National Library of Energy BETA

Sample records for bottom-up energy analysis

  1. Bottom-Up Energy Analysis System (BUENAS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois:EnergyIdahoTechnology Venture

  2. Bottom-Up Energy Analysis System (BUENAS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois:EnergyIdahoTechnology Venture(Redirected from

  3. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    consumer energy expenditures. Direct rebound effects referimpact on estimates of energy demand and savings. ReboundRebound effects’ refers to the increase in usage of energy

  4. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    Developing the World's best Energy-Efficient Appliances.Annual unit energy consumption in Best Practice ScenarioConsumption - EFF Unit Energy Consumption - Best Practice BP

  5. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    LEGEND Baseline Unit Energy  Consumption Data or Assumptionof baseline unit energy consumption data is given in Table5 – Sources of Unit Energy Consumption Data Product Boilers

  6. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    Lab. International Energy Agency, World Energy Outlook 2006.by the trend of IEA’s World Energy Outlook (WEO) 2006 [71],to trends in the World Energy Outlook [71]. The projection

  7. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    Energy Agency, World Energy Outlook 2006. 2006, OECD. ILO,by the trend of IEA’s World Energy Outlook (WEO) 2006 [71],to trends in the World Energy Outlook [71]. The projection

  8. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    2011. 2011. EIA, International Energy Outlook 2010. 2010.EIA, International Energy Outlook 2008. 2008. McNeil, M.A. ,Energy Agency, World Energy Outlook 2006. 2006, OECD. ILO,

  9. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    effect in TSL 5 Useful Energy from Ecodesign, EfficiencyAUS assumed equal to US Useful energy from Ecodesign study,regions. In addition, useful energy consumption 2 for

  10. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    Products: The Case of India. Energy Policy, 2008. 36(9): p.in India, in 5th International Conference on EnergyIndia Indonesia Total without China Total including China Energy

  11. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    diffusion and industrial motor energy. GDP growth rates areenergy consumption in Best Practice Scenario Best practice efficiency definitions Product class market shares Industrial electric motorsenergy demand sectors. The LBNL China appliance model (including industrial motors

  12. Bottom-Up Energy Analysis System - Methodology and Results

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.; Stephane, de la Rue du Can; Ke, Jing

    2012-06-15

    The main objective of the development of BUENAS is to provide a global model with sufficient detail and accuracy for technical assessment of policy measures such as energy efficiency standards and labeling (EES&L) programs. In most countries where energy efficiency policies exist, the initial emphasis is on household appliances and lighting. Often, equipment used in commercial buildings, particularly heating, air conditioning and ventilation (HVAC) is also covered by EES&L programs. In the industrial sector, standards and labeling generally covers electric motors and distribution transformers, although a few more types of industrial equipment are covered by some programs, and there is a trend toward including more of them. In order to make a comprehensive estimate of the total potential impacts, development of the model prioritized coverage of as many end uses commonly targeted by EES&L programs as possible, for as many countries as possible.

  13. Representing energy technologies in top-down economic models using bottom-up information

    E-Print Network [OSTI]

    McFarland, James R.; Reilly, John M.; Herzog, Howard J.

    This paper uses bottom-up engineering information as a basis for modeling new technologies within the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy. ...

  14. A bottom-up analysis of including aviation within theEU's Emissions Trading Scheme

    E-Print Network [OSTI]

    Watson, Andrew

    A bottom-up analysis of including aviation within theEU's Emissions Trading Scheme Alice Bows-up analysis of including aviation within the EU's Emissions Trading Scheme Alice Bows & Kevin Anderson Tyndall's emissions trading scheme. Results indicate that unless the scheme adopts both an early baseline year

  15. Representing energy technologies in top-down economic models using bottom-up information

    E-Print Network [OSTI]

    take energy and other prices as exogenous and, therefore, may overestimate the potential penetrationRepresenting energy technologies in top-down economic models using bottom-up information J.R. Mc 02139, USA c Laboratory for Energy and the Environment, M.I.T., Cambridge, MA 02139, USA Available

  16. Top-down and bottom-up definitions of human failure events in human reliability analysis

    SciTech Connect (OSTI)

    Boring, Ronald Laurids

    2014-10-01

    In the probabilistic risk assessments (PRAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question is crucial, however, as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PRAs tend to be top-down—defined as a subset of the PRA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) often tend to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  17. Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US

    E-Print Network [OSTI]

    Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models February 2011 Accepted 16 August 2011 Available online 17 September 2011 Keywords: Energy efficiency that a large potential for profitable energy efficiency exists in the US, and that substantial greenhouse gas

  18. A Bottom-Up Cost Analysis of a High Concentration PV Module ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Center Greg Smestad Sol Ideas Technology Development, Solar Energy Materials and Solar Cells Journal Hohyun Lee University of Santa Clara Alfred Hicks and Kendra Palmer...

  19. Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down

    E-Print Network [OSTI]

    Van Wie McGrory, Laura; Coleman, Philip; Fridley, David; Harris, Jeffrey; Villasenor Franco, Edgar

    2006-01-01

    of a national energy-efficient purchasing program. Thesenational energy- efficiency endorsement labeling program. 5.a program to promote energy-efficient purchasing by national

  20. Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down

    E-Print Network [OSTI]

    Van Wie McGrory, Laura; Coleman, Philip; Fridley, David; Harris, Jeffrey; Villasenor Franco, Edgar

    2006-01-01

    energy-efficient products currently on the Ministry of Financefinance sectors should support resource conservation activities and comprehensive utilization, and adopt energy-Finance and the National Development and Reform Commission on the Issuance of “Implementation of Government Energy

  1. Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down

    E-Print Network [OSTI]

    Van Wie McGrory, Laura; Coleman, Philip; Fridley, David; Harris, Jeffrey; Villasenor Franco, Edgar

    2006-01-01

    public sector energy spending reached roughly US$10 billion and that figure has been rising as total built space

  2. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    Kaya, Y. , Impact of Carbon Dioxide Emissions on GNP Growth:savings and carbon dioxide emissions mitigation. Finalentering the stock. Carbon dioxide emissions are calculated

  3. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    year data forecasted according to trends in the World Energyyear data, and scaling by the trend of IEA’s World Energyenergy consumption data (from IEA) and divided by GDPVA IND from the World

  4. Bottom-Up Energy Analysis System - Methodology and Results

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01

    Product Class Units Electric kWh/yr USA Gas Storage GJ/yr USA Gas Storage GJ/yr CAN Gas Storage Gas Instantaneous Gas Instantaneous GJ/yr

  5. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    China's Future Energy and Emissions Outlook. Berkeley, CA:Energy Agency), 2009. World Energy Outlook 2009. Paris: OECDAgency (IEA)’s World Energy Outlook (WEO) 2009, which set

  6. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    Studies on China's Future Energy and Emissions Outlook.Institute. IEA (International Energy Agency), 2009.World Energy Outlook 2009. Paris: OECD Publishing. Li, J. ,

  7. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    Energy Agency), 2009. World Energy Outlook 2009. Paris: OECDEnergy Agency (IEA)’s World Energy Outlook (WEO) 2009, whichresults are taken from World Energy Outlook 2009. As seen in

  8. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    Environment Institute. IEA (International Energy Agency),GR 4. IND +25% HI P CIS IEA Ref 5. COM +25% FA LBNL Lowest4% OI EI GR ERI Low Carbon AIS IEA 450 ERI Accel. Low Carbon

  9. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    de Beer, 1997. "Energy Efficient Technologies in Industry -Tracking Industrial Energy Efficiency and CO2 Emissions.and L. Price. 1999. Energy Efficiency and Carbon Dioxide

  10. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    institute TERI. (2001) TERI Energy Data Directory & Yearbookdesigned. Unfortunately, existing energy data do not provideIndia transportation energy data. Different scenarios were

  11. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    reported in IEA India transportation energy data. DifferentKeywords: India, transport, energy demand, decomposition,balance for India, transport energy consumption represents

  12. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    mill throughput and saving energy. Advanced Grindingstudy, for which cost and energy-savings data on mitigationfor collating the data on energy savings and costs for their

  13. Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS 

    E-Print Network [OSTI]

    Roop, J. M.; Dahowski, R. T

    2000-01-01

    Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

  14. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    energy-efficiency technology costs and improvementon behavioral responses, technology costs, energy savings,is to characterize technology costs and potentials for

  15. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    Energy and Carbon Reduction . 9   3.1   Cost of Conserved Energy Curves – with and without Other Benefits . 9   3.2   Calculationenergy conservation is generally reduced when productivity benefits associated with labor and material cost savings are included in the calculationenergy benefits are excluded from calculation. Changes in cost

  16. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    consumption. As in the statistic from India Ministry ofTransport In India Ministry of Statistics (MOS), India. (Statistics 4.2 Comparison with IEA data The energy consumption estimates described above were compared with IEA India

  17. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    consumption reported in IEA India transportation energyin mobility, while the IEA data only shows a 1.7% growthWB, 2004). According to the IEA energy balance for India,

  18. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    M. , 1990. “Waste Gas Heat Recovery in Cement Plants” EnergyAdvanced Concepts of Waste Heat Recovery in Cement Plants”process Optimize heat recovery of Wet Increased product

  19. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  20. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    Maintenance Energy monitoring and management systemMaintenance Energy monitoring and management system AppliedMaintenance Energy monitoring and management system

  1. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    Using an Advanced Energy Management System,” Best Practiceincludes site energy management systems for optimal energyvariety of such energy management systems exist (Worrell et

  2. Implications of maximizing China's technical potential for residential end-use energy efficiency: A 2030 outlook from the bottom-up

    E-Print Network [OSTI]

    Khanna, Nina

    2014-01-01

    Levine. 2012. “China's Energy and Emissions Outlook to 2050:on China’s Future Energy and Emissions Outlook. LBNL-4032E.Energy Demand Outlook

  3. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    production and hence saving energy consumed in coke making (for collating the data on energy savings and costs for theircan result in significant energy savings and carbon-emission

  4. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    Energy and Carbon Reduction 3.1 Calculation of cost ofCalculation of cost of carbon reduction related to energyweighted fuel cost in our calculation based on energy data

  5. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect (OSTI)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  6. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    Thermal Energy of Rolling Mill Waste Oil Through Sintering,"It is possible to use waste oils (especially from coldwaste recovery), or 74% of the rolling sludges and oils (

  7. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assembly of a Molecular Needle, from the Bottom Up Print Many pathogenic bacteria use a specialized secretion system to inject virulence proteins directly into the cells they...

  8. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Needle, from the Bottom Up Print Wednesday, 21 December 2005 00:00 Many pathogenic bacteria use a specialized secretion system to inject virulence proteins directly into the...

  9. Nanowires As Building Blocks for Bottom-Up Nanotechnology

    E-Print Network [OSTI]

    Wang, Zhong L.

    #12;Nanowires As Building Blocks for Bottom-Up Nanotechnology The field of nanotechnology/or combinations of function in an integrated nanosystem. To enable this bottom-up approach for nanotechnology-dimensional (1D) nanostruc- tures at the forefront of nanoscience and nanotechnology. NWs and NBs are typi- cally

  10. The Bottom-Up Freezing: An Approach to Neural Engineering

    E-Print Network [OSTI]

    Ghorbani, Ali

    The Bottom-Up Freezing: An Approach to Neural Engineering Ali Farzan and Ali A. Ghorbani Faculty of the proposed method is to reduce the size of the network by freezing any node that does not actively presents a new pruning method. The proposed method, which we call Bottom-Up Freezing (BUF), alters

  11. An integrated top-down and bottom-up strategy for characterization protein isoforms and modifications

    SciTech Connect (OSTI)

    Wu, Si; Tolic, Nikola; Tian, Zhixin; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2011-04-15

    Bottom-up and top-down strategies are two commonly used methods for mass spectrometry (MS) based protein identification; each method has its own advantages and disadvantages. In this chapter, we describe an integrated top-down and bottom-up approach facilitated by concurrent liquid chromatography-mass spectrometry (LC-MS) analysis and fraction collection for comprehensive high-throughput intact protein profiling. The approach employs a high resolution reversed phase (RP) LC separation coupled with LC eluent fraction collection and concurrent on-line MS with a high field (12 Tesla) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer. Protein elusion profiles and tentative modified protein identification are made using detected intact protein mass in conjunction with bottom-up protein identifications from the enzymatic digestion and analysis of corresponding LC fractions. Specific proteins of biological interest are incorporated into a target ion list for subsequent off-line gas-phase fragmentation that uses an aliquot of the original collected LC fraction, an aliquot of which was also used for bottom-up analysis.

  12. Bottom-up graphene nanoribbon field-effect transistors

    SciTech Connect (OSTI)

    Bennett, Patrick B.; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 ; Pedramrazi, Zahra; Madani, Ali; Chen, Yen-Chia; Crommie, Michael F.; Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720 ; Oteyza, Dimas G. de; Centro de Física de Materiales CSIC Chen, Chen; Fischer, Felix R.; Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720 ; Bokor, Jeffrey; Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720

    2013-12-16

    Recently developed processes have enabled bottom-up chemical synthesis of graphene nanoribbons (GNRs) with precise atomic structure. These GNRs are ideal candidates for electronic devices because of their uniformity, extremely narrow width below 1?nm, atomically perfect edge structure, and desirable electronic properties. Here, we demonstrate nano-scale chemically synthesized GNR field-effect transistors, made possible by development of a reliable layer transfer process. We observe strong environmental sensitivity and unique transport behavior characteristic of sub-1?nm width GNRs.

  13. A Top-down and Bottom-up look at Emissions Abatement in Germany in response to the EU ETS

    E-Print Network [OSTI]

    Feilhauer, Stephan M. (Stephan Marvin)

    2008-01-01

    This paper uses top-down trend analysis and a bottom-up power sector model to define upper and lower boundaries on abatement in Germany in the first phase of the EU Emissions Trading Scheme (2005-2007). Long-term trend ...

  14. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    E-Print Network [OSTI]

    Letschert, Virginie E.

    2013-01-01

    Retail Data Brazil – International Energy Initiative Life-business as usual Brazil Bottom-Up Energy Analysis Systemfor setting energy efficiency standards in Brazil:The case

  15. Mesoscale regulation comes from the bottom-up: intertidal interactions between consumers

    E-Print Network [OSTI]

    Nielsen, Karina J.

    REPORT Mesoscale regulation comes from the bottom-up: intertidal interactions between consumers variation in nutrient supply to shift community structure over mesoscales. Keywords Macroalgae, upwelling

  16. Food supplementation leads to bottom-up and top-down foodhostparasite interactions

    E-Print Network [OSTI]

    Zanette, Liana

    Food supplementation leads to bottom-up and top-down food­host­parasite interactions Liana Zanette1 `bottom-up' effects because we previously found that food supplemented sparrows better eluded nest results to the contrary. Food supplemented sparrows were parasitized as often as non-food supplemented

  17. America's Bottom-Up Climate Change Mitigation Policy

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    domestic ‘‘push’’. Energy Policy 35, 1282–1291. Bergerson,N. Lutsey, D. Sperling / Energy Policy 36 (2008) 673–685Lutsey, D. Sperling / Energy Policy 36 (2008) 673–685 U.S.

  18. America's Bottom-Up Climate Change Mitigation Policy

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    develop renewable energy credit-tracking and trading systemenergy and emissions technologies, and development of emissions trading

  19. Benchmarking Non-Hardware Balance-of-System (Soft) Costs for U.S. Photovoltaic Systems, Using a Bottom-Up Approach and Installer Survey - Second Edition

    SciTech Connect (OSTI)

    Friedman, B.; Ardani, K.; Feldman, D.; Citron, R.; Margolis, R.; Zuboy, J.

    2013-10-01

    This report presents results from the second U.S. Department of Energy (DOE) sponsored, bottom-up data-collection and analysis of non-hardware balance-of-system costs -- often referred to as 'business process' or 'soft' costs -- for U.S. residential and commercial photovoltaic (PV) systems. In service to DOE's SunShot Initiative, annual expenditure and labor-hour-productivity data are analyzed to benchmark 2012 soft costs related to (1) customer acquisition and system design (2) permitting, inspection, and interconnection (PII). We also include an in-depth analysis of costs related to financing, overhead, and profit. Soft costs are both a major challenge and a major opportunity for reducing PV system prices and stimulating SunShot-level PV deployment in the United States. The data and analysis in this series of benchmarking reports are a step toward the more detailed understanding of PV soft costs required to track and accelerate these price reductions.

  20. Top-down modification of bottom-up processes: selective grazing reduces macroalgal nitrogen uptake

    E-Print Network [OSTI]

    Bracken, MES; Stachowicz, J J

    2007-01-01

    flow and clear plastic tops to maximize light penetration.RC, Kohrs DG, Alberte RS (1996) Top-down im- pact through aSer Published January 25 Top-down modification of bottom-up

  1. Formation and Film Characteristics of Dual Damascene Interconnects by Bottom-up Electroless Cu Plating

    SciTech Connect (OSTI)

    Shingubara, S. [Kansai University, Dept. of Mechanical Engineering, Suita 3-3-35, Osaka (Japan); Wang, Z. [Shaanxi Normal University, School of Chemistry and Materials Science (China)

    2006-02-07

    Bottom-up filling of Cu in a dual damascene interconnection structure was achieved through electroless plating alone. The addition of inhibitor molecules to the electroless Cu plating solution was investigated, and showed that sulfopropyl sulfonate (SPS) was highly effective in promoting bottom-up filling. Bottom-up filling was enhanced by shrinkage of the hole diameter, suggesting that the diffusion flux of SPS molecules to the bottom of the holes was suppressed. Thus, Cu deposition rate near the hole bottom was larger than that outside the hole, leading to bottom-up filling. The salient feature of electroless plating technology is the lack of overgrowth or bump formation after hole filling, which is a serious problem in electroplating technology. Problems such as increased resistance due to inclusion of SPS molecules and pattern size dependence affected applicability of this method. A two-step electroless plating using different concentrations of inhibitor molecules was effective for filling a dual damascene structure without voiding, and may provide a practical solution for ULSI interconnections.

  2. Statistical Evaluation of a Bottom-Up Clustering for Single Particle Molecular Images

    E-Print Network [OSTI]

    Stephan, Frank

    structures are solved. Under low dose conditions to minimize radiation damage? molecular images are usually i m o n o h a r a ' ~ ~Kiyoshi Asai1 yukio0cbrc.j p asaimcbrc .j p ' Computational Biology Research by bottom-up clustering, a hierarchical algorithm, using simulated protein images with a low signal- to

  3. Bottom-up and top-down emotion generation: implications for emotion regulation

    E-Print Network [OSTI]

    Gross, James J.

    Bottom-up and top-down emotion generation: implications for emotion regulation Kateri McRae,1, The University of Denver, Denver, CO 80209 and 2 Stanford University, Stanford, CA, USA Emotion regulation plays a crucial role in adaptive functioning and mounting evidence suggests that some emotion regulation

  4. Top-down versus bottom-up learning in cognitive skill acquisition

    E-Print Network [OSTI]

    Varela, Carlos

    Top-down versus bottom-up learning in cognitive skill acquisition Action editor: Vasant Honavar Ron between implicit and explicit processes during skill learning, in terms of top-down learning (that is learning that takes into account both implicit and explicit processes and both top-down and bottom

  5. Top-down and bottom-up diversity cascades in detrital vs. living food webs

    E-Print Network [OSTI]

    Dyer, Lee

    REPORT Top-down and bottom-up diversity cascades in detrital vs. living food webs Lee A. Dyer1 for maintaining diversity in biotic communities, but the indirect (ÔcascadingÕ) effects of top-down and bottom in decomposer food webs. We measured effects of top predators and plant resources on the diversity of endophytic

  6. Growing Artificial Societies: Social Science from the Bottom Up. By Joshua M. Epstein and Robert Axtell.

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Growing Artificial Societies: Social Science from the Bottom Up. By Joshua M. Epstein and Robert be passed in modified form to descendants. Such an artificial society can grow itself over time, with large) and a vision level that helps it search for sugar. Any sugar collected by an agent in excess of its metabolic

  7. A Bottom-up Merging Algorithm for Chinese Unknown Word Extraction

    E-Print Network [OSTI]

    A Bottom-up Merging Algorithm for Chinese Unknown Word Extraction Wei-Yun Ma Institute, Academia Sinica kchen@iis.sinica.edu.tw Abstract Statistical methods for extracting Chinese unknown words of characters with no delimiters to mark word boundaries. Therefore the initial step for Chinese processing

  8. Piezoresistive characterization of bottom-up, n-type silicon microwires undergoing bend deformation

    SciTech Connect (OSTI)

    McClarty, Megan M.; Oliver, Derek R. E-mail: Derek.Oliver@umanitoba.ca; Bruce, Jared P.; Freund, Michael S. E-mail: Derek.Oliver@umanitoba.ca

    2015-01-12

    The piezoresistance of silicon has been studied over the past few decades in order to characterize the material's unique electromechanical properties and investigate their wider applicability. While bulk and top-down (etched) micro- and nano-wires have been studied extensively, less work exists regarding bottom-up grown microwires. A facile method is presented for characterizing the piezoresistance of released, phosphorus-doped silicon microwires that have been grown, bottom-up, via a chemical vapour deposition, vapour-liquid-solid process. The method uses conductive tungsten probes to simultaneously make electrical measurements via direct ohmic contact and apply mechanical strain via bend deformation. These microwires display piezoresistive coefficients within an order of magnitude of those expected for bulk n-type silicon; however, they show an anomalous response at degenerate doping concentrations (?10{sup 20?}cm{sup ?3}) when compared to lower doping concentrations (?10{sup 17?}cm{sup ?3}), with a stronger piezoresistive coefficient exhibited for the more highly doped wires. This response is postulated to be due to the different growth mechanism of bottom-up microwires as compared to top-down.

  9. Beam-deposited platinum as versatile catalyst for bottom-up silicon nanowire synthesis

    SciTech Connect (OSTI)

    Hibst, N.; Strehle, S. [Institute of Electron Devices and Circuits, Ulm University, Albert-Einstein-Allee 45, 89081 Ulm (Germany); Knittel, P.; Kranz, C.; Mizaikoff, B. [Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)

    2014-10-13

    The controlled localized bottom-up synthesis of silicon nanowires on arbitrarily shaped surfaces is still a persisting challenge for functional device assembly. In order to address this issue, electron beam and focused ion beam-assisted catalyst deposition have been investigated with respect to platinum expected to form a PtSi alloy catalyst for a subsequent bottom-up nanowire synthesis. The effective implementation of pure platinum nanoparticles or thin films for silicon nanowire growth has been demonstrated recently. Beam-deposited platinum contains significant quantities of amorphous carbon due to the organic precursor and gallium ions for a focused ion beam-based deposition process. Nevertheless, silicon nanowires could be grown on various substrates regardless of the platinum purity. Additionally, p-type doping could be realized with diborane whereas n-type doping suppressed a nanowire growth. The rational utilization of this beam-assisted approach enables us to control the localized synthesis of single silicon nanowires at planar surfaces but succeeded also in single nanowire growth at the three-dimensional apex of an atomic force microscopy tip. Therefore, this catalyst deposition method appears to be a unique extension of current technologies to assemble complex nanowire-based devices.

  10. Europe from the bottom up: A statistical examination of the central and northern European lithosphereasthenosphere boundary from comparing seismological

    E-Print Network [OSTI]

    Jones, Alan G.

    Europe from the bottom up: A statistical examination of the central and northern European: Lithosphere­asthenosphere boundary (LAB) Europe Seismology Magnetotellurics The Lithosphere, between the delineation of the LAB for Europe based on seismological and electromagnetic observations. We

  11. Benchmarking Non-Hardware Balance-of-System (Soft) Costs for U.S. Photovoltaic Systems Using a Bottom-Up Approach and Installer Survey

    E-Print Network [OSTI]

    Ardani, Kristen

    2014-01-01

    and Utility-Scale Photovoltaic System Prices in the UnitedSoft) Costs for U.S. Photovoltaic Systems Using a Bottom-UpSoft) Costs for U.S. Photovoltaic Systems Using a Bottom-Up

  12. TOP-DOWN AND BOTTOM-UP EFFECTS IN A DETRITAL FOOD WEB: THE PITCHER PLANT INQUILINE COMMUNITY AS A MODEL FOOD WEB

    E-Print Network [OSTI]

    Notre Dame, University of

    TOP-DOWN AND BOTTOM-UP EFFECTS IN A DETRITAL FOOD WEB: THE PITCHER PLANT INQUILINE COMMUNITY;TOP-DOWN AND BOTTOM-UP EFFECTS IN A DETRITAL FOOD WEB: THE PITCHER PLANT INQUILINE COMMUNITY that regulate food web dynamics. Both top-down and bottom-up forces affect populations within a food web

  13. Top-Down versus Bottom-Up Learning in Skill Acquisition Ron Sun (rsun@cecs.missouri.edu)

    E-Print Network [OSTI]

    Varela, Carlos

    Top-Down versus Bottom-Up Learning in Skill Acquisition Ron Sun (rsun@cecs.missouri.edu) Xi Zhang This paper studies the interaction between implicit and explicit processes in skill learning, in terms of top of skill learning that takes into account both im- plicit and explicit processes and both top

  14. A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers

    E-Print Network [OSTI]

    Barlaz, Morton A.

    costs depend, in part, on a complex combination of coal type, coal composition, boiler design, plantA bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers. The Coal Utility Environmental Cost (CUECost) model is used to estimate retrofit costs for five different

  15. From atoms to cities : A bottom-up analysis of infrastructure materials and systems

    E-Print Network [OSTI]

    Abdolhosseini Qomi, Mohammad Javad

    2015-01-01

    Civil infrastructure is and continues to be the backbone of our society to meet our needs in housing, transportation, water and electricity supply, and so on. However, its functions are recently revisited in response to ...

  16. Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down

    E-Print Network [OSTI]

    Van Wie McGrory, Laura; Coleman, Philip; Fridley, David; Harris, Jeffrey; Villasenor Franco, Edgar

    2006-01-01

    Comision Nacional para el Ahorro del Energía, CONAE), thefund Fideicomiso para el Ahorro de Energía Eléctrica (FIDE)—

  17. Bottom Up and Country Led: A New Framework for Climate Action | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac BiomassInformationSystems Inc

  18. The drastic outcomes from voting alliances in three-party bottom-up democratic voting (1990 $\\rightarrow$ 2013)

    E-Print Network [OSTI]

    Galam, Serge

    2013-01-01

    The drastic effect of local alliances in three-party competition is investigated in democratic hierarchical bottom-up voting. The results are obtained analytically using a model which extends a sociophysics frame introduced in 1986 \\cite{psy} and 1990 \\cite{lebo} to study two-party systems and the spontaneous formation of democratic dictatorship. It is worth stressing that the 1990 paper was published in the Journal of Statistical Physics, the first paper of its kind in the journal. It was shown how a minority in power can preserve its leadership using bottom-up democratic elections. However such a bias holds only down to some critical value of minimum support. The results were used latter to explain the sudden collapse of European communist parties in the nineties. The extension to three-party competition reveals the mechanisms by which a very small minority party can get a substantial representation at higher levels of the hierarchy when the other two competing parties are big. Additional surprising results...

  19. Use of Building Automation System Trend Data for Inputs Generation in Bottom-Up Simulation Calibration 

    E-Print Network [OSTI]

    Zibin, N. F.; Zmeureanu, R. G.; Love, J. A.

    2013-01-01

    for analysis and use in simulation is very large. This paper explores automating the process of generating inputs from Building Automation System (BAS) trend data for use in building simulation software. A proof-of-concept prototype called the Automatic...

  20. The Bottom-Up Approach forThermoelectric Nanocomposites, plusƒ |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »TanklessResearchEnergy2Fall 2011 TheMarch

  1. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach

    SciTech Connect (OSTI)

    Trément, Sébastien; Rousseau, Bernard, E-mail: bernard.rousseau@u-psud.fr [Laboratoire de Chimie-Physique, UMR 8000 CNRS, Université Paris-Sud, Orsay (France)] [Laboratoire de Chimie-Physique, UMR 8000 CNRS, Université Paris-Sud, Orsay (France); Schnell, Benoît; Petitjean, Laurent; Couty, Marc [Manufacture Française des Pneumatiques MICHELIN, Centre de Ladoux, 23 place des Carmes, 63000 Clermont-Ferrand (France)] [Manufacture Française des Pneumatiques MICHELIN, Centre de Ladoux, 23 place des Carmes, 63000 Clermont-Ferrand (France)

    2014-04-07

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining level on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.

  2. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    E-Print Network [OSTI]

    Zheng, Nina

    2010-01-01

    International Energy Agency (IEA). 2009. World EnergyChina-specific section of the IEA World Energy Outlook 2009.while LBNL, McKinsey and IEA all employed bottom-up modeling

  3. Philippine Marine Fisheries Catches: A Bottom-up Reconstruction, 1950-2010, Palomares, MLD and Pauly, D (eds.) Reconstructed marine fisheries catches of the Philippines, 1950-2010101

    E-Print Network [OSTI]

    Pauly, Daniel

    Philippine Marine Fisheries Catches: A Bottom-up Reconstruction, 1950-2010, Palomares, MLD.L.D. Palomares and D. Pauly Sea Around Us, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver BC, V6T 1Z4; Email: m.palomares@fisheries.ubc.ca; d.pauly@fisheries.ubc.ca Abstract

  4. Philippine Marine Fisheries Catches: A Bottom-up Reconstruction, 1950-2010, Palomares, MLD and Pauly, D (eds.) Philippine marine fisheries 1011

    E-Print Network [OSTI]

    Pauly, Daniel

    Philippine Marine Fisheries Catches: A Bottom-up Reconstruction, 1950-2010, Palomares, MLD and Pauly, D (eds.) 1 Philippine marine fisheries 1011 M.L.D. Palomares1 , V.A. Parducho2 , M. Bimbao2 , E, Vancouver BC, V6T 1Z4; Email: m.palomares@fisheries.ubc.ca 2 FishBase Information and Research Group, Inc

  5. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    demand-side Total electricity demand efficiency programs608 GW in 2050 Total electricity demand reaches 7,764 TWh innearly one-third of all electricity demand. Under AIS, the

  6. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    is the rapid expansion of nuclear generation, whichfurther expansion of renewable and nuclear power capacity.further expansion of renewable and nuclear power capacity.

  7. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    management Installed capacity of wind, solar, and biomassand policies Installed capacity of wind, solar, and biomass

  8. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    10 References Anonymous. 1994. Cement Plant Modernization inCentral Europe, World Cement (November): 35-38 Bösche, A.Variable Speed Drives in Cement Plants, World Cement 6 24

  9. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    Technology Support Unit (ETSU), 1988. “High Level Control ofCircle Industries and SIRA (ETSU, 1988). The LINKman system

  10. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    system that runs a steam turbine system (bottom cycle).This report focuses on the steam turbine system since these

  11. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    d) heat recovery for cogeneration (d) conversion to dryd) heat recovery for cogeneration (d) conversion from dry tod) heat recovery for cogeneration (d) conversion from dry to

  12. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    one or more additives (fly ash, pozzolans, granulated blastblending materials are fly ash and granulated blast furnaceslag. Not all slag and fly ash is suitable for cement

  13. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    IEA Motor Gasoline IEA Heavy Fuel Oil Total Rail Fuel UseEstimated Electric IEA Heavy Fuel Oil J 1,500 P J 60 P Total

  14. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    2 Cogeneration systems can either be direct gas turbinesCogeneration. Waste gas discharged from the kiln exit gases, the clinker cooler system,

  15. With or Against the People? The Impact of a Bottom-Up Approach on Tax Morale and the Shadow Economy

    E-Print Network [OSTI]

    Torgler, Benno; Schneider, Friedrich; Schaltegger, Christoph A.

    2007-01-01

    Corruption and the Shadow Economy: An Empirical Analysis,Journal of Political Economy Feld, L. P. , Kirchgässner,G. 2001. The Political Economy of Direct Legislation: Direct

  16. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [DOE EERE] [DOE EERE; Nimbalkar, Sachin U [ORNL] [ORNL; Cox, Daryl [ORNL] [ORNL

    2013-01-01

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  17. Evaluating Energy Efficiency Policies with Energy-Economy Models

    SciTech Connect (OSTI)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  18. Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results

    SciTech Connect (OSTI)

    Ardani, K.; Barbose, G.; Margolis, R.; Wiser, R.; Feldman, D.; Ong, S.

    2012-11-01

    This report presents results from the first U.S. Department of Energy (DOE) sponsored, bottom-up data-collection and analysis of non-hardware balance-of-system costs--often referred to as 'business process' or 'soft' costs--for residential and commercial photovoltaic (PV) systems.

  19. Bottom-Up Strategic Planning

    E-Print Network [OSTI]

    Williams, Jeff; Dearie, Tammy; Schottlaender, Brian E.C.

    2013-01-01

    and every Libraries staff classification. The Working Groupone additional Libraries staff member of any classification.

  20. Bottom-Up Strategic Planning

    E-Print Network [OSTI]

    Williams, Jeff; Dearie, Tammy; Schottlaender, Brian E.C.

    2013-01-01

    and Hiram Davis, “Strategic-Planning as a Catalyst forD. Hensley, “A New Strategic-Planning Model for Academic-Academic Libraries: Should Strategic Planning Be Renewed? ,”

  1. Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01

    driver for the energy demand forecast. The basic assumptionglobal bottom-up energy demand forecasts, and a frameworkin modelling energy demand is to forecast activity. Activity

  2. Constructing Ordered Sensitized Heterojunctions: Bottom-Up Electrochemical Synthesis of p-Type Semiconductors in Oriented n-TiO2 Nanotube Arrays

    SciTech Connect (OSTI)

    Wang, Q.; Zhu, K.; Neale, N. R.; Frank. A. J.

    2009-01-01

    Fabrication of efficient semiconductor-sensitized bulk heterojunction solar cells requires the complete filling of the pore system of one semiconductor (host) material with nanoscale dimensions (<100 nm) with a different semiconductor (guest) material. Because of the small pore size and electrical conductivity of the host material, it is challenging to employ electrochemical approaches to fill the entire pore network. Typically, during the electrochemical deposition process, the guest material blocks the pores of the host, precluding complete pore filling. We describe a general synthetic strategy for spatially controlling the growth of p-type semiconductors in the nanopores of electrically conducting n-type materials. As an illustration of this strategy, we report on the facile electrochemical deposition of p-CuInSe{sub 2} in nanoporous anatase n-TiO{sub 2} oriented nanotube arrays and nanoparticle films. We show that by controlling the ambipolar diffusion length the p-type semiconductors can be deposited from the bottom-up, resulting in complete pore filling.

  3. Energy Analysis

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students use graphs of historical data and research historical and societal events to determine and analyze energy trends in the United States over the past 50 years.

  4. Sandia Energy - Uncertainty Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncertainty Analysis Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Uncertainty Analysis Uncertainty AnalysisTara...

  5. Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01

    and J. Sathaye (2009). India Energy Outlook: End Use Demandand Transport Energy Use in India: Past Trends and Futureenergy demand, forecasting, end use, bottom-up, China, India,

  6. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01

    22, (4), 10. EIA Annual Energy Outlook 2006 with Projections4. EIA Annual Energy Outlook 2007 with Projections to 2030.to the Annual Energy Outlook 2007. Transportation Demand

  7. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01

    leg/leginx.asp 4. EIA Annual Energy Outlook 2007 with22, (4), 10. EIA Annual Energy Outlook 2006 with Projectionsto the Annual Energy Outlook 2007. Transportation Demand

  8. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    Improved Product Quality,” Ironmaking and Steel making 18(pound Investment,” Ironmaking and Steel making,” Anonymous,Oil Through Sintering," Ironmaking and Steel making Dawson,

  9. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01

    black liquor evaporation Lime kiln modifications Extended black liquor evaporation Lime kiln modifications Teriary effluents ClO2 filtrate heating Lime kiln oxygen enrichement

  10. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    Bremen,” La Revue de Metallurgie-CIT 93(10): 1219-1226.Blast Furnaces,” La Revue de Metallurgie-CIT 92(3): 375-380.a Sinter Plant,” Revue de Metallurgie-CIT 3 92 pp. 329-335 (

  11. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    Foamy slag Oxy-fuel burners Eccentric Bottom Tapping (EBT)combustion air for the burners and to generate high pressureNew Concept for Using Oxy-Fuel Burners and Oxygen Lances to

  12. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    1994) at $2.8/t. Automated monitoring and targeting system.an automated monitoring and targeting system at a cold stripComputer-based Monitoring and Targeting on a Rolling Mill,”

  13. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    International 6(1): 19-29. ETSU, 1992. “Reduction of CostsProfile 33, Harwell, UK: ETSU Farla, J.C.M. , E. Worrell, L.sites (Farla et al. , 1998; ETSU, 1992). We estimate the

  14. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01

    Opportunities for the Pulp and Paper Industry (LBNL-2268E).in the U.S. Pulp and Paper Industry. Lawrence BerkeleyManagement in the Pulp and Paper Industry. Buehler, E. and

  15. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01

    the U.S. Pulp and Paper Industry. Lawrence Berkeley NationalProfile of the Pulp and Paper Industry, 2 nd Edition. Officefor the Pulp and Paper Industry (No. LBNL-2268E). Berkeley,

  16. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    CASTING .Progress in Continuous Casting. ” International Energykg/thm Adopt continuous casting Reduced dust emissions and

  17. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    of steam coal and coking coal to be $15/t (IEA, 1995). Thisaround 8-9% for good coking coal (IISI, 1982). Drying

  18. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01

    heat recovery Implement efficient control systems for the machine steam  and condensate Heat Recovery Blowdown Steam Recovery Steam trap maintenance Automatic Steam Trap Monitoring Leak Repair Condensate Heat Recovery Blowdown Steam Recovery Steam trap maintenance Automatic Steam Trap Monitoring Leak Repair Condensate 

  19. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01

    screen out thick chips, boiler maintenance, steam trapSteam Production and Efficiency Boiler maintenance Improved of black liquor in recovery boiler High temperature video 

  20. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    intensity of 2.6 GJ/t sinter. Sinter plant heat recovery.Heat recovery at the sinter plant is a means for improvingbuilding controls, waste heat recovery or adjustable speed

  1. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    Variable speed drive coke oven gas compressors Coke dryVariable speed drive coke oven gas compressors Coke drythe waste heat from the coke oven gas to dry the coal used

  2. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    intensity of 2.6 GJ/t sinter. Sinter plant heat recovery.Heat recovery at the sinter plant is a means for improvinghave a positive effect on the heat recovery equipment. These

  3. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    costs. Waste heat recovery from cooling water. Waste heatrolling mill Waste heat recovery from cooling water Generalmill Waste heat recovery from cooling water Integrated Cold

  4. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01

    building controls, waste heat recovery or adjustable speedMill Identifies Heat Recovery Projects and Operationsgroundwood pulping ?Super Heat recovery in thermomechanical 

  5. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    SciTech Connect (OSTI)

    Zheng, Nina; Zhou, Nan; Fridley, David

    2010-09-01

    The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.

  6. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (PV RTC), Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, SMART Grid, Solar, Solar Newsletter, SunShot, Systems Analysis, Systems...

  7. Sandia Energy - Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Is the Subject of a New Book Analysis, Climate, Global Climate & Energy, Monitoring, News, News & Events, Sensing, Sensing & Monitoring, Water Security Climate...

  8. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  9. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01

    vehicles: The case of natural gas vehicles. Energy PolicyCNG: dedicated natural gas vehicles; LPG: liquefiedvehicles using low- GHG fuels such as compressed natural gas,

  10. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    Energy Savers [EERE]

    Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of Potential...

  11. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of energy sources and improved efficiency standards fit together into secure, robust, and sustainable solutions? Sandia's transportation energy analysis program is focused on...

  12. Bottom-Up Argumentation Francesca Toni1

    E-Print Network [OSTI]

    Toni, Francesca

    be fixed?). Others may be serendipitous (e.g. while discussing the recent tsunami in Japan one may end up debating pros and cons of nuclear power stations). While it is acknowledged (e.g. in [11

  13. Bottom-Up Propositionalization Stefan Kramer1

    E-Print Network [OSTI]

    Frank, Eibe

    - gorithms. This transformation requires the construction of features that capture relational properties would be 'o-s-c', meaning "an oxygen atom with a single bond to a sulfur atom with a single bond

  14. NREL: Energy Analysis: Geospatial Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy infrastructure, demographics and land ownership, and the earth's physical geography (topography, land use, rivers). NREL's geographic information system models enable...

  15. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01

    Wang Qingyi, 2005, 2005 energy data for Fiscal and EconomicStatistics in Japan, The Energy Data and Modeling Center,of the current energy data. The bottom-up approach allows

  16. Policy modeling for industrial energy use

    E-Print Network [OSTI]

    2003-01-01

    Energy Outlook 2002. The IEA produces every year the WEO.For the 2002 WEO a combined ‘top- down’ and ‘bottom-up’for OECD. The new WEO is the result of collaboration of two

  17. GIS-based energy consumption mapping 

    E-Print Network [OSTI]

    Balta, Chrysi

    2014-11-27

    This project aims to provide a methodology to map energy consumption of the housing stock at a city level and visualise and evaluate different retrofitting scenarios. It is based on an engineering, bottom-up approach. It ...

  18. Sandia Energy - Uncertainty Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportation EnergyUncertainty Analysis Home

  19. NREL: Energy Analysis: Geospatial Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial Analysis To perform and support geospatial

  20. Energy, Environmental & Economic Systems Analysis

    E-Print Network [OSTI]

    Energy, Environmental & Economic Systems Analysis ENPEP-BALANCE: A Tool for Long-term Nuclear Power Market Simulations Opportunity Decision and Information Sciences Division Center for Energy, Environmental & Economic Systems Analysis A resurgence of interest in nuclear energy is taking place

  1. NREL: Energy Analysis - Ben Maples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maples Photo of Ben Maples Ben Maples is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Engineer On staff since May...

  2. NREL: Energy Analysis - Jenny Melius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Data Analysis and Visualization Group in the Strategic Energy Analysis Center. GIS Scientist II On staff since May 2011 Phone number: 303-275-4661 E-mail:...

  3. U.S. Department of Energy Hydrogen Storage Cost Analysis

    SciTech Connect (OSTI)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â��bottom-upâ� costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA�® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

  4. Analysis ? Targeting Zero Net Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis - Targeting Zero Net Energy 2014 Building Technologies Office Peer Review Scott Horowitz, scott.horowitz@nrel.gov NREL Project Summary Timeline: Start date: 2010 Planned...

  5. NREL: Energy Analysis - Mackay Miller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and multilateral initiatives including the US-China Renewable Energy Partnership and 21st Century Power Partnership Quantitative social network analysis of innovation pathways...

  6. NREL: Energy Analysis - Energy Analysis Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:NewsWebmasterWorkingElla Zhou Photo of Ella Energy

  7. Cities Leading through Energy Analysis and Planning

    Broader source: Energy.gov [DOE]

    The Cities Leading through Energy Analysis and Planning (Cities-LEAP) project delivers standardized, localized energy data and analysis that enables cities to lead clean energy innovation and...

  8. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

  9. ficient thermal energy, leading to a different STP (27). Similar temperature-dependent be-

    E-Print Network [OSTI]

    Savrasov, Sergej Y.

    ficient thermal energy, leading to a different STP (27). Similar temperature-dependent be- havior a bottom-up paradigm for spintronics manufacturing. Different conjugated molecules and QDs should provide

  10. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  11. NREL: Energy Analysis - Karlynn Cory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report No. TP-6A20-53086. Cory, K.; Canavan, B.; Koenig, R. (2009). Power Purchase Agreement Checklist for State and Local Governments. Energy Analysis; Fact Sheet Series on...

  12. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  13. Building Energy Optimization Analysis Method (BEopt) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House...

  14. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Glare Hazard Analysis Tool Solar...

  15. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  16. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    SciTech Connect (OSTI)

    Letschert, Virginie E.; Bojda, Nicholas; Ke, Jing; McNeil, Michael A.

    2012-07-01

    This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programs while still saving consumers money?

  17. Strategic Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    NREL complements its scientific research with high-quality, credible, technology-neutral, objective analysis that informs policy and investment decisions as renewable energy and energy efficiency technologies move from innovation through integration. This sheet highlights NREL's analytical capabilities and achievements.

  18. Energy Literacy Video Analysis Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Literacy Video Analysis Guide Energy Literacy Video Analysis Guide Below is information about the student activitylesson plan from your search. Grades K-12 Subject...

  19. Estimating home energy decision parameters for a hybrid energyYeconomy policy model

    E-Print Network [OSTI]

    , household energy demand, hybrid energy model, bottom-up energy model 1. Introduction: energy a variety of energyYeconomy models are available to forecast the effectiveness of energy and envi- ronmentEstimating home energy decision parameters for a hybrid energyYeconomy policy model Mark Jaccard

  20. NREL: Energy Analysis - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmaster ToEnergyBSM

  1. NREL: Energy Analysis - Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmaster ToEnergyBSM

  2. NREL: Energy Analysis - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmaster ToEnergyBSMBookmark

  3. Sandia Energy - Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI ProgramPhysical Society Names Four Sandians

  4. Sandia Energy - Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI ProgramPhysical Society Names Four

  5. Sandia Energy - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilities General overview of the T3R2 device.

  6. Sandia Energy - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilities General overview of the T3R2 device.DETL

  7. Sandia Energy » Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patentedcwdd Homesspope

  8. Sandia Energy - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization andStochastic HomeSunShot HomeAnalysis Home

  9. Sandia Energy - Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >Scientific andInstituteAdvancedAdvancedAnalysis Home

  10. NREL: Energy Analysis - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmasterRelated Links

  11. NREL: Energy Analysis - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12

  12. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  13. NANA Strategic Energy Plan & Energy Options Analysis

    SciTech Connect (OSTI)

    Jay Hermanson; Brian Yanity

    2008-12-31

    NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine. • Biomass Feasibility analysis in the upper Kobuk; • Run of the river hydroelectric development for the Upper Kobuk; • Solar photovoltaic (PV) power demonstration projects for Noatak, Ambler, Selawik, Kiana, and Noorvik; • Heat Recovery for several communities; In September 2008, the NRC team participated at the Alaska Rural Energy Conference in Girdwood, Alaska In November 2008, the NRC team gave a presentation on the NANA regional energy plans at a DOE Tribal Energy Program conference in Denver, Colorado. In January 2009, the final SEP report was submitted to NRC.

  14. Thermodynamic Analysis for Energy Conservation 

    E-Print Network [OSTI]

    Kenney, W. F.

    1981-01-01

    This paper describes a methodology for performing a thermodynamic analysis of a process, and it demonstrates how such a study can be useful in identifying areas in the process with the greatest potential for improvement in energy use. The basis is a...

  15. Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01

    Analysis of Alternative Energy Efficiency ShareholderAnalysis of Alternative Energy Efficiency Shareholderof alternative shareholder incentive mechanisms for energy

  16. National Renewable Energy Laboratory Analysis Capabilities

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

  17. NREL: Energy Analysis - About the Strategic Energy Analysis Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmaster ToEnergy Analysis

  18. Project Frog: Net Zero Energy Comparative Analysis

    E-Print Network [OSTI]

    Project Frog: Net Zero Energy Comparative Analysis Hawai`i Natural Energy Institute | School undertand how they perform. The net zero energy (NZE) platforms were installed as research prototypes, Kauai #12;Project Frog: Net Zero Energy Comparative Analysis Hawai`i Natural Energy Institute | School

  19. LEAN ENERGY ANALYSIS: IDENTIFYING, DISCOVERING AND TRACKING ENERGY SAVINGS POTENTIAL

    E-Print Network [OSTI]

    Kissock, Kelly

    LEAN ENERGY ANALYSIS: IDENTIFYING, DISCOVERING AND TRACKING ENERGY SAVINGS POTENTIAL KELLY KISSOCK DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING UNIVERSITY OF DAYTON DAYTON, OHIO JOHN SERYAK ENERGY AND RESOURCE SOLUTIONS HAVERHILL, MASSECHUTSETTS ABSTRACT Energy in manufacturing facilities is used for direct

  20. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportation Energy Home Analysis

  1. Current work in energy analysis

    SciTech Connect (OSTI)

    1998-03-01

    This report describes the work performed at Berkeley Lab most recently. One of the Labs accomplishments is the publication of Scenarios of US Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the US. This analysis is described and played a key role in shaping the US position on climate change in the Kyoto Protocol negotiations. The Labs participation in the fundamental characterization of the climate change issue by the IPCC is described. Described also is a study of leaking electricity, which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of US residential electricity currently expended on standby losses. The 54 vignettes contained in the report summarize results of research activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national Energy Star{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China.

  2. Clean Energy Manufacturing Analysis Center (CEMAC)

    SciTech Connect (OSTI)

    2015-12-01

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  3. EnergyPlus Run Time Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01

    N ATIONAL L ABORATORY EnergyPlus Run Time Analysis Tianzhenl y s i s Development of EnergyPlus for Use in Title 24 andCommission Staff Use of EnergyPlus Deliverable for Task

  4. Energy Use Analysis for the Federal Energy Management Program 

    E-Print Network [OSTI]

    Mazzucchi, R. P.; Devine, K. D.

    1988-01-01

    -efficient, the Federal Energy Management Program (FEMP) endeavors to improve the technical basis for such performance-based contracting. Specific tasks include the development of improved energy use baselining methods, refinement of a simplified energy analysis method...

  5. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    development facilities. OUTPUT METHODOLOGY Energy supplyscenario Energy supply planning model Construction andmodified version of the Energy Supply Planning Model (ESPM)

  6. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    Evaluating Building Energy Performance Standards." Presentedof proposed building energy performance standards," Battelleof Proposed Building Energy Performance Standards," PNL-

  7. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Summer Study on Energy Efficiency in Buildings. LBNL (2012).Summer Study on Energy Efficiency in Buildings. UNEP (2009).Standard for Energy Efficiency of Public Buildings. Energy

  8. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    factors (chilled water), and energy efficiency ratios. TotalEnergy Rate Solar Hot Water Energy Rate Domestric HW EnergyGas  Oil  Renewable energy  Water  Cooling and heating loads

  9. San Carlos Apache Tribe - Energy Organizational Analysis

    SciTech Connect (OSTI)

    Rapp, James; Albert, Steve

    2012-04-01

    The San Carlos Apache Tribe (SCAT) was awarded $164,000 in late-2011 by the U.S. Department of Energy (U.S. DOE) Tribal Energy Program's "First Steps Toward Developing Renewable Energy and Energy Efficiency on Tribal Lands" Grant Program. This grant funded: ? The analysis and selection of preferred form(s) of tribal energy organization (this Energy Organization Analysis, hereinafter referred to as "EOA"). ? Start-up staffing and other costs associated with the Phase 1 SCAT energy organization. ? An intern program. ? Staff training. ? Tribal outreach and workshops regarding the new organization and SCAT energy programs and projects, including two annual tribal energy summits (2011 and 2012). This report documents the analysis and selection of preferred form(s) of a tribal energy organization.

  10. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Bhandari. Comparison of Building Energy Use Data between theUnited States and China, Energy and Buildings, 2013. Underand Analytics to Inform Energy Retrofit of High Performance

  11. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    Local Population of Geothermal Energy Development in thethe foreseeable future. Geothermal Energy Development inof indigenous renewable and geothermal energy re- sources in

  12. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    methodology for building energy data definition, collection,analyze good building energy data to provide valuable and9  A Standard Building Energy Data 

  13. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    exchange of building energy performance data difficult.  understand  building  energy  performance  and  improve to understanding building energy performance and supporting 

  14. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    exchange of building energy performance data difficult.  understand  building  energy  performance  and  improve Reliable  Building  Energy  Performance Characterization 

  15. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    larger scale technologies such as wind energy conversion,of wind energy "farms" on Molokai with Oahd; new technologyTechnology characterizations for solar water heating, wind energy

  16. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    for geothermal energy, OTEC, solar thermal electricity andsolar thermal electric systems and geothermal energy. Solarsolar thermal electric plants, ocean thermal energy plants (

  17. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    United States and China, Energy and Buildings, 2013. Underin Singapore. Energy and Buildings, 37, 167-174. Eom, J. ,building operations. Energy and Buildings, 33, 783–791.

  18. Strategic Energy Analysis at NREL (Presentation)

    SciTech Connect (OSTI)

    Arent, D. J.

    2007-11-01

    This presentation on strategic energy analysis at NREL was presented as part of NREL's Industry Growth Forum on in November 2007.

  19. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    found across many different species of bacteria possessing TTSSs. Most importantly, the self-association ("multimerization") of proteins in this family has been shown to be one...

  20. America's Bottom-Up Climate Change Mitigation Policy

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    and developing emissions trading mechanisms to connect andand development of emissions trading or cap-and-tradesector market-based emissions trading system in the Western

  1. Top down or bottom up? Volcanic architecture, climate,

    E-Print Network [OSTI]

    Geist, Dennis

    .5 Ma) Kauai (4.5 Ma) Hawaii (images from Porder & Vitousek) (images by A. Jefferson) #12;Volcano Island Hawaii Cascades Easter Island Azores Madeira Canary Galapagos Samoa Cape Verde #12;Time 0 >5 Ma "Conventional conceptual model" because of early work in Hawaii Modified from Gingerich and Oki 2000 (Oahu

  2. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The injected proteins, by mimicking host-cell mechanisms, can then subvert normal cellular function. The type III secretion system (TTSS) is a sophisticated protein complex...

  3. America's Bottom-Up Climate Change Mitigation Policy

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    large conventional hydroelectric power, municipal solidconventional large hydroelectric power). To quantify theby states that large hydroelectric is not counted toward the

  4. America's Bottom-Up Climate Change Mitigation Policy

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    large conventional hydroelectric power, municipal solidconventional large hydroelectric power). To quantify thelarge conventional hydroelectric power is not included (this

  5. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and Biofuels Biomass andPostdoctoralYourAssembly

  6. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and Biofuels Biomass

  7. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and Biofuels BiomassAssembly of a Molecular

  8. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and Biofuels BiomassAssembly of a

  9. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagneticInexpensive 2- toArthurAshley CadbyAssembly

  10. Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article) |different|

  11. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    energy efficiency. Intelligent Buildings, 3:43-46, 2011. InM. Bhandari. Comparison of Building Energy Use Data betweenand China, Energy and Buildings, 2013. Under reviewed. 5. T.

  12. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    of 25 years energy demand forecasts, and for a preliminary13143) In addition, energy demand forecasts will be reviseddemand forecasts as well as severly limiting their utility in assessing impacts of energy

  13. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    of current energy use.3, Passive solar houses depend heavilypassive techniques in saving energy has been established in many demonstration houses.

  14. Cross-impacts analysis development and energy policy analysis applications

    SciTech Connect (OSTI)

    Roop, J.M.; Scheer, R.M.; Stacey, G.S.

    1986-12-01

    Purpose of this report is to describe the cross-impact analysis process and microcomputer software developed for the Office of Policy, Planning, and Analysis (PPA) of DOE. First introduced in 1968, cross-impact analysis is a technique that produces scenarios of future conditions and possibilities. Cross-impact analysis has several unique attributes that make it a tool worth examining, especially in the current climate when the outlook for the economy and several of the key energy markets is uncertain. Cross-impact analysis complements the econometric, engineering, systems dynamics, or trend approaches already in use at DOE. Cross-impact analysis produces self-consistent scenarios in the broadest sense and can include interaction between the economy, technology, society and the environment. Energy policy analyses that couple broad scenarios of the future with detailed forecasting can produce more powerful results than scenario analysis or forecasts can produce alone.

  15. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    is to establish and update a water/energy information base,of energy conservation research to support an update of theenergy conser- vation potential in residential buildings, in sup- port of an update

  16. Energy Analysis by Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergyEnSysEnergy &101Literacy

  17. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    report - domestic crude oil first purchaser system,"tion report - domestic crude oil entitlements system,"analysis on the domestic crude oil entitlements system,"

  18. Hawaii Clean Energy Initiative Scenario Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Analysis of potential policy options to help the state reach the 70% Hawaii Clean Energy Initiative (HCEI) goal, including possible pathways to attain the goal based on currently available technology.

  19. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    and cooled electric heat pumps. ve Minneapolis Chicagowater heating hot water heat pumps wind energy conversionfrom the hot water heat pump, which can displace similar

  20. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    for geothermal energy, OTEC, solar thermal electricity andenergy conversion geothermal electricity and process heat solarenergy conversion for utility applications solar thermal electricity

  1. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    Environmental Data Bases and Integrated Models as AssessmentOutput F: refined data base for ORNL model (energy use ofdata bases and integrated en- vironmental economic models; and

  2. NREL: Energy Analysis - Aaron Townsend

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical energy storage Primary research interests Electricity and natural gas market design and implementation Impact of market structure and out-of-market incentives...

  3. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    the total impact on residential demand resulting from theof the standards on residential demand in the United Statesof the ORNL Residential Energy Demand Model to the

  4. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    regional estimates. Ill Price projections, especially forE.I.A. average energy price projections (Series B) --Gascunder the EIA Medium Price Projections (December 17, 1973

  5. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    solar energy supply systems were ex- amined, including thermal collectorsthermal collectors. COMMUNITY IMPACT ANALYSISl This study examines potential impacts of de- centralized solar

  6. Energy-consumption and carbon-emission analysis of vehicle and component manufacturing.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Burnham, A.; Wang, M.; Energy Systems

    2010-10-12

    A model is presented for calculating the environmental burdens of the part manufacturing and vehicle assembly (VMA) stage of the vehicle life cycle. The approach is bottom-up, with a special focus on energy consumption and CO{sub 2} emissions. The model is applied to both conventional and advanced vehicles, the latter of which include aluminum-intensive, hybrid electric, plug-in hybrid electric and all-electric vehicles. An important component of the model, a weight-based distribution function of materials and associated transformation processes (casting, stamping, etc.), is developed from the United States Council for Automotive Research Generic Vehicle Life Cycle Inventory Study. As the approach is bottom-up, numerous transformation process data and plant operational data were extracted from the literature for use in representing the many operations included in the model. When the model was applied to conventional vehicles, reliable estimates of cumulative energy consumption (34 GJ/vehicle) and CO{sub 2} emission (2 tonnes/vehicle) were computed for the VMA life-cycle stage. The numerous data sets taken from the literature permitted the development of some statistics on model results. Because the model explicitly includes a greater coverage of relevant manufacturing processes than many earlier studies, our energy estimates are on the higher end of previously published values. Limitations of the model are also discussed. Because the material compositions of conventional vehicles within specific classes (cars, light duty trucks, etc.) are sensibly constant on a percent-by-weight basis, the model can be reduced to a simple linear form for each class dependent only on vehicle weight. For advanced vehicles, the material/transformation process distribution developed above needs to be adjusted for different materials and components. This is particularly so for aluminum-intensive and electric-drive vehicles. In fact, because of their comparatively high manufacturing energy, batteries required for an electric vehicle can significantly add to the energy burden of the VMA stage. Overall, for conventional vehicles, energy use and CO{sub 2} emissions from the VMA stage are about 4% of their total life-cycle values. They are expected to be somewhat higher for advanced vehicles.

  7. Sandia Energy - Sandia Report Presents Analysis of Glare Impacts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presents Analysis of Glare Impacts of Ivanpah Solar Power Site Home Renewable Energy Energy News News & Events Concentrating Solar Power Solar Systems Analysis Sandia Report...

  8. NREL: Energy Efficiency Potential Mapping (Analysis & Tools for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Potential Mapping (Analysis & Tools for Building America and Industry - 2015 Peer Review NREL: Energy Efficiency Potential Mapping (Analysis & Tools for Building...

  9. Sandia Energy - Techno-Economic Modeling, Analysis, and Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling, Analysis, and Support Home Stationary Power Energy Conversion Efficiency Wind Energy Special Programs Techno-Economic Modeling, Analysis, and Support Techno-Economic...

  10. NREL: Energy Efficiency Potential Mapping (Analysis & Tools for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL: Energy Efficiency Potential Mapping (Analysis & Tools for Building America and Industry - 2015 Peer Review NREL: Energy Efficiency Potential Mapping (Analysis & Tools for...

  11. Clean Energy Options for Sabah: An Analysis of Resource Availability...

    Open Energy Info (EERE)

    Clean Energy Options for Sabah: An Analysis of Resource Availability and Cost Jump to: navigation, search Name Clean Energy Options for Sabah: An Analysis of Resource Availability...

  12. Hydrophobically-Driven Self-Assembly: A Geometric Packing Analysis

    E-Print Network [OSTI]

    4, 2003 ABSTRACT We present a new approach to the problem of finding the minimum-energy structures which have served as guides in designing new nanoscale-structured materials. Significant progress has been made in synthesizing a variety of new materials based on the so-called "bottom-up" ap- proach

  13. Energy Market Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizona EnergyHampshireWyomingLearnLiteracy:Department

  14. Energy analysis program. 1995 Annual report

    SciTech Connect (OSTI)

    Levine, M.D.

    1996-05-01

    This year the role of energy technology research and analysis supporting governmental and public interests is again being challenged at high levels of government. This situation is not unlike that of the early 1980s, when the Administration questioned the relevance of a federal commitment to applied energy research, especially for energy efficiency and renewable energy technologies. Then Congress continued to support such activities, deeming them important to the nation`s interest. Today, Congress itself is challenging many facets of the federal role in energy. The Administration is also selectively reducing its support, primarily for the pragmatic objective of reducing federal expenditures, rather than because of principles opposing a public role in energy. this report is divided into three sections: International Energy and the global environment; Energy, economics, markets, and policy; and Buildings and their environment.

  15. Environmental Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformationVulnerabilitiesEnergyPlus LogoEnvironment

  16. Analyzing California's GHG Reduction Paths using CA-TIMES Energy System Model

    E-Print Network [OSTI]

    California at Davis, University of

    Analyzing California's GHG Reduction Paths using CA-TIMES Energy System Model Christopher Yang@ucdavis.edu NextSTEPS (Sustainable Transportation Energy Pathways) #12;CA-TIMES Model Overview · CA-TIMES is a bottom-up, linear optimization model of California's energy sectors ­ Technology and resources details

  17. International Clean Energy Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13Renewable Power Jump to:(Redirected from International

  18. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSampleLignin-Feasting MicrobeMesa delAnalysis

  19. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSampleLignin-Feasting MicrobeMesa delAnalysisCapabilities This

  20. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSampleLignin-Feasting MicrobeMesa delAnalysisCapabilities

  1. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSampleLignin-Feasting MicrobeMesaAnalysis Permalink Gallery

  2. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSampleLignin-Feasting MicrobeMesaAnalysis Permalink

  3. NREL: Energy Analysis - Key Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmaster ToEnergyBSM -AJEDI

  4. Built Environment Energy Analysis Tool Overview (Presentation)

    SciTech Connect (OSTI)

    Porter, C.

    2013-04-01

    This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Environmental Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartmentExercise Program - November 2015 |Environmental Analysis

  6. Petrography Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open Energy Information Roosevelt Hot

  7. Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaffSunShotSustainableSystems

  8. Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaffSunShotSustainableSystemsAbout

  9. NREL: Energy Analysis: Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial Analysis To perform and supportResource

  10. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSampleLignin-Feasting MicrobeMesa

  11. Core Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal LInformationCore Analysis

  12. NREL: Energy Analysis - Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmasterRelated Links Here

  13. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &Water Power&Grid ActionModeling

  14. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &Water Power&Grid ActionModeling

  15. Analysis Methodologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due Date Adv.Alison MarkovitzAmped Up! Volume

  16. Cosmographic analysis of dark energy

    E-Print Network [OSTI]

    Visser, Matt

    2009-01-01

    The Hubble relation between distance and redshift is a purely cosmographic relation that depends only on the symmetries of a FLRW spacetime, but does not intrinsically make any dynamical assumptions. This suggests that it should be possible to estimate the parameters defining the Hubble relation without making any dynamical assumptions. To test this idea, we perform a number of inter-related cosmographic fits to the legacy05 and gold06 supernova datasets, paying careful attention to the systematic uncertainties. Based on this supernova data, the "preponderance of evidence" certainly suggests an accelerating universe. However we would argue that (unless one uses additional dynamical and observational information, and makes additional theoretical assumptions) this conclusion is not currently supported "beyond reasonable doubt". As part of the analysis we develop two particularly transparent graphical representations of the redshift-distance relation -- representations in which acceleration versus deceleration r...

  17. Energy, Environmental, and Economic Systems Analysis

    E-Print Network [OSTI]

    .g., past power prices) and projected data to support their unique decision process. Unlike conventional SIDEWAYSLOOK SIDEWAYS · Prices · Market conditions LOOK AHEADLOOK AHEAD TimeTimeTimeTime Price ProjectionsEnergy, Environmental, and Economic Systems Analysis Electricity Market Complex Adaptive System

  18. Ris-R-Report Energy Systems Analysis of Waste to Energy

    E-Print Network [OSTI]

    Risø-R-Report Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN Marie Münster Risø-R-1667(EN) April 2009 #12;Author: Marie Münster Title: Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN Division: Systems Analysis Division Risø-R-1667(EN) April 2009

  19. General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis

    E-Print Network [OSTI]

    General equilibrium, electricity generation technologies and the cost of carbon abatement Institute of Technology, USA a b s t r a c ta r t i c l e i n f o Article history: Received 25 February 2011: C61 C68 D58 Q43 Keywords: Carbon policy Energy modeling Electric power sector Bottom-up Top

  20. ENERGY ANALYSIS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Authors, Various

    2014-01-01

    and S. Meyers, Indicators of Residential Energy Use and L.Analysis of Residential Energy Use Data: The Case of Swedenand Engineering, Inc. , Energy/Environment Data Study,

  1. Sandia Energy - High-Fidelity Hydrostructural Analysis of Ocean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's) TidGen Turbine Home Renewable Energy Energy Water Power Partnership News News & Events Computational...

  2. Sandia Energy - Failure Mode and Effect Analysis (FMEA) Tutorial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Effect Analysis (FMEA) Tutorial Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability Tutorial on FMEA Process Failure Mode...

  3. DOE Hydrogen Transition Analysis Workshop | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Department of Energy sponsored a Hydrogen Transition Analysis Workshop in Washington, DC, on January 26, 2006. Attendees included automobile and energy company...

  4. State Clean Energy Policies Analysis (SCEPA): State Policy and...

    Open Energy Info (EERE)

    State Clean Energy Policies Analysis (SCEPA): State Policy and the Pursuit of Renewable Energy Manufacturing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: State Clean...

  5. Novel Tool Allows Quicker, More Versatile Analysis of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies June 19, 2012 - 1:00pm Addthis Washington, DC - A new energy production technology analysis tool that could lead to cost-effective improvements for energy...

  6. New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy Production, Wins R&D 100 Award New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy Production, Wins R&D 100...

  7. Methodology for Validating Building Energy Analysis Simulations

    SciTech Connect (OSTI)

    Judkoff, R.; Wortman, D.; O'Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  8. Job Analysis Template | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public CommentInverted Attic9: What(CSC)Job Analysis Template

  9. Benefits Analysis for DOE Energy Technology Portfolio Assessment: Background

    SciTech Connect (OSTI)

    Beschen, Darrell

    2006-12-20

    A presentation for the FY 2007 GPRA methodology review on benefits analysis for the DOE energy technology portfolio assessment.

  10. Energy Analysis Program. 1992 Annual report

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The Program became deeply involved in establishing 4 Washington, D.C., project office diving the last few months of fiscal year 1942. This project office, which reports to the Energy & Environment Division, will receive the majority of its support from the Energy Analysis Program. We anticipate having two staff scientists and support personnel in offices within a few blocks of DOE. Our expectation is that this office will carry out a series of projects that are better managed closer to DOE. We also anticipate that our representation in Washington will improve and we hope to expand the Program, its activities, and impact, in police-relevant analyses. In spite of the growth that we have achieved, the Program continues to emphasize (1) energy efficiency of buildings, (2) appliance energy efficiency standards, (3) energy demand forecasting, (4) utility policy studies, especially integrated resource planning issues, and (5) international energy studies, with considerate emphasis on developing countries and economies in transition. These continuing interests are reflected in the articles that appear in this report.

  11. Non resonant transmission modelling with Statistical modal Energy distribution Analysis

    E-Print Network [OSTI]

    Boyer, Edmond

    be used as an alternative to Statistical Energy Analysis for describing subsystems with low modal overlap1 Non resonant transmission modelling with Statistical modal Energy distribution Analysis L. Maxit Capelle, F-69621 Villeurbanne Cedex, France Statistical modal Energy distribution Analysis (SmEdA) can

  12. One Size Does Not Fit All: Human Failure Event Decomposition and Task Analysis

    SciTech Connect (OSTI)

    Ronald Laurids Boring, PhD

    2014-09-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered or exacerbated by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down—defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications. In this paper, I first review top-down and bottom-up approaches for defining HFEs and then present a seven-step guideline to ensure a task analysis completed as part of human error identification decomposes to a level suitable for use as HFEs. This guideline illustrates an effective way to bridge the bottom-up approach with top-down requirements.

  13. Webinar: Overview of the Clean Energy Manufacturing Analysis Center

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Manufacturing Initiative, the U.S. Department of Energy recently launched the Clean Energy Manufacturing Analysis Center (CEMAC). CEMAC is a collaboration across the...

  14. Maximum likelihood analysis of low energy CDMS II germanium data

    E-Print Network [OSTI]

    2015-01-01

    likelihood analysis of low energy CDMS II germanium data R.United States Department of Energy, by NSERC Canada, and byStates Department of Energy. [1] P. A. R. Ade et al. (Planck

  15. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  16. Compound and Elemental Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) || Open EnergyAnalysis Jump to:

  17. Energy Policy Act of 2005 -Select News and Analysis WSU Extension Energy Library http://www.energy.wsu.edu/library/

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Policy Act of 2005 - Select News and Analysis WSU Extension Energy Library http://www.energy.wsu.edu/library/ ©Washington State University Extension Energy Program Energy Policy Act of 2005: Links to Select News and Analysis Compiled by staff of the Washington State University Extension Energy Library Last updated April

  18. Energy Policy Act of 2005 -Select News and Analysis WSU Extension Energy Library http://www.energy.wsu.edu/library/

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Policy Act of 2005 - Select News and Analysis WSU Extension Energy Library http://www.energy.wsu.edu/library/ ©Washington State University Extension Energy Program Energy Policy Act of 2005: Links to Select News and Analysis Compiled by staff of the Washington State University Extension Energy Library Last updated July 7

  19. EnergyPlus Run Time Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01

    toward the goal of net zero energy buildings. EnergyPlusdesigns and low or net-zero energy buildings. EnergyPlus

  20. Assessing Internet energy intensity: A review of methods and results

    SciTech Connect (OSTI)

    Coroama, Vlad C.; Hilty, Lorenz M.; Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstr. 5, 9014 St. Gallen; Centre for Sustainable Communications, KTH Royal Institute of Technology, Lindstedtsvägen 5, 100 44 Stockholm

    2014-02-15

    Assessing the average energy intensity of Internet transmissions is a complex task that has been a controversial subject of discussion. Estimates published over the last decade diverge by up to four orders of magnitude — from 0.0064 kilowatt-hours per gigabyte (kWh/GB) to 136 kWh/GB. This article presents a review of the methodological approaches used so far in such assessments: i) top–down analyses based on estimates of the overall Internet energy consumption and the overall Internet traffic, whereby average energy intensity is calculated by dividing energy by traffic for a given period of time, ii) model-based approaches that model all components needed to sustain an amount of Internet traffic, and iii) bottom–up approaches based on case studies and generalization of the results. Our analysis of the existing studies shows that the large spread of results is mainly caused by two factors: a) the year of reference of the analysis, which has significant influence due to efficiency gains in electronic equipment, and b) whether end devices such as personal computers or servers are included within the system boundary or not. For an overall assessment of the energy needed to perform a specific task involving the Internet, it is necessary to account for the types of end devices needed for the task, while the energy needed for data transmission can be added based on a generic estimate of Internet energy intensity for a given year. Separating the Internet as a data transmission system from the end devices leads to more accurate models and to results that are more informative for decision makers, because end devices and the networking equipment of the Internet usually belong to different spheres of control. -- Highlights: • Assessments of the energy intensity of the Internet differ by a factor of 20,000. • We review top–down, model-based, and bottom–up estimates from literature. • Main divergence factors are the year studied and the inclusion of end devices. • We argue against extending the Internet system boundary beyond data transmission. • Decision-makers need data that differentiates between end devices and transmission.

  1. Preliminary Findings from an Analysis of Building Energy Information System

    E-Print Network [OSTI]

    -based energy monitoring, web-based energy management linked to controls, demand response, and enterprise energyLBNL-2224E Preliminary Findings from an Analysis of Building Energy Information System Technologies of Building Energy Information System Technologies Jessica Granderson Mary Ann Piette Girish Ghatikar Phillip

  2. 1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects, Wind & Hydropower Technologies Program #12;2 Energy Markets and Policy Group · Energy Analysis Concerns for Wind Energy Fall Into Three Potential Categories 1. Area Stigma: Concern that rural areas

  3. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  4. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Power Solar Thermal-Electric Power Plants Energy Generationfrom new energy tech- nologies, including the solar-thermalsolar thermal- electric power plants and electrical energy

  5. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Annual Incremental Energy and Capacity Savings from Passivein incremental annual energy and capacity savings of 3.1 Xand estimated energy and capacity savings for each.

  6. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    calcu.lat energy consumption in passive solar houses havesolar heating form a major source of energy supply in the second scenario. The energy consumption

  7. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    we select three alternative energy futures for California inwith the ~J -xi- alternative energy futures in order toassess the impacts of alternative energy futures. In later

  8. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    we select three alternative energy futures for California inwith the ~J -xi- alternative energy futures in order tothe impacts of alternative energy futures. In later sections

  9. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Rand Corporation, "Energy Alternatives for California: PathsDoctor et aI. , "Energy Alternatives for California: PathsPrograms Energy Facility Alternatives Discussion . ,

  10. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    technologies. CIEEDAC is responsible for the industrial energy data under this initiative. The Centre operates as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian

  11. Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    energyuselossopportunitiesanalysis.pdf More Documents & Publications U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis Bandwidth Study U.S. Chemical...

  12. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary...

  13. Energy Management and Cost Analysis in Residential Houses using Batteries

    E-Print Network [OSTI]

    Simunic, Tajana

    Energy Management and Cost Analysis in Residential Houses using Batteries Baris Aksanli and Tajana}@ucsd.edu Abstract--Residential energy consumption shows significant diurnal patterns that can be leveraged by energy if the batteries are not used in specific configurations. I. INTRODUCTION AND RELATED WORK Residential energy

  14. Current Work in Energy Analysis (Energy Analysis Program -1996 Annual Report)

    SciTech Connect (OSTI)

    Energy Analysis Program

    1998-03-01

    This report describes the work that Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory has been doing most recently. One of our proudest accomplishments is the publication of Scenarios of U.S. Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the U.S. This analysis played a key role in shaping the U.S. position on climate change in the Kyoto Protocol negotiations. Our participation in the fundamental characterization of the climate change issue by the IPCC is described. We are also especially proud of our study of ''leaking electricity,'' which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of U.S. residential electricity currently expended on standby losses. The 54 vignettes contained in the following pages summarize results of research. activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national ENERGY STAR{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China. These are the intellectual endeavors of a talented team of researchers dedicated to public service.

  15. First Year Analysis of Industrial Energy Conservation in Texas A&M's Energy Analysis and Diagnostic Center Program 

    E-Print Network [OSTI]

    Grubb, M. K.; Heffington, W. M.

    1988-01-01

    Laboratory, Department of Mechanical Engineering, Texas A&M University Texas Governor's Energy Management Center Louisiana Department of Natural Resources Center for Energy and Mineral Resources, Texas A&M University FIRST YEAR ANALYSIS OF INDUSTRIAL ENERGY... audits, an average of seven ECOs per audit. The 109 recommendations are divided into four groups: Electrical Energy ECOs, Natural Gas ECOs, Non-Energy Saving ECOs, and Opportunity ECOs. This paper will briefly discuss the EADC method of energy auditing...

  16. Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

  17. Karuk Tribe Strategic Energy Plan and Energy Options Analysis

    SciTech Connect (OSTI)

    Ramona Taylor, Karuk Tribe; David Carter, Winzler and Kelly

    2009-03-31

    Energy planning document to assist the Karuk Tribe in making educated decisions about future energy priorities and implementation.

  18. Analysis Activities at National Renewable Energy Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on NREL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  19. Dynamical Systems Analysis of Various Dark Energy Models

    E-Print Network [OSTI]

    Nandan Roy

    2015-11-25

    In this thesis, we used dynamical systems analysis to find the qualitative behaviour of some dark energy models. Specifically, dynamical systems analysis of quintessence scalar field models, chameleon scalar field models and holographic models of dark energy are discussed in this thesis.

  20. IDEA: INTERPOLATING DATA FOR ENERGY ANALYSIS Eleni Primikiri+

    E-Print Network [OSTI]

    Papalambros, Panos

    . Papalambros* + Taubman College of Architecture and Urban Planning * Department of Mechanical EngineeringIDEA: INTERPOLATING DATA FOR ENERGY ANALYSIS Eleni Primikiri+ , Michael Kokkolaras* and Panos Y. This paper presents a methodology of interpolating data for energy analysis to enable easier implementation

  1. Performance Validation and Energy Analysis of HVAC Systems using Simulation

    E-Print Network [OSTI]

    1 Performance Validation and Energy Analysis of HVAC Systems using Simulation Tim Salsbury and Rick This paper describes the concept of using simulation as a tool for performance validation and energy analysis and supervision of building systems in order to optimize operational performance. The paper describes one way

  2. Emergy Analysis of Sugarcane (energy crop) Water Management

    E-Print Network [OSTI]

    Ma, Lena

    diagrams Energy & Material Flow Data Emergy computations Analysis 5. Case Study #12;12Annual Southwest and Material Flow data #12;EmergyEvaluationTable 15 Unit Solar Solar Data EMERGY* EMERGY Note Item Unit (unitsEmergy Analysis of Sugarcane (energy crop) Water Management HENDRY COUNTY SUSTAINABLE BIOFUELS

  3. Dynamical Systems Analysis of Various Dark Energy Models

    E-Print Network [OSTI]

    Roy, Nandan

    2015-01-01

    In this thesis, we used dynamical systems analysis to find the qualitative behaviour of some dark energy models. Specifically, dynamical systems analysis of quintessence scalar field models, chameleon scalar field models and holographic models of dark energy are discussed in this thesis.

  4. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Corporation, "The Energy Supply Planning Model," Vols. I andFrancisco> CA, tiThe Energy Supply Plan- ning Model," Vols.Categories from Bechtel Energy Supply Planning Model. Total

  5. Simulating Urban Environments for Energy Analysis

    E-Print Network [OSTI]

    Weber, Gunther H.

    2014-01-01

    for energy supply and demand response. The concept isenergy incentives and demand response programs. We apply theand wind energy), demand response, elec- tric vehicles,

  6. Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity

    E-Print Network [OSTI]

    Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

  7. Page 1 of 13 Understanding Industrial Energy Use Through Lean Energy Analysis

    E-Print Network [OSTI]

    Kissock, Kelly

    Page 1 of 13 11SDP-0048 Understanding Industrial Energy Use Through Lean Energy Analysis Abels, B statistical method to statistically disaggregate industrial energy use into production-dependent, weather improving model calibration, quantifying non-productive energy use and identifying energy efficiency

  8. Simulating Urban Environments for Energy Analysis

    E-Print Network [OSTI]

    Weber, Gunther H.

    2014-01-01

    technologies that participate in energy systems. For example, the inclusion of renewables (especially solar and wind

  9. EnergyPlus Run Time Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01

    types and configurations, plant equipment types and controls, service water heating systems, and renewable energy

  10. Analysis Activities at Fossil Energy/ National Energy Technology Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation on NETL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  11. Energy Analysis of Four Wireless Sensor Network MAC Protocols

    E-Print Network [OSTI]

    Kinicki, Robert E.

    Energy Analysis of Four Wireless Sensor Network MAC Protocols Brian Bates, Andrew Keating, Robert which reduce radio energy consumption is important for wireless sensor networks (WSNs). The most-aware MAC protocols were implemented in TinyOS on TelosB motes. Indoor energy measurements over a single

  12. Modelling and Analysis of Wireless Sensor Networks with Energy

    E-Print Network [OSTI]

    Modelling and Analysis of Wireless Sensor Networks with Energy Harvesting Capabilities Nan Wu and energy harvesting may exceed the gain by using them. So, it can be seen as a trade-off in Wireless Sensor a generic modelling framework which can be used to model and analyze energy harvesting aware Wireless Sensor

  13. Automated Analysis of Performance and Energy Consumption for Cloud Applications

    E-Print Network [OSTI]

    Schneider, Jean-Guy

    Automated Analysis of Performance and Energy Consumption for Cloud Applications Feifei Chen, John providers is thus to develop resource provisioning and management solutions at minimum energy consumption system performance and energy consumption patterns in complex cloud systems is imperative to achieve

  14. Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983

  15. Waste-To-Energy Feasibility Analysis: A Simulation Model

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    Waste- To- Energy Feasibility Analysis: A Simulation Model Viet- An Duong College of Engineering://www.funginstitute.berkeley.edu/sites/default/ les/WasteToEnergy.pdf May 1, 2014 130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664-4337 | www-4337 | www.funginstitute.berkeley.edu #12;Abstract: The search for renewable and clean energies is one

  16. GLOBAL OPTIMIZATION AND ANALYSIS FOR THE GIBBS FREE ENERGY FUNCTION

    E-Print Network [OSTI]

    Neumaier, Arnold

    GLOBAL OPTIMIZATION AND ANALYSIS FOR THE GIBBS FREE ENERGY FUNCTION USING THE UNIFAC, WILSON equilibrium involves two important problems: (i) the minimization of the Gibbs free energy, and (ii of the Gibbs free energy. However, a drawback of all previous approaches is that they could not provide

  17. Supplying Renewable Energy to Deferrable Loads: Algorithms and Economic Analysis

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Supplying Renewable Energy to Deferrable Loads: Algorithms and Economic Analysis Anthony compares to price responsive demand in terms capacity gains and energy market revenues for renewable to renewable generation. I. INTRODUCTION Renewable power is emerging as a mainstream source of energy supply

  18. Analysis of Green Energy Options for The Phipps Conservatory

    E-Print Network [OSTI]

    Attari, Shahzeen Z.

    1 Analysis of Green Energy Options for The Phipps Conservatory Shahzeen Attari Elisabeth Gilmore power and thermal energy via on-site generation or purchases of renewable energy credits: 1) A 5kW solid and succulent plants. Presently, the conservatory is undergoing a major renovation and expansion. An explicit

  19. MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER ARNAUD ROUGIREL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER MODEL ARNAUD ROUGIREL Abstract. In a context where for buoy-type ocean wave energy converter. The simplest model for this scheme is a non autonomous piecewise and periodic solutions, and compare the energy performance of this novel WEC with respect to the one of wave

  20. Systems analysis of major consumer energy decisions

    E-Print Network [OSTI]

    Sisler, Nicholas Daniel

    2011-01-01

    American consumers make a number of decisions that significantly impact their energy use. Some of the most important of these decisions were identified and analyzed for the purpose of including them in a Consumer Energy ...

  1. Understanding Manufacturing Energy Use Through Statistical Analysis 

    E-Print Network [OSTI]

    Kissock, J. K.; Seryak, J.

    2004-01-01

    Energy in manufacturing facilities is used for direct production of goods, space conditioning, and general facility support such as lighting. This paper presents a methodology for statistically analyzing plant energy use in terms of these major end...

  2. Army Energy and Water Reporting System Assessment

    SciTech Connect (OSTI)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.

  3. Analysis of Hydrogen and Competing Technologies for Utility-Scale Energy Storage (Presentation)

    SciTech Connect (OSTI)

    Steward, D.

    2010-02-11

    Presentation about the National Renewable Energy Laboratory's analysis of hydrogen energy storage scenarios, including analysis framework, levelized cost comparison of hydrogen and competing technologies, analysis results, and conclusions drawn from the analysis.

  4. Lean Analysis of Industrial Energy Assessment 

    E-Print Network [OSTI]

    Viera, R. J.; Lee, J.; McInerny, S.

    2015-01-01

    Energy Assessments Raul Viera, Jim Lee, Sally Ann McInerny, and Zahra Sardoueinasab Mechanical Engineering University of Louisiana at Lafayette IETC Conference June 2015 ESL-IE-15-06-19 Proceedings of the Thrity-Seventh Industrial Energy Technology... Conference New Orleans, LA. June 2-4, 2015 Research for a reason. LOUISIANA SMART AND SECURE ENERGY LABORATORY (LASSEL) Replacement to Louisiana Industrial Assessment Center (LIAC): • LIAC at UL Lafayette from1999-2012, Funded by the DOE • Last year...

  5. 15-11-061ETSAP Energy Technology Systems Analysis

    E-Print Network [OSTI]

    Russian Natural Gas: Reform and Climate Policy (July 2006) The world's largest natural gas producer Policy Scenario to address energy security and environmental concerns. Based on the detailed analysis

  6. New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...

    Broader source: Energy.gov (indexed) [DOE]

    CSE Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy Production, Wins R&D 100 Award...

  7. Commercial Property Assessed Clean Energy: A Comparative Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hosted by the Technical Assistance Program (TAP), this webinar, held on Feb. 26, 2015, focused on a comparative analysis of program design elements of existing Property Assessed Clean Energy (PACE) programs across the country.

  8. Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

    2008-01-01

    Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

  9. Analysis of Energy Recovery Ventilator Savings for Texas Buildings 

    E-Print Network [OSTI]

    Christman, K. D.; Haberl, J. S.; Claridge, D. E.

    2009-01-01

    the energy and costs required to condition outside air to return-air conditions. This analysis does not consider interactions with the air-handling system; therefore the effects of economizers, reheat schemes, variable flow rates and other adaptive components...

  10. Maximum likelihood analysis of low energy CDMS II germanium data

    E-Print Network [OSTI]

    Agnese, R.

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is ...

  11. Minimizing User Burden in Building Energy Analysis | Department...

    Broader source: Energy.gov (indexed) [DOE]

    performance levels, etc. The analysis of single buildings will be based directly on EnergyPlus. For the modeling of extended urban areas involving an aggregate of buildings, TAI...

  12. The Energy Landscape Analysis of Cancer Mutations in Protein Kinases

    E-Print Network [OSTI]

    Dixit, Anshuman; Verkhivker, Gennady M.

    2011-10-06

    computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core...

  13. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

  14. NREL Job Task Analysis: Energy Auditor

    SciTech Connect (OSTI)

    Kurnik, C.; Woodley, C.

    2011-05-01

    A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work.

  15. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...

    Office of Environmental Management (EM)

    Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis thumbenergyuselossemissionslg.gif How...

  16. Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP): An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025.

    SciTech Connect (OSTI)

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K. R.; Venkatesh, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wi

    2009-09-01

    Energy system modeling can be intentionally or unintentionally misused by decision-makers. This report describes how both can be minimized through careful use of models and thorough understanding of their underlying approaches and assumptions. The analysis summarized here assesses the impact that model and data choices have on forecasting energy systems by comparing seven different electric-sector models. This analysis was coordinated by the Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP), a collaboration among governmental, academic, and nongovernmental participants.

  17. Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP): An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect (OSTI)

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K. R.; Venkatesh, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-01

    Energy system modeling can be intentionally or unintentionally misused by decision-makers. This report describes how both can be minimized through careful use of models and thorough understanding of their underlying approaches and assumptions. The analysis summarized here assesses the impact that model and data choices have on forecasting energy systems by comparing seven different electric-sector models. This analysis was coordinated by the Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP), a collaboration among governmental, academic, and nongovernmental participants.

  18. Flexible Framework for Building Energy Analysis: Preprint

    SciTech Connect (OSTI)

    Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

    2012-09-01

    In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

  19. R&D 100 Award -- TREAT with SUNREL (TM) Energy Analysis Software

    SciTech Connect (OSTI)

    Not Available

    2005-10-01

    Factsheet about the 2005 R&D Award for TREAT with SUNREL Energy Analysis Software for home energy audits.

  20. Policy Analysis Landfill-Gas-to-Energy Projects

    E-Print Network [OSTI]

    Jaramillo, Paulina

    perspectives in comparison to current subsidies. It was found that the private breakeven price of electricityPolicy Analysis Landfill-Gas-to-Energy Projects: Analysis of Net Private and Social Benefits P A U gas also has the potential to be used to generate electricity.In1994,the

  1. Proceedings of the 1991 Socioeconomic Energy Research and Analysis Conference

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    These proceedings analyze US energy policy as it pertains to minority groups. Example topics include: Economic impacts of the National Energy Strategy on minority and majority households, Utility measures to assist payment-troubled customers, Equity impacts of controlling energy usage through market-based versus regulatory approaches, Technical and planning support for the DOE-HUD initiative for energy efficiency in housing, an analysis of residential energy consumption and expenditures by minority households by home type and housing vintage, and methodical issues in evaluating integrated least cost planning programs.

  2. Prairie View A&M University Whole Campus Energy Analysis 

    E-Print Network [OSTI]

    Haberl, J. S.; Claridge, D. E.; Turner, W. D.

    1991-01-01

    Prairie View A&M University started a large scale energy management program in 1987 and 1988. This report presents an analysis of whole-campus energy consumption at the Prairie View A&M Campus where whole-campus indices were developed that normalize...

  3. IDS120h GEOMETRY WITH SHIELDING VESSELS ENERGY FLOW ANALYSIS

    E-Print Network [OSTI]

    McDonald, Kirk

    IDS120h GEOMETRY WITH SHIELDING VESSELS ENERGY FLOW ANALYSIS SHIELDING MATERIAL: 60% W + 40% He vs SHIELDING Nicholas Souchlas, PBL (10/18/2011) 1 #12;IDS120h with shielding vessels. # Different cases ENERGY CUTOFF >SHIELDING: 60% W + 40% He , 80% W + 20% He, 88% W + 12% He ( WITH W VESSELS) >4 MW proton

  4. Analysis of the Russian Market for Building Energy Efficiency

    SciTech Connect (OSTI)

    Lychuk, Taras; Evans, Meredydd; Halverson, Mark A.; Roshchanka, Volha

    2012-12-01

    This report provides analysis of the Russian energy efficiency market for the building sector from the perspective of U.S. businesses interested in exporting relevant technologies, products and experience to Russia. We aim to help U.S. energy efficiency and environmental technologies businesses to better understand the Russian building market to plan their market strategy.

  5. Singularity analysis and fracture energy-release rate for composites

    E-Print Network [OSTI]

    Vu-Quoc, Loc

    energy release rate for piecewise homogeneous-anisotropic materials. A new approach of matched asymptoticSingularity analysis and fracture energy-release rate for composites: Piecewise homogeneous-anisotropic materials By Loc Vu-Quoc and Van-Xuan Tran

  6. Power flow analysis for amplifier design and energy harvesting

    E-Print Network [OSTI]

    Lindner, Douglas K.

    . In order to improve the efficiency of an active isolation system we analyze different feedback control energy on a active vibration isolation system it is important to understand the influence of the existingPower flow analysis for amplifier design and energy harvesting Nikola Vujica, Donald J. Leoa

  7. Waste Energy Analysis Recovery for a Typical Food Processing Plant 

    E-Print Network [OSTI]

    Miller, P. H.; Mann, L., Jr.

    1980-01-01

    An energy analysis made for the Joan of Arc Food Processing Plant in St. Francisville, Louisiana indicated that a significant quantity of waste heat energy was being released to the atmosphere in the forms of low quality steam and hot flue gases...

  8. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  9. State Level Analysis of Industrial Energy Use 

    E-Print Network [OSTI]

    Elliott, R. N.; Shipley, A. M.; Brown, E.

    2003-01-01

    industrial policies for these states. This paper will provide an overview of our analytical approach, the data sources that are available, and provide examples of the analysis results to demonstrate the regional diversity of industrial electricity use....

  10. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    of Capital Costs for Solar Thermal Power Plants Fuel GasAnalysis of Wind Power Solar Thermal-Electric Power Plantsinclude wind turbines, solar- thermal and waste-fired power

  11. Coupled dark energy: a dynamical analysis with complex scalar field

    E-Print Network [OSTI]

    Ricardo C. G. Landim

    2015-07-01

    The dynamical analysis for coupled dark energy with dark matter is presented, where a complex scalar field is taken into account and it is considered in the presence of a barothropic fluid. We consider three dark energy candidates: quintessence, phantom and tachyon. The critical points are found and their stabilities analyzed, leading to the three cosmological eras (radiation, matter and dark energy), for a generic potential. The results presented here enlarge the previous analyses found in the literature.

  12. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    SciTech Connect (OSTI)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

  13. An Analysis of Grocery Store Energy Use 

    E-Print Network [OSTI]

    Cox, Raplh Luther, III

    1993-01-01

    Approximately 3% of the United States' commercial building energy consumption is attributable to food sales facilities. Although this is one of the smallest consumption percentages, it is still significant, amounting to ...

  14. Environmental Analysis Team Capabilities in Fossil Energy

    E-Print Network [OSTI]

    Pennycook, Steve

    , Clean Coal Technology Program EISs for 4 clean coal projects including gasification and fluidized bed.S. Department of Energy, Wind and Hydropower Technologies · Defense Logistics Agency, Defense National Stockpile

  15. Department of Energy Analysis of Economic Impact

    National Nuclear Security Administration (NNSA)

    for a wide variety of purposes, including forecasts of nuclear waste volumes, energy prices, effects of carbon emissions from fossil fuel, and the need for and economic payoff to...

  16. Economic and Environmental Analysis of Photovoltaic Energy ...

    E-Print Network [OSTI]

    2012-03-22

    Mar 22, 2012 ... back to energy companies can be set to be higher than the price for buying electricity from ...... Fig 14: Two-dimensional projections (12-13PM).

  17. Statistical energy analysis of nonlinear vibrating systems

    E-Print Network [OSTI]

    Spelman, G. M.; Langley, R. S.

    2015-01-01

    amplitude vibration, without the need for local contacts. Nonlinearity due purely to large amplitude vibration can then result in significant energy being found in frequency bands other than those being driven by external forces. To analyse...

  18. NREL: Energy Analysis - Vehicles and Fuels Research Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14Recent PublicationsNicholasTransportation Research Analysis

  19. Trace Element Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy FacilitiesInformationTown700 Jump

  20. The Dark Energy Star and Stability analysis

    E-Print Network [OSTI]

    Piyali Bhar; Farook Rahaman

    2015-01-12

    We have proposed a new model of dark energy star consisting of five zones namely, solid core of constant energy density, the thin shell between core and interior, an inhomogeneous interior region with anisotropic pressures, thin shell and the exterior vacuum region. We have discussed various physical properties. The model satisfies all the physical requirements. The stability condition under small linear perturbation has also been discussed.

  1. Market Analysis Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |Department of EnergyMapping the FrontierInformation

  2. Play Fairway Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnership forHydrogen StoragePlanning,Play Fairway

  3. Policy and Analysis Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnership forHydrogenand

  4. Southeast Regional Clean Energy Policy Analysis

    SciTech Connect (OSTI)

    McLaren, Joyce

    2011-04-01

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  5. Southeast Regional Clean Energy Policy Analysis (Revised)

    SciTech Connect (OSTI)

    McLaren, J.

    2011-04-01

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  6. Energy Use, Loss, and Opportunities Analysis for U.S. Manufacturing and Mining

    SciTech Connect (OSTI)

    Pellegrino, Joan L.; Margolis, Nancy; Justiniano, Mauricio; Miller, Melanie; Thedki, Arvind

    2004-12-01

    An analysis of the energy consumption and losses associated with industrial energy systems in the top energy-intensive industries and opportunities for reducing losses.

  7. A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings

    E-Print Network [OSTI]

    Feng, Wei

    2014-01-01

    Gas-Fired Distributed Energy Resource Characterizations.China regional analysis of distributed energy resource incarbon dioxide distributed energy resources Distributed

  8. Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States

    E-Print Network [OSTI]

    Zumkehr, Andrew Lee

    2013-01-01

    low seasonal variability of wind energy, it follows thatseasonal storage by the wind energy scenario is low relativethe analysis. I find that wind energy production is a better

  9. Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States

    E-Print Network [OSTI]

    Zumkehr, Andrew Lee

    2013-01-01

    low seasonal variability of wind energy, it follows thatthe analysis. I find that wind energy production is a betterseasonal storage by the wind energy scenario is low relative

  10. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  11. Analysis of PURPA and solar energy

    SciTech Connect (OSTI)

    Rice, M.

    1980-03-01

    The Public Utility Regulatory Policies Act of 1978 (PURPA) is designed to promote energy conservation, the efficient use of utility resources, and equitable rates. PURPA specifically directs the Federal Energy Regulatory Commission (FERC) to encourage small power production from renewable resources (and also cogeneration of electric energy as well as heat) by setting standards under which facilities qualify for interconnection, and guidelines for sales between utilities and independent facilities. The way FERC carries out this mandate may critically affect the development of solar alternatives to electric power production from fossil and nuclear resources. This report comments on proposed FERC regulations and suggests ways to encourage small power production within the PURPA mandate. In addition, some internal strains within PURPA are analyzed that seem to limit the effectiveness with which FERC can encourage independent facilities, and possible modifications to PURPA are suggested. 255 references.

  12. International Clean Energy Analysis Gateway: Assisting Developing Countries with Clean Energy Deployment (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The International Clean Energy Analysis Gateway seeks to enhance developing country access to energy efficiency and renewable energy analysis tools, databases, methods, and other technical resources in a dynamic user interaction environment. In addition to providing information on available tools, the gateway also is a platform for Web seminars, online training, peer networks, and expert assistance. The gateway is sponsored by the U.S. Department of Energy (DOE) and the United Nations Industrial Development Organization (UNIDO) and managed by the National Renewable Energy Laboratory (NREL). Further cooperation is desired with organizations that can help expand the information presented in the portal and assist with outreach and training.

  13. Geochemical Data Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway EditOpen EnergyNewGenoa,XGeoSyndicate

  14. Draft Supplement Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryofNotices | DepartmentDepartment of Energy

  15. EA-1975: Supplement Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryofNoticesEnergy annualMinnesotaassessesThis document

  16. EIS-0419: Supplement Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to5USC787 Rhode2 Mitigation The Federaldecided

  17. Hydrogen Systems Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,SecurityHome solarEnergyHughfuel cell

  18. Analysis of Environmental Impacts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y AEfficiencyEnergyDepartment ofInitial Results

  19. Electrode Construction and Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilof EnergyBreakout2 DOE HydrogenEnergy

  20. NREL: Energy Analysis - BSM: Biomass Scenario Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmaster ToEnergyBSM -

  1. NREL: Energy Analysis - Capabilities and Expertise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmaster ToEnergyBSM -A chart

  2. NREL: Energy Analysis - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmaster ToEnergyBSM -A

  3. NREL: Energy Analysis - Models and Tools Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmaster ToEnergyBSM -AJEDI

  4. Energy Systems Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy Storage Management forWind Energy

  5. Accepted to Energy Policy, December 2011. A generic framework for the description and analysis of

    E-Print Network [OSTI]

    Hughes, Larry

    Accepted to Energy Policy, December 2011. ERG/201104 A generic framework for the description and analysis of energy security in an energy system Larry Hughes Energy Research Group Electrical and Computer for the description and analysis of energy security in an energy system Larry Hughes Energy Research Group Electrical

  6. Wave Energy Resource Analysis for Use in Wave Energy Conversion 

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01

    In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...

  7. LBNL Renewable Energy Market and Policy Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: Energy Resources Jump to:Kyle,LAC Regional

  8. Analysis of Energy Harvesting for Vibration-Motivated Wireless Sensor Networks

    E-Print Network [OSTI]

    Lim, Sunho

    Analysis of Energy Harvesting for Vibration-Motivated Wireless Sensor Networks Sunho Lim Dept.com Abstract-- Extracting an electrical energy from various environmental sources, called energy harvesting (or energy scavenging), has been attracting researchers' attention in energy replenishable networks

  9. Energy performance analysis of prototype electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  10. Fluid Inclusion Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open(Sasada, 1988) |Analysis

  11. Scenario Analysis Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartment ofJuneScenario Analysis Meeting Scenario

  12. Geothermal Play Fairway Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References:SequestrationElectricPlay Fairway Analysis

  13. Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: Energy Resources Jump to:Rock

  14. Lab Analysis Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville,LEDSGP/activitiesPlata Electric Assn,LaGrange

  15. Building America Analysis Spreadsheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels ResearchofDerivative ClassifiersBrookhavenof Energy

  16. Decision Analysis for EGS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel Boff Aboutof EnergyDecember

  17. VTO Analysis Portfolio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-SavingofCode |Department of EnergyVTO

  18. Adverse Diversity Analysis Guidance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie Pezzullo OfficeDepartmentEnergy

  19. Monitoring, Reporting, & Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |Department ofMayMissionMitigation ActionWeatherize

  20. Policy and Analysis Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S.Job&Energy DepartmentPastand

  1. Energy Information Administration--Energy and Greenhouse Gas Analysis

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricRhode Island ElectricityYearandEfficiency > Energy and

  2. RETScreen Clean Energy Project Analysis Software | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFU Elektronik GmbH Jump to:RESCo Energy

  3. NREL Job Task Analysis: Energy Auditor | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy009At26-2009 has preparedNRECAcrew

  4. Energy Literacy Video Analysis Guide | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas |Tool for<StateSarah Chinn is a staff Subject

  5. Energy System and Scenario Analysis Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy Electricals LtdEcowind Jump(Redirected from EnergyEnergy System

  6. Energy System and Scenario Analysis Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy Electricals LtdEcowind Jump(Redirected from EnergyEnergy

  7. VIBROACOUSTICS AT HIGH FREQUENCIES Coupling of Statistical Energy Analysis and numerical methods

    E-Print Network [OSTI]

    Huerta, Antonio

    VIBROACOUSTICS AT HIGH FREQUENCIES Coupling of Statistical Energy Analysis and numerical methods at high frequencies. Instead, a statistical approach (Statistical Energy Analysis) can be used: Deterministic methods: expensive and too detailed at high frequencies. Statistical methods: require energy

  8. EMCS and time-series energy data analysis in a large government office building

    E-Print Network [OSTI]

    Piette, Mary Ann; Kinney, Satkartar; Friedman, Hannah

    2001-01-01

    th EMCS and Time-Series Energy Data Analysis in a LargeEMCS and Time-Series Energy Data Analysis in a Largeyears of utility bill energy data to evaluate whole-building

  9. A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical Parameters

    E-Print Network [OSTI]

    Victoria, University of

    A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical of Mechanical Engineering) ABSTRACT Within a wave energy converter's operational bandwidth, device operation

  10. Fluid Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open(Sasada, 1988)Lab Analysis

  11. NREL: Energy Analysis: Life Cycle Assessment Harmonization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial Analysis To perform and support

  12. Line Extension Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty PowerLine Extension Analysis Jump to:

  13. Category:Cuttings Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village,8199089°,AnalyticalCuttings Analysis Jump to: navigation,

  14. Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDoubleEERE -ESolar IncEagleAnalysis Jump to:

  15. Threat Analysis Framework | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority J-I-12 GeVAuditTheChallengeThreat Analysis

  16. Analysis of Environmental Impacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslieAlgae BiomassServicesWindAmyAnalysis of

  17. Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program

    SciTech Connect (OSTI)

    Belzer, D.; Mosey, G.; Plympton, P.; Dagher, L.

    2007-07-01

    Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As one of HPwES's local sponsors, Austin Energy's HPwES program offers a complete home energy analysis and a list of recommendations for efficiency improvements, along with cost estimates. To determine the benefits of this program, the National Renewable Energy Laboratory (NREL) collaborated with the Pacific Northwest National Laboratory (PNNL) to conduct a statistical analysis using energy consumption data of HPwES homes provided by Austin Energy. This report provides preliminary estimates of average savings per home from the HPwES Loan Program for the period 1998 through 2006. The results from this preliminary analysis suggest that the HPwES program sponsored by Austin Energy had a very significant impact on reducing average cooling electricity for participating households. Overall, average savings were in the range of 25%-35%, and appear to be robust under various criteria for the number of households included in the analysis.

  18. Industrial Geospatial Analysis Tool for Energy Evaluation 

    E-Print Network [OSTI]

    Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

    2013-01-01

    Technology Conference New Orleans, LA. May 21-24, 2013 23 Presentation name Questions Contact: Nasr Alkadi Industrial Energy Efficiency Oak Ridge National laboratory, ORNL 865-946-1558 636-734-4143 alkadine@ornl.gov or nasr.alkadi@gmail.com ESL-IE-13....D., CEM (ORNL) Michael Starke, Ph.D. (ORNL) Ookie Ma, Ph.D. (DOE) Sachin Nimbalkar, Ph.D. (ORNL) Daryl Cox (ORNL) Kevin Dowling, University of Tennessee, Knoxville Brandon Johnson, University of Tennessee, Knoxville Saqib Khan, University of Texas...

  19. Isotopic Analysis (Klein, 2007) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIrem GeothermalIslip Terrace,Open

  20. Isotopic Analysis (Not Available) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIrem GeothermalIslipNot Available) Jump to:

  1. Paducah WDA Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS - WE NEED A CHANGE OFNovemberAlternatives are

  2. NREL Market Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFE Baterias Industriais JumpNREL EnergyJumpMarket

  3. Policy Analysis System (Polysys) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono SolarPlexus Sol JumpLowLowBeyond |

  4. Microsoft Word - Levelized Cost of Energy Analysis

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE SafetyofDepartment. " 21 ran PPPO-03-1RESEARCH CALL

  5. Geothermal Play Fairway Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping intoandMinimaland theThewinter, fluidwebinar.pptx More

  6. CSP Systems Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulationInformation Session More Documents &Area:funds

  7. Threat Analysis Framework | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency MaineAutoSecuritythomas.wheeler@hq.doe.govThe need to

  8. NREL: Energy Analysis - Subscribe to Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmasterRelated

  9. NREL: Energy Analysis - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working with Us ...Your team is superb. It is

  10. Sandia Energy - PV Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREWOnline Abstracts andPV Modeling &

  11. Infiltration modeling guidelines for commercial building energy analysis

    SciTech Connect (OSTI)

    Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.

    2009-09-30

    This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistent with building location and weather data.

  12. NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    The energy market is diversifying. In addition to traditional power sources, decision makers can choose among solar, wind, and geothermal technologies as well. Each of these technologies has complex performance characteristics and economics that vary with location and other project specifics, making it difficult to analyze the viability of such projects. But that analysis is easier now, thanks to the National Renewable Energy Laboratory (NREL).

  13. High-Energy Astrophysics and Cosmology

    E-Print Network [OSTI]

    John Ellis

    2002-10-26

    Interfaces between high-energy physics, astrophysics and cosmology are reviewed, with particular emphasis on the important roles played by high-energy cosmic-ray physics. These include the understanding of atmospheric neutrinos, the search for massive cold dark matter particles and possible tests of models of quantum gravity. In return, experiments at the LHC may be useful for refining models of ultra-high-energy cosmic rays, and thereby contributing indirectly to understanding their origin. Only future experiments will be able to tell whether these are due to some bottom-up astrophysical mechanism or some top-down cosmological mechanism.

  14. Energy Infrastructure Modeling and Analysis (EIMA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformation FormManufacturing ofDepartmentProject Financing

  15. Analysis of Household Energy Consumption Choices Objective: Develop a data-based analysis of US household energy use that provides a

    E-Print Network [OSTI]

    Wolberg, George

    Analysis of Household Energy Consumption Choices Objective: Develop a data-based analysis of US household energy use that provides a solid framework for understanding how policies such as carbon pricing could affect various subgroups of household energy consumers. Background: Household energy use in the US

  16. Methodology for Modeling Building Energy Performance across the Commercial Sector

    SciTech Connect (OSTI)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  17. Analysis of federal incentives used to stimulate energy consumption

    SciTech Connect (OSTI)

    Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

    1981-08-01

    The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

  18. Identification of Energy Efficiency Opportunities through Building Data Analysis and Achieving Energy Savings through Improved Controls

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Taasevigen, Danny J.; Koran, Bill

    2014-09-04

    This chapter will highlight analysis techniques to identify energy efficiency opportunities to improve operations and controls. A free tool, Energy Charting and Metrics (ECAM), will be used to assist in the analysis of whole-building, sub-metered, and/or data from the building automation system (BAS). Appendix A describes the features of ECAM in more depth, and also provide instructions for downloading ECAM and all resources pertaining to using ECAM.

  19. NREL: Energy Analysis - Energy Forecasting and Modeling Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:NewsWebmasterWorkingElla Zhou Photo of EllaEnergy

  20. RETScreen Clean Energy Project Analysis Software | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFU Elektronik GmbH Jump to:RESCo

  1. LBNL Renewable Energy Market and Policy Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectric Cooperative(Redirected from Renewable Energy

  2. RETScreen International Clean Energy Project Analysis Tool | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ |RENERCO Renewable EnergyInformation

  3. Minimizing User Burden in Building Energy Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE SafetyofDepartment. "NationalTechnologyThis tip sheet

  4. Energy System and Scenario Analysis Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Incsource History ViewEnergy System and Scenario

  5. Built Environment Energy Analysis Tool | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at the EdgeBUILDINGS-TO-GRID TECHNICALdocumentation

  6. Office of Energy Policy and Systems Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|in the subsurfaceSecurity Assessments is The Quadrennial Energy

  7. NREL: Energy Analysis - The Energy DataBus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNOHydrogenWebmasterRelatedBookmark and

  8. Energy Infrastructure Modeling and Analysis (EIMA) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOE Office of99 Diagram 4. Coal Flow,6 1July5 15

  9. Proceedings of the 1987 socioeconomic energy research and analysis conference

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    The Department of Energy (the Department) convened the first Socioeconomic Energy Research and Analysis Conference in May 1987, in the spirit of constructive dialogue and mutual concern about numerous energy issues and problems. The objective was to provide a national forum for illuminating specific energy and related socioeconomic issues of our nation and discussing realistic approaches to energy policy assessments. This action was based on the Department's commitment to lead the way in developing a pragmatic framework or energy policy determinations, by incorporating constructive policy impact assessment methods into the decisionmaking process. In this rapidly developing industry with high energy technologies, a strong federal role and targeted government programs are essential for the development and integration of minorities into various industry segments. Furthermore, a responsive energy program for all segments of the population must be sensitive to (a) the impact of energy policies on the overall growth of the economy; (b) the differential impact of energy policies on various industries; and (c) the pattern of change in the structure of the social environment. The socioeconomic researchers and energy policy analysts who presented papers or participated in this national forum assisted the Department's efforts to build an energy structure which is truly responsive to the needs of the various population segmets of our nation. The conference participants were also given the opportunity to critique some unique energy policy assessment methodologies which have been conducted mainly at Argonne National Laboratory, under the sponsorship and guidance of the Research and Education Divisions of my Office. Individual papers, in this proceedings have been cataloged separately.

  10. Energy Analysis and Energy Conservation Option for the Warehouse Facility at the Human Services Center Complex 

    E-Print Network [OSTI]

    Farzad, M.; O'Neal, D. L.

    1986-01-01

    The energy use of the warehouse facility at the Human Services Center Complex in Austin, Texas was analyzed using the DOE-2.1B building energy simulation program. An analysis was made for each building as specified in the building plans provided...

  11. 1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects Department The Impact of Wind Power Projects on Residential Property Values in the U.S. · Motivation, but not for wind power facilities $$ Average Home Highway Transmission Lines Green Space Ocean Front $ $ #12

  12. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    In an Energy CSC, an energy price line is determined thatthat fall below the energy price line are so-called “cost-depending on the energy price. A sensitivity analysis for

  13. Hybrid energy system cost analysis: San Nicolas Island, California

    SciTech Connect (OSTI)

    Olsen, T.L.; McKenna, E.

    1996-07-01

    This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

  14. Bottom-up, decision support system development : a wetlandsalinity management application in California's San Joaquin Valley

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2006-05-10

    Seasonally managed wetlands in the Grasslands Basin ofCalifornia's San Joaquin Valley provide food and shelter for migratorywildfowl during winter months and sport for waterfowl hunters during theannual duck season. Surface water supply to these wetland contain saltwhich, when drained to the San Joaquin River during the annual drawdownperiod, negatively impacts downstream agricultural riparian waterdiverters. Recent environmental regulation, limiting discharges salinityto the San Joaquin River and primarily targeting agricultural non-pointsources, now addresses return flows from seasonally managed wetlands.Real-time water quality management has been advocated as a means ofmatching wetland return flows to the assimilative capacity of the SanJoaquin River. Past attempts to build environmental monitoring anddecision support systems to implement this concept have failed forreasons that are discussed in this paper. These reasons are discussed inthe context of more general challenges facing the successfulimplementation of environmental monitoring, modelling and decisionsupport systems. The paper then provides details of a current researchand development project which will ultimately provide wetland managerswith the means of matching salt exports with the available assimilativecapacity of the San Joaquin River, when fully implemented. Manipulationof the traditional wetland drawdown comes at a potential cost to thesustainability of optimal wetland moist soil plant habitat in thesewetlands - hence the project provides appropriate data and a feedback andresponse mechanism for wetland managers to balance improvements to SanJoaquin River quality with internally-generated information on the healthof the wetland resource. The author concludes the paper by arguing thatthe architecture of the current project decision support system, whencoupled with recent advances in environmental data acquisition, dataprocessing and information dissemination technology, holds significantpromise to address some of the problems described earlier in the paperthat have limited past efforts to improve Basin water qualitymanagement.

  15. A hierarchical bottom-up, equation-based optimization design methodology

    E-Print Network [OSTI]

    Sanchez, William R

    2007-01-01

    We have implemented a segment of an RF transmitter signal chain in discrete components using bipolar transistors. We formulated both a broadband amplifier and mixer as mathematical programs (MP) and extracted Pareto-optimal ...

  16. Stress corrosion cracking of steel Stressed-Out Metals: Predicting their Response from the Bottom Up

    E-Print Network [OSTI]

    Simons, Jack

    Stress corrosion cracking of steel Stressed-Out Metals: Predicting their Response from the Bottom;Shocked Iron Ground state bcc undergoes a martensitic phase transformation to hcp at ~13 GPa

  17. Organizing and financing interstellar space projects - A bottom-up approach

    E-Print Network [OSTI]

    Ceyssens, Frederik; Wouters, Kristof; Ceyssens, Pieter-Jan; Wen, Lianggong

    2011-01-01

    The development and deployment of interstellar missions will without doubt require orders of magnitude more resources than needed for current or past megaprojects (Apollo, Iter, LHC,...). Question is how enough resources for such gigaprojects can be found. In this contribution different scenarios will be explored assuming limited, moderate economic growth throughout the next centuries, i.e. without human population and productivity continuing to grow exponentially, and without extreme events such as economic collapse or singularity. In such a world, which is not unlike the current situation, gigascale space projects face a combination of inhibiting factors: the enormous cost threshold, the need for risky and costly development of often quite application specific technology, the relatively little benefit with respect to the costs for the sponsors, the time span of at least a few generations and the absence of a sense of urgency. It will be argued that the best chance of getting an interstellar project started ...

  18. Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices

    E-Print Network [OSTI]

    Huang, Yanyi

    is limited by the size of the devices. Stacking PLCs to make three-dimensional (3D) structures will effi- ciently increase the density of photonic circuits. Several polymer 3D integrated optical devices have been alternate fabrication methods to generate 3D multilayer structures.10,11 In this letter, we describe

  19. Bottom-Up Self-Organization of Unpredictable Demand and Supply under Decentralized Power Management

    E-Print Network [OSTI]

    Wedde, Horst F.

    level of granularity, with short-term power balance fluctuation, in terms of a peak demand and supply, distributed power production at lower voltage levels (through wind turbines or solar panels) is considered, as this depends on external environmental conditions (e.g. solar and wind power). In Electrical Engineering

  20. ORIGINAL ARTICLE Bottom-up influences of voice continuity in focusing selective

    E-Print Network [OSTI]

    Shinn-Cunningham, Barbara

    00426-014-0555-7) contains supplementary material, which is available to authorized users. S. Bressler Á Psychological Research DOI 10.1007/s00426-014-0555-7 #12;stream is attended is it segregated from a sound

  1. Bottom-up model of adsorption and transport in multiscale porous media

    E-Print Network [OSTI]

    Ulm, Franz-Josef

    We develop a model of transport in multiscale porous media which accounts for adsorption in the different porosity scales. This model employs statistical mechanics to upscale molecular simulation and describe adsorption ...

  2. BUCS -A Bottom-Up Cache Structure for Networked Storage Servers Ming Zhang and Qing Yang

    E-Print Network [OSTI]

    Yang, Qing "Ken"

    interconnects such as PCI bus have not kept pace with these improvements. As a result, it has become the major of system interconnects by replacing PCI with PCI-X, PCI Express, or InfiniBand [1]. The Infini

  3. Peace Corps Volunteers and the Boundaries of Bottom-up Development

    E-Print Network [OSTI]

    Schuckman, Hugh Erik

    2012-01-01

    the level of practical classroom management skills in theage-differentiated classroom management, both skill sets areplanning and varied classroom management techniques. But

  4. Top-Down, Bottom-Up, or Both? Toward an Integrative Perspective on Operations Strategy Formation

    E-Print Network [OSTI]

    Kim, Yoon Hee; Sting, Fabian J.; Loch, Christopher H.

    2014-09-16

    and process ? Car components: axles, gearboxes, shaft drives ? Metalworking and assembly ? Power controllers (electrical and electronics) for machine tools ? Engineering and assembly ? SME, two manager-owners ? Medical kits for ambulances...

  5. Peace Corps Volunteers and the Boundaries of Bottom-up Development

    E-Print Network [OSTI]

    Schuckman, Hugh Erik

    2012-01-01

    to have the most basic training modules such as instructionswelcome. Having basic training modules pre- packaged wouldmodules were already completed, however, the Peace Corps training

  6. BottomUp Propositionalization Stefan Kramer 1 and Eibe Frank 2

    E-Print Network [OSTI]

    Frank, Eibe

    ­ gorithms. This transformation requires the construction of features that capture relational properties. An example of a fragment would be 'o­s­c', meaning ``an oxygen atom with a single bond to a sulfur atom

  7. [Re]constructing Finite Flavour Groups: Horizontal Symmetry Scans from the Bottom-Up

    E-Print Network [OSTI]

    Jim Talbert

    2015-01-07

    We present a novel procedure for identifying discrete, leptonic flavour symmetries, given a class of unitary mixing matrices. By creating explicit 3D representations for generators of residual symmetries in both the charged lepton and neutrino sector, we reconstruct large(r) non-abelian flavour groups using the GAP language for computational finite algebra. We use experimental data to construct only those generators that yield acceptable (or preferable) mixing patterns. Such an approach is advantageous because it 1) can reproduce known groups from other 'top-down' scans while elucidating their origins from residuals, 2) find new previously unconsidered groups, and 3) serve as a powerful model building tool for theorists wishing to explore exotic flavour scenarios. We test our procedure on a generalization of the canonical tri-bimaximal (TBM) form.

  8. Peace Corps Volunteers and the Boundaries of Bottom-up Development

    E-Print Network [OSTI]

    Schuckman, Hugh Erik

    2012-01-01

    and the Us Peace Corps." [Pamphlet] (1989). ———. "Looking atarchival resources such as pamphlets, reports, internalwild. They brought now pamphlets, brochures, movies, or any

  9. A new class of high ZT doped bulk nanothermoelectrics through bottom-up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice | DepartmentVery1, in:QuarterlyA SolarAA View fromsynthesis

  10. Bottoms Up. [report on the Defense Department] (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (Technical Report) | SciTechReport)(TechnicalArticle) | SciTech

  11. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    SciTech Connect (OSTI)

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  12. Weather data analysis based on typical weather sequence analysis. Application: energy building simulation

    E-Print Network [OSTI]

    David, Mathieu; Garde, Francois; Boyer, Harry

    2014-01-01

    In building studies dealing about energy efficiency and comfort, simulation software need relevant weather files with optimal time steps. Few tools generate extreme and mean values of simultaneous hourly data including correlation between the climatic parameters. This paper presents the C++ Runeole software based on typical weather sequences analysis. It runs an analysis process of a stochastic continuous multivariable phenomenon with frequencies properties applied to a climatic database. The database analysis associates basic statistics, PCA (Principal Component Analysis) and automatic classifications. Different ways of applying these methods will be presented. All the results are stored in the Runeole internal database that allows an easy selection of weather sequences. The extreme sequences are used for system and building sizing and the mean sequences are used for the determination of the annual cooling loads as proposed by Audrier-Cros (Audrier-Cros, 1984). This weather analysis was tested with the datab...

  13. Renewable Energy Finance Tracking Initiative (REFTI) Solar Trend Analysis

    SciTech Connect (OSTI)

    Hubbell, R.; Lowder, T.; Mendelsohn, M.; Cory, K.

    2012-09-01

    This report is a summary of the finance trends for small-scale solar photovoltaic (PV) projects (PV <1 MW), large-scale PV projects (PV greater than or equal to 1 MW), and concentrated solar power projects as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The report presents REFTI data during the five quarterly periods from the fourth quarter of 2009 to the first half of 2011. The REFTI project relies exclusively on the voluntary participation of industry stakeholders for its data; therefore, it does not offer a comprehensive view of the technologies it tracks. Despite this limitation, REFTI is the only publicly available resource for renewable energy project financial terms. REFTI analysis offers usable inputs into the project economic evaluations of developers and investors, as well as the policy assessments of public utility commissions and others in the renewable energy industry.

  14. UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY

    SciTech Connect (OSTI)

    John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg; Craig Rieger

    2013-07-01

    It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.

  15. Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States

    E-Print Network [OSTI]

    Zumkehr, Andrew Lee

    2013-01-01

    future energy production system that may be based on renewablefuture. Furthermore, this analysis assumes that the magnitude of the renewable energy

  16. Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States

    E-Print Network [OSTI]

    Zumkehr, Andrew Lee

    2013-01-01

    future energy production system that may be based on renewablefuture. Furthermore, this analysis assumes that the magnitude of the renewable energy production (

  17. Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States

    E-Print Network [OSTI]

    Zumkehr, Andrew Lee

    2013-01-01

    part analysis of energy and sustainability related topicsChair Energy security and environmental sustainability areenergy system by mitigating the effects of intermittent power production. However, the sustainability

  18. Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings

    SciTech Connect (OSTI)

    Polly, B.; Kruis, N.; Roberts, D.

    2011-07-01

    This report describes the National Renewable Energy Laboratory's (NREL) methodology to assess and improve the accuracy of whole-building energy analysis for residential buildings.

  19. Multiscale Analysis and Optimisation of Photosynthetic Solar Energy Systems

    E-Print Network [OSTI]

    Ringsmuth, Andrew K

    2014-01-01

    This work asks how light harvesting in photosynthetic systems can be optimised for economically scalable, sustainable energy production. Hierarchy theory is introduced as a system-analysis and optimisation tool better able to handle multiscale, multiprocess complexities in photosynthetic energetics compared with standard linear-process analysis. Within this framework, new insights are given into relationships between composition, structure and energetics at the scale of the thylakoid membrane, and also into how components at different scales cooperate under functional objectives of the whole photosynthetic system. Combining these reductionistic and holistic analyses creates a platform for modelling multiscale-optimal, idealised photosynthetic systems in silico.

  20. Multiscale Analysis and Optimisation of Photosynthetic Solar Energy Systems

    E-Print Network [OSTI]

    Andrew K. Ringsmuth

    2014-02-24

    This work asks how light harvesting in photosynthetic systems can be optimised for economically scalable, sustainable energy production. Hierarchy theory is introduced as a system-analysis and optimisation tool better able to handle multiscale, multiprocess complexities in photosynthetic energetics compared with standard linear-process analysis. Within this framework, new insights are given into relationships between composition, structure and energetics at the scale of the thylakoid membrane, and also into how components at different scales cooperate under functional objectives of the whole photosynthetic system. Combining these reductionistic and holistic analyses creates a platform for modelling multiscale-optimal, idealised photosynthetic systems in silico.

  1. Whole-House Energy Analysis Procedures for Existing Homes: Preprint

    SciTech Connect (OSTI)

    Hendron, R.

    2006-08-01

    This paper describes a proposed set of guidelines for analyzing the energy savings achieved by a package of retrofits or an extensive rehabilitation of an existing home. It also describes certain field test and audit methods that can help establish accurate building system performance characteristics that are needed for a meaningful simulation of whole-house energy use. Several sets of default efficiency values have been developed for older appliances that cannot be easily tested and for which published specifications are not readily available. These proposed analysis procedures are documented more comprehensively in NREL Technical Report TP-550-38238.

  2. Energy conserving Anisotropic Anhysteretic Magnetic Modelling for Finite Element Analysis

    E-Print Network [OSTI]

    Jens Krause

    2012-12-20

    To model ferromagnetic material in finite element analysis a correct description of the constitutive relationship (BH-law) must be found from measured data. This article proposes to use the energy density function as a centrepiece. Using this function, which turns out to be a convex function of the flux density, guarantees energy conservative modelling. The magnetic field strength can be seen as a derivative with respect to the flux density. Especially for anisotropic materials (from lamination and/or grain orientation) this method has advantages. Strictly speaking this method is only valid for anhysteretic and thermodynamically stable material.

  3. Hydrogen Analysis (H2A) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,Fuel CellHydrodynamicAnalysis

  4. 2011 Biomass Program Plaform Peer Review: Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a nsecondof EnergyASER More|Analysis

  5. LBNL/NREL Analysis Predicts Record Low LCOE for Wind Energy in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNLNREL Analysis Predicts Record Low LCOE for Wind Energy in 2012-2013 LBNLNREL Analysis Predicts Record Low LCOE for Wind Energy in 2012-2013 February 24, 2012 - 11:27am...

  6. Energy Analysis and Diagnostics Data Analysis From Industrial Energy Assessments for Manufacturing Industries 

    E-Print Network [OSTI]

    Gopalakrishnan, B.; Plummer, R. W.; Srinath, S.; Meffe, C. M.; Ipe, J. J.; Veena, R.

    1997-01-01

    m fil o N (") QFORSIC32 Figure 6. Energy consumption for SIC 32 SIC 35 type of industry, which is associated with machinery manufacture. This is probably due to the need for adequate lighting for precision inspection and the possibility...

  7. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  8. NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    NREL has developed a tool -- the System Advisor Model (SAM) -- that can help decision makers analyze cost, performance, and financing of any size grid-connected solar, wind, or geothermal power project. Manufacturers, engineering and consulting firms, research and development firms, utilities, developers, venture capital firms, and international organizations use SAM for end-to-end analysis that helps determine whether and how to make investments in renewable energy projects.

  9. EIS-0218-SA-07: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAboutReuben Sarkar,18-SA-07: Supplement Analysis

  10. Covariance Analysis of Symmetry Energy Observables from Heavy Ion Collision

    E-Print Network [OSTI]

    Yingxun Zhang; M. B. Tsang; Zhuxia Li

    2015-07-24

    Using covariance analysis, we quantify the correlations between the interaction parameters in a transport model and the observables commonly used to extract information of the Equation of State of Asymmetric Nuclear Matter in experiments. By simulating $^{124}$Sn+$^{124}$Sn, $^{124}$Sn+$^{112}$Sn and $^{112}$Sn+$^{112}$Sn reactions at beam energies of 50 and 120 MeV per nucleon, we have identified that the nucleon effective mass splitting are most strongly correlated to the neutrons and protons yield ratios with high kinetic energy from central collisions especially at high incident energy. The best observable to determine the slope of the symmetry energy, L, at saturation density is the isospin diffusion observable even though the correlation is not very strong ($\\sim$0.7). Similar magnitude of correlation but opposite in sign exists for isospin diffusion and nucleon isoscalar effective mass. At 120 MeV/u, the effective mass splitting and the isoscalar effective mass also have opposite correlation for the double n/p and isoscaling p/p yield ratios. By combining data and simulations at different beam energies, it should be possible to place constraints on the slope of symmetry energy (L) and effective mass splitting with reasonable uncertainties.

  11. Analysis of Illinois Home Performance with ENERGY STAR® Measure Packages

    SciTech Connect (OSTI)

    Baker, J.; Yee, S.; Brand, L.

    2013-09-01

    Through the Chicagoland Single Family Housing Characterization and Retrofit Prioritization report, the Partnership for Advanced Residential Retrofit research team characterized 15 housing types in the Chicagoland region based on assessor data, utility billing history, and available data from prior energy efficiency programs. Within these 15 groups, a subset showed the greatest opportunity for energy savings based on BEopt Version 1.1 modeling of potential energy efficiency package options and the percent of the housing stock represented by each group. In this project, collected field data from a whole-home program in Illinois are utilized to compare marketplace-installed measures to the energy saving optimal packages previously developed for the 15 housing types. Housing type, conditions, energy efficiency measures installed, and retrofit cost information were collected from 19 homes that participated in the Illinois Home Performance with ENERGY STAR program in 2012, representing eight of the characterized housing groups. Two were selected for further case study analysis to provide an illustration of the differences between optimal and actually installed measures. Taken together, these homes are representative of 34.8% of the Chicagoland residential building stock. In one instance, actual installed measures closely matched optimal recommended measures.

  12. Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis

    SciTech Connect (OSTI)

    Yamaguchi, N.D.; Breazeale, K.

    1993-12-01

    The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

  13. Technology Assessment: Strategic Energy Analysis Center (SEAC) 2012 Highlights (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-02-01

    This fact sheet lists key analysis products produced by NREL in 2012. Like all NREL analysis products, these aim to increase the understanding of the current and future interactions and roles of energy policies, markets, resources, technologies, environmental impacts, and infrastructure. NREL analysis, data, and tools inform decisions as energy-efficient and renewable energy technologies advance from concept to commercial application.

  14. Annual Energy Consumption Analysis Report for Richland Middle School

    SciTech Connect (OSTI)

    Liu, Bing

    2003-12-18

    Richland Middle School is a single story, 90,000 square feet new school located in Richland, WA. The design team proposed four HVAC system options to serve the building. The proposed HVAC systems are listed as following: (1) 4-pipe fan coil units served by electrical chiller and gas-fired boilers, (2) Ground-source closed water loop heat pumps with water loop heat pumps with boiler and cooling tower, and (3) VAV system served by electrical chiller and gas-fired boiler. This analysis estimates the annual energy consumptions and costs of each system option, in order to provide the design team with a reasonable basis for determining which system is most life-cycle cost effective. eQuest (version 3.37), a computer-based energy simulation program that uses the DOE-2 simulation engine, was used to estimate the annual energy costs.

  15. Methods for point source analysis in high energy neutrino telescopes

    E-Print Network [OSTI]

    Jim Braun; Jon Dumm; Francesco De Palma; Chad Finley; Albrecht Karle; Teresa Montaruli

    2008-01-10

    Neutrino telescopes are moving steadily toward the goal of detecting astrophysical neutrinos from the most powerful galactic and extragalactic sources. Here we describe analysis methods to search for high energy point-like neutrino sources using detectors deep in the ice or sea. We simulate an ideal cubic kilometer detector based on real world performance of existing detectors such as AMANDA, IceCube, and ANTARES. An unbinned likelihood ratio method is applied, making use of the point spread function and energy distribution of simulated neutrino signal events to separate them from the background of atmospheric neutrinos produced by cosmic ray showers. The unbinned point source analyses are shown to perform better than binned searches and, depending on the source spectral index, the use of energy information is shown to improve discovery potential by almost a factor of two.

  16. U.S. Renewable Energy Policy and Industry

    SciTech Connect (OSTI)

    Zhou, Ella

    2015-10-01

    From 2005 to 2014, wind and solar power generation has seen an almost tenfold increase in the United States. Such rapid development is the result of a variety of federal and state, top-down and bottom-up drivers, as well as the macro-environment of cost-reduction globally and early adoption in Europe. This presentation, prepared for a meeting with China National Renewable Energy Center and National Energy Administration (of China), is a summary of some of the key drivers for renewable energy deployment in the United States.

  17. Analysis of the Chinese Market for Building Energy Efficiency

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components. This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of China’s policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.

  18. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    SciTech Connect (OSTI)

    Zhang, Jian; Xie, YuLong; Athalye, Rahul A.; Zhuge, Jing Wei; Rosenberg, Michael I.; Hart, Philip R.; Liu, Bing

    2015-06-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  19. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    SciTech Connect (OSTI)

    Zhang, Jian; Xie, YuLong; Athalye, Rahul A.; Zhuge, Jing Wei; Rosenberg, Michael I.; Hart, Philip R.; Liu, Bing

    2015-09-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  20. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides detailed analyses of the following policies to determine the impact they may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits.