite, having the structure of faujasite and having uniform pore diameters and a silica to alumina mole ratio of at least about 5; an inorganic oxide matrix; and the zeolite having been ion exchanged with a mixture of rare earths prior to compositing with the matrix; and the zeolite having been subsequently further ion exchanged with yttrium following compositing with the matrix, whereby the catalyst composition contains 0.30 to 3.0 wt% yttrium.

  1. Simulated transport of polycyclic aromatic hydrocarbons in artificial streams

    SciTech Connect (OSTI)

    Bartell, S.M.; Landrum, P.F.; Giesy, J.P.; Leversee, G.J.

    1981-01-01T23:59:59.000Z

    A model was constructed to predict the pattern of flow and accumulation of three polycyclic aromatic hydrocarbons (PAH) (anthracene, naphthalene, and benzo(a)pyrene) in artificial streams located on the Savannah River Plant near Aiken, South Carolina. Predictions were based upon the premise that the fundamental chemistry of individual PAH contains useful information for predictive purposes. Model processes included volatilization, photolysis, sorption to sediments and particulates, and net accumulation by biota. Simulations of anthracene transport were compared to results of an experiment conducted in the streams. The model realistically predicted the concentration of dissolved anthracene through time and space. Photolytic degradation appeared to be a major pathway of anthracene flux from the streams.

  2. Solution mining systems and methods for treating hydrocarbon containing formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); de Rouffignac, Eric Pierre (Rijswijk, NL); Schoeling, Lanny Gene (Katy, TX)

    2009-07-14T23:59:59.000Z

    A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

  3. Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues

    Reports and Publications (EIA)

    2014-01-01T23:59:59.000Z

    Over the past five years, rapid growth in U.S. onshore natural gas and oil production has led to increased volumes of natural gas plant liquids (NGPL) and liquefied refinery gases (LRG). The increasing economic importance of these volumes, as a result of their significant growth in production, has revealed the need for better data accuracy and transparency to improve the quality of historical data and projections for supply, demand, and prices of these liquids, co-products, and competing products. To reduce confusion in terminology and improve its presentation of data, EIA has worked with industry and federal and state governments to clarify gas liquid terminology and has developed the term Hydrocarbon Gas Liquids, or HGL.

  4. The Stimulation of Hydrocarbon Reservoirs with Subsurface Nuclear Explosions

    SciTech Connect (OSTI)

    LORENZ,JOHN C.

    2000-12-08T23:59:59.000Z

    Between 1965 and 1979 there were five documented and one or more inferred attempts to stimulate the production from hydrocarbon reservoirs by detonating nuclear devices in reservoir strata. Of the five documented tests, three were carried out by the US in low-permeability, natural-gas bearing, sandstone-shale formations, and two were done in the USSR within oil-bearing carbonates. The objectives of the US stimulation efforts were to increase porosity and permeability in a reservoir around a specific well by creating a chimney of rock rubble with fractures extending beyond it, and to connect superimposed reservoir layers. In the USSR, the intent was to extensively fracture an existing reservoir in the more general vicinity of producing wells, again increasing overall permeability and porosity. In both countries, the ultimate goals were to increase production rates and ultimate recovery from the reservoirs. Subsurface explosive devices ranging from 2.3 to about 100 kilotons were used at depths ranging from 1208 m (3963 ft) to 2568 m (8427 ft). Post-shot problems were encountered, including smaller-than-calculated fracture zones, formation damage, radioactivity of the product, and dilution of the BTU value of tie natural gas with inflammable gases created by the explosion. Reports also suggest that production-enhancement factors from these tests fell short of expectations. Ultimately, the enhanced-production benefits of the tests were insufficient to support continuation of the pro-grams within increasingly adversarial political, economic, and social climates, and attempts to stimulate hydrocarbon reservoirs with nuclear devices have been terminated in both countries.

  5. The Ether Extract and the Chloroform Extract of Soils.

    E-Print Network [OSTI]

    Fraps, G. S.; Rather, J. B.

    1913-01-01T23:59:59.000Z

    I39-3I3-5m TEXAS AGRICULTURAL EXPERIMENT STATIONS BULLETIN NO. 155 JANUARY, 1913 DIVISION OF CHEMISTRY TECHNICAL BULLETIN THE ETHER EXTRACT AND THE CHLORO? FORM EXTRACT OF SOILS BY G. S. FRAPS and J. B. RATHER POSTOFFICE COLLEGE STATION... postal card will bring these publications. THE ETHER EXTRACT AND THE CHLOROFORM EXTRACT OF SOILS. (t. S. FliAPS , Chemist. ?J. B. o Y . C U G O Assistant Chemist. The soil may coDtarn any of the Substances which are found in plants or animals...

  6. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting

    SciTech Connect (OSTI)

    Mani, Devleena, E-mail: devleenatiwari@ngri.res.in [National Geophysical Research Institute (Council of Scientific and Industrial Research) (India); Kumar, T. Satish [Oil India Limited (India); Rasheed, M. A.; Patil, D. J.; Dayal, A. M.; Rao, T. Gnaneshwar; Balaram, V. [National Geophysical Research Institute (Council of Scientific and Industrial Research) (India)

    2011-03-15T23:59:59.000Z

    The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana-Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospective for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r{sup 2} < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.

  7. Actinide extraction methods

    DOE Patents [OSTI]

    Peterman, Dean R. (Idaho Falls, ID) [Idaho Falls, ID; Klaehn, John R. (Idaho Falls, ID) [Idaho Falls, ID; Harrup, Mason K. (Idaho Falls, ID) [Idaho Falls, ID; Tillotson, Richard D. (Moore, ID) [Moore, ID; Law, Jack D. (Pocatello, ID) [Pocatello, ID

    2010-09-21T23:59:59.000Z

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  8. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria (Houston, TX); Mo, Weijian (Sugar Land, TX); Muylle, Michel Serge Marie (Houston, TX); Mandema, Remco Hugo (Houston, TX); Nair, Vijay (Katy, TX)

    2009-09-01T23:59:59.000Z

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  9. Fuel-flexible partial oxidation reforming of hydrocarbons for automotive applications.

    SciTech Connect (OSTI)

    Ahmed, S.; Carter, J. D.; Kopasz, J. P.; Krumpelt, M.; Wilkenhoener, R.

    1999-06-07T23:59:59.000Z

    Micro-reactor tests indicate that our partial oxidation catalyst is fuel-flexible and can reform conventional (gasoline and diesel) and alternative (ethanol, methanol, natural gas) fuels to hydrogen rich product gases with high hydrogen selectivity. Alcohols are reformed at lower temperatures (< 600 C) while alkanes and unsaturated hydrocarbons require slightly higher temperatures. Cyclic hydrocarbons and aromatics have also been reformed at relatively low temperatures, however, a different mechanism appears to be responsible for their reforming. Complex fuels like gasoline and diesel, which are mixtures of a broad range of hydrocarbons, require temperatures of > 700 C for maximum hydrogen production.

  10. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    DOE Patents [OSTI]

    Mahajan, Devinder

    2004-12-28T23:59:59.000Z

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  11. Direct conversion of light hydrocarbon gases to liquid fuel. Final report No. 33

    SciTech Connect (OSTI)

    Kaplan, R.D.; Foral, M.J.

    1992-05-16T23:59:59.000Z

    Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

  12. Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system

    DOE Patents [OSTI]

    Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G; Spohn, Brian L

    2014-01-14T23:59:59.000Z

    A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.

  13. Upgrading of solvent extracted athabasca bitumen by membrane ultrafiltration

    SciTech Connect (OSTI)

    Sparks, B.D.; Hazlett, J.D.; Kutowy, O.; Tweddle, T.A. (National Research Council of Canada, Montreal Road Campus, Ottawa, Ontario K1A 0R9 (CA))

    1990-08-01T23:59:59.000Z

    This paper reports on solvent extraction processes that have been tested extensively for the separation of bitumen from surface-mineable, oil-bearing deposits. The end result of these processes is a solution of bitumen in a hydrocarbon solvent, usually a light naphtha. The bitumen solution contains only minimal amounts of solids and water; but, because of the constraints of the solid- liquid separation and washing steps, the bitumen concentration in the produced solutions can be quite low. Solvent must be separated from these solutions for recycle back to the extraction step of the process. This is usually accomplished by conventional techniques such as distillation, multiple-effect evaporation, or steam stripping. Sometimes a combination of these techniques is required. As a result of the low bitumen content of the solutions, the energy and capital costs associated with solvent recycle can be substantial. The use of membranes for nonaqueous liquid separations is a recent application of this developing technology. Several patents can be found describing processes for the recovery of solvent used in lube oil dewaxing or the regeneration of used automotive oils. A Japanese company has reported the development of several solvent-stable ultrafiltration membranes for the removal of solids from a number of solvents. The use of spiral-wound polysulfone membranes for the recovery of pentane solvent used in heavy oil deasphalting has been described by an American firm.

  14. Passive vapor extraction feasibility study

    SciTech Connect (OSTI)

    Rohay, V.J.

    1994-06-30T23:59:59.000Z

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

  15. Extraction chromatography: Progress and opportunities

    SciTech Connect (OSTI)

    Dietz, M.L.; Horwitz, E.P.; Bond, A.H. [Argonne National Lab., IL (United States). Chemistry Div.

    1997-10-01T23:59:59.000Z

    Extraction chromatography provides a simple and effective method for the analytical and preparative-scale separation of a variety of metal ions. Recent advances in extractant design, particularly the development of extractants capable of metal ion recognition or of strong complex formation in highly acidic media, have significantly improved the utility of the technique. Advances in support design, most notably the introduction of functionalized supports to enhance metal ion retention, promise to yield further improvements. Column instability remains a significant obstacle, however, to the process-scale application of extraction chromatography. 79 refs.

  16. Application of Metagenomics for Identification of Novel Petroleum Hydrocarbon Degrading Enzymes in Natural Asphalts from the Rancho La Brea Tar Pits

    E-Print Network [OSTI]

    Baquiran, Jean-Paul Mendoza

    2010-01-01T23:59:59.000Z

    2010. Biodegradation of MTBE by Achromobacter xylosoxidansaromatic hydrocarbons and MTBE (Eixarch and Constanti, 2010,

  17. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    SciTech Connect (OSTI)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21T23:59:59.000Z

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate oxidation catalyst. At every stage, catalyst synthesis was guided by the insights gained through detailed characterization of the catalysts using many surface and bulk analysis techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Temperature-programmed Reduction, Temperature programmed Desorption, and Diffuse Reflectance InfraRed Fourier Transform Spectroscopy as well as steady state reaction experiments. Once active catalysts for each stage had been developed, a physical mixture of the two catalysts was tested for the reduction of NO with methane in lean conditions. These experiments using a mixture of the catalysts produced N2 yields as high as 90%. In the presence of 10% water, the catalyst mixture produced 75% N{sub 2} yield, without any optimization. The dual catalyst system developed has the potential to be implemented in lean-burn natural gas engines for reducing NOx in lean exhaust as well as eliminating CO and unburned hydrocarbons without any fuel penalty or any system modifications. If funding continues, future work will focus on improving the hydrothermal stability of the system to bring the technology closer to application.

  18. Black carbon in marine sediments : quantification and implications for the sorption of polycyclic aromatic hydrocarbons

    E-Print Network [OSTI]

    Accardi-Dey, AmyMarie, 1976-

    2003-01-01T23:59:59.000Z

    Sorption is a key factor in determining the fate of polycyclic aromatic hydrocarbons (PAHs) in the environment. Here, PAH sorption is proposed as the sum of two mechanisms: absorption into a biogenic, organic carbon (OC) ...

  19. Seismic interpretation of hydrocarbon seep features, Garden Banks, Gulf of Mexico

    E-Print Network [OSTI]

    Mullins, Adam Joseph

    2001-01-01T23:59:59.000Z

    The purpose of this study was to interpret and characterize hydrocarbon seeps using a 3D seismic data set. The information gained from this interpretation was then used to develop an understanding of the processes that resulted in the development...

  20. Assessing the hydrocarbon emissions in a homogeneous direct injection spark ignited engine

    E-Print Network [OSTI]

    Radovanovic, Michael S

    2006-01-01T23:59:59.000Z

    For the purpose of researching hydrocarbon (HC) emissions in a direct-injection spark ignited (DISI) engine, five experiments were performed. These experiments clarified the role of coolant temperature, injection pressure, ...

  1. Application of Bare Gold Nanoparticles in Open-Tubular CEC Separations of Polyaromatic Hydrocarbons and Peptides

    E-Print Network [OSTI]

    Miksik, Ivan

    Application of Bare Gold Nanoparticles in Open-Tubular CEC Separations of Polyaromatic Hydrocarbons, the polyimide capillary coating was removed by hot concentrated sulfuric acid. Then the capillary was completely

  2. Analysis of a direct methane conversion to high molecular weight hydrocarbons 

    E-Print Network [OSTI]

    Al-Ghafran, Moh'd. J.

    2000-01-01T23:59:59.000Z

    . Other ways I'or cracking are thermite, shock tubes, adiabatic compression, photolysis, and irradiation. The conversion of methane to acetylene is proposed because it can be converted to heavier hydrocarbons. Many studies on the effect of temperature...

  3. Hydrocarbon emissions in a homogeneous direct-injection spark engine : gasoline and gasohol

    E-Print Network [OSTI]

    Tharp, Ronald S

    2008-01-01T23:59:59.000Z

    In order to better understand the effects on hydrocarbon emissions of loading, engine temperature, fuel type, and injection timing, a series of experiments was performed. The effect of loading was observed by running the ...

  4. Effect of Sulfur and Hydrocarbon Fuels on Titanate/Ceria SOFC Anodes

    SciTech Connect (OSTI)

    Marina, O.A.; Pedersen, L.R.; Stevenson, J.W.

    2005-01-27T23:59:59.000Z

    The purpose of the project is to develop low-cost, high-performance anodes that offer low polarization resistance as well as improved tolerance for nonidealities in anode environment such as redox cycles, sulfur and other poisons, and hydrocarbons.

  5. A rock physics strategy for quantifying uncertainty in common hydrocarbon indicators

    SciTech Connect (OSTI)

    Mavko, G.M.; Mukerji, T.

    1995-12-31T23:59:59.000Z

    We present a strategy for hydrocarbon detection and for quantifying the uncertainty in hydrocarbon indicators, by combining statistical techniques with deterministic rock physics relations derived from the laboratory and theory. A simple example combines Gassmann`s deterministic equation for fluid substitution with statistics inferred from log and core data, to detect hydrocarbons from observed seismic velocities. The formulation gives the most likely estimate of the pore fluid modulus, corresponding to each observed velocity, and also the uncertainty of that interpretation. The variances of seismic velocity and porosity in the calibration data determine the uncertainty of the pore fluid interpretation. As expected, adding information about shear wave velocity, from AVO for example, narrows the uncertainty of the hydrocarbon indicator. The formulation offers a convenient way to implement deterministic fluid substitution equations in the realistic case when the reference porosity and velocity span a range of values.

  6. From upstream to downstream: Megatrends and latest developments in Latin America`s hydrocarbons sector

    SciTech Connect (OSTI)

    Wu, Kang; Pezeshki, S.; McMahon, J.

    1995-08-01T23:59:59.000Z

    In recent years, Latin America`s hydrocarbons sector has been characterized by reorganization, revitalization, regional cooperation, environmental awakening, and steady expansion. The pattern of these changes, which appear to be the megatrends of the region`s hydrocarbons sector development, will continue during the rest of the 1990s. To further study the current situation and future prospects of Latin America`s hydrocarbons sector, we critically summarize in this short article the key issues in the region`s oil and gas development. These megatrends in Latin America`s hydrocarbons sector development will impact not only the future energy demand and supply in the region, but also global oil flows in the North American market and across the Pacific Ocean. Each country is individually discussed; pipelines to be constructed are discussed also.

  7. Method for determining asphaltene stability of a hydrocarbon-containing material

    DOE Patents [OSTI]

    Schabron, John F; Rovani, Jr., Joseph F

    2013-02-05T23:59:59.000Z

    A method for determining asphaltene stability in a hydrocarbon-containing material having solvated asphaltenes therein is disclosed. In at least one embodiment, it involves the steps of: (a) precipitating an amount of the asphaltenes from a liquid sample of the hydrocarbon-containing material with an alkane mobile phase solvent in a column; (b) dissolving a first amount and a second amount of the precipitated asphaltenes by changing the alkane mobile phase solvent to a final mobile phase solvent having a solubility parameter that is higher than the alkane mobile phase solvent; (c) monitoring the concentration of eluted fractions from the column; (d) creating a solubility profile of the dissolved asphaltenes in the hydrocarbon-containing material; and (e) determining one or more asphaltene stability parameters of the hydrocarbon-containing material.

  8. Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the...

  9. Seismic interpretation of hydrocarbon seep features, Garden Banks, Gulf of Mexico 

    E-Print Network [OSTI]

    Mullins, Adam Joseph

    2001-01-01T23:59:59.000Z

    The purpose of this study was to interpret and characterize hydrocarbon seeps using a 3D seismic data set. The information gained from this interpretation was then used to develop an understanding of the processes that resulted in the development...

  10. Massively-parallel electrical-conductivity imaging of hydrocarbons using the Blue Gene/L supercomputer

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    OF HYDROCARBONS USING THE BLUE GENE/L SUPERCOMPUTER M.of the sail lines (red and blue) and 23 detector locations (detector arrays marked in blue. Figure 3. Six selected plots

  11. Analysis of a direct methane conversion to high molecular weight hydrocarbons

    E-Print Network [OSTI]

    Al-Ghafran, Moh'd. J.

    2000-01-01T23:59:59.000Z

    Methane conversion to heavier hydrocarbons was studied using electrical furnaces and a plasma apparatus. The experiments were performed with pure methane for the electrical furnace experiments while pure methane and additions such as hydrogen...

  12. Impact of retarded spark timing on engine combustion, hydrocarbon emissions, and fast catalyst light-off

    E-Print Network [OSTI]

    Hallgren, Brian E. (Brian Eric), 1976-

    2005-01-01T23:59:59.000Z

    An experimental study was performed to determine the effects of substantial spark retard on engine combustion, hydrocarbon (HC) emissions, feed gas enthalpy, and catalyst light-off. Engine experiments were conducted at ...

  13. Complex conductivity tensor of anisotropic hydrocarbon-1 bearing shales and mudrocks2

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    to describe seismic and electromagnetic (EM) measurements in these anisotropic54 materials.55 Oil-shale to release their hydrocarbons. Hence, oil shales and58 mudrocks are typically water-wet, single- or dual

  14. A new comprehensive semiempirical approach to calculate three-phase water/hydrocarbons equilibria 

    E-Print Network [OSTI]

    Tandia, Bagus Krisna

    1995-01-01T23:59:59.000Z

    A new comprehensive semiempirical approach (CSA) has been developed to calculate three-phase water/hydrocarbons equilibria. It uses both laboratory data (stagewise isochoric distillation data) and Peng-Robinson EOS. It considers mutual solubility...

  15. Studies on multi-phase equilibrium separation of hydrocarbon/water systems 

    E-Print Network [OSTI]

    Chawla, Inderjit Singh

    1995-01-01T23:59:59.000Z

    /hydrocarbon and nonhydrate systems, but there are still some numerical difficulties in the pre-diction of three phase flash equilibria. In this thesis we presented, an efficient procedure that will help us eliminate common numerical difficulties in predicting three...

  16. OPERATION OF SOLID OXIDE FUEL CELL ANODES WITH PRACTICAL HYDROCARBON FUELS

    SciTech Connect (OSTI)

    Scott A. Barnett; Jiang Liu; Yuanbo Lin

    2004-07-30T23:59:59.000Z

    This work was carried out to achieve a better understanding of how SOFC anodes work with real fuels. The motivation was to improve the fuel flexibility of SOFC anodes, thereby allowing simplification and cost reduction of SOFC power plants. The work was based on prior results indicating that Ni-YSZ anode-supported SOFCs can be operated directly on methane and natural gas, while SOFCs with novel anode compositions can work with higher hydrocarbons. While these results were promising, more work was clearly needed to establish the feasibility of these direct-hydrocarbon SOFCs. Basic information on hydrocarbon-anode reactions should be broadly useful because reformate fuel gas can contain residual hydrocarbons, especially methane. In the Phase I project, we have studied the reaction mechanisms of various hydrocarbons--including methane, natural gas, and higher hydrocarbons--on two kinds of Ni-containing anodes: conventional Ni-YSZ anodes and a novel ceramic-based anode composition that avoid problems with coking. The effect of sulfur impurities was also studied. The program was aimed both at achieving an understanding of the interactions between real fuels and SOFC anodes, and providing enough information to establish the feasibility of operating SOFC stacks directly on hydrocarbon fuels. A combination of techniques was used to provide insight into the hydrocarbon reactions at these anodes during SOFC operation. Differentially-pumped mass spectrometry was be used for product-gas analysis both with and without cell operation. Impedance spectroscopy was used in order to understand electrochemical rate-limiting steps. Open-circuit voltages measurements under a range of conditions was used to help determine anode electrochemical reactions. Life tests over a wide range of conditions were used to establish the conditions for stable operation of anode-supported SOFC stacks directly on methane. Redox cycling was carried out on ceramic-based anodes. Tests on sulfur tolerance of Ni-YSZ anodes were carried out.

  17. Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency

    E-Print Network [OSTI]

    Baumann, Philip Douglas

    1974-01-01T23:59:59.000Z

    CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

  18. Polyethylene composites containing a phase change material having a C14 straight chain hydrocarbon

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1987-01-01T23:59:59.000Z

    A composite useful in thermal energy storage, said composite being formed of a polyethylene matrix having a straight chain alkyl hydrocarbon incorporated therein, said polyethylene being crosslinked to such a degree that said polyethylene matrix is form stable and said polyethylene matrix is capable of absorbing at least 10% by weight of said straight chain alkyl hydrocarbon; the composite is useful in forming pellets or sheets having thermal energy storage characteristics.

  19. Evaluation of open pit incineration for the disposal of hydrocarbon wastes

    E-Print Network [OSTI]

    Bell, Stuart Ray

    1981-01-01T23:59:59.000Z

    of Department) December 1981 ABSTRACT Evaluation of Open Pit Incine. ration For the Disposal of Hydrocarbon i&astes. (December 1981) Stuart Ray Bell, B. S. , Texas ASH University Chairman of Advisory Committee: Dr. Thomas R. Lalk The disposal... of hydrocarbon wastes using an open pit air curtain destructor (ACD) type incinerator was investigated. A prototype experi- mental incinerator was designed and constructed, and experiments were performed with it to determine the relationships among various...

  20. PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS

    SciTech Connect (OSTI)

    Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-06-20T23:59:59.000Z

    This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

  1. Fluorescent growth bands in irradiated-bitumen nodules: Evidence of episodic hydrocarbon migration

    SciTech Connect (OSTI)

    Rasmussen, B. [Univ. of Western Australia, Nedlands (Australia)

    1997-01-01T23:59:59.000Z

    Minute rims of solid bitumen ({approximately}40-50 {mu}m thick) surround detrital radioactive grains in the Permian-Triassic sandstones and Arranoo Member of the Kockatea Shale from the northern Perth basin, Australia. The bitumen formed as Th- and U-bearing minerals (monazite, xenotime, zircon, thorite) irradiated and immobilized fluid hydrocarbons coming within range of alpha-particle emissions. using transmitted light and scanning electron microscopy and rims appear compositionally homogeneous, but under blue/violet epifluorescent illumination the bitumen displays complex concentric and contorted banding. These fluorescent textures indicate that multiple influxes of hydrocarbons passed through the reservoir sandstones. Following radiation-induced immobilization of hydrocarbons from the first oil influx, the bitumen nodules grew through a process of swelling and expansion outward form the mineral core during subsequent oil influxes, producing graded fluorescent growth bands. Oil droplets and lamellae also were adsorbed onto the outer portion of the nodules. Such bitumen nodules are a new and potentially important source of data for understanding the movement of hydrocarbons in sedimentary basins, specifically for identifying hydrocarbon pathways, the number of discrete hydrocarbon pulses, and the relative timing of oil migration.

  2. Polycylcic Aromatic Hydrocarbons (PAH's) in dense cloud chemistry

    E-Print Network [OSTI]

    Valentine Wakelam; Eric Herbst

    2008-02-26T23:59:59.000Z

    Virtually all detailed gas-phase models of the chemistry of dense interstellar clouds exclude polycyclic aromatic hydrocarbons (PAH's). This omission is unfortunate because from the few studies that have been done on the subject, it is known that the inclusion of PAH's can affect the gas-phase chemistry strongly. We have added PAH's to our network to determine the role they play in the chemistry of cold dense cores. In the models presented here, we include radiative attachment to form PAH-, mutual neutralization between PAH anions and small positively-charged ions, and photodetachment. We also test the sensitivity of our results to changes in the size and abundance of the PAH's. Our results confirm that the inclusion of PAH's changes many of the calculated abundances of smaller species considerably. In TMC-1, the general agreement with observations is significantly improved contrary to L134N. This may indicate a difference in PAH properties between the two regions. With the inclusion of PAH's in dense cloud chemistry, high-metal elemental abundances give a satisfactory agreement with observations. As a result, we do not need to decrease the observed elemental abundances of all metals and we do not need to vary the elemental C/O ratio in order to produce large abundances of carbon species in TMC-1 (CP).

  3. Assessment of simulation predictions of hydrocarbon pool fire tests.

    SciTech Connect (OSTI)

    Luketa-Hanlin, Anay Josephine

    2010-04-01T23:59:59.000Z

    An uncertainty quantification (UQ) analysis is performed on the fuel regression rate model within SIERRA/Fuego by comparing to a series of hydrocarbon tests performed in the Thermal Test Complex. The fuels used for comparison for the fuel regression rate model include methanol, ethanol, JP8, and heptane. The recently implemented flamelet combustion model is also assessed with a limited comparison to data involving measurements of temperature and relative mole fractions within a 2-m diameter methanol pool fire. The comparison of the current fuel regression rate model to data without UQ indicates that the model over predicts the fuel regression rate by 65% for methanol, 63% for ethanol, 95% for JP8, and 15% for heptane. If a UQ analysis is performed incorporating a range of values for transmittance, reflectance, and heat flux at the surface the current model predicts fuel regression rates within 50% of measured values. An alternative model which uses specific heats at inlet and boiling temperatures respectively and does not approximate the sensible heat is also compared to data. The alternative model with UQ significantly improves the comparison to within 25% for all fuels except heptane. Even though the proposed alternative model provides better agreement to data, particularly for JP8 and ethanol (within 15%), there are still outstanding issues regarding significant uncertainties which include heat flux gauge measurement and placement, boiling at the fuel surface, large scale convective motion within the liquid, and semi-transparent behavior.

  4. Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Zhang, He; Sun, Junming; Wang, Yong

    2014-12-15T23:59:59.000Z

    This study reports synthesis, characterization, and catalytic activity of the nano-size hierarchical HZSM-5 zeolite with high mesoporosity produced via a solvent evaporation procedure. Further, this study compares hierarchical zeolites with conventional HZSM-5 zeolite with similar Si/Al ratios for the ethanol-to-hydrocarbon conversion process. The catalytic performance of the hierarchical and conventional zeolites was evaluated using a fixed-bed reactor at 360 °C, 300 psig, and a weight hourly space velocity of 7.9 h-1. For the low Si/Al ratio zeolite (~40), the catalytic life-time for the hierarchical HZSM-5 was approximately 2 times greater than the conventional HZSM-5 despite its coking amount deposited 1.6 times higher than conventional HZSM-5. For the high Si/Al ratio zeolite (~140), the catalytic life-time for the hierarchical zeolite was approximately 5 times greater than the conventional zeolite and the amount of coking deposited was 2.1 times higher. Correlation was observed between catalyst life time, porosity, and the crystal size of the zeolite. The nano-size hierarchical HZSM-5 zeolites containing mesoporosity demonstrated improved catalyst life-time compared to the conventional catalyst due to faster removal of products, shorter diffusion path length, and the migration of the coke deposits to the external surface from the pore structure.

  5. Methods of reforming hydrocarbon fuels using hexaaluminate catalysts

    DOE Patents [OSTI]

    Gardner, Todd H. (Morgantown, WV); Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV)

    2012-03-27T23:59:59.000Z

    A metal substituted hexaaluminate catalyst for reforming hydrocarbon fuels to synthesis gas of the general formula AB.sub.yAl.sub.12-yO.sub.19-.delta., A being selected from alkali metals, alkaline earth metals and lanthanide metals or mixtures thereof. A dopant or surface modifier selected from a transitions metal, a spinel of an oxygen-ion conductor is incorporated. The dopant may be Ca, Cs, K, La, Sr, Ba, Li, Mg, Ce, Co, Fe, Ir, Rh, Ni, Ru, Cu, Pe, Os, Pd, Cr, Mn, W, Re, Sn, Gd, V, Ti, Ag, Au, and mixtures thereof. The oxygen-ion conductor may be a perovskite selected from M'RhO.sub.3, M'PtO.sub.3, M'PdO.sub.3, M'IrO.sub.3, M'RuO.sub.3 wherein M'=Mg, Sr, Ba, La, Ca; a spinel selected from MRh.sub.2O.sub.4, MPt.sub.2O.sub.4, MPd.sub.2O.sub.4, MIr.sub.2O.sub.4, MRu.sub.2O.sub.4 wherein M=Mg, Sr, Ba, La, Ca and mixtures thereof; a florite is selected from M''O.sub.2.

  6. Using Ionic Liquids in Selective Hydrocarbon Conversion Processes

    SciTech Connect (OSTI)

    Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

    2009-09-28T23:59:59.000Z

    This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

  7. Removal of particulate solids from a hot hydrocarbon slurry oil

    SciTech Connect (OSTI)

    Rush, J.B.

    1991-12-31T23:59:59.000Z

    This patent describes a method of treating a hot, refractory hydrocarbon slurry oil having an initial boiling point at atmospheric pressure at least as high as 500{degrees} F and having a gravity of from about 5{degrees} API to about 15{degrees} API, to remove solid particulate material the slurry oil. It comprises mixing with the hot slurry oil, a hot vacuum reduced crude oil having an initial boiling point at atmospheric pressure which is higher than the initial boiling plant at atmospheric pressure of the slurry oil, and having an end point at atmospheric pressure which is higher than the end point at atmospheric pressure of the slurry oil; charging the mixture of hot vacuum reduced crude oil and hot slurry oil to a vacuum flash zone having a pressure of from 1.0 mm Hg to about 10.0 mm Hg and at the selected temperature of less than 700{degrees} F and more than 300{degrees} F to thereby vaporize a major portion of the slurry oil in the mixture, and to thereby transfer substantially all of the solid particulate material into the bottoms liquid remaining in the flash zone following the completion of the vaporization; recovering the overhead; and recovering the liquid bottoms containing the solid particulate material.

  8. Persistence of chlorinated hydrocarbon contamination in a California marine ecosystem

    SciTech Connect (OSTI)

    Young, D.R.; Gossett, R.W.; Heesen, T.C.

    1989-01-01T23:59:59.000Z

    Despite major reductions in the dominant DDT and polychlorinated biphenyls (PCB) input off Los Angeles (California, U.S.A.) in the early 1970s, the levels of these pollutants decreased only slightly from 1972 to 1975 both in surficial bottom sediments and in a flatfish bioindicator (Dover sole, Microstomus pacificus) collected near the submarine outfall. Concentrations of these pollutants in the soft tissues of the mussel Mytilus californianus, collected intertidally well inshore of the highly contaminated bottom sediments, followed much more closely the decreases in the outfall discharges. These observations suggest that contaminated sediments on the seafloor were the principal (although not necessarily direct) cause of the relatively high and persistent concentrations of DDT and PCB residues in tissues. The study indicated that residues of the higher-molecular-weight chlorinated hydrocarbons, such as DDT and PCB, can be highly persistent once released to coastal marine ecosystems and that their accumulation in surficial bottom sediments is the most likely cause of this persistence observed in the biota of the discharge zone.

  9. North African geology: exploration matrix for potential major hydrocarbon discoveries

    SciTech Connect (OSTI)

    Kanes, W.H.; O'Connor, T.E.

    1985-02-01T23:59:59.000Z

    Based on results and models presented previously, it is possible to consider an exploration matrix that examines the 5 basic exploration parameters: source, reservoir, timing, structure, and seal. This matrix indicates that even those basins that have had marginal exploration successes, including the Paleozoic megabasin and downfaulted Triassic grabens of Morocco, the Cyrenaican platform of Libya, and the Tunisia-Sicily shelf, have untested plays. The exploration matrix also suggests these high-risk areas could change significantly, if one of the 5 basic matrix parameters is upgraded or if adjustments in political or financial risk are made. The Sirte basin and the Gulf of Suez, 2 of the more intensely explored areas, also present attractive matrix prospects, particularly with deeper Nubian beds or with the very shallow Tertiary sections. The Ghadames basin of Libya and Tunisia shows some potential, but its evaluation responds strongly to stratigraphic and external nongeologic matrix variations based on degree of risk exposure to be assumed. Of greatest risk in the matrix are the very deep Moroccan Paleozoic clastic plays and the Jurassic of Sinai. However, recent discoveries may upgrade these untested frontier areas. Based on the matrix generated by the data presented at a North African Petroleum Geology symposium, significant hydrocarbon accumulations are yet to be found. The remaining questions are: where in the matrix does each individual company wish to place its exploration capital and how much should be the risk exposure.

  10. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    SciTech Connect (OSTI)

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M. [Instituto de Astrofisica de Andalucia (CSIC), E-18080 Granada (Spain); Dinelli, B. M. [ISAC-CNR, I-40129 Bologna (Italy); Adriani, A.; D'Aversa, E. [IAPS-INAF, I-00133 Rome (Italy); Moriconi, M. L. [ISAC-CNR, I-00133 Rome (Italy); Boersma, C.; Allamandola, L. J., E-mail: puertas@iaa.es [NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States)

    2013-06-20T23:59:59.000Z

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  11. Genetic Engineering of Plants to Improve Phytoremediation of Chlorinated Hydrocarbons in Groundwater

    SciTech Connect (OSTI)

    Strand, Stuart E.

    2004-12-01T23:59:59.000Z

    I. Mechanism of halogenated hydrocarbon oxidation We are using poplar culture cells to determine the pathway of TCE metabolism. In our earlier work, we found that trichloroethanol (TCEOH) is a major early intermediate. Our studies this year have focused on the steps that follow this toxic intermediate. We did several experiments to track the disappearance of TCEOH after the cells were removed from TCE. We could conclude that TCEOH is not an end-product but is rapidly degraded. Six flasks of poplar liquid suspension cells were exposed to a level of 50 {micro}g/ml TCE for three days. Three of the cultures were subjected to MTBE extractions to quantify the levels of TCEOH produced. The cells of the remaining three cultures were then pelleted and resuspended in fresh medium. After three more days, these were also subjected to MTBE extractions. The samples were analyzed by GC-ECD. After the three days of further metabolism, an average of 91% of the trichloroethanol was gone. When similar experiments were done with intact plants and both free and conjugated TCEOH were quantified, a similar rapid decline in both forms was seen (Shang, 2001). Therefore, it seems probable that similar mechanisms are taking place in both poplar suspension cells and whole poplar plants, so we continued to do our studies with the suspension cells. Metabolism of trichloroethanol may go through trichloroacetic acid (TCAA) prior to dehalogenation. To test this possibility, we exposed cells to TCE and analyzed for TCAA over time. The cultures were analyzed after 4, 5, 6, and 14 days from TCE exposure. We did not detect any significant amount of TCAA above the background in undosed cells. To determine if trichloroethanol itself is directly dehalogenated, we analyzed TCE-exposed cells for the presence of dichloroethanol. Undosed cells did not have any of the DCEOH peak but TCE-dosed cells that produced the highest levels of trichloroethanol did have a small DCEOH peak. Cultures that did not produce high levels of TCEOH did not have the DCEOH peak. This result repeated in two independent experiments. We decided to expose cells directly to TCEOH and look for DCEOH in the cell extracts. After one week of exposure, the culture cells produced consistent levels of DCEOH of approximately 0.02% of the TCEOH dose. However, when we did a control reaction with no cells, DCEOH was present, indicating that the TCEOH degrades in the absence of cells. We are currently conducting the same experiments with newly-purchased chemicals and in darkness (by wrapping the culture flasks in foil). We have had success using tribromoethanol as a surrogate for trichloroethanol in studying the dehalogenation reaction in poplar cells. We had previously shown that tribromoethanol is steadily metabolized over time in poplar culture cells, producing free bromide ion. TBEOH-dosed dead cells and no cell controls did not have any bromide ion production. We are currently using this system to test P450 inhibitors to determine if dehalogenation of TBEOH is through this mechanism. We have recently purchased tribromoethylene as a more easily monitored surrogate for TCE. We will conduct mass balance experiments to determine what percentage of the bromide is released from tribromoethylene.

  12. Diagnostic development for determining the joint temperature/soot statistics in hydrocarbon-fueled pool fires : LDRD final report.

    SciTech Connect (OSTI)

    Casteneda, Jaime N.; Frederickson, Kraig; Grasser, Thomas W.; Hewson, John C.; Kearney, Sean Patrick; Luketa, Anay Josephine

    2009-09-01T23:59:59.000Z

    A joint temperature/soot laser-based optical diagnostic was developed for the determination of the joint temperature/soot probability density function (PDF) for hydrocarbon-fueled meter-scale turbulent pool fires. This Laboratory Directed Research and Development (LDRD) effort was in support of the Advanced Simulation and Computing (ASC) program which seeks to produce computational models for the simulation of fire environments for risk assessment and analysis. The development of this laser-based optical diagnostic is motivated by the need for highly-resolved spatio-temporal information for which traditional diagnostic probes, such as thermocouples, are ill-suited. The in-flame gas temperature is determined from the shape of the nitrogen Coherent Anti-Stokes Raman Scattering (CARS) signature and the soot volume fraction is extracted from the intensity of the Laser-Induced Incandescence (LII) image of the CARS probed region. The current state of the diagnostic will be discussed including the uncertainty and physical limits of the measurements as well as the future applications of this probe.

  13. Ethanol Conversion to Hydrocarbons on HZSM-5: Effect of Reaction Conditions and Si/Al Ratio on the Product Distributions

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2014-11-17T23:59:59.000Z

    The Conversion of ethanol to hydrocarbon over HZSM-5 zeolite with different Si/Al ratios was investigated under various reaction conditions. The catalyst with a higher Si/Al ratio (low acid density) deactivated faster and generated more unsaturated compounds at a similar time-on-stream. Temperature affects the catalytic activity with respect to liquid hydrocarbon generation and the hydrocarbon product composition. At lower temperatures (~300°C), the catalyst deactivated faster with respect to the liquid hydrocarbon formation. Higher temperatures (~400°C) reduced the formation of liquid range hydrocarbons and formed more gaseous fractions. Weight hourly space velocity was also found to affect product selectivity with higher weight hourly space velocity leading to a higher extent of ethylene formation. The experimental results were analyzed in terms of the product composition and the coke content with respect to catalyst time-on-stream and compared with the catalyst lifetime with respect to the variables tested on the conversion of ethanol to hydrocarbon.

  14. SOLVENT EXTRACTION OF PHENOLS FROM WATER

    E-Print Network [OSTI]

    Greminger, Douglas C.

    2012-01-01T23:59:59.000Z

    Waste Water Treatment by Solvent Extraction," Canadian J.A.F. Preuss, "Extraction of Phenol from Water with a Liquid1980 SOLVENT EXTRACTION OF PHENOLS FROM WATER LP,WRENCE BERv

  15. Z .Comparative Biochemistry and Physiology Part B 128 2001 575 595 Novel wax esters and hydrocarbons in the cuticular

    E-Print Network [OSTI]

    Gordon, Deborah

    and hydrocarbons in the cuticular surface lipids of the red harvester ant, Pogonomyrmex barbatus Dennis R. Nelsona, hydrocarbons. The wax esters ranged in carbon number from C19 to C31 and consisted of esters of both odd. The hydrocarbons consisted of: n-alkanes, C23 to C33; odd-numbered n-alkenes, C27 to C35; and the major components

  16. Kinetics and intermediate products in the interaction of straight-chain and cyclic hydrocarbon radicals with 9,10-Anthraquinone

    SciTech Connect (OSTI)

    Ladygin, B.V.; Revina, A.A.

    1986-04-01T23:59:59.000Z

    The authors use a pulse radiolysis technique with optical registration of the destruction of hydrocarbon radicals R in determining the rate constants for the interaction of cyclododecyl radicals and n-dodecyl radicals with 9,10-anthraquinone in the corresponding liquid hydrocarbons, at various temperatures. It is shown that in the presence of oxygen, hydrocarbon radicals with the quinone form oxygen-containing species that are capable of propagating the oxidation chain and regenerating the original quinone.

  17. Liquid-Liquid Extraction Processes

    E-Print Network [OSTI]

    Fair, J. R.; Humphrey, J. L.

    1983-01-01T23:59:59.000Z

    Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

  18. Final Report, "Molecular Design of Hydrocarbon Oxidation Catalytic Processes"

    SciTech Connect (OSTI)

    Professor Francisco Zaera

    2007-08-09T23:59:59.000Z

    The main goal of this project had been to use model systems to correlate selectivities in partial oxidation catalysis with the presence of specific sites on the surface of the catalyst. Extensive work was performed this year on characterizing oxygen-treated nickel surfaces by chemical means. Specifically, the surface chemistry of ammonia coadsorbed with atomic oxygen on Ni(110) single-crystal surfaces was studied by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). It was determined that at intermediate oxygen coverages direct ammonia adsorption on nickel sites is suppressed, but a new high-temperature reaction regime is generated at 400 K where NHx surface fragments are rehydrogenated concurrently with the production of water and molecular hydrogen. The extensive isotope scrambling and hydrogen transfer seen from nitrogen- to oxygen-containing surface intermediates, and the optimum yields seen for this 400 K state at intermediate oxygen coverages, strongly suggest the direct interaction of the adsorbed ammonia with oxygen atoms at the end of the –Ni–O- rows that form upon reconstruction of the surface. Hydrogen transfer between ammonia and oxygen appears to take place directly via hydrogen bonding, and to be reversible but biased towards water formation. An equilibrium is reached between the produced water and the reacting surface oxygen and hydrogen. The strong influence of the OH surface groups on the thermal chemistry of the adsorbed ammonia was interpreted in terms of the adsorbing geometry of the OH groups on the surface, and of hydrogen bonding between adsorbed OH and NH3 species. In terms of alcohol reactivity, the adsorption of 2-iodoethanol, a precursor for the preparation of 2-hydroxyethyl and oxametallacycle surface species, was found to lead to two configurations involving either just the iodine atom or both iodine and hydroxyl ends of the molecule. A complex chemical behavior starts around 140 K with the production of small amounts of ethylene and water, most likely via the concerted decomposition or disproportionation of the adsorbed molecular species. The bulk of the 2-iodoethanol decomposes at about 150 K via an initial carbon-iodine scission to form –O(H)CH2CH2– (~80%) and 2-hydroxyethyl (~20%) intermediates. Two competing reactions are involved with the subsequent conversion of the 2-hydroxyethyl species around 160 K, a reductive elimination with surface hydrogen to yield ethanol, and a ?-H elimination to surface vinyl alcohol. The –O(H)CH2CH2–, on the other hand, dehydrogenates to a –OCH2CH2– oxametallacycle species about the same temperature. Both 2-hydroxyethyl and oxametallacycle species tautomerize to acetaldehyde, around 210 K and above 250 K, respectively, and some of that acetaldehyde desorbs while the rest decomposes to hydrogen and carbon monoxide. We contend that a better understanding of the surface chemistry of oxygen-containing surfaces can lead to better selectivities in catalysis. This is arguably the most important issue in the field of catalysis in the near future, and one that impacts several technologies of interest to DOE such as the manufacturing of speciality chemicals and the control and removal of pollutants. Additional work was performed on the characterization of the chemistry of methyl and methylene adsorbed species on oxygen-treated nickel surfaces. Complex chemistry was observed involving not only hydrogenation and dehydrogenation steps, but also C-C couplings and methylene insertions to produce heavier hydrocarbons, and oxygen insertion reactions that yield oxygenates. Finally, a dual titration technique employing xenon and a chemically sensitive probe was developed to identify minority catalytic sites on oxide surfaces. In the case of oxygen-treated Ni(110) single crystals, it was found that both hydrogen transfer with adsorbed water or ammonia and certain hydrocarbon hydrogenation reactions take place at the end of the –Ni–O rows that form in this system. Carbon and nitrogen oxides, on the other hand, display no pre

  19. Novel modified zeolites for energy-efficient hydrocarbon separations.

    SciTech Connect (OSTI)

    Arruebo, Manuel (University of Colorado, Boulder, CO); Dong, Junhang; Anderson, Thomas (Burns and McDonnell, Kansas City, MO); Gu, Xuehong; Gray, Gary (Goodyear Chemical Company, Akron, OH); Bennett, Ron (Goodyear Chemical Company, Akron, OH); Nenoff, Tina Maria; Kartin, Mutlu; Johnson, Kaylynn (Goodyear Chemical Company, Akron, OH); Falconer, John (University of Colorado, Boulder, CO); Noble, Richard (University of Colorado, Boulder, CO)

    2006-11-01T23:59:59.000Z

    We present synthesis, characterization and testing results of our applied research project, which focuses on the effects of surface and skeletal modification of zeolites for significant enhancements in current hydrocarbon (HC) separations. Zeolites are commonly used by the chemical and petroleum industries as catalysts and ion-exchangers. They have high potential for separations owing to their unique pore structures and adsorption properties and their thermal, mechanical and chemical properties. Because of zeolites separation properties, low cost, and robustness in industrial process, they are natural choice for use as industrial adsorbents. This is a multidisciplinary effort to research, design, develop, engineer, and test new and improved materials for the separation of branched vs. linear organic molecules found in commercially important HC streams via adsorption based separations. The focus of this project was the surface and framework modification of the commercially available zeolites, while tuning the adsorption properties and the selectivities of the bulk and membrane separations. In particular, we are interested with our partners at Goodyear Chemical, on how to apply the modified zeolites to feedstock isoprene purification. For the characterization and the property measurements of the new and improved materials powder X-ray diffraction (PXRD), Residual Gas Analyzer-Mass Spectroscopy (RGA-MS), Electron Microscopy (SEM/EDAX), temperature programmed desorption (TPD) and surface area techniques were utilized. In-situ carbonization of MFI zeolite membranes allowed for the maximum separation of isoprene from n-pentane, with a 4.1% enrichment of the binary stream with n-pentane. In four component streams, a modified MFI membrane had high selectivities for n-pentane and 1-3-pentadiene over isoprene but virtually no separation for the 2-methyl-2-butene/isoprene pair.

  20. Pre-Mississippian hydrocarbon potential of Illinois basin

    SciTech Connect (OSTI)

    Davis, H.G.

    1987-05-01T23:59:59.000Z

    The Illinois basin is primarily a Paleozoic epeirogenic basin located in the east-central US. Taken at its broadest possible definition, this basin contains a maximum of 20,000 ft of sedimentary rocks. These represent every Phanerozoic system except the Triassic and Jurassic. Seven important tectonic episodes are recognized. These begin with the establishment of Eocambrian basement rift faults, followed by six rejuvenation events of varying magnitude. More than 3.5 billion bbl of oil have been produced from the Illinois basin, mainly from Pennsylvanian and Mississippian rocks. These rocks represent only 20% of the total basin sedimentary volume. Source rock maturation studies suggest that none of this oil is indigenous to the Pennsylvanian or Mississippian, but all has migrated upward from at least three pre-Mississippian sources. If basin sedimentary volume is taken to be roughly proportional to hydrocarbon reserves, there may be as much as 12 billion BOE remaining to be found in the largely untested pre-Mississippian of the Illinois basin. A thermal history model and Lopatin analysis suggest that oil generation began in Ordovician time and continued through the Jurassic in the deepest part of the basin. At the present stage of exploration, the Hunton Megagroup (Silurian-Devonian) is recommended as the primary pre-Mississippian drilling target. However, understanding the interplay of the pre-Middle Devonian unconformity with contemporaneous paleotopographic-paleobathymetric expression of prospective features is critical to successful Hunton porosity prediction. This interplay is demonstrated at Centralia and Sandoval fields, Clinton and Marion counties, Illinois.

  1. Structure, stratigraphy, and hydrocarbons offshore southern Kalimantan, Indonesia

    SciTech Connect (OSTI)

    Bishop, W.F.

    1980-01-01T23:59:59.000Z

    Offshore southern Kalimantan (Borneo), Indonesia, the Sunda Shelf is bounded on the south by the east-west-trending Java-Madura foreland basin and on the north by outcrops of the granitic core of Kalimantan. Major northeast-southwest-trending faults created a basin and ridge province which controlled sedimentation at least until early Miocene time. Just above the unconformity, the oldest pre-CD Limestone clastic strata are fluviatile and lacustrine, the remainder consisting largely of shallow-marine, calcareous shale with interbeds of fine-grained, quartzose sandstone. A flood of terrigenous detritus - Kudjung unit 3 - resulted from post-CD Limestone uplift, and is more widely distributed. Unit 3 consists largely of fluviatile sandstone interbedded with shale and mudstone, grading upward to marine clastics with a few thin limestones near the top. The resulting Kudjing unit 2 is largely a shallow-basinal deposit, comprising thin, micritic limestones interbedded with calcareous shale and mudstone. Infilling of the basins was nearly complete by the end of Kudjing unit 1 deposition. Eastern equivalents of Kudjing units 1 and 2 are known as the Berai limestone interval (comprising bank, reefal, basinal, and open-marine limestones, and marl). Of the three oil fields in the area, two are shut in, but one has produced nearly 100 million bbl. Gas shows were recorded in most wells of the area, but the maximum flow was 1.8 MMcf methane/day, although larger flows with high percentages of carbon dioxide and nitrogen were reported. Fine-grained clastic strata of unit 3 are continuous with those farther south, where geochemical data indicate good source and hydrocarbon-generating potential. Sandstones with reservoir capability are present in the clastic intervals, and several carbonate facies have sporadically developed porosity. A variety of structural and stratigraphic traps is present. 20 figures, 1 table.

  2. Sorption characteristics of polycyclic aromatic hydrocarbons in aluminum smelter residues

    SciTech Connect (OSTI)

    Gijs D. Breedveld; Emilien Pelletier; Richard St. Louis; Gerard Cornelissen [Norwegian Geotechnical Institute, Oslo (Norway)

    2007-04-01T23:59:59.000Z

    High temperature carbon oxidation in primary aluminum smelters results in the release of polycyclic aromatic hydrocarbons (PAH) into the environment. The main source of PAH are the anodes, which are composed of petroleum coke (black carbon, BC) and coal tar pitch. To elucidate the dominant carbonaceous phase controlling the environmental fate of PAH in aluminum smelter residues (coke BC and/or coal tar), the sorptive behavior of PAHs has been determined, using passive samplers and infinite-sink desorption methods. Samples directly from the wet scrubber were studied as well as ones from an adjacent 20-year old storage lagoon and roof dust from the smelter. Carbon-normalized distribution coefficients of native PAHs were 2 orders of magnitude higher than expected based on amorphous organic carbon (AOC)/water partitioning, which is in the same order of magnitude as reported literature values for soots and charcoals. Sorption isotherms of laboratory-spiked deuterated phenanthrene showed strong (about 100 times stronger than AOC) but nonetheless linear sorption in both fresh and aged aluminum smelter residues. The absence of nonlinear behavior typical for adsorption to BC indicates that PAH sorption in aluminum smelter residues is dominated by absorption into the semi-solid coal tar pitch matrix. Desorption experiments using Tenax showed that fresh smelter residues had a relatively large rapidly desorbing fraction of PAH (35-50%), whereas this fraction was strongly reduced (11-16%) in the lagoon and roof dust material. Weathering of the coal tar residue and/or redistribution of PAH between coal tar and BC phases could explain the reduced availability in aged samples. 38 refs., 5 figs., 1 tab.

  3. Q AS A LITHOLOGICAL/HYDROCARBON INDICATOR: FROM FULL WAVEFORM SONIC TO 3D SURFACE SEISMIC

    SciTech Connect (OSTI)

    Jorge O. Parra; C.L. Hackert; L. Wilson; H.A. Collier; J. Todd Thomas

    2006-03-31T23:59:59.000Z

    The goal of this project was to develop a method to exploit viscoelastic rock and fluid properties to greatly enhance the sensitivity of surface seismic measurements to the presence of hydrocarbon saturation. To reach the objective, Southwest Research Institute scientists used well log, lithology, production, and 3D seismic data from an oil reservoir located on the Waggoner Ranch in north central Texas. The project was organized in three phases. In the first phase, we applied modeling techniques to investigate seismic- and acoustic-frequency wave attenuation and its effect on observable wave attributes. We also gathered existing data and acquired new data from the Waggoner Ranch field, so that all needed information was in place for the second phase. During the second phase, we developed methods to extract attenuation from borehole acoustic and surface seismic data. These methods were tested on synthetic data constructed from realistic models and real data. In the third and final phase of the project, we applied this technology to a full data set from the Waggoner site. The results presented in this Final Report show that geological conditions at the site did not allow us to obtain interpretable results from the Q processing algorithm for 3D seismic data. However, the Q-log processing algorithm was successfully applied to full waveform sonic data from the Waggoner site. A significant part of this project was technology transfer. We have published several papers and conducted presentations at professional conferences. In particular, we presented the Q-log algorithm and applications at the Society of Exploration Geophysicists (SEG) Development and Production Forum in Austin, Texas, in May 2005. The presentation attracted significant interest from the attendees and, at the request of the SEG delegates, it was placed on the Southwest Research Institute Internet site. The presentation can be obtained from the following link: http://www.swri.org/4org/d15/elecsys/resgeo/ppt/Algorithm.pps In addition, we presented a second application of the Q algorithm at the SEG International Conference in Houston, Texas, in May 2005. The presentation attracted significant interest there as well, and it can be obtained from the following link: http://www.swri.org/4org/d15/elecsys/resgeo/ppt/attenuation.pps.

  4. Hot water bitumen extraction process

    SciTech Connect (OSTI)

    Rendall, J.S.

    1989-10-24T23:59:59.000Z

    This patent describes a method of extracting bitumen oils from tar-sands ore. It includes an initial conditioning step comprising crushing tar-sands ore to yield solid particles of a maximum size required by a log washer conditioner in a second conditioning step; a bitumen extraction step; a bitumen separation step; a solvent recovery step; a sand washing and water clarification step; and a sand solvent recovery step.

  5. Carbon and oxygen stable isotopes in the Toa Baja Well, Puerto Rico: implications for burial diagenesis and hydrocarbon generation

    E-Print Network [OSTI]

    Gonzalez, Luis A.

    1991-03-01T23:59:59.000Z

    that the bulk of the sediment pile has not been exposed to temperatures above the oil window and possibly hydrocarbons have been generated deeper in the basin....

  6. Inverse hydrochemical models of aqueous extracts tests

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    processes may occur during porewater extraction such as dissolution of soluble minerals (processes taking place during aqueous extraction. Identification of GM requires knowing: 1) Aqueous complexes, 2) Mineral

  7. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

  8. Direct Conversion of Syngas-to-Hydrocarbons over Higher Alcohols Synthesis Catalysts Mixed with HZSM-5

    SciTech Connect (OSTI)

    Lebarbier Dagel, Vanessa M.; Dagle, Robert A.; Li, Jinjing; Deshmane, Chinmay A.; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2014-09-10T23:59:59.000Z

    The synthesis of hydrocarbon fuels directly from synthesis gas (i.e. one step process) was investigated with a catalytic system comprised of HZSM-5 physically mixed with either a methanol synthesis catalyst or a higher alcohols synthesis (HAS) catalyst. The metal sites of the methanol or HAS synthesis catalyst enable the conversion of syngas to alcohols, whereas HZSM-5 provides acid sites required for methanol dehydration, and dimethyl ether-to-hydrocarbons reactions. Catalytic performance for HZSM-5 when mixed with either a 5 wt.% Pd/ZnO/Al2O3 methanol synthesis catalyst or a HAS catalyst was evaluated at 300°C, 70 bars, GHSV=700 h-1 and H2/CO=1 using a HZSM-5: alcohols synthesis catalyst weight ratio of 3:1. The major difference observed between the methanol synthesis and HAS catalyst mixtures was found in the production of durene which is an undesirable byproduct. While durene formation is negligible with any of the HAS catalysts mixed with the HZSM-5 evaluated in this study, it represents almost 50% of the C5+ fraction for the methanol synthesis catalyst (5 wt.% Pd/ZnO/Al2O3 ) mixed with HZSM-5. This presents an advantage for using HAS catalysts over the methanol synthesis catalyst to minimize the durene by-product. The yield toward the desired C5+ hydrocarbons is thus twice higher with selected HAS catalysts as compared to when HZSM-5 is mixed with 5 wt.% Pd/ZnO/Al2O3. Among all the HAS catalysts evaluated in this study, a catalyst with 0.5 wt.% Pd/FeCoCu catalyst was found the most promising due to higher production of C5+ hydrocarbons and low durene formation. The efficiency of the one-step process was thus further evaluated using the HZSM-5: 0.5 wt.% Pd/FeCoCu catalyst mixture under a number of process conditions to maximize liquid hydrocarbons product yield. At 300oC, 70 bars, GHSV = 700 h-1 and HZSM-5: 0.5 wt.% Pd/FeCoCu = 3:1 (wt.), the C5+ fraction represents 48.5% of the hydrocarbons. Unfortunately, it is more difficult to achieve higher selectivity to desired C5+ hydrocarbons as the formation of CO2, CH4, and other light hydrocarbons is challenging to suppress in the presence of mixed metal and acid sites. When the 0.5 wt.% Pd/FeCoCu and HZSM-5 are operated sequentially by way of a two-step process the C5+ hydrocarbons fraction is lower and represents 30.4% of the hydrocarbons under comparable conditions. The yield toward the C5+ hydrocarbons is twice higher for the one-step process due to an improved CO conversion and higher C5+ hydrocarbons fraction. The main advantage of the one-step process is that higher syngas conversion can be achieved as the equilibrium-driven conversion limitations for methanol and dimethyl ether are removed since they are intermediates to the final hydrocarbons product.

  9. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOE Patents [OSTI]

    Moyer, Bruce A. (Oak Ridge, TN); Sachleben, Richard A. (Knoxville, TN); Bonnesen, Peter V. (Knoxville, TN); Presley, Derek J. (Ooltewah, TN)

    2001-01-01T23:59:59.000Z

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  10. Method and apparatus for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Farthing, William Earl (Pinson, AL) [Pinson, AL; Felix, Larry Gordon (Pelham, AL) [Pelham, AL; Snyder, Todd Robert (Birmingham, AL) [Birmingham, AL

    2008-02-12T23:59:59.000Z

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  11. Method and apparatus maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Farthing, William Earl (Pinson, AL); Felix, Larry Gordon (Pelham, AL); Snyder, Todd Robert (Birmingham, AL)

    2009-12-15T23:59:59.000Z

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  12. Separation of C2 Hydrocarbons by Porous Materials: Metal Organic Frameworks as Platform

    SciTech Connect (OSTI)

    Banerjee, Debasis; Liu, Jun; Thallapally, Praveen K.

    2014-12-22T23:59:59.000Z

    The effective separation of small hydrocarbon molecules (C1 – C4) is an important process for petroleum industry, determining the end price of many essential commodities in our daily lives. Current technologies for separation of these molecules rely on energy intensive fractional distillation processes at cryogenic temperature, which is particularly difficult because of their similar volatility. In retrospect, adsorptive separation using solid state adsorbents might be a cost effective alternative. Several types of solid state adsorbents (e.g. zeolite molecular sieves) were tested for separation of small hydrocarbon molecules as a function of pressure, temperature or vacuum. Among different types of plausible adsorbents, metal organic frameworks (MOFs), a class of porous, crystalline, inorganic-organic hybrid materials, is particularly promising. In this brief comment article, we discuss the separation properties of different types of solid state adsorbents, with a particular emphasis on MOF based adsorbents for separation of C2 hydrocarbon molecules.

  13. Reduction of Aromatic Hydrocarbons by Zero-Valent Iron and Palladium Catalyst

    SciTech Connect (OSTI)

    Kim, Young-Hun; Shin, Won Sik; Ko, Seok-Oh; Kim, Myung-Chul

    2004-03-31T23:59:59.000Z

    Permeable reactive barrier (PRB) is an alternative technology for soil and groundwater remediation. Zero valent iron, which is the most popular PRB material, is only applicable to halogenated aliphatic organics and some heavy metals. The objective of this study was to investigate reductive dechlorination of halogenated compounds and reduction of non-halogenated aromatic hydrocarbons using zero valent metals (ZVMs) and catalysts as reactive materials for PRBs. A group of small aromatic hydrocarbons such as monochlorophenols, phenol and benzene were readily reduced with palladium catalyst and zero valent iron. Poly-aromatic hydrocarbons (PAHs) were also tested with the catalysts and zero valent metal combinations. The aromatic rings were reduced and partly reduced PAHs were found as the daughter compounds. The current study demonstrates reduction of aromatic compounds by ZVMs and modified catalysts and implicates that PRB is applicable not only for halogenated organic compounds but nonhalogenated aromatic compounds such as PAHs.

  14. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    DOE Patents [OSTI]

    Rolllins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

    2012-07-24T23:59:59.000Z

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  15. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOE Patents [OSTI]

    Rollins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

    2011-02-01T23:59:59.000Z

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  16. Pb-Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales

    SciTech Connect (OSTI)

    Parnell, J. (Queens's Univ., Belfast (Ireland)); Swainbank, I. (NERC Isotope Geology Centre, Nottingham (England))

    1990-10-01T23:59:59.000Z

    Previous attempts at U-Pb dating of uraniferous bitumens have had limited significance because of radioelement migration. Pb-Pb dating which can be undertaken regardless of recent lead migration, has been successfully applied to uraniferous solidified bitumen from the Ty Gwyn copper deposit, North Wales. Analyses of five bitumen samples with variable mixtures of radiogenic and common lead yield a {sup 207}Pb/{sup 206}Pb age of 248 {plus minus} 21 Ma (Early Triassic). This age is interpreted as the date of hydrocarbon migration into the deposit and is reasonably consistent with the timing of hydrocarbon generation calculated from the regional burial history. The Pb-Pb dating method could be applied to date uraniferous bitumens representing hydrocarbon migration in diverse geologic environments.

  17. Study of net soot formation in hydrocarbon reforming for hydrogen fuel cells. Final report

    SciTech Connect (OSTI)

    Edelman, R. B.; Farmer, R. C.; Wang, T. S.

    1982-08-01T23:59:59.000Z

    The hydrogen fuel cell is expected to be a valuable addition to the electric utility industry; however, the current fuel supply availability requires that conventional heavier hydrocarbon fuels also be considered as primary fuels. Typical heavier fuels would be No. 2 fuel oil with its accompanying sulfur impurities, compared with the currently used light hydrocarbon gases. The potential future use of alternate fuels which are rich in aromatics would exacerbate the problems associated with hydrogen production. Among the more severe of these problems, is the greater tendency of heavier hydrocarbons to form soot. The development of a quasi-global kinetics model to represent the homogeneous and heterogeneous reactions which control the autothermal hydrogen reforming process and the accompanying soot formation and gasification was the objective of this study.

  18. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    DOE Patents [OSTI]

    Muradov, Nazim Z. (Melbourne, FL)

    2011-08-23T23:59:59.000Z

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  19. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

    1985-11-06T23:59:59.000Z

    A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  20. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOE Patents [OSTI]

    Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); Goldberg, Robert I. (Selden, NY)

    1987-01-01T23:59:59.000Z

    A method of converting low H.sub.2 /CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200.degree. to 350.degree. C. in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinium, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n+1).gtoreq.x.gtoreq.O and for olefinic hydrocarbons: 2n.gtoreq.x.gtoreq.O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.