Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Daily Reporting Rainfall Station HERBERT RIVER Manual Heavy Rainfall Station  

E-Print Network [OSTI]

Daily Reporting Rainfall Station HERBERT RIVER Manual Heavy Rainfall Station Manual River Station Central Mill AL Tung Oil AL Corsis AL Innisfail Clump Point Tide TM Mourilyan Harbour TM 0 10 kilometres

Greenslade, Diana

2

Heavy Metal Contaminated Sediments of Lower Passaic River, New Jersey USA Victor Onwueme1  

E-Print Network [OSTI]

Heavy Metal Contaminated Sediments of Lower Passaic River, New Jersey USA Victor Onwueme1 , Huan benchmarks and probable ecological stressors. Heavy metals remains chemicals of concern in the Passaic River of toxic chemicals throughout the river, whose concentrations greatly exceed the sediment quality

Brookhaven National Laboratory

3

Bows and Arrows -- Part One: The Bow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

One: The Bow One: The Bow Nature Bulletin No. 592 February 20, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist BOWS AND ARROWS: PART ONE THE BOW Primitive man, although at different times in various parts of the world, seems to have passed through three stages of development. During what is called the Old Stone Age he discovered how to make and use fire but had only clubs, stones and crudely shaped axes as weapons. During the Middle Stone Age he invented the spear, perhaps a throwing stick to hurl it, and finally the bow and arrow. Then man became a match for the mammoth, mastodon, cave bear, saber-toothed tiger or any predator. Then he was able to kill his food at a distance, or from a hiding place, with less risk of his life Then, too, he was enabled to ambush an enemy instead of meeting him in desperate hand-to-hand conflict.

4

Medicine Bow Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

Medicine Bow Wind Farm I Medicine Bow Wind Farm I Facility Medicine Bow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Platte River Power Authority Developer Platte River Power Authority Energy Purchaser Platte River Power Authority Location Medicine Bow WY Coordinates 41.927554°, -106.371968° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.927554,"lon":-106.371968,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

5

Medicine Bow Wind Farm III | Open Energy Information  

Open Energy Info (EERE)

Medicine Bow Wind Farm III Medicine Bow Wind Farm III Facility Medicine Bow Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Platte River Power Authority Developer Platte River Power Authority Energy Purchaser Platte River Power Authority Location Medicine Bow WY Coordinates 41.927554°, -106.371968° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.927554,"lon":-106.371968,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station  

E-Print Network [OSTI]

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station Manual Tide TM Bulgun Ck AL Bingil Bay The Boulders TM Nerada AL Tung Oil AL Fishers Ck TM Corsis AL Russell

Greenslade, Diana

7

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station  

E-Print Network [OSTI]

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station Manual The Boulders TM Nerada AL Tung Oil AL Fishers Ck TM Corsis AL RussellR Babinda Clyde Rd AL Central Mill AL

Greenslade, Diana

8

Medicine Bow Wind Farm IV | Open Energy Information  

Open Energy Info (EERE)

Medicine Bow Wind Farm IV Medicine Bow Wind Farm IV Facility Medicine Bow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Platte River Power Authority Developer Northern Alternative Energy Energy Purchaser Platte River Power Authority Location Medicine Bow WY Coordinates 41.927554°, -106.371968° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.927554,"lon":-106.371968,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Medicine Bow Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Medicine Bow Wind Farm II Medicine Bow Wind Farm II Jump to: navigation, search Name Medicine Bow Wind Farm II Facility Medicine Bow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Platte River Power Authority Developer Platte River Power Authority Energy Purchaser Platte River Power Authority Location Medicine Bow WY Coordinates 41.927554°, -106.371968° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.927554,"lon":-106.371968,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

Heavy Metal Contamination In Soil Under The Application Of Polluted Sewage Water Across Vrishabhavathi River  

E-Print Network [OSTI]

The main aim in this study is to assess the level of heavy metals concentration in soil profile and their mobility in the presence of pH and organic carbon,where polluted water is used in agriculture. The samples of soil collected at different sites across Vrishabhavathi river valley have been analyzed for heavy metals, viz. Pb, Zn, Cd, Cr, Cu, Ni, Fe and Mn using atomic absorption spectrophotometer. These values assessed with respect to reference soil taken from unpolluted soil profile. The heavy metals studied at all sampling sites compared with Indian Standards and all heavy metals are below permissible limits. The concentration of all the metals is high compared to the soil sample taken from unpolluted site shows the build up of heavy metal concentration using polluted water in irrigation. The % of organic carbon varies from 1.9 to 2.9 % in top layer and 1 to 1.6 % in the subsequent layer. The pH value is higher on top layer soil and decreases in subsequent layer.

Jayadev E. T. Puttaih

11

Atmospheric Rivers Induced Heavy Precipitation and Flooding in the Western U.S. Simulated by the WRF Regional Climate Model  

SciTech Connect (OSTI)

Twenty years of regional climate simulated by the Weather Research and Forecasting model for North America has been analyzed to study the influence of the atmospheric rivers and the role of the land surface on heavy precipitation and flooding in the western U.S. Compared to observations, the simulation realistically captured the 95th percentile extreme precipitation, mean precipitation intensity, as well as the mean precipitation and temperature anomalies of all the atmospheric river events between 1980-1999. Contrasting the 1986 President Day and 1997 New Year Day atmospheric river events, differences in atmospheric stability are found to have an influence on the spatial distribution of precipitation in the Coastal Range of northern California. Although both cases yield similar amounts of heavy precipitation, the 1997 case was found to produce more runoff compared to the 1986 case. Antecedent soil moisture, the ratio of snowfall to total precipitation (which depends on temperature), and existing snowpack all seem to play a role, leading to a higher runoff to precipitation ratio simulated for the 1997 case. This study underscores the importance of characterizing or simulating atmospheric rivers and the land surface conditions for predicting floods, and for assessing the potential impacts of climate change on heavy precipitation and flooding in the western U.S.

Leung, Lai R.; Qian, Yun

2009-02-12T23:59:59.000Z

12

Antennal Deformities of Chironomid Larvae and Their Use in Biomonitoring of Heavy Metal Pollutants in the River Damodar of West Bengal, India  

Science Journals Connector (OSTI)

Analyses of sediment and water indicate the presence of heavy metal pollutants like lead, zinc, copper, mercury and cadmium of the river Damodar of India. These metals are responsible for causing morphological...

G. Bhattacharyay; A. K. Sadhu; A. Mazumdar

2005-09-01T23:59:59.000Z

13

Magnetically dominated MHD bow shock ows  

E-Print Network [OSTI]

Chapter 7 Magnetically dominated MHD bow shock ows: three-dimensional ow over a sphere spheres. Fig. 7.1 shows a 3D visualization of a bow shock ow around a sphere with magnetically dominated uniform upstream ow (switch-on shocks occur). In the 3D ow magnetic #12;eld lines can slip over

De Sterck, Hans

14

--No Title--  

U.S. Energy Information Administration (EIA) Indexed Site

Algerian| Brazilian| Canadian | Canadian | Canadian Month | Saharan | Marlim | Bow River | Light Sour | Lloydminster | Blend | | Heavy | Blend | ||...

15

Temporal variation of heavy metal contamination in fish of the river lot in southern France  

E-Print Network [OSTI]

July 2009 Keywords: Heavy metals Historical pollution Freshwater fish Muscle Liver Quality index a b of intense heavy metal pollution and has been the focus of studies dating back to the 1970s (Audry et al Lot is derived from anthropogenic origin. As such, the main sources of heavy metal pollution

Grenouillet, Gael

16

Broken Bow Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Bow Wind Farm Bow Wind Farm Jump to: navigation, search Name Broken Bow Wind Farm Facility Broken Bow Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Midwest Wind Energy Developer Midwest Wind Energy Energy Purchaser Nebraska Public Power District Location Custer County, Nebraska Coordinates 41.400029°, -99.573412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.400029,"lon":-99.573412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

17

Daily Reporting Rainfall Station MULGRAVE-RUSSELL RIVERS Manual Heavy Rainfall Station  

E-Print Network [OSTI]

Station Telemetry Rainfall Station Telemetry River Station Revised: Nov 2011 MAP 111.1 FLOOD WARNING ulgraveR The Boulders TM RussellR Clyde Rd AL Babinda Bucklands TM Daradgee McAvoy Br AL 0 5 10 kilometres

Greenslade, Diana

18

Classroom demonstration of the vibration of a bowed string  

Science Journals Connector (OSTI)

An overhead projector has been modified for stroboscopic illumination for the purpose of demonstrating the vibration of a string excited by a violinbow. The vibrational pattern is clearly delineated as are differences caused by insufficient or excessive bow force. A regime of oscillation is noted at high bow force and low speed in which alternate waves are reflected from the bow and the bridge so that the vibration transmitted to the bridge is about an octave below the fundamental frequency of the string.

E. Brock Dale

1976-01-01T23:59:59.000Z

19

Bows and Arrows -- Part Two: Arrows and Archers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two: Arrows and Archers Two: Arrows and Archers Nature Bulletin No. 593 February 27, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor Richard Becker, Naturalist BOWS AND ARROWS - PART TWO: ARROWS AND ARCHERS Archery, and hunting with a bow, are sports increasingly popular in this country. Bows and arrows are still used by primitive tribes, such as the pigmies in Africa and the aborigines in South American jungles, who frequently tip their arrows with deadly poisons. The warlike Indians of the Great Plains used bows and arrows long after the introduction of firearms. Loading an old-fashioned musket took too much time and was difficult for a brave on a running horse. After repeating rifles appeared, they and cartridges for them were greatly prized but hard to get.

20

Elementary stability considerations for bowed?string motion  

Science Journals Connector (OSTI)

Using the approach first pioneered by Raman the Helmholtz motion of a bowed string is discussed as a special case of two?velocity motions in which a given point (at which the bow is located) alternates in the course of a cycle between two constant velocities. The fact that the bow typically presents a negative resistance to the string during the slipping part of the cycle is adduced as a reason for the duty cycle that is the fraction of the period that corresponds to slipping to try to become as short as possible. It is shown that for a string without dissipation or stiffness this duty cycle can be arbitrarily low for general bow positions; data obtained with the digital bow illustrate this behavior. It is shown theoretically and confirmed with computer simulations that instabilities arising from the negative slipping resistance cannot be eliminated by assigning a finite positive value to the sticking resistance. The apparent stability of Helmholtz motion observed in real playing situations remains a puzzle.

Gabriel Weinreich; Ren Causs

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

City of Broken Bow, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bow, Nebraska (Utility Company) Bow, Nebraska (Utility Company) Jump to: navigation, search Name City of Broken Bow Place Nebraska Utility Id 2277 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lights (Metered) 175 W sod-vap - city Lighting Area Lights (Metered) 175 W sod-vap - rural Lighting Area Lights (Unmetered) 1000 W mer-vap - city Lighting Area Lights (Unmetered) 1500 W quartz - city Lighting Area Lights (Unmetered) 175 W sod-vap - city Lighting

22

EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in...  

Broader source: Energy.gov (indexed) [DOE]

2: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY Documents Available for...

23

Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1  

SciTech Connect (OSTI)

This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future.

Owen, M.B.

1997-04-01T23:59:59.000Z

24

River Steamboats  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

River Steamboats River Steamboats Nature Bulletin No. 628-A February 12, 1977 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation RIVER STEAMBOATS The westward migration of the pioneer settlers and the rapid growth of agriculture, commerce and industry in the Middle West is in large part the story of water transportation on our inland waterways. The two main water routes were the chain of Great Lakes on the north and the Ohio River on the south. Sailing vessels carrying hundreds of tons were able to navigate on the Great Lakes almost as freely as on the ocean. Also, on the Ohio and Mississippi rivers heavy loads could be floated downstream from Pittsburgh to New Orleans -- almost 2000 miles. But boats had to be hauled back upstream by manpower -- grueling labor, stretching over weeks or months to move a few tons a few hundred miles. The coming of the steamboat a century and a half ago changed all this.

25

Dual-Doppler analysis of the 17 June 1997 bow echo over southeast Texas  

E-Print Network [OSTI]

not shown in conceptual models of bow echoes however is a distinct, smaller-scale, cyclonic vortex present along the northern front edge of the bow echo. This vortex seems to have formed from the tilting and subsequent stretching of vorticity generated...

Moncla, Kerry Louis

2012-06-07T23:59:59.000Z

26

Bowed string synthesis with force feedback gesture interaction Jean-Loup Florens, Cyrille Henry  

E-Print Network [OSTI]

Introduction In sustained oscillation instruments (like bow string instruments, reed instrumentsBowed string synthesis with force feedback gesture interaction Jean-Loup Florens, Cyrille Henry string, which closely links the properties of the produced sounds to the gesture and energetic investment

Paris-Sud XI, Université de

27

CAUSAL/ANTICAUSAL DECOMPOSITION FOR MIXED-PHASE DESCRIPTION OF BRASS AND BOWED STRING SOUNDS  

E-Print Network [OSTI]

CAUSAL/ANTICAUSAL DECOMPOSITION FOR MIXED-PHASE DESCRIPTION OF BRASS AND BOWED STRING SOUNDS, in order to lo- cally model divergent oscillations in a steady way [4]. This mixed-phase representation- ous interaction instruments (CII): brass and bowed string. The aim of this work is to better

Dupont, Stéphane

28

6.4 A BOW-ECHO EVENT ON A SQUALL LINE IN THE NETHERLANDS Rob Groenland  

E-Print Network [OSTI]

6.4 A BOW-ECHO EVENT ON A SQUALL LINE IN THE NETHERLANDS Rob Groenland Meteo Consult, Wageningen, The Netherlands (Europe) ABSTRACT In this study, the structure of a bow-echo on a squall line is investigated . It accelerated as it moved into the Netherlands. A bow-echo developed over extreme northern Belgium

Haak, Hein

29

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Algerian Saharan Blend Brazilian Marlim Canadian Bow River Heavy Canadian Light Sour Blend Canadian Lloydminster Ecuadorian Oriente Ecuadorian Napo 1983 Average ... - -...

30

EIS-0432: Department of Energy Loan Guarantee for Medicine Bow Gasification  

Broader source: Energy.gov (indexed) [DOE]

2: Department of Energy Loan Guarantee for Medicine Bow 2: Department of Energy Loan Guarantee for Medicine Bow Gasification and Liquefaction Coal-to-Liquids, Carbon County, Wyoming EIS-0432: Department of Energy Loan Guarantee for Medicine Bow Gasification and Liquefaction Coal-to-Liquids, Carbon County, Wyoming Summary DOE is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to Medicine Bow Fuel & Power LLC (MBFP), a wholly-owned subsidiary of DKRW Advanced Fuels LLC. MBFP submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 to support the construction and startup of the MBFP coal-to-liquids facility, a coal mine and associated coal handling facilities. Public Comment Opportunities No public comment opportunities available at this time.

31

Propeller design optimization for tunnel bow thrusters in the bollard pull condition  

E-Print Network [OSTI]

Tunnel bow thrusters are often used by large ships to provide low-speed lateral maneuverability when docking. Required to provide high thrust while essentially at a standstill, the design point for these thrusters is the ...

Wilkins, James R., IV

2012-01-01T23:59:59.000Z

32

Physics and learning based computational models for breaking bow waves based on new boundary immersion approaches  

E-Print Network [OSTI]

A ship moving on the free surface produces energetic breaking bow waves which generate spray and air entrainment. Present experimental, analytic, and numerical studies of this problem are costly, inaccurate and not robust. ...

Weymouth, Gabriel David

2008-01-01T23:59:59.000Z

33

Bow shocks formed by plasma collisions in laser irradiated semi-cylindrical cavities  

E-Print Network [OSTI]

the axis to form a dense bright plasma focus. Later in time a long lasting bow shock is observed to develop a location near the cavity axis, where it collides forming a bright high density plasma focus

Rocca, Jorge J.

34

A review of "Richard Brathwait: The First Lakeland Poet" by John Bowes  

E-Print Network [OSTI]

reviews 21 John Bowes. Richard Brathwait: The First Lakeland Poet. Great Britain: Hugill Publications Ltd, 2007. viii + 256pp. ?12.95. Review by siobh?n collins, university college cork. The merits of John Bowes?s biography of Richard..., extravagant dress, greed, and bad reviews 23 behaviour? (87), traits which he himself exhibits at various stages of his life. His love of extravagant dress is presumably what gave rise to his nickname ?Dapper Dick,? which appears as ?Dagger Dick...

Collins, Siobhan

2010-01-01T23:59:59.000Z

35

Calculation of the reactivity feedback due to core-assembly bowing in LMFBRs  

SciTech Connect (OSTI)

The nonuniformity of the temperature distribution in an LMFBR leads to differential thermal expansion of the walls of an assembly hexcan. These thermal expansion differentials cause the hexcan to distort or bow. Consequentially, the assembly experiences a spatial displacement, which results in a change in reactivity for the core. A computational model to calculate the reactivity feedback due to material displacements induced by assembly bowing effects has been developed.

Not Available

1983-01-01T23:59:59.000Z

36

Three-dimensional hydrodynamic simulations of asymmetric pulsar wind bow shocks  

E-Print Network [OSTI]

We present three-dimensional, nonrelativistic, hydrodynamic simulations of bow shocks in pulsar wind nebulae. The simulations are performed for a range of initial and boundary conditions to quantify the degree of asymmetry produced by latitudinal variations in the momentum flux of the pulsar wind, radiative cooling in the postshock flow, and density gradients in the interstellar medium (ISM). We find that the bow shock is stable even when travelling through a strong ISM gradient. We demonstrate how the shape of the bow shock changes when the pulsar encounters density variations in the ISM. We show that a density wall can account for the peculiar bow shock shapes of the nebulae around PSR J2124-3358 and PSR B0740-28. A wall produces kinks in the shock, whereas a smooth ISM density gradient tilts the shock. We conclude that the anisotropy of the wind momentum flux alone cannot explain the observed bow shock morphologies but it is instead necessary to take into account external effects. We show that the analytic (single layer, thin shell) solution is a good approximation when the momentum flux is anisotropic, fails for a steep ISM density gradient, and ap- proaches the numerical solution for efficient cooling. We provide analytic expressions for the latitudinal dependence of a vacuum-dipole wind and the associated shock shape, and compare the results to a split-monopole wind. We find that we are unable to distinguish between these two wind models purely from the bow shock morphology.

M. Vigelius; A. Melatos; S. Chatterjee; B. M. Gaensler; P. Ghavamian

2006-10-16T23:59:59.000Z

37

Using numerical models of bow shocks to investigate the circumstellar medium of massive stars  

E-Print Network [OSTI]

Many massive stars travel through the interstellar medium at supersonic speeds. As a result they form bow shocks at the interface between the stellar wind. We use numerical hydrodynamics to reproduce such bow shocks numerically, creating models that can be compared to observations. In this paper we discuss the influence of two physical phenomena, interstellar magnetic fields and the presence of interstellar dust grains on the observable shape of the bow shocks of massive stars. We find that the interstellar magnetic field, though too weak to restrict the general shape of the bow shock, reduces the size of the instabilities that would otherwise be observed in the bow shock of a red supergiant. The interstellar dust grains, due to their inertia can penetrate deep into the bow shock structure of a main sequence O-supergiant, crossing over from the ISM into the stellar wind. Therefore, the dust distribution may not always reflect the morphology of the gas. This is an important consideration for infrared observati...

van Marle, Allard Jan; Cox, Nick; Meliani, Zakaria

2014-01-01T23:59:59.000Z

38

River Thames River Thames  

E-Print Network [OSTI]

West Kent House Penge East Lower Sydenham Forest Hill Honor Oak Park Crofton Park Nunhead New CrossC BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Harrow- on-the-Hill Northwick Park Harrow & Wealdstone Headstone Lane Pinner Kenton Stanmore Canons Park

Delmotte, Nausicaa

39

River Thames River Thames  

E-Print Network [OSTI]

River Thames River Thames Du Cane Road Wood Lane Wood Lane North Pole Road Barlby Road Highlever Street Acton Market Place Acton Horn Lane Wood Lane Du Cane Road Wood Lane South Africa Road White City for BBC Television Centre Wood Lane Ariel Way Wood Lane Shepherd's Bush Green Shepherd's Bush Green

40

Specification of an Infinite-State Local Model Checker in Rewriting Logic Bow-Yaw Wang  

E-Print Network [OSTI]

Specification of an Infinite-State Local Model Checker in Rewriting Logic Bow-Yaw Wang Institute logic and use it to analyze an infinite-state system in this paper. In order not to pursue infinite computation path endlessly, we perform bounded proof search on the system. Inconclusive proofs occurred

Wang, Bow-Yaw

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Larmor radius size density holes discovered in the solar wind upstream of Earth's bow shock  

E-Print Network [OSTI]

Larmor radius size density holes discovered in the solar wind upstream of Earth's bow shock G. K, University of New Brunswick, Canada M. L. Goldstein NASA Goddard Space Flight Center, Greenbelt, Maryland P that are five or more times the solar wind density. Particle distributions show the steepened edge can behave

California at Berkeley, University of

42

X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS  

SciTech Connect (OSTI)

The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles, a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.

Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Waldron, W. L. [Eureka Scientific Inc., 2452 Delmer Street, Oakland, CA 94602 (United States); Cassinelli, J. P. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53711 (United States); Burke, A. E., E-mail: ignace@etsu.edu, E-mail: wwaldron@satx.rr.com, E-mail: cassinelli@astro.wisc.edu, E-mail: burke.alexander@gmail.com [990 Washington Street 317, Dedham, MA 02026 (United States)

2012-05-01T23:59:59.000Z

43

Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge  

SciTech Connect (OSTI)

Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generated by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.

Nishihara, M.; Takashima, K.; Rich, J. W.; Adamovich, I. V. [Michael A. Chaszeyka Nonequilibrium Thermodynamics Laboratories, Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

2011-06-15T23:59:59.000Z

44

U of L Calgary Campus-Friday, August 31, 2012 Parking Information for Rocky Mountain Plaza and Bow Valley College  

E-Print Network [OSTI]

U of L Calgary Campus- Friday, August 31, 2012 Parking Information for Rocky Mountain Plaza and Bow daytime hours. The flat rate costs are as follows: Monday to Friday (evenings): $3.00 Weekends & Holidays

Morris, Joy

45

Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Savannah River Site Savannah River Site Work is under way to decommission the Heavy Water Components Test Reactor, which had been used to test experimental fuel assemblies for commercial heavy-water power reactors. SRS is scheduled to remove the dome of the reactor this month (January 2011). Workers also will displace the reactor vessel and steam generators, grout the remaining structure in place, and install a concrete cover over the reactor's footprint Work is under way to decommission the Heavy Water Components Test Reactor, which had been used to test experimental fuel assemblies for commercial heavy-water power reactors. SRS is scheduled to remove the dome of the reactor this month (January 2011). Workers also will displace the reactor vessel and steam generators, grout the remaining structure in place, and

46

Astrophysical bow shocks: An analytical solution for the hypersonic blunt body problem in the intergalactic medium  

E-Print Network [OSTI]

Aims: Bow shock waves are a common feature of groups and clusters of galaxies since they are generated as a result of supersonic motion of galaxies through the intergalactic medium. The goal of this work is to present an analytical solution technique for such astrophysical hypersonic blunt body problems. Methods: A method, developed by Schneider (1968, JFM, 31, 397) in the context of aeronautics, allows calculation of the galaxy's shape as long as the shape of the bow shock wave is known (so-called inverse method). In contrast to other analytical models, the solution is valid in the whole flow region (from the stagnation point up to the bow shock wings) and in particular takes into account velocity gradients along the streamlines. We compare our analytical results with two-dimensional hydrodynamical simulations carried out with an extended version of the VH-1 hydrocode which is based on the piecewise parabolic method with a Lagrangian remap. Results: It is shown that the applied method accurately predicts the...

Schulreich, Michael Mathias

2011-01-01T23:59:59.000Z

47

AKARI/FIS Mapping of the ISM-Wind Bow Shock around Alpha Ori  

E-Print Network [OSTI]

We present 10' x 50' scan maps around an M supergiant Alpha Ori at 65, 90, 140 and 160 microns obtained with the AKARI Infrared Astronomy Satellite. Higher spatial resolution data with the exact analytic solution permit us to fit the de-projected shape of the stellar wind bow shock around Alpha Ori to have the stand-off distance of 4.8', position angle of 55 degrees and inclination angle of 56 degrees. The shape of the bow shock suggests that the peculiar velocity of Alpha Ori with respect to the local medium is v_* = 40 (n_H)^(-1/2), where n_H is the hydrogen nucleus density at Alpha Ori. We find that the local medium is of n_H = 1.5 to 1.9 cm^(-3) and the velocity of the local flow is at 11 km s^(-1) by using the most recent astrometric solutions for Alpha Ori under the assumption that the local medium is moving away from the Orion OB 1 association. AKARI images may also reveal a vortex ring due to instabilities on the surface of the bow shock as demonstrated by numerical models. This research exemplifies the potential of AKARI All-Sky data as well as follow-up observations with Herschel Space Telescope and Stratospheric Observatory for Infrared Astronomy for this avenue of research in revealing the nature of interaction between the stellar wind and interstellar medium.

Toshiya Ueta; Hideyuki Izumiura; Issei Yamamura; Yoshikazu Nakada; Mikako Matsuura; Yoshifusa Ita; Toshihiko Tanabe; Hinako Fukushi; Noriyuki Matsunaga; Hiroyuki Mito

2008-08-20T23:59:59.000Z

48

Managing Inventories of Heavy Actinides  

SciTech Connect (OSTI)

The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

Wham, Robert M [ORNL; Patton, Bradley D [ORNL

2011-01-01T23:59:59.000Z

49

Declining metal levels at Foundry Cove (Hudson River, New York): Response to localized dredging of contaminated sediments  

E-Print Network [OSTI]

a well-recognized case of heavy metal pollution at Foundry Cove (FC), Hudson River, New York. This tidal River. ? 2007 Elsevier Ltd. All rights reserved. Keywords: River pollution; Cadmium; Metal removalDeclining metal levels at Foundry Cove (Hudson River, New York): Response to localized dredging

Levinton, Jeffrey

50

Trace metal concentration and fish size: Variation among fish species in a Mediterranean river  

E-Print Network [OSTI]

29 April 2014 Accepted 12 May 2014 Keywords: Bioaccumulation Heavy metals Llobregat River species in an Iberian river with moderate metal pollution. Al, Fe and Zn were the most abundant metals trace elements (Bervoets and Blust, 2003; Noël et al., 2013). Heavy metals in fish represent a potential

García-Berthou, Emili

51

Ground-state magnetic phase diagram of bow-tie graphene nanoflakes in external magnetic field  

SciTech Connect (OSTI)

The magnetic phase diagram of a ground state is studied theoretically for graphene nanoflakes of bow-tie shape and various sizes in external in-plane magnetic field. The tight-binding Hamiltonian supplemented with Hubbard term is used to model the electronic structure of the systems in question. The existence of the antiferromagnetic phase with magnetic moments localized at the sides of the bow-tie is found for low field and a field-induced spin-flip transition to ferromagnetic state is predicted to occur in charge-undoped structures. For small nanoflake doped with a single charge carrier, the low-field phase is ferrimagnetic and a metamagnetic transition to ferromagnetic ordering can be forced by the field. The critical field is found to decrease with increasing size of the nanoflake. The influence of diagonal and off-diagonal disorder on the mentioned magnetic properties is studied. The effect of off-diagonal disorder is found to be more important than that of diagonal disorder, leading to significantly widened distribution of critical fields for disordered population of nanoflakes.

Sza?owski, Karol, E-mail: kszalowski@uni.lodz.pl, E-mail: kszalowski@wp.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of ?d?, ul. Pomorska 149/153, 90-236 ?d? (Poland)

2013-12-28T23:59:59.000Z

52

Mon. Not. R. Astron. Soc. 339, 524536 (2003) Anatomy of the HerbigHaro object HH7 bow shock  

E-Print Network [OSTI]

images as well as ISO data, the line profile, H2 position­velocity diagram, optical images and the proper-dynamics (MHD) in star-forming regions. The Herbig­Haro object HH7 is an extensively investigated bow shock

53

Our River  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

River River Nature Bulletin No. 22 July 7, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation OUR RIVER The people of Cook County are missing a bet. They are not using their DesPlaines River. The other day we took a boat trip down that river from Lake County to Lawndale Avenue in Summit. It being a week day, we saw few people other than an occasional fisherman or pairs of strolling boys. Except for a bridge now and then, there were no signs or sounds of civilization. Chicago might have been a thousand miles away. We rested. There was isolation. There was peace. Once in a while a heron flew ahead of us; or a squirrel scampered up a tree; once we saw a family of young muskrats playing around the entrance to their den in the bank; twice we saw and heard a wood duck; again and again big fish plowed ripples surging ahead of us. It was shady and cool and still beneath the arching trees. We thought of the centuries this river had traveled. We were babes nuzzling again at the breast of Mother Nature.

54

Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing  

SciTech Connect (OSTI)

A study of the bandgap character of compressively strained GeSn{sub 0.060-0.091}/Ge(001) quantum wells grown by molecular beam epitaxy is reported. The built-in strain in GeSn wells leads to an increased separation between L and {Gamma} conduction band minima. The prevalent indirect interband transitions in GeSn were probed by photoluminescence spectroscopy. As a result we could simulate the L-valley bowing parameter in GeSn alloys, b{sub L} = 0.80 {+-} 0.06 eV at 10 K. From this we conclude that even compressively strained GeSn/Ge(001) alloys could become direct band gap semiconductors at the Sn-fraction higher than 17.0 at. %.

Tonkikh, Alexander A. [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); Institute for Physics of Microstructures RAS, GSP-105, Nizhniy Novgorod (Russian Federation); Eisenschmidt, Christian; Schmidt, Georg [Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3 D-01620, Halle (Saale) (Germany); Talalaev, Vadim G. [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); ZIK SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3 D-06120, Halle (Saale) (Germany); Zakharov, Nikolay D.; Werner, Peter [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); Schilling, Joerg [ZIK SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3 D-06120, Halle (Saale) (Germany)

2013-07-15T23:59:59.000Z

55

On the absence of wind bow-shocks around OB-runaway stars: probing the physical conditions of the interstellar medium  

E-Print Network [OSTI]

High-resolution IRAS maps are used to search for the presence of stellar-wind bow-shocks around high-mass X-ray binaries (HMXBs). Their high space velocities, recently confirmed with Hipparcos observations, combined with their strong stellar winds should result in the formation of wind bow-shocks. Except for the already known bow-shock around Vela X-1 (Kaper et al. 1997), we do not find convincing evidence for a bow-shock around any of the other HMXBs. Also in the case of (supposedly single) OB-runaway stars, only a minority appears to be associated with a bow-shock (Van Buren et al. 1995). We investigate why wind bow-shocks are not detected for the majority of these OB-runaway systems: is this due to the IRAS sensitivity, the system's space velocity, the stellar-wind properties, or the height above the galactic plane? It turns out that none of these suggested causes can explain the low detection rate (~40%). We propose that the conditions of the interstellar medium mainly determine whether a wind bow-shock is formed or not. In hot, tenuous media (like inside galactic superbubbles) the sound speed is high (~100 km/s), such that many runaways move at subsonic velocity through a low-density medium, thus preventing the formation of an observable bow-shock. Superbubbles are expected (and observed) around OB associations, where the OB-runaway stars were once born. Turning the argument around, we use the absence (or presence) of wind bow-shocks around OB runaways to probe the physical conditions of the interstellar medium in the solar neighbourhood.

Fredrik Huthoff; Lex Kaper

2001-12-18T23:59:59.000Z

56

EIS-0432: Department of Energy Loan Guarantee for Medicine Bow Gasification and Liquefaction Coal-to-Liquids, Carbon County, Wyoming  

Broader source: Energy.gov [DOE]

DOE is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to Medicine Bow Fuel & Power LLC (MBFP), a wholly-owned subsidiary of DKRW Advanced Fuels LLC. MBFP submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 to support the construction and startup of the MBFP coal-to-liquids facility, a coal mine and associated coal handling facilities.

57

Desulfurization of heavy oil  

Science Journals Connector (OSTI)

Strategies for heavy oil desulfurization were evaluated by reviewing desulfurization literature and critically assessing the viability of the various methods for heavy oil. The desulfurization methods includin...

Rashad Javadli; Arno de Klerk

2012-03-01T23:59:59.000Z

58

Mechanisms Governing the Persistence and Diurnal Cycle of a Heavy Rainfall Corridor  

Science Journals Connector (OSTI)

Observations and convection-permitting simulations are used to study a 12-day warm-season heavy precipitation corridor over the central U.S. plains and Mississippi River valley regions. Such precipitation corridors, defined by narrow latitudinal ...

Stanley B. Trier; Christopher A. Davis; Richard E. Carbone

2014-11-01T23:59:59.000Z

59

Red River Compact (Texas)  

Broader source: Energy.gov [DOE]

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

60

Heavy metal biosensor  

DOE Patents [OSTI]

Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

2014-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Scenic Rivers Act (Virginia)  

Broader source: Energy.gov [DOE]

Virginia Scenic Rivers Programs intent is to identify, designate and help protect rivers and streams that possess outstanding scenic, recreational, historic and natural characteristics of...

62

Platte River Cooperative Agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Platte River Cooperative Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY,...

63

River Basin Commissions (Indiana)  

Broader source: Energy.gov [DOE]

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

64

Maine Rivers Policy (Maine)  

Broader source: Energy.gov [DOE]

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as outstanding...

65

Project #31: Connecticut River  

Science Journals Connector (OSTI)

GEOMORPHIC SETTING: At the project location, the Connecticut River has an annual average discharge of...

Wendi Goldsmith; Donald Gray; John McCullah

2014-01-01T23:59:59.000Z

66

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

December 10, 2010 December 10, 2010 CX-004837: Categorical Exclusion Determination Measurement of Compressive Strength CX(s) Applied: B3.6 Date: 12/10/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office December 7, 2010 CX-004826: Categorical Exclusion Determination Piezometer Well Installation for 1,4-Dioxane Monitoring CX(s) Applied: B3.1 Date: 12/07/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office December 7, 2010 CX-004824: Categorical Exclusion Determination Dismantle and Remove Tank 6 Riser 7 for Waste Determination (WD) Sampling CX(s) Applied: B1.3 Date: 12/07/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office December 7, 2010 CX-004823: Categorical Exclusion Determination Consolidation of K- and L-Area Heavy Water in C-Area

67

Large-river delta-front estuaries as natural recorders of global environmental change  

Science Journals Connector (OSTI)

...coincides with the maximum rates of oil and gas extraction from the lower deltaic...fluxes of sediment through the Missouri-Mississippi River system...and chlorophyll in the lower Missouri River, 19841998 . J Freshwater Ecol...Refrey JH Shokes RF ( 1980 ) Heavy metal inputs to Mississippi...

Thomas S. Bianchi; Mead A. Allison

2009-01-01T23:59:59.000Z

68

Savannah River Site Removes Dome, Opening Reactor for Recovery Act  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Removes Dome, Opening Reactor for Recovery Act Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning American Recovery and Reinvestment Act workers achieved a significant milestone in the decommissioning of a Cold War reactor at the Savannah River Site this month after they safely removed its rusty, orange, 75-foot-tall dome. With the help of a 660-ton crane and lifting lugs, the workers pulled the 174,000-pound dome off the Heavy Water Components Test Reactor, capping more than 16 months of preparations. Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning More Documents & Publications Recovery Act Changes Hanford Skyline with Explosive Demolitions Recovery Act Workers Add Time Capsule Before Sealing Reactor for Hundreds

69

Exploiting heavy oil reserves  

E-Print Network [OSTI]

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen the potential of heavy oil 8/9 Taking the legal lessons learned in the north Sea to a global audience 10 potential Exploiting heavy oil reserves Aberdeen: A community of science AT WORK FOR THE ENERGY SECTOR ISSUE

Levi, Ran

70

Effect of drought and fires on the quality of water in Lithuanian rivers Hydrology and Earth System Sciences, 7(3), 423427 (2003) EGU  

E-Print Network [OSTI]

years in Lithuanian rivers. Such a sudden increase in heavy metal pollution reduces the value of any of secondary heavy metal pollution (Crossland and LaPoint, 1992). These processes may make water bodies and September 2002, concentrations of heavy metals (copper, lead, and zinc) were 21-74% more than in previous

Boyer, Edmond

71

AE AURIGAE: FIRST DETECTION OF NON-THERMAL X-RAY EMISSION FROM A BOW SHOCK PRODUCED BY A RUNAWAY STAR  

SciTech Connect (OSTI)

Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter of two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30'' northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscattering of infrared photons from dust in the shock front.

Lopez-Santiago, J.; Pereira, V.; De Castro, E. [Dpto. de Astrofisica y CC. de la Atmosfera, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Miceli, M.; Bonito, R. [Dipartimento di Fisica, Universita di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Del Valle, M. V.; Romero, G. E. [Instituto Argentino de Radioastronomia (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina); Albacete-Colombo, J. F. [Centro Universitario Regional Zona Atlantica (CURZA), Universidad Nacional del COMAHUE, Monsenor Esandi y Ayacucho, 8500 Viedma, Rio Negro (Argentina); Damiani, F. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy)

2012-09-20T23:59:59.000Z

72

Development of a HEC-HMS model to inform river gauge placement for a flood early warning system in Uganda  

E-Print Network [OSTI]

Communities in the downstream region of the Manafwa River Basin in eastern Uganda experience floods caused by heavy precipitation upstream. The Massachusetts Institute of Technology (MIT) has partnered with the Red Cross ...

Kaatz, Joel Alan

2014-01-01T23:59:59.000Z

73

Pecos River Compact (Texas)  

Broader source: Energy.gov [DOE]

This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

74

Turbulent Rivers Bjorn Birnir  

E-Print Network [OSTI]

) function gives rise to Hack's law [16]; stating that the length of the main river, in mature river basins, scales with the area of the basin l Ah, h = 0.568 being Hack's exponent. 1 Introduction The flow]. One of the best known scaling laws of river basins is Hack's law [16] that states that the area

Birnir, Björn

75

Heavy metal removal and recovery using microorganisms  

SciTech Connect (OSTI)

Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

1991-02-01T23:59:59.000Z

76

HEAVY-DUTYDIEGRINDERS EXTRAROBUSTERECTIFIEUSESPOURMATRICES  

E-Print Network [OSTI]

HEAVY-DUTYDIEGRINDERS EXTRAROBUSTERECTIFIEUSESPOURMATRICES HEAVYDUTYRECTIFICADORDEMATRICES OPERATOR tool. Keep cord away from heat, oil, sharp edges, or moving parts. Damaged or entangled cords increase

Kleinfeld, David

77

Bioconversion of Heavy oil.  

E-Print Network [OSTI]

??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to (more)

Steinbakk, Sandra

2011-01-01T23:59:59.000Z

78

Savannah River Site - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Savannah River Site Review Reports 2013 Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation, November 2013 Independent Oversight Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013 Independent Oversight Review of the Employee Concerns Program at the Savannah River Operations Office, July 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project, January 2013 Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design, January 2013 Activity Reports 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design, May 2013

79

Pesticide and heavy metal residues in Louisiana river otter  

E-Print Network [OSTI]

chromatography. Hercury levels averaged 1. 29 porn in liver (N=100) and 3. 88 ppm in hair (N=24), Liver and hair mercury residues were highly correlated (r=0. 98). Fetal whole body mercury levels averaged 0. 07 ppm (N=4). Fetal and maternal mercury levels... correlations between ani- mal weights and residue levels were observed for mercury, dieldrin, and mirex. There were no apparent relationships between residue levels of mercury and liver weight or liver:carcass weight ratio. There was no significant...

Beck, Debra Lynn

2012-06-07T23:59:59.000Z

80

Office of River Protection (ORP) and Washingotn River Protection Solutions,  

Broader source: Energy.gov (indexed) [DOE]

Office of River Protection (ORP) and Washingotn River Protection Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project The Mission of the Office of River Protection is to safely retrieve and treat Hanford's tank waste and close the Tank Farms to protect the Columbia River. Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project More Documents & Publications 2011 Annual Workforce Analysis and Staffing Plan Report - Office of River Protection Consent Order, Washington River Protection Solutions, LLC - NCO-2011-01

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Columbia River Treaty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an understanding of the implications for post-2024 Treaty planning and Columbia River operations. The joint effort by the Entities to conduct initial post-2024 modeling and...

82

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of lab building SREL Home Faculty and Scientists Research Technical Reports Assessment of Radionuclide Monitoring in the CSRA Savannah River NERP Research Opportunities Field Sites...

83

Quarkonia and heavy flavors at the LHC  

E-Print Network [OSTI]

Perspectives for quarkonia and heavy flavors measurements in heavy ion collisions at LHC are reviewed

P. Crochet

2005-03-14T23:59:59.000Z

84

LOWER PASSAIC RIVER SEDIMENT POLLUTION STUDY USING GIS, NEW JERSEY, USA.  

SciTech Connect (OSTI)

The Passaic River is located in the New Jersey-New York metropolitan area. This river has been heavily polluted by dioxins, PAHs, PCBs and heavy metals due to agricultural, industrial activities, and urbanization. Contaminated sediments in the Passaic River have received considerable attention because contaminants (metals, PCBs. PAHs, dioxins) in the sediments have potential to release into the aquatic system and air through diffusion and/or volatilization, causing human health hazards. Identification of high concentration areas of these Contaminants in the river-estuarine system is critical to the Passaic River environmental restoration and watershed protection. In this study, we analyzed portion of 10 years (1991-2000) data using Geographic Information Systems (GIS) as a tool to study the distributions of contaminants in the sediments. The results from this study provide important information for developing environmental management strategies for the lower Passaic River system.

FENG,H.; ONWUEME,V.; JASLANEK,W.J.; STERN,E.A.; JONES,K.W.

2005-04-01T23:59:59.000Z

85

Schlumberger soundings in the Upper Raft River and Raft River...  

Open Energy Info (EERE)

Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Abstract In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity...

86

Savannah River | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

River River Savannah River Following are compliance agreements for the Savannah River Site. Also included are short summaries of the agreements. Natural Resources Defense Council Consent Decree, May 26, 1988 Natural Resources Defense Council Consent Decree, May 26, 1988 Summary Savannah River Site Consent Order 99-155-W, October 11, 1999 Savannah River Site Consent Order 99-155-W, October 11, 1999 Summary Savannah River Site Consent Order 85-70-SW, November 7, 1985 Savannah River Site Consent Order 85-70-SW, November 7, 1985 Summary Savannah River Site Consent Order 95-22-HW, September 29, 1995 Savannah River Site Consent Order 95-22-HW, September 29, 1995 Summary Savannah River Site Consent Order 99-21-HW, July 13, 1999 Savannah River Site Consent Order 99-21-HW, July 13, 1999 Summary

87

Savannah River | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Savannah River Savannah River Following are compliance agreements for the Savannah River Site. Also included are short summaries of the agreements. Natural Resources Defense Council Consent Decree, May 26, 1988 Natural Resources Defense Council Consent Decree, May 26, 1988 Summary Savannah River Site Consent Order 99-155-W, October 11, 1999 Savannah River Site Consent Order 99-155-W, October 11, 1999 Summary Savannah River Site Consent Order 85-70-SW, November 7, 1985 Savannah River Site Consent Order 85-70-SW, November 7, 1985 Summary Savannah River Site Consent Order 95-22-HW, September 29, 1995 Savannah River Site Consent Order 95-22-HW, September 29, 1995 Summary Savannah River Site Consent Order 99-21-HW, July 13, 1999 Savannah River Site Consent Order 99-21-HW, July 13, 1999 Summary

88

Process for removing heavy metal compounds from heavy crude oil  

DOE Patents [OSTI]

A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

1991-01-01T23:59:59.000Z

89

River Edge Redevelopment Zone (Illinois)  

Broader source: Energy.gov [DOE]

The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

90

The Mysterious Sickle Object in the Carina Nebula: A stellar wind induced bow shock grazing a clump?  

E-Print Network [OSTI]

Optical and near-infrared images of the Carina Nebula show a peculiar arc-shaped feature, which we call the "Sickle", next to the B-type star Trumpler 14 MJ 218. We use multi-wavelength observations to explore and constrain the nature and origin of the nebulosity. Using sub-mm data from APEX/LABOCA as well as Herschel far-infrared maps, we discovered a dense, compact clump with a mass of ~ 40 Msun located close to the apex of the Sickle. We investigate how the B-star MJ 218, the Sickle, and the clump are related. Our numerical simulations show that, in principle, a B-type star located near the edge of a clump can produce a crescent-shaped wind shock front, similar to the observed morphology. However, the observed proper motion of MJ 218 suggest that the star moves with high velocity (~ 100 km/s) through the ambient interstellar gas. We argue that the star is just about to graze along the surface of the clump, and the Sickle is a bow shock induced by the stellar wind, as the object moves supersonically through...

Ngoumou, Judith; Ratzka, Thorsten; Burkert, Andreas

2013-01-01T23:59:59.000Z

91

A Textbook Example of a Bow Shock in the Merging Galaxy Cluster 1E0657-56  

E-Print Network [OSTI]

The Chandra image of the merging, hot galaxy cluster 1E0657-56 reveals a bow shock propagating in front of a bullet-like gas cloud just exiting the disrupted cluster core. This is the first clear example of a shock front in a cluster. From the jumps in the gas density and temperature at the shock, the Mach number of the bullet-like cloud is 2-3. This corresponds to a velocity of 3000-4000 km/s relative to the main cluster, which means that the cloud traversed the core just 0.1-0.2 Gyr ago. The 6-7 keV "bullet" appears to be a remnant of a dense cooling flow region once located at the center of a merging subcluster whose outer gas has been stripped by ram pressure. The bullet's shape indicates that it is near the final stage of being destroyed by ram pressure and gas dynamic instabilities, as the subcluster galaxies move well ahead of the cool gas. The unique simplicity of the shock front and bullet geometry in 1E0657-56 may allow a number of interesting future measurements. The cluster's average temperature is 14-15 keV but shows large spatial variations. The hottest gas (T>20 keV) lies in the region of the radio halo enhancement and extensive merging activity involving subclusters other than the bullet.

M. Markevitch; A. H. Gonzalez; L. David; A. Vikhlinin; S. Murray; W. Forman; C. Jones; W. Tucker

2001-10-22T23:59:59.000Z

92

THE MYSTERIOUS SICKLE OBJECT IN THE CARINA NEBULA: A STELLAR WIND INDUCED BOW SHOCK GRAZING A CLUMP?  

SciTech Connect (OSTI)

Optical and near-infrared images of the Carina Nebula show a peculiar arc-shaped feature, which we call the ''Sickle'', next to the B-type star Trumpler 14 MJ 218. We use multi-wavelength observations to explore and constrain the nature and origin of the nebulosity. Using submillimeter data from APEX/LABOCA as well as Herschel far-infrared maps, we discovered a dense, compact clump with a mass of {approx}40 M{sub Sun} located close to the apex of the Sickle. We investigate how the B star MJ 218, the Sickle, and the clump are related. Our numerical simulations show that, in principle, a B-type star located near the edge of a clump can produce a crescent-shaped wind shock front, similar to the observed morphology. However, the observed proper motion of MJ 218 suggests that the star moves with high velocity ({approx}100 km s{sup -1}) through the ambient interstellar gas. We argue that the star is just about to graze along the surface of the clump, and the Sickle is a bow shock induced by the stellar wind, as the object moves supersonically through the density gradient in the envelope of the clump.

Ngoumou, Judith; Preibisch, Thomas; Ratzka, Thorsten; Burkert, Andreas, E-mail: ngoumou@usm.lmu.de [Universitaets-Sternwarte Muenchen, Ludwig-Maximilians-Universitaet, Scheinerstr.1, D-81679 Muenchen (Germany)

2013-06-01T23:59:59.000Z

93

The Nation's Rivers  

Science Journals Connector (OSTI)

...task of water quality assessment." Such interpretation...environment demands continuing assessment and interpretation...pro-cesses active in river systems and hence such measures...character of many river systems. To date, observations...money, observational tools must be designed to...

M. Gordon Wolman

1971-11-26T23:59:59.000Z

94

Heavy Hybrid mesons Masses  

E-Print Network [OSTI]

We estimate the ground state masses of the heavy hybrid mesons using a phenomenological QCD-type potential. 0^{- -},1^{- -},0^{- +},1^{- +} and 0^{+ -} J^{PC} states are considered.

F. Iddir; L. Semlala

2006-11-13T23:59:59.000Z

95

HEAVY ION INERTIAL FUSION  

E-Print Network [OSTI]

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

96

Predicting the rivers blue line for fish conservation  

Science Journals Connector (OSTI)

...Basin (VRB), a tributary to the lower Colorado River that has been the poster child...rivers like the San Pedro River (also a Colorado River tributary in Arizona), citizen...reaches with zero flows (i.e., during floods) and hence colonize parts of the distant...

John L. Sabo

2014-01-01T23:59:59.000Z

97

Chapter 1 - Refining Heavy Oil and Extra-heavy Oil  

Science Journals Connector (OSTI)

The definitions of heavy oil, extra-heavy oil, and tar sand bitumen are inadequate insofar as the definitions rely upon a single physical property to define a complex feedstock. This chapter presents viable options to the antiquated definitions of the heavy feedstocks (heavy oil, extra-heavy oil, and tar sand bitumen) as well as an introduction to the various aspects of heavy feedstock refining in order for the reader to place each feedstock in the correct context of properties, behavior, and refining needs.

James G. Speight

2013-01-01T23:59:59.000Z

98

Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

99

Sioux River Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Sioux River Ethanol LLC Jump to: navigation, search Name: Sioux River Ethanol LLC Place: Hudson, South Dakota Zip: 57034 Product: Farmer owned ethanol producer, Sioux River Ethanol...

100

Enforcement Letter, Westinghouse Savannah River Company - April...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Company - July 21, 1998 Enforcement Letter, Westinghouse Savannah River Company - March 29, 2000 Enforcement Letter, Savannah River Ecology Laboratory - June 7, 2000...

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act  

Broader source: Energy.gov (indexed) [DOE]

Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota) Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting

102

PHYTOEXTRACTION OF HEAVY METALS  

E-Print Network [OSTI]

) Type of phytoremediation Cost effective form of environmental remediation (Glass 1999) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al -using hyperaccumulator plant biomass to produce a bio-ore for commercial use -Li et al. look at using Ni

Blouin-Demers, Gabriel

103

Historical trends of metal pollution recorded in the sediments of the Culiacan River Estuary, Northwestern Mexico  

E-Print Network [OSTI]

Historical trends of metal pollution recorded in the sediments of the Culiacan River Estuary indicated a slight pollution by all the trace metals examined, although levels of enrichment for Ni and Pb) is strongly recommended. # 2002 Elsevier Science Ltd. All rights reserved. 1. Introduction Heavy metals

Long, Bernard

104

NETL: Ambient Monitoring - Upper Ohio River Valley Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upper Ohio River Valley Project Upper Ohio River Valley Project In cooperation with key stakeholders including EPA, local and state environmental agencies, industry, and academia, the U.S. Department of Energy (DOE) has established the Upper Ohio River Valley Project (UORVP), a network for monitoring and characterizing PM2.5 in the Upper Ohio River Valley. This region was chosen because it has a high density of coal-fired electric utilities, heavy industries (e.g. coke and steel making), light industry, and transportation emission sources. It is also ideally situated to serve as a platform for the study of interstate pollution transport issues. This region, with its unique topography (hills and river valleys) as well as a good mix of urban and rural areas, has a high population of elderly who are susceptible to health impacts of fine particulate as well as other related environmental issues (e.g., acid rain, Hg deposition, ozone). A world-class medical research/university system is also located in the region, which will facilitate the subsequent use of the air quality data in studies of PM2.5 health effects.

105

Sediment chemistries and chironomid deformities in the Buffalo River (NY)  

SciTech Connect (OSTI)

The authors examined the surficial sediment chemistry (heavy metals) and the frequency of chironomid (Diptera) larvae mouthpart deformities from multiple PONAR grabs samples at each of 20 sites along the Buffalo River (NY) area of concern (AOC). Because of the potential for patchy invertebrate distribution and high variance in sediment chemistry, repeated spatial and temporal sampling is important to obtain a better integrated picture of contamination in rivers. The findings suggest that the Buffalo River has one of the highest percentages of deformed chironomids in AOC`s of the Great Lakes basin. One river site that was traditionally thought to be a chemical hot spot was less contaminated than another downstream section. At another site, sediment concentrations for V., Mn and AS appeared to be strongly associated with the proximity of combined sewer overflows from a region which is primarily residential. Interestingly, a demonstration project of the US Army Corps of Engineers, during which three types of dredges were used to carefully remove upper sediments from two different short reaches along the river, seemed to have no significant impact on proximate sediment chemistries or biota.

Stewart, K.M.; Diggins, T.P. [State Univ. of New York, Buffalo, NY (United States). Dept. of Biological Science

1994-12-31T23:59:59.000Z

106

River Protection.PDF  

Broader source: Energy.gov (indexed) [DOE]

cc: cc: DOE/IG-0506 I N S P E C T I O N R E P O R T U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS I N S P E C T I O N O F SELECTED ASPECTS OF THE OFFICE OF RIVER PROTECTION PERFORMANCE-BASED INCENTIVE PROGRAM JUNE 2001 U.S. DEPARTMENT OF ENERGY Washington, DC 20585 June 14, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman /s/ Inspector General SUBJECT: INFORMATION: Report on "Inspection of Selected Aspects of the Office of River Protection Performance-Based Incentive Program" BACKGROUND The Office of River Protection (ORP), which reports to the Office of Environmental Management, is responsible for remediation of the radioactive waste stored in tanks at the Hanford Site in the State of Washington. For Fiscal Year (FY) 2000, ORP established 26 performance-based contract

107

PHENIX recent heavy flavor results  

E-Print Network [OSTI]

Cold nuclear matter (CNM) effects provide an important baseline for the interpretation of data in heavy ion collisions. Such effects include nuclear shadowing, Cronin effect, and initial patron energy loss, and it is interesting to study the dependence on impact parameter and kinematic region. Heavy quark production is a good measurement to probe the CNM effects particularly on gluons, since heavy quarks are mainly produced via gluon fusions at RHIC energy. The PHENIX experiment has experiment has ability to study the CNM effects by measuring heavy quark production in $d$$+$Au collisions at variety of kinematic ranges. Comparisons of heavy quark production at different rapidities allow us to study modification of gluon density function in the Au nucleus depending on momentum fraction. Furthermore, comparisons to the results from heavy ion collisions (Au$+$Au and Cu$+$Cu) measured by PHENIX provide insight into the role of CNM effects in such collisions. Recent PHENIX results on heavy quark production are discussed.

Sanghoon Lim for the PHENIX collaboration

2014-02-28T23:59:59.000Z

108

Rivanna River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

109

Relativistic Heavy Ion Collider  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider managed for the U.S. Department of Energy by Brookhaven Science Associates, founded by Stony Brook University and Battelle. managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle 07/07 Brookhaven National Laboratory Funded by the U.S. Department of Energy, Brookhaven National Laboratory is a multipurpose research institution located on a 5,300-acre site on Long Island, New York. Six Nobel Prize-winning discoveries have been made at Brookhaven Lab. The Laboratory operates large-scale scientific facilities and performs research in physics, chemistry, biology, medicine, applied science, and

110

Characterizing Heavy Ion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heavy Ion Heavy Ion Reactions in the 1980's Is there Treasure at the end of the Rainbow? & What happens and how do different modes compete? John Schiffer One of the three research areas for ATLAS, as stated in a 1984 document to Congress: Are there some new marvelous symmetries, hidden in resonances in heavier nuclei, beyond 12 C+ 12 C and its immediate vicinity? (s.c. linac work, pre-ATLAS) Other attempts to chase the rainbow 180 o elastic scattering of 12 C on 40 Ca shows structure Fusion of 16 O on 40 Ca does not. In the end, it seemed that these structures were sometimes present in alpha-particle nuclei, but almost never in others. Some optimists, continued the pursuit. We also looked at the total fusion cross section in systems that showed resonances in scattering.

111

Detecting heavy quarks  

SciTech Connect (OSTI)

In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10/sup 32/ cm/sup -2/ sec/sup -1/. Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system. (WHK)

Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.

1983-01-01T23:59:59.000Z

112

Ecotoxicology | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River NERP Research Opportunities Field Sites Data Research Facilities Low Dose Irradiation Facility Tritium Irrigation Facility Microsatellite Development Education...

113

Heavy Ions - Cyclotron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heavy Ions Heavy Ions Heavy ions used at the BASE Facility are accelerated in the form of "cocktails," named because of the fact that several heavy ions with the same mass-to-charge ratio are sent into the Cyclotron, which accelerates the ions while acting as a precision mass separator. The Control Room Operator then uses Cyclotron frequency to select only the desired ion, a process that takes about 2 minutes. We provide four standard cocktails: 4.5, 10, 16, and 30 MeV/nucleon. Depending on the cocktail, LETs from 1 to 100 MeV/(mg/cm^2) and flux levels of up to 1E7 ions/cm2-sec are available. Parts are tested in our vacuum chamber, and can be remotely positioned horizontally, vertically, or rotationally (y and z axes) with the motion table. An alignment laser is available to ensure the part is in the center of the beam. Mounting hardware is readily available. 12xBNC (F-F), 2x25-pin D (F-M or M-F), 4x40-pin flat ribbon (M-M), 4x50-pin flat ribbon (M-M), 12xSMA (F-F), and 2xEthernet vacuum feedthroughs are mounted upon request. (The 4x40-pin and 4x50-pin flat ribbon connectors are wired straight across, so you will need a F-F adapter to correct the pin numbers to normal.) Holes are provided through the cave shielding blocks for connecting additional test equipment, with a distance of approximately 10 feet from vacuum feedthrough to the top of the shielding block.

114

Utah Heavy Oil Program  

SciTech Connect (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

115

River restoration Ellen Wohl,1  

E-Print Network [OSTI]

, massive expenditures, and the burgeoning industry of aquatic and riparian restoration, river ecosystems. Introduction: Problem Statement [2] Continuing degradation of river ecosystems and loss of aquatic biodiversityRiver restoration Ellen Wohl,1 Paul L. Angermeier,2 Brian Bledsoe,3 G. Mathias Kondolf,4 Larry Mac

Poff, N. LeRoy

116

Chao Phraya River  

Science Journals Connector (OSTI)

the river flow during low flow in January and 4% during high flow conditions in July 2004. The unit shoreline ...... since the water first became enriched in radium isotopes assuming no ... uranium-series isotopes (223Ra and 226Ra), estimating radium ages .... inventory into concentration by dividing by the water depth, which

2006-08-16T23:59:59.000Z

117

Condamine River Meteor Zamia  

E-Print Network [OSTI]

CONNORS Cape Townshend Townshend Island Island Long Broad Sound Condamine River Maran oa Comet Isaac Daws Roper Nogoa Ca llide Bungeworgorai North Balmy L ogan Denison L o t us Buck land Con ciliation Humb oldt Elphinstone Dam Eungella Dam R Ck Nebo RomaAmby Wowan Warra Miles Moura Dingo Comet Alpha Banana Rannes Marmor

Greenslade, Diana

118

Savannah River Site Robotics  

ScienceCinema (OSTI)

Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

None

2012-06-14T23:59:59.000Z

119

The Nation's Rivers  

Science Journals Connector (OSTI)

...soil erosion and the need for soil conserva-tion were first clearly...residuals accumu-lated in soils, vegetation, and other organisms...from the Potomac River near Washing-ton, D.C., and doubtless...Ruhe and R. B. Daniels, J. Soil Water Conserv. 20, 52 (1965...

M. Gordon Wolman

1971-11-26T23:59:59.000Z

120

River meandering dynamics  

Science Journals Connector (OSTI)

The Ikeda, Parker, and Sawai river meandering model is reexamined using a physical approach employing an explicit equation of motion. For periodic river shapes as seen from above, a cross-stream surface elevation gradient creates a velocity shear that is responsible for the decay of small-wavelength meander bends, whereas secondary currents in the plane perpendicular to the downstream direction are responsible for the growth of large-wavelength bends. A decay length D=H/2Cf involving the river depth H and the friction coefficient Cf sets the scale for meandering, giving the downstream distance required for the fluid velocity profile to recover from changes in the channel curvature. Using this length scale and a time scale T, we explicitly trace the observed length scale invariance to the equations of motion, and predict similar time and velocity scale invariances. A general time-dependent nonlinear modal analysis for periodic rivers reveals that modes higher than the third mode are needed to describe upstream migration of bend apexes just before oxbow cutoff, and are important to accurate calculations of the time and sinuosity at cutoff.

Boyd F. Edwards and Duane H. Smith

2002-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

INL '@work' heavy equipment mechanic  

ScienceCinema (OSTI)

INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

Christensen, Cad

2013-05-28T23:59:59.000Z

122

RHIC | Relativistic Heavy Ion Collider  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

breakthrough accelerator could collide electrons with heavy ions or protons at nearly the speed of light to create "snapshots" of the force binding all visible matter. Accelerator...

123

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy...

124

OXFORD BIBLIOGRAPHIES IN ECOLOGY "HEAVY METAL TOLERANCE"  

E-Print Network [OSTI]

cellular mechanisms affected by heavy metals is Bánfalvi 2011. Pollution by heavy metals is an important environmental problem, and sources that focus on heavy metal pollution often contain information about heavyOXFORD BIBLIOGRAPHIES IN ECOLOGY "HEAVY METAL TOLERANCE" By Nishanta Rajakaruna and Robert S. Boyd

Rajakaruna, Nishanta

125

Rheological properties of heavy oils and heavy oil emulsions  

SciTech Connect (OSTI)

In this study, the author investigated the effects of a number of process variables such as shear rate, measurement temperature, pressure, the influence of pretreatment, and the role of various amounts of added water on the rheology of the resulting heavy oil or the emulsion. Rheological properties of heavy oils and the corresponding emulsions are important from transportation and processing standpoints.

Khan, M.R. [Texaco, Inc., Beacon, NY (United States). Fuels and Lubricants Technology Dept.

1996-06-01T23:59:59.000Z

126

The south central Texas heavy rain event of October 1998: an MM5 simulation and diagnosis of convective initiation  

E-Print Network [OSTI]

During the weekend of 17-18 October 1998, extremely heavy rainfall over south central Texas resulted in widespread flash flooding and numerous river floods. Southern Hays County received 760 mm of rainfall, and an area of 18,000 km recorded over...

Scott, Richard Kevin

2001-01-01T23:59:59.000Z

127

Savannah River Site K-Reactor Probabilistic Safety Assessment  

SciTech Connect (OSTI)

This report gives the results of a Savannah River Site (SRS) K-Reactor Probabilistic Safety Assessment (PSA). Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide useful information to the U. S. Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other DOE programs in Heavy Water Reactor safety.

Brandyberry, M.D.; Bailey, R.T.; Baker, W.H.; Kearnaghan, D.P.; O`Kula, K.R.; Wittman, R.S.; Woody, N.D. [Westinghouse Savannah River Co., Aiken, SC (United States); Amos, C.N.; Weingardt, J.J. [Science Applications International Corp. (United States)

1992-12-01T23:59:59.000Z

128

Savannah River Site - Enforcement Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enforcement Documents Enforcement Documents Savannah River Site Preliminary Notice of Violation issued to Savannah River Nuclear Solutions, LLC related to a Puncture Wound Injury resulting in a Radiological Uptake at the Savannah River Site, July 22, 2011 (NEA-2011-02) Consent Order issued to Parsons Infrastructure & Technology Group, Inc., related to Nuclear Facility Construction Deficiencies and Subcontractor Oversight at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 Enforcement Letter issued to Amer Industrial Technologies, Inc. related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 Enforcement Letter issued to Parsons Technology Development & Fabrication Complex related to Deficiencies in the Fabrication of Safety Significant Embed Plates at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010

129

Heavy oil transportation by pipeline  

SciTech Connect (OSTI)

Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

Gerez, J.M.; Pick, A.R. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

1996-12-31T23:59:59.000Z

130

heavy_oil | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heavy Oil Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Heavy oil is a vast U.S. oil resource that is...

131

Susquehanna River Basin Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

132

Florida Nuclear Profile - Crystal River  

U.S. Energy Information Administration (EIA) Indexed Site

Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

133

RIVER RESEARCH AND APPLICATIONS River Res. Applic. 21: 849864 (2005)  

E-Print Network [OSTI]

to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We under future climate scenarios to describe the extent and type of changes predicted to occur. Daily

Poff, N. LeRoy

134

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network [OSTI]

for a practical fusion power reactor. HIF is the only fusionenter the reactor chamber, and focus Heavy Ion Fusion ontoengineering test reactor. The promise of fusion as a power

Celata, C.M.

2004-01-01T23:59:59.000Z

135

Heavy Ion Collisions at RHIC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Heavy Ion Colliders at Heavy Ion Colliders Theory Drivers & View from LHC Urs Achim Wiedemann CERN PH-TH NSAC Implementation Subcommittee Hearings 7 September 2012 Heavy Ion Physics - Main Tools of Theorists Understanding properties of hot and dense matter from the elementary interactions in QCD High Energy Physics String Theory Computational Physics Fluid Dynamics Dissipative fluid dynamic description * Based on: E-p conservation: 2 nd law of thermodynamics: * Sensitive to properties of matter that are calculated from first principles in quantum field theory - EOS: and sound velocity - transport coefficients: shear , bulk viscosity, conductivities ...

136

Enforcement Letter, Westinghouse Savannah River Company- November 14, 2003  

Broader source: Energy.gov [DOE]

Issued to Westinghouse Savannah River Company related to Criticality Safety Violations at the Savannah River Site

137

Enforcement Letter, Westinghouse Savannah River Company- April 19, 2004  

Broader source: Energy.gov [DOE]

Issued to Westinghouse Savannah River Company related to Employee Reprisal at the Savannah River Site

138

Pennsylvania Scenic Rivers Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pennsylvania Scenic Rivers Program Pennsylvania Scenic Rivers Program Pennsylvania Scenic Rivers Program < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations Siting and Permitting Provider Pennsylvania Department of Conservation and Natural Resources Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the Pennsylvania Scenic Rivers Act). Low dams are permitted on Modified Recreational Rivers, but are not

139

NERPs Definition | Savannah River National Environmental Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERPS: Idaho, Hanford, Los Alamos, Oak Ridge, Fermilab, Nevada, and Savannah River. The Savannah River Site became the first NERP in 1972. Unlike National Parks, NERPs provide a...

140

Overview | Savannah River National Environmental Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology Laboratory (SREL), USDA Forest Service - Savannah River (USFS-SR), and Savannah River National Laboratory (SRNL). As a research unit of UGA, SREL's primary function is...

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Independent Oversight Review, Savannah River Operations Office...  

Energy Savers [EERE]

Savannah River Operations Office - July 2013 Independent Oversight Review, Savannah River Operations Office - July 2013 July 2013 Review of the Employee Concerns Program at the...

142

Independent Activity Report, Savannah River Operation - June...  

Broader source: Energy.gov (indexed) [DOE]

Operation - June 2010 Independent Activity Report, Savannah River Operation - June 2010 June 2010 Savannah River Operations Office Self-Assessment of the Technical Qualification...

143

Independent Activity Report, Savannah River Site - September...  

Office of Environmental Management (EM)

September 2010 Independent Activity Report, Savannah River Site - September 2010 Savannah River Site Salt Waste Processing Facility Effectiveness Review The U.S. Department of...

144

Independent Activity Report, Savannah River Remediation - July...  

Broader source: Energy.gov (indexed) [DOE]

Remediation - July 2010 Independent Activity Report, Savannah River Remediation - July 2010 July 2010 Savannah River Operations Office Integrated Safety Management System Phase II...

145

Independent Oversight Inspection, Savannah River Site, Summary...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site, Summary Report - February 2004 February 2004 Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site...

146

DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS  

SciTech Connect (OSTI)

Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

Mickalonis, J.; Vormelker, P.

2009-07-31T23:59:59.000Z

147

RHIC | Relativistic Heavy Ion Collider  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider Photo of LINAC The Relativistic Heavy Ion Collider (RHIC) is a world-class particle accelerator at Brookhaven National Laboratory where physicists are exploring the most fundamental forces and properties of matter and the early universe. RHIC accelerates beams of particles (e.g., the nuclei of heavy atoms such as gold) to nearly the speed of light, and smashes them together to recreate a state of matter thought to have existed immediately after the Big Bang some 13.8 billion years ago. STAR and PHENIX, two large detectors located around the 2.4-mile-circumference accelerator, take "snapshots" of these collisions to reveal a glimpse of the basic constituents of visible matter, quarks and gluons. Understanding matter at

148

LCLS Heavy Met Outgassing Tests  

SciTech Connect (OSTI)

A Heavy Met that is 95% tungsten, 3% nickel and 2% iron and sintered to 100% density and is Ultra High Vacuum (UHV) compatible is proposed for use as the X-ray slit in the Front End Enclosure and the Fixed Mask for the Linac Coherent Light Source (LCLS). The Heavy Met was tested in the LLNL Vacuum Sciences and Engineering Lab (VSEL) to determine its outgassing rate and its overall compatibility with the vacuum requirements for LCLS.

Kishiyama, K. I.

2010-12-01T23:59:59.000Z

149

The Savannah River Site`s Groundwater Monitoring Program. Second quarter 1994  

SciTech Connect (OSTI)

This document contains information concerning the groundwater monitoring program at Savannah River Plant. The EPD/EMS (environmental protection department/environmental monitoring section) is responsible for monitoring constituents in the groundwater at approximately 135 waste sites in 16 areas at SRS. This report consolidates information from field reports, laboratory analysis, and quality control. The groundwater in these areas has been contaminated with radioactive materials, organic compounds, and heavy metals.

Not Available

1994-11-01T23:59:59.000Z

150

Savannah River Site Homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7/2014 7/2014 SEARCH GO News Releases Video Releases Upcoming Events 12.31.13 Dr. Sam Fink Earns Donald Orth Lifetime Achievement Award 12.31.13 Savannah River Remediation Issues Fiscal Year 2013 Annual Report 12.18.13 Prototype System Brings Advantages of Wireless Technology to Secure Environment CLICK HERE FOR ADDITIONAL NEWS RELEASES CLICK HERE for our email news service, govDELIVERY 2013 PMI Project of the Year Award - Click to play on YouTube 2013 PMI Project of the Year Award Finalist: SRS Recovery Act Project PLAY VIDEO CLICK HERE FOR ADDITIONAL VIDEO RELEASES Enterprise.SRS - Safety and Security begin with me! SRS Status & Emergency Information * Cold War Patriot's Resource Fair - Aiken, SC (04.25.13) * 3rd Annual Small Modular Reactor Conference - Columbia, SC (04.16-17.13)

151

Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.  

SciTech Connect (OSTI)

The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

Hillson, Todd D. [Washington Department of Fish and Wildlife

2009-06-12T23:59:59.000Z

152

Wood River Levee Reconstruction, Madison County, IL  

E-Print Network [OSTI]

Wood River Levee Reconstruction, Madison County, IL 25 October 2006 Abstract: The recommended plan provides for flood damage reduction and restores the original degree of protection of the Wood River Levee-federal sponsor is the Wood River Drainage and Levee District. The Wood River Levee System was authorized

US Army Corps of Engineers

153

The Columbia River Estuary the Columbia River Basin  

E-Print Network [OSTI]

" fish and wildlife in the Columbia River as affected by development and operation of the hydroelectric modified in terms of physical and biological processes. The development and operation of the hydroelectric

154

SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY  

E-Print Network [OSTI]

OF THE SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY NATIONAL of the Savannah River Site National Environmental Research Park Program Publication number: SRO-NERP-2S Printed OF THE SAVANNAH RIVER SITE BY CHARLES E. DAVIS AND LAURA L. JANECEK A PUBLICATION OF THE SAVANNAH RIVER SITE

Georgia, University of

155

Simulation of Sediment and Cesium Transport in the Ukedo River and the Ogi Dam Reservoir during a Rainfall Event using the TODAM Code  

SciTech Connect (OSTI)

The accident at the Fukushima Daiichi Nuclear Power Plant in March 2011 caused widespread environmental contamination. Although decontamination activities have been performed in residential areas of the Fukushima area, decontamination of forests, rivers, and reservoirs is still controversial because of the economical, ecological, and technical difficulties. Thus, an evaluation of contaminant transport in such an environment is important for safety assessment and for implementation of possible countermeasures to reduce radiation exposure to the public. The investigation revealed that heavy rainfall events play a significant role in transporting radioactive cesium deposited on the land surface, via soil erosion and sediment transport in rivers. Therefore, we simulated the sediment and cesium transport in the Ukedo River and its tributaries in Fukushima Prefecture, including the Ogaki Dam Reservoir, and the Ogi Dam Reservoir of the Oginosawa River in Fukushima Prefecture during and after a heavy rainfall event by using the TODAM (Time-dependent, One-dimensional Degradation And Migration) code. The main outcomes are the following: Suspended sand is mostly deposited on the river bottom. Suspended silt and clay, on the other hand, are hardly deposited in the Ukedo River and its tributaries except in the Ogaki Dam Reservoir in the Ukedo River even in low river discharge conditions. Cesium migrates mainly during high river discharge periods during heavy rainfall events. Silt and clay play more important roles in cesium transport to the sea than sand does. The simulation results explain variations in the field data on cesium distributions in the river. Additional field data currently being collected and further modeling with these data may shed more light on the cesium distribution variations. Effects of 40-hour heavy rainfall events on clay and cesium transport continue for more than a month. This is because these reservoirs slow down the storm-induced high flow moving through these reservoirs. The reservoirs play a major role as a sink of sediment and cesium in the river systems. Some amounts of sediment pass through them along with cesium in dissolved and clay-sorbed cesium forms. Effects of countermeasures such as overland decontamination, dam control and sorbent injection were tentatively estimated. The simulation suggested that overland decontamination and sorbent injection would be effective for decreasing the contamination of water in the reservoir and in the river below the dam.

Onishi, Yasuo; Yokuda, Satoru T.; Kurikami, Hiroshi

2014-03-28T23:59:59.000Z

156

Caney River | Open Energy Information  

Open Energy Info (EERE)

River River Jump to: navigation, search Name Caney River Facility Caney River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel Green Power North America Inc. Developer Tradewind Energy LLC Energy Purchaser Tennessee Valley Authority Location Elk County KS Coordinates 37.448424°, -96.425027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.448424,"lon":-96.425027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Marble River | Open Energy Information  

Open Energy Info (EERE)

River River Jump to: navigation, search Name Marble River Facility Marble River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDP Renewables North America LLC Developer EDP Renewables North America LLC Energy Purchaser Merchant Location Churubusco NY Coordinates 44.9406848°, -73.9303307° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9406848,"lon":-73.9303307,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Missouri River Institute Research Symposium  

E-Print Network [OSTI]

.S. Army Corps of Engineers) Corps of Engineers Outreach and Education Programs 11:00 Dan Catlin (Virginia and Pesticides on Amphibians Along the 59-Mile Reach of the Missouri River Posters from various individuals

Sweeney, Mark R.

159

U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Talon Talon (tm) Heavy Hoist Hook and Safety Latch Engineers at the Savannah River Site (SRS) have devised a new design for a latching hoist hook with remote unlatching capabilities. The Talon TM hoist hook and safety latch is designed for lifting heavy loads as well as locking the load in place with virtually no chance of slippage or disengagement of the load until the cargo has been placed in position and is released remotely by the crane operator. Performance benefits Most hooks designed for heavy hoisting and lifting operations are open-ended devices. Consequently, the load being carried is only as secure as the skill of the operator performing the lift. Any sudden stops, shift or change in direction of the load during operation could result in the potential

160

A Better Method for Evaluating Heavy Metal Water Pollution  

E-Print Network [OSTI]

efforts to control heavy metal pollution have focused oncomponent of heavy metal pollution, Dr. Hering found thatthat makes measuring heavy metal pollution a moving target.

Hering, Janet

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Two-dimensional river modeling  

E-Print Network [OSTI]

flow conditions. This thesis investigates the application of a recently developed two- dimensional river model system. The microcomputer version of FESWMS-2DH was developed for the Federal Highway Administration by the U. S. Geological Survey. Four... simulations are used to examine the performance of the two- dimensional river modeling system: flow in a simple channel, flow in a strongly curved channel bend, flow in a meandering creek, and flow in Buckhorn Creek, a single opening bridge crossing of a...

Thompson, James Cameron

2012-06-07T23:59:59.000Z

162

RHIC | Relativistic Heavy Ion Collider  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

Brookhaven National Laboratory Brookhaven National Laboratory search U.S. Department of Energy logo Home RHIC Science News Images Videos For Scientists Björn Schenke 490th Brookhaven Lecture, 12/18 Join Björn Schenke of Brookhaven Lab's Physics Department for the 490th Brookhaven Lecture, titled 'The Shape and Flow of Heavy Ion Collisions,' on Wednesday, Dec. 18, at 4 p.m. in Berkner Hall. droplets Tiny Drops of Hot Quark Soup-How Small Can They Be? New analyses indicate that collisions of small particles with large gold nuclei at the Relativistic Heavy Ion Collider may be serving up miniscule servings of hot quark-gluon plasma. RHIC Physics RHIC is the first machine in the world capable of colliding ions as heavy as gold. The Spin Puzzle RHIC is the world's only machine capable of colliding beams of polarized

163

CMVRTC: Heavy Truck Duty Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

164

Elliptic flow of heavy flavors  

E-Print Network [OSTI]

The propagation of charm and bottom quarks through a ellipsoidal domain of quark gluon plasma has been studied within the ambit of non-equilibrium statistical mechanics. Energy dissipation of heavy quarks by both radiative and collisional processes are taken in to account. The experimental data on the elliptic flow of the non-photonic electrons resulting from the semi-leptonic decays of hadrons containing heavy flavours has been reproduced with the same formalism that has been used earlier to reproduce the nuclear suppression factors. The elliptic flow of the non-photonic electron from heavy meson decays produced in nuclear collisions at LHC and low energy RHIC run have also been predicted.

Das, Santosh K

2010-01-01T23:59:59.000Z

165

Elliptic flow of heavy flavors  

E-Print Network [OSTI]

The propagation of charm and bottom quarks through an ellipsoidal domain of quark gluon plasma has been studied within the ambit of non-equilibrium statistical mechanics. Energy dissipation of heavy quarks by both radiative and collisional processes are taken in to account. The experimental data on the elliptic flow of the non-photonic electrons resulting from the semi-leptonic decays of hadrons containing heavy flavours has been reproduced with the same formalism that has been used earlier to reproduce the nuclear suppression factors. The elliptic flow of the non-photonic electron from heavy meson decays produced in nuclear collisions at LHC and low energy RHIC run have also been predicted.

Santosh K Das; Jan-e Alam

2010-08-16T23:59:59.000Z

166

Pionic Fusion of Heavy Ions  

Science Journals Connector (OSTI)

We report the first experimental observation of the pionic fusion of two heavy ions. The 12C(12C,24Mg)?0 and 12C(12C,24Na)?+ cross sections have been measured to be 20838 and 18284 pb, respectively, at Ecm=137MeV. This cross section for heavy-ion pion production, at an energy just 6 MeV above the absolute energy-conservation limit, constrains possible production mechanisms to incorporate the kinetic energy of the entire projectile-target system as well as the binding energy gained in fusion.

D. Horn; G. C. Ball; D. R. Bowman; W. G. Davies; D. Fox; A. Galindo-Uribarri; A. C. Hayes; G. Savard; L. Beaulieu; Y. Larochelle; C. St-Pierre

1996-09-16T23:59:59.000Z

167

Spontaneous emission of heavy clusters  

Science Journals Connector (OSTI)

The lifetimes of some heavy nuclei relative to the spontaneous emission of various clusters heavier than the alpha particle are estimated with a model extended from the fission theory of alpha decay, showing that this phenomenon is a new manifestation of the nuclear shell structure. A greater probability is obtained for parent-heavy-cluster combinations leading to a magic or almost magic daughter nucleus. The analytical formula obtained allows one to handle a large number of cases to search for new kinds of radioactivities.

D N Poenaru; M Ivascu; A Sandulescu; W Greiner

1984-01-01T23:59:59.000Z

168

Central collisions of heavy ions  

SciTech Connect (OSTI)

This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1990 to September 30, 1991. During this period, our program focuses on particle production at AGS energies, and correlation studies at the Bevalac in nucleus central collisions. We participated in the preparation of letters of intent for two RHIC experiments -- the OASIS proposal and the Di-Muon proposal -- and worked on two RHIC R D efforts -- a silicon strip detector project and a muon-identifier project. A small fraction of time was also devoted to physics programs outside the realm of heavy ion reactions by several individuals.

Fung, Sun-yiu.

1991-10-01T23:59:59.000Z

169

Comments of the Lower Colorado River Authority | Department of...  

Broader source: Energy.gov (indexed) [DOE]

the Lower Colorado River Authority Comments of the Lower Colorado River Authority Comments of the Lower Colorado River Authority on Implementing the National Broadband Plan by...

170

Flambeau River Papers Makes a Comeback with a Revised Energy...  

Office of Environmental Management (EM)

ITP LEADER Case Study: Flambeau River Papers Makes a Comeback With a Revised Energy Strategy Flambeau River Biofuels Demonstration-Scale Biorefinery FlambeauRiverBiofuels.pdf...

171

ITP LEADER Case Study: Flambeau River Papers Makes a Comeback...  

Office of Environmental Management (EM)

Documents & Publications Flambeau River Papers Makes a Comeback with a Revised Energy Strategy Flambeau River Biofuels Demonstration-Scale Biorefinery FlambeauRiverBiofuels.pdf...

172

EA-1692: Red River Environmental Products, LLC Activated Carbon...  

Broader source: Energy.gov (indexed) [DOE]

2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

173

Enforcement Documents - Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the Savannah River Site (EA-2000-08) June 7, 2000 Enforcement Letter, Savannah River Ecology Laboratory - June 7, 2000 Issued to Savannah River Ecology Laboratory related to...

174

Heavy quarks in effective field theories  

E-Print Network [OSTI]

Heavy quark physics serves as a probe to understand QCD, measure standard model parameters, and look for signs of new physics. We study several aspects of heavy quark systems in an effective field theory framework, including ...

Jain, Ambar

2009-01-01T23:59:59.000Z

175

Strangeness signals in heavy ion collisions  

SciTech Connect (OSTI)

The experimental data on strange meson and strange baryon production in relativistic heavy ion collisions are reviewed.

Remsberg, L.P.

1992-11-01T23:59:59.000Z

176

Strangeness signals in heavy ion collisions  

SciTech Connect (OSTI)

The experimental data on strange meson and strange baryon production in relativistic heavy ion collisions are reviewed.

Remsberg, L.P.

1992-01-01T23:59:59.000Z

177

Heavy oils (natural and refined)  

SciTech Connect (OSTI)

This section of the Petroleum and Coal review again contains discussions on the analysis of asphalts, bitumens, tars, and pitches as well as heavy natural and refined oils. The characterization of these heavy (high-boiling) materials impacts the way they are produced, their effect on the processing environment, and their suitability for various end products. The analysis of these heavy materials is becoming increasingly important as crude oil stocks get heavier and larger quantities of high-boiling materials are processed to derive clean lower boiling products. This review covers articles found in the literature in the last two years. This review will cover new or improved analytical procedures and applications to new sources of heavy oils. This review will be subdivided into individual separation or analytical techniques. Combined analytical techniques (e.g., GC-FT-IR) will be included under the technique most emphasized in the article. The review is categorized further by chromatographic techniques, spectroscopic techniques, thermal techniques, and miscellaneous. 71 refs.

Lintelmann, K.A. [Marathon Oil Co., Littleton, CO (United States)

1995-06-15T23:59:59.000Z

178

The Search for Heavy Elements  

ScienceCinema (OSTI)

The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

None

2010-01-08T23:59:59.000Z

179

Fusion and Heavy Ion Reactions  

Science Journals Connector (OSTI)

......February 2004 research-article Articles Fusion and Heavy Ion Reactions David M. Brink...useful for understanding of sub-barrier fusion processes. The Christensen-Winther...potentials like the CW interaction give good fusion cross-sections near and for a few MeV......

David M. Brink

2004-02-01T23:59:59.000Z

180

Heavy quark physics from LEP  

SciTech Connect (OSTI)

A review of some of the latest results on heavy flavor physics from the LEP Collaborations is presented. The emphasis is on B physics, particularly new results and those where discrepancies is given of the many techniques which have been developed to permit these analyses.

Dornan, P.J. [Imperial College of Science Technology and Medicine, London (United Kingdom)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Search for Heavy Elements  

SciTech Connect (OSTI)

The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

2008-04-17T23:59:59.000Z

182

Proton Distribution in Heavy Nuclei  

DOE R&D Accomplishments [OSTI]

It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)

Johnson, M. H; Teller, E.

1953-11-13T23:59:59.000Z

183

Ratios of heavy baryons to heavy mesons in relativistic nucleus-nucleus collisions  

E-Print Network [OSTI]

Heavy baryon/meson ratios Lambda(c)/D(0) and Lambda(b)/(B) over bar (0) in relativistic heavy ion collisions are studied in the quark coalescence model. For heavy baryons, we include production from coalescence of heavy quarks with free light quarks...

Oh, Yongseok; Ko, Che Ming; Lee, Su Houng; Yasui, Shigehiro.

2009-01-01T23:59:59.000Z

184

Canadian River Compact (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Canadian River Compact (Texas) Canadian River Compact (Texas) Canadian River Compact (Texas) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Texas Program Type Siting and Permitting Provider Canadian River Compact Commission The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by

185

Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Savannah River Site Savannah River Site Savannah River Site | June 2011 Aerial View Savannah River Site | June 2011 Aerial View Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of tritium resources; by contributing to the stockpile surveillance program; and by assisting in the development of alternatives for large-scale pit disassembly/conversion capability. SRS also manages excess nuclear materials and supports nuclear nonproliferation initiatives. Environmental stewardship activities include the management, treatment, and disposal of radioactive, hazardous, and mixed wastes. Enforcement April 13, 2010 Consent Order, Parsons Infrastructure & Technology Group, Inc. -

186

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; data; geophysical surveys; Idaho; Raft River geothermal area; surveys; United States; USGS; Well No. 3; well-logging Author(s): Covington, H.R. Published: Open-File Report - U. S. Geological Survey, 1/1/1978 Document Number: Unavailable DOI: Unavailable Exploratory Well At Raft River Geothermal Area (1977) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Deep_drilling_data,_Raft_River_geothermal_area,_Idaho-Raft_River_geothermal_exploration_well_sidetrack-C&oldid=473365"

187

Heavy Quark Production in ep Collisions  

E-Print Network [OSTI]

Heavy Quark Production in ep Collisions o Introduction o Charm Production o Beauty Production o in ep collisions 23 February 2007 2/17 Heavy Flavor Production Boson-Gluon Fusion, dominant process Hard of the proton: #12;G. Leibenguth, Heavy Quarks Production in ep collisions 23 February 2007 3/17 HERA, Electron

188

3, 37453768, 2003 Heavy hydrogen in  

E-Print Network [OSTI]

ACPD 3, 3745­3768, 2003 Heavy hydrogen in the stratosphere T. R¨ockmann et al. Title Page Abstract/3745/ © European Geosciences Union 2003 Atmospheric Chemistry and Physics Discussions Heavy hydrogen Heavy hydrogen in the stratosphere T. R¨ockmann et al. Title Page Abstract Introduction Conclusions

Paris-Sud XI, Université de

189

Heavy oil production from Alaska  

SciTech Connect (OSTI)

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

190

Comparing Emissions Benefits from Regulating Heavy Vehicle Idling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from Regulating Heavy Vehicle Idling Comparing Emissions Benefits from Regulating Heavy Vehicle Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference...

191

Savannah River National Laboratory - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

SRNL Logo SRNL and DOE logo art SRNL Logo SRNL and DOE logo art Top Menu Bar SRNL Update: Embassy Fellows Report A report co-authored by Savannah River National Laboratory Senior Advisory Engineer, Dr. Robert Sindelar, has been released. The report to the Government of Japan - Ministry of the Environment provides observations and recommendations on decontamination work and progress... >>MORE Portable Power Research at SRNL Hadron Technologies, Inc., a microwave technology and systems development and manufacturing company with offices in Tennessee and Colorado, has signed a license for a Hybrid Microwave and Off-Gas Treatment System developed by the Savannah River National Laboratory, the Department of Energy's applied science laboratory located at the Savannah River Site. >>MORE

192

Savannah River Tank Waste Residuals  

Broader source: Energy.gov (indexed) [DOE]

Savannah Savannah River Savannah River Tank Waste Residuals HLW Corporate Board November 6, 2008 1 November 6, 2008 Presentation By Sherri R. Ross Department of Energy Savannah River Operations Office The Issue * How clean is clean? * Ultimate Challenge - Justify highly radioactive radionuclides have been removed to the maximum extent practical? 2 removed to the maximum extent practical? - Building compelling regulatory documentation that will withstand intense scrutiny §3116 Requirements 1. Does not require disposal in deep geological repository 2. Highly radioactive radionuclides removed to the maximum extent practical 3. Meet the performance objectives in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is anticipated that Class C disposal limits will be exceeded, additional

193

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

194

Enforcement Letter, Savannah River Ecology Laboratory- June 7, 2000  

Broader source: Energy.gov [DOE]

Issued to Savannah River Ecology Laboratory related to Radioactive Material Control Deficiencies at the Savannah River Site

195

Open heavy flavor production at RHIC  

E-Print Network [OSTI]

The study of heavy flavor production in relativistic heavy ion collisions is an extreme experimental challenge but provides important information on the properties of the Quark-Gluon Plasma (QGP) created in Au+Au collisions at RHIC. Heavy-quarks are believed to be produced in the initial stages of the collision, and are essential on the understanding of parton energy loss in the dense medium created in such environment. Moreover, heavy-quarks can help to investigate fundamental properties of QCD in elementary p+p collisions. In this work we review recent results on heavy flavor production and their interaction with the hot and dense medium at RHIC.

A. A. P. Suaide

2007-02-16T23:59:59.000Z

196

Flambeau River Biofuels | Open Energy Information  

Open Energy Info (EERE)

Flambeau River Biofuels Flambeau River Biofuels Jump to: navigation, search Name Flambeau River Biofuels Place Park Falls, Wisconsin Sector Biomass Product A subsidiary of Flambeau River Papers LLC that plans to develop a Fischer Tropsch diesel project in Park Falls, Wisconsin that will process residual wood biomass from forest and agricultural sources. References Flambeau River Biofuels[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Flambeau River Biofuels is a company located in Park Falls, Wisconsin . References ↑ "Flambeau River Biofuels" Retrieved from "http://en.openei.org/w/index.php?title=Flambeau_River_Biofuels&oldid=345407" Categories: Clean Energy Organizations

197

Youghiogheny Wild and Scenic River (Maryland)  

Broader source: Energy.gov [DOE]

Portions of the Youghiogheny River are protected under the Scenic and Wild Rivers Act, and development on or near these areas is restricted. COMAR section 08.15.02 addresses permitted uses and...

198

Salinity Gradient Energy at River Mouths  

Science Journals Connector (OSTI)

Salinity Gradient Energy at River Mouths ... River mouths are potentially abundant locations for the exploitation of the clean and renewable salinity gradient energy (SGE) as here perpetually fresh water mixes with saline seawater. ...

Oscar Alvarez-Silva; Christian Winter; Andres F. Osorio

2014-09-03T23:59:59.000Z

199

Critical wavelength for river meandering  

Science Journals Connector (OSTI)

A fully nonlinear modal analysis identifies a critical centerline wave number qc for river meandering that separates long-wavelength bends, which grow to cutoff, from short-wavelength bends, which decay. Exact, numerical, and approximate analytical results for qc rely on the Ikeda, Parker, and Sawai [J. Fluid Mech. 112, 363 (1981)] model, supplemented by dynamical equations that govern the river migration and length. Predictions also include upvalley bend migration at long times and a peak in lateral migration rates at intermediate times. Experimental tests are suggested.

Boyd F. Edwards and Duane H. Smith

2001-03-28T23:59:59.000Z

200

Wild and Scenic Rivers | Open Energy Information  

Open Energy Info (EERE)

Retrieved from "http:en.openei.orgwindex.php?titleWildandScenicRivers&oldid612228" Category: NEPA Resources...

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Columbia River Component Data Evaluation Summary Report  

SciTech Connect (OSTI)

The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

C.S. Cearlock

2006-08-02T23:59:59.000Z

202

Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)  

Broader source: Energy.gov [DOE]

Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

203

Impact and future of heavy oil produciton  

SciTech Connect (OSTI)

Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California's heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

Olsen, D.K, (National Inst. for Petroleum and Energy Research/BDM-Oklahoma Inc., Bartlesville, OK (United States))

1996-01-01T23:59:59.000Z

204

Impact and future of heavy oil produciton  

SciTech Connect (OSTI)

Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California`s heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

Olsen, D.K, [National Inst. for Petroleum and Energy Research/BDM-Oklahoma Inc., Bartlesville, OK (United States)

1996-12-31T23:59:59.000Z

205

SRO -NERP-1 THE SAVANNAH RIVER PLANT  

E-Print Network [OSTI]

AND TREATMENT by Whit Gibbons Savannah River Ecology Laboratory Aiken , South Carolina A PUBLICATION OF EROA 'S SAVANNAH RIVER NATIONAL ENVIRONMENTAL RESEARCH PARK -SEPTEMBER 1977 COPIES MAY BE OBTAINEO FROM SAVANNAHSRO -NERP-1 SNAKES OF THE SAVANNAH RIVER PLANT WITH INFORMATION ABOUT SNAKEBITE PREVENTION

Georgia, University of

206

Atlas of the Columbia River Basin  

E-Print Network [OSTI]

#12;Atlas of the Columbia River Basin Oregon State University Computer-Assisted Cartography Course & GEOVISUALIZATION GROUP UNIVERSITY #12;2013 Oregon State University Atlas of the Columbia River Basin FOREWORDAtlas, Montana, Nevada, Wyoming, and Utah. 2013 Oregon State University Atlas of the Columbia River Basin

Jenny, Bernhard

207

Muon bremsstrahlung on heavy atoms  

Science Journals Connector (OSTI)

The cross section for high energy muon bremsstrahlung on heavy atoms is calculated without the use of the Born approximation. It is shown that the correction to the Born approximation in the region of momentum transfers q of the order of ?c has the same order of magnitude as the well-known correction of Davies, Bethe, and Maximon. It is shown also that these corrections have different signs and nearly compensate each other.

Yu. M. Andreev and E. V. Bugaev

1997-02-01T23:59:59.000Z

208

Central collisions of heavy ions  

SciTech Connect (OSTI)

This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

Fung, Sun-yiu.

1992-10-01T23:59:59.000Z

209

Sediment quality and ecorisk assessment factors for a major river system  

SciTech Connect (OSTI)

Sediment-related water quality and risk assessment parameters for the Columbia River were developed using heavy metal loading and concentration data from Lake Roosevelt (river km 1120) to the mouth and adjacent coastal zone. Correlation of Pb, Zn, Hg, and Cd concentrations in downstream sediments with refinery operations in British Columbia suggest that solutes with K{sub d}`s > 10{sup 5} reach about 1 to 5 {mu}g/g per metric ton/year of input. A low-suspended load (upriver avg. <10 mg/L) and high particle-surface reactivity account for the high clay-fraction contaminant concentrations. In addition, a sediment exposure path was demonstrated based on analysis of post-shutdown biodynamics of a heavy metal radiotracer. The slow decline in sediment was attributed to resuspension, bioturbation, and anthropogenic disturbances. The above findings suggest that conservative sediment quality criteria should be used to restrict additional contaminant loading in the upper drainage basin. The issuance of an advisory for Lake Roosevelt, due in part to Hg accumulation in large sport fish, suggests more restrictive controls are needed. A monitoring strategy for assessing human exposure potential and the ecological health of the river is proposed.

Johnson, V.G. [Westinghouse Hanford Co., Richland, WA (United States); Wagner, J.J. [Pacific Northwest Lab., Richland, WA (United States); Cutshall, N.H. [Oak Ridge National Lab., TN (United States)

1993-08-01T23:59:59.000Z

210

Resilience of river flow regimes  

Science Journals Connector (OSTI)

...Junk WJ Bayley PB Sparks RE ( 1989 ) The flood pulse concept in river-floodplain systems...F Ward JV ( 2000 ) An extension of the flood pulse concept...ZZQQhy2011 Bisbee (AZ) Bisbee (AZ) Summer Boulder Creek Arizona (United States) 98 1984...

Gianluca Botter; Stefano Basso; Ignacio Rodriguez-Iturbe; Andrea Rinaldo

2013-01-01T23:59:59.000Z

211

Resilience of river flow regimes  

Science Journals Connector (OSTI)

...Junk WJ Bayley PB Sparks RE ( 1989 ) The flood pulse concept in river-floodplain systems...F Ward JV ( 2000 ) An extension of the flood pulse concept...summer, autumn, winter Vallecito Creek Colorado (United States) 188 1963 ZZQQhy1997...

Gianluca Botter; Stefano Basso; Ignacio Rodriguez-Iturbe; Andrea Rinaldo

2013-01-01T23:59:59.000Z

212

Independent Activity Report, Washington River Protection Solutions -  

Broader source: Energy.gov (indexed) [DOE]

Washington River Protection Solutions Washington River Protection Solutions - September 2010 Independent Activity Report, Washington River Protection Solutions - September 2010 September 2010 Participation in the Washington River Protection Solutions, LLC Integrated Safety Management System Annual Review The U.S. Department of Energy, Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the review of the Washington River Protection Solutions, LLC Integrated Safety Management System Annual Review for 2010. The review was conducted during the period of August 23 to September 2, 2010, and focused on six functional areas: corrective action management, work planning and control, radiological protection, environmental protection, emergency preparedness, and

213

Schlumberger soundings in the Upper Raft River and Raft River Valleys,  

Open Energy Info (EERE)

soundings in the Upper Raft River and Raft River Valleys, soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Details Activities (1) Areas (1) Regions (0) Abstract: In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the seventy-nine soundings made previously in the Raft River Valley (Zohdy and others, 1975) and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location, number, and azimuth of all 149 Schlumberger sounding stations are presented. The location of the new

214

G. A. Antaki Westinghouse Savannah River Company Savannah River Site  

Office of Scientific and Technical Information (OSTI)

W S R C: M S- 9 5 -0 0 0 8 W S R C: M S- 9 5 -0 0 0 8 Analytical Considerations in the Code Qualification of Piping Systems (U) by G. A. Antaki Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or respnsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark,

215

Neglected heavy leptons at the LHC  

Science Journals Connector (OSTI)

New heavy leptons with standard model gauge couplings have well-determined cross sections for pair production. A standard pattern of mass mixing implies that the most likely decays are ???W?? and ???W?. Interestingly there have been no direct searches for heavy leptons with these decays at the LHC. However comparison with several multilepton searches allows us to set new limits on the heavy lepton masses. Three observed excesses in the signal regions prevent us from setting stronger limits.

B. Holdom and M. Ratzlaff

2014-07-18T23:59:59.000Z

216

Conservation off the Port Bow  

E-Print Network [OSTI]

The Applied Biodiversity Sciences Perspectives Series is a student-directed collection of contributions from graduate student and faculty members of the integrative, NSF-IGERT Applied Biodiversity Sciences (ABS) program at Texas A&M University...

Woodman, Constance

2014-10-07T23:59:59.000Z

217

Overshoots in planetary bow shocks  

Science Journals Connector (OSTI)

... probed by planetary spacecraft so far. These shocks both deflect the supersonic, or supermagnetosonic, solar wind around the planets and heat the ... wind around the planets and heat the solar wind. Part of the incoming ...

C. T. Russell; M. M. Hoppe; W. A. Livesey

1982-03-04T23:59:59.000Z

218

Compositional changes in heavy oil steamflood simulators.  

E-Print Network [OSTI]

??The numerical simulation of heavy oil steamfloods has generally been conducted assuming that the oil is non-volatile. Reservoir simulation has traditionally ignored compositional effect s (more)

Lolley, Christopher Scott

2012-01-01T23:59:59.000Z

219

Adiabatic and Isothermal Compressibilities of Heavy Water  

Science Journals Connector (OSTI)

... ABOUT 50 grams of heavy water supplied by the Norsk Hydro-Elektrisk Kvaelstofaktieselskab as 992 per cent pure has been used in the present ...

S. BHAGAVANTAM; B. SUNDARA RAMA RAO

1937-12-25T23:59:59.000Z

220

Heavy flavor production in the STAR experiment  

E-Print Network [OSTI]

In this paper, recent STAR heavy flavor measurements in proton-proton and heavy-ion collisions are highlighted. We report studies of open charm mesons, reconstructed directly from hadronic decay products, and studies of electrons from semi-leptonic decays of heavy flavor hadrons. We also present J/$\\psi$ measurements via the di-electron decay channel at various collision systems and energies. In Au+Au collisions the energy dependence of J/$\\psi$ production measured at $\\sqrt{s_{NN}}$ = 39, 62.4 and 200 GeV is shown. Finally, prospects of heavy flavor measurements with the STAR detector upgrades are discussed.

Barbara Trzeciak; for the STAR Collaboration

2014-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy  

E-Print Network [OSTI]

-consistent power plant design for a multi- beam induction linac, final focus and chamber propagationThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan Director Heavy-Ion Fusion Virtual National Laboratory Presented to FESAC Workshop on Development Paths

222

Radical scavengers from heavy hydrocarbons  

SciTech Connect (OSTI)

The hydrogen-donating properties of some hydrocarbons form the basis for processes such as coal liquefaction and heavy oil upgrading. However, these hydrocarbons have seldom been used for other purposes, because their potential applications have not been well recognized. Research has indicated that these hydrogen-donating hydrocarbons can be used in important reactions as radical scavengers and have properties particular to those of pure hydrocarbons without functional groups containing heteroatoms. Over years of study researchers have found that pure hydrocarbons with radical-scavenging effects nearly as high as those in conventional hindered phenolic antioxidants can be produced from petroleum, and these hydrogen-donating hydrocarbons exhibit such effects even in oxidative atmospheres (i.e., they function as antioxidants). He has also shown that these mixtures have some properties particular to pure hydrocarbons without functional groups containing heteroatoms, and they`ve seen that a mechanism based on the steric effects appears when these hydrocarbons are used in heavy oil hydroprocessing. Hydrogen-donating hydrocarbons should be a viable resource in many applications. In this article, he presents radical-scavenging abilities, characteristics as pure hydrocarbons, and applications on the basis of the studies.

Kubo, Junichi [Nippon Oil Co. Ltd. (Japan)

1996-10-01T23:59:59.000Z

223

Lead and cadmium concentrations in the hair of fishermen from the Subae River basin, Brazil  

SciTech Connect (OSTI)

Previous studies have shown heavy pollution by lead and cadmium in the Subae River basin, State of Bahia, Brazil, caused by a lead smelter. Concentrations of these metals were determined in scalp hair of fishermen from three riverside towns and from a reference town. Increased levels for both metals were associated with increasing proximity to the smelter. Mean concentrations of lead and cadmium were higher among fishermen with straight hair than among those with curly hair. The effects of hair washing, hair type, and color and age on metal concentrations in fishermen's hair were studied.

Carvalho, F.; Tavares, T.M.; Souza, S.P.; Linhares, P.S.

1984-04-01T23:59:59.000Z

224

Food and feeding habit of barbua belayewi (menon) from a polluted river, Baghdad, Iraq  

SciTech Connect (OSTI)

Gut contents of 217 specimens of B. belayewi were studied. The specimens were collected from Diyala river between September, 1982 and June, 1983. The fish fed moderately during most of the time under investigation. Heavy feeding occurred only in September and December 1982. They were poorly fed only in June, 1983. Organic debris and detritus formed the major bulk of the diet followed by planktonic algae and aquatic plant parts. Zooplankton, parts of aquatic insects and nematodes also occurred occasionally but did not contribute significantly.

Khalaf, A.N.; Al-Jafery, R.; Sadek, S.E.

1988-01-01T23:59:59.000Z

225

Independent Activity Report, Savannah River Operation - June 2010 |  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Operation - June 2010 Savannah River Operation - June 2010 Independent Activity Report, Savannah River Operation - June 2010 June 2010 Savannah River Operations Office Self-Assessment of the Technical Qualification Program The U.S. Department of Energy (DOE), Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the DOE Savannah River Operations Office (DOE-SR) self-assessment of the Technical Qualification Program (TQP). Independent Activity Report, Savannah River Operation - June 2010 More Documents & Publications Independent Oversight Review, Savannah River Operations Office - July 2013 Independent Activity Report, Savannah River Remediation - July 2010 2011 Annual Workforce Analysis and Staffing Plan Report - Savannah River

226

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Operations Savannah River Operations Office Categorical Exclusion Determinations: Savannah River Operations Office Categorical Exclusion Determinations issued by Savannah River Operations Office. DOCUMENTS AVAILABLE FOR DOWNLOAD September 10, 2013 CX-010669: Categorical Exclusion Determination 484-17D Coal Yard Remediation CX(s) Applied: B6.1 Date: 06/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office August 1, 2013 CX-010837: Categorical Exclusion Determination Disassembly, Relocation, and Reassembly of a Metal-framed Quonset Hut CX(s) Applied: B1.22 Date: 08/01/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office August 1, 2013 CX-010836: Categorical Exclusion Determination Subcontractor Roof Repair at 717-12S CX(s) Applied: B1.3

227

The Columbia River System : the Inside Story.  

SciTech Connect (OSTI)

The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

United States. Bonneville Power Administration.

1991-09-01T23:59:59.000Z

228

Wing River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

River Wind Farm River Wind Farm Jump to: navigation, search Name Wing River Wind Farm Facility Wing River Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wing River Wind Farm Developer Wing River Wind Farm Location Hewitt MN Coordinates 46.3254°, -95.0864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.3254,"lon":-95.0864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River  

Broader source: Energy.gov (indexed) [DOE]

to Extend Savannah River Nuclear Solutions Contract at Savannah to Extend Savannah River Nuclear Solutions Contract at Savannah River Site to September 2016 DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River Site to September 2016 September 6, 2012 - 12:00pm Addthis Media Contact Bill Taylor 803-952-8564 bill.taylor@srs.gov Aiken, SC -- The Department of Energy's (DOE) Savannah River Operations Office today exercised its option to extend the current Savannah River Site Management and Operating contract with Savannah River Nuclear Solutions, LLC (SRNS) for an additional 38 months, from August 1, 2013 to September 2016. The SRNS contract was competatviely awareded January 10, 2008. The total value of the SRNS contract with the extension is approximately $8 billion. The current contract provides for management and operations of Savannah

230

Heavy Petroleum Composition. 3. Asphaltene Aggregation  

Science Journals Connector (OSTI)

The ever-increasing worldwide demand for energy has led to the upgrading of heavy crude oil and asphaltene-rich feedstocks becoming viable refining options for the petroleum industry. ... fractions of heavy petroleums were examd. ... changes, introduction of miscible gases and liqs., mixing with diluents and other oils, and, during acid stimulation, hot oiling and other oilfield operations. ...

Amy M. McKenna; Lynda J. Donald; Jade E. Fitzsimmons; Priyanka Juyal; Victor Spicer; Kenneth G. Standing; Alan G. Marshall; Ryan P. Rodgers

2013-01-16T23:59:59.000Z

231

New Zealand Heavy-Water Scheme  

Science Journals Connector (OSTI)

... has decided to withdraw from participation in the Wairakei Scheme. This scheme provided for utilizing geothermal steam for the generation of electric power and for the manufacture of heavy water, ... the heavy-water plant would be much higher than was originally estimated. A company, Geothermal Development, Ltd., was formed for this purpose, and this will be wound up ...

1956-02-04T23:59:59.000Z

232

A Heavy Flavor Tracker for STAR  

SciTech Connect (OSTI)

We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era.

Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow,B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser,F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

2005-03-14T23:59:59.000Z

233

Research and Development Opportunities for Heavy Trucks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1] 1] Introduction Heavy-duty long-haul trucks are critical to the movement of the Nation's freight. These vehicles, which currently consume about 10 percent of the Nation's oil, are characterized by high fuel consumption, fast market turnover, and rapid uptake of new technologies. Improving the fuel economy of Class 8 trucks will dramatically impact both fuel and cost savings. This paper describes the importance of heavy trucks to the Nation's economy, and its potential for fuel efficiency gains. Why Focus on Heavy Trucks? Large and Immediate Impact Investments in improving the fuel economy of heavy Class 8 trucks will result in large reduction in petroleum consumption within a short timeframe. While heavy-duty vehicles make up only 4% of the

234

Heavy photon search experiment at JLAB  

SciTech Connect (OSTI)

The Heavy Photon Search (HPS) experiment in Hall-B at Jefferson Lab will search for new heavy vector boson(s), aka 'heavy photons', in the mass range of 20 MeV/c{sup 2} to 1000 MeV/c{sup 2} using the scattering of high energy, high intensity electron beams off a high Z target. The proposed measurements will cover the region of parameter space favored by the muon g-2 anomaly, and will explore a significant region of parameter space, not only at large couplings (??/? > 10{sup ?7}), but also in the regions of small couplings, down to ??/??10{sup ?10}. The excellent vertexing capability of the Si-tracker uniquely enables HPS to cover the small coupling region. Also, HPS will search for heavy photons in an alternative to the e{sup +}e{sup ?} decay mode, in the heavy photon's decay to ?{sup +}??.

Stepanyan, S. [Jefferson Lab, Newport News, VA (United States); Collaboration: HPS Collaboration

2013-11-07T23:59:59.000Z

235

QCD mechanisms for heavy particle production  

SciTech Connect (OSTI)

For very large pair mass, the production of heavy quarks and supersymmetric particles is expected to be governed by ACD fusion subprocesses. At lower mass scales other QCD mechanisms such as prebinding distortion and intrinsic heavy particle Fock states can become important, possibly accounting for the anomalies observed for charm hadroproduction. We emphasize the importance of final-state Coulomb interactions at low relative velocity in QCD and predict the existence of heavy narrow four quark resonances (c c-bar u u-bar) and (cc c-bar c-bar) in ..gamma gamma.. reactions. Coherent QCD contributions are discussed as a contribution to the non-additivity of nuclear structure functions and heavy particle production cross sections. We also predict a new type of amplitude zero for exclusive heavy meson pair production which follows from the tree-graph structure of QCD. 35 refs., 8 figs., 1 tab.

Brodsky, S.J.

1985-09-01T23:59:59.000Z

236

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky  

E-Print Network [OSTI]

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

US Army Corps of Engineers

237

Floods are too much water on normally dry land. Rivers can flood after heavy rain  

E-Print Network [OSTI]

count. Flash floods move with lightning speed! Move to higher ground--leave everything and run. A flash heavily, there may be flash floods. Flash floods occur in mountain streams, canyons or dry washes. They also happen on low spots in cities and suburbs. Flash floods can occur even though it's not raining

238

River Corridor Closure Project Partnering Performance Agreement...  

Office of Environmental Management (EM)

- March 2009 Voluntary Protection Program Onsite Review, River Corridor Closure Project - June 2012 Indoctrinating Subcontractors into the DOE Safety Culture and Expectations...

239

Savannah River National Laboratory Technologies Available for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Available for Licensing The Savannah River National Laboratory (SRNL) "Puts Science to Work" to create and deploy practical, high-value, cost effective technology solutions. In...

240

Savannah River Laboratory monthly report, September 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. [comp.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Home | Savannah River Ecology Laboratory Environmental Outreach...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the public about the diverse ecological research conducted by scientists at the Savannah River Ecology Laboratory. Today, the Outreach Program continues to provide a great variety...

242

Savannah River Remediation (SRR) Expanded Staff Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River Remediation Delivering the Mission Dave Olson President and Project Manager January 27, 2012 SRS Executive Management Community Discussion 2 * Liquid Waste Funding...

243

Kimberly Andrews | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Andrews with kingsnake Curriculum Vitae Faculty & Scientists SREL Home SREL Herpetology Kimberly Andrews Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803)...

244

Kurt Buhlmann | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buhlmann Curriculum Vitae Faculty & Scientists SREL Home SREL Herpetology Kurt A. Buhlmann Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5293 office...

245

J. Whitfield Gibbons | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gibbons Curriculum Vitae Faculty & Scientists SREL Home SREL Herpetology J. Whitfield Gibbons Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5852 ...

246

Justin D. Congdon | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Congdon Curriculum Vitae Faculty & Scientists SREL Home SREL Herpetology Justin D. Congdon Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5341 office...

247

The Columbia River System Inside Story  

SciTech Connect (OSTI)

The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwestfrom fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the regions electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

none,

2001-04-01T23:59:59.000Z

248

Workplace Charging Challenge Partner: Salt River Project  

Broader source: Energy.gov [DOE]

The mission of Salt River Project's (SRP) Electric Vehicle Initiative is to encourage greater use of clean energy transportation. Under this program, SRP's headquarters received two Level 2...

249

Conference Center | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference Center front view UGA-SREL Conference Center large conference room Large conference room small conference room Small conference room The Savannah River Ecology...

250

Savannah River Needs Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and concerns for the site. Savannah River Needs Assessment More Documents & Publications Oak Ridge Reservation Needs Assessment Oak Ridge Y-12 and ORNL Needs Assessment Former...

251

For the Federal Columbia River Power System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

its products and services . BPA markets wholesale electrical power from 31 federal hydro projects in the Columbia River Basin, one nonfederal nuclear plant and several small...

252

Savannah River Laboratory monthly report, November 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. (comp.)

1991-01-01T23:59:59.000Z

253

Savannah River Laboratory monthly report, November 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. [comp.

1991-12-31T23:59:59.000Z

254

Wild and Scenic Rivers Act (Maryland)  

Broader source: Energy.gov [DOE]

It is state policy to protect the outstanding scenic, geologic, ecologic, historic, recreational, agricultural, fish, wildlife, cultural, and other similar values of certain rivers and adjacent...

255

Savannah River Laboratory monthly report, August 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. (comp.)

1991-01-01T23:59:59.000Z

256

Savannah River Laboratory monthly report, August 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. [comp.

1991-12-31T23:59:59.000Z

257

PIA - Savannah River Remediation Accreditation Boundary (SRR...  

Office of Environmental Management (EM)

PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - WEB Physical Security Major Application Occupational Medical Surveillance System (OMSS)...

258

The Columbia River System: Inside Story  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Falls Little Wood Reservoir Idaho Falls (City Plant) Idaho Falls (Lower Plant) Idaho Falls (Upper Plant) Ponds Lodge Ashton St. Anthony Felt Gem State Portneuf River Billingsley...

259

Root River Energy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: Root River Energy LLC Place: Minnesota Zip: 55961 Sector: Renewable Energy, Wind energy Product: Minesota-based wind development company tasked with developing...

260

Sandia National Laboratories: river current energy converters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Upper White River Watershed Alliance Upper White River Watershed Alliance (UWRWA)  

E-Print Network [OSTI]

Upper White River Watershed Alliance Upper White River Watershed Alliance (UWRWA) P.O. Box 2065 integrity of the White River ecosystem. To successfully accomplish the vision of UWRWA, a 16-county was formed. It exists to improve and protect water quality on a watershed basis in the larger Upper White

262

Heavy Duty Vehicle Futures Analysis.  

SciTech Connect (OSTI)

This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

2014-05-01T23:59:59.000Z

263

Heavy quark physics from SLD  

SciTech Connect (OSTI)

This report covers preliminary measurements from SLD on heavy quark production at the Z{sup 0}, using 150,000 hadronic Z{sup 0} decays accumulated during the 1993-1995 runs. A measurement of R{sub b} with a lifetime double tag is presented. The high electron beam polarization of the SLC is employed in the direct measurement of the parity-violating parameters A{sub b} and A{sub c} by use of the left-right forward-backward asymmetry. The lifetimes of B{sup +} and B{sup 0} mesons have been measured by two analyses. The first identifies semileptonic decays of B mesons with high (p,p{sub t}) leptons; the second analysis isolates a sample of B meson decays with a two-dimensional impact parameter tag and reconstructs the decay length and charge using a topological vertex reconstruction method.

Messner, R. [Stanford Univ., CA (United States)

1997-01-01T23:59:59.000Z

264

SUPRI heavy oil research program  

SciTech Connect (OSTI)

The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

1991-12-01T23:59:59.000Z

265

Ultrasensitive Voltammetric Detection of Trace Heavy Metal Ions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Voltammetric Detection of Trace Heavy Metal Ions Using Carbon Nanotube Nanoelectrode Array. Ultrasensitive Voltammetric Detection of Trace Heavy Metal Ions Using Carbon Nanotube...

266

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

267

LNT + SCR Aftertreatment for Medium-Heavy Duty Applications:...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

+ SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach Poster presentation at...

268

Development of SCR on Diesel Particulate Filter System for Heavy...  

Broader source: Energy.gov (indexed) [DOE]

SCR on Diesel Particulate Filter System for Heavy Duty Applications Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Evaluation of a system...

269

SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...  

Broader source: Energy.gov (indexed) [DOE]

SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards...

270

Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Natural gas engine technology has evolved to meet the...

271

Hydrogen in the Heavy Duty Market? | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Heavy Duty Market? Hydrogen in the Heavy Duty Market? 2002 DEER Conference Presentation: Sandia National Laboratories 2002deerkeller.pdf More Documents & Publications...

272

Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

273

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

274

Design of Integrated Laboratory and Heavy-Duty Emissions Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Integrated Laboratory and Heavy-Duty Emissions Testing Center Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center Both simulated and actual diesel emissions...

275

Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles Discusses Detroit Diesel collaborative multi-year...

276

Long Plasma Source for Heavy Ion Beam Charge Neutralization  

E-Print Network [OSTI]

neutralizing plasma column the heavy ion beam can focus to aPlasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus

Efthimion, P.C.

2009-01-01T23:59:59.000Z

277

Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization  

E-Print Network [OSTI]

Heavy Ion Beam Driven Fusion Reactor Study, KfK-3480,a possible heavy ion fusion reactor design [1]. The final

2005-01-01T23:59:59.000Z

278

Comparative Evaluation of Generalized River/Reservoir System Models  

E-Print Network [OSTI]

This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

Wurbs, Ralph A.

279

Wild and Scenic Rivers Act | Open Energy Information  

Open Energy Info (EERE)

Rivers Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Wild and Scenic Rivers ActLegal Abstract This Act classifies rivers as...

280

Hood River Passive House, Hood River, Oregon (Fact Sheet)  

SciTech Connect (OSTI)

The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

Not Available

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pecos River Ecosystem Monitoring Project  

E-Print Network [OSTI]

2003 growing seasons, showing higher river flow during the 2001 irrigation season compared to 2002 or 2003. 3 4 5 6 7 8 9 10 11 Water Level (ft.) B4r 2001 B4r 2002 B4r 2003 JuneMayApril July August September October November 159... it to dS/m. The number is then multiplied by 640 making the number equivalent to ppm. A control using reagent-water was also performed here. Additionally, electrical conductivity measurements were made at two sites near Mentone, Texas...

McDonald, A.; Hart, C.

2004-01-01T23:59:59.000Z

282

Dynamics of neutralizing electrons during the focusing of intense heavy ions beams inside a heavy fusion reactor chamber  

E-Print Network [OSTI]

beams inside a heavy ion fusion reactor chamber * Agustin F.efficiency of a Heavy Ion Fusion reactor heavily depends on

Lifschitz, Agustin F.; Maynard, Gilles; Vay, Jean-Luc; Lenglet, Andrian

2006-01-01T23:59:59.000Z

283

Lesson Learned by Savannah River Site Activity-level Work Planning and Control  

Broader source: Energy.gov [DOE]

Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

284

Oversight Reports - Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 22, 2013 Independent Activity Report, Savannah River Site - March 2013 Oversight Scheduling an Operational Awareness at the Savannah River Site HIAR-SRS-2013-03-25...

285

Oversight Reports - Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 9, 2009 Independent Oversight Inspection, Savannah River Site Office - December 2009 Inspection of Nuclear Safety at the Savannah River Site Office and the Tritium Program...

286

U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Flux Measurements Super Site at Savannah River National Laboratory The Savannah River National Laboratory (SRNL) Carbon Flux Super Site provides a unique resource for...

287

Independent Oversight Follow-up Review, Savannah River National...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of...

288

Independent Activity Report, Savannah River Site - May 2010 ...  

Broader source: Energy.gov (indexed) [DOE]

May 2010 Independent Activity Report, Savannah River Site - May 2010 May 2010 Savannah River Site Salt Waste Processing Facility Construction Site Walkthrough The U.S. Department...

289

Independent Activity Report, Savannah River Site - June 2010...  

Broader source: Energy.gov (indexed) [DOE]

June 2010 Independent Activity Report, Savannah River Site - June 2010 June 2010 Savannah River Site Salt Waste Processing Facility Construction Site Orientation Visit The U.S....

290

Independent Activity Report, Savannah River Site - March 2013...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Activity Report, Savannah River Site - March 2013 Independent Activity Report, Savannah River Site - March 2013 March 2013 Oversight Scheduling an Operational Awareness at the...

291

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern Lights Bonners Ferry East End Mutual Heyburn Burley United Electric Albion Raft River Rural Electric Coop. Declo...

292

2013 Annual Planning Summary for the Savannah River Operations...  

Office of Environmental Management (EM)

for Savannah River Operations Office 2010 Annual Planning Summary for Savannah River Operations Office (SRS) 2012 Annual Planning Summary for Bonneville Power Administration...

293

Savannah River's Biomass Steam Plant Success with Clean and Renewable...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the...

294

PIA - Savannah River Nuclear Solutions (SRNS) Human Resource...  

Office of Environmental Management (EM)

Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear...

295

Concept Testing and Development at the Raft River Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho DOE 2010 Geothermal Technologies...

296

Concept Testing and Development at the Raft River Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development...

297

CRAD, Engineering - Office of River Protection K Basin Sludge...  

Broader source: Energy.gov (indexed) [DOE]

System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System...

298

CRAD, Conduct of Operations - Office of River Protection K Basin...  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System May 2004 A...

299

CRAD, Management - Office of River Protection K Basin Sludge...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD,...

300

CRAD, Occupational Safety & Health - Office of River Protection...  

Broader source: Energy.gov (indexed) [DOE]

K Basin Sludge Waste System CRAD, Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste...

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Enforcement Letter, Westinghouse Savannah River Company- June 4, 1996  

Broader source: Energy.gov [DOE]

Issued to Westinghouse Savannah River Company related to Potential Violations of the Quality Assurance and Occupational Radiation Protection Rules at the Savannah River Site

302

CRAD, Emergency Management - Office of River Protection K Basin...  

Broader source: Energy.gov (indexed) [DOE]

Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section...

303

Department of Energy Cites Savannah River Nuclear Solutions for...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Nuclear Solutions for Worker Safety and Health Violations Department of Energy Cites Savannah River Nuclear Solutions for Worker Safety and Health Violations October...

304

DOE - Office of Legacy Management -- Savannah River Swamp - SC...  

Office of Legacy Management (LM)

Savannah River Swamp - SC 01 FUSRAP Considered Sites Site: Savannah River Swamp (SC.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

305

Independent Oversight Review, Savannah River Site - July 2011...  

Broader source: Energy.gov (indexed) [DOE]

Independent Oversight Review, Savannah River Site - July 2011 July 2011 Review of Electrical System Configuration Management and Design Change Control at the Savannah River...

306

Tapping the Power of Alaska's Rivers | Department of Energy  

Office of Environmental Management (EM)

a practical River In-Stream Energy Conversion (RISEC)-a device that can produce electricity from free-flowing rivers not suited to conventional hydroelectric generation, and...

307

EA-1671: Big River Substation to Poston Substation 69-Kilovolt...  

Broader source: Energy.gov (indexed) [DOE]

671: Big River Substation to Poston Substation 69-Kilovolt Transmission Line Project, Arizona and California EA-1671: Big River Substation to Poston Substation 69-Kilovolt...

308

City of Wood River, Nebraska (Utility Company) | Open Energy...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon City of Wood River, Nebraska (Utility Company) Jump to: navigation, search Name: City of Wood River Place: Nebraska...

309

Aeromagnetic Survey At Raft River Geothermal Area (1981) | Open...  

Open Energy Info (EERE)

at the Raft River geothermal area by the USGS. References Geological Survey, Denver, CO (USA) (1 January 1981) Total field aeromagnetic map of the Raft River known Geothermal...

310

Savannah River Site Environmental Report for 1998  

SciTech Connect (OSTI)

The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

Arnett, M.

1999-06-09T23:59:59.000Z

311

Geomorphic histories for river and catchment management  

Science Journals Connector (OSTI)

...area, changes in water temperature or pH, or disturbances to fish migration by the construction of weirs and dams. Therefore...river catchments of Asia by Clift [35]. Using high-quality seismic records for continental margins offshore from the large rivers...

2012-01-01T23:59:59.000Z

312

CedarCreekanticlineCedarCreekanticline Yellowstone River  

E-Print Network [OSTI]

Principal Aquifer Systems in the Williston and Powder River Structural Basins, United States and Canada #12;Cover. Conceptual block diagram of groundwater flow in the Williston structural basin. #12;Conceptual Model of the Uppermost Principal Aquifer Systems in the Williston and Powder River Structural Basins

313

Wind River Conference on Prokaryotic Biology2002  

Science Journals Connector (OSTI)

...as propionate and acetate as carbon and energy sources. Sirtuin-deficient strains lack...of Wisconsin) (2). CONCLUSIONS The Wind River Conference on Prokaryotic Biology...directly to their own research. The 47th Wind River Conference will be 4 to 8 June 2003...

Kenneth W. Bayles; Neil E. Welker; Malcolm E. Winkler; Uldis N. Streips

2003-01-01T23:59:59.000Z

314

EIS-0082-S2: Savannah River Site Salt Processing, Savannah River Site,  

Broader source: Energy.gov (indexed) [DOE]

082-S2: Savannah River Site Salt Processing, Savannah River 082-S2: Savannah River Site Salt Processing, Savannah River Site, Aiken, South Carolina EIS-0082-S2: Savannah River Site Salt Processing, Savannah River Site, Aiken, South Carolina SUMMARY This SEIS evaluates the potential environmental impacts of alternatives for separating the high-activity fraction from the low-activity fraction of the high-level radioactive waste salt solutions now stored in underground tanks at the Savannah River Site (SRS) near Aiken, South Carolina. The high-activity fraction of the high-level waste (HLW) salt solution would then be vitrified in the Defense Waste Processing Facility (DWPF) and stored until it could be disposed of as HLW in a geologic repository. The low activity fraction would be disposed of as low-level waste (saltstone)

315

Helioseismic limit on heavy element abundance  

E-Print Network [OSTI]

Primary inversions of accurately measured solar oscillation frequencies coupled with the equations of thermal equilibrium and other input physics, enable us to infer the temperature and hydrogen abundance profiles inside the Sun. These profiles also help in setting constraints on the input physics as well as on heavy element abundance in the solar core. Using different treatments of plasma screening for nuclear reaction rates, limits on the cross-section of proton-proton nuclear reaction as a function of heavy element abundance in the solar core are obtained and an upper limit on heavy element abundance in the solar core is also derived from these results.

H. M. Antia; S. M. Chitre

2002-09-08T23:59:59.000Z

316

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect (OSTI)

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-01-01T23:59:59.000Z

317

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect (OSTI)

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-12-31T23:59:59.000Z

318

Detection of Heavy Metal Ions Based on Quantum Point Contacts  

E-Print Network [OSTI]

. The ability to detect trace amounts of metal ions is important because of the toxicity of heavy metal ionsDetection of Heavy Metal Ions Based on Quantum Point Contacts Vasanth Rajagopalan, Salah Boussaad on many living organisms and the consequence of heavy metal ions not being biodegradable. To date, heavy

Zhang, Yanchao

319

Chemistry 330 / Study Guide 217 Toxic Heavy Metals  

E-Print Network [OSTI]

Chemistry 330 / Study Guide 217 Unit 7 Toxic Heavy Metals Overview In ancient Rome wine was stored for this section. #12;Chemistry 330 / Study Guide 219 Common Features--Toxicity of the Heavy Metals Objectives. Metals--especially heavy metals--pose a unique environmental pollution problem. Heavy metals

Short, Daniel

320

Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation  

E-Print Network [OSTI]

-heavy oil, and oil shale. Tremendous amounts of heavy oil resources are available in the world. Fig. 1.1 shows the total world oil reserves, and indicates that heavy oil, extra heavy oil, and bitumen make up about 70% of the world?s total oil resources...

Yang, Daegil

2011-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Heavy Metal Tolerance Robert S. Boyd, Nishanta Rajakaruna  

E-Print Network [OSTI]

be useful to solve environmental problems caused by heavy metal pollution. General Overviews General: a recent example targeting cellular mechanisms affected by heavy metals is Bánfalvi 2011. Pollution by heavy metals is an important environmental problem, and sources that focus on heavy metal pollution

Rajakaruna, Nishanta

322

ECR plasma source for heavy ion beam charge neutralization  

E-Print Network [OSTI]

resonance. Keywords: Plasma focus; RF plasma; Beam charge neutralization 1. INTRODUCTION A possible heavy

Gilson, Erik

323

Molecule-based modeling of heavy oil  

Science Journals Connector (OSTI)

A molecular-level kinetics model has been developed for the pyrolysis of heavy residual oil. Resid structure was modeled in terms of three attribute groups: cores, inter-core linkages, and side chains. The con...

Scott R. Horton; Zhen Hou; Brian M. Moreno; Craig A. Bennett

2013-07-01T23:59:59.000Z

324

NUCLEAR STRUCTURE AND HEAVY-ION FUSION  

E-Print Network [OSTI]

Nuclear Structure and Heavy-Ton Fusion* A series of lecturesthe cross section for fusion in the experiments consideredEffects g in III. Subharrier Fusion Cross Sections for Light

Stokstad, R.G.

2010-01-01T23:59:59.000Z

325

Materials Engineering with Swift Heavy Ions  

Science Journals Connector (OSTI)

High energy heavy ions are proving to be important tools in the efforts to modify the properties of materials in a controlled fashion to provide possibility of making them functional for specific applications ...

D. K. Avasthi

2011-01-01T23:59:59.000Z

326

Soft photons from relativistic heavy ion collisions  

Science Journals Connector (OSTI)

Production of soft photons in relativistic heavy ion collisions due to bremsstrahlung processes in quark matter and hadronic matter is studied. The contribution of pion-driven processes is found to dominate the yield. 1996 The American Physical Society.

Pradip Kumar Roy, Dipali Pal, Sourav Sarkar, Dinesh Kumar Srivastava, and Bikash Sinha

1996-05-01T23:59:59.000Z

327

Updated Satellite Technique to Forecast Heavy Snow  

Science Journals Connector (OSTI)

Certain satellite interpretation techniques have proven quite useful in the heavy snow forecast process. Those considered best are briefly reviewed, and another technique is introduced. This new technique was found to be most valuable in cyclonic ...

Edward C. Johnston

1995-06-01T23:59:59.000Z

328

Status of Heavy-lepton Searches  

DOE R&D Accomplishments [OSTI]

Searches for heavy leptons using e{sup +}e{sup -} annihilation, lepton-hadron collisions, photon-hadron collisions, hadron-hadron collisions, and studies of macroscopic matter are reviewed. The present experimental status and future possibilities are summarized.

Perl, M. L.

1981-06-00T23:59:59.000Z

329

Magnetism in Heavy-Electron Liquids  

Science Journals Connector (OSTI)

......Theoretical Physics February 1992 research-article Articles Magnetism in Heavy-Electron Liquids Fusayoshi J. Ohkawa Department...d expansion to paramagnons, metamagnetism, tiny-moment magnetism, and other topics are presented. Citing Article(s......

Fusayoshi J. Ohkawa

1992-02-01T23:59:59.000Z

330

Heavy-Ion Fusion Accelerator Research, 1991  

SciTech Connect (OSTI)

This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators.

Not Available

1992-03-01T23:59:59.000Z

331

Heavy metals in Antarctic organisms  

SciTech Connect (OSTI)

To evaluate levels of essential (zinc and copper) and non-essential (mercury and cadmium) heavy metals, 34 species of organisms from different areas close to the Antarctic Peninsula were analysed. These included algae, filter-feeders, omnivorous invertebrates and vertebrates. Mercury was not detected, while cadmium was found in the majority of organisms analysed (detection limit was 0.05 ppm for both metals). The highest cadmium concentration was observed in the starfish Odontaster validus. Anthozoans, sipunculids and nudibranchs showed maximum levels of zinc, while the highest copper level was found in the gastropod Trophon brevispira. Mercury and cadmium levels in fishes were below the detection limit. Concentrations of essential and non-essential metals in birds were highest in liver followed by muscle and eggs. Cadmium and mercury levels in muscle of southern elephant seals were above the detection limit, whereas in Antarctic fur seals they were below it. The objective of the study was to gather baseline information for metals in Antarctic Ocean biota that may be needed to detect, measure and monitor future environmental changes. 46 refs., 7 figs., 8 tabs.

Moreno, J.E.A. de; Moreno, V.J. [Universidad Nacional de Mar del Plata (Argentina); Gerpe, M.S.; Vodopivez, C. [Instituto Antartico Argentino, Buenos Aires (Argentina)

1997-02-01T23:59:59.000Z

332

Jets in relativistic heavy ion collisions  

SciTech Connect (OSTI)

Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

Wang, Xin-Nian; Gyulassy, M.

1990-09-01T23:59:59.000Z

333

Probing the Symmetry Energy with Heavy Ions  

E-Print Network [OSTI]

Constraints on the EoS for symmetric matter (equal neutron and proton numbers) at supra-saturation densities have been extracted from energetic collisions of heavy ions. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the EoS of neutron-rich matter at sub-saturation densities. Comparisons are made to other available constraints.

Lynch, W G; Zhang, Y; Danielewicz, P; Famiano, M; Li, Z; Steiner, A W

2009-01-01T23:59:59.000Z

334

Probing the Symmetry Energy with Heavy Ions  

E-Print Network [OSTI]

Constraints on the EoS for symmetric matter (equal neutron and proton numbers) at supra-saturation densities have been extracted from energetic collisions of heavy ions. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the EoS of neutron-rich matter at sub-saturation densities. Comparisons are made to other available constraints.

W. G. Lynch; M. B. Tsang; Y. Zhang; P. Danielewicz; M. Famiano; Z. Li; A. W. Steiner

2009-01-05T23:59:59.000Z

335

Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Heavy-Duty Idle Heavy-Duty Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Idle Reduction Requirement Heavy-duty vehicles with a gross vehicle weight rating greater than 8,500

336

River Data Package for Hanford Assessments  

SciTech Connect (OSTI)

This data package documents the technical basis for selecting physical and hydraulic parameters and input values that will be used in river modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. and revised as part of the Characterization of Systems Project managed by PNNL for DOE. The river data package provides calculations of flow and transport in the Columbia River system. The module is based on the legacy code for the Modular Aquatic Simulation System II (MASS2), which is a two-dimensional, depth-averaged model that provides the capability to simulate the lateral (bank-to-bank) variation of flow and contaminants. It simulates river hydrodynamics (water velocities and surface elevations), sediment transport, contaminant transport, biotic transport, and sediment-contaminant interaction, including both suspended sediments and bed sediments. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River. MASS2 requires data on the river flow rate, downstream water surface elevation, groundwater influx and contaminants flux, background concentrations of contaminants, channel bathymetry, and the bed and suspended sediment properties. Stochastic variability for some input parameters such as partition coefficient (kd) values and background radionuclide concentrations is generated by the Environmental Stochastic Preprocessor. River flow is randomized on a yearly basis. At this time, the conceptual model does not incorporate extreme flooding (for example, 50 to 100 years) or dam removal scenarios.

Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

2006-08-01T23:59:59.000Z

337

Independent Oversight Inspection, Savannah River Site, Summary Report- February 2004  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site

338

Independent Oversight Inspection, Savannah River Site- December 2009  

Broader source: Energy.gov [DOE]

Inspection of Reinforced Concrete Construction at the Savannah River Site Mixed Oxide Fuel Fabrication Facility

339

Independent Oversight Review, Savannah River Site- September 2011  

Broader source: Energy.gov [DOE]

Review of the Implementation Verification Review Processes at the Savannah River Site Environmental Management Nuclear Facilities

340

Columbia-Snake River Irrigators Association Eastern Oregon Irrigators Association  

E-Print Network [OSTI]

to river flows, reservoir elevations and hydroelectric power production. Its results are currently being

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Pecos River Watershed Protection Plan Update  

E-Print Network [OSTI]

that connects the pump, distribution tank and holding ponds. As of April 15, 2013, three of the ponds were completed and have been lined with a synthetic liner to prevent seepage and leakage as this was a major problem in early projects. Pecos River WPP...Pecos River Watershed Protection Plan Update Funding Provided by the Texas State Soil and Water Conservation Board through a Clean Water Act 319(h) Nonpoint Source Grant from the U.S Environmental Protection Agency TR-447 October 2013 Pecos River...

Gregory, L.; Hauck, L.; Blumenthal, B.; Brown, M.; Porter, A.

2013-01-01T23:59:59.000Z

342

Kootenai River Ecosystem Finding of No Significant Impact (FONSI)  

Broader source: Energy.gov (indexed) [DOE]

Kootenai River Ecosystem Kootenai River Ecosystem Finding of No Significant Impact (FONSI) June 2005 1 Department of Energy BONNEVILLE POWER ADMINISTRATION Kootenai River Ecosystem Project Finding of No Significant Impact (FONSI) Summary: Bonneville Power Administration (BPA) is proposing to fund the Kootenai River Ecosystem Project. With this funding the Kootenai Tribe of Idaho (KTOI) and Idaho Fish and Game (IDFG) would add liquid nitrogen and phosphorus to the Kootenai River from late June through September for up to five years to replace nutrients lost to the hydrosystem. The goal of this project is to help enhance native fish populations and river health. The nutrients are expected to stimulate production in the Kootenai River's

343

Oversight Reports - Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Savannah River Site Oversight Reports - Savannah River Site September 4, 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. August 5, 2013 Independent Oversight Review, Savannah River Operations Office - July 2013 Review of the Employee Concerns Program at the Savannah River Operations Office July 25, 2013 Independent Oversight Activity Report, Savannah River Site Waste Solidification Building Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07] April 22, 2013 Independent Activity Report, Savannah River Site - March 2013

344

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

345

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

346

EIS-0241: Hood River Fisheries Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1: Hood River Fisheries Program 1: Hood River Fisheries Program EIS-0241: Hood River Fisheries Program SUMMARY This EIS evaluates a BPA proposal to protect and improve anadromous salmonid populations in the Hood River Basin. These actions are proposed in an attempt to mitigate the losses of fish and wildlife associated with the construction and operation of Federal hydro-power facilities in the Columbia River Basin. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 4, 2008 EIS-0241-SA-02: Supplement Analysis for the Hood River Fisheries Project Supplement Analysis for the Hood River Fisheries Project May 16, 2005 EIS-0241-SA-01: Supplement Analysis for the Hood River Fisheries Project, Hood River County, Oregon Supplement Analysis for the Hood River Fisheries Project

347

Heavy metal removal and recovery using microorganisms. Volume 1, State-of-the-art and potential applications at the SRS  

SciTech Connect (OSTI)

Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

Wilde, E.W. [Westinghouse Savannah River Co., Aiken, SC (United States); Benemann, J.R. [Benemann (J.R.), Pinole, CA (United States)

1991-02-01T23:59:59.000Z

348

EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon  

Broader source: Energy.gov [DOE]

Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

349

Water issues associated with heavy oil production.  

SciTech Connect (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

350

In situ vitrification of soil from the Savannah River Site  

SciTech Connect (OSTI)

Contamination associated with seepage basins and other underground structures at US Department of Energy sites may be effectively remediated by application of in situ vitrification (ISV) technology. In situ vitrification converts contaminated soil and buried wastes into a glass and crystalline block, similar to obsidian commingled with crystalline phases. Two bench-scale tests performed at Pacific Northwest Laboratory (PNL) in September 1989 demonstrated the feasibility of applying ISV to seepage basin soils at the Savannah River Site (SRS) in South Carolina. The two tests were performed on soils spiked with heavy metal and organic contaminants as well as stable radioactive simulants. These soils contain extremely low concentrations of alkali fluxes such as sodium and potassium oxides, which are necessary charge carriers for the ISV process. Tests performed on the low flux-containing soil indicate the soil can be vitrified with special application of the ISV process. Tests showed the hazardous and radioactive simulants were successfully bound in the vitrified product and the organics were mostly destroyed. Additional larger scale testing and evaluation are recommended to further study the feasibility of treating contaminated SRS soil by the ISV process. 13 refs., 12 figs., 7 tabs.

Campbell, B.E.; Buelt, J.L.

1990-08-01T23:59:59.000Z

351

Elk River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

River Wind Farm River Wind Farm Jump to: navigation, search Name Elk River Wind Farm Facility Elk River Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PPM Energy Inc Developer PPM Energy Inc Energy Purchaser Empire District Electric Co. Location Butler County KS Coordinates 37.586575°, -96.547093° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.586575,"lon":-96.547093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Three Rivers Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Rivers Electric Coop Rivers Electric Coop Jump to: navigation, search Name Three Rivers Electric Coop Place Missouri Utility Id 16751 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 100 W w/Metal Pole Lighting Residential Residential Average Rates Residential: $0.0926/kWh Commercial: $0.0791/kWh Industrial: $0.0688/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Three_Rivers_Electric_Coop&oldid=411667"

353

North Sky River | Open Energy Information  

Open Energy Info (EERE)

Sky River Sky River Jump to: navigation, search Name North Sky River Facility North Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Location Tehachapi CA Coordinates 35.335578°, -118.186347° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.335578,"lon":-118.186347,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

355

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

June 27, 2012 June 27, 2012 CX-008614: Categorical Exclusion Determination Repair Culvert on Road 3 CX(s) Applied: B1.3 Date: 06/27/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 27, 2012 CX-008613: Categorical Exclusion Determination Replace Awning, Building 735-A CX(s) Applied: B1.3 Date: 06/27/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 26, 2012 CX-008618: Categorical Exclusion Determination Evaluation of Sorbent/Ion Exchangers for Radiochemical and Metal Separations CX(s) Applied: B3.6 Date: 06/26/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 26, 2012 CX-008617: Categorical Exclusion Determination Savannah River National Laboratory Building 735-13A Power Addition CX(s) Applied: B1.15

356

Linda Lee | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lee Faculty & Scientists SREL Home Linda Lee Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5883 office (803) 725-3309 fax lee(at)srel.uga.edu I have a...

357

Peter Stangel | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stangel Senior Vice President, U.S. Endowment for Forestry and Communities co Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (404)-915-2763 (803) 725-8158...

358

Farmington River Power Company | Open Energy Information  

Open Energy Info (EERE)

Company Jump to: navigation, search Name: Farmington River Power Company Place: Connecticut References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

359

Raft River geoscience case study: appendixes  

SciTech Connect (OSTI)

The following are included in these appendices: lithology, x-ray analysis, and cores; well construction data; borehole geophysical logs; chemical analyses from wells at the Raft River geothermal site; and bibliography. (MHR)

Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

1981-11-01T23:59:59.000Z

360

James Beasley | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beasley Curriculum Vitae Faculty & Scientists SREL Home James Beasley Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5113 office (803) 725-3309 fax...

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Robert A. Kennamer | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kennamer Curriculum Vitae Faculty & Scientists SREL Home Robert A. Kennamer Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-0387 office (803) 725-3309 fax...

362

Gary Mills | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mills Curriculum Vitae Faculty & Scientists SREL Home Gary Mills Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5368 office (803) 725-3309 fax...

363

Judith L. Greene | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greene Curriculum Vitae Faculty & Scientists SREL Home SREL Herpetology Judith L. Greene Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-7637 office (803)...

364

Thomas G. Hinton | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hinton Curriculum Vitae Faculty & Scientists SREL Home Thomas G. Hinton Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-7454 office (803) 725-3309 fax...

365

David E. Scott | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scott Curriculum Vitae Faculty & Scientists SREL Home David E. Scott Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5747 office (803) 725-3309 fax...

366

Larry Bryan | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bryan Curriculum Vitae Faculty & Scientists SREL Home Larry Bryan Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-2907 office (803) 725-3309 fax...

367

John Seaman | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seaman Curriculum Vitae Faculty & Scientists SREL Home John Seaman Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-0977 office (803) 725-3309 fax...

368

Domy C. Adriano | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adriano Curriculum Vitae Faculty & Scientists SREL Home Domy C. Adriano Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5834 office (803) 725-3309 fax...

369

Shem D. Unger | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unger Curriculum Vitae Faculty & Scientists SREL Home Shem D. Unger Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5324 office (765) 414-5435 cell...

370

Savannah River Site Environmental Report for 1997  

SciTech Connect (OSTI)

The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

Arnett, M.W.; Mamatey, A.R. [eds.

1998-08-01T23:59:59.000Z

371

Savannah River Site Achieves Waste Transfer First  

Broader source: Energy.gov [DOE]

AIKEN, S.C. The EM program and its liquid waste contractor at the Savannah River Site (SRS) made history recently by safely transferring radioactive liquid waste from F Tank Farm to H Tank Farm using a central control room.

372

Contractor Fee Payments- Office of River Protection  

Broader source: Energy.gov [DOE]

See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Office of River Protection on these charts.

373

Project Management Institute Highlights Savannah River Nuclear...  

Office of Environmental Management (EM)

Site's H Canyon Work Ensures Future Missions for Facility Restoration of a 90-acre powerhouse ash basin at the Savannah River Site, pictured here, is under way as workers remove...

374

Contractor Fee Payments- Savannah River Site Office  

Broader source: Energy.gov [DOE]

See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Savannah River Site Office on these charts.

375

Savannah River Site 1991 Road Erosion Inventory.  

SciTech Connect (OSTI)

Final Report. USDA Forest Service, Savannah River, Aiken, SC. 28 pp. Abstract - This paper explains the rationale and results of a 1991 road erosion inventory conducted by members of the USDA Forest Service Savannah River (FS-SR) and USDA Natural Resources Conservation Service (NRCS). The inventory provided information for the Department of Energy - Savannah River (DOE-SR) to justify the need for developing an erosion and sediment control program with appropriate funding, personnel, and equipment. Federally managed since the early 1950s, the SRS is located on 198,344 acres (80,301 hectares) in the South Carolina counties of Aiken, Barnwell, and Allendale. Located along the eastern border of the Savannah River, the SRS is located within the Upper and Lower Coastal Plains of South Carolina.

Jones, Cliff.

2007-06-22T23:59:59.000Z

376

Lumbee River EMC- Residential Weatherization Loan Program  

Broader source: Energy.gov [DOE]

Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help its residential members increase the energy efficiency of their homes. Loans up to $10,000 are available for...

377

Think water : reconditioning the Malden River  

E-Print Network [OSTI]

The purpose of this thesis is to link water, history and culture through architectural and urban design by researching the potential for the rejuvenation of a neglected industrial site at the edge of a river. The Malden ...

Oda, Kazuyo, 1969-

2003-01-01T23:59:59.000Z

378

Upcoming Seminars | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upcoming Seminars Seminars will be held at the Savannah River Ecology Laboratory, Bldg. 737-A, in the Cypress Room, at 3:30 PM. Snacks will be provided at 3:15. DATE SPEAKER TITLE...

379

Sky River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Sky River Wind Farm Sky River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Zond Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

February 24, 2011 February 24, 2011 CX-005504: Categorical Exclusion Determination Analytical Methods for Radiochemical Measurements CX(s) Applied: B3.6 Date: 02/24/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office February 24, 2011 CX-005503: Categorical Exclusion Determination Drain Line Replacement West of 735-A CX(s) Applied: B1.3 Date: 02/24/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office February 24, 2011 CX-005502: Categorical Exclusion Determination Implement Savannah River National Laboratory Defense Nuclear Facilities Safety Board 2004-2 Gap Closure Activity CX(s) Applied: B2.3 Date: 02/24/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Lower Columbia River Estuary Partnership. The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

located just downstream of Longview, Wash. Vegetation is typical for disturbed tidal wetlands along the Columbia River; on-site vegetation is a mix of native and non-native...

382

Magnetic Process For Removing Heavy Metals From Water Employing Magnetites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magnetic Process For Removing Heavy Metals From Water Employing Magnetic Process For Removing Heavy Metals From Water Employing Magnetites Magnetic Process For Removing Heavy Metals From Water Employing Magnetites A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. Available for thumbnail of Feynman Center (505) 665-9090 Email Magnetic Process For Removing Heavy Metals From Water Employing Magnetites A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and

383

Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Heavy-Duty Vehicle Heavy-Duty Vehicle Emissions Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Vehicle Emissions Reduction Grants

384

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

385

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

386

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

CERTA PJ

2008-07-10T23:59:59.000Z

387

Columbia River Component Data Gap Analysis  

SciTech Connect (OSTI)

This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

L. C. Hulstrom

2007-10-23T23:59:59.000Z

388

Linking ecosystem services, rehabilitation, and river hydrogeomorphology  

E-Print Network [OSTI]

, however, because of a developing trend in environmental sciences to emphasize the benefits and services provided by aquatic and terrestrial ecosystems (e.g., Postel and Carpenter 1997, Loomis et al. 2000, Nelson et al. 2009). This trend in- cludes... (Ricciardi and Rasmussen 1999). A focus on ecosystem ser- vices may also promote alternative river management options, including river rehabilitation. The USACEs objective in this area is related to mandates for national ecosystem restoration through...

Thorp, James H.

2010-01-01T23:59:59.000Z

389

Low NOx combustion system for heavy oil  

SciTech Connect (OSTI)

As a result of the increasing demand for white oil as one of countermeasures for pollution control and as a fuel for motor vehicle, coupled with the increasing import of heavy crude oil, heavy oils such as asphalt and distillation residue have become surplus in Japan. It is difficult by the conventional low NOx technology to control the NOx emission from the industrial small and medium capacity boilers, which use heavy oil as their fuels. The authors have been developing and improving NOx control technologies for boilers such as low NOx burners, two-stage combustion methods and so on. They have developed a new combustion system for heavy oil, which generates less NOx and soot than conventional systems, by applying the knowledge, obtained in the course of their development of Coal Partial Combustor (CPC). The conventional low NOx combustion method for oil firing boilers has been developed based on decreasing the flame temperature and delaying the combustion reaction. In the system, however, the heavy oil shall be combusted in the intense reducing atmosphere at the high flame temperature between 1,500 C and 1,600 C, and then the combustions gas shall be cooled and oxidized by two-stage combustion air. With this system, NOx emission can be suppressed below 100ppm (converted as O{sub 2}=4%).

Kurata, Chikatoshi; Sasaki, Hideki

1999-07-01T23:59:59.000Z

390

Office of River Protection Assessment of Contractor Quality Assurance and Operational Awareness at Tank Farms, June 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HIAR-HANFORD-2013-06-17 HIAR-HANFORD-2013-06-17 Site: Hanford, Office of River Protection Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Office of River Protection (ORP) Assessment of Contractor Quality Assurance, Operational Awareness at Hanford Tank Farms Dates of Activity : June 17-20, 2013 Report Preparer: Robert E. Farrell Activity Description/Purpose: The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) Site Lead conducted an operational awareness visit to the ORP Hanford Tank Farms, observed a Tank Farms morning meeting, toured the C Tank Farm, and observed a heavy (34,000 pound) lift. Result: Independent Oversight, together with the ORP Facility Representative, toured the C Tank Farm to observe workers setting

391

Comparison of cracking kinetics for Kern River 650{degrees}F residuum and midway sunset crude oil  

SciTech Connect (OSTI)

Kern River 650{degrees}F{sup +} residuum and Midway Sunset crude oil were examined by micropyrolysis at several constant-heating rates to determine pyrolysis cracking kinetics. Determined by the discrete distribution method, both feeds exhibited principal activation energies of 50 kcal/mol and frequency factors {approximately}10{sup 13} sec{sup -1}. Energy distributions were similar ranging from 45 to 57 kcal/mol. Determined by the shift-in-T{sub max} method, the E{sub approx} and A{sub {approx}} for Kern River 650{degrees}F{sup +} and Midway Sunset were 48 kcal/mol, 1.3 X 10{sup 12} sec{sup -1}, and 46 kcal/mol and 4.6 X 10{sup 11} sec{sup -1}, respectively. These results are similar, but not identical to other kinetic parameters for heavy oils from type II source rocks.

Reynolds, J.G. [Lawrence Livermore National Lab., CA (United States)

1995-12-31T23:59:59.000Z

392

Raft River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Raft River Geothermal Area Raft River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Raft River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 DOE Involvement 4 Timeline 5 Regulatory and Environmental Issues 6 Future Plans 7 Raft River Unit II (26 MW) and Raft River Unit III (32 MW) 8 Enhanced Geothermal System Demonstration 9 Exploration History 10 Well Field Description 11 Technical Problems and Solutions 12 Geology of the Area 12.1 Regional Setting 12.2 Structure 12.3 Stratigraphy 12.3.1 Raft River Formation 12.3.2 Salt Lake Formation 12.3.3 Precambrian Rocks 13 Hydrothermal System 14 Heat Source 15 Geofluid Geochemistry 16 NEPA-Related Analyses (1) 17 Exploration Activities (77) 18 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.10166667,"lon":-113.38,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

E-Print Network 3.0 - assessment columbia river Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: assessment columbia river Page: << < 1 2 3 4 5 > >> 1 352000 Columbia river Basin Fish and Wildlife Program "...the Council is adopting Summary: 352000 Columbia river Basin...

394

Fluid catalytic cracking of heavy petroleum fractions  

SciTech Connect (OSTI)

A process is claimed for fluid catalytic cracking of residuum and other heavy oils comprising of gas oil, petroleum residue, reduced and whole crudes and shale oil to produce gasoline and other liquid products which are separated in various streams in a fractionator and associated vapor recovery equipment. The heat from combustion of coke on the coked catalyst is removed by reacting sulfur-containing coke deposits with steam and oxygen in a separate stripper-gasifier to produce a low btu gas stream comprising of sulfur compounds, methane, carbon monoxide, hydrogen, and carbon dioxide at a temperature of from about 1100/sup 0/F. To about 2200/sup 0/F. The partially regenerated catalyst then undergoes complete carbon removal in a regeneration vessel. The regenerated catalyst is recycled for re-use in the cracking of heavy petroleum fractions. The liquid products are gasoline, distillates, heavy fuel oil, and light hydrocarbons.

McHenry, K.W.

1981-06-30T23:59:59.000Z

395

High energy heavy ions: techniques and applications  

SciTech Connect (OSTI)

Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 ..mu..sec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab.

Alonso, J.R.

1985-04-01T23:59:59.000Z

396

Heavy Ion Physics at the LHC  

E-Print Network [OSTI]

The first Pb-Pb collisions at the LHC are little more than a year away. This paper discusses some of the exciting measurements which the experiments will be able to perform in the very first run, even with modest luminosity, and gives a very short overview of some of the most interesting ones attainable with more extended runs. The dedicated Heavy-Ion experiment ALICE, but also ATLAS and CMS, experiments optimized for p-p collisions, are ready and eager to make best use of the nuclear beams in the LHC as soon as they will be available. The main specificities of the three detectors for Heavy-Ion collisions will also be briefly addressed in this paper. I will try to show that already the first results obtainable with Heavy-Ion beams at the LHC will qualify it as a discovery machine, capable to provide fundamental new insight to our knowledge of high-density QCD matter.

P. Giubellino

2008-09-05T23:59:59.000Z

397

Indian River Hydroelectric Project Grant  

SciTech Connect (OSTI)

This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

Rebecca Garrett

2005-04-29T23:59:59.000Z

398

Canadian operators boost heavy oil production  

SciTech Connect (OSTI)

Recent technological advances in slurry pipelining, horizontal wells, and thermal recovery techniques have made recovery of Canadian heavy oil resources more economical. In addition, reduced government royalties have made investment in these difficult reservoirs more attractive. As a result, activity has increased in heavy-oil fields in Alberta and Saskatchewan. This paper review the various oil sand recovery projects under development in the area and the current government policies which are helping to develop them. The paper also provides brief descriptions of the equipment and technologies that have allowed a reduced cost in the development. Items discussed include surface mining techniques, horizontal drilling, reservoir engineering techniques, separation processes, and thermal recovery.

Perdue, J.M.

1996-05-01T23:59:59.000Z

399

Heavy quark diffusion from the lattice  

SciTech Connect (OSTI)

We study the diffusion of heavy quarks in the quark gluon plasma using the Langevin equations of motion and estimate the contribution of the transport peak to the Euclidean current-current correlator. We show that the Euclidean correlator is remarkably insensitive to the heavy quark diffusion coefficient and give a physical interpretation of this result using the free streaming Boltzmann equation. However if the diffusion coefficient is smaller than {approx}1/({pi}T), as favored by RHIC phenomenology, the transport contribution should be visible in the Euclidean correlator. We outline a procedure to isolate this contribution.

Petreczky, Peter; Teaney, Derek [Nuclear Theory Group, Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, New York 11764 (United States)

2006-01-01T23:59:59.000Z

400

Heavy quarks in the jet calculus  

Science Journals Connector (OSTI)

In this paper we explore a method for treating heavy quarks such as c and b quarks within the jet calculus. These quarks are differentiated from the more common u, d, and s quarks by the requirement that the gluons never branch into heavy-quark pairs during the jet development. We compute and discuss the charmed-quark "propagators"; the x distribution of colorless clusters containing a charmed quark, a noncharmed antiquark, and gluons; and the mass distribution of the parent partons giving rise to these colorless clusters.

L. M. Jones

1983-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Columbia River Plume andColumbia River Plume and California Current Ecosystem:California Current Ecosystem  

E-Print Network [OSTI]

­ Understand processes and develop tools (models and ocean indices) for forecasting salmonid survival and returns #12;EggEgg--smolt Potentialsmolt Potential-- Snake RiverSnake River Spring ChinookSpring Chinook 0 Recent `good' ocean 100 yr ave ocean `Poor' ocean #12;CHART OF SEA SURFACE TEMPERATURE · Note: warm water

402

Enhanced Bioaccumulation of Heavy Metals by Bacterial Cells Displaying  

E-Print Network [OSTI]

Enhanced Bioaccumulation of Heavy Metals by Bacterial Cells Displaying Synthetic Phytochelatins for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal strategy for develop- ing high-affinity bioadsorbents suitable for heavy metal removal. © 2000 John Wiley

Chen, Wilfred

403

Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference...

404

Heavy Element Synthesis Reactions W. Loveland Oregon State University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heavy element synthesis reactions and heavy element properties * Hot (E*35-60 MeV) and Cold (E*15 MeV) fusion reactions * Multi-nucleon transfer reactions * Fission * Atomic...

405

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

406

Heavy oil component characterization with multidimensional unilateral NMR  

Science Journals Connector (OSTI)

Heavy oil is a complicated mixture and a potential resource and has attracted much attention since the end of last century. It is important to characterize the composition of heavy oil to enhance its recovery ...

Huabing Liu; Lizhi Xiao; Baoxin Guo; Zongfu Zhang; Fangrong Zong

2013-09-01T23:59:59.000Z

407

Development and Demonstration of Fischer-Tropsch Fueled Heavy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(F-T) Fuels in the U.S. -- An Overview APBF-DEC Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update Coal-Derived Liquids to Enable HCCI Technology...

408

Experiments at The Virtual National Laboratory for Heavy Ion Fusion  

E-Print Network [OSTI]

Heavy Ion Beam Driven Fusion Reactor Study", KfK 3840,between the reactor chamber wall and the fusion target. Thereactor chambers. INTRODUCTION The USA Virtual National Laboratory for Heavy Ion Fusion

2000-01-01T23:59:59.000Z

409

Independent Oversight Follow-up Review, Savannah River National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Savannah River National Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of Implementation Verification Reviews at the Savannah River National Laboratory Savannah River Site The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the identification and implementation of safety basis hazard controls associated with "flashing spray release" and supporting information documented in the Savannah River National Laboratory (SRNL) WSRC-SA-2, SRNL Technical Area Documented Safety Analysis, Revision 10; WSRC-TS-97-00014, SRNL Technical Area Technical Safety Requirements,

410

Singing River Electric Power Association - Comfort Advantage Home Program |  

Broader source: Energy.gov (indexed) [DOE]

Singing River Electric Power Association - Comfort Advantage Home Singing River Electric Power Association - Comfort Advantage Home Program Singing River Electric Power Association - Comfort Advantage Home Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Contact Singing River Electric Power Association Provider Singing River Electric Power Association Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet [http://www.comfortadvantage.com/Comfort%20Advantage%20brochure.pdf Comfort Advantage] weatherization standards. To qualify for this rebate the home

411

Great River Energy (28 Member Cooperatives) - Commercial and Industrial  

Broader source: Energy.gov (indexed) [DOE]

Great River Energy (28 Member Cooperatives) - Commercial and Great River Energy (28 Member Cooperatives) - Commercial and Industrial Efficiency Rebates Great River Energy (28 Member Cooperatives) - Commercial and Industrial Efficiency Rebates < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Program Info Funding Source Great River Energy State Minnesota Program Type Utility Rebate Program Rebate Amount Varies by measure and member cooperative offering. Provider Great River Energy Great River Energy, a generation and transmission cooperative which serves

412

Interstate Commission on the Potomac River Basin (Multiple States) |  

Broader source: Energy.gov (indexed) [DOE]

Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State District of Columbia Program Type Environmental Regulations Siting and Permitting Provider Interstate Commission on the Potomac River Basin The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through regional and interstate

413

Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.

414

Heavy-quark correlations in deep inelastic scattering  

E-Print Network [OSTI]

We discuss results for heavy quark correlations in next-to-leading order QCD in deep inelastic electroproduction.

J. Smith; B. W. Harris

1996-05-20T23:59:59.000Z

415

Flow and equation of state in heavy-ion collisions  

E-Print Network [OSTI]

The status of flow in heavy-ion collisions and of inference of hadronic-matter properties is reviewed.

Danielewicz, P

1999-01-01T23:59:59.000Z

416

Flow and equation of state in heavy-ion collisions  

E-Print Network [OSTI]

The status of flow in heavy-ion collisions and of inference of hadronic-matter properties is reviewed.

P. Danielewicz

1999-07-25T23:59:59.000Z

417

Flow and equation of state in heavy ion collisions (2)  

E-Print Network [OSTI]

The status of flow in heavy-ion collisions and of inference of hadronic-matter properties is reviewed.

Danielewicz, P

2001-01-01T23:59:59.000Z

418

Towards Heavy Fermions in Europium Intermetallic Compounds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Towards Heavy Fermions in Towards Heavy Fermions in Europium Intermetallic Compounds Towards Heavy Fermions in Europium Intermetallic Compounds Print Wednesday, 29 July 2009 00:00 For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

419

Heavy Flavors in High Energy ep Collisions  

E-Print Network [OSTI]

Most recent measurements of open charm and beauty production in high energy ep collisions at HERA are reviewed. The measurements explored the different aspects of quantum chromodynamics involved in the process of heavy flavor production. The results are compared with perturbative theoretical calculations at next-to-leading order.

Meng Wang

2005-10-14T23:59:59.000Z

420

Boltzmann equation for heavy ion collisions  

Science Journals Connector (OSTI)

The sensitivity of inclusive observables in heavy ion collisions to the nuclear equation of state can be tested with the Boltzmann equation. We solve the Boltzmann equation, including mean field and Pauli blocking effects, by a method that follows closely the cascade model. We find that the inclusive pion production is insensitive to the nuclear equation of state, contrary to recent claims.

G. F. Bertsch; H. Kruse; S. Das Gupta

1984-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Accelerator development for heavy ion fusion  

SciTech Connect (OSTI)

Accelerator technology development is presented for heavy ion drivers used in inertial confinement fusion. The program includes construction of low-velocity ''test bed'' accelerator facilities, development of analytical and experimental techniques to characterize ion beam behavior, and the study of ion beam energy deposition.

Talbert, W.L. Jr.; Sawyer, G.A.

1980-01-01T23:59:59.000Z

422

Review of heavy ion collider proposals  

SciTech Connect (OSTI)

In this paper we review proposals for heavy-ion colliders generated during the last few years for several national laboratories. The proposals span over a large range of energy and luminosity to accommodate the experimental needs of both the nuclear and the high-energy physicists. We report also briefly efforts in the same field happening in Europe.

Ruggiero, A.G.

1985-01-01T23:59:59.000Z

423

Heavy metals behaviour in a gasification reactor  

Science Journals Connector (OSTI)

Sludge coming from cleaning processes of wastewater, Municipal Solid Waste (MSW), and Refuse Derived Fuel (RDF) can be exploited for producing energy because of their heating value. Cleaning the produced syngas is important because of environmental troubles, ... Keywords: heavy metals, syngas, thermodynamic, waste gasification

Martino Paolucci; Carlo Borgianni; Paolo De Filippis

2011-07-01T23:59:59.000Z

424

STANDARD OPERATING PROCEDURE HEAVY METAL SALTS (selected)  

E-Print Network [OSTI]

MSDS ___Special training provided by the department/supervisor ___Review of the OSHA Lab Standard ___Review of the departmental safety manual ___Review of the Chemical Hygiene Plan ___Safety meetings12.1 STANDARD OPERATING PROCEDURE for HEAVY METAL SALTS (selected) Location

Pawlowski, Wojtek

425

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

This technical progress report describes work performed from April 1 through June 30, 2002, for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' We investigate a broad spectrum of topics related to thermal and heavy-oil recovery. Significant results were obtained in the areas of multiphase flow and rock properties, hot-fluid injection, improved primary heavy oil recovery, and reservoir definition. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. Briefly, experiments were conducted to image at the pore level matrix-to-fracture production of oil from a fractured porous medium. This project is ongoing. A simulation studied was completed in the area of recovery processes during steam injection into fractured porous media. We continued to study experimentally heavy-oil production mechanisms from relatively low permeability rocks under conditions of high pressure and high temperature. High temperature significantly increased oil recovery rate and decreased residual oil saturation. Also in the area of imaging production processes in laboratory-scale cores, we use CT to study the process of gas-phase formation during solution gas drive in viscous oils. Results from recent experiments are reported here. Finally, a project was completed that uses the producing water-oil ratio to define reservoir heterogeneity and integrate production history into a reservoir model using streamline properties.

Anthony R. Kovscek

2002-07-01T23:59:59.000Z

426

STAR Highlights on Heavy Ion Physics  

E-Print Network [OSTI]

RHIC-STAR is a mid-rapidity collider experiment for studying high energy nuclear collisions. The main physics goals of STAR experiment are 1) studying the properties of the strongly coupled Quark Gluon Plasma, 2) explore the QCD phase diagram structure. In these proceedings, we will review the recent results of heavy ion physics at STAR.

Shusu Shi

2014-09-30T23:59:59.000Z

427

OPEC Prices Make Heavy Oil Look Profitable  

Science Journals Connector (OSTI)

...barrels of heavy oil, a lighter...defined as any oil heavier than...flows into production lines at a profitable rate. Oil from the sands...strip-mine operations linked by...upgrading" equipment, in the industry...Ath-abaska field. Construction...summer. Its cost was $2...894 nerve gas ("Weteye...

ELIOT MARSHALL

1979-06-22T23:59:59.000Z

428

Heavy Water' Project in New Zealand  

Science Journals Connector (OSTI)

... A COMPANY known as Geothermal Development, Ltd., in which the New Zealand Government and the United Kingdom Atomic ... construction of a factory and the subsequent production of heavy water and electric power from geothermal steam in the Wairakei district of North Island, New Zealand. The project has been ...

1955-03-05T23:59:59.000Z

429

Fusion barriers for heavy-ion systems  

Science Journals Connector (OSTI)

Analytical expressions for the fusion barrier height and radius have been derived from a four-parameter empirical fusion cross section formula for heavy ions. The fusion barrier parameters calculated, using these expressions, are in good agreement with the literature values.NUCLEAR REACTIONS Fusion cross section excitation functions, fusion barrier parameters.

S. K. Gupta and S. Kailas

1982-08-01T23:59:59.000Z

430

Electroproduction of heavy quarks at NLO  

E-Print Network [OSTI]

A new next-to-leading order Monte Carlo program for the calculation of fully differential heavy quark cross sections in electroproduction is described. A comparison between the theoretical predictions and the latest charm production data from H1 and ZEUS at HERA is presented.

B. W. Harris

1996-08-20T23:59:59.000Z

431

Research in heavy-ion nuclear physics  

SciTech Connect (OSTI)

This report discusses the following topics: Fusion-fission in light nuclear systems; High-resolution Q-value measurement for the {sup 24}Mg+{sup 24}Mg reaction; Heavy-ion reactions and limits to fusion; and Hybrid MWPC-Bragg curve detector development.

Sanders, S.J.; Prosser, F.W.

1992-01-01T23:59:59.000Z

432

Heavy Overweight Vehicle Brake Testing (HOVBT)  

E-Print Network [OSTI]

Heavy Overweight Vehicle Brake Testing (HOVBT) Oak Ridge National Laboratory managed by UT for a real-time on-board brake assessment tool. Test Overview A combination tractor-trailer will be given a complete brake rebuild prior to several tests performed at fully -laden and several overweight loading

433

Recent advances in heavy quark theory  

SciTech Connect (OSTI)

Some recent developments in heavy quark theory are reviewed. Particular emphasis is given to inclusive weak decays of hadrons containing a b quark. The isospin violating hadronic decay D{sub s}* {yields} D{sub s}{sup pi}{sup 0} is also discussed.

Wise, M. [California Institute of Technology, Pasadena, CA (United States)

1997-01-01T23:59:59.000Z

434

Heavy Flavour Physics at CMS and ATLAS  

E-Print Network [OSTI]

Prospects for heavy flavour studies with the CMS and ATLAS detectors are presented. Many studies are aimed for early LHC data, taking advantage of the large $b$ production cross-section. Rare decay studies as the $B_s \\to \\mu^+\\mu^-$ decay have also been performed.

L. Wilke; for the CMS; ATLAS Collaborations

2009-05-26T23:59:59.000Z

435

OPEC Prices Make Heavy Oil Look Profitable  

Science Journals Connector (OSTI)

...19 (Canadian) per barrel. He seemed...000 barrels a day by 1986. It will...underground in-to production wells, and will...heavy oil's day has come. Brian...of capital cost per SCIENCE, VOL. 204 barrel a day of production, conventional...

ELIOT MARSHALL

1979-06-22T23:59:59.000Z

436

BARC TIFR Heavy Ion Accelerator Facility  

E-Print Network [OSTI]

of nuclear structure studies at high temperature and angular momentum, elastic and transfer reactions as well are initially accelerated to low energies (150-250 keV) in a short horizontal section. These low energy negative enterprise using accelerated heavy ion beams is to unravel the complexities of the nuclear world in all

Shyamasundar, R.K.

437

River Hydrokinetic Resource Atlas | Open Energy Information  

Open Energy Info (EERE)

River Hydrokinetic Resource Atlas River Hydrokinetic Resource Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: River Hydrokinetic Resource Atlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Water Power Resource Type: Maps, Software/modeling tools User Interface: Website Website: maps.nrel.gov/river_atlas Country: United States Web Application Link: maps.nrel.gov/river_atlas Cost: Free UN Region: Northern America Coordinates: 39.7412019515°, -105.172290802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7412019515,"lon":-105.172290802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

New River Geothermal Exploration (Ram Power Inc.)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Clay Miller

439

Savannah River Site (SRS) environmental overview  

SciTech Connect (OSTI)

The environmental surveillance activities at and in the vicinity of the Savannah River Site (SRS) (formerly the Savannah River Plant (SRP)) comprise one of the most comprehensive and extensive environmental monitoring programs in the United States. This overview contains monitoring data from routine and nonroutine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs in progress, a summary of National Environmental Policy Act (NEPA) activities, and a listing of environmental permits (Appendix A) issued by regulatory agencies. This overview provides information about the impact of SRS operations on the public and the environment. The SRS occupies a large area of approximately 300 square miles along the Savannah River, principally in Aiken and Barnwell counties of South Carolina. SRS's primary function is the production of tritium, plutonium, and other special nuclear materials for national defense, for other governmental uses, and for some civilian purposes. From August 1950 to March 31, 1989, SRS was operated for the Department of Energy (DOE) by E. I. du Pont de Nemours Co. On April 1, 1989 the Westinghouse Savannah River Company assumed responsibility as the prime contractor for the Savannah River Site.

O'Rear, M.G. (USDOE Savannah River Operations Office, Aiken, SC (USA)); Steele, J.L.; Kitchen, B.G. (Westinghouse Savannah River Co., Aiken, SC (USA)) (eds.)

1990-01-01T23:59:59.000Z

440

New River Geothermal Exploration (Ram Power Inc.)  

SciTech Connect (OSTI)

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Clay Miller

2013-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...  

Broader source: Energy.gov (indexed) [DOE]

and CFD Modeling of In-Cylinder Chemical and Physical Processes * Combine planar laser-imaging diagnostics in an optical heavy-duty engine with multi-dimensional computer...

442

Tulane/Xavier University Hazardous Materials in Aquatic Environments of the Mississippi River Basin. Quarterly progress report, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

This progress report covers activities for the period January 1 - March 31, 1995 on project concerning `Hazardous Materials in Aquatic Environments of the Mississippi River Basin.` The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants in aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl.

NONE

1995-05-01T23:59:59.000Z

443

Gold Nanoparticle-Based Sensing of "Spectroscopically Silent" Heavy Metal  

E-Print Network [OSTI]

of aqueous heavy metal ions, including toxic metals such as lead, cadmium, and mercury, is describedLetters Gold Nanoparticle-Based Sensing of "Spectroscopically Silent" Heavy Metal Ions Youngjin Kim that by functionalizing metal nanoparticles with appropriate heavy-metal ion receptors, the particles might be coaxed

444

Detection of Heavy Metal Ions in Drinking Water Using a  

E-Print Network [OSTI]

, and clinical toxicology. A number of techniques have been developed over the years for heavy metal ion analysisDetection of Heavy Metal Ions in Drinking Water Using a High-Resolution Differential Surface-resolution differential surface plasmon resonance (SPR) sensor for heavy metal ion detection. The sensor surface

Chen, Wilfred

445

Heavy Machine Failure Maintenance Stratege Study Based on FMEA  

Science Journals Connector (OSTI)

Heavy machine is mainly used for large-scale, large parts of the processing, is the country's headed guard equipment. Heavy machine's non-normal shutdown will result in significant damage to the enterprise, how to effectively improve the maintenance ... Keywords: Heavy machine, FMEA, Maintenance Strategy

Deng Chao; Xiong Yao; Yuan-hang Wang; Wu Jun

2010-06-01T23:59:59.000Z

446

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network [OSTI]

objectives for this summer research were to: 1.) determine how much heavy metal pollution has accumulatedTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

447

REVIEW ARTICLE Heavy Metal Pollutants and Chemical Ecology: Exploring  

E-Print Network [OSTI]

REVIEW ARTICLE Heavy Metal Pollutants and Chemical Ecology: Exploring New Frontiers Robert S. Boyd to be learned about how heavy metal pollution impacts organisms, and that exciting new research frontiers as pollutants (Han et al. 2002), including Cd, Cu, Cr, Hg, Pb, Ni, and Zn. Much research on heavy metal

Boyd, Robert S.

448

Enrichment of Heavy Metals in Sediment Resulting from Soil  

E-Print Network [OSTI]

, Harpenden, Hertfordshire AL5 2JQ, U.K. Heavy metal pollution of soil and water is often associatedEnrichment of Heavy Metals in Sediment Resulting from Soil Erosion on Agricultural Fields J O H N N concentrations of these heavy metals were up to 3.98 times higher in the sediment than in the parent soil

Quinton, John

449

Withlacoochee River Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Withlacoochee River Elec Coop Withlacoochee River Elec Coop Jump to: navigation, search Name Withlacoochee River Elec Coop Place Florida Utility Id 20885 Utility Location Yes Ownership C NERC Location FRCC NERC FRCC Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Demand Commercial General Service Non-Demand Commercial Residential Service Residential Average Rates Residential: $0.1170/kWh Commercial: $0.0976/kWh Industrial: $0.0880/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

450

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

June 20, 2011 June 20, 2011 CX-006372: Categorical Exclusion Determination Well Installations at R-Area Operable Unit CX(s) Applied: B3.1 Date: 06/20/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 15, 2011 CX-006373: Categorical Exclusion Determination Connect 735-11A to the Central Plant Chilled Water System CX(s) Applied: B1.3 Date: 06/15/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 14, 2011 CX-006375: Categorical Exclusion Determination Replace Transfer Lines with Spare Lines CX(s) Applied: B1.3 Date: 06/14/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 14, 2011 CX-006374: Categorical Exclusion Determination

451

Cemex River Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Plant Jump to: navigation, search Name Cemex River Plant Facility Cemex River Plant Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Foundation Windpower Developer Foundation Windpower Energy Purchaser Cemex River Plant Location Victorville CA Coordinates 34.55527517°, -117.3012614° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.55527517,"lon":-117.3012614,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

November 29, 2012 November 29, 2012 CX-009607: Categorical Exclusion Determination 772-F Low-Activity Drain (LAD) Discharge Header Modification CX(s) Applied: B1.3 Date: 11/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office November 29, 2012 CX-008651: Categorical Exclusion Determination Dismantle and Remove (D&R) and Replace 773-A D-Wing Air Handling and Condensing Units CX(s) Applied: B1.3 Date: 05/17/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office November 29, 2012 CX-009608: Categorical Exclusion Determination Refurbish 607-53C Sanitary Sewer Lift Station CX(s) Applied: B1.3 Date: 11/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office November 27, 2012 CX-009611: Categorical Exclusion Determination

453

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

June 23, 2009 June 23, 2009 CX-000497: Categorical Exclusion Determination F-Canyon Complex Deactivation CX(s) Applied: B1.28 Date: 06/23/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 15, 2009 CX-000495: Categorical Exclusion Determination M-Area Chemical Oxidation (MACO) - Installation of Southern Sector Coreholes and Monitoring Wells Date: 06/15/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 15, 2009 CX-000496: Categorical Exclusion Determination F Area Hazardous Waste Management Facility Silver Chloride Solution Injection Wells CX(s) Applied: B6.2 Date: 06/15/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

454

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

July 31, 2013 July 31, 2013 CX-010844: Categorical Exclusion Determination Subcontractor Repair of Leak Over Entry Door #1 at 703-B CX(s) Applied: B1.3 Date: 07/31/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office July 30, 2013 CX-010846: Categorical Exclusion Determination Install Stud, Shims, and Nut in the L-Basin 70-Ton Cask Lid Support Structure CX(s) Applied: B2.5 Date: 07/30/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office July 23, 2013 CX-010850: Categorical Exclusion Determination Install Well Pump into the F-Tank Farm Catch Tank FL-241901-WTS-TK-1 CX(s) Applied: B1.3 Date: 07/23/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office July 23, 2013 CX-010849: Categorical Exclusion Determination

455

Carson River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Area River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.77,"lon":-119.715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

September 2, 2009 September 2, 2009 CX-000521: Categorical Exclusion Determination Cut and Cap #325 Steam Supply Header, 261-H Consolidated Incineration Facility CX(s) Applied: B1.27 Date: 09/02/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office September 2, 2009 CX-000520: Categorical Exclusion Determination 690-N (Ford Building) Fire System Isolation and Sanitary Sewer Grouting CX(s) Applied: B1.27 Date: 09/02/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office September 1, 2009 CX-000519: Categorical Exclusion Determination E-Area Box Remediation Project CX(s) Applied: B6.6 Date: 09/01/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

457

Huaneng Lancang River Hydropower | Open Energy Information  

Open Energy Info (EERE)

Lancang River Hydropower Lancang River Hydropower Jump to: navigation, search Name Huaneng Lancang River Hydropower Place Kunming, Yunnan Province, China Zip 650214 Sector Hydro, Solar Product Developer of hydro and solar power projects. Coordinates 25.051001°, 102.702011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.051001,"lon":102.702011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Illinois River Energy LLC | Open Energy Information  

Open Energy Info (EERE)

River Energy LLC River Energy LLC Jump to: navigation, search Name Illinois River Energy LLC Place Rochelle, Illinois Zip 61068 Product Owns and operates the Rochelle bioethanol plant producing ethanol and feedstock from grain. Coordinates 38.301544°, -78.272893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.301544,"lon":-78.272893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

March 15, 2013 March 15, 2013 CX-010126: Categorical Exclusion Determination Operation of Induction Furnace Fabrication Lab CX(s) Applied: B3.6 Date: 03/15/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office March 15, 2013 CX-010125: Categorical Exclusion Determination Microfluidics for Advanced Separation and Ultrasensitive Detection CX(s) Applied: B3.6 Date: 03/15/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office March 15, 2013 CX-010131: Categorical Exclusion Determination Replacement of the 254-13H Safety Significant (SS) Standby Diesel Generator CX(s) Applied: B1.25 Date: 03/15/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office March 15, 2013 CX-010130: Categorical Exclusion Determination Mechanical Isolation of Plant Air System at TNX

460

Savannah River Site | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site | National Nuclear Security Administration Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Savannah River Site Savannah River Site http://www.srs.gov/general/srs-home.html Field Office: Located south of Aiken, South Carolina, the Savannah River Field Office (SRFO) is responsible for the NNSA Defense Program missions at

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

August 13, 2013 August 13, 2013 CX-011158: Categorical Exclusion Determination Subcontractor Repair of Roof Leaks at 717-11A CX(s) Applied: B1.3 Date: 08/13/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office August 13, 2013 CX-011157: Categorical Exclusion Determination Subcontractor Roof Repairs in Telecom Room at 702-C CX(s) Applied: B1.3 Date: 08/13/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office August 8, 2013 CX-011163: Categorical Exclusion Determination Subcontractor Repair of Roof Leaks at 730-4B CX(s) Applied: B1.3 Date: 08/08/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office August 8, 2013 CX-011162: Categorical Exclusion Determination Subcontractor Repair of Roof Leaks at 730-1B CX(s) Applied: B1.3

462

Great River Energy | Open Energy Information  

Open Energy Info (EERE)

Great River Energy Great River Energy Place Minnesota Utility Id 7570 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Great_River_Energy&oldid=410764"

463

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

August 9, 2010 August 9, 2010 CX-003633: Categorical Exclusion Determination Install Platform and Stairs at F-10 Outfall CX(s) Applied: B2.3 Date: 08/09/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office August 4, 2010 CX-003635: Categorical Exclusion Determination D-Area Chemical Truck Unloading Station CX(s) Applied: B2.5 Date: 08/04/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office August 4, 2010 CX-003636: Categorical Exclusion Determination 484-D Sump Discharge Line Installation CX(s) Applied: B1.3 Date: 08/04/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 30, 2010 CX-003640: Categorical Exclusion Determination Howard T. Ricketts Laboratory (HTRL) Lab 134 CX(s) Applied: B3.6

464

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

April 20, 2011 April 20, 2011 CX-005766: Categorical Exclusion Determination Filter Testing with Static Test Cell CX(s) Applied: B3.6 Date: 04/20/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office April 19, 2011 CX-005769: Categorical Exclusion Determination Dismantle and Removal (D&R) and Enhance Chemical Cleaning (ECC) on Waste Tank 8F (General) CX(s) Applied: B1.28 Date: 04/19/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office April 15, 2011 CX-005771: Categorical Exclusion Determination Install Alternate Diesel Generator and Tie-In Connection for HB-Line CX(s) Applied: B2.5 Date: 04/15/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

465

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

April 16, 2013 April 16, 2013 CX-010322: Categorical Exclusion Determination Research and Development Welding and Brazing Sample Preparation and Activities in Building 723-A CX(s) Applied: B3.6 Date: 04/16/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office April 16, 2013 CX-010321: Categorical Exclusion Determination Destructive Evaluation of Plutonium Storage Can Bundles CX(s) Applied: B3.6 Date: 04/16/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office April 16, 2013 CX-010320: Categorical Exclusion Determination Corrosion Testing in Aqueous Solutions CX(s) Applied: B3.6 Date: 04/16/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office April 15, 2013 CX-010324: Categorical Exclusion Determination 772-F Chase 174 Sprinkler Modification

466

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

February 23, 2010 February 23, 2010 CX-001128: Categorical Exclusion Determination Closure of 607-10G Septic Tank (Served 661-G) CX(s) Applied: B1.27 Date: 02/23/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office February 23, 2010 CX-001127: Categorical Exclusion Determination Ballistic Resistant Enclosure Hatch Counterbalance CX(s) Applied: B2.5 Date: 02/23/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office February 23, 2010 CX-000878: Categorical Exclusion Determination 293-F Stack Risk Reduction Project CX(s) Applied: B1.28 Date: 02/23/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office February 23, 2010

467

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

468

Lower Colorado River Authority | Open Energy Information  

Open Energy Info (EERE)

River Authority River Authority Jump to: navigation, search Name Lower Colorado River Authority Place Texas Utility Id 11269 Utility Location Yes Ownership S NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

469

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

July 24, 2012 July 24, 2012 CX-009067: Categorical Exclusion Determination Deactivation and Decommissioning of the D-Area Detritiation Cells and Relocation of Associated Handi-Houses CX(s) Applied: B1.23 Date: 07/24/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office July 24, 2012 CX-009066: Categorical Exclusion Determination Characterization of Downgradient Volatile Organic Compounds Plume and Installation of Monitoring Well CX(s) Applied: B3.1 Date: 07/24/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office July 24, 2012 CX-009065: Categorical Exclusion Determination Installation of Sentinel Wells ASB011B/011C for A-2 Air Stripper Shutdown CX(s) Applied: B3.1 Date: 07/24/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

470

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

August 11, 2009 August 11, 2009 CX-000513: Categorical Exclusion Determination Cone Penetration Test sampling at ECODS (Early Construction and Operational Disposal Sites) B3 and B5 CX(s) Applied: B3.1 Date: 08/11/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office August 5, 2009 CX-000511: Categorical Exclusion Determination Isolation of Domestic Water Line, 782-4G CX(s) Applied: B1.3 Date: 08/05/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office August 5, 2009 CX-000512: Categorical Exclusion Determination Tree Removal and Chipping at P-Area Ash Basin and R-Area Ash Basin and P-007 Outfall Date: 08/05/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

471

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

October 25, 2010 October 25, 2010 CX-004445: Categorical Exclusion Determination Waste Treatment Plant Secondary Waste Radioactive Fluidized Bed Steam Reforming (Module A) CX(s) Applied: B3.6 Date: 10/25/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office October 15, 2010 CX-004450: Categorical Exclusion Determination Plutonium Glass Sectioning CX(s) Applied: B3.6 Date: 10/15/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office October 15, 2010 CX-004449: Categorical Exclusion Determination Bench Scale Testing to Provide Data on Precipitation Control in the Cesium Nitric Acid Recovery Process CX(s) Applied: B3.6 Date: 10/15/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office October 15, 2010

472

Mary's River Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Project River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mary's River Geothermal Project Project Location Information Coordinates 41.750555555556°, -115.30194444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.750555555556,"lon":-115.30194444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

January 24, 2011 January 24, 2011 CX-005090: Categorical Exclusion Determination Stairway to FM-1H CX(s) Applied: B2.3 Date: 01/24/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office January 21, 2011 CX-005109: Categorical Exclusion Determination Y589, Mobile Digital Radiography Identification System - Station CX(s) Applied: B1.15 Date: 01/21/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office January 20, 2011 CX-005108: Categorical Exclusion Determination Thin Films for Whisker Growth CX(s) Applied: B3.6 Date: 01/20/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office January 19, 2011 CX-005107: Categorical Exclusion Determination Karl Fisher Titration CX(s) Applied: B3.6 Date: 01/19/2011

474

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

November 29, 2010 November 29, 2010 CX-004808: Categorical Exclusion Determination Flowsheet Evaluation for the Neutralization of High Aluminum ? Low Uranium Used Nuclear Fuel (UNF) Solution CX(s) Applied: B3.6 Date: 11/29/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office November 29, 2010 CX-004809: Categorical Exclusion Determination Reactive Gas Reprocessing of Used Nuclear Fuel Simulants CX(s) Applied: B3.6 Date: 11/29/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office November 29, 2010 CX-004806: Categorical Exclusion Determination Volume Measurement of Solids by Gas Pycnometry CX(s) Applied: B3.6 Date: 11/29/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office November 12, 2010 CX-004805: Categorical Exclusion Determination

475

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

December 11, 2009 December 11, 2009 CX-000815: Categorical Exclusion Determination Hydrogen Technology Laboratory 140 - Chromatography, Wet Laboratory CX(s) Applied: B3.6 Date: 12/11/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office December 8, 2009 CX-000819: Categorical Exclusion Determination Thin-Film Development Laboratory CX(s) Applied: B3.6 Date: 12/08/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office December 8, 2009 CX-000820: Categorical Exclusion Determination Vacuum Induction Melting of Metals CX(s) Applied: B3.6 Date: 12/08/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office December 8, 2009 CX-000818: Categorical Exclusion Determination

476

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

July 20, 2012 July 20, 2012 CX-009070: Categorical Exclusion Determination A-Area Alternate Fire Water Supply CX(s) Applied: B1.3 Date: 07/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office July 20, 2012 CX-009069: Categorical Exclusion Determination Remove and Dispose of 107 A & B Tanks and Support Structure CX(s) Applied: B6.1 Date: 07/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office July 20, 2012 CX-009068: Categorical Exclusion Determination Hydrogen Charging Tritium Contaminated Metals CX(s) Applied: B3.6 Date: 07/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office July 16, 2012 CX-009077: Categorical Exclusion Determination F-Area Infrasturcture Improvement CX(s) Applied: B1.23 Date: 07/16/2012

477

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

August 30, 2012 August 30, 2012 CX-009100: Categorical Exclusion Determination Cooling Tower Water Sampling and Analysis for Legionella Pneumophila Density CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office August 29, 2012 CX-009106: Categorical Exclusion Determination Dismantle/Remove Vacuum System and Related Equipment in 772-F CX(s) Applied: B1.3 Date: 08/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office August 29, 2012 CX-009105: Categorical Exclusion Determination 284-H Track Coal Hopper Pit Modifications CX(s) Applied: B1.28 Date: 08/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office August 29, 2012 CX-009104: Categorical Exclusion Determination Infrastructure Modification for the Mobile Plutonium Facility (MPF) at the

478

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

9, 2012 9, 2012 CX-008639: Categorical Exclusion Determination Establish Laydown Yard East of 281-3F CX(s) Applied: B1.15 Date: 05/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office May 29, 2012 CX-008638: Categorical Exclusion Determination Excavate to Repair Underground Domestic Water Leak between Tanks 5 and 7 CX(s) Applied: B1.3 Date: 05/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office May 29, 2012 CX-008637: Categorical Exclusion Determination Operation and Maintenance of Inductively Coupled Plasma Mass Spectrometry Method in 773, B142 CX(s) Applied: B3.6 Date: 05/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office May 29, 2012 CX-008636: Categorical Exclusion Determination Analysis of Organic Species by Gas Chromatography (GC) and Gas

479

Raft River Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Raft River Geothermal Facility General Information Name Raft River Geothermal Facility Facility Raft River Sector Geothermal energy Location Information Location Cassia County, Idaho Coordinates 42.358036°, -113.5728501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358036,"lon":-113.5728501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Office of River Protection (Hanford) - Enforcement Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enforcement Documents Enforcement Documents Office of River Protection (Hanford) Enforcement Letter issued to Washington River Protection Solutions, LLC, related to a positive Unreviewed Safety Question involving the Tank Farm Waste Transfer System at the Hanford Site, (NEL-2012-01) February 28, 2012 Consent Order issued to Washington River Protection Solutions, LLC related to deficiencies in the corrective action management program, radiation control program, and sealed radioactive source accountability and control program (NCO-2011-01) May 27, 2011 Consent Order issued to Bechtel National, Inc. for Deficiencies in Vendor Commercial Grade Dedication Processes at the Hanford Waste Treatment and Immobilization Plant Project (NCO-2010-03) September 22, 2010 Preliminary Notice of Violation issued to Bechtel National, Inc., related to Deficiencies at the Waste Treatment and Immobilization Plant at the Hanford Site, December 3, 2008 (NEA-2008-04)

Note: This page contains sample records for the topic "bow river heavy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

June 20, 2013 June 20, 2013 CX-010655: Categorical Exclusion Determination Roof Repair on Crane Maintenance Area Roof CX(s) Applied: B1.3 Date: 06/20/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office June 18, 2013 CX-010657: Categorical Exclusion Determination Western Sector Treatment System Soil Vapor Extraction Wells CX(s) Applied: B3.1 Date: 06/18/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office June 18, 2013 CX-010656: Categorical Exclusion Determination Stormwater Drainage Repair CX(s) Applied: B1.3 Date: 06/18/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office June 17, 2013 CX-010662: Categorical Exclusion Determination Reroute Diesel Water Cooling Line at 241-125H CX(s) Applied: B1.3 Date: 06/17/2013

482

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

May 21, 2013 May 21, 2013 CX-010489: Categorical Exclusion Determination Salt Batch 7 Qualification CX(s) Applied: B3.6 Date: 05/21/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office May 14, 2013 CX-010497: Categorical Exclusion Determination Electrical Operations to Perform Yard Maintenance in Electrical Substations CX(s) Applied: B1.3 Date: 05/14/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office May 14, 2013 CX-010496: Categorical Exclusion Determination Corrosion Tests on Carbon Steel Exposed to Oxalic Acid and a Sludge Simulant CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office May 14, 2013 CX-010495: Categorical Exclusion Determination Advanced Fuel Cycle Initiative (AFCI) Am/Cm Separations

483

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

March 10, 2010 March 10, 2010 CX-001373: Categorical Exclusion Determination Analytical Development Tritium Support Laboratory for Mass Spectroscopy, Infrared Spectroscopy, and Raman CX(s) Applied: B3.6 Date: 03/10/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office March 10, 2010 CX-001372: Categorical Exclusion Determination On-Dock Rail Straddle Portal Prototype Project, Y580 CX(s) Applied: B3.6 Date: 03/10/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office March 4, 2010 CX-001129: Categorical Exclusion Determination Cut and Cap Firewater Line Tap-Off Near 714-7N CX(s) Applied: B1.3 Date: 03/04/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

484

Arkansas River Power Authority | Open Energy Information  

Open Energy Info (EERE)

River Power Authority River Power Authority Jump to: navigation, search Name Arkansas River Power Authority Place Colorado Website www.arpapower.org/ Utility Id 712 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

485

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

July 20, 2011 July 20, 2011 CX-006620: Categorical Exclusion Determination Relocate Hydroburst System from 238-H to 234-7H CX(s) Applied: B1.31 Date: 07/20/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 18, 2011 CX-006619: Categorical Exclusion Determination Install Seventeen Monitoring Wells Around 715-D CX(s) Applied: B3.1 Date: 07/18/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 18, 2011 CX-006618: Categorical Exclusion Determination Disable F-Tank Farm (FTF) Air Compressor Sequencer CX(s) Applied: B1.3 Date: 07/18/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 18, 2011 CX-006617: Categorical Exclusion Determination E Area Fire Water Extension CX(s) Applied: B1.15

486

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

January 17, 2012 January 17, 2012 CX-007642: Categorical Exclusion Determination Parking Lot Construction North of Pad 717-14F CX(s) Applied: B1.15 Date: 01/17/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office January 4, 2012 CX-007646: Categorical Exclusion Determination Insulation removal work in F-Tank Farm CX(s) Applied: B1.3 Date: 01/04/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office January 4, 2012 CX-007645: Categorical Exclusion Determination Nonproliferation Technology Section - Nanomaterials Research CX(s) Applied: B3.6 Date: 01/04/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office December 29, 2011 CX-007650: Categorical Exclusion Determination Control Room Consolidation CX(s) Applied: B2.2

487

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

April 16, 2010 April 16, 2010 CX-002207: Categorical Exclusion Determination Thin Films for Whisker Growth CX(s) Applied: B3.6 Date: 04/16/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office April 16, 2010 CX-002206: Categorical Exclusion Determination Real-Waste Testing of Enhanced Chemical Cleaning for Sludge Heel Removal CX(s) Applied: B3.6 Date: 04/16/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office April 16, 2010 CX-002208: Categorical Exclusion Determination Monitor Instruments Mass Spectrometer at Aiken County Technology Laboratory CX(s) Applied: B3.6 Date: 04/16/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office

488

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

November 1, 2012 November 1, 2012 CX-009620: Categorical Exclusion Determination Next Generation Solvent (NGS) Real Waste Testing CX(s) Applied: B3.6 Date: 11/01/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office October 31, 2012 CX-009624: Categorical Exclusion Determination High Activity Waste Trailer (HAWT) Disposition CX(s) Applied: B3.1 Date: 10/31/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office October 31, 2012 CX-009623: Categorical Exclusion Determination Technetium Precipitation Batch Testing CX(s) Applied: B3.6 Date: 10/31/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office October 25, 2012 CX-009625: Categorical Exclusion Determination Preparation and Temperature-Time Settling Treatment of Rheology Samples

489

Savannah River Site | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Site | National Nuclear Security Administration Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Savannah River Site Savannah River Site http://www.srs.gov/general/srs-home.html Field Office: Located south of Aiken, South Carolina, the Savannah River Field Office (SRFO) is responsible for the NNSA Defense Program missions at

490

Red River Biodiesel Ltd | Open Energy Information  

Open Energy Info (EERE)

River Biodiesel, Ltd. River Biodiesel, Ltd. Place Houston, Texas Zip 77006 Product Red River operates a biodiesel plant in Houstion, Texas with a capacity of 56.85mLpa (15m gallons per year). Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Savannah River Site Waste Disposition Project  

Broader source: Energy.gov (indexed) [DOE]

Terrel J. Spears Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste Disposition Project 2 Waste Disposition Project - Mission Radioactive Liquid Waste - Tank Waste Stabilization and Disposition - Disposition 36 million gallons of radioactive liquid waste - Close 49 underground storage tanks in which the waste now resides 3 36.7 Million 33.7 Mgal (92%) 3.0 Mgal (8%) Saltcake Sludge Salt Supernate Volume Curies 397 Million Curies (MCi) 212 MCi (54%) 185 MCi (46%) Gallons (Mgal) 36.5 Million 33.5 Mgal (92%) 3.0 Mgal (8%) Liquid Waste Background Liquid Waste Background * 2 tanks closed * 49 tanks remaining to close - aging, carbon steel - 27 compliant, 22 non-compliant - 12 have known leak sites

492

Snake and Columbia Rivers Sediment Sampling Project  

SciTech Connect (OSTI)

The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

Pinza, M.R.; Word, J.Q; Barrows, E.S.; Mayhew, H.L.; Clark, D.R. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

1992-12-01T23:59:59.000Z

493

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

February 7, 2012 February 7, 2012 CX-007967: Categorical Exclusion Determination Electrochemical Fluorination in Molten Fluoride Salts CX(s) Applied: B3.6 Date: 02/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office February 7, 2012 CX-007966: Categorical Exclusion Determination Sampling of Legacy Material for Material, Control & Accountability (MC&A) Verification CX(s) Applied: B3.6 Date: 02/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office February 7, 2012 CX-007965: Categorical Exclusion Determination Grout Formulation & Variability Testing CX(s) Applied: B3.6 Date: 02/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office February 6, 2012 CX-007971: Categorical Exclusion Determination

494

Milky River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Milky River Geothermal Area Milky River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Milky River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.32,"lon":-174.1472,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

495

Platte River Power Authority | Open Energy Information  

Open Energy Info (EERE)

River Power Authority River Power Authority Jump to: navigation, search Name Platte River Power Authority Place Colorado Website www.prpa.org/ Utility Id 15143 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

496

Reese River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Area Reese River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reese River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (10) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.89,"lon":-117.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

497

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

November 7, 2011 November 7, 2011 CX-007671: Categorical Exclusion Determination Heat Exchanger Removal and Disposition CX(s) Applied: B6.1 Date: 11/07/2011 Location(s): South Carolina Offices(s): Savannah River Operations Office November 7, 2011 CX-007670: Categorical Exclusion Determination Maintenance Excavation of the B-07 Outfall Ditch CX(s) Applied: B1.3 Date: 11/07/2011 Location(s): South Carolina Offices(s): Savannah River Operations Office November 7, 2011 CX-007669: Categorical Exclusion Determination Vegetative Response to Metal Exposure in a Growing Media CX(s) Applied: B3.6 Date: 11/07/2011 Location(s): South Carolina Offices(s): Savannah River Operations Office October 27, 2011 CX-007672: Categorical Exclusion Determination Sampling of Nuclear Fuel Assembly CX(s) Applied: B3.6

498

Pea River Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Pea River Electric Coop Pea River Electric Coop Jump to: navigation, search Name Pea River Electric Coop Place Alabama Utility Id 14602 Utility Location Yes Ownership C NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light: 100 watt high pressure sodium Lighting Security Light: 1000 watt metal halide Lighting Security Light: 250 watt high pressure sodium (flood) Lighting Security Light: 250 watt high pressure sodium (street) Lighting Security Light: 400 watt high pressure sodium Lighting Average Rates Residential: $0.1150/kWh Commercial: $0.1200/kWh

499

Categorical Exclusion Determinations: Savannah River Operations Office |  

Broader source: Energy.gov (indexed) [DOE]

July 20, 2010 July 20, 2010 CX-003668: Categorical Exclusion Determination Subsurface Soils Exploration for Potential Pit Disassembly and Conversion Project Sandfilter Footprint CX(s) Applied: B3.1 Date: 07/20/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 7, 2010 CX-003670: Categorical Exclusion Determination Improvements to L Area Sidewalks CX(s) Applied: B1.3 Date: 07/07/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office July 7, 2010 CX-002984: Categorical Exclusion Determination Improvements to L Area Sidewalks CX(s) Applied: B1.3 Date: 07/07/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 25, 2010 CX-003671: Categorical Exclusion Determination

500

Independent Oversight Follow-up Review, Savannah River National Laboratory- January 2012  

Broader source: Energy.gov [DOE]

Follow-up Review of Implementation Verification Reviews at the Savannah River National Laboratory Savannah River Site