National Library of Energy BETA

Sample records for bowling alley ice

  1. Automation Alley Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Alley Technology Center Jump to: navigation, search Name: Automation Alley Technology Center Place: United States Sector: Services Product: General Financial & Legal Services (...

  2. Middle School Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 February Middle School Science Bowl Middle School Science Bowl WHEN: Feb 28, 2015 8:00 AM - 4:00 PM WHERE: Highland High School 4700 Coal Ave SE, Albuquerque, NM...

  3. National Science Bowl Finals

    ScienceCinema (OSTI)

    None

    2010-09-01

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  4. Regional Science Bowl 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doing Business Expand Doing Business Skip navigation links Community & Education Science Bowl 2015 High School Team Photos 2015 Middle School Team Photos Scholarships...

  5. National Science Bowl 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl 2013 National Science Bowl 2013 Addthis National Science Bowl 2013 1 of 16 National Science Bowl 2013 The 2013 National Science Bowl started off at the 4H Center,...

  6. 2010 DOE National Science Bowl® Photos - Albuquerque Academy...

    Office of Science (SC) Website

    Academy National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl ...

  7. High School Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Science Bowl High School Science Bowl WHEN: Feb 07, 2015 8:00 AM - 4:00 PM WHERE: Highland High School 4700 Coal Ave SE, Albuquerque, USA CATEGORY: Community INTERNAL: Calendar Login Event Description The Science Bowl is a Jeopardy-like event for high school and middle school students who have a strong interest in mathematics and science. The competition is in the form of a round robin in the morning and double elimination after lunch. Teams consist of four students and one optional

  8. Double bowl piston

    DOE Patents [OSTI]

    Meffert, Darrel Henry; Urven, Jr., Roger Leroy; Brown, Cory Andrew; Runge, Mark Harold

    2007-03-06

    A piston for an internal combustion engine is disclosed. The piston has a piston crown with a face having an interior annular edge. The piston also has first piston bowl recessed within the face of the piston crown. The first piston bowl has a bottom surface and an outer wall. A line extending from the interior annular edge of the face and tangent with the outer wall forms an interior angle greater than 90 degrees with the face of the piston. The piston also has a second piston bowl that is centrally located and has an upper edge located below a face of the piston crown.

  9. Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January » Regional Science Bowl Regional Science Bowl WHEN: Jan 23, 2016 8:00 AM - 5:00 PM WHERE: Highland High School 4700 Coal SE, Albuquerque, NM CONTACT: Janelle Vigil-Maestas (505) 665-4329 CATEGORY: Community INTERNAL: Calendar Login Event Description Five teams from Northern New Mexico area schools are among 16 participating in the middle school Regional Science Bowl competition. Northern area teams participating are from Los Alamos, Española, Cuba and Santa Fe. The winning team at this

  10. National Science Bowl

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) National Science Bowl is a nationwide academic competition that tests students' knowledge in all areas of science. High school and middle school students are...

  11. About Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  12. 2010 DOE National Science Bowl® Photos - Albuquerque Acadaemy...

    Office of Science (SC) Website

    Acadaemy During Finals National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  13. 2010 DOE National Science Bowl® Photos - Albuqureque Academy...

    Office of Science (SC) Website

    Albuqureque Academy National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National ...

  14. 2010 DOE National Science Bowl® Photos - Albuquerque Academy...

    Office of Science (SC) Website

    Albuquerque Academy National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National ...

  15. DOE - NNSA/NFO -- Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bowl NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office REGISTER NOW FOR THE 2016 NEVADA SCIENCE BOWL HIGH SCHOOL MIDDLE SCHOOL Click Here Click Here Nevada Science Bowl VIDEO: 2015 Nevada Science Bowl Finals The U.S. Department of Energy (DOE) Office of Science sponsors a range of science education initiatives through its Workforce Development for Teachers and Scientists program. Included within this program is the Science Bowl, a nationwide academic science competition. Science Bowl

  16. 2010 National Science Bowl Photos | U.S. DOE Office of Science...

    Office of Science (SC) Website

    0 National Science Bowl Photos National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni ...

  17. 2011 National Science Bowl Photos | U.S. DOE Office of Science...

    Office of Science (SC) Website

    1 National Science Bowl Photos National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni ...

  18. NERSC Staff Participate in Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Participate in Regional Science Bowl NERSC Staff Participate in Regional Science Bowl February 5, 2013 DOEScienceBowl NERSC's Elizabeth Bautista moderates DOE Science Bowl Competition at Berkeley Lab. High School students from all corners of the San Francisco Bay Area flocked to the Lawrence Berkeley National Laboratory (Berkeley Lab) on Saturday, February 2, 2013 to battle in the Department of Energy's Regional Science Bowl-an academic competition that tests students' knowledge in all

  19. More Regional Science Bowl Winners

    Broader source: Energy.gov [DOE]

    By March 25, 2011, thousands of students will have competed in more than 100 regional science bowl contests throughout the country, and then the winning schools will compete in DC this spring for the national championship.

  20. 2013 National Science Bowl Finalists

    Broader source: Energy.gov [DOE]

    Right now, teams of middle and high school students from across the country are prepping for a weekend of academic competition like no other – the National Science Bowl. Run by the Energy...

  1. Middle School Regional Science Bowl Competition | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Information For more information about the Science Bowl and the national competition, visit National Science Bowl. Contact education@anl.gov Science Bowl Competition ...

  2. 2016 Argonne Regional Science Bowl | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Regional Science Bowl 2016 Argonne Regional Middle School Science Bowl 1 of 29 2016 Argonne Regional Middle School Science Bowl Photographer: Wes Agresta 2016 Argonne Regional Middle School Science Bowl 1 of 29 2016 Argonne Regional Middle School Science Bowl Photographer: Wes Agresta 2016 Argonne Regional Middle School Science Bowl 2 of 29 2016 Argonne Regional Middle School Science Bowl Photographer: Wes Agresta 2016 Argonne Regional Middle School Science Bowl 3 of 29 2016 Argonne

  3. DOE National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE National Science Bowl DOE National Science Bowl April 28, 2016 8:00AM EDT to May 2, 2016 5:00PM EDT Washington, D.C. Contact http://science.energy.gov/wdts/nsb/

  4. Regional Science Bowl | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Science Bowl Growing Scientific Communities from the Ground Up Jeopardy is America's favorite quiz game show. Imagine combining the concept of Jeopardy with science and a roomful of over 100 middle/high school students from various schools across several counties. What do you get? The Regional Science Bowl! Often known as the Super Bowl of science, Regional Science Bowls provide the perfect opportunity for middle and high school students interested in STEM to compete in teams for the

  5. National Science Bowl | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Science Bowl Texas students win regional National Science Bowl competition, secure spot in finals in nation's capital More than 200 students from 37 from High schools across the Texas Panhandle gathered together with a few hundred volunteers for a meeting and competition of the minds: The Pantex Science Bowl 2016. Set up like a game show with buzzers, toss up and bonus questions, these groups of four students... Amarillo Students Win Regional National Science Bowl Competition, Secure

  6. Science Bowl | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Science Bowl Texas students win regional National Science Bowl competition, secure spot in finals in nation's capital More than 200 students from 37 from High schools across the Texas Panhandle gathered together with a few hundred volunteers for a meeting and competition of the minds: The Pantex Science Bowl 2016. Set up like a game show with buzzers, toss up and bonus questions, these groups of four students... Sandia California Regional Middle and High School Science Bowl winners More than 240

  7. 2010 DOE National Science Bowl® Photos - Campbell High School...

    Office of Science (SC) Website

    Campbell High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National ...

  8. 2010 DOE National Science Bowl® Photos - George Walton High...

    Office of Science (SC) Website

    George Walton High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  9. 2010 DOE National Science Bowl® Photos - Little Rock Central...

    Office of Science (SC) Website

    Little Rock Central High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni ...

  10. 2010 DOE National Science Bowl® Photos - Onate High School ...

    Office of Science (SC) Website

    Onate High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National ...

  11. 2010 DOE National Science Bowl® Photos - Roosevelt Middle School...

    Office of Science (SC) Website

    Roosevelt Middle School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  12. 2010 DOE National Science Bowl® Photos - C.M. Russell High School...

    Office of Science (SC) Website

    C.M. Russell High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  13. 2010 DOE National Science Bowl® Photos - LaFayette High School...

    Office of Science (SC) Website

    LaFayette High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  14. 2010 DOE National Science Bowl® Photos - Lexington High School...

    Office of Science (SC) Website

    Lexington High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  15. 2010 DOE National Science Bowl® Photos - Montgomery Blair High...

    Office of Science (SC) Website

    Montgomery Blair High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  16. 2010 DOE National Science Bowl® Photos - Basis Charter School...

    Office of Science (SC) Website

    Basis Charter School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National ...

  17. 2010 DOE National Science Bowl® Photos - Dr. Pamela Heinselman...

    Office of Science (SC) Website

    Dr. Pamela Heinselman National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  18. 2010 DOE National Science Bowl® Photos - Dr. Mario Livia | U...

    Office of Science (SC) Website

    Dr. Mario Livia National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National ...

  19. 2010 DOE National Science Bowl® Photos - Vigil I. Grissom High...

    Office of Science (SC) Website

    Vigil I. Grissom High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  20. 2010 DOE National Science Bowl® Photos - Hunter College High...

    Office of Science (SC) Website

    Hunter College High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  1. 2010 DOE National Science Bowl® Photos - R.C. Murphy | U.S....

    Office of Science (SC) Website

    R.C. Murphy National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science ...

  2. 2010 DOE National Science Bowl® Photos - First Place Winners...

    Office of Science (SC) Website

    First Place Winners National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National ...

  3. 2010 DOE National Science Bowl® Photos - Science Academy of...

    Office of Science (SC) Website

    Science Academy of South Texas National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni ...

  4. 2010 DOE National Science Bowl® Photos - 2010 Middle School...

    Office of Science (SC) Website

    2010 Middle School Teams National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  5. 2010 DOE National Science Bowl® Photos - Farmingdale High School...

    Office of Science (SC) Website

    Farmingdale High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  6. 2010 DOE National Science Bowl® Photos - North Hollywood High...

    Office of Science (SC) Website

    North Hollywood High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  7. 2010 DOE National Science Bowl® Photos - North Carolina School...

    Office of Science (SC) Website

    North Carolina School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  8. 2010 DOE National Science Bowl® Photos - Palo Alto High School...

    Office of Science (SC) Website

    Palo Alto High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  9. 2010 DOE National Science Bowl® Photos - Shasta High School...

    Office of Science (SC) Website

    Shasta High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National ...

  10. Science Bowl Sponsors | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Science Bowl Sponsors The Ames Laboratory/Iowa State University Regional Science Bowl has been very fortunate to have the backing of corporate sponsors. These companies provide not only necessary financial support but also contribute materials for gift bags that are given to competing students and coaches. If you or your company is interested in being a sponsor, please email or call Steve Karsjen (515) 294-5643. Thank you to these sponsors: Image Image Image Image Image Image

  11. TH SOUTHWESTERN PENNSYLVANIA SCIENCE BOWL COMPETITION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 TH SOUTHWESTERN PENNSYLVANIA SCIENCE BOWL COMPETITION Pittsburgh, Pa. - For the 25th consecutive year, the National Energy Technology Laboratory (NETL) will sponsor the Southwestern Pennsylvania (SWPA) Science Bowl for high schools and middle schools. The preliminary rounds of this year's Silver Anniversary Science Bowl competition for high schools will be held on Saturday, February 20. The middle school preliminaries will be held on Saturday, February 27. Both competitions will take place at

  12. NETL SPONSORS SOUTHWESTERN PENNSYLVANIA SCIENCE BOWL COMPETITION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOUTHWESTERN PENNSYLVANIA SCIENCE BOWL COMPETITION Pittsburgh, Pa. - For the 24th consecutive year, the National Energy Technology Laboratory (NETL) will sponsor the Southwestern Pennsylvania (SWPA) Science Bowl for high schools and middle schools. The preliminary rounds of this year's Science Bowl competition for high schools will be held on Saturday, February 21. The middle school preliminaries will be held on Saturday, February 28. Both competitions will take place at the Community College of

  13. Virginia Middle School Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virginia Middle School Science Bowl Twenty Teams to Compete in Virginia Middle School Science Bowl on March 5 NEWPORT NEWS, Va., March 3, 2016 - Some of the brightest young minds in the Commonwealth will meet at the U.S. Department of Energy's Jefferson Lab on March 5, to compete in the Virginia Regional Middle School Science Bowl. Teams from 20 schools are registered for this year's academic competition. The U.S. Department of Energy (DOE) National Science Bowl® is an annual academic

  14. Congratulations, 2013 National Science Bowl Winners

    Broader source: Energy.gov [DOE]

    The team from Sacramento's Mira Loma High School won the 2013 National Science Bowl in dramatic fashion -- pulling ahead as the clock expired in the final round.

  15. Super Bowl of Energy: Solar Smashes Records | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Super Bowl of Energy: Solar Smashes Records Super Bowl of Energy: Solar Smashes Records February 3, 2014 - 5:45pm Addthis MetLife Stadium, the site of yesterday's Super Bowl, ...

  16. Media Advisory: Virginia Middle School Science Bowl Set For March...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virginia Middle School Science Bowl Set For March 5 at Jefferson Lab What: The Department of Energy's 2011 Virginia Regional Middle School Science Bowl When: Saturday, March 5,...

  17. Media Advisory: March 7 Virginia Middle School Science Bowl Tournament...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 7 Virginia Middle School Science Bowl Tournament What: The 2009 Virginia Regional Middle School Science Bowl When: Saturday, March 7, 2009. Round-robin competition will run...

  18. Thomas Jefferson High School takes regional Science Bowl competition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Results: Thomas Jefferson High School for Science and Technology The Thomas Jefferson High School for Science and Technology Science Bowl 2005 team includes (front...

  19. Minnesota Regional Science Bowl for Middle School Students |...

    Office of Science (SC) Website

    Minnesota Regions Minnesota Regional Science Bowl for Middle School Students National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle ...

  20. Texas students win regional National Science Bowl competition...

    National Nuclear Security Administration (NNSA)

    Related Topics community National Science Bowl pantex Pantex Plant Science Bowl Texas Related News Who's on FIRST? Inspiring STEM through robotics Wind farm generating more ...

  1. National Science Bowl Update: Teams from North Carolina and California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl Update: Teams from North Carolina and California to Compete for High School Championship National Science Bowl Update: Teams from North Carolina and California to ...

  2. Secretary Moniz at the 2014 National Science Bowl

    Broader source: Energy.gov [DOE]

    Energy Secretary Ernest Moniz addresses participants in the 2014 National Science Bowl in Washington, DC.

  3. Middle School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Middle School Science Bowl February 20, 2016 Mark your calendars Be a part of the Ames Laboratory/Iowa State University Middle School Science Bowl! Form a team and show you've got what it takes to compete against the best teams in the Midwest. This event is guaranteed to excite and challenge the Midwest's brightest middle school students. The basics - For students in grades 6, 7, and 8 - One-day academic competition - Held on the beautiful Iowa State University campus in Ames, Iowa

  4. Microsoft Word - 2014 nv science bowl winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2014 Darwin.Morgan@nnsa.doe.gov Kelly K. Snyder, 702-295-3521 Kelly.Snyder@nnsa.doe.gov THE MEADOWS SCHOOL EMERGES AS NEVADA SCIENCE BOWL CHAMPIONS 160 high school students put their minds to the test at Nevada Science Bowl The Meadows School from Las Vegas won nine straight matches to claim the championship of the Nevada Science Bowl. Thirty-two teams from 27 high schools across Nevada started the competition on Saturday morning in Las Vegas. Northwest Career Technical Academy finished

  5. Middle School Regional Science Bowl Competition | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Additional Information For more information about the Science Bowl and the national competition, visit National Science Bowl. Contact education@anl.gov Science Bowl Competition Science Bowl, a competition like no other! Have you ever dreamed of winning Jeopardy and hearing the crowd erupt with excitement? The Department of Energy's National Science Bowl challenges young students who are passionate about science and engineering to show off their talents in the academic competition.

  6. National Science Bowl Alumni | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Alumni National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Alumni Registration for National Science Bowl Finals External link Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department

  7. Past High School National Science Bowl Winners (1991 - 2014) | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) High School National Science Bowl Winners (1991 - 2015) National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S.

  8. Regional Science Bowl Coordinators | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Regional Science Bowl Coordinators National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building

  9. 2010 National Science Bowl Photos | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    0 National Science Bowl Photos National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000

  10. 2011 National Science Bowl Photos | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    1 National Science Bowl Photos National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000

  11. Ames Lab 101: Science Bowl 2011

    ScienceCinema (OSTI)

    None

    2013-03-01

    High school students from across Iowa converged on Ames Jan. 30, 2011 to compete in the 21st annual Ames Laboratory/Iowa State University Regional High School Science Bowl.

  12. DC High School Science Bowl Regionals

    Broader source: Energy.gov [DOE]

    This event is the Washington, D.C. High School Regional competition for the US National Science Bowl. The regional competition is run by the Office of Economic Impact and Diversity, and the...

  13. 2010 DOE National Science Bowl® Photos - Smith Middle School...

    Office of Science (SC) Website

    Smith Middle School National Science Bowl (NSB) NSB Home About National Science Bowl ... 2010 DOE National Science Bowl Photos - Smith Middle School Print Text Size: A A A ...

  14. 2010 DOE National Science Bowl® Photos - North Carolina School...

    Office of Science (SC) Website

    North Carolina School of Science and Mathematics National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science ...

  15. Science Bowl Volunteer Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Volunteer Information Each year dozens of Ames Laboratory scientists and staff, along with faculty and staff from Iowa State University, volunteer their time to serve as judges, moderators, timers and scorekeepers for Science Bowl. Without their assistance, hosting such an event would just not be possible. Many volunteers return year after year because they truly enjoy the event and the opportunity it presents to work with such a large number of talented high school students. Others

  16. DOE - NNSA/NFO -- Science Bowl Sponsors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sponsors NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Nevada Science Bowl Sponsors Thank you to the sponsors of the 23rd Annual Nevada Science Bowl Signature Sponsor Platinum Sponsors Gold Sponsor Bronze Partners Alphatech, Inc. of Nevada Atomic Testing Museum Desert Research Institute Navarro Research & Engineering NV Energy University of Nevada, Las Vegas Signature Sponsor: Event Founder and $10,000-plus in sponsorship. Platinum Sponsors: $10,000 or more in sponsorship or

  17. West KY Regional Middle School Science Bowl

    Broader source: Energy.gov [DOE]

    Deegan Lawrence (far right) from Henderson County North Middle School gives an answer as teammates D.J. Banks (middle) and Alex Chandler look on during DOE’s West Kentucky Regional Middle School Science Bowl in Paducah February 6. Henderson North won the competition and will compete in DOE’s National Science Bowl® in Washington, D.C. April 30 through May 4.

  18. National Science Bowl Contacts | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Contacts National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW

  19. National Science Bowl FAQ's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    FAQ's National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW

  20. National Science Bowl Logos | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Logos National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW

  1. Past National Science Bowl Photos and Videos | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Photos and Videos National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000

  2. Past National Science Bowl Winners | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Winners National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending the National Finals Volunteers 2016 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW

  3. Department of Energy National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Science Bowl Department of Energy National Science Bowl May 5, 2008 - 11:30am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you,...

  4. Media Advisory - The Virginia Middle School Science Bowl Is Set...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Virginia Middle School Science Bowl Is Set For March 6 at Jefferson Lab What: The 2010 Virginia Regional Middle School Science Bowl When: Saturday, March 6, 2010. Round-robin...

  5. Middle School Regional Science Bowl Coach's Resources | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Coach's Resources Find tools on how to prep and select your team. The Science Bowl is a challenging fast paced competition for students who are interested in learning...

  6. Photo of the Week: National Science Bowl Participants on the...

    Broader source: Energy.gov (indexed) [DOE]

    After months of training and preparation, regional Science Bowl champions gathered in Washington, D.C. to compete for the national title at the 2013 National Science Bowl. Some of ...

  7. California Schools Sweep the 2011 National Science Bowl | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Schools Sweep the 2011 National Science Bowl California Schools Sweep the 2011 National Science Bowl May 2, 2011 - 6:23pm Addthis The Gale Ranch Middle School of San Ramon, CA, received first place at the 2011 National Science Bowl. | Energy Department Image | Photo by Dennis Brack, Contractor The Gale Ranch Middle School of San Ramon, CA, received first place at the 2011 National Science Bowl. | Energy Department Image | Photo by Dennis Brack, Contractor Ginny Simmons Ginny Simmons

  8. What You Missed at the 2015 National Science Bowl Championships |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy You Missed at the 2015 National Science Bowl Championships What You Missed at the 2015 National Science Bowl Championships May 6, 2015 - 4:21pm Addthis Secretary of Energy Ernest Moniz encourages Science Bowl finalists to continue pursuing science, technology, engineering and mathematics (STEM). | Energy Department photo. Secretary of Energy Ernest Moniz encourages Science Bowl finalists to continue pursuing science, technology, engineering and mathematics (STEM). |

  9. National Science Bowl Regional Roundup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl Regional Roundup National Science Bowl Regional Roundup March 18, 2015 - 2:33pm Addthis Photo courtesy of National Renewable Energy Laboratory. Photo courtesy of National Renewable Energy Laboratory. Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs National Science Bowl Regional Roundup It's like March Madness for science students. Storified by Energy Department * Tue, May 05 2015 15:08:26 2015ScienceBowl125 * National Renewable Energy Lab To quote President

  10. National Science Bowl Second Place Winners Explore Colorado

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Science Bowl Regional Roundup National Science Bowl Regional Roundup March 18, 2015 - 2:33pm Addthis Photo courtesy of National Renewable Energy Laboratory. Photo courtesy of National Renewable Energy Laboratory. Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs National Science Bowl Regional Roundup It's like March Madness for science students. Storified by Energy Department * Tue, May 05 2015 15:08:26 2015ScienceBowl125 * National Renewable Energy Lab To quote

  11. High School Teams Compete in Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teams from Across Colorado Compete in Science Bowl For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 23, 1998 — On the surfaces of which three planets would you weigh more than you do on Earth? How many molecules are in two moles of sulfur trioxide? High school students from across Colorado will face such questions as they test their mental agility in the 1998 Colorado Science Bowl Feb. 28 at Metropolitan State College in Denver. More than 40 teams will compete in this

  12. Thomas Jefferson High Takes 2016 Virginia Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Jefferson High Takes 2016 Virginia Science Bowl Thomas Jefferson High School for Science & Technology Takes 2016 Virginia Science Bowl NEWPORT NEWS, Va., February 9, 2016 -- Eighteen teams arrived at Jefferson Lab bright and early and ready to compete in the Virginia Regional High School Science Bowl on Feb. 6. At the end of the day, Thomas Jefferson High School for Science and Technology (TJHSST), Alexandria, prevailed and will represent Virginia at the Department of Energy's

  13. Thomas Jefferson High School takes regional Science Bowl competition at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab for 4th year running | Jefferson Lab takes regional Science Bowl competition at JLab for 4th year running Science Bowl Results: Thomas Jefferson High School for Science and Technology The Thomas Jefferson High School for Science and Technology Science Bowl 2005 team includes (front row, left to right): Coach Sharon Baker, Charlotte Seid, Sam Lederer and Lisa Marrone, and (back row, l. to r.): Matthew Isakowitz and Logan Kearsley. Photos by Steve Gagnon, JLab Science Education Thomas

  14. Media Advisory - Virginia Regional High School Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Science Bowl Media Advisory - Virginia Regional High School Science Bowl What: Virginia Regional High School Science Bowl When: Saturday, Feb. 1, 2014. Round robin competition runs from 9 a.m. - noon. The double elimination, semi-final and finalist rounds run from 1:30 - ~ 5 p.m. Awards presentations will be made immediately after the final round. Where: CEBAF Center Auditorium, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Va. 23606 Details:

  15. Media Advisory - Virginia Regional Middle School Science Bowl | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Middle School Science Bowl Media Advisory - Virginia Regional Middle School Science Bowl What: Virginia Regional Middle School Science Bowl When: Saturday, March 1, 2014. Round robin competition runs from 9 a.m. - noon. The double elimination, semi-final and finalist rounds run from 1:30 - ~ 4 p.m. Awards presentations will be made immediately after the final round. Where: CEBAF Center Auditorium, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Va.

  16. 2016 Middle School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Middle School Science Bowl Check out video highlights of the 2016 Ames Laboratory Regional Middle School Science Bowl, held Feb. 20. Twenty-four teams from across the state competed in the event, with Ames Middle School winning the championship over LeMars and a trip to the U.S. Department of Energy's National Science Bowl, April 28-May 2 in Washington DC

  17. Virginia, Maryland teams prepare for Regional Middle School Science Bowl |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Virginia, Maryland teams prepare for Regional Middle School Science Bowl Virginia, Maryland teams prepare for Regional Middle School Science Bowl March 3, 2005 The Department of Energy's Jefferson Lab, in Newport News, Va., hosts the Virginia/Maryland Regional Middle School Science Bowl tomorrow (Saturday, March 5). A dozen schools have registered teams for the event, according to Jan Tyler, Science Education program manager. This is JLab's second year hosting the Middle School

  18. Ames, Valley competing at National Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames, Valley competing at National Science Bowl Ames Middle School and Valley High School represented their respective Ames Regional Science Bowl competitions this weekend at the U.S. Department of Energy's National Science Bowl. The teams arrived in the the nation's capitol on Thursday will tour various attractions before the Middle School competition begins on Saturday and the High School competition on Sunday. Ames won two of the six preliminary rounds and did not advance to the

  19. NJ Regional Middle School Science Bowl | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2013, 8:00am Science Education Lab-wide Event NJ Regional Middle School Science Bowl Teams of students are invited to participate in the Department of Energy's National Science Bowl Competition. Each year PPPL hosts the New Jersey Regional Science Bowl which decides which teams from the local area can continue onto the national competition in Washington, D.C. The Science Bowl is a double elimination contest with oral question and answer rounds in the fields of chemistry, biology, physics,

  20. Calloway, Gatton Succeed at DOE National Science Bowl | Department...

    Office of Environmental Management (EM)

    Bowling Green-based Gatton Academy of Mathematics and Science won its division team ... Addthis Related Articles Gatton Academy of Mathematics and Science won the 2015 West ...

  1. The Crucibles Science Club Wins Colorado Science Bowl - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL The Crucibles Science Club Wins Colorado Science Bowl Team Heads to Washington D.C. to Challenge Students from Across the USA for National Title January 31, 2009 Photo of the winning team at the Colorado Science Bowl. The Crucibles Science Club (team one) was the winner of this year's Colorado Science Bowl and heads to Washington D.C. in April to compete for the national title. Students from The Crucibles Science Club in Denver won the Colorado High School Science Bowl today. In the

  2. Fourteen Teams to Compete in Virginia Middle School Science Bowl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Bowl competition at: http:science.energy.govwdtsnsb The Department of Energy's Office ... For more information on DOE's Office of Science, visit: www.science.energy.gov. The ...

  3. DC Students Take On Regional Science Bowl Competition | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy DC Students Take On Regional Science Bowl Competition DC Students Take On Regional Science Bowl Competition March 10, 2014 - 4:47pm Addthis The high school regional science bowl competition was held on Saturday, February 22, 2014 at the U.S. Department of Energy. The winning team was Woodrow Wilson High School. The high school regional science bowl competition was held on Saturday, February 22, 2014 at the U.S. Department of Energy. The winning team was Woodrow Wilson High School.

  4. Students from Pueblo Triumph in Colorado Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the final round of rapid fire questions about physics, math, biology, astronomy, ... the National Science Bowl eight years ago to help stimulate interest in science and math. ...

  5. Video: Future STEM Leaders Compete in the National Science Bowl

    Broader source: Energy.gov [DOE]

    Follow four students from Washington, D.C.'s Woodrow Wilson High School as they prepare for and compete in the 2014 National Science Bowl.

  6. Video: Mira Loma High School Named Science Bowl Grand Champion

    Broader source: Energy.gov [DOE]

    Today, Mira Loma High School won the 2014 National Science Bowl at the National Building Museum in Washington, D.C.

  7. City of Bowling Green, Ohio (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    to: navigation, search Name: City of Bowling Green Place: Ohio Website: www.bgohio.org Twitter: @cityofbg Facebook: https:www.facebook.comcityofbg?rdr References: EIA Form...

  8. Westview Team 1 of Portland wins BPA Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wash. Shahala Middle School, Vancouver, Wash. Pierce County Home School Club, Milton, Wash. BPA sponsors the science bowl to showcase students' talents in science,...

  9. Building Champions: National Science Bowl Offseason | U.S. DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Champions: National Science Bowl Offseason News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science ...

  10. Lakewood High School Wins Colorado Science Bowl - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lakewood High School Wins Colorado Science Bowl Lakewood School Heads to Washington D.C. to Challenge for National Title January 26, 2013 Students from Lakewood High School Team 1 won the Colorado High School Science Bowl today. They will go on to the 23rd National Science Bowl in Washington D.C., Apr. 25-29, where they will compete for the national title against more than 400 students from 70 high schools. The U.S. Department of Energy (DOE) began the Science Bowl tradition in 1991 as a way to

  11. Students Storm the Capital: 2013 National Science Bowl

    Broader source: Energy.gov [DOE]

    Teams of middle and high school students are competing this weekend at the National Science Bowl. Read more about this academic competition.

  12. CNS supports Tenn. Science Bowl | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Officer of Oak Ridge Associated Universities. Consolidated Nuclear Security, LLC, was a gold sponsor of the 2015 Tennessee Science Bowl, which took place in February. More than 50...

  13. EA-1885: Boston Architectural College's Urban Sustainability Initiative Renovation of Green Alley #444, Boston, Massachusetts

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a grant to Boston Architectural College (BAC) to design, construct and implement the renovation of Public Alley #444 in Boston's Historic Back Bay District. The project would include the installation of 7 to 10 open loop geothermal wells to provide heating and cooling energy to BAC's facilities; the installation of a green screen trellis system, planting soils, concrete pavement, pavers, and landscaping; and mechanical upgrades (plumbing and electrical) to accommodate the geothermal solution into the benefiting facilities. Comment Period Ends: 01/13/2012 Comments should be marked "BAC Public Alley #444 Draft EA Comments" and sent to: Mr. Fred Pozzuto U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880, MS B07 Morgantown, WV 26507-0880 Email: fred.pozzuto@netl.doe.gov Facsimile: 1-304-285-4403

  14. 2010 DOE National Science Bowl® Photos - Gale Range Middle School...

    Office of Science (SC) Website

    member Rishi Krishnan competes at the National Science Bowl Solar Car Competition in Washington, DC. Left to right; Rishi Krishnan Photograph by Dennis Brack, National Science Bowl ...

  15. 2010 DOE National Science Bowl® Photos - Spanish Fort Middle...

    Office of Science (SC) Website

    Science Bowl. Left to right: Coach Tim Daniels, Eric Nuss, Matthew Inabinett, Kristen Smith, Cary Burdick Photograph by Dennis Brack, National Science Bowl For more information: ...

  16. Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Wyoming Regions Wyoming Regional Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School ...

  17. Watch Live: National Science Bowl - Starting At 9:30 AM ET |...

    Broader source: Energy.gov (indexed) [DOE]

    Throughout the weekend, 110 regional championship science bowl teams have competed round ... championship matches of America's best science students in the 2011 National Science Bowl. ...

  18. 2012 Science Bowls | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information STIP Account Login Is Required for this Page (If you're a human, don't change the following field) Enter your name: 374b9f8e43374b Your first name. Please enable Javascript to use this form. E-mail: * Password: * Log in Create new account Request new password

    Science Bowls View larger image IMG 0357 View larger image IMG 0358 View larger image IMG 0359 View larger image IMG 0360 View larger image IMG 0361 View larger image IMG 0362

  19. Future STEM Leaders Prepare for the National Science Bowl

    SciTech Connect (OSTI)

    Benjamin, Angela

    2014-06-11

    Each year, students from across the country converge on Washington, DC, for the National Science Bowl, an intense academic competition that tests the students' knowledge in science, engineering, chemistry, math and Earth science. Follow one team, from Washington DC's Woodrow Wilson High School, as they prepare for and compete in the 2014 National Science Bowl.

  20. Future STEM Leaders Prepare for the National Science Bowl

    ScienceCinema (OSTI)

    Benjamin, Angela

    2014-09-15

    Each year, students from across the country converge on Washington, DC, for the National Science Bowl, an intense academic competition that tests the students' knowledge in science, engineering, chemistry, math and Earth science. Follow one team, from Washington DC's Woodrow Wilson High School, as they prepare for and compete in the 2014 National Science Bowl.

  1. NREL: Workforce Development and Education Programs - National Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School National Science Bowl - High School A photo of a group of high school students on a stage holding a silver trophy and a blue and white banner that reads, "U.S. Department of Energy National Science Bowl®". The Department of Energy's Office of Science has sponsored the National Science Bowl® competition for more than 25 years. Since its inception, more than 150,000 high school students from every region of the country have participated. This fun, fast-paced academic

  2. Fairview High School Wins Colorado Science Bowl - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fairview High School Wins Colorado Science Bowl Boulder School Heads to Washington D.C. to Challenge for National Title January 29, 2011 Golden, CO., Jan. 29, 2011 - Students from Fairview High School Team 1 won the Colorado High School Science Bowl today. They will go on to the 21st National Science Bowl in Washington D.C. on Apr. 28 - May 2, where they will compete for the national title against more than 450 students from 68 high schools. The U.S. Department of Energy (DOE) began the Science

  3. DOE - NNSA/NFO -- Nevada Science Bowl - MIDDLE SCHOOL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bowl NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Nevada Science Bowl - Middle School March 4-5, 2016 Middle School Competition On behalf of the National Nuclear Security Administration Nevada Field Office (NNSA/NFO), we are pleased to announce the 2016 Nevada Science Bowl for middle school competition will take place March 4-5, 2016 at the National Atomic Testing Museum and the Henderson International School campus. We would be honored to have your school field a team for this

  4. DOE - NNSA/NFO -- Science Bowl - Middle School Registration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bowl > Nevada Middle School Science Bowl Registration NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Welcome to the Annual Nevada Middle School Science Bowl! March 4-5, 2016 Registration is due on January 27, 2016 Thirty-two teams from middle schools in Southern Nevada are welcome to participate in this round-robin double-elimination competition. Monetary awards are given to the first through fourth place teams for use in their school's mathematics/science departments. Although

  5. Nysmith School Wins Virginia Middle School Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nysmith School Wins Virginia Middle School Science Bowl Nysmith School for the Gifted, Herndon, finished in first place at the Virginia Regional Middle School Science Bowl. Nysmith will now represent Virginia at the National Science Bowl® (NSB) finals to be held in Washington, D.C., April 28-May 2. Team members (front row, left to right) Ajit Kadeveru, Vaibhav Sharma, and Kaien Yang, and (back row, l.-r.) Anusha Allamsetty and Ishaan Sharma are pictured with their team trophy and Beau Tyler,

  6. Middle School Science Bowl Registration | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Middle School Science Bowl Registration Regional champions of the Academic Science Bowl win a trip to Washington, D.C.! We encourage all eligible participants to apply to the National Science Bowl. All applicants must be enrolled for the current school year in grades sixth, seventh, or eighth at the team's school. Each school is only allowed to submit one team. A team is made up of 4-5 middle school students. All teams should have a coach mentoring and managing the team. Teams are selected on a

  7. Department of Energy National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Science Bowl Department of Energy National Science Bowl May 5, 2008 - 11:30am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Ray. And thanks to our Office of Science for all the work that went into organizing this year's National Science Bowl. In particular, I'd like to recognize Sue Ellen Walbridge, who has orchestrated this important event for the past 17 years. Sue Ellen, thank you for your devotion to America's scientific future. I'm glad to have my wife

  8. Media Advisory: March 7 Virginia Middle School Science Bowl Tournament |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab 7 Virginia Middle School Science Bowl Tournament Media Advisory: March 7 Virginia Middle School Science Bowl Tournament What: The 2009 Virginia Regional Middle School Science Bowl When: Saturday, March 7, 2009. Round-robin competition will run from 10 a.m. - noon. The double-elimination, semi-final and finalist rounds will run from 1:30 - 5 p.m. Awards will be presented immediately after the final round. Where: CEBAF Center Auditorium at the Thomas Jefferson National

  9. Department of Energy Announces 20th Annual National Science Bowl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy th Annual National Science Bowl Department of Energy Announces 20th Annual National Science Bowl April 23, 2010 - 12:00am Addthis WASHINGTON, D.C. - US Energy Secretary Steven Chu announced that students from sixty-eight high school teams and thirty-seven middle school teams will compete next weekend for championship titles in the U.S. Department of Energy's 20th annual National Science Bowl in Washington, D.C. The participating teams - ranging from forty-two states, the

  10. Energy Department Announces Prizes for 2013 National Science Bowl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Prizes for 2013 National Science Bowl Energy Department Announces Prizes for 2013 National Science Bowl April 8, 2013 - 4:35pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington D.C. - The U.S. Department of Energy today announced the prizes for which middle and high school teams from across the nation will compete at this year's National Science Bowl, held from April 25 to April 29 in Washington, D.C. From a total of 1,894 high school teams that competed in regional

  11. Sandia Participates in Office of Science's National Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in all areas of science and mathematics. The DOE created the National Science Bowl in 1991 to encourage students to excel in mathematics and science and to pursue careers ...

  12. 2010 DOE National Science Bowl® Photos - Albuquerque Academy...

    Office of Science (SC) Website

    Two of the Albuquerque Academy Team members preparing their car as they compete at the National Science Bowl Solar Car Competition for middle school students in Washington DC. Left ...

  13. California Schools Sweep the 2011 National Science Bowl | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuel cell race, and a play-by-play of the final matches on The National Science Bowl Journal blog. Schools will be able to start registering their best science students for the...

  14. Improved screen-bowl centrifuge recovery using polymer injection technology

    SciTech Connect (OSTI)

    Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

    2006-08-15

    The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

  15. Colorado School Earns Return Trip to National Science Bowl -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    After a full day answering rapid-fire questions in physics, math, astronomy, chemistry, ... Bowl in 1991 as a way to encourage high school students to explore math and science. ...

  16. Colorado School Earns Return Trip to National Science Bowl |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    After a full day answering rapid-fire questions in physics, math, astronomy, chemistry, ... Bowl in 1991 as a way to encourage high school students to explore math and science. ...

  17. Upcoming Science Bowl Championship is a Competition like No Other

    Broader source: Energy.gov [DOE]

    The Finals of the Department of Energy's 2013 National Science Bowl, set to happen this weekend, will feature a total of 115 high school and middle school teams from all across the country facing off for the championship.

  18. Northwest students battle wits at Super Bowl of Science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA, 503-230-7536 or Mike Hansen, BPA, 503-230-4328 media line 503-230-5131 Northwest students battle wits at "Super Bowl of Science" BPA sponsors the 21 st annual Regional Science...

  19. Bohnam Middle School wins Pantex Middle School Science Bowl ...

    National Nuclear Security Administration (NNSA)

    Thursday, February 12, 2015 - 4:13pm NNSA Blog Teams from 17 area Texas schools competed for a regional title Saturday at the Pantex Middle School Science Bowl at West Texas A&M ...

  20. National Science Bowl Brings Best and Brightest to DC

    Broader source: Energy.gov [DOE]

    The National Science Bowl Finals in Washington D.C. April 27 to 30 pit 113 high and middle school teams against one another answering questions Jeopardy-style about biology, chemistry, earth science, physics, astronomy, and math.

  1. Super Bowl of Energy: Solar Smashes Records | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis MetLife Stadium, the site of yesterday's Super Bowl, features a ring of 1,350 solar panels that can generate 350,000 kilowatt hours of electricity annually. The number of ...

  2. Sandia California Regional Middle and High School Science Bowl winners |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Regional Middle and High School Science Bowl winners Thursday, March 3, 2016 - 2:00pm San Ramon's Dougherty Valley High School won the high school division for the third year in a row. More than 240 students and 48 teams competed in the Sandia California Regional Science Bowls at Las Positas College, in Livermore, California. Hopkins Junior High School (Fremont, California) and Dougherty Valley High School (San Ramon, California) defended their titles

  3. Texas students win regional National Science Bowl competition, secure spot

    National Nuclear Security Administration (NNSA)

    in finals in nation's capital | National Nuclear Security Administration Texas students win regional National Science Bowl competition, secure spot in finals in nation's capital Monday, March 21, 2016 - 10:22am NPO's Mark Padilla congratulates the winning Amarillo High School Team Black with their victory at the Pantex Science Bowl 2016. More than 200 students from 37 from High schools across the Texas Panhandle gathered together with a few hundred volunteers for a meeting and competition of

  4. Middle School Regional Science Bowl Coach's Resources | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Science Bowl Coach's Resources Find tools on how to prep and select your team. The Science Bowl is a challenging fast paced competition for students who are interested in learning more about STEM or excel in the classroom. For coaches, the prospect of preparing and selecting a successful team may be overwhelming. Listed below are tools and information you can use to help with the process. Coach's Resources

  5. Whole blood analysis rotor assembly having removable cellular sedimentation bowl

    DOE Patents [OSTI]

    Burtis, C.A.; Johnson, W.F.

    1975-08-26

    A rotor assembly for performing photometric analyses using whole blood samples is described. Following static loading of a gross blood sample within a centrally located, removable, cell sedimentation bowl, the red blood cells in the gross sample are centrifugally separated from the plasma, the plasm displaced from the sedimentation bowl, and measured subvolumes of plasma distributed to respective sample analysis cuvettes positioned in an annular array about the rotor periphery. Means for adding reagents to the respective cuvettes are also described. (auth)

  6. Media Advisory: March 1 Middle School Science Bowl Tournament | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab 1 Middle School Science Bowl Tournament Media Advisory What: Virginia Regional Middle School Science Bowl When: Saturday, March 1, 2008. Round robin competition runs from 10 a.m. - noon. The double elimination, semi-final and finalist rounds run from 1:30 - 5 p.m. Awards presentations will be made immediately after the final round. Where: CEBAF Center Auditorium, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA Details: Twenty teams, representing

  7. Students from Aurora Triumph in Denver Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denver Regional Science Bowl For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 27, 1999 — Students from Aurora's Smoky Hill High School won top honors at the 1999 Denver Regional Science Bowl today at the Colorado School of Mines in Golden. In the final round of rapid-fire questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students from Smoky Hill High School were victorious over Highlands Ranch High School. Twenty-one student

  8. DOE New Jersey Regional Middle School Science Bowl | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab 0, 2015, 9:00am to 3:00pm Science Education Lab-wide DOE New Jersey Regional Middle School Science Bowl Contact Information Website: New Jersey Regional Science Bowl Coordinator(s): Deedee Ortiz-Arias, Science Education Department Program Administraor dortiz@pppl.gov PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL As a federal facility, the Princeton Plasma Physics Laboratory is operating under heightened security measures because of the events of

  9. Screen bowl centrifuge: a high-efficiency particle size separator

    SciTech Connect (OSTI)

    Mohanty, M.K.; Zhang, B.; Khanna, N.; Palit, A.; Dube, B.

    2008-05-15

    Over the years, screen bowl centrifuges have been widely used for dewatering fine coal in coal preparation plants in the United States and elsewhere. It is generally recognized in the engineering and scientific communities that screen bowl centrifuges provide some degree of particle size separation while dewatering fine coal in a common application. However, the extent of differential partitioning of coarse and fine particles achievable by a screen bowl centrifuge has not been systematically studied in the past. The present investigation was aimed at conducting a parametric study using a statistically designed experimental program to better understand and optimize the size classification performance of a screen bowl centrifuge. A continuously operating screen bowl centrifuge having a bowl diameter of 0.5 m was used for this study at the Illinois Coal Development Park. Three key operating parameters, i.e., feed flow rate, feed solid content and pool depth, were varied to conduct a total of 17 experiments using a three-level factorial test matrix. Some of the best size separation performances achieved in this study may be described as having an imperfection value of 0.13 at an effective separation size (d(50c)) of 38 mu m and an imperfection value of 0.27 at an effective separation size (d(50c)) of 2.8 mu m. Due to an effective separation of ultrafine high ash materials, the ash content of the screen bowl feed was reduced from 22.3% to a minimum of 8.84% with a combustible recovery of 84.1% and an ash rejection of 71.6%. A higher combustible recovery of 92.1% was achieved at a product ash content of 12.5% with a d(50c) of 2.8 mu m and imperfection of 0.27.

  10. NREL Honored for 20 Years of DOE Science Bowl Support - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honored for 20 Years of DOE Science Bowl Support May 3, 2010 As part of its 20-year ... The National Science Bowl is celebrating 20 years of competition as the only academic ...

  11. We Have a Winner - DC High School Regional Science Bowl Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the National Science Bowl competition held every April in Chevy Chase, Maryland. ... Bowl competition scheduled for April 25-29, 2013, at the 4H Club in Chevy Chase, Maryland. ...

  12. We Have a Winner - DC High School Regional Science Bowl Competition Held

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Last Saturday | Department of Energy We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday February 11, 2013 - 10:30am Addthis We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday Annie Whatley Annie Whatley Deputy Director, Office of Minority Education and Community Development As part of the National Science Bowl, more than 9,500 high

  13. Secretary Moniz's Remarks at he 2014 National Science Bowl-- As Delivered

    Broader source: Energy.gov [DOE]

    The Secretary's remarks, as delivered, at the National Science Bowl in Washington, D.C. on April 28, 2014.

  14. DC Students Flex Their Mental Muscles in Regional Science Bowl Competition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy DC Students Flex Their Mental Muscles in Regional Science Bowl Competition DC Students Flex Their Mental Muscles in Regional Science Bowl Competition February 23, 2015 - 3:12pm Addthis DC Students Flex Their Mental Muscles in Regional Science Bowl Competition Students across the country are flexing their mental muscles to earn a top spot in the Department of Energy's National Science Bowl® competition. High school students in the nation's capital were able to showcase

  15. DOE - NNSA/NFO -- Nevada Science Bowl - HIGH SCHOOL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Nevada Science Bowl - High School February 5-6, 2016 On behalf of the National Nuclear Security Administration Nevada Field Office (NNSA/NFO), we are pleased to announce the 2016 Nevada Science Bowl for high school competition will take place February 5-6, 2016 at the National Atomic Testing Museum (NATM) and Vegas PBS. We would be honored to have your school field a team for this event. REGISTRATION INFORMATION ^ TOP ^

  16. DOE - NNSA/NFO -- Science Bowl - High School Registration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nevada High School Science Bowl Registration NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Welcome to the 25th Annual Nevada High School Science Bowl! February 5-6, 2016 Registration is due on December 2, 2015 Thirty-two teams from high schools in California, Nevada, and Utah are welcome to participate in this round robin - double-elimination competition. Monetary awards are given to the first through ninth place teams for use in their school's mathematics/science departments.

  17. Middle School Science Bowl 2003 - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Middle School Science Bowl 2003 June 18, 2003 Golden, CO. - Middle School Science Students to Face Off in Battle of Brains Teams from around the nation to test their science skills and knowledge Sixteen teams of some of the brightest sixth through eighth grade students from around the United States will test their mental agility in the National Middle School Science Bowl June 25-28. The teams, all winners of regional contests, will build and race solar-powered model cars and compete in

  18. Giving back to National Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Giving back to National Science Bowl In the 1990s, Dean Jens and Doug Fuller were high school students playing on teams from Ankeny High School that were competing to secure coveted spots in the U.S. Department of Energy's National Science Bowl (NSB) ® competition. Today, they're professionals, fathers, and devoted alumni whose annual volunteer commitment to the NSB allows them to give back to a competition that helped shape their lives. Jens was a member of the Ankeny, Iowa, High School

  19. High schools compete for Nevada Science Bowl title | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration High schools compete for Nevada Science Bowl title Monday, February 15, 2016 - 3:37pm NNSA Blog The winner of the 2016 Nevada Science Bowl was the team from Reno's Davidson Academy of Nevada. From left: Matthew Bauer, Rinik Kumar, Haydn Bradstreet, Paolo Adajar, Eric Liu, and Coach Brett Guisti. While sports fans across the U.S. prepared for last weekend's game day, 160 Nevada high school students went head-to-head in a different kind of competition. Sponsored and

  20. Fierce competitions propel two local teams to National Science Bowl |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Fierce competitions propel two local teams to National Science Bowl By Jeanne Jackson DeVoe February 23, 2015 Tweet Widget Google Plus One Share on Facebook The John Witherspoon Middle School team competing in the U.S. Department of Energy's New Jersey Regional Middle School Science Bowl® at PPPL on Feb. 20. (Photo by Elle Starkman/PPPL Office of Communications) The John Witherspoon Middle School team competing in the U.S. Department of Energy's New Jersey

  1. Fierce competitions propel two local teams to National Science Bowl |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Fierce competitions propel two local teams to National Science Bowl By Jeanne Jackson DeVoe March 2, 2015 Tweet Widget Google Plus One Share on Facebook The John Witherspoon Middle School in Princeton won the U.S. Department of Energy's New Jersey Regional Middle School Science Bowl® at PPPL on Feb. 20. (Photo by Elle Starkman/PPPL Office of Communications) The John Witherspoon Middle School in Princeton won the U.S. Department of Energy's New Jersey Regional

  2. High School Science Bowl 25th Anniversary Video | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Science Bowl 25th Anniversary Video The Ames Laboratory/Iowa State University Regional High School Science Bowl celebrated its 25th anniversary on Saturday, Jan. 23. Here's a video that recaps some of the teams, volunteers and fun from a quarter century of Science Bowl.

  3. Jefferson Lab hosts 22 teams for Virginia High School Science Bowl on Feb.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 | Jefferson Lab hosts 22 teams for Virginia High School Science Bowl on Feb. 12 Science Bowl Click above for print version (tiff) of the Jefferson Lab Science Bowl logo. Jefferson Lab hosts 22 teams for Virginia High School Science Bowl on Feb. 12 February 1, 2005 Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 12, to compete in the Virginia Regional High School Science Bowl. Twenty-two teams, representing high

  4. Portsmouth Notre Dame competes at National Science Bowl

    Broader source: Energy.gov [DOE]

    Although the Portsmouth Notre Dame High School academic team did not win a match at the National Science Bowl in April, coach Matt Mader said he and his students had an extraordinary experience in Washington, D.C., and returned with a new appreciation for the competition.

  5. Valley wins 2016 High School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Valley wins 2016 High School Science Bowl Championship bracket results News Release First Place - Valley High School (from left) Coach Nathan Speichinger, Gabe Mintzer, Arjun Ganga, Guowei Qi, Jacob Bedia, Luke Rustin, Ames Laboratory Director Adam Schwartz. Second Place - Dubuque Wahlert High School Front (l-r) Natalie Hoy, Sam Hoelscher, Zoe Hermsen; back (l-r) Coach Tom Stierman, Andrew Wagner, Miguel Sanchez, Ames Laboratory Director Adam Schwartz. Third Place - Marshalltown High School

  6. Method and device for disinfecting a toilet bowl

    DOE Patents [OSTI]

    Almon, Amy C.

    1997-01-01

    Method and device for disinfecting a flush toilet. The device is an electrocell mounted in the tank of the toilet, with two wire mesh electrodes immersed in the water in the tank and a battery applying approximately one to two volts of electric potential to the electrodes so that they chemically reduce a portion of the water in the tank to hydrogen peroxide. Then, when the tank is flushed, the peroxide is carried into the bowl where it can kill bacteria.

  7. Chillicothe High School wins 2015 South Central Ohio Regional Science Bowl

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Chillicothe High School wins 2015 South Central Ohio Regional Science Bowl Chillicothe High School wins 2015 South Central Ohio Regional Science Bowl March 13, 2015 - 6:43pm Addthis DOE Regional Coordinator Greg Simonton (left), and Chillicothe High School coach Joshua Queen join members of the Regional-winning Chillicothe High School Science Bowl team. (Left to right) Dylan Crisp, Matthew Wagner, Noah Wright-Piekarski, Claire Schmitt and Keegan Francis. DOE Regional

  8. Jefferson Lab Hosts 20 Teams for Middle School Science Bowl on March 1 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Middle School Science Bowl on March 1 NEWPORT NEWS, Va., Feb. 25, 2008 - Tomorrow's scientists, engineers and mathematicians may be found testing their mental skills at the Department of Energy's Virginia Regional Middle School Science Bowl taking place at Jefferson Lab on Saturday, March 1. Twenty teams, representing high schools from across the region are registered for this year's academic competition. The National Science Bowl® tournament - sponsored by the U.S. Department

  9. Jefferson Lab Hosts 23 Teams for Middle School Science Bowl on March 7 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Hosts 23 Teams for Middle School Science Bowl on March 7 Jefferson Lab Hosts 23 Teams for Middle School Science Bowl on March 7 NEWPORT NEWS, Va., March 2, 2009 - The nation's future scientists, engineers and mathematicians may be found testing their mental skills at the Department of Energy's Virginia Regional Middle School Science Bowl taking place at Jefferson Lab on Saturday, March 7. Twenty-three teams, representing middle schools from across the region are registered for

  10. Jefferson Lab Hosts Virginia Science Bowl on Feb. 9 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hosts Virginia Science Bowl on Feb. 9 Jefferson Lab Hosts Virginia Science Bowl on Feb. 9 February 7, 2002 Some of the brightest young minds in the state will come together at Jefferson Lab on Saturday, Feb. 9 to compete in the Virginia Regional Science Bowl. Twenty teams, representing high schools from across the state are participating in this annual academic competition. Denbigh Baptist Christian School and New Horizon's Governor's School from the Peninsula will be competing in the event. In

  11. Twenty High School Teams Compete in Virginia Regional Science Bowl Being

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Held At Jefferson Lab | Jefferson Lab Twenty High School Teams Compete in Virginia Regional Science Bowl Being Held At Jefferson Lab Media Advisory: Twenty High School Teams Compete in Virginia Regional Science Bowl Being Held At Jefferson Lab February 7, 2002 The Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Va., is hosting this year's Virginia Regional Science Bowl on February 9, 2002. Twenty teams, representing high schools from

  12. Twenty-one high school teams compete in Virginia Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hosted by Jefferson Lab | Jefferson Lab Twenty-one high school teams compete in Virginia Regional Science Bowl hosted by Jefferson Lab MEDIA ADVISORY: Twenty-one high school teams compete in Virginia Regional Science Bowl hosted by Jefferson Lab February 4, 2003 The Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Va., is hosting this year's Virginia Regional Science Bowl on Saturday, February 8, 2003. Twenty-one teams, representing high

  13. News Media invited to cover Virginia Regional Science Bowl with record 23

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School teams competing | Jefferson Lab Virginia Regional Science Bowl with record 23 High School teams competing News Media invited to cover Virginia Regional Science Bowl with record 23 High School teams competing January 30, 2004 The Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Va., is hosting this year's Virginia Regional Science Bowl on Saturday, Feb. 7. Twenty-three teams, representing high schools from across the state are

  14. Jefferson Lab hosts Virginia Science Bowl on February 8 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hosts Virginia Science Bowl on February 8 Jefferson Lab hosts Virginia Science Bowl on February 8 February 4, 2003 Some of the brightest young minds in the commonwealth will come together at the Department of Energy's Jefferson Lab on Saturday, February 8, to compete in the Virginia Regional Science Bowl. Twenty-one teams, representing high schools from across the state are participating in this annual academic competition. In an intense question-and-answer game format, the contestants will be

  15. Local Teams from PA, WV Travel to Washington D.C. for National Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | netl.doe.gov Regional News Local Teams from PA, WV Travel to Washington D.C. for National Science Bowl Pittsburgh, Pa. - The National Energy Technology Laboratory have sent the regional winners of the southwestern Pennsylvania (SWPA) and West Virginia Science Bowls off to compete in the U.S. Department of Energy National Science Bowl April 28-May 2, 2016, in Washington, D.C. By winning their regional tournaments, the Marshall Middle School (Wexford, PA), Morgantown High School (Morgantown,

  16. Jefferson Lab Hosts 20 Teams for High School Science Bowl on Feb. 2 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab High School Science Bowl on Feb. 2 Jefferson Lab Hosts 20 Teams for High School Science Bowl on Feb. 2 NEWPORT NEWS, Va., Jan. 25, 2008 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 2, to compete in the Virginia Regional High School Science Bowl. Twenty teams, representing high schools from across the region are registered for this year's academic competition. The National Science Bowl®

  17. Jefferson Lab Hosts Virginia Middle School Science Bowl on March 1 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Middle School Science Bowl on March 1 Jefferson Lab Hosts Virginia Middle School Science Bowl on March 1 NEWPORT NEWS, Va., Feb. 26, 2014 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, March 1, to compete in the Virginia Regional Middle School Science Bowl. Teams from 16 middle schools are registered for this year's academic competition. The National Science Bowl® - sponsored and managed by the U.S.

  18. Twenty-three Teams to Compete in Virginia High School Science Bowl |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Twenty-three Teams to Compete in Virginia High School Science Bowl Twenty-three Teams to Compete in Virginia High School Science Bowl NEWPORT NEWS, Va., Jan. 30, 2014 - Some of the brightest young minds in the Commonwealth will meet at the U.S. Department of Energy's Jefferson Lab on Saturday, Feb. 1, to compete in the Virginia Regional High School Science Bowl. Teams from 23 schools are registered for this year's academic competition. The National Science Bowl tournament -

  19. Texas A&M Regional High School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 ... County, TX Titus County, TX Tom Green County, TX Travis County, TX Trinity ...

  20. Texas AM Junior Science Bowl | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 ... County, TX Titus County, TX Tom Green County, TX Travis County, TX Trinity ...

  1. Greater Cincinnati Regional High School Science Bowl | U.S. DOE...

    Office of Science (SC) Website

    National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 ... KY Grant County, KY Grayson County, KY Green County, KY Greenup County, KY Hancock ...

  2. Lab Hosts 22 teams for Virginia Science Bowl, Feb. 7; Thomas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Virginia Regional Science Bowl on Feb. 7 went to the team from Thomas Jefferson High School for Science and Technology, Alexandria, Virginia. Team members include (left...

  3. Record 18 teams prepare for Virginia Regional Middle School Science Bowl on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 10 at Jefferson Lab | Jefferson Lab Newport News, Va. -- The Department of Energy's Jefferson Lab, in Newport News, Va., hosts the Virginia Regional Middle School Science Bowl on Saturday, March 10, with a record 18 teams competing. This is the largest turnout we've had for the Middle School Science Bowl in the four years we have hosted it at Jefferson Lab, according to Jan Tyler, JLab's Science Education program manager and Science Bowl coordinator. "The Science Bowl is an

  4. Science Bowl 2014: Future STEM Leaders to Compete in National Contest

    Broader source: Energy.gov [DOE]

    This weekend, high school and middle school students from across the country will visit Washington, DC, for the 24th annual National Science Bowl.

  5. Longfellow Middle School Wins Virginia Middle School Science Bowl on March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 | Jefferson Lab Wins Virginia Middle School Science Bowl on March 7 Longfellow Middle School Wins Virginia Middle School Science Bowl on March 7 2014 Virginia Middle School Science Bowl At the end of the day, the team from Longfellow Middle School, Falls Church, won the Virginia Regional Middle School Science Bowl on March 7. The team of (back row, left to right) Coach Jim Bradford, Fred Zhang and Benjamin Xu, and (front, l. to r.) Christopher Bi, Wenbo Wu and Aaditya Singh pose for a

  6. Fourteen Teams to Compete in Virginia Middle School Science Bowl on March 7

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Jefferson Lab Fourteen Teams to Compete in Virginia Middle School Science Bowl on March 7 Fourteen Teams to Compete in Virginia Middle School Science Bowl on March 7 NEWPORT NEWS, Va., March 3, 2015 - Some of the brightest young minds in the Commonwealth will meet at the U.S. Department of Energy's Jefferson Lab on March 7, to compete in the Virginia Regional Middle School Science Bowl. Teams from 14 schools are registered for this year's academic competition. The National Science Bowl® -

  7. 103 Teams to Head to DOE's National Science Bowl in Washington, D.C. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 Teams to Head to DOE's National Science Bowl in Washington, D.C. 103 Teams to Head to DOE's National Science Bowl in Washington, D.C. April 23, 2009 - 12:00am Addthis WASHINGTON, DC- Students from 67 high school teams and 36 middle school teams from across the nation will compete next weekend for championship titles in the U.S. Department of Energy's (DOE) National Science Bowl in Washington D.C. The National Science Bowl is the nation's largest academic competition of

  8. Method and device for disinfecting a toilet bowl

    DOE Patents [OSTI]

    Almon, A.C.

    1997-03-18

    Method and device are disclosed for disinfecting a flush toilet. The device is an electrolytic cell mounted in the tank of the toilet, with two wire mesh electrodes immersed in the water in the tank and a battery applying approximately one to two volts of electric potential to the electrodes so that they chemically reduce a portion of the water in the tank to hydrogen peroxide. Then, when the tank is flushed, the peroxide is carried into the bowl where it can kill bacteria. 2 figs.

  9. 2016 Middle School Science Bowl Results | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Middle School Science Bowl Results News release Championship Results Bracket First Place - Ames Front row (l-r) Rishabh Swamy, Hannah Huang, Nitzan Friedberg; Back (l-r) Coach Collin Reichert, Andres Cordoba, David Kim, Ames Laboratory Director Adam Schwartz. Second Place - LeMars Front row (l-r) Ethan Hulinsky, Alex Meier, Jake Francksen-Small; Back row (l-r) Coach Ryan Zittritsch, Tate Hogrefe, Kyle Herbst, Ames Laboratory Director Adam Schwartz. Third Place - Madrid Front (l-r) Jason

  10. High School Science Bowl Coaching Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Coaching Information January 23, 2016 Online team registration opens October 1 - 11:00 AM (CST) There is a 40-team limit for this event so don't delay. Schools whose applications are received after the roster is filled will be placed on a waiting list. Hints, tips and tricks: Registration opens October 1, 11:00 AM. Any coach or team data entered into the system PRIOR to the October 1 launch will be deleted. Plan ahead! Form your team and gather the following information from each

  11. Amarillo Students Win Regional National Science Bowl Competition, Secure

    National Nuclear Security Administration (NNSA)

    Spot in National Finals in Washington, D.C. | National Nuclear Security Administration Amarillo Students Win Regional National Science Bowl Competition, Secure Spot in National Finals in Washington, D.C. Wednesday, February 24, 2016 - 12:00am NNSA Blog The team from Amarillo's Ascension Academy won $1,000 for the school science department and an all-expenses paid trip to Washington, D.C. and the national competition More than 200 students from 25 Middle and Junior High schools across the

  12. U.S. DEPARTMENT OF ENERGY 2016 National Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 National Science Bowl ® Adult Confidential Medical Information and Emergency Notification Form (Please fill out the entire 3-page form) This is a PDF Form filler document. Click on the space and type in the information requested. Once the form is complete: (1) click "File," then "Save As" and give it a name and save it on your computer; (2) print the completed form; (3) please sign the form in blue ink. Coach Co-Coach NSB Alumnus Regional Coordinator Other

  13. DOE New Jersey Regional High School Science Bowl! NO SCIENCE ON SATURDAY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LECTURE | Princeton Plasma Physics Lab 2, 2014 (All day) Science On Saturday DOE New Jersey Regional High School Science Bowl! NO SCIENCE ON SATURDAY LECTURE DUE TO THE NEW JERSEY REGIONAL SCIENCE BOWL COMPETITION, THERE WILL BE NO SCIENCE ON SATURDAY LECTURE TODAY.

  14. Students from California and Indiana win DOE's 23rd National Science Bowl

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Students from California and Indiana win DOE's 23rd National Science Bowl Students from California and Indiana win DOE's 23rd National Science Bowl April 29, 2013 - 12:44pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Students from Mira Loma High School from Sacramento, Calif. won the 2013 U.S. Department of Energy (DOE) National Science Bowl today in Washington D.C. This year's championship team in the middle school competition is Creekside Middle School

  15. Jefferson Lab Hosts 22 Teams for High School Science Bowl on Feb. 7 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab 2 Teams for High School Science Bowl on Feb. 7 Jefferson Lab Hosts 22 Teams for High School Science Bowl on Feb. 7 NEWPORT NEWS, Va., Feb. 2, 2009 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 7, to compete in the Virginia Regional High School Science Bowl. Twenty-two teams, representing high schools from across the region, are registered for this year's academic competition. The National Science

  16. Jefferson Lab Hosts 23 teams for Virginia Science Bowl on Feb. 7 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab 23 teams for Virginia Science Bowl on Feb. 7 Jefferson Lab Hosts 23 teams for Virginia Science Bowl on Feb. 7 January 30, 2004 Some of the brightest young minds in the Commonwealth will come together at the Department of Energy's Jefferson Lab on Saturday, Feb. 7, to compete in the Virginia Regional Science Bowl. Twenty-three teams, representing high schools from across the state are participating in this annual academic competition. Nine schools from the Hampton Roads area

  17. Jefferson Lab Hosts High School Science Bowl on Feb. 27 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 Jefferson Lab Hosts High School Science Bowl on Feb. 27 Please note the date change from Feb. 6 to Saturday, Feb. 27 NEWPORT NEWS, Va., Feb. 5, 2010 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 27, to compete in the Virginia Regional High School Science Bowl. Teams from 20 high schools from across the region are registered for this year's academic competition. The National Science Bowl tournament - sponsored by

  18. Jefferson Lab Hosts High School Science Bowl on Feb. 4 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Jefferson Lab Hosts High School Science Bowl on Feb. 4 NEWPORT NEWS, Va., Jan. 31. , 2012 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 4, to compete in the Virginia Regional High School Science Bowl. Teams from 22 high schools from across the region are registered for this year's academic competition. The National Science Bowl tournament - sponsored by the U.S. Department of Energy since 1991 - is an annual

  19. Jefferson Lab Hosts High School Science Bowl on Feb. 5 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Jefferson Lab Hosts High School Science Bowl on Feb. 5 NEWPORT NEWS, Va., Feb. 2, 2011 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 5, to compete in the Virginia Regional High School Science Bowl. Teams from 23 high schools from across the region are registered for this year's academic competition. The National Science Bowl tournament - sponsored by the U.S. Department of Energy since 1991 - is an annual

  20. The Olympics of science knowledge at DOE's New Jersey Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at PPPL | Princeton Plasma Physics Lab The Olympics of science knowledge at DOE's New Jersey Regional Science Bowl at PPPL By Jeanne Jackson DeVoe March 3, 2014 Tweet Widget Google Plus One Share on Facebook The J Droids, a science club in Warren, N.J., at the end of a long day of competing with the Science Bowl trophies in the foreground. They took home the largest of the trophies after winning the U.S. Department of Energy's New Jersey Regional Middle School Science Bowl on Feb. 21. (Photo

  1. The Olympics of science knowledge at PPPL's NJ Regional Science Bowl |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab The Olympics of science knowledge at PPPL's NJ Regional Science Bowl By Jeanne Jackson DeVoe March 3, 2014 Tweet Widget Google Plus One Share on Facebook The J Droids, a science club in Warren, N.J., at the end of a long day of competing with the Science Bowl trophies in the foreground. They took home the largest of the trophies after winning the U.S. Department of Energy's New Jersey Regional Middle School Science Bowl on Feb. 21. (Photo by Elle Starkman/PPPL

  2. Twenty Teams to Compete in Virginia High School Science Bowl on Feb. 7 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Twenty Teams to Compete in Virginia High School Science Bowl on Feb. 7 The final match of the 2014 Virginia High School Science Bowl pitted Warwick High School, Newport News, against Thomas Jefferson High School for Science and Technology, Alexandria, the long-standing Virginia Science Bowl champs. The team from TJHSST won the day and advanced to the national finals. A number of teams that didn't make it into the semi-finals participated in the Stay All Day design and

  3. West Windsor-Plainsboro High School South wins regional Science Bowl at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL | Princeton Plasma Physics Lab West Windsor-Plainsboro High School South wins regional Science Bowl at PPPL A dramatic ending to High School Bowl sends local team to nationals By Jeanne Jackson DeVoe February 25, 2013 Tweet Widget Google Plus One Share on Facebook Next stop Washington DC: Members of the West Windsor-Plainsboro High School South team pose after winning the New Jersey Regional Science Bowl at the Princeton Plasma Physics Laboratory on Feb. 23. From left to right: Coach

  4. Jefferson Lab hosts 23 teams for Virginia High School Science Bowl on Feb.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 | Jefferson Lab hosts 23 teams for Virginia High School Science Bowl on Feb. 11 Jefferson Lab Hosts 23 teams for Virginia High School Science Bowl on Feb. 11 February 3, 2006 Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, Feb. 11, to compete in the Virginia Regional High School Science Bowl. Twenty-three teams, representing high schools from across the region are participating in this year's academic competition.

  5. 21st Annual Department of Energy National Science Bowl April 30 - May 2 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1st Annual Department of Energy National Science Bowl April 30 - May 2 21st Annual Department of Energy National Science Bowl April 30 - May 2 April 25, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Department of Energy (DOE) Secretary Steven Chu announced today that on April 30 through May 2 the DOE will host 69 high school and 41 middle school teams to compete for championship titles at the 21st annual National Science Bowl competition in Washington, D.C. The 110

  6. Photo of the Week: The 2014 National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 2014 National Science Bowl Photo of the Week: The 2014 National Science Bowl May 1, 2014 - 4:06pm Addthis This weekend, middle and high school students from across the country competed in the 24th annual National Science Bowl. After a series of round robin and double elimination competitions over the weekend, the final teams went head-to-head in the final rounds at the National Building Museum Monday morning. Mira Loma High School from Sacramento, California, won first prize for the high

  7. Portsmouth Notre Dame wins 2016 South Central Ohio Regional Science Bowl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Portsmouth Notre Dame wins 2016 South Central Ohio Regional Science Bowl Portsmouth Notre Dame wins 2016 South Central Ohio Regional Science Bowl March 16, 2016 - 2:22pm Addthis Portsmouth Notre Dame captured the U.S. Department of Energy’s 4th Annual South Central Ohio Regional Science Bowl title at Shawnee State University in Portsmouth, Ohio, on Friday, March 11, 2016. Pictured from left to right are Judson Lilly (DOE), Greg Simonton (DOE), coach Diana March,

  8. Registration Now Open for 2013 Science Bowl Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Registration Now Open for 2013 Science Bowl Teams Registration Now Open for 2013 Science Bowl Teams October 2, 2012 - 10:00am Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington - Today, U.S. Energy Secretary Steven Chu announced that registration is now open for the 2013 National Science Bowl (NSB). This marks the beginning of the 23rd year of the nation's largest science competition, which is sponsored by the Department of Energy's (DOE's) Office of Science. Local middle school and high

  9. Ridgeview Classical Charter Schools Wins 26th Colorado Science Bowl - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Ridgeview Classical Charter Schools Wins 26th Colorado Science Bowl Team Heading to Washington D.C. to Challenge for National Title February 22, 2016 Students from Ridgeview Classical Charter Schools won the Colorado High School Science Bowl. They will represent the state of Colorado at the U.S. Department of Energy's (DOE) National Science Bowl in Washington D.C., April 28- May 2, where they will compete against more than 400 students from 70 high schools for the national

  10. Media Advisory - The Virginia Middle School Science Bowl Is Set For March 6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Jefferson Lab | Jefferson Lab The Virginia Middle School Science Bowl Is Set For March 6 at Jefferson Lab Media Advisory - The Virginia Middle School Science Bowl Is Set For March 6 at Jefferson Lab What: The 2010 Virginia Regional Middle School Science Bowl When: Saturday, March 6, 2010. Round-robin competition will run from 10 a.m. - noon. The double-elimination, semi-final and finalist rounds will run from 1:30 to approximately 4 p.m. Awards will be presented immediately after the

  11. Media Advisory: Virginia Middle School Science Bowl Set For March 5 at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab | Jefferson Lab Advisory: Virginia Middle School Science Bowl Set For March 5 at Jefferson Lab Media Advisory: Virginia Middle School Science Bowl Set For March 5 at Jefferson Lab What: The Department of Energy's 2011 Virginia Regional Middle School Science Bowl When: Saturday, March 5, 2011. Round-robin competition will run from 9 a.m. - noon. The double-elimination, semi-final and finalist rounds will run from 1 p.m. to approximately 4 p.m. Awards will be presented

  12. Regional Competitions Begin for the 22nd Annual National Science Bowl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Regional Competitions Begin for the 22nd Annual National Science Bowl Regional Competitions Begin for the 22nd Annual National Science Bowl January 20, 2012 - 2:46pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu announced today that the regional competitions of the 22nd Annual U.S. Department of Energy National Science Bowl will kickoff tomorrow, Saturday, January 21. Thousands of middle and high school students from across the country will face off against

  13. Registration Now Open for 2013 Science Bowl Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Now Open for 2013 Science Bowl Teams Registration Now Open for 2013 Science Bowl Teams October 2, 2012 - 10:36am Addthis The National Science Bowl finals take place each year in the National Building Museum. The top regional teams come to Washington, D.C., in the spring as they as they advance to National Finals. Registration is now open at the <a href="http://science.energy.gov/nsb/">NSB website</a>. | Photo by Dennis Brack, Energy Department Office of Science The National

  14. Gatton Academy Wins DOE’s West Kentucky Regional Science Bowl

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Gatton Academy Team-1 won the U.S. Department of Energy’s (DOE) West Kentucky Regional Science Bowl, the region’s foremost academic and scientific event for high school students, on...

  15. 2010 DOE National Science Bowl® Photos - Will James Middle School...

    Office of Science (SC) Website

    The Will James Middle School team competes in the Solar Car Challenge at the National Science Bowl in Washington, DC. Will James Middle School won the Best Design Document award. ...

  16. 2010 DOE National Science Bowl® Photos - Will James Middle School...

    Office of Science (SC) Website

    Will James Middle School Team as they compete in the Solar Car Challenge at the National Science Bowl for middle school students in Washington DC. Left to right: Evan Quarles, ...

  17. Science Bowl 2012: A Long, Hard-Fought Battle for First

    Broader source: Energy.gov [DOE]

    Showcasing their knowledge, 69 high school teams and 44 middle school teams faced off in the National Science Bowl Finals this weekend. Only one team from each division won this nationally recognized science competition.

  18. National Science Bowl Update: Teams from North Carolina and California to Compete for High School Championship

    Broader source: Energy.gov [DOE]

    The field of high school finalists in the Department of Energy (DOE) National Science Bowl has narrowed once more, and now only two high school teams remain in the competition.

  19. Thomas Jefferson High School Wins Virginia Science Bowl for 7th...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWPORT NEWS, Va., Feb. 20, 2008 - The Thomas Jefferson High School for Science and Technology team pummeled its competition at the Virginia Regional Science Bowl held Feb. 2 at...

  20. 2010 DOE National Science Bowl® Photos - Falcon Cove Middle...

    Office of Science (SC) Website

    Text Size: A A A FeedbackShare Page Falcon Cove Middle School students from Weston, FL tour the National Mall in Washington, DC as they participate in the National Science Bowl. ...

  1. Calloway Makes Sweet 16, Lone Oak Competes in DOE National Science Bowl

    Broader source: Energy.gov [DOE]

    Calloway County High School advanced to the Sweet 16 in academic competition among nearly 70 high schools at the Department of Energy’s (DOE) 2014 National Science Bowl April 24-28 in Washington, DC.

  2. Henderson County North Middle School wins 2015 DOE West Kentucky Regional Science Bowl

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Henderson County North Middle School won the U.S. Department of Energy’s West Kentucky Regional Science Bowl February 6, 2015 during competition among 12 middle school teams. The...

  3. The 20th Annual National Science Bowl Competition Winds into Action | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Office of Science (SC) The 20th Annual National Science Bowl Competition Winds into Action News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.10.09 The 20th Annual National Science Bowl Competition

  4. Thomas Jefferson High School Wins Virginia Science Bowl for 7th Year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running | Jefferson Lab Wins Virginia Science Bowl for 7th Year Running NEWPORT NEWS, Va., Feb. 20, 2008 - The Thomas Jefferson High School for Science and Technology team pummeled its competition at the Virginia Regional Science Bowl held Feb. 2 at Jefferson Lab. The team finished the day winning all of its matches. This marked the seventh time since Jefferson Lab has been hosting this annual event that the Thomas Jefferson team, from Alexandria, took the regional title. Eighteen teams

  5. Lab Hosts 22 teams for Virginia Science Bowl, Feb. 7; Thomas Jefferson High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School wins 3rd year running | Jefferson Lab Hosts 22 teams for Virginia Science Bowl, Feb. 7; Thomas Jefferson High School wins 3rd year running First place at the Virginia Regional Science Bowl on Feb. 7 went to the team from Thomas Jefferson High School for Science and Technology, Alexandria, Virginia. Team members include (left to right) Kay Aull, Michael Zhang, Paul Yang, Samuel Lederer (behind), Team Coach Sharon Baker, and Lisa Marrone. Taking second place at the Virginia Regional

  6. Top students show off brain power at Kansas City Science Bowl | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Top students show off brain power at Kansas City Science Bowl Friday, March 20, 2015 - 3:20pm More than 200 students converged in Kansas City recently for the annual Science Bowl Regional Competition to answer questions like, "One-hundredth of a millibar equals how many Pascals?" (The answer is 1). During the many rounds of competition, students showed a remarkable understanding of chemistry, geology, physics, biology, electronics, and more as they

  7. Cherry Creek High School Wins Colorado Science Bowl - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chernobyl Nuclear Accident Chernobyl Nuclear Accident Chernobyl, Ukraine A catastrophic nuclear accident occurs at Chernobyl Reactor #4 in the then Soviet Republic of Ukraine

    Cherry Creek High School Wins Colorado Science Bowl Greenwood Village School Heads to Washington D.C. to Challenge for National Title January 28, 2012 Golden, Colo., Jan. 28, 2012 - Students from Cherry Creek High School won the Colorado High School Science Bowl today. The school will go on to the 22nd National Science

  8. Students from Grand Junction High School Triumph in Colorado Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Junction High School Triumph in Colorado Science Bowl For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 12, 2000 - Students from Grand Junction High School won top honors at the Colorado Science Bowl today at the Colorado School of Mines in Golden. In the final round of rapid-fire questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students from Grand Junction were victorious over one of two teams from Douglas County High

  9. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    SciTech Connect (OSTI)

    AISES, None

    2013-09-25

    The American Indian Science and Engineering Society (AISES) has been funded under a U.S. Department of Energy (DOE) grant (Grant Award No. DE-SC0004058) to host an Intertribal Middle-School Science and Math Bowl (IMSSMB) comprised of teams made up of a majority of American Indian students from Bureau of Indian Education-funded schools and public schools. The intent of the AISES middle school science and math bowl is to increase participation of American Indian students at the DOE-sponsored National Science Bowl. Although national in its recruitment scope, the AISES Intertribal Science and Math Bowl is considered a regional science bowl, equivalent to the other 50 regional science bowls which are geographically limited to states. Most regional bowls do not have American Indian student teams competing, hence the AISES bowl is meant to encourage American Indian student teams to increase their science knowledge in order to participate at the national level. The AISES competition brings together teams from various American Indian communities across the nation. Each team is provided with funds for travel to and from the event, as well as for lodging and meals. In 2011 and 2012, there were 10 teams participating; in 2013, the number of teams participating doubled to 20. Each Science and Math Bowl team is comprised of four middle school grades 6 through 8 students, one alternate, and a teacher who serves as advisor and coach although in at least two cases, the coach was not a teacher, but was the Indian Education Coordinator. Each team member must have at least a 3.0 GPA. Furthermore, the majority of students in each team must be comprised of American Indian, Alaska Native or Native Hawaiian students. Under the current DOE grant, AISES sponsored three annual middle school science bowl competitions over the years 2011, 2012 and 2013. The science and math bowls have been held in late March concurrently with the National American Indian Science and Engineering Fair (NAISEF) and EXPO at the Albuquerque, NM Convention Center. Albuquerque is also the home of the AISES national office. The AISES staff also recruits volunteers to assist with implementation of the science and math bowl event. In 2011, there were 7 volunteers; in 2012, 15 volunteers, and in 2013, 19 volunteers. Volunteers are recruited from a variety of local sources, including Sandia Laboratories, Southwest Indian Polytechnic Institute students, Department of Defense, as well as family members of AISES staff. For AISES, the goals of the Intertribal Middle School Science and Math Bowl project are to have more Native students learn science, for them to gain confidence in competing, and to reward their effort in order to motivate them to pursue studies in the sciences and engineering. For DOE, the goals of the project are to get more Native students to compete at the National Science Bowl, held in Washington, DC.

  10. The National Science Bowl Students are Here! (The Streets of D.C. Just Got a Little Smarter.)

    Broader source: Energy.gov [DOE]

    Hundreds of America’s best science high school and middle school students are arriving in D.C. today to gear up for the National Science Bowl.

  11. Super Bowl City Leads on Energy Efficient Forefront | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bowl City Leads on Energy Efficient Forefront Super Bowl City Leads on Energy Efficient Forefront February 2, 2013 - 11:30am Addthis New Orleans' Mercedes-Benz Superdome features more than 26,000 LED lights on the building's exterior. The system uses only 10 kilowatts of electricity, equivalent to powering a small home. | Photo courtesy of SMG. New Orleans' Mercedes-Benz Superdome features more than 26,000 LED lights on the building's exterior. The system uses only 10 kilowatts of electricity,

  12. West Windsor-Plainsboro High School South wins regional Science Bowl at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL | Princeton Plasma Physics Lab West Windsor-Plainsboro High School South wins regional Science Bowl at PPPL By Jeanne Jackson DeVoe February 25, 2013 Tweet Widget Google Plus One Share on Facebook Next stop Washington DC: Members of the West Windsor-Plainsboro High School South team pose after winning the New Jersey Regional Science Bowl at the Princeton Plasma Physics Laboratory on Feb. 23. From left to right: Coach Sunila Sharma, Arnav Sood, Chaitanya Asawa, Team Captain Alexander

  13. Nine teams compete in Virginia Middle School Science Bowl competition at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab on March 11 | Jefferson Lab Nine teams compete in Virginia Middle School Science Bowl competition at Jefferson Lab on March 11 Nine teams compete in Virginia Middle School Science Bowl competition at Jefferson Lab on March 11 March 17, 2006 Peasley Middle School The Peasley Middle School Team from Gloucester, Va., is coached by Ray Yoh (far right). The team (from left to right) includes Tavis Sparrier, Sayer Fisher, William Wei-Xi Wang and Caleb Dyke. Photo by Steve Gagnon,

  14. Panhandle Junior High takes second at National Science Bowl Car Race |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Panhandle Junior High takes second at National Science Bowl Car Race Wednesday, April 30, 2014 - 5:09pm A team of five competitors from Panhandle Junior High School capped off an eventful visit last week to the nation's capital with a second-place finish in the electric car race competition at the National Science Bowl. Coach Kevin Meyer said the team competed hard, but was barely edged out at the finish line of the final race. The academic portion of

  15. Nineteen Teams to Compete in Virginia Regional High School Science Bowl on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb. 6 | Jefferson Lab Nineteen Teams to Compete in Virginia Regional High School Science Bowl on Feb. 6 The final match of the 2015 Virginia Regional High School Science Bowl pitted Langley High School, McLean, against Thomas Jefferson High School for Science and Technology, Alexandria. The team from TJHSST won the day and advanced to the national finals. Teams that didn't make it into the semi-finals participated in the Stay All Day design and engineering challenge. Pictured are photos

  16. Smith Middle School Takes First Place at Science Bowl Hydrogen Fuel Cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Car Competition - News Releases | NREL Smith Middle School Takes First Place at Science Bowl Hydrogen Fuel Cell Car Competition National "Battle of the Brains" continues June 25 with academic face off June 24, 2005 Golden, Colo. - Smith Middle School from Chapel Hill, N.C., captured top place in the model hydrogen fuel cell competition on the first day of the National Middle School Science Bowl. St. Andrew's Episcopal School, from Amarillo, Texas, took second and Robert Frost

  17. Students from Smoky Hill High School Triumph in Colorado Science Bowl -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Students from Smoky Hill High School Triumph in Colorado Science Bowl February 8, 2003 Golden, CO. - Students from Smoky Hill High School won top honors at the Colorado Science Bowl today at the Colorado School of Mines. In the final round of rapid-fire questions and answers about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students from Smoky Hill High School team #2 were victorious over their peers, Smoky Hill team #3. At the end of

  18. Students from Smoky Hill High School Triumph in Colorado Science Bowl -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Students from Smoky Hill High School Triumph in Colorado Science Bowl February 7, 2004 Golden, Colo. - Students from Smoky Hill High School won top honors today at the Colorado Science Bowl for the third year in a row. In the final round of rapid-fire questions and answers about physics, math, biology, astronomy, chemistry, computers and the earth sciences, Smoky Hill High School was victorious over Pueblo Centennial High School. Thirty-nine student teams from across the

  19. Students from Smoky Hill High School Triumph in Colorado Science Bowl -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Students from Smoky Hill High School Triumph in Colorado Science Bowl February 12, 2005 Golden, Colo. - Students from Smoky Hill High School won top honors at the Colorado Science Bowl today for the fourth year in a row. In the final round of rapid-fire questions and answers about physics, math, biology, astronomy, chemistry, computers and the earth sciences, Smoky Hill High School team #2 from Aurora was victorious over Smoky Hill High School team #1. Thirty-six student

  20. DOE National Science Bowl Kicks Off Tomorrow, April 27 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Off Tomorrow, April 27 DOE National Science Bowl Kicks Off Tomorrow, April 27 April 26, 2012 - 12:11pm Addthis WASHINGTON, D.C. - Friday, April 27, through Monday, April 30, 113 regional high school and middle school championship teams from 42 states, the District of Columbia, Puerto Rico and the U.S. Virgin Islands will compete in the 22nd annual U.S. Department of Energy National Science Bowl final competition in Washington D.C. The students will be quizzed on all science

  1. DOE National Science Bowl Kicks off Saturday, April 30 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy off Saturday, April 30 DOE National Science Bowl Kicks off Saturday, April 30 April 28, 2011 - 12:00am Addthis WASHINGTON, D.C. - 110 regional high school and middle school championship teams from 44 states, the District of Columbia, Puerto Rico and the U.S. Virgin Islands will compete in the 21st annual U.S. Department of Energy National Science Bowl final competition in Washington D.C. April 30th through May 2nd. The students will be quizzed on all science disciplines, including

  2. Calloway Middle School Honored at DOE National Science Bowl, Lone Oak Competes Among High Schools

    Broader source: Energy.gov [DOE]

    PADUCAH, KY – Calloway County Middle School won the Civility Award and was named one of the top six battery-powered model car design teams at the Department of Energy’s National Science Bowl in Washington, D.C.

  3. Thickening of ultrafine coal-water slurries in a solid-bowl centrifuge

    SciTech Connect (OSTI)

    Pinkerton, A.P.; Klima, M.S.; Morrison, J.L.; Miller, B.G.

    1999-07-01

    As part of a study being conducted for the Electric Power Research Institute's (EPRI's) Upgraded Coal Interest Group (UCIG) to evaluate ultrafine coal dewatering technologies, testing was carried out to investigate the use of a solid-bowl (high-g) centrifuge for thickening ultrafine coalwater slurries. The objective of this study was to increase the solids concentration to a level suitable for use as a coal-water slurry fuel, while maximizing overall solids recovery. Feed material was collected from the combined discharge (centrate) streams from several screen-bowl centrifuges. These devices are currently being used in a commercial coal cleaning facility to dewater the clean coal product from a froth flotation circuit. Current plant practice is to discharge the centrate to settling ponds. The screen bowl centrate averages 5% solids by weight and contains nearly 60% material finer than 10 {mu}m. The current study examined the effects of operating conditions on centrifuge performance. The test conditions included centrifuge bowl and scroll speeds and volumetric feed rate. In addition to thickening, some cleaning was also achieved, because the finest particles (e.g. < 3 {micro}m), which contained a large percentage of liberated clays, were removed with the bulk of the water. The centrifuge products were analyzed for solids concentration, particle size distribution, and ash content. Size selectivity curves were also used to evaluate centrifuge performance.

  4. DOE New Jersey Regional High School Science Bowl *NO LECTURE* | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab 1, 2015, 9:00am to 4:00pm Science Education Lab-wide DOE New Jersey Regional High School Science Bowl *NO LECTURE* Contact Information Coordinator(s): Deedee Ortiz-Arias, Science Education Department Program Administraor dortiz@ppl.gov Host(s): Dr. Andrew Zwicker, Science Education Department Head azwicker@pppl.gov

  5. Poudre High School From Fort Collins, Colorado Wins U.S. Department of Energy National Science Bowl®

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - Poudre High School from Fort Collins, Colorado won the 2007 U.S. Department of Energy (DOE) National Science Bowl® for high school students today at the National 4-H Youth...

  6. National Science Bowl Update: Middle School Teams from Maryland and Indiana to Compete for National Championship on Monday

    Broader source: Energy.gov [DOE]

    The field of middle school finalists in the Department of Energy (DOE) National Science Bowl has narrowed once more, and now only two middle school teams remain in the competition.

  7. Santa Monica High School From Santa Monica, Calif. Wins U.S. Department of Energy National Science Bowl®

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Santa Monica High School from Santa Monica, Calif. is the winner of the 2008 DOE National Science Bowl®.  Santa Monica High...

  8. Tucson and Colorado Springs Middle Schools Win Science Bowl Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Model Car Competitions - News Releases | NREL Tucson and Colorado Springs Middle Schools Win Science Bowl Hydrogen Fuel Cell Model Car Competitions National "Battle of the Brains" continues June 19 with academic face off June 18, 2004 Golden, Colo. - Doolen Middle School from Tucson, Ariz., captured top place in the model hydrogen fuel cell stock competition and Jenkins Middle School from Colorado Springs, Colo., captured top place in the open class model car competitions on

  9. The use of a solid-bowl centrifuge for ultrafine coal thickening

    SciTech Connect (OSTI)

    Pinkerton, A.P.; Klima, M.S.; Morrison, J.L.; Miller, B.G.

    2000-07-01

    Testing was carried out to investigate the use of a solid-bowl (decanter) centrifuge for thickening ultrafine coal-water slurries. This study was conducted for Electric Power Research Institute's (EPRI's) Upgraded Coal Interest Group (UCIG) to evaluate ultrafine dewatering technologies. The objective was to increase the solids concentration of an ultrafine coal discard stream to a level suitable for use as a coal-water slurry fuel, while maximizing overall solids recovery. The feed material was collected from the combined discharge (centrate) streams from several screen-bowl centrifuges, which are currently being used in a commercial coal cleaning facility to dewater froth flotation product. The centrate averages 5% solids by weight and contains nearly 60% material finer than 10 {micro}m. This study examined the effects of operating conditions on centrifuge performance, including centrifuge bowl and scroll speeds, and feed solids concentration. The effects of flocculation addition on centrifuge performance and slurry rheology were also examined. The results indicated that solids concentrations exceeding 55% were obtained in nearly all cases.

  10. Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

    SciTech Connect (OSTI)

    Hanson, Reed M; Curran, Scott; Wagner, Robert M; Reitz, Rolf; Kokjohn, Sage

    2012-01-01

    Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

  11. Status of Simonds Saw and Steel Co., Lockport, New York Bob Bowles

    Office of Legacy Management (LM)

    03 APR 2 t ?@'I ,NE-23 Status of Simonds Saw and Steel Co., Lockport, New York Bob Bowles Oak Ridge Operations Office ti' 1 JJ-~ b y, , ac F!F-23 wsr 4.lJ7lr.7 l!E 23 Attached are the files relating to the elimination of the Lockport site from FUSRAP, which should respond to EPA Region II requests. As I indicated, the site is contaminated (primarily surface contamination) but was eliminated from the program because the Department has no authority under the AEA to conduct any remedial action at

  12. U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE 2016 National Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OFFICE OF SCIENCE 2016 National Science Bowl ® Student Confidential Medical Information and Emergency Notification Form (Please fill out the entire 3-page form) To complete: Click on the space and type in the information requested. Once the form is complete: (1) click "File," then "Save As" and give it a name and save it on your computer; (2) print the completed form; (3) parent/guardian or student (if 18) must sign it in ink; (4) return this form to the coach.

  13. Reducing the moisture content of clean coals. Volume 2, High-G solid-bowl centrifuge: Final report

    SciTech Connect (OSTI)

    Kehoe, D.

    1992-12-01

    Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

  14. ARM - Measurement - Ice nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Ice nuclei Small particles around which ice particles form. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  15. Arctic ice islands

    SciTech Connect (OSTI)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  16. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, David F. (Idaho Falls, ID); Suciu, Dan F. (Idaho Falls, ID); Harris, Taryl L. (Idaho Falls, ID); Ingram, Jani C. (Idaho Falls, ID)

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  17. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  18. Dust Bowl migration as an analog for possible global warming-induced migration from Mexico

    SciTech Connect (OSTI)

    Turner, M.H.; Longstreth, J.D.; Johnson, A.K.; Rosenberg, N.J.

    1994-06-01

    As a result of increases in CO{sub 2} and other radiatively important trace gases, scientists have predicted increases in mean worldwide temperatures of 2--5 degrees C over the next 50 to 100 years. Such temperature increases may result in climate modifications that would in turn be associated with increases in drought and desertification and could even change the patterns of the monsoons and tropical rains, which are important to agriculture throughout the world. They predicted that the rise in sea level caused by melting and thermal expansion of glaciers and polar icecaps could flood large population centers, destroying habitation and displacing populations. This will result in approximately 50 million ``environmental refugees`` worldwide, triple the number of today. The expected shifts in precipitation are also likely to result in (1) increased runoff contaminated with pesticides, salts, garbage, sewage, and eroded soil, and (2) drought also leading to increased soil erosion and salinization, as well as depletion of limited water resources. The total impact of global warming on agriculture and human habitation could considerably slow the economic development of some nations and would particularly affect agricultural production. Loss of homes, the inability to raise food, an increased prevalence of disease and worsened economic conditions may drive people to leave their homelands, seeking entry into countries which have more resources and greater resistance to the economic consequences of climatic change. This report looks at the possible environmental impacts and economic impacts of the greenhouse effect on Mexico while using the American Dust Bowl event as an analog.

  19. Fire In The Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a quarterly publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in

  20. Global Simulations of Ice nucleation and Ice Supersaturation with an

    Office of Scientific and Technical Information (OSTI)

    Improved Cloud Scheme in the Community Atmosphere Model (Journal Article) | SciTech Connect Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model Citation Details In-Document Search Title: Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model A process-based treatment of ice supersaturation and ice-nucleation is implemented in the National Center for

  1. Community Ice Sheet Model (CISM2) Development and Marine Ice...

    Office of Scientific and Technical Information (OSTI)

    Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet Simulations Citation ... Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: ...

  2. Arctic Sea ice model sensitivities.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana Stefanova

    2010-12-01

    Arctic sea ice is an important component of the global climate system and, due to feedback effects, the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice state to internal model parameters. A new sea ice model that holds some promise for improving sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of this MPM sea ice code and compare it with the Los Alamos National Laboratory CICE code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness,and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  3. Icing rate meter estimation of in-cloud cable icing

    SciTech Connect (OSTI)

    McComber, P.; Druez, J.; Laflamme, J.

    1994-12-31

    In many northern countries, the design and reliability of power transmission lines are closely related to atmospheric icing overloads. It is becoming increasingly important to have reliable instrument systems to warn of icing conditions before icing loads become sufficient to damage the power transmission network. Various instruments are presently being developed to provide better monitoring of icing conditions. One such instrument is the icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe and can be used to estimate the icing rate on nearby cables. The calibration presently used was originally based on experiments conducted in a cold room. Even though this calibration has shown that the IRM estimation already offers an improvement over model prediction based on standard meteorological parameters, it can certainly be improved further with appropriate field data. For this purpose, the instrument was tested on an icing test site at Mt. Valin (altitude 902 m) Quebec, Canada. In this paper measurements from twelve in-cloud icing events during the 1991--92 winter are divided into one hour periods of icing to provide the experimental icing rate data. The icing rates measured on a 12.5 mm and a 35 mm cables are then compared with the number of IRM signals, also for one hour periods, in relation to initial ice load, temperature, wind velocity and direction. From this analysis, a better calibration for the IRM instrument is suggested. The improvement of the IRM estimation is illustrated by making a comparison with measurements, of the icing load estimation with the old and new calibrations for two complete icing events.

  4. ARM - Measurement - Ice water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water content The concentration (massvol) of ice water...

  5. ARM - Measurement - Ice water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water path A measure of the weight of the ice particles in...

  6. ARM - Measurement - Cloud ice particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle...

  7. ARM - TWP-ICE Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheet (pdf, 211K) Press Releases TWP-ICE Images ARM flickr site <"" li"" height"14" width"16"> TWP-ICE Maps map1 map2 Download TWP-ICEDarwin annotated maps (pdf, 246K)....

  8. Ice Storm Supercomputer

    ScienceCinema (OSTI)

    None

    2013-05-28

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  9. Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report...

    Office of Scientific and Technical Information (OSTI)

    Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report Citation Details In-Document Search Title: Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report The ...

  10. Winter Preparedness ? Slips on Ice

    Broader source: Energy.gov (indexed) [DOE]

    can further increase traction; however, they must be removed when ice is no longer present, because their use on floors, smooth concrete, or gravel, presents a different...

  11. Climate Impacts of Ice Nucleation

    SciTech Connect (OSTI)

    Gettelman, A.; Liu, Xiaohong; Barahona, Donifan; Lohmann, U.; Chen, Chih-Chieh

    2012-10-27

    Several different ice nucleation parameterizations in two different General Circulation Models are used to understand the effects of ice nucleation on the mean climate state, and the climate effect of aerosol perturbations to ice clouds. The simulations have different ice microphysical states that are consistent with the spread of observations. These different states occur from different parameterizations of the ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. At reasonable efficiencies, consistent with laboratory measurements and constrained by the global radiative balance, black carbon has a small (-0.06 Wm?2) and not statistically significant climate effect. Indirect effects of anthropogenic aerosols on cirrus clouds occur mostly due to increases in homogeneous nucleation fraction as a consequence of anthropogenic sulfur emissions. The resulting ice indirect effects do not seem strongly dependent on the ice micro-physical balance, but are slightly larger for those states with less homogeneous nucleation in the base state. The total ice AIE is estimated at 0.260.09 Wm?2 (1? uncertainty). This represents an offset of 20-30% of the simulated total Aerosol Indirect Effect for ice and liquid clouds.

  12. ARM - Lesson Plans: When Land Ice Melts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Arctic and Antarctica are covered with large, heavy sheets of ice. Other islands like New Zealand have ice masses in the form of glaciers on them. When land-based ice melts, ...

  13. Biogeochemistry in Sea Ice: CICE model developments

    SciTech Connect (OSTI)

    Jeffery, Nicole; Hunke, Elizabeth; Elliott, Scott; Turner, Adrian

    2012-06-18

    Polar primary production unfolds in a dynamic sea ice environment, and the interactions of sea ice with ocean support and mediate this production. In spring, for example, fresh melt water contributes to the shoaling of the mixed layer enhancing ice edge blooms. In contrast, sea ice formation in the fall reduces light penetration to the upper ocean slowing primary production in marine waters. Polar biogeochemical modeling studies typically consider these types of ice-ocean interactions. However, sea ice itself is a biogeochemically active medium, contributing a significant and, possibly, essential source of primary production to polar regions in early spring and fall. Here we present numerical simulations using the Los Alamos Sea Ice Model (CICE) with prognostic salinity and sea ice biogeochemistry. This study investigates the relationship between sea ice multiphase physics and sea ice productivity. Of particular emphasis are the processes of gravity drainage, melt water flushing, and snow loading. During sea ice formation, desalination by gravity drainage facilitates nutrient exchange between ocean and ice maintaining ice algal blooms in early spring. Melt water flushing releases ice algae and nutrients to underlying waters limiting ice production. Finally, snow loading, particularly in the Southern Ocean, forces sea ice below the ocean surface driving an upward flow of nutrient rich water into the ice to the benefit of interior and freeboard communities. Incorporating ice microphysics in CICE has given us an important tool for assessing the importance of these processes for polar algal production at global scales.

  14. Therapeutic Hypothermia: Protective Cooling Using Medical Ice...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry Technology available for licensing: Proprietary method and equipment for making an ice slurry coolant to induce...

  15. Light propagation in the South Pole ice

    SciTech Connect (OSTI)

    Williams, Dawn; Collaboration: IceCube Collaboration

    2014-11-18

    The IceCube Neutrino Observatory is located in the ice near the geographic South Pole. Particle showers from neutrino interactions in the ice produce light which is detected by IceCube modules, and the amount and pattern of deposited light are used to reconstruct the properties of the incident neutrino. Since light is scattered and absorbed by ice between the neutrino interaction vertex and the sensor, IceCube event reconstruction depends on understanding the propagation of light through the ice. This paper presents the current status of modeling light propagation in South Pole ice, including the recent observation of an azimuthal anisotropy in the scattering.

  16. Community Ice Sheet Model (CISM2) Development and Marine Ice...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: CESM Land Ice Working Group ; 2015-06-17 - 2015-06-17 ; Breckenridge, Colorado, United ...

  17. Method of forming calthrate ice

    DOE Patents [OSTI]

    Hino, T.; Gorski, A.J.

    1985-09-30

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultransonically so that small crystals are formed in the liquid. Thes small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  18. Method of forming clathrate ice

    DOE Patents [OSTI]

    Hino, Toshiyuki (Tokyo, JP); Gorski, Anthony J. (Lemont, IL)

    1987-01-01

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultrasonically so that small crystals are formed in the liquid. These small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  19. Highway De-icing Snowmelt Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    De-icing Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name Highway De-icing Snowmelt Low Temperature Geothermal Facility Facility Highway De-icing...

  20. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  1. Water freezing and ice melting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  2. The New ICE Age | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for the heavy truck market PDF icon deer12gruden.pdf More Documents & Publications The New ICE Age The New ICE Age Roadmapping Engine Technology for Post-2020 Heavy Duty ...

  3. Climate, Ocean and Sea Ice Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    role of ocean and ice in high-latitude climate change and projecting the impacts of ... COSIM researchers develop, test and apply ocean and ice models in support of DOE Climate ...

  4. Ice in Arctic Mixed-phase Stratocumulus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  5. Contractor SOW Template - ICE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ICE Contractor SOW Template - ICE The template presented below is a Statement of Work (SOW) for services of an ICE Support Contractor for assisting OECM in conducting an ICE. Project and review specific information should be incorporated. Explanatory text appears in italics, while information that should be selected appears in <<brackets>>. The format and contents of this SOW is not compulsory, and the use is at the discretion of the OECM Analysts, tailored as appropriate for the

  6. Climate, Ocean and Sea Ice Modeling (COSIM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences » Climate, Ocean and Sea Ice Modeling (COSIM) Climate, Ocean and Sea Ice Modeling (COSIM) The COSIM project develops advanced ocean and ice models for evaluating the role of ocean and ice in high-latitude climate change and projecting the impacts of high-latitude change on regions throughout the globe. Contact Us Phil Jones Fluid Dynamics and Solid Mechanics Email Wilbert Weijer Computational Physics and Methods Email Elizabeth Hunke Fluid Dynamics and Solid Mechanics

  7. Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report Citation Details In-Document Search Title: Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report The Norwegian Young Sea Ice (N-ICE) experiment was conducted aboard the R/V Lance research vessel from January through June 2015. The primary purpose of the experiment was to better understand thin, first-year sea ice. This includes understanding of how different components of the Arctic system

  8. Medical ice slurry production device

    DOE Patents [OSTI]

    Kasza, Kenneth E.; Oras, John; Son, HyunJin

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  9. Energy Cost Calculator for Commercial Ice Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ice Machines Energy Cost Calculator for Commercial Ice Machines Vary capacity size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Ice Cube Machine Ice Making Head Self-Contained Remote Condensing Unit Ice Making Head Type of Condenser Air Cooled Water Cooled Air Cooled Ice Harvest Rate (lbs. ice per 24 hrs.) lbs. per 24 hrs. 500 lbs. per 24 hrs. Energy

  10. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic

    Office of Scientific and Technical Information (OSTI)

    mixed-phase stratocumulus (Journal Article) | SciTech Connect The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus Citation Details In-Document Search Title: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus This study investigates the maintenance of cloud ice production in Arctic mixed phase stratocumulus in large-eddy simulations that include a prognostic ice nuclei (IN) formulation and a

  11. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic

    Office of Scientific and Technical Information (OSTI)

    mixed-phase stratocumulus (Journal Article) | SciTech Connect The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus Citation Details In-Document Search Title: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a

  12. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  13. Icing on wind-energy systems

    SciTech Connect (OSTI)

    Hoffer, T.; Reale, T.; Elfiqi, A.

    1981-01-01

    A source of icing data is the network of meteorological recording stations within the continental United States which collect meteorological measurements both at the surface and aloft. This report presents procedures for analyzing this data to determine the maximum possible icing to be expected at specified locations. Since the physical processes are different, the procedures for predicting maximum glaze ice and rime are presented in separate sections. Models developed to simulate the maximum possible ice buildup on an exposed surface using the rainfall and cloud water data as input are also presented. In addition to the maximal dynamic and static icing loads, comparative icing values based on an attempt to simulate actual field conditions are also shown. Included are assumptions of droplet splashing and water drainage for the glaze cases and atmospheric mixing during orographic lifting for rime cases.

  14. Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    ... This includes understanding how different components of the Arctic system affect sea ice (e.g., atmosphere, ocean), but also how changing sea ice affects the system (e.g., ecology, ...

  15. Marginal Ice Zone Observations and Processes Experiment

    Office of Scientific and Technical Information (OSTI)

    46 Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and Near the Marginal Ice Zone: The "Marginal Ice Zone Observations and Processes Experiment" (MIZOPEX) Final Campaign Summary JA Maslanik February 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any

  16. Automatic Commercial Ice Makers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automatic Commercial Ice Makers Automatic Commercial Ice Makers The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Automatic Commercial Ice Makers -- v2.0 More Documents

  17. Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet

    Office of Scientific and Technical Information (OSTI)

    Simulations (Conference) | SciTech Connect Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet Simulations Citation Details In-Document Search Title: Community Ice Sheet Model (CISM2) Development and Marine Ice Sheet Simulations Authors: Lipscomb, William [1] ; Leguy, Gunter [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-06-17 OSTI Identifier: 1186039 Report Number(s): LA-UR-15-24514 DOE Contract Number: AC52-06NA25396 Resource Type:

  18. Potassium chloride-bearing ice VII and ice planet dynamics (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect SciTech Connect Search Results Journal Article: Potassium chloride-bearing ice VII and ice planet dynamics Citation Details In-Document Search Title: Potassium chloride-bearing ice VII and ice planet dynamics Authors: Frank, Mark R. ; Scott, Henry P. ; Aarestad, Elizabeth ; Prakapenka, Vitali B. [1] ; UC) [2] ; NIU) [2] + Show Author Affiliations Indiana ( Publication Date: 2015-12-10 OSTI Identifier: 1229896 Resource Type: Journal Article Resource Relation:

  19. Sea ice - atmosphere interaction: Application of multispectral...

    Office of Scientific and Technical Information (OSTI)

    Application of multispectral satellite data in polar surface energy flux estimates. ... Title: Sea ice - atmosphere interaction: Application of multispectral satellite data in ...

  20. Southern Great Plains Ice Nuclei Characterization Experiment...

    Office of Scientific and Technical Information (OSTI)

    Characterization Experiment Final Campaign Summary Citation Details In-Document Search Title: Southern Great Plains Ice Nuclei Characterization Experiment Final Campaign ...

  1. Viscosity of interfacial water regulates ice nucleation

    SciTech Connect (OSTI)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; University of Chinese Academy of Sciences, Beijing 100049 ; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun Song, Yanlin

    2014-03-10

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and ?, in the context of classical nucleation theory. From the extracted J{sub 0} and ?, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  2. BISICLES Captures Details of Retreating Antarctic Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Satellite and ground observations show that the ice in this region is thinning and retreating significantly as shifting wind patterns and ocean currents allow warmer water to flow ...

  3. Comparison of 17 Ice Nucleation Measurement Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 Ice Nucleation Measurement Techniques for Immersion Freezing For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research...

  4. Turbine anti-icing system

    SciTech Connect (OSTI)

    Ball, B. D.

    1985-12-31

    Exhaust gas is recirculated from the exhaust stack of a gas fired turbine to the air inlet along a constantly-open path to prevent inlet freeze-up. When anti-icing is not needed the exhaust stack is fully opened, creating a partial vacuum in the exhaust stack. At the turbine inlet the recirculation line, is opened to atmosphere. The resultant pressure differential between the opposite ends of the recirculation line creates a driving force for positively purging the recirculation line of unwanted residual exhaust gases. This in turn eliminates a source of unwanted moisture which could otherwise condense, freeze and interfere with turbine operations.

  5. A direct evidence of vibrationally delocalized response at ice surface

    SciTech Connect (OSTI)

    Ishiyama, Tatsuya; Morita, Akihiro

    2014-11-14

    Surface-specific vibrational spectroscopic responses at isotope diluted ice and amorphous ice are investigated by molecular dynamics (MD) simulations combined with quantum mechanics/molecular mechanics calculations. The intense response specific to the ordinary crystal ice surface is predicted to be significantly suppressed in the isotopically diluted and amorphous ices, demonstrating the vibrational delocalization at the ordinary ice surface. The collective vibration at the ice surface is also analyzed with varying temperature by the MD simulation.

  6. Spongy icing in the marine environment

    SciTech Connect (OSTI)

    Lozowski, E.P.; Blackmore, R.Z.; Forest, T.W.; Shi, J.

    1996-12-01

    Newly formed marine ice accretions may include liquid brine amounts up to about 50% of the total accretion mass. Because they ignore this sponginess, traditional thermodynamic models of icing may significantly underestimate the total marine ice load. In an attempt to improve the capabilities of such models, the authors have undertaken experimental and theoretical research, directed at measuring and predicting the liquid fraction of ice accretions. The experimental work consisted of growing ice accretions on rotating cylinders in the Marine Icing Wind Tunnel at the University of Alberta, over a range of temperatures from {minus}2 C to {minus}25 C, and wind speeds from 19 to 30 m/s, at liquid water contents (3 to 9 g/m) typical of the marine spray environment. A calorimeter was used to measure the liquid fraction of the ice accretions. The experiments indicate that the liquid fraction is almost independent of the environmental conditions and ranges between about 32% and 47%. The authors have also developed a theoretical model of the morphology of the icing process which takes place under a falling supercooled liquid film. Comparisons between the model and experiments show that the model is able to predict accretion growth rate and sponginess with some degree of skill. However, there remain important aspects of the sponginess phenomenon which continue to elude them.

  7. Cable twisting due to atmospheric icing

    SciTech Connect (OSTI)

    McComber, P.; Druez, J.; Savadjiev, K.

    1995-12-31

    Samples of ice accretions collected on cables of overhead transmission lines have shown evidence of twisting of the cable during atmospheric icing. Previous work has attributed cable twisting to the torque created by the weight of an eccentric ice shape and by wind forces. However, testing of stranded cables and conductors has shown that such cables also twist when there is a change in tension in the cable span. This phenomenon is related to the interaction of the different strand layers under tension. When a cable is subjected to atmospheric icing, cable tension increases and this type of twisting should also be considered. In order to determine how the two types of twisting would compare on transmission lines, a numerical simulation was made using characteristics of a typical 35-mm stranded conductor. The twist angle was computed as a function of cable span, sag to span ratio and increasing ice loads. The simulation shows that for transmission lines, twisting due to varying tension will be significant. Since cable tension is influenced by wind speed and ambient temperature as well as ice load, this phenomenon, unless prevented, results in ice accretion more circular in shape and hence eventually in larger ice loads.

  8. Passive ice freezing-releasing heat pipe

    DOE Patents [OSTI]

    Gorski, Anthony J.; Schertz, William W.

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  9. Sandia Energy - Ice-Sheet Simulation Code Matures, Leveraging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and as the land ice component of coupled climate simulations in DOE's Earth System Model. The land ice component is responsible for simulating the evolution of the...

  10. Complex systems influence melting of Greenland ice sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things are more complicated...

  11. STATEMENT OF WORK (SOW) TEMPLATE FOR ICE SUPPORT CONTRACTOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ICE Scope: Perform a <ICE Contractor may mutually agree to add or delete particular sections, based ...

  12. ICR-ICE Standard Operating Procedures (Update Sept 2013) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures Contractor SOW Template - ICR Contractor SOW Template - ICE...

  13. Building a next-generation community ice sheet model: meeting...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Building a next-generation community ice sheet model: meeting summary Citation Details In-Document Search Title: Building a next-generation community ice sheet ...

  14. New climate model predicts likelihood of Greenland ice melt,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New climate model predicts likelihood of Greenland ice melt New climate model predicts likelihood of Greenland ice melt, sea level rise and dangerous temperatures A new computer ...

  15. Greenland Ice Sheet Modeling Update (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Greenland Ice Sheet Modeling Update Citation Details In-Document Search Title: Greenland Ice Sheet Modeling Update You are accessing a document from the Department of Energy's...

  16. Determination of Large-Scale Cloud Ice Water Concentration by...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Determination of Large-Scale Cloud Ice Water Concentration by Combining ... Title: Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface ...

  17. Optimal Initial Conditions for Coupling Ice Sheet Models to Earth...

    Office of Scientific and Technical Information (OSTI)

    for Coupling Ice Sheet Models to Earth System Models. Citation Details In-Document Search Title: Optimal Initial Conditions for Coupling Ice Sheet Models to Earth System Models. ...

  18. Department of Energy Land Ice Modeling Efforts (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Energy Land Ice Modeling Efforts Citation Details In-Document Search Title: Department of Energy Land Ice Modeling Efforts Authors: Price, Stephen F. Dr 1 + Show Author...

  19. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 m) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 m), known as the small mode. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 m wavelength relative to 11 m wavelength due to the process of wave resonance or photon tunneling more active at 12 m. This makes the 12/11 m absorption optical depth ratio (or equivalently the 12/11 m Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  20. Video monitoring of atmospheric icing

    SciTech Connect (OSTI)

    Wareing, J.B.; Chetwood, P.A.

    1995-12-31

    Over the past six years, EA Technology has been involved in the remote monitoring of test spans and samples of overhead transmission line conductors in the UK in areas chosen for their severe winter weather. The sites are unmanned and regularly suffer gales, blizzards and severe icing conditions. Test samples at the sites are monitored day and night using automate, computer and remotely controlled video and still cameras using both the visible and near infrared spectrum. Video and still picture data is stored on site for periodic collection. Meteorological and load force data is collected and also stored at these remote sites and is sent automatically by mobile phone link to a computer at the EA Technology center. All this data can also be monitored at any time at the center over 200 miles away.

  1. Wind turbine performance under icing conditions

    SciTech Connect (OSTI)

    Jasinski, W.J.; Noe, S.C.; Selig, M.S.; Bragg, M.B.

    1998-02-01

    The effects of rime ice on horizontal axis wind turbine performance were estimated. For typical supercooled fog conditions found in cold northern regions, four rime ice accretions on the S809 wind turbine airfoil were predicted using the NASA LEWICE code. The resulting airfoil/ice profile combinations were wind tunnel tested to obtain the lift, drag, and pitching moment characteristics over the Reynolds number range 1--2 {times} 10{sup 6}. These data were used in the PROPID wind turbine performance prediction code to predict the effects of rime ice on a 450-kW rated-power, 28.7-m diameter turbine operated under both stall-regulated and variable-speed/variable-pitch modes. Performance losses on the order of 20% were observed for the variable-speed/variable-pitch rotor. For the stall-regulated rotor, however, a relatively small rime ice profile yielded significantly larger performance losses. For a larger 0.08c-long rime ice protrusion, however, the rated peak power was exceeded by 16% because at high angles the rime ice shape acted like a leading edge flap, thereby increasing the airfoil C{sub l,max} and delaying stall.

  2. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity

    SciTech Connect (OSTI)

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.; Michaelides, Angelos

    2015-05-14

    Ice formation is one of the most common and important processes on earth and almost always occurs at the surface of a material. A basic understanding of how the physicochemical properties of a material’s surface affect its ability to form ice has remained elusive. Here, we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at a hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water exists for promoting ice nucleation.We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  3. The influence of ice nucleation mode and ice vapor growth on simulation of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arctic mixed-phase clouds The influence of ice nucleation mode and ice vapor growth on simulation of arctic mixed-phase clouds Avramov, Alexander The Pennsylvania State University Category: Modeling Mixed-phase arctic stratus clouds are the predominant cloud type in the Arctic . Perhaps one of the most intriguing of their features is that they tend to have liquid tops that precipitate ice. Despite the fact that this situation is colloidally unstable, these cloud systems are quite long lived

  4. A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2012-02-08

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.

  5. Smoothed particle hydrodynamics Non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface ?ows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is veri?ed by simulating Poiseuille ?ow, plane shear ?ow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian ?uid. In the present work, however, the ice is modeled as both viscous Newtonian ?uid and non-Newtonian ?uid, such that the e?ect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glens law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  6. De-icing: recovery of diffraction intensities in the presence of ice rings

    SciTech Connect (OSTI)

    Chapman, Michael S.; Somasundaram, Thayumanasamy

    2010-11-03

    Macromolecular structures are routinely determined at cryotemperatures using samples flash-cooled in the presence of cryoprotectants. However, sometimes the best diffraction is obtained under conditions where ice formation is not completely ablated, with the result that characteristic ice rings are superimposed on the macromolecular diffraction. In data processing, the reflections that are most affected by the ice rings are usually excluded. Here, an alternative approach of subtracting the ice diffraction is tested. High completeness can be retained with little adverse effect upon the quality of the integrated data. This offers an alternate strategy when high levels of cryoprotectant lead to loss of crystal quality.

  7. Communication: On the stability of ice 0, ice i, and I{sub h}

    SciTech Connect (OSTI)

    Quigley, D.; Alf, D.; Slater, B.

    2014-10-28

    Using ab initio methods, we examine the stability of ice 0, a recently proposed tetragonal form of ice implicated in the homogeneous freezing of water [J. Russo, F. Romano, and H. Tanaka, Nat. Mater. 13, 670 (2014)]. Vibrational frequencies are computed across the complete Brillouin Zone using Density Functional Theory (DFT), to confirm mechanical stability and quantify the free energy of ice 0 relative to ice I{sub h}. The robustness of this result is tested via dispersion corrected semi-local and hybrid DFT, and Quantum Monte-Carlo calculation of lattice energies. Results indicate that popular molecular models only slightly overestimate the stability of ice zero. In addition, we study all possible realisations of proton disorder within the ice zero unit cell, and identify the ground state as ferroelectric. Comparisons are made to other low density metastable forms of ice, suggesting that the ice i structure [C. J. Fennel and J. D. Gezelter, J. Chem. Theory Comput. 1, 662 (2005)] may be equally relevant to ice formation.

  8. Developing and Evaluating Ice Cloud Parameterizations by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by remote sensing is that the transfer functions which relate the observables (e. g., radar Doppler spectrum) to cloud properties (e. g., ice water content, or IWC) are not...

  9. Spreading of oil spilled under ice

    SciTech Connect (OSTI)

    Yapa, P.D.; Chowdhury, T. )

    1990-12-01

    A new set of equations is presented to describe the process of oil spreading under ice in clam waters. These equations consider the gravity (buoyancy)-inertia phase, the gravity (buoyancy)-viscous phase, and the termination of spreading during the buoyancy-surface-tension phase. The derivation considers both the constant discharge mode and the constant volume mode. Therefore, a complete description of the spreading phenomena from the time of initial spill to the termination of spreading is presented. Laboratory experiments were conducted using both real ice covers in a cold room and artificial ice covers. The experiments included different ice-cover roughnesses from smooth to rough, oils of different viscosities, and a variety of discharge conditions. The experimental data show close agreement with the theory. These equations can be used during cleanup or environmental impact assessment to estimate the area of an oil slick with respect to time.

  10. An analysis of selected atmospheric icing events on test cables

    SciTech Connect (OSTI)

    Druez, J.; McComber, P.; Laflamme, J.

    1996-12-01

    In cold countries, the design of transmission lines and communication networks requires the knowledge of ice loads on conductors. Atmospheric icing is a stochastic phenomenon and therefore probabilistic design is used more and more for structure icing analysis. For strength and reliability assessments, a data base on atmospheric icing is needed to characterize the distributions of ice load and corresponding meteorological parameters. A test site where icing is frequent is used to obtain field data on atmospheric icing. This test site is located on the Mt. Valin, near Chicoutimi, Quebec, Canada. The experimental installation is mainly composed of various instrumented but non-energized test cables, meteorological instruments, a data acquisition system, and a video recorder. Several types of icing events can produce large ice accretions dangerous for land-based structures. They are rime due to in-cloud icing, glaze caused by freezing rain, wet snow, and mixtures of these types of ice. These icing events have very different characteristics and must be distinguished, before statistical analysis, in a data base on atmospheric icing. This is done by comparison of data from a precipitation gauge, an icing rate meter and a temperature sensor. An analysis of selected icing periods recorded on the cables of two perpendicular test lines during the 1992--1993 winter season is presented. Only significant icing events have been considered. A comparative analysis of the ice load on the four test cables is drawn from the data, and typical accretion and shedding parameters are calculated separately for icing events related to in-cloud icing and precipitation icing.

  11. Icing modelling in NSMB with chimera overset grids

    SciTech Connect (OSTI)

    Pena, D.; Deloze, T.; Laurendeau, E.; Hoarau, Y.

    2015-03-10

    In aerospace Engineering, the accurate simulation of ice accretion is a key element to increase flight safety and avoid accidents related to icing effects. The icing code developed in the NSMB solver is based on an Eulerian formulation for droplets tracking, an iterative Messinger model using a modified water runback scheme for ice thickness calculation and mesh deformation to track the ice/air interface through time. The whole process is parallelized with MPI and applied with chimera grids.

  12. Investigations of Spatial and Temporal Variability of Ocean and Ice

    Office of Scientific and Technical Information (OSTI)

    Conditions in and Near the Marginal Ice Zone. The "Marginal Ice Zone Observations and Processes Experiment" (MIZOPEX) Final Campaign Summary (Technical Report) | SciTech Connect Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and Near the Marginal Ice Zone. The "Marginal Ice Zone Observations and Processes Experiment" (MIZOPEX) Final Campaign Summary Citation Details In-Document Search Title: Investigations of Spatial and Temporal

  13. Melting of ice wedges adds to arctic warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can we someday predict earthquakes? Melting of ice wedges adds to arctic warming New ways of looking at seismic information and innovative laboratory experiments are offering tantalizing clues to what triggers earthquakes-and when. March 14, 2016 Ice throughout the Arctic is vanishing due to a rapidly warming climate. Ice throughout the Arctic is vanishing due to a rapidly warming climate. Melting of ice wedges adds to arctic warming Ice wedges are a particularly cool surface feature in the

  14. Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in Minnesota Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail Share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Facebook Tweet about Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Twitter Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Google Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air

  15. Development of a Mobile Ice Nucleus Counter

    SciTech Connect (OSTI)

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70 deg C, and a single stage system can operate the warm wall at -45 deg C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  16. Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Science & Technology This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run

  17. 2010-2012 Hestec Bowl

    SciTech Connect (OSTI)

    Stacey De La Rosa Ortiz - University of Texas - Pan American, Grant Accountant

    2012-10-29

    This is the Financial Status Report for this project for the period from May 1, 2012 to September 30, 2012.

  18. Regional Science Bowl registration opens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    limit. The Bonneville Power Administration provides free programs, presentations and information to K-12 schools in the Pacific Northwest to help students achieve energy...

  19. Video: Tennessee Science Bowl 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video: Recovery Act by the Numbers Video: Recovery Act by the Numbers February 17, 2016 - 11:30am Addthis Watch this video to learn how the Recovery Act helped jumpstart America's clean energy economy. | Video by Simon Edelman and graphics by Carly Wilkins, Energy Department. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs Simon Edelman Simon Edelman Chief Creative Officer Carly Wilkins Carly Wilkins Multimedia Designer MORE ON THE RECOVERY ACT MAP: Learn about the

  20. Seeking solutions for icing at dams and hydro plants

    SciTech Connect (OSTI)

    Haynes, F.D. )

    1993-12-01

    Hydroelectric plant operators in the northern US and Canada often encounter icing problems that interfere with normal operations. Icing can cause problems in machinery, valves, and gates, and frazil ice can block water intakes. (Frazil ice is a slightly super-cooled, slush-type ice commonly formed on northern rivers in a rapids area or any area without an ice cover.) Icing problems, especially blockage of water intakes, can shut down a hydropower plant and cause a considerable loss of power generation. The US Army Corps of Engineers' Cold Regions Research and Engineering Laboratory (CRREL) surveyed hydro plant operators about icing problems experienced at their facilities and solutions to these problems. By sharing the survey results, CRREL researchers hope to spread solutions among operators and to identify those problems for which no solutions are currently known that require more research. CRREL researchers also are developing promising technology that may help to alleviate icing problems.

  1. De-icing: recovery of diffraction intensities in the presence of ice rings

    SciTech Connect (OSTI)

    Chapman, Michael S.; Somasundaram, Thayumanasamy

    2010-06-01

    Correction for ice-rings in diffraction images is demonstrated as an alternative to exclusion of affected reflections. Completeness can be increased without significant loss of quality in the integrated data. Macromolecular structures are routinely determined at cryotemperatures using samples flash-cooled in the presence of cryoprotectants. However, sometimes the best diffraction is obtained under conditions where ice formation is not completely ablated, with the result that characteristic ice rings are superimposed on the macromolecular diffraction. In data processing, the reflections that are most affected by the ice rings are usually excluded. Here, an alternative approach of subtracting the ice diffraction is tested. High completeness can be retained with little adverse effect upon the quality of the integrated data. This offers an alternate strategy when high levels of cryoprotectant lead to loss of crystal quality.

  2. The Role of Snow and Ice in the Climate System

    SciTech Connect (OSTI)

    Barry, Roger

    2007-12-19

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  3. The Role of Snow and Ice in the Climate System

    ScienceCinema (OSTI)

    Barry, Roger G.

    2009-09-01

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  4. Aircraft de-icing best management plans

    SciTech Connect (OSTI)

    Simpson, A.

    1997-12-31

    The purpose of this paper is to summarize the environmental impact of glycol-based de-icing fluids and the best management practices utilized at Canadian airports. The operational, safety and environmental effects of glycol are discussed as well as the management instruments available to address these areas of concern. In today`s highly mobile society, increasing air travel necessitates an awareness of flight safety by the aviation industry. This is most evident during the inclement winter season when de-icing operations are mandatory. De-icing fluids are both a safety and an environmental concern. Although glycol-based de-icers are applied to ensure flight safety, the release of this chemical has a detrimental effect on the environment.

  5. Land Ice Verification and Validation Kit

    Energy Science and Technology Software Center (OSTI)

    2015-07-15

    To address a pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice-sheet models is underway. The associated verification and validation process of these models is being coordinated through a new, robust, python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVV). This release provides robust and automated verification and a performance evaluation on LCF platforms. The performance V&Vmore » involves a comprehensive comparison of model performance relative to expected behavior on a given computing platform. LIVV operates on a set of benchmark and test data, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-4-bit evaluation, and plots of tests where differences occur.« less

  6. Land Ice Verification and Validation Kit

    SciTech Connect (OSTI)

    2015-07-15

    To address a pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice-sheet models is underway. The associated verification and validation process of these models is being coordinated through a new, robust, python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVV). This release provides robust and automated verification and a performance evaluation on LCF platforms. The performance V&V involves a comprehensive comparison of model performance relative to expected behavior on a given computing platform. LIVV operates on a set of benchmark and test data, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-4-bit evaluation, and plots of tests where differences occur.

  7. Equations of state of ice VI and ice VII at high pressure and high temperature

    SciTech Connect (OSTI)

    Bezacier, Lucile; Hanfland, Michael; Journaux, Baptiste; Perrillat, Jean-Philippe; Cardon, Herv; Daniel, Isabelle

    2014-09-14

    High-pressure H{sub 2}O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H{sub 2}O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V{sub 0} = 14.17(2) cm{sup 3}?mol{sup ?1}, K{sub 0} = 14.05(23) GPa, and ?{sub 0} = 14.6(14) 10{sup ?5} K{sup ?1} for ice VI and V{sub 0} = 12.49(1) cm{sup 3}?mol{sup ?1}, K{sub 0} = 20.15(16) GPa, and ?{sub 0} = 11.6(5) 10{sup ?5} K{sup ?1} for ice VII.

  8. Energy conservation in ice skating rinks

    SciTech Connect (OSTI)

    Dietrich, B.K.; McAvoy, T.J.

    1980-01-01

    An economic and energy analysis of ice rinks was made to examine the areas in which energy could be profitably conserved. The areas where new equipment could make a major reduction in energy use are: the use of waste heat for space heating, the installation of a low emissivity false ceiling to reduce radiant heat, the use of a load cycling controller to reduce refrigeration costs, and the installation of more efficient lighting systems. Changes in rink operating procedure that could cut energy use are: higher refrigerant temperatures, thinner ice, the use of colder resurfacing water, turning the compressors and pumps off at night, and reducing ventilation.

  9. Nanotextured Anti-Icing Surfaces | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrate Promising Anti-icing Nano Surfaces Click to email this to a friend (Opens in ... GE Scientists Demonstrate Promising Anti-icing Nano Surfaces GE Global Research today ...

  10. A Nano Surface Icephobic Coating Delays Ice Formation | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... at the water-substrate interface. icing-image-with-caption-300x193 I recently ... sensors, non-icing surfaces, nano-enabled media storage and optoelectronic devices. ...

  11. A TWP-ICE High-Level Cloud Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TWP-ICE High-Level Cloud Case Study Mace, Gerald University of Utah Category: Field Campaigns The Tropical Warm Pool International Cloud Experiment (TWP ICE) was conducted near...

  12. Ice Sheet Model Reveals Most Comprehensive Projections for West...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has been stage to dramatic thinning in recent years. The West Antarctic Ice Sheet (WAIS) is out of balance because it is losing significant amounts of ice to the ocean, with...

  13. Modeling the Effect of Ice Nuclei on ARM Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upper-Tropospheric Ice Water Content in TWP-ICE Xiping Zeng, Wei-Kuo Tao, Minghua Zhang, and Shaochen Xie March 31, 2009 Papers Published Recently * Zeng, X., W.-K. Tao, M. Zhang,...

  14. Covered Product Category: Water-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and federal efficiency requirements for water-cooled ice machines.

  15. Rapid Cooling Using Ice Slurries for Industrial and Medical Applications -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Rapid Cooling Using Ice Slurries for Industrial and Medical Applications Argonne National Laboratory Contact ANL About This Technology Schematic of distributed-load ice slurry building cooling system Schematic of distributed-load ice slurry building cooling system Endoscopic view of a swine kidney covered with ice slurry delivered

  16. ARM - What About Melting Polar Ice Caps and Sea Levels?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What About Melting Polar Ice Caps and Sea Levels? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What About Melting Polar Ice Caps and Sea Levels? As the northern polar zone warms up, sea ice could melt (very probable) and the sea/ice interface could retreat to the north. This is likely to

  17. Team advances understanding of the Greenland Ice Sheet's meltwater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    channels Greenland Ice Sheet's meltwater channels Team advances understanding of the Greenland Ice Sheet's meltwater channels An international research team's field work is showing that, well, things are more complicated than we thought. October 1, 2014 An international team of researchers deployed to western Greenland to study the melt rates of the Greenland Ice Sheet. An international team of researchers deployed to western Greenland to study the melt rates of the Greenland Ice Sheet.

  18. Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry Technology available for licensing: Proprietary method and equipment for making an ice slurry coolant to induce therapeutic hypothermia. Portable, automatic Advantageous for emergency care, cooling during surgeries, organ harvesting PDF icon ice_slurry

  19. Electric heat tracing designed to prevent icing

    SciTech Connect (OSTI)

    Lonsdale, J.T.; Norrby, T.

    1985-11-01

    Mobile offshore rigs designed for warmer climates are not capable of operating year-round in the arctic or near-arctic regions. Icing is but one major operational problem in these waters. The danger of instability due to ice loading exists on an oil rig as well as on a ship. From a safety standpoint, ice must be prevented from forming on the helideck, escape passages, escape doors and hatches and handrails. Norsk Hydro A/S, as one of the major operators in the harsh environment outside northern Norway, recognized at an early stage the need for special considerations for the drilling rigs intended for year-round drilling in these regions. In 1982 Norsk Hydro awarded a contract for an engineering study leading to the design of a harsh environment semisubmersible drilling rig. The basic requirement was to develop a unit for safe and efficient year-round drilling operation in the waters of northern Norway. The study was completed in 1983 and resulted in a comprehensive report including a building specification. The electric heat tracing system designed to prevent icing on the unit is described.

  20. The Next ICE Age | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    developments in diesel engines for light- and heavy-duty applications PDF icon deer12_ruth.pdf More Documents & Publications The Next ICE Age Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks SuperTruck Program: Engine Project Review

  1. Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Norwegian Young Sea Ice Experiment (N-ICE) Field Campaign Report VP Walden SR Hudson L Cohen , March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its

  2. Modeling the Fracture of Ice Sheets on Parallel Computers

    SciTech Connect (OSTI)

    Waisman, Haim; Tuminaro, Ray

    2013-10-10

    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  3. How to measure the wind accurately in icing conditions

    SciTech Connect (OSTI)

    Kenyon, P.R.; Blittersdorf, D.C.

    1995-12-31

    Atmospheric icing occurs frequently in the northwestern, Midwestern and northeastern United States from early October through April at locations with high average wind speeds. It has caused wind data recovery problems at sites as far south as Texas. Icing slows anemometers used to assess the wind resource. Data recovered from sites prone to icing will show lower average wind speeds than actual, undervaluing them. The assessment of a wind site must present the actual wind potential. Anemometers used at these sites must remain free of ice. This report presents a description of icing types and the data distortion they cause based on NRG field experience. A brief history of anti-icing anemometers available today for remote site and turbine site monitoring follows. Comparative data of NRG`s IceFree anemometers and the industry standard unheated anemometer is included.

  4. FactSheet-TWP_ICE.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) is a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteo- rology. Beginning January 19 and ending February 28, 2006, the experiment will be conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped with

  5. Flight Path 30L - ICE House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. The Invisible Neutron Threat LANSCE - A Key Facility for National Science and Defense Neutron-Induced Failures in Semiconductor Devices THE ICE HOUSE - Neutron Testing Leads to More-Reliable Electronics

  6. Flight Path 30R - ICE II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links The shape of the neutron spectrum here is very similar to that of neutrons produced in the atmosphere by cosmic rays but with a neutron flux a million times higher, depending on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. The Invisible Neutron Threat LANSCE - A Key Facility for National Science and Defense Neutron-Induced Failures in Semiconductor Devices THE ICE HOUSE - Neutron Testing Leads to More-Reliable Electronic

  7. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    2008-01-15

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  8. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  9. Resonant vibrational energy transfer in ice Ih

    SciTech Connect (OSTI)

    Shi, L.; Li, F.; Skinner, J. L.

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Frster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  10. IceVeto: Extended PeV neutrino astronomy in the Southern Hemisphere with IceCube

    SciTech Connect (OSTI)

    Auffenberg, Jan; Collaboration: IceCube Collaboration

    2014-11-18

    IceCube, the world's largest high-energy neutrino observatory, built at the South Pole, recently reported evidence of an astrophysical neutrino flux extending to PeV energies in the Southern Hemisphere. This observation raises the question of how the sensitivity in this energy range could be further increased. In the down-going sector, in IceCube's case the Southern Hemisphere, backgrounds from atmospheric muons and neutrinos pose a challenge to the identification of an astrophysical neutrino flux. The IceCube analysis, that led to the evidence for astrophysical neutrinos, is based on an in-ice veto strategy for background rejection. One possibility available to IceCube is the concept of an extended surface detector, IceVeto, which could allow the rejection of a large fraction of atmospheric backgrounds, primarily for muons from cosmic ray (CR) air showers as well as from neutrinos in the same air showers. Building on the experience of IceTop/IceCube, possibly the most cost-effective and sensitive way to build IceVeto is as an extension of the IceTop detector, with simple photomultiplier based detector modules for CR air shower detection. Initial simulations and estimates indicate that such a veto detector will significantly increase the sensitivity to an astrophysical flux of ?{sub ?} induced muon tracks in the Southern Hemisphere compared to current analyses. Here we present the motivation and capabilities based on initial simulations. Conceptual ideas for a simplified surface array will be discussed briefly.

  11. HYDROGEN-DEUTERIUM EXCHANGE IN PHOTOLYZED METHANE-WATER ICES

    SciTech Connect (OSTI)

    Weber, Amanda S.; Hodyss, Robert; Johnson, Paul V.; Willacy, Karen; Kanik, Isik

    2009-09-20

    Previous work has concluded that H-D exchange occurs readily in polycyclic aromatic hydrocarbons frozen in deuterated water (D{sub 2}O) irradiated with ultraviolet light. Here, we examine H-D exchange in methane-water ices following exposure to ultraviolet radiation and analyze the products formed as a result. We find that H-D exchange also occurs in methane-water ices by means of ultraviolet photolysis. Exchange proceeds through a radical mechanism that implies that almost all organic species will undergo significant H-D exchange with the matrix in water ices exposed to ultraviolet radiation. Given sufficient energetic processing of the ice, the H/D ratio of an ice matrix may be transferred to the organic species in the ice.

  12. Sandia's ice sheet modeling of Greenland, Antarctica helps predict

    National Nuclear Security Administration (NNSA)

    sea-level rise | National Nuclear Security Administration Sandia's ice sheet modeling of Greenland, Antarctica helps predict sea-level rise Wednesday, March 2, 2016 - 12:00am Sandia California researchers Irina Tezaur and Ray Tuminaro analyze a model of Antarctica. They are part of a Sandia team working to improve the reliability and efficiency of computational models that describe ice sheet behavior and dynamics. The Greenland and Antarctic ice sheets will make a dominant contribution to

  13. Ice Sheet Model Reveals Most Comprehensive Projections for West

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antarctica's Future Most Comprehensive Projections for West Antarctica's Future Revealed Ice Sheet Model Reveals Most Comprehensive Projections for West Antarctica's Future BISICLES Simulations Run at NERSC Help Estimate Ice Loss, Sea Level Rise August 18, 2015 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov IceSheet Retreat in the Amundsen Sea Embayment in 2154 (Credit: Cornford et al., The Cryosphere, 2015) A new international study is the first to use a high-resolution, large-scale

  14. Sea ice-atmospheric interaction: Application of multispectral satellite

    Office of Scientific and Technical Information (OSTI)

    data in polar surface energy flux estimates. Annual progress report (Technical Report) | SciTech Connect ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates. Annual progress report Citation Details In-Document Search Title: Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates. Annual progress report This is the third annual report on: Sea Ice-Atmosphere Interaction -

  15. ACAPEX - Ship-Based Ice Nuclei Collections Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: ACAPEX - Ship-Based Ice Nuclei Collections Field Campaign Report Citation Details In-Document Search Title: ACAPEX - Ship-Based Ice Nuclei Collections Field Campaign Report Measurements were sought to evaluate a hypotheses that sea-spray-sourced ice-nucleating particles (INPs) are of biological origin and represent a distinctly different INP population in comparison to long-range-transported desert or urban

  16. Nanotextured Anti-Icing Surfaces | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrate Promising Anti-icing Nano Surfaces Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Scientists Demonstrate Promising Anti-icing Nano Surfaces GE Global Research today presented new research findings on its nanotextured anti-icing surfaces. In addition to dramatically reducing ice adhesion, these surfaces

  17. Ice Nuclei in Marine Air: Biogenic Particles or Dust? (Journal...

    Office of Scientific and Technical Information (OSTI)

    We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated ...

  18. Rapid development of an ice sheet climate application using the...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Rapid development of an ice sheet climate ... Country of Publication: United States Language: English Word Cloud More Like This Full ...

  19. Covered Product Category: Water-Cooled Ice Machines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Category: Water-Cooled Ice Machines The Federal Energy Management Program (FEMP) provides acquisition guidance and federal efficiency requirements for water-cooled ...

  20. optimal initial conditions for coupling ice sheet models to earth...

    Office of Scientific and Technical Information (OSTI)

    optimal initial conditions for coupling ice sheet models to earth system models Perego, Mauro Sandia National Laboratories Sandia National Laboratories; Price, Stephen F. Dr...

  1. Single Particle Database of Natural Ice Crystals: Dimensions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Database of Natural Ice Crystals: Dimensions and Aspect Ratios For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights...

  2. A marine biogenic source of atmospheric ice-nucleating particles

    SciTech Connect (OSTI)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  3. STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization...

    Office of Scientific and Technical Information (OSTI)

    Title: STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign ... warm clouds, require precise separation techniques and accurate identification of phase. ...

  4. IceCube: A Cubic Kilometer Radiation Detector

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer R; Klein, S.R.

    2008-06-01

    IceCube is a 1 km{sup 3} neutrino detector now being built at the Amudsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate {nu}{sub {mu}}, {nu}{sub t}, and {nu}{sub {tau}} interactions because of their different topologies. IceCube construction is currently 50% complete.

  5. Reducing uncertainty in high-resolution sea ice models.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2013-07-01

    Arctic sea ice is an important component of the global climate system, reflecting a significant amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice have shown a significant decline in recent decades with implications for global climate as well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects make predictive mathematical modeling of sea ice a task of tremendous practical import. Satellite data obtained over the last few decades have provided a wealth of information on sea ice motion and deformation. The data clearly show that ice deformation is focused along narrow linear features and this type of deformation is not well-represented in existing models. To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the impact of material parameters on sea ice response functions. Two material strength parameters that exhibited the most significant impact on responses were further analyzed to evaluate their influence on quantitative comparisons between model output and data. The sensitivity analysis along with ten year model runs indicate that while the anisotropic rheology provides some benefit in velocity predictions, additional improvements are required to make this material model a viable alternative for global sea ice simulations.

  6. Meltwater effects on flow of Greenland's ice sheet less severe...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (University of Texas). Location: west coast of the Greenland Ice Sheet. Photo by Matt Hoffman, Los Alamos National Laboratory Contact Nancy Ambrosiano Communications Office (505)...

  7. An Ice Sheet Model Initialization Procedure for Smooth Coupling...

    Office of Scientific and Technical Information (OSTI)

    Procedure for Smooth Coupling with Climate Forcing. Citation Details In-Document Search Title: An Ice Sheet Model Initialization Procedure for Smooth Coupling with Climate Forcing. ...

  8. Purchasing Energy-Efficient Air-Cooled Ice Machines | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, a product category covered by ENERGY STAR efficiency requirements. Federal laws ...

  9. THE STICKINESS OF MICROMETER-SIZED WATER-ICE PARTICLES

    SciTech Connect (OSTI)

    Gundlach, B.; Blum, J.

    2015-01-01

    Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates), water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-sized region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of ?m-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between 114 K and 260 K. We show with our experiments that for low temperatures (below ?210 K), ?m-sized water-ice particles stick below a threshold velocity of 9.6 m s{sup 1}, which is approximately 10times higher than the sticking threshold of ?m-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above 15.3 m s{sup 1}. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

  10. The Rush to Exploit an Increasingly Ice-Free Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rush to Exploit an Increasingly Ice-Free Arctic - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ...

  11. Sea ice-atmospheric interaction: Application of multispectral...

    Office of Scientific and Technical Information (OSTI)

    Cooperative Inst. for Research in Environmental Sciences Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES; CLOUDS; REMOTE SENSING; ICE; ...

  12. Determining Cloud Ice Water Path from High-Frequency Microwave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining Cloud Ice Water Path from High-Frequency Microwave Measurements G. Liu ... A better understanding of cloud water content and its large-scale distribution ...

  13. City of Eagan …Civic Ice Arena Renovation

    Broader source: Energy.gov [DOE]

    Project objectives: Provide a reliable central ice making and heating system that meets the performance requirements of the owner. Reduce operation and maintenance costs.

  14. Covered Product Category: Air-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, which are covered by the ENERGY STAR program.

  15. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-09-25

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  16. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-04-21

    This study investigates the maintenance of cloud ice production in Arctic mixed phase stratocumulus in large-eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  17. Heat recovery anti-icing system

    SciTech Connect (OSTI)

    Cummins, J.R.

    1982-05-11

    A heat recovery anti-icing system is disclosed. The heat recovery system includes a blower which removes air from the air flow path of a combustion turbine power generating system and circulates the air through a heat exchanger located in the exhaust stack of the combustion turbine. The heated air circulating through the heat exchanger is returned to an inlet filter compartment in the air flow path so as to maintain the temperature of the air in the inlet filter compartment at an elevated level.

  18. The role of ice nuclei recycling in the maintenance of cloud...

    Office of Scientific and Technical Information (OSTI)

    The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus Citation Details In-Document Search Title: The role of ice nuclei recycling in ...

  19. Passive ice freezing-releasing heat pipe. [Patent application

    DOE Patents [OSTI]

    Gorski, A.J.; Schertz, W.W.

    1980-09-29

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  20. Third international workshop on ice storage for cooling applications

    SciTech Connect (OSTI)

    Gorski, A.J.

    1986-04-01

    The third international workshop on ice storage for cooling applications which was informal and interactive in nature, was open to persons interested in all ice-growing technologies and in ice storage, both seasonal and diurnal. Presentations were made on some 20 topics, ranging from freezers in Alaska to ice cooling of commercial jet aircraft. Workshop tours included visits to ice-storage systems at Commonwealth Edison's facilities in Bolingbrook and Des Plaines Valley, the A.C. Neilsen builing in Northbrook, and the new State of Illinois Center in Chicago. The first workshop in the present series considered the future of ice storage and predicted applications in the agricultural sector, desalinization, and commercial ice production. Progress has been rapid in the intervening two years, and an important topic at the third workshop was the possible use of ''warm ices'' (clathrate hydrates) for energy storage. This report consists primarily of abstracts of presentations made at the workshop. Persons wishing to obtain further information about particular papers should contact the speakers directly; speakers' addresses and telephone numbers are listed in this report.

  1. An update on land-ice modeling in the CESM (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    An update on land-ice modeling in the CESM Citation Details In-Document Search Title: An update on land-ice modeling in the CESM Mass loss from land ice, including the Greenland and Antarctic ice sheets as well as smaller glacier and ice caps, is making a large and growing contribution to global sea-level rise. Land ice is only beginning to be incorporated in climate models. The goal of the Land Ice Working Group (LIWG) is to develop improved land-ice models and incorporate them in CESM, in

  2. FELIX: The Albany Ice Sheet Modeling Code. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    FELIX: The Albany Ice Sheet Modeling Code. Citation Details In-Document Search Title: FELIX: The Albany Ice Sheet Modeling Code. Abstract not provided. Authors: Kalashnikova, Irina ...

  3. Determination of Ice Water Path Over the ARM SGP Using Combined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of Ice Water Path Over the ARM SGP Using Combined Surface and Satellite ... Global information of cloud ice water path (IWP) is urgently needed for testing ...

  4. Calculational method for determination of carburetor icing rate

    SciTech Connect (OSTI)

    Nazarov, V.I.; Emel'yanov, V.E.; Gonopol'ska, A.F.; Zaslavskii, A.A.

    1986-05-01

    This paper investigates the dependence of the carburetor icing rate on the density, distillation curve, and vapor pressure of gasoline. More than 100 gasoline samples, covering a range of volatility, were investigated. No clear-cut relationship can be observed between the carburetor icing rate and any specific property index of the gasoline. At the same time, there are certain variables that cannot be observed directly but can be interpreted readily through which the influence of gasoline quality on the carburetor icing rate can be explained. The conversion to these variables was accomplished with regard for the values of the variance and correlation of the carburetor icing rate. Equations are presented that may be used to predict the carburetor icing rate when using gasolines differing in quality. The equations can also determine the need for incorporating antiicing additives in the gasoline.

  5. Methods and apparatus for rotor blade ice detection

    DOE Patents [OSTI]

    LeMieux, David Lawrence

    2006-08-08

    A method for detecting ice on a wind turbine having a rotor and one or more rotor blades each having blade roots includes monitoring meteorological conditions relating to icing conditions and monitoring one or more physical characteristics of the wind turbine in operation that vary in accordance with at least one of the mass of the one or more rotor blades or a mass imbalance between the rotor blades. The method also includes using the one or more monitored physical characteristics to determine whether a blade mass anomaly exists, determining whether the monitored meteorological conditions are consistent with blade icing; and signaling an icing-related blade mass anomaly when a blade mass anomaly is determined to exist and the monitored meteorological conditions are determined to be consistent with icing.

  6. THE PHASES OF WATER ICE IN THE SOLAR NEBULA

    SciTech Connect (OSTI)

    Ciesla, Fred J.

    2014-03-20

    Understanding the phases of water ice that were present in the solar nebula has implications for understanding cometary and planetary compositions as well as the internal evolution of these bodies. Here we show that amorphous ice formed more readily than previously recognized, with formation at temperatures <70K being possible under protoplanetary disk conditions. We further argue that photodesorption and freeze-out of water molecules near the surface layers of the solar nebula would have provided the conditions needed for amorphous ice to form. This processing would be a natural consequence of ice dynamics and would allow for the trapping of noble gases and other volatiles in water ice in the outer solar nebula.

  7. Field demonstration of the ICE 250{trademark} Cleaning System

    SciTech Connect (OSTI)

    Johnston, J.L.; Jackson, L.M.

    1999-10-05

    The ICE 250{trademark} Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moisture was generated, thereby reducing cleanup and disposal costs.

  8. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  9. Development and Applications of the Community Ice Sheet Model (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect and Applications of the Community Ice Sheet Model Citation Details In-Document Search Title: Development and Applications of the Community Ice Sheet Model The initial goals of the project are: (1) create a model for land ice that includes relevant and necessary dynamics, physical processes, and couplings; and (2) apply that model to say something more substantial about SLR in Lme for IPCC AR5 (AR6?). Authors: Hoffman, Matthew J. [1] ; Lipscomb, William H. [1] ; Price,

  10. Really Cool Models of Ice Nucleation | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Really Cool Models of Ice Nucleation Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Really Cool Models of Ice Nucleation Rick Arthur 2013.08.20 I'm excited to highlight some progress GE Research has made in modeling the formation of ice from water droplets in contact with cold surfaces. For several years, a

  11. Searching for Cosmic Accelerators via IceCube

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Searching for Cosmic Accelerators via IceCube Searching for Cosmic Accelerators via IceCube Berkeley Lab Researchers Part of an International Hunt November 21, 2013 Lynn Yarris, lcyarris@lbl.gov, 510.486.5375 Bert.jpg This event display shows "Bert," one of two neutrino events discovered at IceCube whose energies exceeded one petaelectronvolt (PeV). The colors show when the light arrived, with reds being the earliest, succeeded by yellows, greens and blues. The size of the circle

  12. Development, sensitivity analysis, and uncertainty quantification of high-fidelity arctic sea ice models.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana S.

    2010-09-01

    Arctic sea ice is an important component of the global climate system and due to feedback effects the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice to model physical parameters. A new sea ice model that has the potential to improve sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of the Los Alamos National Laboratory CICE code and the MPM sea ice code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness, and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  13. THE STRUCTURE OF SURFACE H{sub 2}O LAYERS OF ICE-COVERED PLANETS WITH HIGH-PRESSURE ICE

    SciTech Connect (OSTI)

    Ueta, S.; Sasaki, T. E-mail: takanori@geo.titech.ac.jp

    2013-10-01

    Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ?} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

  14. Microphysical Consequences of the Spatial Distribution of Ice Nucleation in Mixed-Phase Stratiform Clouds

    SciTech Connect (OSTI)

    Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2014-07-28

    Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation, leads to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. [2013]. The sensitivity of the wi-ni relationship to the spatial distribution of ice nucleation is confirmed by Lagrangian tracking and ice growth with cloud-volume, cloud-top, and cloud-base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from ISDAC, a lower bound of 0.006 m^3/s is obtained for the ice crystal formation rate.

  15. Minimalist Model of Ice Microphysics in Mixed-phase Stratiform Clouds

    SciTech Connect (OSTI)

    Yang, F.; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2013-07-28

    The question of whether persistent ice crystal precipitation from super cooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model, and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power law relationship with ice number concentration ni. wi and ni from a LES cloud model with stochastic ice nucleation also confirm the 2.5 power law relationship. The prefactor of the power law is proportional to the ice nucleation rate, and therefore provides a quantitative link to observations of ice microphysical properties.

  16. Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations

    SciTech Connect (OSTI)

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

    2014-10-01

    Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

  17. Operating Experience Level 3, Winter Preparedness: Slips on Ice

    Broader source: Energy.gov [DOE]

    OE-3 2015-06: This Operating Experience Level 3 (OE-3) document provides information about the hazards of slips, trips, and falls on ice across the Department of Energy (DOE) Complex.

  18. Radiokrypton Dating Identifies Ancient Antarctic Ice | U.S. DOE...

    Office of Science (SC) Website

    count the number of radioactive krypton-81 atoms remaining in ice using a laser trap. ... is demonstrated by counting the radioactive krypton-81 atoms with a laser-based atom trap. ...

  19. The TWP-ICE CRM Intercomparison Specification and First Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWP-ICE CRM Intercomparison Specification and First Results Ann Fridlind (ann.fridlind@nasa.gov), Andrew Ackerman (andrew.ackerman@nasa.gov), Adrian Hill (adrian.hill@metoffice.gov...

  20. Ice Particle Projected Area- and Mass-dimension Expressions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m-D and A-D expressions in BMPs is described in this paper. Figure 1. The m-D expression (black curve) for synoptic ice clouds between -20C and -40C based on SCPP m-D...

  1. Magnetic charge crystals imaged in artificial spin ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image of emergent domains of ordered magnetic charges in honeycomb artificial spin ice. The black and white dots in the image are the north and south magnetic poles of the...

  2. Arctic sea ice modeling with the material-point method.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2010-04-01

    Arctic sea ice plays an important role in global climate by reflecting solar radiation and insulating the ocean from the atmosphere. Due to feedback effects, the Arctic sea ice cover is changing rapidly. To accurately model this change, high-resolution calculations must incorporate: (1) annual cycle of growth and melt due to radiative forcing; (2) mechanical deformation due to surface winds, ocean currents and Coriolis forces; and (3) localized effects of leads and ridges. We have demonstrated a new mathematical algorithm for solving the sea ice governing equations using the material-point method with an elastic-decohesive constitutive model. An initial comparison with the LANL CICE code indicates that the ice edge is sharper using Materials-Point Method (MPM), but that many of the overall features are similar.

  3. A New Approach for Representing Ice Particles in Weather

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mass mixing ratio, qi, c) cloud water mass mixing ratio, qc, d) rain mass mixing ratio, qr, e) rime mass fraction, Fr, f) mass-weighted mean ice particle density, p, g)...

  4. Magnetization plateaus of dipolar spin ice on kagome lattice

    SciTech Connect (OSTI)

    Xie, Y. L.; Wang, Y. L.; Yan, Z. B.; Liu, J.-M.

    2014-05-07

    Unlike spin ice on pyrochlore lattice, the spin ice structure on kagome lattice retains net magnetic charge, indicating non-negligible dipolar interaction in modulating the spin ice states. While it is predicted that the dipolar spin ice on kagome lattice exhibits a ground state with magnetic charge order and ?3???3 spin order, our work focuses on the magnetization plateau of this system. By employing the Wang-Landau algorithm, it is revealed that the lattice exhibits the fantastic three-step magnetization in response to magnetic field h along the [10] and [01] directions, respectively. For the h//[1 0] case, an additional ?3/6M{sub s} step, where M{sub s} is the saturated magnetization, is observed in a specific temperature range, corresponding to a new state with charge order and short-range spin order.

  5. Oil spreading in surface waters with an ice cover

    SciTech Connect (OSTI)

    Yapa, P.D.; Weerasuriya, S.A.; Belaskas, D.P.; Chowdhury, T.

    1993-02-01

    A study of oil spreading in surface waters in the presence of a floating ice cover is presented. The ice can be solid or fragmented. Both axi-symmetrical and uni-directional spreading are studied. The report describes the analytical and numerical model development, the experimental set-up, results from the laboratory experiments, and their comparison with the derived theory and the numerical simulation. To analyze the spreading of oil under solid ice, new equations are derived. These equations consider gravity (buoyancy) - inertia phase, gravity (buoyancy) - viscous phase, and the termination of spreading during the buoyancy - surface tension phase. The derivation considers both the constant discharge mode and the constant volume mode. Therefore, a complete description of the spreading phenomena from the time of initial spill to termination of spreading is presented. The emphasis of the study is on the dominant spreading mechanism for oil under ice, which is the buoyancy-viscous phase.

  6. Greenland Ice Sheet Modeling Update (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Greenland Ice Sheet Modeling Update Citation Details In-Document Search Title: Greenland Ice Sheet Modeling Update Authors: Lipscomb, William H. [1] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory Publication Date: 2014-06-05 OSTI Identifier: 1133752 Report Number(s): LA-UR-14-24034 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Regional Arctic System Model workshop ; 2014-06-04 - 2014-06-06 ; Monterey,

  7. Ice Nucleation of Fungal Spores from the Classes Agaricomycetes,

    Office of Scientific and Technical Information (OSTI)

    Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of these Spores (Journal Article) | SciTech Connect Ice Nucleation of Fungal Spores from the Classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of these Spores Citation Details In-Document Search Title: Ice Nucleation of Fungal Spores from the Classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of

  8. Adjoint-based Deterministic Inversion for Ice Sheets. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Adjoint-based Deterministic Inversion for Ice Sheets. Citation Details In-Document Search Title: Adjoint-based Deterministic Inversion for Ice Sheets. Abstract not provided. Authors: Perego, Mauro ; Salinger, Andrew G. ; Phipps, Eric Todd ; Ridzal, Denis ; Kouri, Drew Philip ; Kalashnikova, Irina ; S. Price ; G. Stadler Publication Date: 2014-11-01 OSTI Identifier: 1242148 Report Number(s): SAND2014-19449PE 540987 DOE Contract Number: AC04-94AL85000 Resource Type: Conference

  9. An Ice Sheet Model Initialization Procedure for Smooth Coupling with

    Office of Scientific and Technical Information (OSTI)

    Climate Forcing. (Conference) | SciTech Connect An Ice Sheet Model Initialization Procedure for Smooth Coupling with Climate Forcing. Citation Details In-Document Search Title: An Ice Sheet Model Initialization Procedure for Smooth Coupling with Climate Forcing. Abstract not provided. Authors: Perego, Mauro ; Price, Stephen [1] ; Stadler, Georg [2] ; Kalashnikova, Irina ; Salinger, Andrew G. + Show Author Affiliations (LANL) (Curant Institute) Publication Date: 2015-01-01 OSTI Identifier:

  10. Real and effective thermal equilibrium in artificial square spin ices

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Real and effective thermal equilibrium in artificial square spin ices Citation Details In-Document Search Title: Real and effective thermal equilibrium in artificial square spin ices Authors: Morgan, Jason P. ; Akerman, Johanna ; Stein, Aaron ; Phatak, Charudatta ; Evans, R. M. L. ; Langridge, Sean ; Marrows, Christopher H. Publication Date: 2013-01-09 OSTI Identifier: 1101866 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional

  11. STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field

    Office of Scientific and Technical Information (OSTI)

    Campaign Report (Technical Report) | SciTech Connect STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report Citation Details In-Document Search Title: STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report The relationship between aerosol particles and the formation of clouds is among the most uncertain aspects in our current understanding of climate change. Warm clouds have been the most extensively studied, in large part

  12. Sea ice - atmosphere interaction: Application of multispectral satellite

    Office of Scientific and Technical Information (OSTI)

    data in polar surface energy flux estimates. Semiannual Progress Report (Technical Report) | SciTech Connect ice - atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates. Semiannual Progress Report Citation Details In-Document Search Title: Sea ice - atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates. Semiannual Progress Report In the past six months, work has continued on energy flux

  13. Complex systems influence melting of Greenland ice sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex systems influence melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things are more complicated than we thought December 22, 2014 The newly discovered rolling movement shown in (A) three-dimensional cryo-electron microscopy image of ribosome, and (B) computer-generated atomic-resolution model of the human ribosome consistent with microscopy. An international team of researchers deployed to

  14. IceCube: An Instrument for Neutrino Astronomy

    SciTech Connect (OSTI)

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  15. De-icing thermostat for air conditioners

    SciTech Connect (OSTI)

    Levine, M.R.

    1986-12-09

    This patent describes an electronic thermostat adapted to be connected to an air-cooling apparatus to control the operative state of the apparatus. The thermostat includes a means for generating a digital electrical signal representative of a desired temperature setpoint and means for generating a digital electrical signal representative of the ambient temperature at the thermostat. The improvement described here comprises: means for generating control signals for the aircooling apparatus in order to inhibit the accumulation of ice on the cooling element of the air-cooling apparatus when the ambient temperature is above the temperature setpoint; means, responsive to the control signals, for deenergizing the compressor in the air-cooling apparatus for a first preselected period of time whenever the compressor is determined to have run continuously for a second preselected period of time; and means for adaptively adjusting the length of at least one of the first or second preselected periods of time as a function of the change in the rate of change of the ambient temperature.

  16. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. In conclusion, Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  17. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sullivan, S. C.; Morales Betancourt, R.; Barahona, D.; Nenes, A.

    2015-08-11

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the Barahona and Nenes cirrus formation parameterization to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically-derived spectrum,morea lab-based empirical spectrum, and two field-based empirical spectra that differ in the nucleation threshold for black carbon aerosol and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never unraveled as done here.less

  18. OBSERVATIONAL CONSTRAINTS ON METHANOL PRODUCTION IN INTERSTELLAR AND PREPLANETARY ICES

    SciTech Connect (OSTI)

    Whittet, D. C. B.; Cook, A. M.; Herbst, Eric; Chiar, J. E.; Shenoy, S. S.

    2011-11-20

    Methanol (CH{sub 3}OH) is thought to be an important link in the chain of chemical evolution that leads from simple diatomic interstellar molecules to complex organic species in protoplanetary disks that may be delivered to the surfaces of Earthlike planets. Previous research has shown that CH{sub 3}OH forms in the interstellar medium predominantly on the surfaces of dust grains. To enhance our understanding of the conditions that lead to its efficient production, we assemble a homogenized catalog of published detections and limiting values in interstellar and preplanetary ices for both CH{sub 3}OH and the other commonly observed C- and O-bearing species, H{sub 2}O, CO, and CO{sub 2}. We use this catalog to investigate the abundance of ice-phase CH{sub 3}OH in environments ranging from dense molecular clouds to circumstellar envelopes around newly born stars of low and high mass. Results show that CH{sub 3}OH production arises during the CO freezeout phase of ice-mantle growth in the clouds, after an ice layer rich in H{sub 2}O and CO{sub 2} is already in place on the dust, in agreement with current astrochemical models. The abundance of solid-phase CH{sub 3}OH in this environment is sufficient to account for observed gas-phase abundances when the ices are subsequently desorbed in the vicinity of embedded stars. CH{sub 3}OH concentrations in the ices toward embedded stars show order-of-magnitude object-to-object variations, even in a sample restricted to stars of low mass associated with ices lacking evidence of thermal processing. We hypothesize that the efficiency of CH{sub 3}OH production in dense cores and protostellar envelopes is mediated by the degree of prior CO depletion.

  19. Empty Bowl Project needs volunteers and attendees

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email Community Programs Office Kurt Steinhaus Email In addition to food and fun, music by the Craig Martin Experience and other musicians, as well as a silent auction, are...

  20. Science Bowl Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Science Against Stress: Research Shows Way to Some Cellular Relief Science Against Stress: Research Shows Way to Some Cellular Relief December 30, 2011 - 10:14am Addthis Researchers at Brookhaven National Lab (BNL) are studying how radiation affects DNA, specifically a tumor-suppressor protein called p53, which deploys cell repair efforts. | Photo courtesy of National Institute of Health. Researchers at Brookhaven National Lab (BNL) are studying how radiation affects

  1. NERSC Staff Participate in Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For more information: http:science.energy.govwdtsnsb About NERSC and Berkeley Lab The National Energy Research Scientific Computing Center (NERSC) is the primary ...

  2. High School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Iowa's top science and math students to face-off in an intense question and answer format where contestants are quizzed on their knowledge of math and a range of science ...

  3. 2013 Science Bowl | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciTech Connect Program Document: 2013 Progress Report -- DOE Joint Genome Institute Citation Details In-Document Search Title: 2013 Progress Report -- DOE Joint Genome Institute In October 2012, we introduced a 10-Year Strategic Vision [http://bit.ly/JGI-Vision] for the Institute. A central focus of this Strategic Vision is to bridge the gap between sequenced genomes and an understanding of biological functions at the organism and ecosystem level. This involves the continued massive-scale

  4. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect (OSTI)

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Krcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24106 m-2) is obviously less than that from the LP (8.46106 m-2) and BN (5.62106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2) and BN (0.39 W m-2) parameterizations.

  5. The sticking of atomic hydrogen on amorphous water ice

    SciTech Connect (OSTI)

    Veeraghattam, Vijay K.; Manrodt, Katie; Lewis, Steven P.; Stancil, P. C. E-mail: lewis@physast.uga.edu

    2014-07-20

    Using classical molecular dynamics, we have simulated the sticking and scattering process of a hydrogen atom on an amorphous ice film to predict the sticking probability of hydrogen on ice surfaces. A wide range of initial kinetic energies of the incident hydrogen atom (10 K-600 K) and two different ice temperatures (10 K and 70 K) were used to investigate this fundamental process in interstellar chemistry. We report here the sticking probability of atomic hydrogen as a function of incident kinetic energy, gas temperature, and substrate temperature, which can be used in astrophysical models. The current results are compared to previous theoretical and experimental studies that have reported a wide range in the sticking coefficient.

  6. Ice plug employed on subsea pipeline bend during repair

    SciTech Connect (OSTI)

    1997-12-22

    The first controlled-temperature ice plug in the bend of an offshore gas trunkline has been carried out for Phillips Petroleum Co. Norway on its Norpipe A.S. platform in the German sector of the North Sea. The procedure was part of a subsea valve repair operation. The ice plug was successfully formed offshore and tested to a differential pressure of 1,450 psi. Repair of two valves required only 5 days during which time gas production was operating at close to 50--60% via the platform bypass, says the service company. The paper discusses the procedure.

  7. Progress on a TWP-ICE Monsoon Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outline Introduction 25-mb large-scale forcing 10-mb large-scale forcing Tracers Future work Progress on a TWP-ICE Monsoon Case Study Ann Fridlind and Andrew Ackerman * NASA GISS thanks to Jon Petch * ECMWF Shaocheng Xie * LLNL TWP-ICE and ACTIVE Science Teams DOE ARM Program and Data Archive NASA Radiation Sciences Program NASA Advanced Supercomputing Division 18th Annual ARM Science Team Meeting 10 March 2008 Outline Introduction 25-mb large-scale forcing 10-mb large-scale forcing Tracers

  8. Statement of Work (SOW) Template (Combined EIR/ICE Support Contractor)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The template presented below is a Statement of Work (SOW) for services of an EIR/ICE Support Contractor for assisting OECM in conducting a combined EIR/ICE at CD-2.

  9. Time-resolved x-ray diffraction across water-ices VI/VII transformatio...

    Office of Scientific and Technical Information (OSTI)

    diffraction across water-ices VIVII transformations using dynamic-DAC Citation Details In-Document Search Title: Time-resolved x-ray diffraction across water-ices VIVII ...

  10. An update on land-ice modeling in the CESM (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    approximation; and there is no ice-ocean coupling. During the next year we plan to implement two-way coupling (including ice-ocean coupling with a dynamic Antarcticmore ...

  11. Predicting Land-Ice Retreat and Sea-Level Rise with the Community...

    Office of Scientific and Technical Information (OSTI)

    linked to changes in Southern Ocean wind stress. To assess the likelihood of fast retreat of marine ice sheets, we need coupled ice-sheetocean models that do not yet exist (but ...

  12. Development of a land ice core for the Model for Prediction Across...

    Office of Scientific and Technical Information (OSTI)

    Conference: Development of a land ice core for the Model for Prediction Across Scales (MPAS) Citation Details In-Document Search Title: Development of a land ice core for the Model ...

  13. Predicting Land-Ice Retreat and Sea-Level Rise with the Community...

    Office of Scientific and Technical Information (OSTI)

    from the marine-based West Antarctic Ice Sheet, linked to changes in Southern Ocean wind stress. To assess the likelihood of fast retreat of marine ice sheets, we need coupled...

  14. Ice at the Interface: Atmosphere-Ice-Ocean Boundary Layer Processes and Their Role in Polar Change---Workshop Report

    SciTech Connect (OSTI)

    Hunke, Elizabeth C.

    2012-07-23

    The atmosphere-ocean boundary layer in which sea ice resides includes many complex processes that require a more realistic treatment in GCMs, particularly as models move toward full earth system descriptions. The primary purpose of the workshop was to define and discuss such coupled processes from observational and modeling points of view, including insight from both the Arctic and Antarctic systems. The workshop met each of its overarching goals, including fostering collaboration among experimentalists, theorists and modelers, proposing modeling strategies, and ascertaining data availability and needs. Several scientific themes emerged from the workshop, such as the importance of episodic or extreme events, precipitation, stratification above and below the ice, and the marginal ice zone, whose seasonal Arctic migrations now traverse more territory than in the past.

  15. Ice formation on nitric acid coated dust particles: Laboratory and modeling studies

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun; Nandasiri, Manjula I.; Shutthanandan, V.; Liu, Xiaohong; Fast, Jerome D.; Berg, Larry K.

    2015-08-16

    Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperature and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.

  16. Characterization of Superhydrophobic Surfaces for Anti-icing in a Low-Temperature Wind Tunnel

    SciTech Connect (OSTI)

    Swarctz, Christopher; Alijallis, Elias; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2010-01-01

    In this study, a closed loop low-temperature wind tunnel was custom-built and uniquely used to investigate the anti-icing mechanism of superhydrophobic surfaces in regulated flow velocities, temperatures, humidity, and water moisture particle sizes. Silica nanoparticle-based hydrophobic coatings were tested as superhydrophobic surface models. During tests, images of ice formation were captured by a camera and used for analysis of ice morphology. Prior to and after wind tunnel testing, apparent contact angles of water sessile droplets on samples were measured by a contact angle meter to check degradation of surface superhydrophobicity. A simple peel test was also performed to estimate adhesion of ice on the surfaces. When compared to an untreated sample, superhydrophobic surfaces inhibited initial ice formation. After a period of time, random droplet strikes attached to the superhydrophobic surfaces and started to coalesce with previously deposited ice droplets. These sites appear as mounds of accreted ice across the surface. The appearance of the ice formations on the superhydrophobic samples is white rather than transparent, and is due to trapped air. These ice formations resemble soft rime ice rather than the transparent glaze ice seen on the untreated sample. Compared to untreated surfaces, the icing film formed on superhydrophobic surfaces was easy to peel off by shear flows.

  17. Purchasing Energy-Efficient Air-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  18. Ice method for production of hydrogen clathrate hydrates

    DOE Patents [OSTI]

    Lokshin, Konstantin; Zhao, Yusheng

    2008-05-13

    The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.

  19. Calibration and Characterization of the IceCube Photomultiplier Tube

    SciTech Connect (OSTI)

    IceCube Collaboration; Abbasi, R.; al., et

    2010-02-11

    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.

  20. ARM-UAV TWP-ICE Payload Instrumentation Details

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Payload Instrumentation Details McCoy, Robert Sandia National Laboratories Tooman, Tim Sandia National Laboratories McFarquhar, Greg University of Illinois Category: Field Campaigns The Proteus aircraqft carried a wide variety of in-situ and remote sensing instrumention the TWP-ICE experiment. Instrument capabilites, characteristics and sample data will be covered

  1. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  2. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-12-01

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  3. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice numbermore » is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.« less

  4. A marine biogenic source of atmospheric ice-nucleating particles (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect A marine biogenic source of atmospheric ice-nucleating particles Citation Details In-Document Search Title: A marine biogenic source of atmospheric ice-nucleating particles The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3-11. Here we show that material in the sea

  5. On the scalability of the Albany/FELIX first-order Stokes approximation ice

    Office of Scientific and Technical Information (OSTI)

    sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets. (Conference) | SciTech Connect On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets. Citation Details In-Document Search Title: On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets. Abstract not

  6. ELECTRON IRRADIATION OF CARBON DISULFIDE-OXYGEN ICES: TOWARD THE FORMATION OF SULFUR-BEARING MOLECULES IN INTERSTELLAR ICES

    SciTech Connect (OSTI)

    Maity, Surajit; Kaiser, Ralf I. [Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822 (United States)

    2013-08-20

    The formation of sulfur-bearing molecules in interstellar ices was investigated during the irradiation of carbon disulfide (CS{sub 2})-oxygen (O{sub 2}) ices with energetic electrons at 12 K. The irradiation-induced chemical processing of these ices was monitored online and in situ via Fourier transform infrared spectroscopy to probe the newly formed products quantitatively. The sulfur-bearing molecules produced during the irradiation were sulfur dioxide (SO{sub 2}), sulfur trioxide (SO{sub 3}), and carbonyl sulfide (OCS). Formations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and ozone (O{sub 3}) were observed as well. To fit the temporal evolution of the newly formed products and to elucidate the underlying reaction pathways, kinetic reaction schemes were developed and numerical sets of rate constants were derived. Our studies suggest that carbon disulfide (CS{sub 2}) can be easily transformed to carbonyl sulfide (OCS) via reactions with suprathermal atomic oxygen (O), which can be released from oxygen-containing precursors such as water (H{sub 2}O), carbon dioxide (CO{sub 2}), and/or methanol (CH{sub 3}OH) upon interaction with ionizing radiation. This investigation corroborates that carbonyl sulfide (OCS) and sulfur dioxide (SO{sub 2}) are the dominant sulfur-bearing molecules in interstellar ices.

  7. Molecular interactions with ice: Molecular embedding, adsorption, detection, and release

    SciTech Connect (OSTI)

    Gibson, K. D.; Langlois, Grant G.; Li, Wenxin; Sibener, S. J.; Killelea, Daniel R.

    2014-11-14

    The interaction of atomic and molecular species with water and ice is of fundamental importance for chemistry. In a previous series of publications, we demonstrated that translational energy activates the embedding of Xe and Kr atoms in the near surface region of ice surfaces. In this paper, we show that inert molecular species may be absorbed in a similar fashion. We also revisit Xe embedding, and further probe the nature of the absorption into the selvedge. CF{sub 4} molecules with high translational energies (?3 eV) were observed to embed in amorphous solid water. Just as with Xe, the initial adsorption rate is strongly activated by translational energy, but the CF{sub 4} embedding probability is much less than for Xe. In addition, a larger molecule, SF{sub 6}, did not embed at the same translational energies that both CF{sub 4} and Xe embedded. The embedding rate for a given energy thus goes in the order Xe > CF{sub 4} > SF{sub 6}. We do not have as much data for Kr, but it appears to have a rate that is between that of Xe and CF{sub 4}. Tentatively, this order suggests that for Xe and CF{sub 4}, which have similar van der Waals radii, the momentum is the key factor in determining whether the incident atom or molecule can penetrate deeply enough below the surface to embed. The more massive SF{sub 6} molecule also has a larger van der Waals radius, which appears to prevent it from stably embedding in the selvedge. We also determined that the maximum depth of embedding is less than the equivalent of four layers of hexagonal ice, while some of the atoms just below the ice surface can escape before ice desorption begins. These results show that energetic ballistic embedding in ice is a general phenomenon, and represents a significant new channel by which incident species can be trapped under conditions where they would otherwise not be bound stably as surface adsorbates. These findings have implications for many fields including environmental science, trace gas collection and release, and the chemical composition of astrophysical icy bodies in space.

  8. Present state-of-the-art of transmission line icing

    SciTech Connect (OSTI)

    Pohlman, J.C.; Landers, P.

    1982-08-01

    Icing of overhead power lines is a serious problem for electric utilities. The loads resulting from iced conductors take many forms. Existing Codes and Guides offer little help in establishing adequate design criteria. Each transmission line designer must, therefore, rely heavily on intuitive judgment to set performance levels for transmission lines to be built within his particular service area. A special study was undertaken by author Pohlman in behalf of the Electric Power Research Institute (EPRI) to accomplish the following objectives: Improve the general understanding of the total problem; Sample utility perceptions and experience with the problem; Accumulate and review professional opinion on the subject; Inventory past and on-going research activities; Consolidate the above into a definition of the present state-of-the-art to define the need for future research.

  9. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  10. Microsoft Word - 11_19_09 ice mkaer.doc

    Energy Savers [EERE]

    to: Department of Energy via email: expartecommunications@hq.doe.gov from: Debra Brunk date: November 20, 2009 subject: Exparte Communication This memo memorializes the meeting between AHAM and the Department of Energy on November 19, 2009 for inclusion in the public docket. The purpose of the meeting was to update the Department on the status of AHAM's development of an ice maker energy test procedure. The attendees are as follows: Ronald Lewis, Department of Energy Lucas Adin, Department of

  11. Microsoft Word - 11_4_09 ice maker.doc

    Energy Savers [EERE]

    gov from: Debra Brunk, Vice President Technical Services date: November 11, 2009 subject: Exparte Communication This memo memorializes the phone call between AHAM and the Department of Energy on November 4, 2009 for inclusion in the public docket. In summary, the issues discussed during the call were an update on including ice maker energy into the refrigerator-freezer test procedure and questions on the status regarding AHAM's clarification request on clothes washer drum volume determination.

  12. Indirect heating system for turbine anti-icing

    SciTech Connect (OSTI)

    Wagar, S.N.

    1980-03-01

    Gas-transmission service in northern Minnesota has verified the effectiveness of American Air Filter Co.'s indirect-heating method of preventing gas-turbine icing at compressor stations. By routing hot exhaust gases through a heat exchanger rather than directly into the inlet-air system, the indirect-heating method avoids turbine fouling, raises the air temperature at a constant specific humidity, and provides a uniform cross section of heated intake air for good turbine efficiency.

  13. doe sc arm 16 029 ACAPEX Shipbased Ice nuclei Collections

    Office of Scientific and Technical Information (OSTI)

    9 ACAPEX - Ship-Based Ice Nuclei Collections Field Campaign Report PJ DeMott TCJ Hill April 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  14. American Indian Complex to Cool Off Using Ice Storage System

    Broader source: Energy.gov [DOE]

    In Oklahoma City, summer temperatures can get above 100 degrees, making cooling more of a necessity than a luxury. But the designers of the American Indian Cultural Center and Museum (AICCM) wanted to make cooling choices that reflect American Indian cultures' respect for the land. So, rather than using conventional air-conditioning, the museum's main complex will use an ice storage system estimated to save 644,000 kilowatt hours of electricity a year.

  15. COLLOQUIUM: Antarctic Ice Cores and Implications for the Earth's Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab June 1, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Antarctic Ice Cores and Implications for the Earth's Climate Professor John Higgins Princeton University Colloquium Committee: The Princeton Plasma Physics Laboratory 2015-2016 Colloquium Committee is comprised of the following people. Please feel free to contact them by e-mail regarding any possible speakers or topics for future colloquia. Carol Ann Austin, caustin@pppl.gov

  16. ARM-UAV TWP-ICE Activities and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activities and Data Tooman, Tim Sandia National Laboratories McCoy, Robert Sandia National Laboratories McFarquhar, Greg University of Illinois Category: Field Campaigns The instrument operational status, data availability and daily flight details for the ARM-UAV Proteus payload flown during the TWP-ICE experiment are presented. Data was also collected during the transit flight across the Pacific from Mojave California to Darwin Australia and on the return transit flight

  17. Decaying leptophilic dark matter at IceCube

    SciTech Connect (OSTI)

    Boucenna, Sofiane M.; Chianese, Marco; Mangano, Gianpiero; Miele, Gennaro; Morisi, Stefano; Pisanti, Ofelia; Vitagliano, Edoardo

    2015-12-29

    We present a novel interpretation of IceCube high energy neutrino events (with energy larger than 60 TeV) in terms of an extraterrestrial flux due to two different contributions: a flux originated by known astrophysical sources and dominating IceCube observations up to few hundreds TeV, and a new flux component where the most energetic neutrinos come from the leptophilic three-body decays of dark matter particles with a mass of few PeV. Differently from other approaches, we provide two examples of elementary particle models that do not require extremely tiny coupling constants. We find the compatibility of the theoretical predictions with the IceCube results when the astrophysical flux has a cutoff of the order of 100 TeV (broken power law). In this case the most energetic part of the spectrum (PeV neutrinos) is due to an extra component such as the decay of a very massive dark matter component. Due to the low statistics at our disposal we have considered for simplicity the equivalence between deposited and neutrino energy, however such approximation does not affect dramatically the qualitative results. Of course, a purely astrophysical origin of the neutrino flux (no cutoff in energy below the PeV scale — unbroken power law) is still allowed. If future data will confirm the presence of a sharp cutoff above few PeV this would be in favor of a dark matter interpretation.

  18. Isolation and characterization of Microtox{reg_sign}-active components from aircraft de-icing/anti-icing fluids

    SciTech Connect (OSTI)

    Cancilla, D.A.; Holtkamp, A.; Fang, X.; Matassa, L.

    1997-03-01

    The goal of this project was to isolate and identify individual components from aircraft de-icing/anti-icing fluids (ADAFs) through a toxicity-based bioassay analysis. A Microtox{reg_sign} bioassay fractionation scheme was used to isolate a number of active fractions from ADAFs. Active fractions were identified using multiple spectral techniques, including nuclear magnetic resonance, gas chromatograph-mass spectrometry, liquid chromatography-mass spectrometry, and ultraviolet characterization. The primary Microtox-active fraction was shown to be a mixture of benzotriazole and tolyltriazoles, which are used as corrosion inhibitors in ADAF formulations. The identity of the compounds was confirmed through spectral and Microtox-toxicity analysis and comparison of commercially available standards.

  19. Dimensions and aspect ratios of natural ice crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2014-12-10

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the Tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign in mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. Dimensions and aspect ratios (AR, dimension of major axis divided by dimension of minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased as temperature increased. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50±1.35 during three campaigns and 6.32±1.34 (5.46±1.34; 4.95±1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < −35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L–W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationship determined in previous studies were within the range of the current data.« less

  20. Dimensions and aspect ratios of natural ice crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2015-04-15

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L–W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationships determined in previous studies were within the range of the current data.« less

  1. Realizing three-dimensional artificial spin ice by stacking planar nano-arrays

    SciTech Connect (OSTI)

    Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano

    2014-01-06

    Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in a pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.

  2. Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds

    SciTech Connect (OSTI)

    Rambukkange, Mahlon P.; Verlinde, J.; Eloranta, E. W.; Flynn, Connor J.; Clothiaux, Eugene E.

    2011-01-31

    Multimodality of cloud radar Doppler spectra is used to partition cloud particle phases and to separate distinct ice populations in the radar sample volume, thereby facilitating analysis of individual ice showers in multilayered mixed-phase clouds. A 35-GHz cloud radar located at Barrow, Alaska, during the Mixed-Phase Arctic Cloud Experiment collected the Doppler spectra. Data from a pair of collocated depolarization lidars confirmed the presence of two liquid cloud layers reported in this study. Surprisingly, both of these cloud layers were embedded in ice precipitation yet maintained their liquid. Our spectral separation of the ice precipitation yielded two distinct ice populations: ice initiated within the two liquid cloud layers and ice precipitation formed in higher cloud layers. Comparisons of ice fall velocity versus radar reflectivity relationships derived for distinct showers reveal that a single relationship might not properly represent the ice showers during this period.

  3. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect (OSTI)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice nucleation effciencies and can serve as effcient IN at atmospheric conditions typical for cirrus and mixed phase clouds. This indicates a potential link between human activities and cloud formation, and thus climate.

  4. A PHOTOMETRIC SYSTEM FOR DETECTION OF WATER AND METHANE ICES ON KUIPER BELT OBJECTS

    SciTech Connect (OSTI)

    Trujillo, Chadwick A.; Sheppard, Scott S.; Schaller, Emily L. E-mail: sheppard@dtm.ciw.edu

    2011-04-01

    We present a new near-infrared photometric system for detection of water ice and methane ice in the solar system. The system consists of two medium-band filters in the K-band region of the near-infrared, which are sensitive to water ice and methane ice, plus continuum observations in the J band and Y band. The primary purpose of this system is to distinguish between three basic types of Kuiper Belt Objects (KBOs)-those rich in water ice, those rich in methane ice, and those with little absorbance. In this work, we present proof-of-concept observations of 51 KBOs using our filter system, 21 of which have never been observed in the near-infrared spectroscopically. We show that our custom photometric system is consistent with previous spectroscopic observations while reducing telescope observing time by a factor of {approx}3. We use our filters to identify Haumea collisional family members, which are thought to be collisional remnants of a much larger body and are characterized by large fractions of water ice on their surfaces. We add 2009 YE{sub 7} to the Haumea collisional family based on our water ice band observations (J - H{sub 2}O = -1.03 {+-} 0.27) which indicate a high amount of water ice absorption, our calculated proper orbital elements, and the neutral optical colors we measured, V - R = 0.38 {+-} 0.04, which are all consistent with the rest of the Haumea family. We identify several objects dynamically similar to Haumea as being distinct from the Haumea family as they do not have water ice on their surfaces. In addition, we find that only the largest KBOs have methane ice, and Haumea itself has significantly less water ice absorption than the smaller Haumea family members. We find no evidence for other families in the Kuiper Belt.

  5. Microsoft PowerPoint - TWP-ICE_2006Nov_Rad.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWP-ICE: Surface Radiation Chuck Long PNNL ARM Atmospheric Radiation Measurement Radiation Sites ARM Atmospheric Radiation Measurement Available Data ARM Atmospheric Radiation ...

  6. STATEMENT OF WORK (SOW) TEMPLATE COMBINED EIR/ICE SUPPORT CONTRACTOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ICE Scope: Perform a Type III (parametric estimate approach) andor Type IV (sampling ... OECM and the EIR Contractor may mutually agree to add or delete particular sections, based ...

  7. Determination of 3-D Cloud Ice Water Contents by Combining Multiple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data Sources from Satellite, Ground Radar, and a Numerical Model Liu, Guosheng Florida State University Seo,...

  8. Progress on MPAS Land Ice Model Development (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Title: Progress on MPAS Land Ice Model Development Authors: Hoffman, Matthew J. 1 + Show Author Affiliations Los Alamos National Laboratory Los Alamos National Laboratory ...

  9. FELIX: advances in modeling forward and inverse ice-sheet problems...

    Office of Scientific and Technical Information (OSTI)

    Title: FELIX: advances in modeling forward and inverse ice-sheet problems. Abstract not provided. Authors: Salinger, Andrew G. ; Perego, Mauro ; Hoffman, Mattew ; Leng, Wei ; ...

  10. Radiation damage and associated phase change effect on photodesorption rates from icesLy? studies of the surface behavior of CO{sub 2}(ice)

    SciTech Connect (OSTI)

    Yuan, Chunqing; Yates, John T. Jr.

    2014-01-01

    Photodesorption from a crystalline film of CO{sub 2}(ice) at 75 K has been studied using Ly? (10.2 eV) radiation. We combine quantitative mass spectrometric studies of gases evolved and transmission IR studies of species trapped in the ice. Direct CO desorption is observed from the primary CO{sub 2} photodissociation process, which occurs promptly for CO{sub 2} molecules located on the outermost surface of the ice (Process I). As the fluence of Ly? radiation increases to ?5.5 10{sup 17} photons cm{sup 2}, extensive damage to the crystalline ice occurs and photo-produced CO molecules from deeper regions (Process II) are found to desorb at a rapidly increasing rate, which becomes two orders of magnitude greater than Process I. It is postulated that deep radiation damage to produce an extensive amorphous phase of CO{sub 2} occurs in the 50 nm ice film and that CO (and CO{sub 2}) diffusive transport is strongly enhanced in the amorphous phase. Photodesorption in Process II is a combination of electronic and thermally activated processes. Radiation damage in crystalline CO{sub 2} ice has been monitored by its effects on the vibrational line shapes of CO{sub 2}(ice). Here the crystalline-to-amorphous phase transition has been correlated with the occurrence of efficient molecular transport over long distances through the amorphous phase of CO{sub 2}(ice). Future studies of the composition of the interstellar region, generated by photodesorption from ice layers on grains, will have to consider the significant effects of radiation damage on photodesorption rates.

  11. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  12. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  13. Adjoint-based Deterministic Inversion for Ice Sheets

    Office of Scientific and Technical Information (OSTI)

    Adjoint-based deterministic Inversion for Ice Sheets SAND2014-19449PE ___ _---------------- M. Perego2- joint work with: A. Salinger2, E. Phipps2, D. Ridzal2, D. Kouri2, I. Kalashnikova2, S. Price2, G. Stadler3 2Sandia National Laboratories, Albuquerque, NM, USA 2Los Alamos National Laboratory, Los Alamos, NM, USA 3University of Texas at Austin, TX, USA (now at Courant institute, New York) October 29, TUG 2014, Albuquerque Sandia National Laboratories is a multi-program laboratory managed and

  14. Observed hemispheric asymmetry in global sea ice changes

    SciTech Connect (OSTI)

    Cavalieri, D.J.; Gloersen, P.; Parkinson, C.L.; Comiso, J.C.; Zwally, H.J.

    1997-11-07

    From November 1978 through December 1996, the areal extent of sea ice decreased by 2.9 {+-} 0.4 percent decade in the Arctic and increased by 1.3 {+-} 0.2 percent per decade in the Antarctic. The observed hemispheric asymmetry in these trends is consistent with a modeled response to a carbon dioxide-induced climate warming. The interannual variations, which are 2.3 percent of the annual mean in the Arctic, with a predominant period of about 5 years, and 3.4 percent of the annual mean in the Antarctic, with a predominant period of about 3 years, are uncorrelated. 29 refs., 2 figs., 1 tab.

  15. Ice Nuclei in Marine Air: Biogenic Particles or Dust?

    SciTech Connect (OSTI)

    Burrows, Susannah M.; Hoose, C.; Poschl, U.; Lawrence, M.

    2013-01-11

    Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earths energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

  16. Hygroscopicity of fuels with anti-icing additives

    SciTech Connect (OSTI)

    Bedrik, B.G.; Golubushkin, V.N.; Uspenskii, S.I.

    1984-03-01

    This article investigates the accumulation of water by hydrocarbon fuels under static and dynamic conditions. Standard TS-1 fuel (aviation kerosine) is examined without an anti-icing additive (AIA) and blended with ethyl cellosolve or tetrahydrofurfuryl alcohol in the concentrations that are added to fuel before refueling flight vehicles under service conditions in order to prevent the formation of ice crystals in the fuel. The fuel hygroscopicity under static conditions is measured in desiccators over saturated salt solutions giving air relative humidities from 37% to 97% at 20/sup 0/C. It is determined that tetrahydrofurfuryl alcohol increases the fuel hygroscopicity to a greater degree than does the ethyl cellosolve. The fuel containing the AIA becomes a medium for the transfer of water from the ambient medium to the emulsion droplets, and these droplets in turn form a liquid phase. It is shown that the rate at which the fuel with the AIA becomes saturated with water under dynamic conditions is much greater than under static conditions. In the fuel without the AIA no water emulsion is formed, even with prolonged contact (more than 2 days) with 100% humidity air, whereas in the fuel with the AIA (even with 0.1% ethyl cellosolve), emulsion and liquid phase are formed. It is concluded that the physical stability of fuel containing AIA depends on the AIA concentration. Includes 3 tables.

  17. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect (OSTI)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per [Royal Institute of Technology, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Brinellvaegen 68, 10044 Stockholm (Sweden)

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  18. Performance of a stand-alone wind-electric ice maker for remote villages

    SciTech Connect (OSTI)

    Davis, H.C.; Brandemuehl, M.J.; Bergey, M.L.S.

    1995-01-01

    Two ice makers in the 1.1 metric tons per 24 hours (1.2 tons per day) size range were tested to determine their performance when directly coupled to a variable-frequency wind turbine generator. Initial tests were conducted using a dynamometer to simulate to wind to evaluate whether previously determined potential problems were significant and to define basic performance parameters. Field testing in Norman, Oklahoma, was completed to determine the performance of one of the ice makers under real wind conditions. As expected, the ice makers produced more ice at a higher speed than rated, and less ice at a lower speed. Due to the large start-up torque requirement of reciprocating compressors, the ice making system experienced a large start-up current and corresponding voltage drop which required a larger wind turbine that expected to provide the necessary current and voltage. Performance curves for ice production and power consumption are presented. A spreadsheet model was constructed to predict ice production at a user-defined site given the wind conditions for that location. Future work should include long-term performance tests and research on reducing the large start-up currents the system experiences when first coming on line.

  19. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect (OSTI)

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the full storage mode was about equal to what could be expected through a simple rooftop efficiency upgrade, the operating costs for the Roofberg system could be much more favorable depending on the utility rate structure. The ability of Roofberg to move much of the cooling load to off-peak periods enables it to take advantage of on-peak demand charges and time-of-use electricity rates. The Roofberg system, as installed, was able to reduce the on-peak energy use of the cooling system to 35% of the on-peak energy consumption of the baseline system. A comparative analysis of a rooftop replacement and Roofberg indicated that the Roofberg system on Building 2518 would be the better economic choice over a range of demand charges and on-off peak energy prices which are typical of utility rate tariffs for commercial buildings.

  20. No Confinement Needed: Observation of a Metastable Hydrophobic Wetting Two-Layer Ice on Graphene

    SciTech Connect (OSTI)

    Kimmel, Gregory A.; Matthiesen, Jesper; Baer, Marcel; Mundy, Christopher J.; Petrik, Nikolay G.; Smith, R. Scott; Dohnalek, Zdenek; Kay, Bruce D.

    2009-09-09

    The structure of water at interfaces is crucial for processes ranging from photocatalysis to protein folding. Here, we investigate the structure and lattice dynamics of two-layer crystalline ice films grown on a hydrophobic substrate - graphene on Pt(111) - with low energy electron diffraction, reflection-absorption infrared spectroscopy, rare-gas adsorption/desorption, and ab-initio molecular dynamics. Unlike hexagonal ice, which consists of stacks of puckered hexagonal "bilayers", this new ice polymorph consists of two flat hexagonal sheets of water molecules in which the hexagons in each sheet are stacked directly on top of each other. Such two-layer ices have been predicted for water confined between hydrophobic slits, but not previously observed. Our results show that the two-layer ice forms even at zero pressure at a single hydrophobic interface by maximizing the number of hydrogen bonds at the expense of adopting a non-tetrahedral geometry with weakened bonds.