Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Bottom-Up Energy Analysis System (BUENAS) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar Energy Association Jump to:Botetourt

2

Bottom-Up Energy Analysis System (BUENAS) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar Energy Association Jump to:Botetourt

3

Bottom-Up Energy Analysis System - Methodology and Results  

E-Print Network [OSTI]

Energy Agency, World Energy Outlook 2006. 2006, OECD. ILO,by the trend of IEA’s World Energy Outlook (WEO) 2006 [71],to trends in the World Energy Outlook [71]. The projection

McNeil, Michael A.

2013-01-01T23:59:59.000Z

4

Bottom-Up Energy Analysis System - Methodology and Results  

E-Print Network [OSTI]

country energy coverage will total 77% of global demand. Thetotal energy demand in 2005[6], the countries covered account for 62% of global

McNeil, Michael A.

2013-01-01T23:59:59.000Z

5

Bottom-Up Energy Analysis System - Methodology and Results  

E-Print Network [OSTI]

World Energy Outlook [71]. The projection of electricity carbon factors is based on expectations of the carbon intensity

McNeil, Michael A.

2013-01-01T23:59:59.000Z

6

Bottom-Up Energy Analysis System - Methodology and Results  

E-Print Network [OSTI]

market shares Industrial electric motors activity parametersInitiative. in IEA Electric Motor Systems Workshop. 2006.Standards for Electric Motors in Brazilian Industry. Energy

McNeil, Michael A.

2013-01-01T23:59:59.000Z

7

Bottom-Up Energy Analysis System - Methodology and Results  

E-Print Network [OSTI]

Energy-Efficiency Standards for Electric Motors in Brazilianefficiency definitions Product class market shares Industrial electric motorsMotor Efficiency Standards - SEEEM Harmonization Initiative. in IEA Electric

McNeil, Michael A.

2013-01-01T23:59:59.000Z

8

Representing energy technologies in top-down economic models using bottom-up information  

E-Print Network [OSTI]

This paper uses bottom-up engineering information as a basis for modeling new technologies within the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy. ...

McFarland, James R.; Reilly, John M.; Herzog, Howard J.

9

Bottoms Up  

E-Print Network [OSTI]

Broadcast Transcript: "Bottoms up!" Or, "gan bei," as they say here in China. But what are you drinking? It could either be the authentic 144-proof sorghum-based liquor Moutai, or a clever counterfeit. Moutai has been dubbed the "national wine...

Hacker, Randi; Boyd, David

2011-03-30T23:59:59.000Z

10

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down  

E-Print Network [OSTI]

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top agencies, reduced demand on capacity-constrained electric utility systems, increased energy system sector's buying power and visible leadership offer a powerful, non-regulatory means to stimulate market

11

A bottom-up analysis of including aviation within theEU's Emissions Trading Scheme  

E-Print Network [OSTI]

A bottom-up analysis of including aviation within theEU's Emissions Trading Scheme Alice Bows-up analysis of including aviation within the EU's Emissions Trading Scheme Alice Bows & Kevin Anderson Tyndall's emissions trading scheme. Results indicate that unless the scheme adopts both an early baseline year

Watson, Andrew

12

Two Paths to Transforming Markets through Public Sector EnergyEfficiency: Bottom Up versus Top Down  

SciTech Connect (OSTI)

The evolution of government purchasing initiatives in Mexicoand China, part of the PEPS (Promoting an Energy-efficient Public Sector)program, demonstrates the need for flexibility in designingenergy-efficiency strategies in the public sector. Several years ofpursuing a top-down (federally led) strategy in Mexico produced fewresults, and it was not until the program was restructured in 2004 tofocus on municipal-level purchasing that the program gained momentum.Today, a new partnership with the Mexican federal government is leadingto an intergovernmental initiative with strong support at the federallevel. By contrast, the PEPS purchasing initiative in China wassuccessfully initiated and led at the central government level withstrategic support from international experts. The very different successtrajectories in these two countries provide valuable lessons fordesigning country-specific public sector energy-efficiency initiatives.Enabling conditions for any successful public sector purchasinginitiative include the existence of mandatory energy-efficiencyperformance standards, an effective energy-efficiency endorsementlabeling program, an immediate need for energy conservation, a simplepilot phase (focusing on a limited number of strategically chosenproducts), and specialized technical assistance. Top-down purchasingprograms are likely to be more successful where there is high-levelpolitical endorsement and a national procurement law in place, supportedby a network of trained purchasers. Bottom-up (municipally led)purchasing programs require that municipalities have the authority to settheir own purchasing policies, and also benefit from existing networks ofcities, supported by motivated municipal leaders and trained purchasingofficials.

Van Wie McGrory, Laura; Coleman, Philip; Fridley, David; Harris,Jeffrey; Villasenor Franco, Edgar

2006-05-10T23:59:59.000Z

13

Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US  

E-Print Network [OSTI]

Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models marginal cost, as well as a smaller contribution from energy efficiency relative to other abatement of energy efficiency potential and green- house gas (GHG) abatement potential that have been highly

14

Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach  

SciTech Connect (OSTI)

Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

Zhou, Nan; McNeil, Michael A.

2009-05-01T23:59:59.000Z

15

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down  

E-Print Network [OSTI]

public sector buildings in four provinces to develop a baseline of equipment usage and energy consumption;

Van Wie McGrory, Laura; Coleman, Philip; Fridley, David; Harris, Jeffrey; Villasenor Franco, Edgar

2006-01-01T23:59:59.000Z

16

Bottom-Up Energy Analysis System - Methodology and Results  

E-Print Network [OSTI]

Statement Household Refrigerators and Freezers. 2008. EC,technologies (e.g. refrigerators and freezers are groupedresidential refrigerators and freezers: function derivation

McNeil, Michael A.

2013-01-01T23:59:59.000Z

17

Bottom-Up Energy Analysis System - Methodology and Results  

E-Print Network [OSTI]

Documents U.S. Rulemaking Documents TSL 4 PHP IncandescentLamps Incandescent Lamps Fluorescent Lamp Ballasts kWh/yrand T5 fluorescent tubes, incandescent lamps, CFLs, Halogen

McNeil, Michael A.

2013-01-01T23:59:59.000Z

18

Bottom-Up Energy Analysis System - Methodology and Results  

E-Print Network [OSTI]

TSL 4 TSL 4 TSL 4 TSL 4 Group End Use Water HeatersWater HeatersWater Heaters Water Heaters Water Heaters Water Heaters

McNeil, Michael A.

2013-01-01T23:59:59.000Z

19

Bottom-Up Energy Analysis System - Methodology and Results  

E-Print Network [OSTI]

2008 Water Heater Water Heater Gas Storage Gas Storage GJ/yryr USA MEX DOE, FR 2010 CONUEE Water Heater Gas Storage GJ/yr CAN Water Heater Gas Storage Gas Instantaneous Gas

McNeil, Michael A.

2013-01-01T23:59:59.000Z

20

Bottom Up and Country Led: A New Framework for Climate Action | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTI PFAN) | Open

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Detonation: From the Bottom Up  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Latest Issue:December 2014 All Issues submit Detonation: From the Bottom Up In the nuclear testing era, scientists never thoroughly characterized the properties of the...

22

China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model  

E-Print Network [OSTI]

Development Plan for Renewable Energy in China. Availabledevelopment-plan-for-renewable-energy.pdf Tu, J. , Jaccard,further expansion of renewable and nuclear power capacity.

Zhou, Nan

2014-01-01T23:59:59.000Z

23

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network [OSTI]

Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

Roop, J. M.; Dahowski, R. T

24

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

25

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector  

E-Print Network [OSTI]

2001. The Energy Technology Systems Analysis Programme (and Institute of Paper Science and Technology (IPST) atGeorgia Institute of Technology, Atlanta. Kramer, K. J. ,

Xu, Tengfang

2014-01-01T23:59:59.000Z

26

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network [OSTI]

Energy Efficiency Improvements in Electric Motors andEnergy Efficiency Improvements in Electric Motors and

Xu, T.T.

2011-01-01T23:59:59.000Z

27

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector  

E-Print Network [OSTI]

Best Practices in the Netherlands: Top Ten Energy Saving Opportunities. Proceedings COST Strategic Workshop “Improving Energy Efficiency

Xu, Tengfang

2014-01-01T23:59:59.000Z

28

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

Xu, T.T.; Sathaye, J.; Galitsky, C.

2010-09-30T23:59:59.000Z

29

Implications of maximizing China's technical potential for residential end-use energy efficiency: A 2030 outlook from the bottom-up  

E-Print Network [OSTI]

of electric and gas water heaters, both of which areMEPS revisions. For gas water heaters, the energy factor isDOE 2010). For electric water heaters, continued efficiency

Khanna, Nina

2014-01-01T23:59:59.000Z

30

A Bottom-Up Approach to SUSY Analyses  

SciTech Connect (OSTI)

This paper proposes a new way to do event generation and analysis in searches for new physics at the LHC. An abstract notation is used to describe the new particles on a level which better corresponds to detector resolution of LHC experiments. In this way the SUSY discovery space can be decomposed into a small number of eigenmodes each with only a few parameters, which allows to investigate the SUSY parameter space in a model-independent way. By focusing on the experimental observables for each process investigated the Bottom-Up Approach allows to systematically study the boarders of the experimental efficiencies and thus to extend the sensitivity for new physics.

Horn, Claus; /SLAC

2011-11-11T23:59:59.000Z

31

A Bottom-Up Approach to SUSY Analyses  

E-Print Network [OSTI]

This paper proposes a new way to do event generation and analysis in searches for new physics at the LHC. An abstract notation is used to describe the new particles on a level which better corresponds to detector resolution of LHC experiments. In this way the SUSY discovery space can be decomposed into a small number of eigenmodes each with only a few parameters, which allows to investigate the SUSY parameter space in a model-independent way. By focusing on the experimental observables for each process investigated the Bottom-Up Approach allows to systematically study the boarders of the experimental efficiencies and thus to extend the sensitivity for new physics.

Claus Horn

2009-06-02T23:59:59.000Z

32

Nanowires As Building Blocks for Bottom-Up Nanotechnology  

E-Print Network [OSTI]

#12;Nanowires As Building Blocks for Bottom-Up Nanotechnology The field of nanotechnology/or combinations of function in an integrated nanosystem. To enable this bottom-up approach for nanotechnology-dimensional (1D) nanostruc- tures at the forefront of nanoscience and nanotechnology. NWs and NBs are typi- cally

Wang, Zhong L.

33

An integrated top-down and bottom-up strategy for characterization protein isoforms and modifications  

SciTech Connect (OSTI)

Bottom-up and top-down strategies are two commonly used methods for mass spectrometry (MS) based protein identification; each method has its own advantages and disadvantages. In this chapter, we describe an integrated top-down and bottom-up approach facilitated by concurrent liquid chromatography-mass spectrometry (LC-MS) analysis and fraction collection for comprehensive high-throughput intact protein profiling. The approach employs a high resolution reversed phase (RP) LC separation coupled with LC eluent fraction collection and concurrent on-line MS with a high field (12 Tesla) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer. Protein elusion profiles and tentative modified protein identification are made using detected intact protein mass in conjunction with bottom-up protein identifications from the enzymatic digestion and analysis of corresponding LC fractions. Specific proteins of biological interest are incorporated into a target ion list for subsequent off-line gas-phase fragmentation that uses an aliquot of the original collected LC fraction, an aliquot of which was also used for bottom-up analysis.

Wu, Si; Tolic, Nikola; Tian, Zhixin; Robinson, Errol W.; Pasa-Tolic, Ljiljana

2011-04-15T23:59:59.000Z

34

Bottom-up graphene nanoribbon field-effect transistors  

SciTech Connect (OSTI)

Recently developed processes have enabled bottom-up chemical synthesis of graphene nanoribbons (GNRs) with precise atomic structure. These GNRs are ideal candidates for electronic devices because of their uniformity, extremely narrow width below 1?nm, atomically perfect edge structure, and desirable electronic properties. Here, we demonstrate nano-scale chemically synthesized GNR field-effect transistors, made possible by development of a reliable layer transfer process. We observe strong environmental sensitivity and unique transport behavior characteristic of sub-1?nm width GNRs.

Bennett, Patrick B. [Applied Science and Technology, University of California, Berkeley, California 94720 (United States) [Applied Science and Technology, University of California, Berkeley, California 94720 (United States); Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Pedramrazi, Zahra [Department of Physics, University of California, Berkeley, California 94720 (United States)] [Department of Physics, University of California, Berkeley, California 94720 (United States); Madani, Ali [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)] [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Chen, Yen-Chia; Crommie, Michael F. [Department of Physics, University of California, Berkeley, California 94720 (United States) [Department of Physics, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720 (United States); Oteyza, Dimas G. de [Department of Physics, University of California, Berkeley, California 94720 (United States) [Department of Physics, University of California, Berkeley, California 94720 (United States); Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, San Sebastián E-20018 (Spain); Chen, Chen [Department of Chemistry, University of California, Berkeley, California 94720 (United States)] [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Fischer, Felix R. [Department of Chemistry, University of California, Berkeley, California 94720 (United States) [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720 (United States); Bokor, Jeffrey, E-mail: jbokor@eecs.berkeley.edu [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States) [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720 (United States)

2013-12-16T23:59:59.000Z

35

Bottom-up, social innovation for addressing climate change Noam Bergman, University of Oxford  

E-Print Network [OSTI]

1 Bottom-up, social innovation for addressing climate change Noam Bergman, University of Oxford and practice in the area of bottom-up, social innovation could yield benefits if integrated into wider employing new technical solutions, we identify these as warranting more research, policy and support. Bottom-up

36

Architectures built using bottom-up self-assembly of nanoelectronic devices will need to tolerate defect rates that  

E-Print Network [OSTI]

in the lithography process, the high energy associated with shorter wavelengths and the accuracy needed to fabricate1 Abstract Architectures built using bottom-up self-assembly of nanoelectronic devices will need isolation. Simulations show that, for a fail-stop model of node failure, the broadcast connects all nodes

Sorin, Daniel J.

37

Architectures built using bottom-up self-assembly of nanoelectronic devices will need to tolerate defect rates that  

E-Print Network [OSTI]

in the lithography process, the high energy associated with shorter wavelengths and the accuracy needed to fabricateAbstract Architectures built using bottom-up self-assembly of nanoelectronic devices will need isolation. Simulations show that, for a fail-stop model of node failure, the broadcast connects all nodes

Dwyer, Chris

38

A Top-down and Bottom-up look at Emissions Abatement in Germany in response to the EU ETS  

E-Print Network [OSTI]

This paper uses top-down trend analysis and a bottom-up power sector model to define upper and lower boundaries on abatement in Germany in the first phase of the EU Emissions Trading Scheme (2005-2007). Long-term trend ...

Feilhauer, Stephan M. (Stephan Marvin)

2008-01-01T23:59:59.000Z

39

art bottom-up methods: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

liquor Moutai, or a clever counterfeit. Moutai has been dubbed the "national wine... Hacker, Randi; Boyd, David 2011-03-30 2 introduction videogame stimuli bottom-up...

40

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

US Department of Energy’s Transportation Energy Data Book (Davis and Diegel, 2006). Baseline gasoline and ethanol usage

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Benchmarking Non-Hardware Balance-of-System (Soft) Costs for U.S. Photovoltaic Systems, Using a Bottom-Up Approach and Installer Survey - Second Edition  

SciTech Connect (OSTI)

This report presents results from the second U.S. Department of Energy (DOE) sponsored, bottom-up data-collection and analysis of non-hardware balance-of-system costs -- often referred to as 'business process' or 'soft' costs -- for U.S. residential and commercial photovoltaic (PV) systems. In service to DOE's SunShot Initiative, annual expenditure and labor-hour-productivity data are analyzed to benchmark 2012 soft costs related to (1) customer acquisition and system design (2) permitting, inspection, and interconnection (PII). We also include an in-depth analysis of costs related to financing, overhead, and profit. Soft costs are both a major challenge and a major opportunity for reducing PV system prices and stimulating SunShot-level PV deployment in the United States. The data and analysis in this series of benchmarking reports are a step toward the more detailed understanding of PV soft costs required to track and accelerate these price reductions.

Friedman, B.; Ardani, K.; Feldman, D.; Citron, R.; Margolis, R.; Zuboy, J.

2013-10-01T23:59:59.000Z

42

Bottom-Up and Top-Down Processes in Emotion Generation: Common and Distinct Neural Mechanisms  

E-Print Network [OSTI]

Emotions are generally thought to arise through the interaction of bottom-up and top-down processes. However, prior work has not delineated their relative contributions. In a sample of 20 females, we used functional magnetic ...

Ochsner, Kevin N.

43

Assembly of a Molecular Needle, from the Bottom Up  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssembly of a Molecular Needle, from

44

Assembly of a Molecular Needle, from the Bottom Up  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssembly of a Molecular Needle,

45

Assembly of a Molecular Needle, from the Bottom Up  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssembly of a Molecular

46

Assembly of a Molecular Needle, from the Bottom Up  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssembly of a MolecularAssembly of a

47

Assembly of a Molecular Needle, from the Bottom Up  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. Nozik -Grown byAssembly of a Molecular

48

TOP-DOWN/BOTTOM-UP APPROACH FOR DEVELOPING SUSTAINABLE DEVELOPMENT INDICATORS FOR MINING  

E-Print Network [OSTI]

: APPLICATION TO THE ARLIT URANIUM MINES (NIGER) A. Chamareta)b) , M. O'Connor a) and G. Récoché b) a, undertaken at the Arlit uranium mines in Niger. Our objective was to define indicators that are understood1 TOP-DOWN/BOTTOM-UP APPROACH FOR DEVELOPING SUSTAINABLE DEVELOPMENT INDICATORS FOR MINING

Paris-Sud XI, Université de

49

Programmable Self-Assembly Control of Concurrent Systems From the Bottom Up  

E-Print Network [OSTI]

Programmable Self-Assembly Control of Concurrent Systems From the Bottom Up Eric Klavins Self-assembly. Self-assembly is ubiquitous in nature. For example, virus capsids, cell membranes, and tissues are all self-assembled from smaller com- ponents in a completely distributed fashion. Self-assembly

50

Bottom-Up Self-Organization of Unpredictable Demand and Supply under Decentralized Power Management  

E-Print Network [OSTI]

, distributed power production at lower voltage levels (through wind turbines or solar panels) is considered, as this depends on external environmental conditions (e.g. solar and wind power). In Electrical EngineeringBottom-Up Self-Organization of Unpredictable Demand and Supply under Decentralized Power Management

Wedde, Horst F.

51

A bottom up approach to on-road CO2 emissions estimates: improved spatial accuracy and applications for regional  

E-Print Network [OSTI]

A bottom up approach to on-road CO2 emissions estimates: improved spatial accuracy and applications Environment Environmental Science & Technology #12;1 A bottom up approach to on-road CO2 emissions estimates-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 emissions. Mapping vehicle emissions

Wing, Ian Sue

52

Issues in International Energy Consumption Analysis: Electricity...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

a bottom-up approach in their research paper from the Lawrence Berkeley National Lab (LBNL) in 2009, Residential and Transport Energy Use in India: Past Trend and Future Outlook....

53

Bottom-up superconducting and Josephson junction devices inside a group-IV semiconductor  

E-Print Network [OSTI]

Superconducting circuits are exceptionally flexible, enabling many different devices from sensors to quantum computers. Separately, epitaxial semiconductor devices such as spin qubits in silicon offer more limited device variation but extraordinary quantum properties for a solid-state system. It might be possible to merge the two approaches, making single-crystal superconducting devices out of a semiconductor by utilizing the latest atomistic fabrication techniques. Here we propose superconducting devices made from precision hole-doped regions within a silicon (or germanium) single crystal. We analyze the properties of this superconducting semiconductor and show that practical superconducting wires, Josephson tunnel junctions or weak links, superconducting quantum interference devices (SQUIDs), and qubits are feasible. This work motivates the pursuit of "bottom-up" superconductivity for improved or fundamentally different technology and physics.

Yun-Pil Shim; Charles Tahan

2014-07-02T23:59:59.000Z

54

www.sciencemag.org SCIENCE VOL 313 22 SEPTEMBER 2006 1737 Top-Down Vs. Bottom-Up  

E-Print Network [OSTI]

for nutrients or pri- mary production in nearshore kelp forests and despite evidence to the contrary [e.g., (9www.sciencemag.org SCIENCE VOL 313 22 SEPTEMBER 2006 1737 Top-Down Vs. Bottom-Up Effects in Kelp Forests IN THEIR REPORT "STRONG TOP-DOWN CON- trol in southern California kelp forest ecosystems" (26 May

Edwards, Matthew

55

Teaching application-orientated mathematics and developing didactic from the bottom up Regina Puscher and Rdiger Vernay  

E-Print Network [OSTI]

261 Teaching application-orientated mathematics and developing didactic from the bottom up Regina the possibilities of didactic development from the bottom, from the work of practising teachers, and illustrate of the MUED the latest developements in math-didactics can be discussed from the view of schoolteachers

Spagnolo, Filippo

56

A Bottom-Up Approach to Verification of Hybrid Model-Based Hierarchical Controllers with application to Underwater Vehicles  

E-Print Network [OSTI]

A Bottom-Up Approach to Verification of Hybrid Model-Based Hierarchical Controllers with application to Underwater Vehicles M. O'Connor, S. Tangirala, R. Kumar, S. Bhattacharyya, M. Sznaier and L.E. Holloway Abstract -- We present a systematic method of verification for a hierarchical hybrid system

Kumar, Ratnesh

57

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down  

E-Print Network [OSTI]

Table 1. Enabling Conditions for PEPS Success in China andsuccesses and the barriers confronting each, and concludes with several lessons and “enabling conditions”success in China than it did in Mexico. A number of conditions

Van Wie McGrory, Laura; Coleman, Philip; Fridley, David; Harris, Jeffrey; Villasenor Franco, Edgar

2006-01-01T23:59:59.000Z

58

Representing energy technologies in top-down economic models using bottom-up information  

E-Print Network [OSTI]

example (e.g., a 500 megawatt coal fired power plant, or a 1-MW wind turbine). The technologies production may be treated as a single sector with capital, labor, material, and fuel inputs. Continuous

59

The Bottom-Up Approach forThermoelectric Nanocomposites, plusƒ |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeThe 21st

60

Use of Building Automation System Trend Data for Inputs Generation in Bottom-Up Simulation Calibration  

E-Print Network [OSTI]

for analysis and use in simulation is very large. This paper explores automating the process of generating inputs from Building Automation System (BAS) trend data for use in building simulation software. A proof-of-concept prototype called the Automatic...

Zibin, N. F.; Zmeureanu, R. G.; Love, J. A.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Humans Strengthen Bottom-Up Effects and Weaken Trophic Cascades in a Terrestrial Food Web  

E-Print Network [OSTI]

of Canada, Shell Canada, the Institute for Sustainable Energy, Environment and Economy, the Canadian.pone.0064311 Editor: Jon Moen, Umea University, Sweden Received December 31, 2012; Accepted April 11, 2013 Association, Alberta Tourism, Parks and Recreation, Alberta Sustainable Resource Development, Alberta

Hebblewhite, Mark

62

Enzyme Design From the Bottom Up: An Active Nickel Electrocatalyst with a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance Environmental

63

A Computational Strategy to Analyze Label-Free Temporal Bottom-up  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon,Electrocatalysis |Framework GlobalProteomics

64

An integrated top-down and bottom-up proteomic approach to characterize the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed CrossAn IridatePrinceton Plasma

65

An integrated top-down and bottom-up strategy for broadly characterizing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed CrossAn IridatePrinceton Plasmaprotein

66

China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model  

E-Print Network [OSTI]

Qin, H. , , 2007. China Wind Power Report. Beijing: Chinachina/ en/press/reports/wind-power-report.pdf NBS (NationalAIS scenarios CIS AIS Wind power Nuclear power Natural gas

Zhou, Nan

2014-01-01T23:59:59.000Z

67

Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach  

SciTech Connect (OSTI)

We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining level on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.

Trément, Sébastien; Rousseau, Bernard, E-mail: bernard.rousseau@u-psud.fr [Laboratoire de Chimie-Physique, UMR 8000 CNRS, Université Paris-Sud, Orsay (France)] [Laboratoire de Chimie-Physique, UMR 8000 CNRS, Université Paris-Sud, Orsay (France); Schnell, Benoît; Petitjean, Laurent; Couty, Marc [Manufacture Française des Pneumatiques MICHELIN, Centre de Ladoux, 23 place des Carmes, 63000 Clermont-Ferrand (France)] [Manufacture Française des Pneumatiques MICHELIN, Centre de Ladoux, 23 place des Carmes, 63000 Clermont-Ferrand (France)

2014-04-07T23:59:59.000Z

68

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network [OSTI]

the NEMA Premium Efficiency Electric Motor specification wasElectric Apparatus Service Association (EASA) (2003). The Effect of Repair/Rewinding on Motor Efficiency.

Sathaye, J.

2011-01-01T23:59:59.000Z

69

Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach  

E-Print Network [OSTI]

a corresponding increase in both diesel and electric trains.Diesel IEA Gas/Diesel Oil Estimated Electric IEA Heavy FuelDiesel use increased from 50% to 64%, and electric train

Zhou, Nan

2010-01-01T23:59:59.000Z

70

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network [OSTI]

use of the wastes (e.g. incineration with or without energyefficiency of use (e.g. incineration with or without heat

Sathaye, J.

2011-01-01T23:59:59.000Z

71

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network [OSTI]

Advanced Concepts of Waste Heat Recovery in Cement Plants”building controls, waste heat recovery or adjustable speedquantities of low grade waste heat from the kilns or clinker

Sathaye, J.

2011-01-01T23:59:59.000Z

72

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network [OSTI]

developers also market ‘fuzzy logic’ control systems, e.g. ,so- called 'fuzzy logic' or expert control, or rule-basedsystems or fuzzy logic is model-predictive control using

Sathaye, J.

2011-01-01T23:59:59.000Z

73

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network [OSTI]

system that runs a steam turbine system (bottom cycle).This report focuses on the steam turbine system since these

Sathaye, J.

2011-01-01T23:59:59.000Z

74

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network [OSTI]

d) heat recovery for cogeneration (d) conversion to dryd) heat recovery for cogeneration (d) conversion from dry tod) heat recovery for cogeneration (d) conversion from dry to

Sathaye, J.

2011-01-01T23:59:59.000Z

75

Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)  

SciTech Connect (OSTI)

IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [DOE EERE] [DOE EERE; Nimbalkar, Sachin U [ORNL] [ORNL; Cox, Daryl [ORNL] [ORNL

2013-01-01T23:59:59.000Z

76

Evaluating Energy Efficiency Policies with Energy-Economy Models  

SciTech Connect (OSTI)

The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

2010-08-01T23:59:59.000Z

77

With or Against the People? The Impact of a Bottom-Up Approach on Tax Morale and the Shadow Economy  

E-Print Network [OSTI]

Corruption and the Shadow Economy: An Empirical Analysis,Journal of Political Economy Feld, L. P. , Kirchgässner,G. 2001. The Political Economy of Direct Legislation: Direct

Torgler, Benno; Schneider, Friedrich; Schaltegger, Christoph A.

2007-01-01T23:59:59.000Z

78

Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results  

SciTech Connect (OSTI)

This report presents results from the first U.S. Department of Energy (DOE) sponsored, bottom-up data-collection and analysis of non-hardware balance-of-system costs--often referred to as 'business process' or 'soft' costs--for residential and commercial photovoltaic (PV) systems.

Ardani, K.; Barbose, G.; Margolis, R.; Wiser, R.; Feldman, D.; Ong, S.

2012-11-01T23:59:59.000Z

79

Bottom-Up Strategic Planning  

E-Print Network [OSTI]

Libraries Experience Jeff Williams Tammy Nickelson DearieSmith, Jennifer Tran, Mary Wickline, and Jeff Williams.Jeff Williams (jeffrey.williams@nyumc.org) is Associate

Williams, Jeff; Dearie, Tammy; Schottlaender, Brian E.C.

2013-01-01T23:59:59.000Z

80

Energy Sector Market Analysis  

SciTech Connect (OSTI)

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook  

SciTech Connect (OSTI)

The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.

Zheng, Nina; Zhou, Nan; Fridley, David

2010-09-01T23:59:59.000Z

82

NREL: Energy Analysis - Market Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres LizMarket Analysis

83

Clean Energy Policy Analysis: Impact Analysis of Potential Clean...  

Energy Savers [EERE]

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of...

84

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network [OSTI]

around 8-9% for good coking coal (IISI, 1982). Dryingof steam coal and coking coal to be $15/t (IEA, 1995). This

Xu, T.T.

2011-01-01T23:59:59.000Z

85

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network [OSTI]

Improved Product Quality,” Ironmaking and Steel making 18(pound Investment,” Ironmaking and Steel making,” Anonymous,Oil Through Sintering," Ironmaking and Steel making Dawson,

Xu, T.T.

2011-01-01T23:59:59.000Z

86

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network [OSTI]

We assume minimal investment costs for good housekeeping0.002 GJ/t sinter. No investment costs are assumed for this1990). We assume an investment cost of $0.3/t hot metal, to

Xu, T.T.

2011-01-01T23:59:59.000Z

87

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network [OSTI]

Assessment of Electric Steel making Through the Year 2000,by Injection Technology” Steel Times, October 1994 pp.391-Hanes, C. , 1999. USS/Kobe Steel, Personal communication,

Xu, T.T.

2011-01-01T23:59:59.000Z

88

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector  

E-Print Network [OSTI]

building controls, waste heat recovery or adjustable speedoptimizing ventilation) Waste heat recovery Condebelt dryingand optimizing  ventilation) Waste heat recovery Condebelt 

Xu, Tengfang

2014-01-01T23:59:59.000Z

89

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network [OSTI]

building controls, waste heat recovery or adjustable speeddrives in the rolling mill Waste heat recovery from coolingdrives in the rolling mill Waste heat recovery from cooling

Xu, T.T.

2011-01-01T23:59:59.000Z

90

Implications of maximizing China's technical potential for residential end-use energy efficiency: A 2030 outlook from the bottom-up  

E-Print Network [OSTI]

5 4. Efficiency Improvement and Technology5 4.1. Appliance Technology7 4.2. Residential Heating Technology

Khanna, Nina

2014-01-01T23:59:59.000Z

91

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network [OSTI]

2005; Energy Information Administration, U.S. Department of0383(2007); Energy Information Administration: 2007. http://0383(2006); Energy Information Administration: Washington,

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

92

A bottom-up engineering estimate of the aggregate heating and cooling loads of the entire U.S. building stock  

E-Print Network [OSTI]

the amount of commercial building energy usage, particularlycommercial building sector. To compare the aggregated energy usagecommercial buildings. For the residential sector, the total heating and cooling energy usages

Huang, Yu Joe; Brodrick, Jim

2000-01-01T23:59:59.000Z

93

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network [OSTI]

leg/leginx.asp 4. EIA Annual Energy Outlook 2007 with22, (4), 10. EIA Annual Energy Outlook 2006 with Projectionsto the Annual Energy Outlook 2007. Transportation Demand

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

94

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

E-Print Network [OSTI]

World Energy Outlook (IEA 2008), the bottom up models supporting IPCC “economic mitigation potentials” (IPCC 2007), the buildings chapter of the US assessment

Coffey, Brian

2010-01-01T23:59:59.000Z

95

A bottom-up engineering estimate of the aggregate heating and cooling loads of the entire U.S. building stock  

E-Print Network [OSTI]

EIA). 1996a. "Annual Energy Outlook 1995", DOE/EIA-0383(95).EIA). 1996b. "Annual Energy Outlook 1997", DOE/EIA-0383(97).CBECS, and the Annual Energy Outlook) and the Gas Research

Huang, Yu Joe; Brodrick, Jim

2000-01-01T23:59:59.000Z

96

NREL: Energy Analysis - Energy Analysis Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylanElla

97

Energy, Environmental & Economic Systems Analysis  

E-Print Network [OSTI]

Energy, Environmental & Economic Systems Analysis ENPEP-BALANCE: A Tool for Long-term Nuclear Power, Environmental & Economic Systems Analysis A resurgence of interest in nuclear energy is taking place Market Simulations Opportunity Decision and Information Sciences Division Center for Energy

98

Energy Analysis | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011 EMAB MeetingInformation Center»

99

Energy Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOE Hydrogen ProgramEnergize| Department ofAnalysis

100

NREL: Energy Analysis - Policy Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo of PaulPolicy

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL: Energy Analysis - Sustainability Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe

102

NREL: Energy Analysis: Geospatial Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesley

103

NREL: Energy Analysis: Geospatial Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesleyGeospatial

104

NREL: Energy Analysis - Marissa Hummon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marissa Hummon is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Engineer On staff since January 2010 Phone number: 303-275-3269...

105

EnergyPlus Run Time Analysis  

E-Print Network [OSTI]

Tree Lawrence Berkeley National Laboratory  Page 37  California EnergyEnergy Commission EnergyPlus Run Time Analysis Plant Supply Calling Tree (Energy Commission EnergyPlus Run Time Analysis Appendix A – EnergyPlus Call Tree

Hong, Tianzhen

2009-01-01T23:59:59.000Z

106

Energy analysis program. 1994 annual report  

SciTech Connect (OSTI)

This report provides an energy analysis overview. The following topics are described: building energy analysis; urban and energy environmental issues; appliance energy efficiency standards; utility planning and policy; energy efficiency, economics, and policy issues; and international energy and environmental issues.

Levine, M.D.

1995-04-01T23:59:59.000Z

107

Energy Storage Testing and Analysis High Power and High Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

108

Top-down and bottom-up excursions beyond the Standard Model: The example of left-right symmetries in supersymmetry  

E-Print Network [OSTI]

In this Ph.D thesis three main projects are presented. In the first one the phenomenology associated with the neutralinos and charginos sector of the left-right symmetric supersymmetric model is explored. After a detailed motivation of the study and construction of such models, it is shown that these models can be easily discovered in multi-leptonic final states as they lead to signatures very different from those induced by the Standard Model or its supersymmetric version. In the second project, we concentrate on the phenomenology associated with doubly-charged particles. Starting from the hypothesis that such a particle is discovered at the LHC, we build several effective field theories depending on both the representation under SU(2)_L to which they belong the particle and their spin and perform a Monte Carlo analysis highlighting some key observables that would help to determine their quantum numbers. Another part of my thesis, complementary to the phenomenology work, has consisted in developping computer programs that might be helpful for phenomenological studies. Working in the framework of the Mathematica package FeynRules, I took part in the development of a routine able to extract automatically the analytical expressions of the renormalization group equations at the two-loop level for any renormalizable supersymmetric model. I have also been involved in the development of another module of FeynRules able to extract automatically the analytical expressions for the mass matrices associated to any model implemented in FeynRules and to export these equations in the form of a C++ source code able to diagonalize the matrices and store the mixing matrices as well as the spectrum in an SLHA-compliant file.

Adam Alloul

2014-04-17T23:59:59.000Z

109

U.S. Department of Energy Hydrogen Storage Cost Analysis  

SciTech Connect (OSTI)

The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â��bottom-upâ� costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA�® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

2013-03-11T23:59:59.000Z

110

Predesign energy analysis  

SciTech Connect (OSTI)

A new graphic technique developed to help architects and engineers design more energy-efficient buildings is presented. An energy-efficient design includes two interrelated elements: physical design characteristics which minimize testing, cooling, and lighting loads; and mechanical and electrical subsystems which meet energy loads efficiently. The technique focuses on manipulation of design variables to effectively reduce excessive heat gains and losses. The technique, termed a visual one, is designed to show how a building uses energy. The technique described can also be done manually.

None

1980-09-01T23:59:59.000Z

111

International Clean Energy Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)International Association of PublicClean Energy Analysis

112

Building Energy Monitoring and Analysis  

SciTech Connect (OSTI)

This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

2013-06-01T23:59:59.000Z

113

Building Energy Monitoring and Analysis  

SciTech Connect (OSTI)

U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

2013-06-01T23:59:59.000Z

114

Strategic Energy Analysis (Fact Sheet)  

SciTech Connect (OSTI)

NREL complements its scientific research with high-quality, credible, technology-neutral, objective analysis that informs policy and investment decisions as renewable energy and energy efficiency technologies move from innovation through integration. This sheet highlights NREL's analytical capabilities and achievements.

Not Available

2014-02-01T23:59:59.000Z

115

Petrography Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) | Open EnergyInformationAnalysis Jump

116

Building Energy Optimization Analysis Method (BEopt) - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

117

Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShot Initiative1AdvancedVehicles

118

NANA Strategic Energy Plan & Energy Options Analysis  

SciTech Connect (OSTI)

NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine. • Biomass Feasibility analysis in the upper Kobuk; • Run of the river hydroelectric development for the Upper Kobuk; • Solar photovoltaic (PV) power demonstration projects for Noatak, Ambler, Selawik, Kiana, and Noorvik; • Heat Recovery for several communities; In September 2008, the NRC team participated at the Alaska Rural Energy Conference in Girdwood, Alaska In November 2008, the NRC team gave a presentation on the NANA regional energy plans at a DOE Tribal Energy Program conference in Denver, Colorado. In January 2009, the final SEP report was submitted to NRC.

Jay Hermanson; Brian Yanity

2008-12-31T23:59:59.000Z

119

NREL: Energy Analysis - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version EmailBookmark and

120

NREL: Energy Analysis - Partnerships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version EmailBookmark and

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NREL: Energy Analysis - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version EmailBookmark

122

NREL: Energy Analysis - Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff National

123

NREL: Energy Analysis - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff Webmaster Please

124

LEAN ENERGY ANALYSIS: IDENTIFYING, DISCOVERING AND TRACKING ENERGY SAVINGS POTENTIAL  

E-Print Network [OSTI]

LEAN ENERGY ANALYSIS: IDENTIFYING, DISCOVERING AND TRACKING ENERGY SAVINGS POTENTIAL KELLY KISSOCK a methodology, called lean energy analysis, LEA, for graphically and statistically analyzing plant energy use from reducing non-production and space-conditioning energy use. In addition, graphical analysis

Kissock, Kelly

125

Thermodynamic Analysis for Energy Conservation  

E-Print Network [OSTI]

THERMODYNAMIC ANALYSIS FOR ENERGY CONSERVATION William F. Kenney Exxon Chemical Company Florham Park, New Jersey , ,,~ This paper describes a methodology for per forming a thermodynamic analysis of a process, and it demonstrates how... fired. In a cracking furnace it can reduce lost work in combustion and in the convec tion section at the cost of more surface area in the convection section, reduced steam make, and slightly higher radiative temperature differences. Preheating air...

Kenney, W. F.

1981-01-01T23:59:59.000Z

126

MODAL ENERGY ANALYSIS Nicolas Totaro1*  

E-Print Network [OSTI]

MODAL ENERGY ANALYSIS Nicolas Totaro1* , Jean-Louis Guyader1 1 Laboratoire Vibrations Acoustique.totaro@insa-lyon.fr Keywords: Energy methods, non resonant, pure tone, Statistical Energy Analysis, MODENA. ABSTRACT The Modal Energy Analysis presented in this paper is a method to predict energy exchanges between vibro

Paris-Sud XI, Université de

127

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

SciTech Connect (OSTI)

China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total technical fuel efficiency potential equal to 7,949 terajoules (TJ), accounting for 8% of total fuel used in the studied cement plants in 2008. All the fuel efficiency potential is shown to be cost effective. Carbon dioxide (CO{sub 2}) emission reduction potential associated with cost-effective electricity saving is 383 kiloton (kt) CO{sub 2}, while total technical potential for CO{sub 2} emission reduction from electricity-saving is 940 ktCO{sub 2}. The CO{sub 2} emission reduction potentials associated with fuel-saving potentials is 950 ktCO{sub 2}.

Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

2009-10-01T23:59:59.000Z

128

National Renewable Energy Laboratory Analysis Capabilities  

E-Print Network [OSTI]

National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

129

Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector  

SciTech Connect (OSTI)

The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

2013-12-01T23:59:59.000Z

130

Current work in energy analysis  

SciTech Connect (OSTI)

This report describes the work performed at Berkeley Lab most recently. One of the Labs accomplishments is the publication of Scenarios of US Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the US. This analysis is described and played a key role in shaping the US position on climate change in the Kyoto Protocol negotiations. The Labs participation in the fundamental characterization of the climate change issue by the IPCC is described. Described also is a study of leaking electricity, which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of US residential electricity currently expended on standby losses. The 54 vignettes contained in the report summarize results of research activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national Energy Star{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China.

NONE

1998-03-01T23:59:59.000Z

131

Energy Analysis of the Texas Capitol Restoration  

E-Print Network [OSTI]

This paper presents the methodology and results of a detailed energy analysis of the Texas Capitol Restoration. The purpose of this analysis was two-fold: 1) to determine the projected energy cost savings of a series of design alternatives...

Hunn, B. D.; Banks, J. A.; Reddy, S. N.

132

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

the ORNL Residential Energy Demand Model to the EvaluationDept. of Energy THE ORNL ENERGY DEMAND TO THE EVALUATION OFORNL) Residential Energy Demand Model (REDM) was developed

Authors, Various

2013-01-01T23:59:59.000Z

133

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

Local Population of Geothermal Energy Development in theof indigenous renewable and geothermal energy re- sources inocean thermal energy gradients, and geothermal energy. Some

Authors, Various

2013-01-01T23:59:59.000Z

134

Transportation Analysis | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportation Analysis SHARE

135

NREL: Energy Analysis - NREL Releases Report on Policy Options...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Learn more at http:energy.govsunshot. For the latest updates on information regarding energy analysis, visit the Energy Analysis website. You can also subscribe to the Energy...

136

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

Local Population of Geothermal Energy Development in theof coal, nuclear and geothermal energy sources. Overall, thewith new or expanded geothermal energy development. Fig. 1.

Authors, Various

2013-01-01T23:59:59.000Z

137

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

due to different definitions of energy use and boundary,due to different definitions of energy use and boundary, methodology for building energy data definition, collection,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

138

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

trade winds, biomass, ocean thermal energy gradients, andfrom biomass ocean thermal energy conversion geothermalelectric plants, ocean thermal energy plants (OTEC) and

Authors, Various

2013-01-01T23:59:59.000Z

139

Transportation Analysis | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

140

Scripted Building Energy Modeling and Analysis (Presentation)  

SciTech Connect (OSTI)

Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

Macumber, D.

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network [OSTI]

Analysis of How Different Energy Models Addressed a CommonSUBJECT TERMS energy system; energy models; energy modeling;Analysis of How Different Energy Models Addressed a Common

Blair, N.

2010-01-01T23:59:59.000Z

142

San Carlos Apache Tribe - Energy Organizational Analysis  

SciTech Connect (OSTI)

The San Carlos Apache Tribe (SCAT) was awarded $164,000 in late-2011 by the U.S. Department of Energy (U.S. DOE) Tribal Energy Program's "First Steps Toward Developing Renewable Energy and Energy Efficiency on Tribal Lands" Grant Program. This grant funded: ? The analysis and selection of preferred form(s) of tribal energy organization (this Energy Organization Analysis, hereinafter referred to as "EOA"). ? Start-up staffing and other costs associated with the Phase 1 SCAT energy organization. ? An intern program. ? Staff training. ? Tribal outreach and workshops regarding the new organization and SCAT energy programs and projects, including two annual tribal energy summits (2011 and 2012). This report documents the analysis and selection of preferred form(s) of a tribal energy organization.

Rapp, James; Albert, Steve

2012-04-01T23:59:59.000Z

143

Energy Analysis by Sector | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6, 2012 MEETING OF THEofEndstatesOctober marks

144

Hydrogen for Energy Storage Analysis Overview (Presentation)  

SciTech Connect (OSTI)

Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

Steward, D. M.; Ramsden, T.; Harrison, K.

2010-06-01T23:59:59.000Z

145

Hawaii Clean Energy Initiative Scenario Analysis: Quantitative...  

Office of Environmental Management (EM)

Hawaii Clean Energy Initiative Scenario Analysis Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010) R. Braccio, P. Finch, and R. Frazier Booz Allen...

146

Economic and Environmental Analysis of Photovoltaic Energy ...  

E-Print Network [OSTI]

Mar 22, 2012 ... Economic and Environmental Analysis of Photovoltaic Energy Systems via Robust Optimization. Shimpei Okido(oks1024 ***at*** hotmail.com)

Shimpei Okido

2012-03-22T23:59:59.000Z

147

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

a future with very low energy buildings resulting in very making  for  low  energy  buildings.   This  project  will and operation of low energy buildings.  Several studies, 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

148

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

Local Population of Geothermal Energy Development in thedevelopment is hindered by conflicts between regulations and regulators at local, state and federal levels. Energy

Authors, Various

2013-01-01T23:59:59.000Z

149

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

new energy technologies (e.g. OTEC, STEC), crude oil fromof electricity from wind, OTEC, photovoltaics, solar thermalfor geothermal energy, OTEC, solar thermal electricity and

Authors, Various

2013-01-01T23:59:59.000Z

150

Energy Market Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica,IdahoWyomingManagement for Motor-DrivenEnergy

151

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications  

E-Print Network [OSTI]

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications Prepared for State) concentrations on a unit energy basis for sugar cane varieties and biomass samples of Tables Table 1-A. Analyses of biomass materials found in the State of Hawaii

152

9. Statistical Energy Analysis (SEA) 80 9. Statistical Energy Analysis (SEA)  

E-Print Network [OSTI]

9. Statistical Energy Analysis (SEA) 80 _____________________________________________________________________________ 9. Statistical Energy Analysis (SEA) 9.1 Introduction In this chapter an introduction to a framework denoted Statistical Energy Analysis was developed in the 1960's, to a great extent to clarify and handle

Berlin,Technische Universität

153

NREL: Energy Analysis - Transportation Energy Futures Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff

154

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

problems of implemenation for larger scale technologies such as wind energy conversion, biomass conversion, photovoltaics and solar

Authors, Various

2013-01-01T23:59:59.000Z

155

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

solar energy technologies. performance warranties for complete solar installations; building performance applications as alter- natives to building codes

Authors, Various

2013-01-01T23:59:59.000Z

156

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

energy conservation and load leveling policies for the metropolitan area of New York City,"energy self-sufficient city of 13,450 acres would still be less than the median area (its energy needs. In Future 3, if the land area of the city

Authors, Various

2013-01-01T23:59:59.000Z

157

NREL: Energy Analysis - Technology Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabeTechnology Systems

158

NREL: Energy Analysis: Analysis of Project Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesley Cole

159

NREL Job Task Analysis: Energy Auditor | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor NREL Job Task Analysis: Energy

160

Energy Analysis Program 1990 annual report  

SciTech Connect (OSTI)

The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Analysis Program 1990 annual report  

SciTech Connect (OSTI)

The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ``Energy Efficiency, Developing Countries, and Eastern Europe,`` part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program`s researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

Not Available

1992-01-01T23:59:59.000Z

162

Analysis Methodologies | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation andEnergy|thermoelectric wasteSystems

163

Analysis Tools | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation andEnergy|thermoelectricDepartment

164

ENERGY UTILIZATION ANALYSIS OF BUILDINGS  

E-Print Network [OSTI]

Solar Energy, Cairo, Egypt, June 16 - 22, 1978 RECEIVED LBL7826 LAWRENCE BEPXVlfV LABORATORY JUN 141978 LIBRARY AND DOCUMENTS SECTION TWO-WEEK LOAN

Lokmanhekim, M.

2011-01-01T23:59:59.000Z

165

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

solar process heat deep (2000m) undersea DC transmissionSolar and geothermal energy can also be used as sources of process heat.solar thermal electricity photovoltaics liquid fuels from biomass ocean thermal energy conversion geothermal electricity and process heat

Authors, Various

2013-01-01T23:59:59.000Z

166

Environmental Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupportingEnergy2 ENRONDecember 2014Past

167

analysis energy analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy analysis First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy, Environmental, and Economic...

168

Get Daily Energy Analysis Delivered to Your Website | Department...  

Broader source: Energy.gov (indexed) [DOE]

Get Daily Energy Analysis Delivered to Your Website Get Daily Energy Analysis Delivered to Your Website August 8, 2011 - 3:39pm Addthis Get Daily Energy Analysis Delivered to Your...

169

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

-08GO28308 Benchmarking Non-Hardware Balance-of-System (Soft) Costs for U.S. Photovoltaic Systems, Using-of-System (Soft) Costs for U.S. Photovoltaic Systems, Using a Bottom-Up Approach and Installer Survey ­ Second & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost

170

Resource Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergyHydrokineticClothes WashersDepartment ofBTO Peer Review

171

NREL: Energy Analysis - Eric Lantz  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylanEllaEnergyEric

172

Energy Engineering & Systems Analysis Success Stories  

E-Print Network [OSTI]

Energy Engineering & Systems Analysis Success Stories For further information, contact: Seth Snyder greenhouse gas emissions, and lower energy costs," said biochemical engineer Seth Snyder. Resin Wafer for Excellence in Technology Transfer for this separations technology. A team led by Argonne biochemical engineer

Kemner, Ken

173

Energy analysis program. 1995 Annual report  

SciTech Connect (OSTI)

This year the role of energy technology research and analysis supporting governmental and public interests is again being challenged at high levels of government. This situation is not unlike that of the early 1980s, when the Administration questioned the relevance of a federal commitment to applied energy research, especially for energy efficiency and renewable energy technologies. Then Congress continued to support such activities, deeming them important to the nation`s interest. Today, Congress itself is challenging many facets of the federal role in energy. The Administration is also selectively reducing its support, primarily for the pragmatic objective of reducing federal expenditures, rather than because of principles opposing a public role in energy. this report is divided into three sections: International Energy and the global environment; Energy, economics, markets, and policy; and Buildings and their environment.

Levine, M.D.

1996-05-01T23:59:59.000Z

174

NREL: Energy Analysis - About the Strategic Energy Analysis Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version Email Contact for

175

Energy Analysis and Diagnostics Data Analysis From Industrial Energy Assessments for Manufacturing Industries  

E-Print Network [OSTI]

collected as a result of these assessments. Although waste minimization and productivity improvements have been recommended on some of these assessments in addition to energy savings, this paper focuses on energy analysis and diagnostics information...

Gopalakrishnan, B.; Plummer, R. W.; Srinath, S.; Meffe, C. M.; Ipe, J. J.; Veena, R.

176

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalys...

177

Analysis of Energy, Environmental and Life Cycle Cost Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Analysis of Energy, Environmental and Life...

178

Analysis of the Relationship between Reaction Energies of Electrophili...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reaction Energies of Electrophilic SWNT Additionsand Sidewall Curvature: Chiral Nanotubes. Analysis of the Relationship between Reaction Energies of Electrophilic SWNT...

179

NREL: Energy Analysis - Related Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version

180

Systems Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServicesStevenSupply

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Systems Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServicesStevenSupplyAbout the Geothermal

182

Geothermal Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS) | OpenGeotechnicalmap...

183

NREL: Energy Analysis - Catherine Burke  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update

184

NREL: Energy Analysis - Ethan Warner  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools

185

NREL: Energy Analysis - Jaquelin Cochran  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFrancisco

186

NREL: Energy Analysis - Laura Vimmerstedt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of

187

NREL: Energy Analysis - Timothy Remo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of

188

NREL: Energy Analysis - Key Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version Email ContactJEDI

189

Program Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartment of Energy

190

NREL: Energy Analysis Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies The Insights In

191

Delivery Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealing With the Issues of NuclearHigh ImpactDelawareDepartment

192

NREL: Energy Analysis - Aaron Bloom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo of Aaron Bloom

193

NREL: Energy Analysis - Aaron Levine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo of Aaron

194

NREL: Energy Analysis - Aaron Townsend  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo of

195

NREL: Energy Analysis - Ahmad Mayyas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo ofAhmad Mayyas

196

NREL: Energy Analysis - Alberta Carpenter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo ofAhmad

197

NREL: Energy Analysis - Andrew Weekley  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo ofAhmadAndrew

198

NREL: Energy Analysis - Anelia Milbrandt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo

199

NREL: Energy Analysis - Anthony Lopez  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom PhotoAnnAnthony

200

NREL: Energy Analysis - Aron Dobos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom PhotoAnnAnthonyAron

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NREL: Energy Analysis - Austin Brown  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom

202

NREL: Energy Analysis - Ben Maples  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaples Photo of Ben

203

NREL: Energy Analysis - Ben Sigrin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaples Photo of

204

NREL: Energy Analysis - Bethany Frew  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaples Photo ofFrew

205

NREL: Energy Analysis - Bethany Speer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaples Photo

206

NREL: Energy Analysis - Carolyn Davidson  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaplesCarolyn

207

NREL: Energy Analysis - Chad Augustine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine Photo of Chad

208

NREL: Energy Analysis - Changgui Dong  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine Photo of

209

NREL: Energy Analysis - Chris Webber  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine Photo ofChris

210

NREL: Energy Analysis - Clayton Barrows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine Photo

211

NREL: Energy Analysis - Dani Salyer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine PhotoColin

212

NREL: Energy Analysis - Daniel Getman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine

213

NREL: Energy Analysis - Daniel Inman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad AugustineInman Photo of

214

NREL: Energy Analysis - Daniel Steinberg  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad AugustineInman Photo

215

NREL: Energy Analysis - David Harrison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad AugustineInmanHarrison

216

NREL: Energy Analysis - David Hurlbut  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad

217

NREL: Energy Analysis - David Keyser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid J. Feldman

218

NREL: Energy Analysis - David Mooney  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid J. FeldmanMooney

219

NREL: Energy Analysis - David Palchak  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid J.

220

NREL: Energy Analysis - Dheepak Krishnamurthy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid J.DebbieDheepak

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NREL: Energy Analysis - Donna Heimiller  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid

222

NREL: Energy Analysis - Dylan Hettinger  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylan Hettinger

223

NREL: Energy Analysis - Elaine Hale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylan

224

NREL: Energy Analysis - Ella Zhou  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylanElla Zhou

225

NREL: Energy Analysis - Garvin Heath  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFrancisco Flores-Espino Photo

226

NREL: Energy Analysis - Greg Brinkman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFrancisco Flores-Espino PhotoGreg

227

NREL: Energy Analysis - Heidi Pawlowski  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFrancisco Flores-Espino

228

NREL: Energy Analysis - Janine Freeman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFrancisco Flores-EspinoJanine

229

NREL: Energy Analysis - Jay Huggins  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins Photo of Jay

230

NREL: Energy Analysis - Jeffrey Logan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins Photo of

231

NREL: Energy Analysis - Jennie Jorgenson  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins Photo ofJennie

232

NREL: Energy Analysis - Jenny Heeter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins Photo

233

NREL: Energy Analysis - Jenny Melius  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins PhotoMelius

234

NREL: Energy Analysis - Jessica Katz  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins

235

NREL: Energy Analysis - Jim Leyshon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay HugginsJim Leyshon

236

NREL: Energy Analysis - John Krueger  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay HugginsJimKrueger

237

NREL: Energy Analysis - Jon Weers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay HugginsJimKruegerJon

238

NREL: Energy Analysis - Jordan Macknick  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay

239

NREL: Energy Analysis - Josh Novacheck  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJosh Novacheck Photo of

240

NREL: Energy Analysis - Karlynn Cory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJosh

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NREL: Energy Analysis - Katherine Young  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJoshKatherine Young,

242

NREL: Energy Analysis - Kelly Eurek  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJoshKatherine

243

NREL: Energy Analysis - Kermit Witherbee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJoshKatherineKelsey

244

NREL: Energy Analysis - Liz Torres  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres Liz Torres is

245

NREL: Energy Analysis - Lori Bird  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres Liz Torres isLori

246

NREL: Energy Analysis - Mackay Miller  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres Liz Torres

247

NREL: Energy Analysis - Margaret Mann  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres Liz TorresMargaret

248

NREL: Energy Analysis - Mark Ruth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres Liz

249

NREL: Energy Analysis - Matt Rahill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres LizMarketMatt Rahill

250

NREL: Energy Analysis - Maureen Hand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres LizMarketMattMaureen

251

NREL: Energy Analysis - Melissa Hudman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres

252

NREL: Energy Analysis - Michael Bahl  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahl Photo of Michael

253

NREL: Energy Analysis - Michael Gleason  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahl Photo of

254

NREL: Energy Analysis - Michael Mendelsohn  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahl Photo

255

NREL: Energy Analysis - Michael Woodhouse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahl PhotoWoodhouse

256

NREL: Energy Analysis - Monisha Shah  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahl

257

NREL: Energy Analysis - Nate Blair  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNate Blair Photo

258

NREL: Energy Analysis - Newsletter Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNate Blair

259

NREL: Energy Analysis - Nick Grue  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNate

260

NREL: Energy Analysis - Owen Zinaman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNateOwen Zinaman

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL: Energy Analysis - Parthiv Kurup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNateOwenParthiv

262

NREL: Energy Analysis - Paul Denholm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz

263

NREL: Energy Analysis - Paul Schwabe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo of Paul Schwabe

264

NREL: Energy Analysis - Philipp Beiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo of Paul

265

NREL: Energy Analysis - Ran Fu  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo of

266

NREL: Energy Analysis - Sadie Cox  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe PhotoSadie Cox Photo

267

NREL: Energy Analysis - Scott Jenne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe PhotoSadie CoxScott

268

NREL: Energy Analysis - Sean Esterly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe PhotoSadie

269

NREL: Energy Analysis - Sertac Akar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe PhotoSadieSertac Akar

270

NREL: Energy Analysis - Stuart Cohen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe PhotoSadieSertac

271

NREL: Energy Analysis - Thomas Jenkin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabeTechnologyThomas

272

NREL: Energy Analysis - Tian Tian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabeTechnologyThomasTian

273

NREL: Energy Analysis - Travis Lowder  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder Photo of Travis

274

NREL: Energy Analysis - Trieu Mai  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder Photo of

275

NREL: Energy Analysis - Trish Cozart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder Photo ofTrish

276

NREL: Energy Analysis - Tyler Stehly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder Photo ofTrishTyler

277

NREL: Energy Analysis - Venkat Kirshnan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder PhotoVenkat

278

NREL: Energy Analysis - Victor Diakov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder PhotoVenkatVictor

279

NREL: Energy Analysis - Wesley Cole  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesley Cole Photo of

280

NREL: Energy Analysis - Yimin Zhang  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesley Cole Photo

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL: Energy Analysis: Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis

282

Built Environment Energy Analysis Tool Overview (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C.

2013-04-01T23:59:59.000Z

283

Cuttings Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings Analysis At NewInformation

284

Crosstalk compensation in analysis of energy storage devices...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

285

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

286

Industrial Geospatial Analysis Tool for Energy Evaluation  

E-Print Network [OSTI]

Industrial Geospatial Analysis Tool for Energy Evaluation- IGATE-E Nasr Alkadi, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Michael Starke, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Ookie Ma, Scientist, US Department... of Energy, Washington, DC Sachin Nimbalkar, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Daryl Cox, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Kevin Dowling, Student Researcher, University of Tennessee, Knoxville, TN Brendon...

Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

2013-01-01T23:59:59.000Z

287

EIS-0189: Supplement Analysis | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThreeEnergy DrivingD EERE ProgramReport189: Supplement Analysis

288

Sandia National Laboratories: Analysis, Modeling, Cost of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramsAnalysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 The "20% Wind Energy by...

289

Energy, Environmental, and Economic Systems Analysis  

E-Print Network [OSTI]

and deregulated, shifting control from a single decision maker (i.e., a single, government-owned electric utility determining electricity consumption (customer agents), unit commitment (generation companies), bilateralEnergy, Environmental, and Economic Systems Analysis Electricity Market Complex Adaptive System

290

Energy Engineering & Systems Analysis Success Stories  

E-Print Network [OSTI]

Energy Engineering & Systems Analysis Success Stories For further information, contact: Dileep Singh, dsingh@anl.gov NOx/O2 Sensors for High Temperature Applications In vehicle engines, monitoring with an internal reference gas system. The Solution Using a unique deformation bonding method that joins

Kemner, Ken

291

Energy Engineering & Systems Analysis Success Stories  

E-Print Network [OSTI]

Energy Engineering & Systems Analysis Success Stories Helping Make the U.S. Power Grid Smarter-way communication technologies into the power grid, the nation will have a more robust and efficient system to the limit, requiring upgrades. The Solution A multidisciplinary mix of scientists and engineers from Argonne

Kemner, Ken

292

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

large conventional hydroelectric power, municipal solidconventional large hydroelectric power). To quantify theby states that large hydroelectric is not counted toward the

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

293

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

stabilize US GHG emissions at their 2010 levels until thefor US light-duty vehicle GHG emissions under varying levelsUS GHG emissions would be stabilized at 2010 levels by 2020—

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

294

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

and developing emissions trading mechanisms to connect andand development of emissions trading or cap-and-tradesector market-based emissions trading system in the Western

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

295

DNA-inspired materials for 'bottom-up' nanotechnology.  

E-Print Network [OSTI]

??DNA is a remarkable material that is both an inspiration for polymer nanotechnology and a versatile building block for assembling well-defined nanostructures. To create polymeric… (more)

Ishihara, Yoshihiro.

2007-01-01T23:59:59.000Z

296

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

large conventional hydroelectric power, municipal solidconventional large hydroelectric power). To quantify thelarge conventional hydroelectric power is not included (this

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

297

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

US 1990 GHG emissions None 684 US cities representing 26% ofGHG emissions by states sources and sectors 684 US cities,The overall US GHG emissions effect of the state and city

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

298

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

EC (2004). c US MCPA (2007). d RGGI (2005). e WGA (2006). fGHG emissions PTP WGA US MCPA WCG RGGI NEG/ECP Year Fig. 5.Greenhouse Gas Initiative (RGGI), 2007. About RGGI /http://

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

299

15-11-061ETSAP Energy Technology Systems Analysis  

E-Print Network [OSTI]

15-11-061ETSAP Energy Technology Systems Analysis Programme (ETSAP) ­ Annex X ETSAP Semi · Global Energy Supply: Model-based Scenario Analysis of Resource Use and Energy Trade. Uwe Remme, Maryse Policy Scenario to address energy security and environmental concerns. Based on the detailed analysis

300

Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate  

E-Print Network [OSTI]

1 Energy consumption and comfort analysis for different low- energy cooling systems in a mild. "Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate the architectural and mechanical design of a building. Several researchers have demonstrated the analysis of low-energy

Chen, Qingyan "Yan"

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ecosystem Energy-Use Efficiency: Positive Effects of Predation on Productivity Joseph Hakam  

E-Print Network [OSTI]

Ecosystem Energy-Use Efficiency: Positive Effects of Predation on Productivity Joseph Hakam Brown systems will be able to utilize more of the primary energy source and display higher productivity. While processing as much energy as possible within given resource and growth constraints. Bottom-up and top

Vallino, Joseph J.

302

Methodology for Validating Building Energy Analysis Simulations  

SciTech Connect (OSTI)

The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

Judkoff, R.; Wortman, D.; O'Doherty, B.; Burch, J.

2008-04-01T23:59:59.000Z

303

Scripted Building Energy Modeling and Analysis: Preprint  

SciTech Connect (OSTI)

Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

2012-08-01T23:59:59.000Z

304

Community Economic Analysis Guide | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaftColumbiaCommercialEconomic Analysis

305

Analysis … Targeting Zero Net Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges to Smart Gridof Energy Analysis of the Efficiency

306

Analysis of Minimizers of the Lawrence-Doniach Energy for ...  

E-Print Network [OSTI]

an asymptotic formula for the minimum Lawrence-Doniach energy as e and the ... In this case, an analysis of the behavior of energy minimizers and their.

2014-04-07T23:59:59.000Z

307

State Clean Energy Policies Analysis (SCEPA): State Policy and...  

Open Energy Info (EERE)

Manufacturing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: State Clean Energy Policies Analysis (SCEPA): State Policy and the Pursuit of Renewable Energy...

308

Energy Analysis Program. 1992 Annual report  

SciTech Connect (OSTI)

The Program became deeply involved in establishing 4 Washington, D.C., project office diving the last few months of fiscal year 1942. This project office, which reports to the Energy & Environment Division, will receive the majority of its support from the Energy Analysis Program. We anticipate having two staff scientists and support personnel in offices within a few blocks of DOE. Our expectation is that this office will carry out a series of projects that are better managed closer to DOE. We also anticipate that our representation in Washington will improve and we hope to expand the Program, its activities, and impact, in police-relevant analyses. In spite of the growth that we have achieved, the Program continues to emphasize (1) energy efficiency of buildings, (2) appliance energy efficiency standards, (3) energy demand forecasting, (4) utility policy studies, especially integrated resource planning issues, and (5) international energy studies, with considerate emphasis on developing countries and economies in transition. These continuing interests are reflected in the articles that appear in this report.

Not Available

1993-06-01T23:59:59.000Z

309

Quarterly Analysis Review February 2015 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Quarterly Analysis Review (QAR) surveys both work supported by the Vehicle Technologies Office Analysis Program within the broader context of energy and automotive U.S. and...

310

SEA-03: Special Environmental Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SEA-03: Special Environmental Analysis SEA-03: Special Environmental Analysis Department of Energy, National Nuclear Security Administration, Actions Taken in Response to the Cerro...

311

Clean Energy Options for Sabah: An Analysis of Resource Availability...  

Open Energy Info (EERE)

An Analysis of Resource Availability and Cost Jump to: navigation, search Name Clean Energy Options for Sabah: An Analysis of Resource Availability and Cost AgencyCompany...

312

STEP Utility Bill Analysis Report | Department of Energy  

Energy Savers [EERE]

STEP Utility Bill Analysis Report, from the Tool Kit Framework: Small Town University Energy Program (STEP). G5d STEP Utility Bill Analysis Report.pdf More Documents &...

313

Lac Courte Oreilles Energy Analysis Project  

SciTech Connect (OSTI)

The Lac Courte Oreilles Tribe applied for first step funding in 2007 and was awarded in October of that year. We wanted to perform an audit to begin fulfilling two commitments we made to our membership and resolutions that we adopted. One was the Kyoto Protocol and reduce our carbon emissions by 25% and to produce 25% of our energy by sustainable means. To complete these goals we needed to begin with first assessing what our carbon emissions are and begin taking the steps to conserve on the energy we currently use. The First Step Grant gave us the opportunity to do this. Upon funding the Energy Project was formed under the umbrella of the LCO Public Works Department and Denise Johnson was hired as the coordinator. She quickly began fulfilling the objectives of the project. Denise began by contact the LCO College and hiring interns who were able to go to each Tribal entity and perform line logging to read and document the energy used for each electrical appliance. Data was also gathered for one full year from each entity for all their utility bills (gasoline, electric, natural gas, fuel oil, etc.). Relationships were formed with the Green Team and other Green Committees in the area that could assist us in this undertaking. The Energy Task Force was of great assistance as well recommending other committees and guidance to completing our project. The data was gathered, compiled and placed into spreadsheets that would be understandable for anyone who didn't have a background in Renewable Resources. While gathering the data Denise was also looking for ways to conserve energy usage, policies changes to implement and any possible viable renewable energy resources. Changes in the social behaviors of our members and employees will require further education by workshops, energy fairs, etc.. This will be looked into and done in coordination with our schools. The renewable resources seem most feasible are wind resources as well as Bio Mass both of which need further assessment and funding to do so will be sought. While we already are in ownership of a Hydro Dam it is currently not functioning to its full capacity we are seeking operation and maintenance firm proposals and funding sources. One of our biggest accomplishment this project gave us was our total Carbon Emissions 9989.45 tons, this will be the number that we will use to base our reductions from. It will help us achieve our goals we have set for ourselves in achieving the Kyoto Protocol and saving our Earth for our future generations. Another major accomplishment and lesson learned is we need to educate ourselves and our people on how to conserve energy to both impact the environment and our own budgets. The Lac Courte Oreilles (LCO) Energy Analysis Project will perform an energy audit to gather information on the Tribe's energy usage and determine the carbon emissions. By performing the audit we will be able to identify areas where conservation efforts are most viable and recommend policies that can be implemented. These steps will enable LCO to begin achieving the goals that have been set by the Tribal Governing Board and adopted through resolutions. The goals are to reduce emissions by 25% and to produce 25% of its energy using sustainable sources. The project objectives were very definitive to assist the Tribe in achieving its goals; reducing carbon emissions and obtaining a sustainable source of energy. The following were the outlined objectives: (1) Coordinate LCO's current and future conservation and renewable energy projects; (2) Establish working relationships with outside entities to share information and collaborate on future projects; (3) Complete energy audit and analyze LCO's energy load and carbon emissions; (4) Identify policy changes, education programs and conservation efforts which are appropriate for the LCO Reservation; and (5) Create a plan to identify the most cost effective renewable energy options for LCO.

Leslie Isham; Denise Johnson

2009-04-01T23:59:59.000Z

314

Cost analysis of energy storage systems for electric utility applications  

SciTech Connect (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

1997-02-01T23:59:59.000Z

315

Statistical Energy Analysis and the second principle of thermodynamics  

E-Print Network [OSTI]

Statistical Energy Analysis and the second principle of thermodynamics Alain Le Bot Abstract Statistical Energy Analysis is a statistical method in vibroacoustics en- tirely based on the application discussed. 1 Introduction Statistical Energy Analysis [1, 2] is born from the application of statistical

Paris-Sud XI, Université de

316

EnergyPlus Run Time Analysis  

E-Print Network [OSTI]

toward the goal of net zero energy buildings. EnergyPlusdesigns and low or net-zero energy buildings. EnergyPlus

Hong, Tianzhen

2009-01-01T23:59:59.000Z

317

First Year Analysis of Industrial Energy Conservation in Texas A&M's Energy Analysis and Diagnostic Center Program  

E-Print Network [OSTI]

FIRST YEAR ANALYSIS OF INIXJSTRIAL ENERGY crNSERVATIOO IN TEXAS A&M' S ENERGY ANALYSIS AND DIAEnergy Analysis and Diagnostic Center Mechanical Engineering Department Texas A&M University COllege Station..., Texas ABSTRACT Texas A&M University's Energy Analysis and Diagnostic Center (EADC) performed 15 energy audits of small- to medium-size manufacturing plants during its first year. The EADC program is funded by the United States Department...

Grubb, M. K.; Heffington, W. M.

318

Category:Core Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatus Status ofCore Analysis page? For

319

Category:Cuttings Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatus Status ofCore AnalysisCuttings

320

1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects  

E-Print Network [OSTI]

1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects, Wind & Hydropower Technologies Program #12;2 Energy Markets and Policy Group · Energy Analysis Concerns for Wind Energy Fall Into Three Potential Categories 1. Area Stigma: Concern that rural areas

Firestone, Jeremy

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Karuk Tribe Strategic Energy Plan and Energy Options Analysis  

SciTech Connect (OSTI)

Energy planning document to assist the Karuk Tribe in making educated decisions about future energy priorities and implementation.

Ramona Taylor, Karuk Tribe; David Carter, Winzler and Kelly

2009-03-31T23:59:59.000Z

322

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

we select three alternative energy futures for California inwith the ~J -xi- alternative energy futures in order toassess the impacts of alternative energy futures. In later

Authors, Various

2010-01-01T23:59:59.000Z

323

Uncertainty analysis of geothermal energy economics.  

E-Print Network [OSTI]

?? This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy… (more)

Sener, Adil Caner

2009-01-01T23:59:59.000Z

324

Decision Analysis for EGS | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Decision Analysis for EGS Decision Analysis for EGS Project objectives: DEVELOPMENT OF ANALYSIS TOOLS TO ASSESS: Uncertainties associated with exploration for EGS; Uncertainties...

325

EnergyPlus Run Time Analysis  

E-Print Network [OSTI]

net-zero energy buildings. EnergyPlus does sub-hourly calculationsnet zero energy buildings. EnergyPlus does sub-hourly whole building integrated heat balance calculations

Hong, Tianzhen

2009-01-01T23:59:59.000Z

326

COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENT  

E-Print Network [OSTI]

CHAPTER 1 COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENT SCHEDULING ALGORITHMS;2 COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENT SCHEDULING ALGORITHMS FOR COMPUTATIONAL GRIDS consumption computational network, enabled with soft- ware that allows cooperation and the sharing of resources. The energy

Li, Juan "Jen"

327

Canadian Industrial Energy End-use Data and Analysis  

E-Print Network [OSTI]

CIEEDAC Canadian Industrial Energy End-use Data and Analysis Centre Prospectus and Business Plan as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian EXECUTIVE SUMMARY CIEEDAC ii Executive Summary 1. Background The Canadian Industrial Energy End-use Data

328

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

California Energy Supply Model Operation Resource Requirements Dimensions of Housing Types , Annual Incremental Energy and Capacity Savings from Passive Solar

Authors, Various

2010-01-01T23:59:59.000Z

329

Energy Use Analysis for the Federal Energy Management Program  

E-Print Network [OSTI]

Recent congressional legislation allows federal agencies new authorities to contract for energy savings by sharing the acquired savings with an energy service company. As part of its charter to make the federal government more energy...

Mazzucchi, R. P.; Devine, K. D.

1988-01-01T23:59:59.000Z

330

Current Work in Energy Analysis (Energy Analysis Program -1996 Annual Report)  

SciTech Connect (OSTI)

This report describes the work that Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory has been doing most recently. One of our proudest accomplishments is the publication of Scenarios of U.S. Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the U.S. This analysis played a key role in shaping the U.S. position on climate change in the Kyoto Protocol negotiations. Our participation in the fundamental characterization of the climate change issue by the IPCC is described. We are also especially proud of our study of ''leaking electricity,'' which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of U.S. residential electricity currently expended on standby losses. The 54 vignettes contained in the following pages summarize results of research. activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national ENERGY STAR{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China. These are the intellectual endeavors of a talented team of researchers dedicated to public service.

Energy Analysis Program

1998-03-01T23:59:59.000Z

331

Analysis Activities at Fossil Energy/ National Energy Technology Laboratory  

Broader source: Energy.gov [DOE]

Presentation on NETL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

332

Information-Theoretic Analysis of an Energy Harvesting Communication System  

E-Print Network [OSTI]

Information-Theoretic Analysis of an Energy Harvesting Communication System Omur Ozel Sennur Ulukus@umd.edu ulukus@umd.edu Abstract--In energy harvesting communication systems, an exogenous recharge process supplies energy for the data trans- mission and arriving energy can be buffered in a battery before

Ulukus, Sennur

333

Clean Energy Policy Analysis: Impact Analysis of Potential Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-Ready Requirements Tax Incentives with Pass-Through Option for Nontaxable Entities for Green Buildings and Energy Efficiency Improvements Density Bonus Residential Energy...

334

NREL's System Advisor Model Simplifies Complex Energy Analysis...  

Office of Scientific and Technical Information (OSTI)

NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet) Re-direct Destination: NREL has developed a tool -- the System Advisor Model (SAM) -- that can help...

335

ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary...

336

State Clean Energy Policies Analysis: State, Utility, and Municipal...  

Open Energy Info (EERE)

State, Utility, and Municipal Loan Programs Jump to: navigation, search Name State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs AgencyCompany...

337

Office of Energy Policy and Systems Analysis Site Upgrade  

Broader source: Energy.gov [DOE]

Office of Energy Policy and Systems Analysis site is currently being upgraded to better serve on audience. Please check back shortly.

338

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network [OSTI]

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

339

Analysis Activities at National Renewable Energy Laboratory  

Broader source: Energy.gov [DOE]

Presentation on NREL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

340

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

SciTech Connect (OSTI)

China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

Zhou, Nan; Nishida, Masaru; Gao, Weijun

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)  

SciTech Connect (OSTI)

Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

Not Available

2013-12-01T23:59:59.000Z

342

Systems analysis of major consumer energy decisions  

E-Print Network [OSTI]

American consumers make a number of decisions that significantly impact their energy use. Some of the most important of these decisions were identified and analyzed for the purpose of including them in a Consumer Energy ...

Sisler, Nicholas Daniel

2011-01-01T23:59:59.000Z

343

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

SciTech Connect (OSTI)

China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

Zhou, Nan; McNeil, Michael A.; Levine, Mark

2009-06-01T23:59:59.000Z

344

ANALYSIS ON THE MAJOR INFLUENCE FACTORS OF ENERGY INTENSITY CHANGING  

E-Print Network [OSTI]

Based on the energy intensity data of period 1990-2008, this paper uses impulse response function and variance decomposition model to empirical analysis the main influencing factors and effects of energy intensity,. The empirical results show that: the energy intensity of itself, and the proportion of secondary industry have a larger impact on energy intensity; the change of energy price and technological progress also play a certain impact on energy intensity; and the link with the internal relations and interaction mechanisms, which can play an active role in improving energy efficiency.

Xia Wang; Lu Tang

345

Supplying Renewable Energy to Deferrable Loads: Algorithms and Economic Analysis  

E-Print Network [OSTI]

Supplying Renewable Energy to Deferrable Loads: Algorithms and Economic Analysis Anthony compares to price responsive demand in terms capacity gains and energy market revenues for renewable to renewable generation. I. INTRODUCTION Renewable power is emerging as a mainstream source of energy supply

Oren, Shmuel S.

346

GLOBAL OPTIMIZATION AND ANALYSIS FOR THE GIBBS FREE ENERGY FUNCTION  

E-Print Network [OSTI]

GLOBAL OPTIMIZATION AND ANALYSIS FOR THE GIBBS FREE ENERGY FUNCTION USING THE UNIFAC, WILSON equilibrium involves two important problems: (i) the minimization of the Gibbs free energy, and (ii of the Gibbs free energy. However, a drawback of all previous approaches is that they could not provide

Neumaier, Arnold

347

Automated Analysis of Performance and Energy Consumption for Cloud Applications  

E-Print Network [OSTI]

Automated Analysis of Performance and Energy Consumption for Cloud Applications Feifei Chen, John providers is thus to develop resource provisioning and management solutions at minimum energy consumption system performance and energy consumption patterns in complex cloud systems is imperative to achieve

Schneider, Jean-Guy

348

Waste-To-Energy Feasibility Analysis: A Simulation Model  

E-Print Network [OSTI]

Waste- To- Energy Feasibility Analysis: A Simulation Model Viet- An Duong College of Engineering://www.funginstitute.berkeley.edu/sites/default/ les/WasteToEnergy.pdf May 1, 2014 130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664-4337 | www of the main battles of our generation. Using waste to produce electricity can be a major source of energy

Sekhon, Jasjeet S.

349

Energy Analysis of the Corn-Ethanol Biofuel Cycle  

E-Print Network [OSTI]

Energy Analysis of the Corn-Ethanol Biofuel Cycle First Draft Tad W. Patzek Department of Civil legitimately ask: Why do the various energy balances of the corn-ethanol cycle still differ so much? Why do some authors claim that the corn-ethanol cycle has a positive net energy balance (Wang et al., 1997

Patzek, Tadeusz W.

350

Performance Validation and Energy Analysis of HVAC Systems using Simulation  

E-Print Network [OSTI]

that energy savings of between 15% and 40% could be made in commercial buildings by closer monitoring and supervision of energy-usage and related data. An earlier study by Kao and Pierce (1983) showed that sensor1 Performance Validation and Energy Analysis of HVAC Systems using Simulation Tim Salsbury and Rick

Diamond, Richard

351

Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy  

E-Print Network [OSTI]

Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983

Laughlin, Robert B.

352

Analysis of Green Energy Options for The Phipps Conservatory  

E-Print Network [OSTI]

power and thermal energy via on-site generation or purchases of renewable energy credits: 1) A 5kW solid1 Analysis of Green Energy Options for The Phipps Conservatory Shahzeen Attari Elisabeth Gilmore or educational projects may make them worth the additional expense. Qualitative relative rankings of the project

Attari, Shahzeen Z.

353

Wind Energy Conversion Systems Fault Diagnosis Using Wavelet Analysis  

E-Print Network [OSTI]

Wind Energy Conversion Systems Fault Diagnosis Using Wavelet Analysis Elie Al-Ahmar1,2 , Mohamed El, induction generator, Discrete Wavelet Transform (DWT), failure diagnosis. I. Introduction Wind energy the condition of induction machines. Fig. 1. Worldwide growth of wind energy installed capacity [1]. 1 E. Al

Paris-Sud XI, Université de

354

Energy sector analysis and modeling – From primary to final energy.  

E-Print Network [OSTI]

?? Climate change and energy supply limitation are growing concerns. Solving them requires strong implication from our societies and more and more stakeholders and scientists… (more)

Praz, Bastien

2012-01-01T23:59:59.000Z

355

Analysis of Energy Saving Impacts of New Commercial Energy Codes for the Gulf Coast  

SciTech Connect (OSTI)

Report on an analysis of the energy savings and cost impacts associated with the use of newer and more efficiently commercial building energy codes in the states of Louisiana and Mississippi.

Halverson, Mark A.; Gowri, Krishnan; Richman, Eric E.

2006-12-15T23:59:59.000Z

356

EnergyPlus Run Time Analysis  

SciTech Connect (OSTI)

EnergyPlus is a new generation building performance simulation program offering many new modeling capabilities and more accurate performance calculations integrating building components in sub-hourly time steps. However, EnergyPlus runs much slower than the current generation simulation programs. This has become a major barrier to its widespread adoption by the industry. This paper analyzed EnergyPlus run time from comprehensive perspectives to identify key issues and challenges of speeding up EnergyPlus: studying the historical trends of EnergyPlus run time based on the advancement of computers and code improvements to EnergyPlus, comparing EnergyPlus with DOE-2 to understand and quantify the run time differences, identifying key simulation settings and model features that have significant impacts on run time, and performing code profiling to identify which EnergyPlus subroutines consume the most amount of run time. This paper provides recommendations to improve EnergyPlus run time from the modeler?s perspective and adequate computing platforms. Suggestions of software code and architecture changes to improve EnergyPlus run time based on the code profiling results are also discussed.

Hong, Tianzhen; Buhl, Fred; Haves, Philip

2008-09-20T23:59:59.000Z

357

Department of Energy Analysis of Economic Impact  

National Nuclear Security Administration (NNSA)

were derived from the WNA's Reactor Database (which is linked to the International Atomic Energy Agency's Power Reactor Information System). The coefficients were then applied to...

358

Energy analysis in the extrusion of plastics.  

E-Print Network [OSTI]

??An experiment was conducted to investigate the energy consumed during extruder runs using an amorphous polymer (polyamide) of grade grimaldi TR 55, in the Arcada… (more)

Nana, Levi Njobet

2012-01-01T23:59:59.000Z

359

NREL Job Task Analysis: Energy Auditor  

SciTech Connect (OSTI)

A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work.

Kurnik, C.; Woodley, C.

2011-05-01T23:59:59.000Z

360

Economic and Environmental Analysis of Photovoltaic Energy ...  

E-Print Network [OSTI]

Mar 22, 2012 ... which contributes to the greenhouse effect. A global movement in promoting low- or zero-carbon energy production will be necessary to help ...

2012-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

of the impact of the ASHRAE 90-75 stan- dard on newAssessment of ASHRAE Standard 90-75, Energy Conservation in

Authors, Various

2010-01-01T23:59:59.000Z

362

Energy System and Scenario Analysis Toolkit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information Energy Sector Management AssistanceStage 3

363

Energy System and Scenario Analysis Toolkit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information Energy Sector Management AssistanceStage

364

Flexible Framework for Building Energy Analysis: Preprint  

SciTech Connect (OSTI)

In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

2012-09-01T23:59:59.000Z

365

Vulnerability Analysis of Energy Delivery Control Systems  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReportVictor KaneContractfrom Water0-18381

366

Monitoring, Reporting, & Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’s EM program removes outdated

367

Energy Systems Analysis | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-up FormEnergyEnergy

368

System Analysis Success Stories | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small Business WebinarSuitlandoftheSustainable FederalProjects

369

Threat Analysis Framework | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and Its EnergyMetalof Energy ThisThreat

370

Sensitivity and Uncertainty Analysis | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational Energy Agency |AwardJohnson, Steve Koonin, ScottNewSensitivity

371

Energy Analysis and Energy Conservation Option for the Warehouse Facility at the Human Services Center Complex  

E-Print Network [OSTI]

] has been created to encourage the energy efficient design of new buildings. It provides criteria and minimum standards to reduce energy consumption without constraining the building function or the comfort of the occupants. It also provides methods... ENERGY ANALYSIS AND ENERGY CONSERVATION OPTION FOR THE WAREHOUSE FACILITY AT THE HUMAN SERVICES CENTER COMPLEX DRAFT REPORT Submitted by Mohsen Farzad Dennis O'Neal Prepared For Energy Efficiency Division Texas Public Utility Commission Austin...

Farzad, M.; O'Neal, D. L.

1986-01-01T23:59:59.000Z

372

Analysis of four alternative energy mutual funds.  

E-Print Network [OSTI]

??We analyze four alternative energy mutual funds using a multi-factor capital asset pricing model with generalized autoregressive conditionally heteroskedastic errors (CAPM-GARCH). Our findings will help… (more)

Selik, Michael Andrew

2010-01-01T23:59:59.000Z

373

Systematic Analysis of Frontier Energy Collider Data  

E-Print Network [OSTI]

Ignorance of the form new physics will take suggests the importance of systematically analyzing all data collected at the energy frontier, with the goal of maximizing the chance for discovery both before and after the turn on of the LHC.

Bruce Knuteson

2005-04-23T23:59:59.000Z

374

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

Input fuel quantities (in BTU) which account for thermalOutput energy (in BTU). Includes biomass, accounted asMWE) COIL FIRED peWER PLINT-lew BTU 1800 MWEI ~UlFUA O~IOE

Authors, Various

2010-01-01T23:59:59.000Z

375

NREL: Energy Analysis - Energy Forecasting and Modeling Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylanEllaEnergy

376

The Dark Energy Star and Stability analysis  

E-Print Network [OSTI]

We have proposed a new model of dark energy star consisting of five zones namely, solid core of constant energy density, the thin shell between core and interior, an inhomogeneous interior region with anisotropic pressures, thin shell and the exterior vacuum region. We have discussed various physical properties. The model satisfies all the physical requirements. The stability condition under small linear perturbation has also been discussed.

Piyali Bhar; Farook Rahaman

2015-01-12T23:59:59.000Z

377

Lab Analysis Techniques | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformationparticipantsSalle, Colorado: EnergyLaPorte

378

Isotopic Analysis (Klein, 2007) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy Information 2006) Jump to: navigation,

379

Isotopic Analysis (Not Available) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy Information 2006) Jump to:Date Usefulness

380

One Size Does Not Fit All: Human Failure Event Decomposition and Task Analysis  

SciTech Connect (OSTI)

In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered or exacerbated by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down—defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications. In this paper, I first review top-down and bottom-up approaches for defining HFEs and then present a seven-step guideline to ensure a task analysis completed as part of human error identification decomposes to a level suitable for use as HFEs. This guideline illustrates an effective way to bridge the bottom-up approach with top-down requirements.

Ronald Laurids Boring, PhD

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP): An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

SciTech Connect (OSTI)

Energy system modeling can be intentionally or unintentionally misused by decision-makers. This report describes how both can be minimized through careful use of models and thorough understanding of their underlying approaches and assumptions. The analysis summarized here assesses the impact that model and data choices have on forecasting energy systems by comparing seven different electric-sector models. This analysis was coordinated by the Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP), a collaboration among governmental, academic, and nongovernmental participants.

Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K. R.; Venkatesh, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

2009-09-01T23:59:59.000Z

382

Southeast Regional Clean Energy Policy Analysis (Revised)  

SciTech Connect (OSTI)

More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

McLaren, J.

2011-04-01T23:59:59.000Z

383

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

of Capital Costs for Solar Thermal Power Plants Fuel GasAnalysis of Wind Power Solar Thermal-Electric Power Plantsinclude wind turbines, solar- thermal and waste-fired power

Authors, Various

2010-01-01T23:59:59.000Z

384

Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis  

E-Print Network [OSTI]

Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

2008-01-01T23:59:59.000Z

385

Life-Cycle Analysis and Energy Efficiency in State Buildings  

Broader source: Energy.gov [DOE]

Several provisions of Missouri law govern energy efficiency in state facilities. In 1993 Missouri enacted legislation requiring life-cycle cost analysis for all new construction of state buildings...

386

Commercial Property Assessed Clean Energy: A Comparative Analysis  

Broader source: Energy.gov [DOE]

Hosted by the Technical Assistance Program (TAP), this webinar, held on Feb. 26, 2015, focused on a comparative analysis of program design elements of existing Property Assessed Clean Energy (PACE) programs across the country.

387

Energy Management and Cost Analysis (A case study)  

E-Print Network [OSTI]

Abstract — Lighting constitutes a main portion of energy consumption in commercial and industrial sector. The Energy Auditing is the key of the consumption which stabilize the situation of energy crisis by providing the conservation schemes. Any organization so called bulk consumer of electrical energy propose to adopt suitable technology or scheme of energy conservation to minimize the unwanted power shutdown either incidentally or by load shedding. In educational buildings a significant component of the energy used is spent in illuminating the interior of the building. As the energy costs increases, possible efforts are to be done to minimize the energy consumption of lighting installations. This follow three basic directions: new more efficient equipment (lamps, control gear, etc.), utilization of improved lighting design practices, improvements in lighting control systems to avoid energy waste for unoccupied and daylight hours. In this paper an Energy audit has been conducted in the educational Institute to estimate the Energy consumption. In this Energy audit the cost analysis and pay back periods have been calculated by replacing the higher consumption lamps with Energy efficient Lightning. The profit of implementing the energy efficiency measures in buildings are considerable both in terms of energy savings and cost savings.

unknown authors

388

Proceedings of the 1991 Socioeconomic Energy Research and Analysis Conference  

SciTech Connect (OSTI)

These proceedings analyze US energy policy as it pertains to minority groups. Example topics include: Economic impacts of the National Energy Strategy on minority and majority households, Utility measures to assist payment-troubled customers, Equity impacts of controlling energy usage through market-based versus regulatory approaches, Technical and planning support for the DOE-HUD initiative for energy efficiency in housing, an analysis of residential energy consumption and expenditures by minority households by home type and housing vintage, and methodical issues in evaluating integrated least cost planning programs.

Not Available

1993-07-01T23:59:59.000Z

389

NREL Job Task Analysis: Quality Control Inspector | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor NREL Job Task Analysis:

390

Data and analysis on energy usage included: Taking readings on energy each minute  

E-Print Network [OSTI]

Appendix B Data and analysis on energy usage included: § Taking readings on energy each minute § 14 Changes from A/V to General Room 22 Changes from General to A/V The Control Room uses 82% more energy than and presents it graphically for easy interpretation. The graphs below compare an ICLS classroom to the Control

391

Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries  

E-Print Network [OSTI]

1 Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries Bradford Millsa * and Joachim Schleicha,b,c a Virginia Polytechnic Institute of measures of household energy use behavior are estimated using a unique dataset of approximately 5

Paris-Sud XI, Université de

392

Understanding Manufacturing Energy Use Through Statistical Analysis  

E-Print Network [OSTI]

. The energy required to chill this glycol should be dependent on outdoor air temperature. The rest of the chilled glycol is sent to fan-coil units that recirculate plant air near heat-generating equipment. The energy required to chill this glycol is much... less dependent on outdoor air temperature. Thus, comparing the two breakdowns suggests that about (13% - 10%) / 13% = 23% of chiller electricity use is devoted to the fan coil units and the balance to the make-up air units. The biggest...

Kissock, J. K.; Seryak, J.

2004-01-01T23:59:59.000Z

393

Compound and Elemental Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermal Area (White,| Open2007)

394

Hydrogen Systems Analysis | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory HistoryEducation »

395

Department of Energy Analysis of Economic Impact  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 SandiaGuidance to8/08/2012

396

Benefits Analysis for VTP | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy and Natural Resourcespatterson.pdf More Documents &

397

Geochemical Data Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: SolarGenoa is aGeo Exploration

398

Fluid Inclusion Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformationEnergyOpen Energy

399

Wave Energy Resource Analysis for Use in Wave Energy Conversion  

E-Print Network [OSTI]

spectra for that given region from a selected deep-water calibration station. METHODOLOGY FOR ESTIMATING THE AVAILABLE WAVE ENERGY RESOURCE This section will describe the methodology for estimating the naturally available and technically recoverable... resource in a given region. In a recent study done by the EPRI, data was gathered from U.S. coastal waters for a 51- month Wavewatch III hindcast database that was developed specifically for the EPRI by NOAA’s National Centers for Environmental...

Pastor, J.; Liu, Y.; Dou, Y.

2014-01-01T23:59:59.000Z

400

RETScreen Clean Energy Project Analysis Software | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to:Co JumpRETScreen Clean Energy

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

LBNL Renewable Energy Market and Policy Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute ofLAC Workshop Announcement

402

NREL State Clean Energy Policies Analysis Project (SCEPA) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Information Exploration/DevelopmentLegalSolomons

403

Hawaii Clean Energy Initiative Scenario Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii Clean Energy Initiative (HCEI) Hawaii

404

Analysis of the Russian Market for Building Energy Efficiency  

SciTech Connect (OSTI)

This report provides analysis of the Russian energy efficiency market for the building sector from the perspective of U.S. businesses interested in exporting relevant technologies, products and experience to Russia. We aim to help U.S. energy efficiency and environmental technologies businesses to better understand the Russian building market to plan their market strategy.

Lychuk, Taras; Evans, Meredydd; Halverson, Mark A.; Roshchanka, Volha

2012-12-01T23:59:59.000Z

405

An Energy and Power Consumption Analysis of FPGA Routing Architectures  

E-Print Network [OSTI]

An Energy and Power Consumption Analysis of FPGA Routing Architectures Peter Jamieson, Elec of energy and power consumption using an updated power estimation framework compatible with VPR 5.0. The goal of this research is to help FPGA vendors find the best FPGA architectures. Initially, we make some

Wilton, Steve

406

Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance  

E-Print Network [OSTI]

Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance Lin Zhong lzhong of their complexity, parallelism and latency. Insights are found for tradeoff between energy consumption of a tree structure. For example, Figure 1.3 shows to add 5 k-bit integers together in a tree sequence. It

Zhong, Lin

407

Orienting the Neighborhood: A Subdivision Energy Analysis Tool; Preprint  

SciTech Connect (OSTI)

This paper describes a new computerized Subdivision Energy Analysis Tool being developed to allow users to interactively design subdivision street layouts while receiving feedback about energy impacts based on user-specified building design variants and availability of roof surfaces for photovoltaic and solar water heating systems.

Christensen, C.; Horowitz, S.

2008-07-01T23:59:59.000Z

408

Waste Energy Analysis Recovery for a Typical Food Processing Plant  

E-Print Network [OSTI]

An energy analysis made for the Joan of Arc Food Processing Plant in St. Francisville, Louisiana indicated that a significant quantity of waste heat energy was being released to the atmosphere in the forms of low quality steam and hot flue gases...

Miller, P. H.; Mann, L., Jr.

1980-01-01T23:59:59.000Z

409

Analysis of Energy Recovery Ventilator Savings for Texas Buildings  

E-Print Network [OSTI]

.S. Environmental Protection Agency and U.S. Department of Energy, Publication No. DOE/GO-102003-1774. Prepared by National Renewable Energy Laboratory, Golden CO, October 2003. Available at http://www.nrel.gov/docs/fy04osti/34349.pdf APPENDIX A: ANALYSIS...

Christman, K. D.; Haberl, J. S.; Claridge, D. E.

410

A Meta-Analysis of Energy Savings from Lighting Controls  

E-Print Network [OSTI]

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings Alison Williams;ABSTRACT Researchers have been quantifying energy savings from lighting controls in commercial buildings and Garbesi 2011). Lighting represents approximately one-third of electricity use in commercial buildings

411

Preliminary Analysis of Energy Consumption For Cool Roofing Measures  

E-Print Network [OSTI]

decisions by offering design requirements and establishing building codes. Over the last decade, muchPreliminary Analysis of Energy Consumption For Cool Roofing Measures By Joe Mellott, Joshua New to reduce energy demand by reflecting sunlight away from structures and back into the atmosphere. By use

Wang, Xiaorui "Ray"

412

Geothermal Play Fairway Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play Fairway Analysis pfw-webinar.pptx

413

Elk Valley Rancheria Energy Efficiency and Alternatives Analysis  

SciTech Connect (OSTI)

Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

2011-11-30T23:59:59.000Z

414

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

System . . . . . Capital Cost Estimates for a 2000 T/D Purox1976. Table F-2 Estimates of Capital Costs for Solar Thermalcapital costs, power rating at an optimal average wind velocity and energy costs The capacity factors, according to the estimate

Authors, Various

2010-01-01T23:59:59.000Z

415

Energy Engineering & Systems Analysis Success Stories  

E-Print Network [OSTI]

of increasing heat fluxes and power loads in applications as diverse as medical equipment, power electronics, improve energy efficiency and lengthen device lifetime. To satisfy these increasing thermal management for engine or power electronics thermal management. However, these systems contribute to the size and weight

Kemner, Ken

416

Analysis of Hydrogen and Competing Technologies for Utility-Scale Energy Storage (Presentation)  

SciTech Connect (OSTI)

Presentation about the National Renewable Energy Laboratory's analysis of hydrogen energy storage scenarios, including analysis framework, levelized cost comparison of hydrogen and competing technologies, analysis results, and conclusions drawn from the analysis.

Steward, D.

2010-02-11T23:59:59.000Z

417

RETScreen Clean Energy Project Analysis Software | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to:Co JumpRETScreen Clean Energy Project

418

Office of Energy Policy and Systems Analysis | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartment ofNo Fear Act DataOfficeOffice

419

Energy Infrastructure Modeling and Analysis (EIMA) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011District | Department ofTracking Database,

420

NREL: Energy Analysis - The Energy DataBus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff NationalBookmark

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Office of Energy Policy and Systems Analysis | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring: InnovationISC HomeAboutSearch form Search Office

422

Cities Leading through Energy Analysis and Planning | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy Chu Issues Call toDepartment

423

Energy Information Administration--Energy and Greenhouse Gas Analysis  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998Information Administration &1995

424

Energy Analysis Models, Tools and Software Technologies - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37 East and WestLydiaEnabling101 |

425

NREL: Energy Analysis - Register for Energy DataBus Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo ofRegister for

426

SciTech Connect: Cost analysis of energy storage systems for...  

Office of Scientific and Technical Information (OSTI)

Cost analysis of energy storage systems for electric utility applications Citation Details In-Document Search Title: Cost analysis of energy storage systems for electric utility...

427

U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012 U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012 The report ranks...

428

U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis thumbenergyuselossemissionslg.gif How...

429

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

report documents an analysis of the potential to improve the energy efficiencyreport documents an analysis of the potential to improve the energy efficiency

Price, Lynn

2010-01-01T23:59:59.000Z

430

R&D 100 Award -- TREAT with SUNREL (TM) Energy Analysis Software  

SciTech Connect (OSTI)

Factsheet about the 2005 R&D Award for TREAT with SUNREL Energy Analysis Software for home energy audits.

Not Available

2005-10-01T23:59:59.000Z

431

Energy System and Scenario Analysis Toolkit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro, California Zip: CA 94577BuildingAnalysis

432

Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)  

SciTech Connect (OSTI)

No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

2012-10-01T23:59:59.000Z

433

Regional analysis of energy facility siting  

SciTech Connect (OSTI)

This paper has examined some of the regional environmental parameters of energy facility siting, with emphasis on air quality impacts. An example of a siting optimization study was presented, and it was shown how difficult it presently is to specify an environmental objective function that is universally applicable. The importance of regional background effects was discussed, and long-range transport models were used to analyze the relative importance of local and long-range impacts.

Lipfert, F W; Meier, P M; Kleinman, L I

1980-01-01T23:59:59.000Z

434

NREL: Energy Analysis - Data and Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version Email Contact

435

NREL: Energy Analysis - Models and Tools Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version Email

436

Poverty Social Impact Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc JumpPortage,Austin,Pottstown,Pound Ridge,

437

Systems Analysis Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizing Opportunities |batteriesSystems Analysis

438

Threat Analysis Framework | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestorationAdvisoryManagement and on theofThreat Analysis

439

NREL: Energy Analysis - Data Analysis and Visualization Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad AugustineInman

440

NREL: Energy Analysis - Market and Policy Impact Analysis Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres LizMarket

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Energy Analysis - Technology Systems and Sustainability Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabeTechnology

442

NREL: Energy Analysis - Vehicles and Fuels Research Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder Photo

443

The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's  

E-Print Network [OSTI]

The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the Alliance for Sustainable Energy, LLC. The Joint Institute for Strategic Energy Analysis 15013 Denver West

444

Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program  

SciTech Connect (OSTI)

Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As one of HPwES's local sponsors, Austin Energy's HPwES program offers a complete home energy analysis and a list of recommendations for efficiency improvements, along with cost estimates. To determine the benefits of this program, the National Renewable Energy Laboratory (NREL) collaborated with the Pacific Northwest National Laboratory (PNNL) to conduct a statistical analysis using energy consumption data of HPwES homes provided by Austin Energy. This report provides preliminary estimates of average savings per home from the HPwES Loan Program for the period 1998 through 2006. The results from this preliminary analysis suggest that the HPwES program sponsored by Austin Energy had a very significant impact on reducing average cooling electricity for participating households. Overall, average savings were in the range of 25%-35%, and appear to be robust under various criteria for the number of households included in the analysis.

Belzer, D.; Mosey, G.; Plympton, P.; Dagher, L.

2007-07-01T23:59:59.000Z

445

State Level Analysis of Industrial Energy Use  

E-Print Network [OSTI]

of the regional Interestingly, approximately 98 percent of mining mining consumption, and 10 percent of the total Figure 1. Share of Total Industrial Electricity Consumption by Industry Group for Eight Selected States and the U.S. 90% 80% c: :g, 70% E... .2 1:1 C. E ::l .. g 20% +-------------1 u ~ u E u .. ." iii iii ... ::l ] 10% '0 l!! .. .J:: In 0% / /,. ~/ / 103 ESL-IE-03-05-12 Proceedings from theTwenty-Fifth Industrial Energy Technology Conference, Houston, TX, May 13...

Elliott, R. N.; Shipley, A. M.; Brown, E.

446

NREL: Energy Analysis - BSM: Biomass Scenario Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version Email Contact forBSM -

447

NREL: Energy Analysis - Capabilities and Expertise  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version Email Contact forBSM

448

NREL: Energy Analysis - Subscribe to Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff National

449

NREL: Energy Analysis - Working with Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff Webmaster

450

Analysis of Environmental Impacts | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) AllMarch/April 2015Laboratory |NewInitial

451

Market Analysis Reports | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-CostManufacturingMarginal EnergyInformation Resources

452

Paducah WDA Analysis | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRocky Mountain OTCAnnualEnd

453

Policy and Analysis Team | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic TheoryPlant 242-ZPolaronRetaliation |

454

CSP Systems Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPE OF LOCALCOOP -CSAT Role-Based/CoreCSP

455

Analysis of Environmental Impacts | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUOAlaskaMoney |of EnergyAmes

456

EGR Cooler Deposit Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department of EnergyQCJuly 2015 <Catalyst

457

Planning, Budget, and Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's ImpactAppendix3 Photo of theWeDepartmentPlanning for

458

Photovoltaics Value Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru: EnergyInformation Insolation MapsValue

459

Data Collection and Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared by:DTE Energy VideoDark MatterDataData

460

Graphical Contingency Analysis Tool - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene's 3D Counterpart Print1, 2009 WIPPGraphical

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NREL: Energy Analysis - Models and Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies The

462

Retrofit Financial Analysis Tool | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |Regulation Services System:Affairs,HowReporting andAnnual

463

Sandia National Laboratories: energy systems analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-waterbiofuelssituations EC,energysystem

464

Play Fairway Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | Department ofpermitPerformance Audit ofProducing cleanDisease

465

Fluid Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformationEnergyOpenLab

466

Sandia National Laboratories: Transportation Energy Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers SpliceVehicle

467

NREL: Energy Analysis - Ann Herlevich Brennan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom PhotoAnn Herlevich

468

NREL: Energy Analysis - Billy J. Roberts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaples PhotoBilly J.

469

NREL: Energy Analysis - Brian W Bush  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaples PhotoBilly

470

NREL: Energy Analysis - Caroline Uriarte Chapman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaples

471

NREL: Energy Analysis - Colin McMillan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine PhotoColin A.

472

NREL: Energy Analysis - David J. Feldman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid J. Feldman Photo

473

NREL: Energy Analysis - Debbie Brodt-Giles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid J.Debbie

474

NREL: Energy Analysis - Emily K. Newes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylanElla ZhouEmily

475

NREL: Energy Analysis - Francisco Flores-Espino  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFrancisco Flores-Espino Photo of

476

NREL: Energy Analysis - Jobs and Economic Competitiveness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay HugginsJim LeyshonJobs

477

NREL: Energy Analysis - John (Jack) Mayernik  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay HugginsJim

478

NREL: Energy Analysis - Joyce McLaren  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJosh Novacheck Photo

479

NREL: Energy Analysis - Jørn Aabakken  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJosh Novacheck

480

NREL: Energy Analysis - Karla LeComte  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJosh NovacheckKarla

Note: This page contains sample records for the topic "bottom-up energy analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NREL: Energy Analysis - Kelsey A. W. Horowitz  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJoshKatherineKelsey A.

482

NREL: Energy Analysis - Matthew O'Connell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres LizMarketMatt

483

NREL: Energy Analysis - Nicholas DiOrio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNate BlairNicholas

484

NREL: Energy Analysis - Pamela Gray-Hann  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNateOwen

485

NREL: Energy Analysis - Renewable Electricity Futures Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo ofRegister

486

NREL: Energy Analysis - Robert M. Margolis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo

487

NREL: Energy Analysis - Samantha Bench Reese  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe PhotoSadie Cox

488

NREL: Energy Analysis: Electric Sector Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesley ColeElectric

489

NREL: Energy Analysis: Life Cycle Assessment Harmonization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesleyGeospatialLife

490

Sandia National Laboratories: Transporation Energy System Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterials ProgramProtected: TechTitanium-di-oxideToyota

491

Microsoft Word - Levelized Cost of Energy Analysis  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250 Rev. 0 MayOE-781RComparingSandiaStorageMarch 28,

492

Building America Analysis Spreadsheets | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy ForBryan WheelerResidential

493

Army Energy and Water Reporting System Assessment  

SciTech Connect (OSTI)

There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.

Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

2011-09-01T23:59:59.000Z

494

Geothermal Play Fairway Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance forGeospatial Grades: 9-12Play Fairway Analysis

495

Market Analysis Toolkit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(HeldManhattan,and CharacterizationAnalysis Toolkit

496

Adverse Diversity Analysis Guidance | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOENuclearAdverse Diversity Analysis

497

Decision Analysis for EGS | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared by:DTEMoab3 SEAB MeetingDecision Analysis for

498

Electrode Construction and Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstruction and Analysis Electrode Construction and

499

Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision hasESE Alcohol Jump to:EXARGeothermalAnalysis

500

Life cycle analysis of energy systems: Methods and experience  

SciTech Connect (OSTI)

Fuel-cycle analysis if not the same as life-cycle analysis, although the focus on defining a comprehensive system for analysis leads toward the same path. This approach was the basis of the Brookhaven Reference Energy System. It provided a framework for summing total effects over an explicitly defined fuel cycle. This concept was computerized and coupled with an extensive data base in ESNS -- the Energy Systems Network Simulator. As an example, ESNS was the analytical basis for a comparison of health and environmental effects of several coal conversion technologies. With advances in computer systems and methods, however, ESNS has not been maintained at Brookhaven. The RES approach was one of the bases of the OECD COMPASS Project and the UNEP comparative assessment of environmental impacts of energy sources. An RES model alone has limitations in analyzing complex energy systems, e.g., it is difficult to handle feedback in the network. The most recent version of a series of optimization models is MARKAL, a dynamic linear programming model now used to assess strategies to reduce greenhouse gas emissions from the energy system. MARKAL creates an optimal set of reference energy systems over multiple time periods, automatically incorporating dynamic feedback and allowing fuel switching and end-use conservation to meet useful energy demands.

Morris, S.C.

1992-08-01T23:59:59.000Z