Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Bottling Electricity: Storage as a Strategic Tool for Managing...  

Broader source: Energy.gov (indexed) [DOE]

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a...

2

Bottling Electricity: Storage as a Strategic Tool for Managing Variability  

Broader source: Energy.gov (indexed) [DOE]

Bottling Electricity: Storage as a Strategic Tool for Managing Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) The objectives of this report are to provide the Secretary of Energy with the Electricity Advisory Committee's proposed five-year plan for integrating basic and applied research on energy storage technology applications. This report recommends policies that the U.S. Department of Energy (DOE) should consider as it develops and implements an energy storage technologies program, as authorized by the Energy Independence and Security Act of 2007. Bottling Electricity: Storage as a Strategic Tool for Managing Variability

3

An Electric Bottle for Colloids  

Science Journals Connector (OSTI)

Particle concentration is a dominant control parameter for colloids and other soft matter systems. We demonstrate a simple technique, “dielectrophoretic equilibrium,” implemented as an “electric bottle,” a planar capacitor in a larger volume. The uniform E field in the capacitor traps particles in this force-free region at a higher density than in the zero field regions outside. We show how the technique measures the equation of state and we initiate and grow colloidal crystals. “Dielectrophoretic equilibria” enable the study of a complete concentration-dependent phase diagram from a single microscopic sample, obviating the previous need for preparing a large number of samples.

M. T. Sullivan; K. Zhao; A. D. Hollingsworth; R. H. Austin; W. B. Russel; P. M. Chaikin

2006-01-09T23:59:59.000Z

4

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid  

Broader source: Energy.gov (indexed) [DOE]

ELECTRICITY ADVISORY COMMITTEE MISSION The mission of the Electricity Advisory Committee is to provide advice to the U.S. Department of Energy in implementing the Energy Policy Act of 2005, executing the Energy Independence and Security Act of 2007, and modernizing the nation's electricity delivery infrastructure. ELECTRICITY ADVISORY COMMITTEE GOALS The goals of the Electricity Advisory Committee are to provide advice on: * Electricity policy issues pertaining to the U.S. Department of Energy * Recommendations concerning U.S. Department of Energy electricity programs and initiatives * Issues related to current and future capacity of the electricity delivery system (generation, transmission, and distribution, regionally and nationally)

5

The influence of long-term storage on the salinity of bottled seawater samples  

Science Journals Connector (OSTI)

An investigation is described which examines the influence of long-term storage on the salinity of bottled seawater samples in common soft glass bottles. Two ... months. The results show that long-term storage in...

S Alexander; Hans-Harald Hinrichsen

1986-01-01T23:59:59.000Z

6

Estimating the Value of Electricity Storage Resources in Electricity...  

Broader source: Energy.gov (indexed) [DOE]

Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The...

7

Agenda: Electricity Transmission, Storage and Distribution -...  

Broader source: Energy.gov (indexed) [DOE]

Electricity Transmission, Storage and Distribution - West Agenda: Electricity Transmission, Storage and Distribution - West A Public Meeting on the Quadrennial Energy Review,...

8

NV Energy Electricity Storage Valuation  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

9

Estimating the Value of Electricity Storage Resources in Electricity  

Broader source: Energy.gov (indexed) [DOE]

Estimating the Value of Electricity Storage Resources in Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The purpose of this report is to assist the U.S. Department of Energy (DOE) in 1) establishing a framework for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a variety of regions or markets, 3) analyzing current and potential issues that can affect the valuation of storage by investors at the wholesale and retail level, and 4) identifying areas for future research and development for electricity storage technologies and applications. EAC - Estimating the Value of Electricity Storage Resources in Electricity

10

Estimating the Value of Electricity Storage Resources in Electricity  

Broader source: Energy.gov (indexed) [DOE]

Estimating the Value of Electricity Storage Resources in Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The purpose of this report is to assist the U.S. Department of Energy (DOE) in 1) establishing a framework for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a variety of regions or markets, 3) analyzing current and potential issues that can affect the valuation of storage by investors at the wholesale and retail level, and 4) identifying areas for future research and development for electricity storage technologies and applications. EAC - Estimating the Value of Electricity Storage Resources in Electricity

11

Electric thermal storage demonstration program  

SciTech Connect (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-02-01T23:59:59.000Z

12

Electric thermal storage demonstration program  

SciTech Connect (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-01-01T23:59:59.000Z

13

Electric thermal storage demonstration program  

SciTech Connect (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-01-01T23:59:59.000Z

14

Electric thermal storage demonstration program  

SciTech Connect (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-02-01T23:59:59.000Z

15

Definition: Electricity Storage Technologies | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Electricity Storage Technologies Technologies that can store electricity to be used at a later time. These devices require a mechanism to convert alternating current (AC) electricity into another form for storage, and then back to AC electricity. Common forms of electricity storage include batteries, flywheels, and pumped hydro. Electricity storage can provide backup power, peaking power, and ancillary services, and can store excess electricity produced by renewable energy resources when available.[1] Related Terms electricity generation References ↑ https://www.smartgrid.gov/category/technology/electricity_storage_technologies [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid,

16

Economic analysis of electric energy storage.  

E-Print Network [OSTI]

??This thesis presents a cost analysis of grid-connected electric energy storage. Various battery energy storage technologies are considered in the analysis. Life-cycle cost analysis is… (more)

Poonpun, Piyasak

2006-01-01T23:59:59.000Z

17

Center for Electrical Energy Storage Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Energy Storage DOE Logo Electrical Energy Storage DOE Logo Focus Areas 3D Interface Architectures Dynamically Responsive Interfaces Control of Interfacial Processes Theory Search Argonne ... Search Argonne Home >Center for Electrical Energy Storage > Home Directorate & Principal Investigators Management Council Executive Committee Research Staff External Advisory Committee News Science Highlights Publications & Presentations CEES-Authored and Co-Authored Cover Stories Peer-Reviewed Publications Presentations Patents Frontiers in Energy Research Awards Jobs at CEES Energy Frontier Research Centers at Argonne Center for Electrical Energy Storage - an Energy Frontier Research Center Above: An artistic rendition showing a metal-fluoride stabilized surface structure at a lithium cobalt oxide

18

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

density of di?erent electrical energy stor- age systems (carbonate in electrical energy storage applications,”challenges facing electrical energy storage,” MRS Bulletin,

Wang, Hainan

2013-01-01T23:59:59.000Z

19

DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with...  

Broader source: Energy.gov (indexed) [DOE]

EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) DOEEPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) The Electricity...

20

AB Levitator and Electricity Storage  

E-Print Network [OSTI]

The author researched this new idea - support of flight by any aerial vehicles at significant altitude solely by the magnetic field of the planet. It is shown that current technology allows humans to create a light propulsion (AB engine) which does not depend on air, water or ground terrain. Simultaniosly, this revolutionary thruster is a device for the storage of electricity which is extracted and is replenished (during braking) from/into the storage with 100 percent efficiency. The relative weight ratio of this engine is 0.01 - 0.1 (from thrust). For some types of AB engine (toroidal form) the thrust easily may be changed in any direction without turning of engine. The author computed many projects using different versions of offered AB engine: small device for levitation-flight of a human (including flight from Earth to Outer Space), fly VTOL car (track), big VTOL aircrat, suspended low altitude stationary satellite, powerful Space Shuttle-like booster for travel to the Moon and Mars without spending energ...

Bolonkin, A

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

22

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

23

Electricity storage for short term power system service (Smart...  

Open Energy Info (EERE)

Electricity storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service...

24

Combination of pulsed electric field processing and antimicrobial bottle for extending microbiological shelf-life of pomegranate juice  

Science Journals Connector (OSTI)

Abstract Pomegranate juice was processed using bench top (7.2 L/h flow rate, 35 kV/cm field strength, 72 µs total treatment time) and pilot scale (100 L/h flow rate, 35 kV/cm field strength, 281 µs total treatment time) continuous pulsed electric field (PEF) processing systems. The treated juice was packaged in PET bottles or PET bottles coated with potassium sorbate and sodium benzoate, and stored at 4 °C for 84 days. Samples were assessed every 7 days for total aerobic bacteria and yeast and mold. Untreated juice had less than one week of shelf-life, while untreated juices in antimicrobial bottles had 56 days. Juices treated with PEF alone had a shelf-life of 21 days (bench scale) and over 84 days (pilot scale). Juices treated with PEF and stored in antimicrobial bottles had a shelf-life over 84 days for both scale tests, which significantly extended the microbiological shelf-life of pomegranate juice. Industrial relevance Pulsed electric field (PEF), one of novel non-thermal processing technologies, has been studied intensively worldwide for the last decades. However, most of them were done at laboratory scale and few were at pilot or commercial scale. In addition, PEF processing alone may not provide enough shelf-life of juice as juice industry expects. The work in this paper shows the side-by-side comparison of PEF processing at lab and pilot scales and demonstrates that the combination of PEF with antimicrobial battle packaging significantly extended the shelf-life of juice. The use of a large scale PEF processing system and the combination of antimicrobial packaging provide juice manufacturers an innovate approach for enhancing the safety and extending the shelf-life of juice products.

Tony Z. Jin; Mingming Guo; Ruijin Yang

2014-01-01T23:59:59.000Z

25

Battery Chargers | Electrical Power Conversion and Storage  

Broader source: Energy.gov (indexed) [DOE]

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

26

Electrostatic bottle for long-time storage of fast ion beams  

Science Journals Connector (OSTI)

A technique for storage of fast-ion beams (keV) using only electrostatic fields is presented. The fast-ion trap is designed like an optical resonator, whose electrode configuration allows for a very large field-free region, easy access into the trap by various probes, a simple ion loading technique, and a broad acceptance range for the initial kinetic energies of the ions. Such a fast-ion storage device opens up many experimental possibilities, a few of which are presented.

D. Zajfman; O. Heber; L. Vejby-Christensen; I. Ben-Itzhak; M. Rappaport; R. Fishman; M. Dahan

1997-03-01T23:59:59.000Z

27

A National Grid Energy Storage Strategy - Electricity Advisory Committee -  

Broader source: Energy.gov (indexed) [DOE]

Grid Energy Storage Strategy - Electricity Advisory Grid Energy Storage Strategy - Electricity Advisory Committee - December 2013 A National Grid Energy Storage Strategy - Electricity Advisory Committee - December 2013 The Electricity Advisory Committee (EAC) represents a wide cross section of electricity industry stakeholders. This document presents the EAC's vision for a national energy storage strategic plan. It provides an outline for guidance, alignment, coordination, and inspiration for governments, businesses, advocacy groups, academics, and others who share a similar vision for energy storage. The strategy addresses applications of electric storage technologies that optimize the performance of the power grid once electric power has been generated and delivered to the network. It aims to provide a framework of

28

DOE Hydrogen Analysis Repository: Emissions Analysis of Electricity Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emissions Analysis of Electricity Storage with Hydrogen Emissions Analysis of Electricity Storage with Hydrogen Project Summary Full Title: Emissions Analysis of Electricity Storage with Hydrogen Project ID: 269 Principal Investigator: Amgad Elgowainy Brief Description: Argonne National Laboratory examined the potential fuel cycle energy and emissions benefits of integrating hydrogen storage with renewable power generation. ANL also examined the fuel cycle energy use and emissions associated with alternative energy storage systems, including pumped hydro storage (PHS), compressed air energy storage (CAES), and vanadium-redox batteries (VRB). Keywords: Hydrogen; Emissions; Greenhouse gases (GHG); Energy storage; Life cycle analysis Performer Principal Investigator: Amgad Elgowainy Organization: Argonne National Laboratory (ANL)

29

Electric Power Industry Needs for Grid-Scale Storage Applications |  

Broader source: Energy.gov (indexed) [DOE]

Industry Needs for Grid-Scale Storage Applications Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing limitations of the electricity infrastructure and meet the increasing demand for renewable energy use. Widespread integration of energy storage devices offers many benefits, including the following: Alleviating momentary electricity interruptions Meeting peak demand Postponing or avoiding upgrades to grid infrastructure Facilitating the integration of high penetrations of renewable energy Providing other ancillary services that can improve the stability and resiliency of the electric grid Electric Power Industry Needs for Grid-Scale Storage Applications More Documents & Publications

30

Electricity Storage and the Hydrogen-Chlorine Fuel Cell.  

E-Print Network [OSTI]

?? Electricity storage is an essential component of the transforming energy marketplace. Its absence at any significant scale requires that electricity producers sit ready to… (more)

Rugolo, Jason Steven

2011-01-01T23:59:59.000Z

31

Third Generation Flywheels for electric storage  

SciTech Connect (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

32

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network [OSTI]

Survey of Electric Storage Tank Water Heater Efficiency andSurvey of Electric Storage Tank Water Heater Efficiency andby electric resistance storage tank water heaters (geysers),

Johnson, Alissa

2013-01-01T23:59:59.000Z

33

Calculation of the ultracold neutron upscattering loss probability in fluid walled storage bottles using experimental measurements of the liquid thermomechanical properties of fomblin  

Science Journals Connector (OSTI)

Presently, the most accurate values of the free neutron beta-decay lifetime result from measurements using fluid-coated ultacold neutron (UCN) storage bottles. The purpose of this work is to investigate the temperature-dependent UCN loss rate from these storage systems. To verify that the surface properites of fomblin films are the same as the bulk properties, we present experimental measurements of the properties of a liquid “fomblin” surface obtained by the quasielastic scattering of laser light. The properties include the surface tension and viscosity as functions of temperature. The results are compared to measurements of the bulk fluid properties. We then calculate the upscattering rate of UCNs from thermally excited surface capillary waves on the liquid surface and compare the results to experimental measurements of the UCN lifetime in fomblin-fluid-walled UCN storage bottles, and show that the excess storage loss rate for UCN energies near the fomblin potential can be explained. The rapid temperature dependence of the fomblin storage lifetime is explained by our analysis.

S. K. Lamoreaux and R. Golub

2002-10-28T23:59:59.000Z

34

NREL: Energy Analysis: Electric System Flexibility and Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric System Flexibility and Storage Electric System Flexibility and Storage Options for Increasing Electric System Flexibility to Accommodate Higher Levels of Variable Renewable Electricity Increased electric system flexibility, needed to enable electricity supply-demand balance with high levels of renewable generation, can come from a portfolio of supply- and demand-side options, including flexible conventional generation, grid storage, curtailment of some renewable generation, new transmission, and more responsive loads. NREL's electric system flexibility studies investigate the role of various electric system flexibility options on large-scale deployment of renewable energy. NREL's electric system flexibility analyses show that: Key factors in improving grid flexibility include (1) increasing the

35

Advanced Materials and Devices for Stationary Electrical Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Materials and Devices for Stationary Electrical Energy Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to cost-effective electricity is the backbone of the U.S. economy, and electrical energy storage is an integral element in this system. Without significant investments in stationary electrical energy storage, the current electric grid infrastructure will increasingly struggle to provide reliable, affordable electricity, jeopardizing the transformational changes envisioned for a modernized grid. Investment in energy storage is essential for keeping pace with the increasing demands for electricity arising from continued growth in U.S. productivity, shifts in and continued expansion of national cultural imperatives (e.g., the distributed

36

Nonaqueous electrolyte for electrical storage devices  

DOE Patents [OSTI]

Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

McEwen, Alan B. (Melrose, MA); Yair, Ein-Eli (Waltham, MA)

1999-01-01T23:59:59.000Z

37

Managing Wind-based Electricity Generation and Storage  

E-Print Network [OSTI]

Managing Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable

Sadeh, Norman M.

38

Electrical energy storage systems: A comparative life cycle cost analysis  

Science Journals Connector (OSTI)

Abstract Large-scale deployment of intermittent renewable energy (namely wind energy and solar PV) may entail new challenges in power systems and more volatility in power prices in liberalized electricity markets. Energy storage can diminish this imbalance, relieving the grid congestion, and promoting distributed generation. The economic implications of grid-scale electrical energy storage technologies are however obscure for the experts, power grid operators, regulators, and power producers. A meticulous techno-economic or cost-benefit analysis of electricity storage systems requires consistent, updated cost data and a holistic cost analysis framework. To this end, this study critically examines the existing literature in the analysis of life cycle costs of utility-scale electricity storage systems, providing an updated database for the cost elements (capital costs, operational and maintenance costs, and replacement costs). Moreover, life cycle costs and levelized cost of electricity delivered by electrical energy storage is analyzed, employing Monte Carlo method to consider uncertainties. The examined energy storage technologies include pumped hydropower storage, compressed air energy storage (CAES), flywheel, electrochemical batteries (e.g. lead–acid, NaS, Li-ion, and Ni–Cd), flow batteries (e.g. vanadium-redox), superconducting magnetic energy storage, supercapacitors, and hydrogen energy storage (power to gas technologies). The results illustrate the economy of different storage systems for three main applications: bulk energy storage, T&D support services, and frequency regulation.

Behnam Zakeri; Sanna Syri

2015-01-01T23:59:59.000Z

39

Nanostructures for Electrical Energy Storage (NEES) | U.S. DOE...  

Office of Science (SC) Website

Nanostructures for Electrical Energy Storage (NEES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events...

40

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Broader source: Energy.gov (indexed) [DOE]

Storage: The Key to a Reliable, Clean Electricity Supply Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

42

Electric utility applications of hydrogen energy storage systems  

SciTech Connect (OSTI)

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

43

Electric Storage in California's Commercial Buildings  

E-Print Network [OSTI]

Distributed photovoltaic generation and energy storageenergy management in buildings and microgrids with e.g. installed Photovoltaic (energy storage, TS – thermal storage, FB – Flow Battery, AC – Absorption Chiller, ST – solar thermal system, PV – photovoltaic.

Stadler, Michael

2014-01-01T23:59:59.000Z

44

Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Developing and Developed World Alike Title Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Developing and Developed World Alike Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-6308E Year of Publication 2013 Authors DeForest, Nicholas, Gonçalo Mendes, Michael Stadler, Wei Feng, Judy Lai, and Chris Marnay Conference Name ECEEE 2013 Summer Study 3-8 June 2013, Belambra Les Criques, France Date Published 06/2013 Conference Location Belambra Les Criques, France Keywords electricity, energy storage, Energy System Planning & Grid Integration, peakdemand mitigation, thermal Abstract In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity

45

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

and solar thermal collectors; electrical storage, flowis disallowed; 5. a low storage, PV, and solar thermal priceand heat storage; heat exchangers for application of solar

Stadler, Michael

2008-01-01T23:59:59.000Z

46

An electric thermal storage marketing feasibility study  

SciTech Connect (OSTI)

The author presents a study undertaken to determine the market potential of a cooling storage rebate program in the Orange and Rockland service territory. The study was also designed to provide insight into which customer groups are the most likely candidates for cool storage. The information gained from this study is useful for both long term demand side planning and in focusing efforts cost effectively on future cool storage marketing programs.

Onofry, R. (Orange and Rockland Utilities (US))

1987-01-01T23:59:59.000Z

47

Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric Vehicles.  

E-Print Network [OSTI]

??This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated… (more)

Moshirvaziri, Mazhar

2012-01-01T23:59:59.000Z

48

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network [OSTI]

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

Niehus, T. L.

1994-01-01T23:59:59.000Z

49

Effect of Heat and Electricity Storage and Reliability on Microgrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effect of Heat and Electricity Storage and Reliability on Microgrid Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Title Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Publication Type Report Year of Publication 2009 Authors Stadler, Michael, Chris Marnay, Afzal S. Siddiqui, Judy Lai, Brian Coffey, and Hirohisa Aki Pagination 106 Date Published 03/2006 Publisher LBNL City Berkeley Keywords consortium for electric reliability technology solutions (certs), energy analysis and environmental impacts department Abstract Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals:

50

Review of electrical energy storage system for vehicular applications  

Science Journals Connector (OSTI)

Abstract Recently, automotive original equipment manufacturers have focused their efforts on developing greener propulsion solutions in order to meet the societal demand and ecological need for clean transportation, so the development of new energy vehicle (NEV) has become a consensus among governments and automotive enterprises. Efficient electrical energy storage system (EESS) appears to be very promising for meeting the rapidly increased requirements of vehicular applications. It is necessary to understand performances of electrical energy storage technologies. Therefore, this paper reviews the various electrical energy storage technologies and their latest applications in vehicle, such as battery energy storage (BES), superconducting magnetic energy storage (SMES), flywheel energy storage (FES), ultra-capacitor (UC) energy storage (UCES) and hybrid energy storage (HES). The research priorities and difficulties of each electrical energy storage technology are also presented and compared. Afterwards, the key technologies of EESS design for vehicles are presented. In addition, several conventional \\{EESSs\\} for vehicle applications are also analyzed; the comparison on advantages and disadvantages of various conventional \\{EESSs\\} is highlighted. From the rigorous review, it is observed that almost all current conventional \\{EESSs\\} for vehicles cannot meet a high-efficiency of power flow over the full operation range; optimization of EESS and improved control strategies will become an important research topic. Finally, this paper especially focuses on a type of linear engine, a brand new automotive propulsion system used for NEV; the guiding principle of EESS design for the new type of linear engine is proposed, an overview of a novel hybrid EESS based on hybrid power source and series–parallel switchover of UC with high efficiency under wide power flow range for the type of linear engine is presented, and advanced features of the novel hybrid EESS are highlighted.

Guizhou Ren; Guoqing Ma; Ning Cong

2015-01-01T23:59:59.000Z

51

Tensor electric polarizability of the deuteron in storage-ring experiments  

E-Print Network [OSTI]

The tensor electric polarizability of the deuteron gives important information about spin-dependent nuclear forces. If a resonant horizontal electric field acts on a deuteron beam circulating into a storage ring, the tensor electric polarizability stimulates the buildup of the vertical polarization of the deuteron (the Baryshevsky effect). General formulas describing this effect have been derived. Calculated formulas agree with the earlier obtained results. The problem of the influence of tensor electric polarizability on spin dynamics in such a deuteron electric-dipole-moment experiment in storage rings has been investigated. Doubling the resonant frequency used in this experiment dramatically amplifies the Baryshevsky effect and provides the opportunity to make high-precision measurements of the deuteron's tensor electric polarizability.

Alexander J. Silenko

2007-01-13T23:59:59.000Z

52

Tensor electric polarizability of the deuteron in storage-ring experiments  

SciTech Connect (OSTI)

The tensor electric polarizability of the deuteron gives important information about spin-dependent nuclear forces. If a resonant horizontal electric field acts on a deuteron beam circulating into a storage ring, the tensor electric polarizability stimulates the buildup of the vertical polarization of the deuteron (the Baryshevsky effect). General formulas describing this effect have been derived. Calculated formulas agree with the earlier obtained results. The problem of the influence of tensor electric polarizability on spin dynamics in such a deuteron electric-dipole-moment experiment in storage rings has been investigated. Doubling the resonant frequency used in this experiment dramatically amplifies the Baryshevsky effect and provides the opportunity to make high-precision measurements of the deuteron's tensor electric polarizability.

Silenko, Alexander J. [Institute of Nuclear Problems, Belarusian State University, Minsk 220080 (Belarus)

2007-01-15T23:59:59.000Z

53

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

lead/acid battery, and thermal storage, capabilities, withhour electrical flow battery 8 thermal Not all constraintslifetime ( a) thermal storage 11 flow battery absorption

Stadler, Michael

2008-01-01T23:59:59.000Z

54

Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric Vehicles  

E-Print Network [OSTI]

Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric@elpl.snu.ac.kr Abstract--To improve the cycle efficiency and peak output power density of energy storage systems in electric vehicles (EVs), supercapacitors have been proposed as auxiliary energy storage elements

Pedram, Massoud

55

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...and integrate energy storage. The...characteristics of the grid as a supply chain...electric power infrastructure functions largely...a majority of energy is generated...as plug-in hybrids (PHEVs), provided...stability, high-energy density, safety...automotive and grid applications...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

56

Role of Energy Storage with Renewable Electricity Generation  

SciTech Connect (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

57

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Broader source: Energy.gov [DOE]

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

58

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

SciTech Connect (OSTI)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

2009-11-01T23:59:59.000Z

59

Design and evaluation of seasonal storage hydrogen peak electricity supply system  

E-Print Network [OSTI]

The seasonal storage hydrogen peak electricity supply system (SSHPESS) is a gigawatt-year hydrogen storage system which stores excess electricity produced as hydrogen during off-peak periods and consumes the stored hydrogen ...

Oloyede, Isaiah Olanrewaju

2011-01-01T23:59:59.000Z

60

Research on simulation of ship electric propulsion system with flywheel energy storage system  

Science Journals Connector (OSTI)

Flywheel energy storage has been widely used to ... electric power quality. This paper designed a flywheel energy storage device to improve ship electric propulsion system power grid quality. The practical mathem...

Chunling Xie; Conghui Zhang; Jen-Yuan James Chang

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Research on simulation of ship electric propulsion system with flywheel energy storage system  

Science Journals Connector (OSTI)

Flywheel energy storage has been widely used to improve the ground electric power quality. This paper designed a flywheel energy storage device to improve ship electric propulsion system power grid quality. The practical mathematical models of flywheel ...

Chunling Xie; Conghui Zhang; Jen-Yuan James Chang

2011-06-01T23:59:59.000Z

62

Designing a residential hybrid electrical energy storage system based on the energy buffering strategy  

Science Journals Connector (OSTI)

Due to severe variation in load demand over time, utility companies generally raise electrical energy price during periods of high load demand. A grid-connected hybrid electrical energy storage (HEES) system can help residential users lower their electric ... Keywords: electric bill savings, energy management, hybrid electrical energy storage system

Di Zhu; Siyu Yue; Yanzhi Wang; Younghyun Kim; Naehyuck Chang; Massoud Pedram

2013-09-01T23:59:59.000Z

63

Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Demonstrates the application of an artificial neural network (ANN) for modeling the energy storage system of a hybrid electric vehicle.

Bhatikar, S. R.; Mahajan, R. L.; Wipke, K.; Johnson, V.

1999-08-01T23:59:59.000Z

64

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

efficiency requirements - Maximum emission limits Investment constraints: - Payback period is constrained Storage constraints: - Electricity stored is limited by battery

Stadler, Michael

2008-01-01T23:59:59.000Z

65

Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)  

SciTech Connect (OSTI)

Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

66

Electricity storage for short term power system service (Smart Grid  

Open Energy Info (EERE)

storage for short term power system service (Smart Grid storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

The Role of Energy Storage with Renewable Electricity Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

87 87 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-47187 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan Prepared under Task No. WER8.5005 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

68

Electric Storage Partners / GeoBATTERY | Open Energy Information  

Open Energy Info (EERE)

Storage Partners / GeoBATTERY Storage Partners / GeoBATTERY Jump to: navigation, search Name Electric Storage Partners / GeoBATTERY Address P.O. Box 3321 Place Austin, Texas Zip 78764 Sector Efficiency Product Manufacturer and developer of utility-scale bulk grid storage systems for the electric utilities Website http://www.geobattery.com/ Coordinates 30.2667°, -97.7428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2667,"lon":-97.7428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

E-Print Network [OSTI]

N ATIONAL L ABORATORY Thermal Energy Storage for Electricity20, 2012. I. Dincer, On thermal energy storage systems andin research on cold thermal energy storage, International

DeForest, Nicholas

2014-01-01T23:59:59.000Z

70

NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

2013-06-01T23:59:59.000Z

71

Energy Storage Activities in the United States Electricity Grid. May 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Activities in the United States Electricity Grid. Energy Storage Activities in the United States Electricity Grid. May 2011 Energy Storage Activities in the United States Electricity Grid. May 2011 Energy storage technologies offer cost-effective flexibility and ancillary services needed by the U.S power grid. As policy reforms and decreasing technology costs facilitate market penetration, energy storage technologies offer increasingly competitive alternative means for utilities to engage these ancillary services. This report prepared by the Electricity Advisory Committee summarizes energy storage technology activities and projects in the U.S. electric power grid as of May 2011. Energy Storage Activities in the United States Electricity Grid. May 2011 More Documents & Publications Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012)

72

Cost-Effective Design of a Hybrid Electrical Energy Storage System for Electric Vehicles  

E-Print Network [OSTI]

of the battery cycle efficiency and state of health, characteristics of the supercapacitor bank, and dynamics energy storage system comprised of Li-ion batteries only. 1. INTRODUCTION Electric vehicles (EVs) have highly dependent on the intrinsic characteristics of Li-ion batteries. The cycle efficiency degradation

Pedram, Massoud

73

DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA  

Broader source: Energy.gov (indexed) [DOE]

EPRI 2013 Electricity Storage Handbook in Collaboration with EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) The Electricity Storage Handbook is a how-to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluations of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical

74

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

electrochemical capacitor energy storage systems. 1.2 Energyto electrochemical energy storage in TiO 2 (anatase)3D nanoarchitec- tures for energy storage and conversion,”

Wang, Hainan

2013-01-01T23:59:59.000Z

75

Nanowire modified carbon fibers for enhanced electrical energy storage  

Science Journals Connector (OSTI)

The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density long life cycles and high charge/discharge efficiency. Recently there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace automobiles and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities leading to material systems with reduced volume and/or weight. Due to their superior materials properties carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore it can be an excellent candidate for structural energy storage applications. Hence this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

Mohammad Arif Ishtiaque Shuvo; Tzu-Liang (Bill) Tseng; Md. Ashiqur Rahaman Khan; Hasanul Karim; Philip Morton; Diego Delfin; Yirong Lin

2013-01-01T23:59:59.000Z

76

Invisible fingerprints Spray bottle  

E-Print Network [OSTI]

Invisible fingerprints Procedure Materials Ninhydrin Methanol Spray bottle Index card Hairdryer the surface and leave behind an impression of the finger's ridge pattern. These prints are invisible

Weston, Ken

77

Energy Storage Activities in the United States Electricity Grid. May 2011  

Broader source: Energy.gov (indexed) [DOE]

Storage Activities in the United States Electricity Grid Storage Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair Senior Vice President, Transmission KEMA Honorable Lauren Azar Commissioner Wisconsin Public Utilities Commission Frederick Butler President & Chief Executive Officer Butler Advisory Services Richard Cowart Principal Regulatory Assistance Project and Chair, Electricity Advisory Committee Roger Duncan General Manager (Ret.) Austin Energy Robert Gramlich Senior Vice President, Public Policy American Wind Energy Association Brad Roberts Chairman Electricity Storage Association Honorable Tom Sloan Representative Kansas House of Representatives Wanda Reder Vice President

78

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage techno

79

Energy Storage Activities in the United States Electricity Grid. May 2011 |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities in the United States Electricity Grid. Activities in the United States Electricity Grid. May 2011 Energy Storage Activities in the United States Electricity Grid. May 2011 Energy storage technologies offer cost-effective flexibility and ancillary services needed by the U.S power grid. As policy reforms and decreasing technology costs facilitate market penetration, energy storage technologies offer increasingly competitive alternative means for utilities to engage these ancillary services. This report prepared by the Electricity Advisory Committee summarizes energy storage technology activities and projects in the U.S. electric power grid as of May 2011. Energy Storage Activities in the United States Electricity Grid. May 2011 More Documents & Publications Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012)

80

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network [OSTI]

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility… (more)

Peng, Dan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal Energy Storage: It's not Just for Electric Cost Savings Anymore  

E-Print Network [OSTI]

Large cool Thermal Energy Storage (TES), typically ice TES or chilled water (CHW) TES, has traditionally been thought of, and used for, managing time-of-day electricity use to reduce the cost associated with electric energy and demand charges...

Andrepont, J. S.

2014-01-01T23:59:59.000Z

82

Modelling challenges for battery materials and electrical energy storage  

Science Journals Connector (OSTI)

Many vital requirements in world-wide energy production, from the electrification of transportation to better utilization of renewable energy production, depend on developing economical, reliable batteries with improved performance characteristics. Batteries reduce the need for gasoline and liquid hydrocarbons in an electrified transportation fleet, but need to be lighter, longer-lived and have higher energy densities, without sacrificing safety. Lighter and higher-capacity batteries make portable electronics more convenient. Less expensive electrical storage accelerates the introduction of renewable energy to electrical grids by buffering intermittent generation from solar or wind. Meeting these needs will probably require dramatic changes in the materials and chemistry used by batteries for electrical energy storage. New simulation capabilities, in both methods and computational resources, promise to fundamentally accelerate and advance the development of improved materials for electric energy storage. To fulfil this promise significant challenges remain, both in accurate simulations at various relevant length scales and in the integration of relevant information across multiple length scales. This focus section of Modelling and Simulation in Materials Science and Engineering surveys the challenges of modelling for energy storage, describes recent successes, identifies remaining challenges, considers various approaches to surmount these challenges and discusses the potential of these methods for future battery development. Zhang et al begin with atoms and electrons, with a review of first-principles studies of the lithiation of silicon electrodes, and then Fan et al examine the development and use of interatomic potentials to the study the mechanical properties of lithiated silicon in larger atomistic simulations. Marrocchelli et al study ionic conduction, an important aspect of lithium-ion battery performance, simulated by molecular dynamics. Emerging high-throughput methods allow rapid screening of promising new candidates for battery materials, illustrated for Li-ion olivine phosphates by Hajiyani et al . This collection includes descriptions of new techniques to model the chemistry at an electrode–electrolyte interface; Gunceler et al demonstrate coupling an electronic description of the electrode chemistry with the fluid electrolyte in a joint density functional theory method. Bridging to longer length scales to probe mechanical properties and transport, Preiss et al present a proof-of-concept phase field approach for a permeation model at an electrochemical interface, An and Jiang examine finite element simulations for transient deformation and transport in electrodes, and Haftabaradaran et al study the application of an analytical model to investigate the critical thickness for fracture in thick film electrodes. The focus section concludes with a study by Chung et al which combines modelling and experiment, examining the validity of the Bruggeman relation for porous electrodes. All of the papers were peer-reviewed following the standard procedure established by the Editorial Board of Modelling and Simulation in Materials Science and Engineering .

Richard P Muller; Peter A Schultz

2013-01-01T23:59:59.000Z

83

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation and Storage Technologies Volume 2 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

84

Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships  

E-Print Network [OSTI]

1 Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships Tor A. Johansen in order to implement energy storage in the kinetic and potential energy of the ship motion using the DP in order to relate the dynamic energy storage capacity to the maximum allowed ship position deviation

Johansen, Tor Arne

85

Simulating the Value of Advanced Electricity Storage: Initial Results from a Case Study  

E-Print Network [OSTI]

with the growing challenges of integrating renewable electricity generation. For example, a recent news article by the Pacific Northwest National Laboratory's assessment of energy storage for grid balancing and arbitrage, Inc in bulk energy storage using GCAES, the General Compression Advanced Energy StorageTM technology

Ford, Andrew

86

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage  

E-Print Network [OSTI]

energy and utility applications, such as pump hydro, compressed air, y-wheel and electrochemicalRoom-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart

Wang, Wei Hua

87

Plastic bottles > Remove lids (not recyclable)  

E-Print Network [OSTI]

Plastic bottles Please: > Remove lids (not recyclable) > Empty bottles > Rinse milk bottles, & other bottles if possible > Squash bottles www.st-andrews.ac.uk/estates/environment All types of plastic bottle accepted Clear, opaque and coloured bottles Labels can remain on X No plastic bags X No plastics

Brierley, Andrew

88

Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons  

E-Print Network [OSTI]

months of 2006. Thanks to Heriot­Watt University Physics Department. Storage and wind Offshore wind farms the Aluminium plant and the water- purification factory only when the wind blows. A third approach is storage

MacKay, David J.C.

89

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...represent an excellent energy storage technology for the integration of renewable resources. Their...available for grid applications, with...issues facing the integration of energy storage into the...identify their challenges, and provide...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

90

Materials Design and Discovery: Catalysis and Electrical Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Discovery: Catalysis and Discovery: Catalysis and Electrical Energy Storage Presenter: N ichols A . R omero, A LCF ESP p ost---doc: Anouar B enali, A LCF PI: L arry C urAss, A NL M SD a nd C NM Comments from a reviewer on "Material Design and Discovery" from a proposal § How c ould t his m achine w ith t hese p rograms b e u sed t o d esign a n ew s olar c ell? Or a n ew c ure f or A IDS? O r a n ew h igh---T s uperconductor? T his i s n ot i ntended a s a trivial q uesAon. T he p resent m ethod o f D ISCOVERY r elies o n t he t rained h uman mind ( insight) a nd e xperiment ( serendipity). C omputaAonal s cience s o f ar h as n ot delivered a ny n ew d iscoveries b ecause i t l acks t he p ossibility o f s erendipity. T he greatest s uccess o f c omputaAonal c hemistry h as b een i mproved i nsight i nto t he way m aterial b ehaves

91

Cutting Down Electricity Cost in Internet Data Centers by Using Energy Storage  

E-Print Network [OSTI]

Cutting Down Electricity Cost in Internet Data Centers by Using Energy Storage Yuanxiong Guo, Zongrui Ding, Yuguang Fang, Dapeng Wu Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA Email: {guoyuanxiong@, dingzr@, fang@ece., wu@ece.}ufl.edu Abstract--Electricity

Latchman, Haniph A.

92

SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage  

E-Print Network [OSTI]

SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage Aditya Mishra, David,irwin,shenoy,kurose}@cs.umass.edu Ting Zhu Binghamton University tzhu@binghamton.edu ABSTRACT Market-based electricity pricing provides consumers an op- portunity to lower their electric bill by shifting consump- tion to low price periods

Shenoy, Prashant

93

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

Ref. [1]) and (b) hybrid diesel/electric rubber-tired gantryhybrid bus and a diesel/electric hybrid gantry crane1]) and (b) hy- brid diesel/electric rubber-tired gantry

Wang, Hainan

2013-01-01T23:59:59.000Z

94

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

energy storage systems (EES) have been the subject of intense study as they constitute an essential element in the development of sustainable energy

Wang, Hainan

2013-01-01T23:59:59.000Z

95

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Broader source: Energy.gov (indexed) [DOE]

52: Pacific Gas & Electric, Compressed Air Energy Storage 52: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ended 12/31/13. DOE will consider late submissions to the extent practicable. Comments should be marked "PG&E Compressed Air Energy Storage Draft EA

96

Fermionic Klein bottle  

Science Journals Connector (OSTI)

We study the family of c=2 conformal theories corresponding to a motion of a bosonic string on a Klein bottle. For special values of the parameters the theory can be presented in an apparently different formulation. In particular we study in detail the fermionic representation of this model. The equivalence to toroidal and orbifold models is also observed.

S. Elitzur and N. Malkin

1990-08-15T23:59:59.000Z

97

Urban Electric Power Takes Energy Storage from Startup to Grid-Scale |  

Broader source: Energy.gov (indexed) [DOE]

Urban Electric Power Takes Energy Storage from Startup to Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25, 2013 - 12:42pm Addthis Learn how the CUNY Energy Institute is creating safe, low cost, rechargeable, long lifecycle batteries that could be used to store renewable energy. | Video courtesy of the Energy Department. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The CUNY Energy Institute developed a low-cost zinc-anode rechargeable battery that can be used for grid-scale energy storage. Building on this technology, ARPA-E funded the CUNY Energy Institute to develop a long-lasting, fully rechargeable battery that can store renewable energy for future grid-use at any location. In 2012, Urban Electric Power was formed to commercialize the

98

Urban Electric Power Takes Energy Storage from Startup to Grid-Scale |  

Broader source: Energy.gov (indexed) [DOE]

Urban Electric Power Takes Energy Storage from Startup to Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25, 2013 - 12:42pm Addthis Learn how the CUNY Energy Institute is creating safe, low cost, rechargeable, long lifecycle batteries that could be used to store renewable energy. | Video courtesy of the Energy Department. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The CUNY Energy Institute developed a low-cost zinc-anode rechargeable battery that can be used for grid-scale energy storage. Building on this technology, ARPA-E funded the CUNY Energy Institute to develop a long-lasting, fully rechargeable battery that can store renewable energy for future grid-use at any location. In 2012, Urban Electric Power was formed to commercialize the

99

The operating schedule for battery energy storage companies in electricity market  

Science Journals Connector (OSTI)

This paper presents a series of operating schedules for Battery Energy Storage Companies (BESC) to provide peak ... shaving and spinning reserve services in the electricity markets under increasing wind penetrati...

Shengqi Zhang; Yateendra Mishra…

2013-12-01T23:59:59.000Z

100

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...the use of fossil fuels and related carbon...Compressed air storage is a...features, including pollution-free operation...resulting in higher fuel consumption and...6). Storage solutions based on the...400 Zn/air R&D 5.4 1...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The state of energy storage in electric utility systems and its effect on renewable energy resources  

SciTech Connect (OSTI)

This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

Rau, N.S.

1994-08-01T23:59:59.000Z

102

ESS 2012 Peer Review - Electrical Energy Storage R&D at PNNL - Vincent Sprenkle, PNNL  

Broader source: Energy.gov (indexed) [DOE]

PNNL Electrical Energy Storage (EES) PNNL Electrical Energy Storage (EES) R&D strategy Crosscutting science Advanced diagnostic study, NMR, TEM, etc. Electrochemical study * Mass/charge transport * Electrochemical * Flow, thermal, ... * Basic chemistry * Materials structure * Physical properties * Electrochemical activity * Reaction kinetics * Performance Computer Modeling Technology Transfer EES Technologies Novel redox flow batteries Next gen Na-batteries Low cost, long life Li-ion, New concepts, emerging technologies Grid Analytics * Roles of storage in US grids * Value, locations, targets Cost Analysis * Cost and performance requirements Academic/National Lab/Industrial Collaborations Next Generation Redox Flow Batteries Developed next generation redox flow battery (RFB) that can demonstrate substantial

103

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Broader source: Energy.gov (indexed) [DOE]

752: Pacific Gas & Electric, Compressed Air Energy Storage 752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ends 12/31/13. DOE will consider late submissions to the extent practicable. A notice of availability will be published in The Record (Stockton) and the

104

Impact of Storage on the Efficiency and Prices in Real-Time Electricity Markets  

E-Print Network [OSTI]

Impact of Storage on the Efficiency and Prices in Real-Time Electricity Markets Nicolas Gast Jean in dynamic real-time electricity markets. We consider that demand and renewable generation are stochastic of a competitive equilibrium when players are price-takers (they do not affect market prices). We further establish

Paris-Sud XI, Université de

105

Energy storage for frequency regulation on the electric grid .  

E-Print Network [OSTI]

??Ancillary services such as frequency regulation are required for reliable operation of the electric grid. Currently, the same traditional thermal generators that supply bulk power… (more)

Leitermann, Olivia

2012-01-01T23:59:59.000Z

106

Evaluation of distributed building thermal energy storage in conjunction with wind and solar electric power generation  

Science Journals Connector (OSTI)

Abstract Energy storage is often seen as necessary for the electric utility systems with large amounts of solar or wind power generation to compensate for the inability to schedule these facilities to match power demand. This study looks at the potential to use building thermal energy storage as a load shifting technology rather than traditional electric energy storage. Analyses are conducted using hourly electric load, temperature, wind speed, and solar radiation data for a 5-state central U.S. region in conjunction with simple computer simulations and economic models to evaluate the economic benefit of distributed building thermal energy storage (TES). The value of the TES is investigated as wind and solar power generation penetration increases. In addition, building side and smart grid enabled utility side storage management strategies are explored and compared. For a relative point of comparison, batteries are simulated and compared to TES. It is found that cooling TES value remains approximately constant as wind penetration increases, but generally decreases with increasing solar penetration. It is also clearly shown that the storage management strategy is vitally important to the economic value of TES; utility side operating methods perform with at least 75% greater value as compared to building side management strategies. In addition, TES compares fairly well against batteries, obtaining nearly 90% of the battery value in the base case; this result is significant considering TES can only impact building thermal loads, whereas batteries can impact any electrical load. Surprisingly, the value of energy storage does not increase substantially with increased wind and solar penetration and in some cases it decreases. This result is true for both TES and batteries and suggests that the tie between load shifting energy storage and renewable electric power generation may not be nearly as strong as typically thought.

Byron W. Jones; Robert Powell

2015-01-01T23:59:59.000Z

107

Energy storage for frequency regulation on the electric grid  

E-Print Network [OSTI]

Ancillary services such as frequency regulation are required for reliable operation of the electric grid. Currently, the same traditional thermal generators that supply bulk power also perform nearly all frequency regulation. ...

Leitermann, Olivia

2012-01-01T23:59:59.000Z

108

INTEGRATING WIND GENERATED ELECTRICITY WITH SPACE HEATING AND STORAGE BATTERIES.  

E-Print Network [OSTI]

??The world faces two major energy-related challenges: reducing greenhouse-gas emissions and improving energy security. Wind-electricity, a clean and environmentally sustainable energy source, appears promising. However,… (more)

Muralidhar, Anirudh

2011-01-01T23:59:59.000Z

109

Author's personal copy Reply to the comment ``Bottled drinking water: Water contamination  

E-Print Network [OSTI]

Author's personal copy Reply Reply to the comment ``Bottled drinking water: Water contamination glass is not a likely physical process to cause the concentra- tion differences found for the same water with the bottle walls or be due to the formation and dissolution of colloids in the water during storage

Filzmoser, Peter

110

Estimating the maximum potential revenue for grid connected electricity storage : arbitrage and regulation.  

SciTech Connect (OSTI)

The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.

Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

2012-12-01T23:59:59.000Z

111

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

SciTech Connect (OSTI)

Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

2013-11-13T23:59:59.000Z

112

A Storage Ring Experiment to Detect a Proton Electric Dipole Moment  

E-Print Network [OSTI]

A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}e\\cdot$cm by using polarized "magic" momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.

Anastassopoulos, V; Baartman, R; Bai, M; Baessler, S; Benante, J; Berz, M; Blaskiewicz, M; Bowcock, T; Brown, K; Casey, B; Conte, M; Crnkovic, J; Fanourakis, G; Fedotov, A; Fierlinger, P; Fischer, W; Gaisser, M O; Giomataris, Y; Grosse-Perdekamp, M; Guidoboni, G; Haciomeroglu, S; Hoffstaetter, G; Huang, H; Incagli, M; Ivanov, A; Kawall, D; Khazin, B; Kim, Y I; King, B; Koop, I A; Larsen, R; Lazarus, D M; Lebedev, V; Lee, M J; Lee, S; Lee, Y H; Lehrach, A; Lenisa, P; Sandri, P Levi; Luccio, A U; Lyapin, A; MacKay, W; Maier, R; Makino, K; Malitsky, N; Marciano, W J; Meng, W; Meot, F; Metodiev, E M; Miceli, L; Moricciani, D; Morse, W M; Nagaitsev, S; Nayak, S K; Orlov, Y F; Ozben, C S; Park, S T; Pesce, A; Pile, P; Polychronakos, V; Podobedov, B; Pretz, J; Ptitsyn, V; Ramberg, E; Raparia, D; Rathmann, F; Rescia, S; Roser, T; Sayed, H Kamal; Semertzidis, Y K; Senichev, Y; Sidorin, A; Silenko, A; Simos, N; Stahl, A; Stephenson, E J; Stroeher, H; Syphers, M J; Talman, J; Talman, R M; Tishchenko, V; Touramanis, C; Tsoupas, N; Venanzoni, G; Vetter, K; Vlassis, S; Won, E; Zavattini, G; Zelenski, A; Zioutas, K

2015-01-01T23:59:59.000Z

113

Gas storage and separation by electric field swing adsorption  

DOE Patents [OSTI]

Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

2013-05-28T23:59:59.000Z

114

Trace and ultratrace metals in bottled waters: Survey of sources worldwide and comparison with refillable metal bottles  

Science Journals Connector (OSTI)

Bottled waters from diverse natural and industrial sources are becoming increasingly popular worldwide. Several potentially harmful trace metals (Ag, Be, Li, Ge, Sb, Sc, Te, Th, U) are not monitored regularly in such waters. As a consequence, there is extremely limited data on the abundance and potential health impacts of many potentially toxic trace elements. Containers used for the storage of bottled waters might also increase trace metal levels above threshold limits established for human consumption by the EPA or WHO. Applying strict clean room techniques and sector field ICP–MS, 23 elements were determined in 132 brands of bottled water from 28 countries. In addition, leaching experiments with high purity water and various popular metal bottles investigated the release of trace metals from these containers. The threshold limits for elements such as Al, Be, Mn and U in drinking water were clearly exceeded in some waters. Several bottled waters had Li concentrations in the low mg/L range, a level which is comparable to blood plasma levels of patients treated against manic depression with Li-containing drugs. The rate of release of trace metals from metal bottles assessed after 13 days was generally low, with one exception: Substantial amounts of both Sb and Tl were released from a commercially available pewter pocket flask, exceeding international guidelines 5- and 11-fold, respectively. Trace metal levels of most bottled waters are below guideline levels currently considered harmful for human health. The few exceptions that exist, however, clearly reveal that health concerns are likely to manifest through prolonged use of such waters. The investigated coated aluminium and stainless steel bottles are harmless with respect to leaching of trace metals into drinking water. Pocket flasks, in turn, should be selected with great care to avoid contamination of beverages with harmful amounts of potentially toxic trace metals such as Sb and Tl.

Michael Krachler; William Shotyk

2009-01-01T23:59:59.000Z

115

Charging and Storage Infrastructure Design for Electric Vehicles MARJAN MOMTAZPOUR and PATRICK BUTLER, Virginia Tech  

E-Print Network [OSTI]

part of our societies. Smart grids are one of these modern systems that have attracted many research activities in recent years. Before utilizing the next generation of smart grids, we should have mining, electric vehicles, smart grids, storage, charging stations, synthetic populations. ACM Reference

Ramakrishnan, Naren

116

Seawater pumping as an electricity storage solution for photovoltaic energy systems  

Science Journals Connector (OSTI)

Abstract The stochastic nature of several renewable energy sources has raised the problem of designing and building storage facilities, which can help the electricity grid to sustain larger and larger contribution of renewable energy. Seawater pumped electricity storage is proposed as a good option for PV (Photovoltaic) or solar thermal power plants, located in suitable places close to the coast line. Solar radiation has a natural daily cycle, and storage reservoirs of limited capacity can substantially reduce the load to the electricity grid. Different modes of pump operation (fixed or variable speed) are considered, the preliminary sizing of the PV field and seawater reservoir is performed, and the results are comparatively assessed over a year-long simulated operation. The results show that PV pumped storage, even if not profitable in the present situation of the renewable energy Italian electricity market, is effective in decreasing the load on the transmission grid, and would possibly be attractive in the future, also in the light of developing off-grid applications.

Giampaolo Manfrida; Riccardo Secchi

2014-01-01T23:59:59.000Z

117

Advanced Redox Flow Batteries for Stationary Electrical Energy Storage  

SciTech Connect (OSTI)

This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

2012-03-19T23:59:59.000Z

118

Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.  

SciTech Connect (OSTI)

This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

2005-11-01T23:59:59.000Z

119

Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing  

SciTech Connect (OSTI)

The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

Katayama, I. [Interdisciplinary Research Center, Yokohama National University, Yokohama 240-8501 (Japan); Shimosato, H.; Bito, M.; Furusawa, K. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Adachi, M.; Zen, H.; Kimura, S.; Katoh, M. [UVSOR, Institute of Molecular Science, Okazaki 444-8585 (Japan); School of Physical Sciences, Graduate Universities for Advanced Studies (SOKENDAI), Okazaki 444-8585 (Japan); Shimada, M. [High Energy Accelerator Research Organization, KEK, Tsukuba 305-0801 (Japan); Yamamoto, N.; Hosaka, M. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ashida, M. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); PRESTO, JST (Japan)

2012-03-12T23:59:59.000Z

120

EMPTY CHEMICAL BOTTLES RECYCLING PROGRAM Empty Chemical Bottles Recycling includes all glass, plastic and metal bottles and containers that previously  

E-Print Network [OSTI]

, plastic and metal bottles and containers that previously contained hazardous or non-hazardous chemicals

Baker, Chris I.

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Economics of electric energy storage for energy arbitrage and regulation in New York  

Science Journals Connector (OSTI)

Unlike markets for storable commodities, electricity markets depend on the real-time balance of supply and demand. Although much of the present-day grid operates effectively without storage, cost-effective ways of storing electrical energy can help make the grid more efficient and reliable. We investigate the economics of two emerging electric energy storage (EES) technologies: sodium sulfur batteries and flywheel energy storage systems in New York state's electricity market. The analysis indicates that there is a strong economic case for EES installations in the New York City region for applications such as energy arbitrage, and that significant opportunities exist throughout New York state for regulation services. Benefits from deferral of system upgrades may be important in the decision to deploy EES. Market barriers currently make it difficult for energy-limited EES such as flywheels to receive revenue for voltage regulation. Charging efficiency is more important to the economics of EES in a competitive electricity market than has generally been recognized.

Rahul Walawalkar; Jay Apt; Rick Mancini

2007-01-01T23:59:59.000Z

122

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

123

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

124

American Electric Power (AEP): Mountaineer Carbon Dioxide Capture and Storage Demonstration (WITHDRAWN AT CONCLUSION OF PHASE 1)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

American Electric Power (AEP): American Electric Power (AEP): Mountaineer Carbon Dioxide Capture and Storage Demonstration (WITHDRAWN AT CONCLUSION OF PHASE 1) Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture, utilization and storage (CCUS) technologies offer great potential for reducing CO

125

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

2012-06-01T23:59:59.000Z

126

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

efficiency requirements - Maximum emission limits Investment constraints: - Payback period is constrained Storage constraints: - Electricity stored is limited by battery

Stadler, Michael

2009-01-01T23:59:59.000Z

127

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

128

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6719 6719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-560-46719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden Prepared under Task No. H278.3400 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

129

"1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" Virginia" "1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003 "2. North Anna","Nuclear","Virginia Electric & Power Co",1864 "3. Possum Point","Gas","Virginia Electric & Power Co",1733 "4. Chesterfield","Coal","Virginia Electric & Power Co",1639 "5. Surry","Nuclear","Virginia Electric & Power Co",1638 "6. Yorktown","Coal","Virginia Electric & Power Co",1141 "7. Tenaska Virginia Generating Station","Gas","Tenaska Virginia Partners LP",927 "8. Clover","Coal","Virginia Electric & Power Co",865

130

Chapter 1 - Energy Storage for Mitigating the Variability of Renewable Electricity Sources  

Science Journals Connector (OSTI)

Abstract Wind and solar power generation is growing quickly around the world, mainly to mitigate some of the negative environmental impacts of the electricity sector. However, the variability of these renewable sources of electricity poses technical and economical challenges when integrated on a large scale. Energy storage is being widely regarded as one of the potential solutions to deal with the variations of variable renewable electricity sources (VRES). This chapter presents an review of the state of technology, installations and some challenges of electrical energy storage (EES) systems. It particularly focuses on the applicability, advantages and disadvantages of various EES technologies for large-scale VRES integration. This chapter indicates that each challenge imposed by VRES requires a dierent set of EES characteristics to address the issue, and that there is no single EES technology that consistently outperforms the others in various applications. This chapter also discusses external factors, such as mineral availability and geographic limitations, that may aect the success of the widespread implementation of EES technologies.

Marc Beaudin; Hamidreza Zareipour; Anthony Schellenberg; William Rosehart

2015-01-01T23:59:59.000Z

131

Optimal Sizing of Energy Storage System in Solar Energy Electric Vehicle Using Genetic Algorithm and Neural Network  

Science Journals Connector (OSTI)

Owing to sun’s rays distributing randomly and discontinuously and load fluctuation, energy storage system is very important in Solar Energy Electric Vehicle (SEEV). The combinatorial optimization ... and neural n...

Shiqiong Zhou; Longyun Kang; MiaoMiao Cheng…

2007-01-01T23:59:59.000Z

132

Introduction to progress and promise of superconductivity for energy storage in the electric power sector  

SciTech Connect (OSTI)

Around the world, many groups conduct research, development and demonstration (RD and D) to make storage an economic option for the electric power sector. The progress and prospects for the application of superconductivity, with emphasis on high-temperature superconductivity, to the electric power sector has been the topic of an IEA Implementing Agreement, begun in 1990. The present Task members are Canada, Denmark, Finland, Germany, Israel, Italy, Japan, Korea, the Netherlands, Norway, Sweden, Switzerland, Turkey, the United Kingdom and the US. As a result of the Implementing Agreement, work has been done by the Operating Agent with the full participation of all the member countries. This work has facilitated the exchange of informtion among experts in all countries and has documented relevant assessments. Further, this work has reviewed the status of SMES and is now updating same, as well as investigating the progress on and prospects for flywheels with superconducting bearings. The Operating Agent and Task members find a substantially different set of opportunities for and alternatives to storage than was the case before the 1987 discovery of high-temperature superconductivity. Beside the need to level generation, there is also the need to level the load on transmission lines, increase transmission stability, and increase power quality. These needs could be addressed by high power storage that could be brought in and out of the grid in fractions of a second. Superconducting Magnetic Energy Storage and flywheels with superconducting bearings are devices that deserve continued RD and D because they promise to be the needed storage devices.

Wolsky, A.M.

1998-05-01T23:59:59.000Z

133

30-MJ superconducting magnetic energy storage for electric-transmission stabilization  

SciTech Connect (OSTI)

The Bonneville Power Administration operates the electric power transmission system that connects the Pacific Northwest and southern California. The HVAC interties develop 0.35 Hz oscillations when the lines are heavily loaded. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for the oscillation. The unit is scheduled for installation in 1982 and operation in 1982-83. Status of the project is described. The conductor has been fully tested electrically and mechanically and the 5 kA superconducting cable has been produced. The 30 MJ superconducting coil is essentially complete. All major components of the electrical and cryogenic systems except the nonconducting dewar have been completed. The refrigerator and converter are undergoing tests. The system is to be located at the BPA Tacoma Substation and operated by microwave link from Portland, OR.

Turner, R.D.; Rogers, J.D.

1981-01-01T23:59:59.000Z

134

Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application  

Science Journals Connector (OSTI)

The aim of this paper is the evaluation of the profitability of micro-CHP systems for residential application. An integrated CHP system composed of a prime mover, an Electric Energy Storage system, a thermal storage system and an auxiliary boiler has been considered. The study has been carried out taking into account a particular electrochemical storage system which requires also thermal energy, during its operation, for a better exploitation of the residual heat discharged by the prime mover. The prime mover could be a conventional Internal Combustion Engine or also an innovative system, such as fuel cell or organic Rankine cycle. An investigation of this integrated CHP system has been carried out, by means of an in-house developed calculation code, performing a thermo-economic analysis. This paper provides useful results, in order to define the optimum sizing of components of the integrated CHP system under investigation; the developed code allows also to evaluate the profitability and the primary energy saving with respect to the separate production of electricity and heat.

M. Bianchi; A. De Pascale; F. Melino

2013-01-01T23:59:59.000Z

135

NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.  

SciTech Connect (OSTI)

The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

Newmiller, Jeff (Endecon Engineering, San Ramon, CA); Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

2006-03-01T23:59:59.000Z

136

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

for storing oxygen is cavern storage. A large undergroundstorage; thus it seems that cavern storage is a definitetion of this system. Cavern storage becomes economical only

Dayan, J.

2011-01-01T23:59:59.000Z

137

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

between alternative solar storage system designs; almost allThe behavior of the storage solar receiver-reactor is baseddaytime (charging) storage process Boeing solar receiver [5J

Dayan, J.

2011-01-01T23:59:59.000Z

138

A Development Path to the Efficient and Cost-Effective Bulk Storage of Electrical Energy  

SciTech Connect (OSTI)

Efficient and cost-effective means for storing electrical energy is becoming an increasing need in our electricity-oriented society. For example, for electric utilities an emerging need is for distributed storage systems, that is, energy storage at substations, at solar or wind-power sites, or for load-leveling at the site of major consumers of their electricity. One of the important consequences of distributed storage for the utilities would be the reduction in transmission losses that would result from having a local source of load-leveling power. For applications such as these there are three criteria that must be satisfied by any new system that is developed to meet such needs. These criteria are: (1) high 'turn-around' efficiency, that is, high efficiency of both storing and recovering the stored energy in electrical form, (2) long service life (tens of years), with low maintenance requirements, and, (3) acceptably low capital cost. An additional requirement for these particular applications is that the system should have low enough standby losses to permit operation on a diurnal cycle, that is, storing the energy during a portion of a given day (say during sunlight hours) followed several hours later by its use during night-time hours. One answer to the spectrum of energy storage needs just outlined is the 'electromechanical battery'. The E-M battery, under development for several years at the Laboratory and elsewhere in the world, has the potential to solve the above energy storage problems in a manner superior to the electro-chemical battery in the important attributes of energy recovery efficiency, cycle lifetime, and amortized capital cost. An electromechanical battery is an energy storage module consisting of a high-speed rotor, fabricated from fiber composite, and having an integrally mounted generator/motor. The rotor operates at high speed, in vacuo, inside of a hermetically sealed enclosure, supported by a 'magnetic bearing', that is, a bearing that uses magnetic forces to support the rotor against gravity. Magnetic bearings are a virtual necessity for the E-M battery in order to achieve long service life, and to minimize frictional losses so that the battery does not lose its charge (run down) too rapidly. These considerations mitigate against the use of conventional mechanical bearings in the E-M battery for most applications. The Laboratory has pioneered the development of a new form of magnetic bearing to meet the special requirements of the E-M battery: the 'ambient-temperature passive magnetic bearing'. Simpler, and potentially much less expensive than the existing 'active' magnetic bearings (ones requiring electronic amplifiers and feedback circuits for their operation) development of the ambient-temperature passive magnetic bearing represents a technological breakthrough. Beyond its use in the E-M battery, the ambient-temperature magnetic bearing could have important applications in replacing conventional lubricated mechanical bearings in electrical machinery. Here the gains would be two-fold: reduced frictional losses, leading to higher motor efficiency, and, of equal importance, the elimination of the need for lubricants and for routine replacement of the bearings owing to mechanical wear. Thus an added benefit from a vigorous pursuit of our electromechanical battery concepts could be its impact on many other areas of industry where rotating machinery in need of improved bearings is involved. If perfected, passive magnetic bearings would seem to represent an almost ideal replacement for the mechanical bearings in many types of industrial electrical machinery. Returning to the issued of energy storage, the E-M battery itself has much to contribute in the area of improving the efficiency of stationary energy storage systems. For example, many electrical utilities utilize 'pumped hydro' energy storage systems as a means of improving the utilization of their 'base-load' power plants. That is, electrical energy is stored during off-peak hours for delivery at times of peak usage. These pumped hydro sys

Post, R F

2009-09-24T23:59:59.000Z

139

Metal Can and Bottle FabricationMetal Can and Bottle Fabrication ME 4210: Manufacturing Processes and Engineering  

E-Print Network [OSTI]

;Metal BottlesMetal Bottles ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009

Colton, Jonathan S.

140

ESS 2012 Peer Review - DOE-OE FY12 Electrical Energy Storage Demonstration Projects - Dan Borneo, SNL  

Broader source: Energy.gov (indexed) [DOE]

DOE-OE FY12 Electrical DOE-OE FY12 Electrical Energy Storage Demonstration Projects The Renaissance Hotel Washington, D.C. September 2012 Presented by Dan Borneo SAND Document 5312608 SAND2012-7453 C Acknowledgements I would like to thank the DOE's Office of Electricity and Dr. Imre Gyuk, Program Manager of the Electrical Energy Storage Program, for their support and funding of the Energy Storage Demonstration Projects. 2 EES Emerging Technology Demonstrations Presentation Outline  Project Overview  Problem Statement  Approach  Current Status  Path Forward - Next Steps  Geographical Representation of Projects  Summary Chart of Projects  Brief Descriptions of Individual Projects  Concluding Remarks 3 EES Demonstrations Project Overview  Problem Statement

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Magnetic Bottles on Riemann Surfaces  

E-Print Network [OSTI]

Yves Colin de Verdiere's quantization formalism of magnetic bottles on Riemann surfaces of non null genus is shown to be affected, owing to the Homotopy Superselection Rule, by the phenomenon of the existence of multiple inequivalent quantizations mathematically analogous to the phenomenon of the existence of multiple inequivalent prequantizations of a multiply-connected symplectic manifold in the framework of Souriau-Kostant's Geometric Quantization.

Gavriel Segre

2011-01-12T23:59:59.000Z

142

Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage  

SciTech Connect (OSTI)

The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

Castello, Charles C [ORNL; LaClair, Tim J [ORNL; Maxey, L Curt [ORNL

2014-01-01T23:59:59.000Z

143

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

Economical energy storage is essential if solar power plantsthis type of energy storage system into a solar power plant.all of the energy storage required for a solar power plant,

Dayan, J.

2011-01-01T23:59:59.000Z

144

FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FutureGen FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production Office of Fossil Energy U. S. Department of Energy Washington, DC June 2, 2003 Lowell Miller, Director, Office of Coal & Power Systems 24-Jun-03 Slide 2 Office of Fossil Energy Presentation Agenda * FE Hydrogen Program * FutureGen * Carbon Sequestration Leadership Forum (CSLF) 24-Jun-03 Slide 3 Office of Fossil Energy Key Drivers * Decreasing domestic supply will lead to increased imports from less stable regions * Conventional petroleum is finite; production will peak and irreversibly decline due to continually increasing demand * Improving environmental quality - Meeting air emission regulations - Greenhouse gas emissions 0 2 4 6 8 10 12 14 16 18 20 1970 1975 1980 1985 1990 1995 2000 2005

145

COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS  

SciTech Connect (OSTI)

As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment, tooling, methods and skilled personnel. The final magnet system measured 14 feet in diameter, 10 feet in height, and weighed about 35 tons. The superconducting magnet and design technology was successfully implemented and demonstrated. The project was not successfully concluded however; as the critical planned final demonstration was not achieved. The utilities could not understand or clarify their future business needs and the regulatory requirements, because of the deregulation policies and practices of the country. Much uncertainty existed which prevented utilities from defining business plans, including asset allocation and cost recovery. Despite the technical successes and achievements, the commercial development could not be implemented and achieved. Thus, the demonstration of this enhancement to the utility’s transmission system and to the reliability of the nation’s electrical grid was not achieved. The factory was ultimately discontinued and the technology, equipment and product were placed in storage.

CHARLES M. WEBER

2008-06-24T23:59:59.000Z

146

Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California  

SciTech Connect (OSTI)

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

147

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

capture solar radiation and convert it into thermal energy.solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (solar thermal collector ( kW) PV (kW) electric storage (kWh) flow battery - energy (

Stadler, Michael

2009-01-01T23:59:59.000Z

148

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

capture solar radiation and convert it into thermal energy.solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (

Stadler, Michael

2009-01-01T23:59:59.000Z

149

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

blending strategy of the electric motor and engine when thesignificantly lower electric motor power (ex. the singlehybrid even though the electric motor had a peak power of

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

150

Integration of Electric Energy Storage into Power Systems with Renewable Energy Resources  

E-Print Network [OSTI]

strategy is proposed to optimally manage the charging and discharging operation of energy storage in order to minimize the energy purchasing cost for a distribution system load aggregator in power markets. Different operation strategies of energy storage...

Xu, Yixing 1985-

2012-10-26T23:59:59.000Z

151

A National Grid Energy Storage Strategy- Electricity Advisory Committee- January 2014  

Broader source: Energy.gov [DOE]

This document presents the EAC's vision for a national energy storage strategic plan. It provides an outline for guidance, alignment, coordination, and inspiration for governments, businesses, advocacy groups, academics, and others who share a similar vision for energy storage.

152

Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

153

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

of the engine and electric drive system. In the case of apower rating of the electric drive system in the vehicle. Aswas to operate on the electric drive when possible and to

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

154

Procedure for Cleaning Bottles for Trace Metal Analysis Initial cleaning  

E-Print Network [OSTI]

Procedure for Cleaning Bottles for Trace Metal Analysis Initial cleaning: Supplies LDPE 60ml bottles (nalgene) ACS grade Hydrochloric acid Trace metal grade nitric acid Day 1 1. Submerge 60ml bottles for up to three uses) 2. Rinse 3x in milli-q (DI) water 3. Fill bottles with 2% trace metal grade nitric

Paytan, Adina

155

Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response  

Science Journals Connector (OSTI)

Abstract In 2012 there was approximately 2400 electric vehicle DC Fast Charging stations sold globally. According to Pike Research (Jerram and Gartner, 2012), it is anticipated that by 2020 there will be approximately 460,000 of them installed worldwide. A typical public DC fast charger delivers a maximum power output of 50 kW which allows a typical passenger vehicle to be 80% charged in 10–15 min, compared with 6–8 h for a 6.6 kW AC level 2 charging unit. While DC fast chargers offer users the convenience of being able to rapidly charge their vehicle, the unit's high power demand has the potential to put sudden strain on the electricity network, and incur significant demand charges. Depending on the utility rate structure, a DC fast charger can experience annual demand charges of several thousand dollars. Therefore in these cases there is an opportunity to mitigate or even avoid the demand charges incurred by coupling the unit with an appropriately sized energy storage system and coordinating the way in which it integrates. This paper explores the technical and economical suitability of coupling a ground energy storage system with a DC fast charge unit for mitigation or avoidance of demand charges and lessening the impact on the local electricity network. This paper also discusses the concept of having the system participate in demand response programs in order to provide grid support and to further improve the economic suitability of an energy storage system.

Donald McPhail

2014-01-01T23:59:59.000Z

156

SmartCharge: cutting the electricity bill in smart homes with energy storage  

Science Journals Connector (OSTI)

Market-based electricity pricing provides consumers an opportunity to lower their electric bill by shifting consumption to low price periods. In this paper, we explore how to lower electric bills without requiring consumer involvement using an intelligent ... Keywords: battery, electricity, energy, grid

Aditya Mishra; David Irwin; Prashant Shenoy; Jim Kurose; Ting Zhu

2012-05-01T23:59:59.000Z

157

Chiller Start/Stop Optimization for a Campus-wide Chilled Water System with a Thermal Storage Tank Under a Four-Period Electricity Rate Schedule  

E-Print Network [OSTI]

The existence of a 1.4-million-gallon chilled water thermal storage tank greatly increases the operational flexibility of a campuswide chilled water system under a four-part electricity rate structure. While significant operational savings can...

Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.; Contreras, O.

2002-01-01T23:59:59.000Z

158

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

acid batteries flow battery thermal n/a n/a xiv The Effectscapacity electrical flow battery thermal n/a n/a source:lead/acid battery) and thermal storage, capabilities, with

Stadler, Michael

2009-01-01T23:59:59.000Z

159

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

capitalcost.htm). EPRI-DOE Handbook of Energy Storage foret al. 1996, 2003, EPRI-DOE Handbook 2003, Goldstein, L. etet al. 2003, EPRI-DOE Handbook 2003 and at the Electricity

Stadler, Michael

2009-01-01T23:59:59.000Z

160

Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage  

E-Print Network [OSTI]

and filtration,2 photonic crystals,3 catalyst supports for low temperature fuel cells,4­6 sensors, electrode sorbents,1 hydrogen storage,18 fuel cells,5,19,33 solar cells,13,35,36 and so on. However, traditional materials for electrochemical capacitors,7­9 lithium ion batteries,10­12 solar cells,13,14 hydrogen storage

Pedersen, Tom

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of energy storage technologies for integration with renewable electricity: Quantifying expert opinions  

Science Journals Connector (OSTI)

Solving climate change and the associated need for increasing renewable energy supply make energy storage a critical technological component of the future energy landscape. Research to build more reliable and cost-effective energy storage technologies is now on the rise. As a result, many new technologies and applications are evolving and competing. This paper presents a method to evaluate and select energy storage technologies for investor-owned or public utilities. For this purpose, energy storage applications which could benefit wind power in the Pacific Northwest region of the United States are identified through internal interviews and surveys with experts at the federal wholesale power marketing agency in Portland, Oregon. The study employs a technology evaluation process integrating fuzzy Delphi method, analytic hierarchy process and fuzzy consistent matrix. The result shows that compressed air storage is the most promising technology for sustainable growth of renewable energy in the region.

Tugrul U. Daim; Xin Li; Jisun Kim; Scott Simms

2012-01-01T23:59:59.000Z

162

Sandia National Laboratories: evaluate energy storage opportunity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy storage opportunity 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid...

163

Sandia National Laboratories: implement energy storage projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

implement energy storage projects 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

164

Simulation and analysis of a solar assisted heat pump system with two different storage types for high levels of PV electricity self-consumption  

Science Journals Connector (OSTI)

Abstract The incentives for PV-systems in Europe is being gradually lowered or ended. This makes a higher level of self-consumption interesting for owners of PV-systems. Sweden has an incentive of 35% of the investment cost for PV-systems. Unfortunately not all consumers can get this incentive. Therefore a high level of self-consumption will be necessary if the PV-systems are to be profitable in Sweden. A reference system with two different energy storage technologies is investigated in this paper. One system with 48 kW h of batteries and one system with a hot water storage tank where the electricity is stored as heat. The research questions in this paper are: Which storage system gives the highest level of PV electricity self-consumption? Are the storage systems profitable with the assumptions made in this paper? What are the levelized costs of electricity (LCOE) for the reference system with different storage system? The system with batteries has a self-consumption of 89% of the annual PV-electricity output and the system with a hot water storage tank has 88%. The system with batteries has a levelized cost of electricity two times higher than the system with a hot water storage tank.

Richard Thygesen; Björn Karlsson

2014-01-01T23:59:59.000Z

165

Energy Storage | Department of Energy  

Energy Savers [EERE]

Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over...

166

Energy Policy 33 (2005) 18251832 Letting the (energy) Gini out of the bottle: Lorenz curves of  

E-Print Network [OSTI]

Energy Policy 33 (2005) 1825­1832 Letting the (energy) Gini out of the bottle: Lorenz curves of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity Arne Jacobsona , Anita D. Milmana , Daniel M. Kammena,b, * a Energy and Resources Group, University of California

Kammen, Daniel M.

167

On Using Compressed Sensing for Efficient Transmission & Storage of Electric Organ Discharge  

E-Print Network [OSTI]

and low power wireless sensors. Keywords: Compressed sensing, wireless sensor networks, EOD. I with wireless sensors to record the electric organ discharge (EOD) of a mildly electric fish Sternopygus macrurus [1]. The electric field for the EOD of the S. macrurus is created by specialized cells called

Misra, Satyajayant

168

Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage  

E-Print Network [OSTI]

Functional materials for energy conversion and storage exhibit strong coupling between electrochemistry and mechanics. For example, ceramics developed as electrodes for both solid oxide fuel cells and batteries exhibit ...

Swallow, Jessica Gabrielle

169

MagViz Bottled Liquid Scanner at Albuquerque International Sunport  

ScienceCinema (OSTI)

The next-generation bottled liquid scanner, MagViz BLS, is demonstrated at the Albuquerque International Sunport, New Mexico

Surko, Stephen; Dennis, Steve; Espy, Michelle

2014-08-12T23:59:59.000Z

170

Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

171

Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)  

SciTech Connect (OSTI)

The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

Cosgrove, J.; Gonder, J.; Pesaran, A.

2013-11-01T23:59:59.000Z

172

Novel Latent Heat Storage Devices for Thermal Management of Electric Vehicle Battery Systems  

Science Journals Connector (OSTI)

A major aspect for safe and efficient operation of battery electric vehicles (BEV) is the thermal management of their battery systems. As temperature uniformity and level highly ... performance and the lifetime, ...

Ch. Huber; A. Jossen; R. Kuhn

2014-01-01T23:59:59.000Z

173

Energy Storage Systems  

SciTech Connect (OSTI)

Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

174

Bottled drinking water: water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification  

E-Print Network [OSTI]

Bottled drinking water: water contamination from bottle materials (glass, hard PET, soft PET in glass at pH 3.5). None of the leachates approaches the maximum concentrations for drinking water- QMS) in 294 samples of the same bottled water (predominantly mineral water) sold in the European Union

Filzmoser, Peter

175

Overview of current development in electrical energy storage technologies and the application potential in power system operation  

Science Journals Connector (OSTI)

Abstract Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges, whereby energy is stored in a certain state, according to the technology used, and is converted to electrical energy when needed. However, the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles, technical and economic performance features and the current research and development of important EES technologies, sorted into six main categories based on the types of energy stored. Following this, a comprehensive comparison and an application potential analysis of the reviewed technologies are presented.

Xing Luo; Jihong Wang; Mark Dooner; Jonathan Clarke

2015-01-01T23:59:59.000Z

176

Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation  

SciTech Connect (OSTI)

Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL

2012-01-01T23:59:59.000Z

177

Study By Spin Tracking of A Storage Ring For Deuteron Electric Dipole Moment  

SciTech Connect (OSTI)

Spin tracking of polarized deuterons for a proposed experiment to measure a possible Electric Dipole Moment (EDM) of the deuteron was done by using the codes UAL and SPINK. In the experiment the direction of spin polarization will be frozen using crossed electric and magnetic fields. Systematics, in particular the effects of non-linearities of the lattice on a beam with finite emittance and energy spread, have been extensively simulated and the effect of sextuple corrections to increase the spin coherence time has been studied.

Lin, F.; Malitsky, N. D.; Luccio, A. U.; Morse, W. M.; Semertzidis, Y. K. [Brookhaven National Laboratory, Upton, NY (United States); Onderwater, C. J. G. [University of Groningen, NL-9747AA Groningen (Netherlands); Orlov, Y. F. [Cornell University, Ithaca, NY (United States)

2009-08-04T23:59:59.000Z

178

Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish.  

Science Journals Connector (OSTI)

...Purkinje-like cells A B corollary discharge of EOD motor command (EGp) MZ ~~~~~~paralle...layer. Each electric organ discharge (EOD) evokes reafferent responses in ampullary...minimally affected by nearby objects. With each EOD, the electrosensory lobe receives both...

C C Bell; A Caputi; K Grant; J Serrier

1993-01-01T23:59:59.000Z

179

Sandia National Laboratories: DOE Energy Storage Systems program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Systems program 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

180

Sandia National Laboratories: Energy Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

1974. Geothermal Storage of Solar Energy, in "Governors1976. "Geothermal Storage of Solar Energy for Electric PowerUnderground Longterm Storage of Solar Energy - An Overview,"

Authors, Various

2011-01-01T23:59:59.000Z

182

Life-cycle energy analyses of electric vehicle storage batteries. Final report  

SciTech Connect (OSTI)

The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

1980-12-01T23:59:59.000Z

183

Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air Energy Storage System  

E-Print Network [OSTI]

controller is developed for a Compressed Air Energy Storage (CAES) system integrated with a wind turbine storage vessel. The storage vessel contains both liquid and compressed air at the same pressure. Energy significant reduction in generation costs. Among all different types of energy storage approaches, compressed

Li, Perry Y.

184

A design for the interface between a battery storage and charging unit, and a medium voltage DC (MVDC) bus, as part of an integrated propulsion system (IPS) in the all electric ship (AES)  

Science Journals Connector (OSTI)

In this paper we present the design of a rechargeable battery storage device for use in an all-electric ship. The purpose of this device is to provide power of predictable quality to selected equipment. In addition a recharging unit is proposed for recharging ... Keywords: electric ship, energy storage, medium voltage DC (MVDC), pulse load

T. A. Trapp; P. Prempraneerach; C. Chryssostomidis; J. L. Kirtley, Jr.; G. E. Karniadakis

2011-06-01T23:59:59.000Z

185

NREL: Transportation Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

186

Conformational properties of bottle-brush polymers  

Science Journals Connector (OSTI)

General and renormalized perturbation theories are used to study the conformational properties of a bottle-brush molecule, composed of multiarmed polymer stars grafted regularly onto a flexible backbone. The end-to-end distances of the backbone and of an arm of the middle star are calculated within the first order of perturbation theory. For the high grafting densities of stars, the calculated expressions are generalized with the help of the scaling arguments to give the equivalent power laws. According to these laws, the molecule may adopt a sequence of three different conformations (star-rod-coil) as the length of the backbone grows.

N. A. Denesyuk

2003-05-27T23:59:59.000Z

187

Plug-in electric vehicles as dispersed energy storage interactions with a smart office building  

Science Journals Connector (OSTI)

Renewable energy resources (RESs) with plug-in electric vehicles (PEVs) are being gradually accepted by society for their low carbon emission merits. However reverse power from the RES will result in the grid node's voltage rise and cause protection malfunction. As large amount of PEVs plug in the grid their overall charging power tends to be uncertain due to their complex charging behavior. At the same time if the renewable energy is integrated into the same grid the gird will face a great technological challenge. In this paper a smart building energy management system (SBEMS) is proposed to mitigate negative impact of RES and PEVs to power grid and optimize the operation of the building. The proposed SBEMS is also capable with PEVs system integration photovoltaic (PV) power forecasting optimization algorithm implementation and environmental evaluation criteria. Since PV's output is sensitive to the meteorology a 1-day-ahead power forecasting model is needed and presented. The economic system of PEVs is particularly complex because it needs optimization across multiple time steps and is strongly influenced by tariff structures. Furthermore the optimization problem to minimize the total building operational cost including PEVs charging cost is formulated while satisfying the supply and demand balance and complicated operating constraints of every energy supply equipment and devices. The simulation results have shown that the SBEMS can effectively reduce the PEVs charging cost building operation cost and the environment punishment fee. It is also important for the SBEMS to be responsible for the power grid operational indices. So the trade-off between economic consideration and load factor should be made. It is verified that the SBEMS is beneficial to the PEVs owners building operator environment and grid.

Qian Dai; Shanxu Duan; Tao Cai; Changsong Chen

2013-01-01T23:59:59.000Z

188

Plastic bottles recycled into sails for tall ship  

Science Journals Connector (OSTI)

Plastic bottles recycled into sails for tall ship ... Using new and conventional plastics recycling technology, Du Pont has converted plastic soda bottles (right) and plastic car fenders into 13,000 sq ft of sail for the tall ship HMS Rose (left). ...

LOIS EMBER

1992-07-06T23:59:59.000Z

189

Continental Breakfast $10 Selection of Assorted Bottled Fruit Juices  

E-Print Network [OSTI]

#12;Continental Breakfast $10 Selection of Assorted Bottled Fruit Juices Seasonal Sliced Fresh Fruit Assortment of Freshly Baked Pastries Fresh Brewed Starbucks Coffee, Decaffeinated & Assorted Tazo Teas The American Breakfast Buffet $16 (Minimum of 15 guests) Selection of Assorted Bottled Fruit

Massachusetts at Lowell, University of

190

EXTREMAL METRIC FOR THE FIRST EIGENVALUE ON A KLEIN BOTTLE  

E-Print Network [OSTI]

EXTREMAL METRIC FOR THE FIRST EIGENVALUE ON A KLEIN BOTTLE DMITRY JAKOBSON, NIKOLAI NADIRASHVILI extremal metrics. The only known extremal metrics are a round sphere, a standard projective plane, a Clifford torus and an equilateral torus. We construct an extremal metric on a Klein bottle. It is a metric

Leclercq, Remi

191

EXTREMAL METRIC FOR THE FIRST EIGENVALUE ON A KLEIN BOTTLE  

E-Print Network [OSTI]

EXTREMAL METRIC FOR THE FIRST EIGENVALUE ON A KLEIN BOTTLE DMITRY JAKOBSON, NIKOLAI NADIRASHVILI extremal metrics. The only known extremal metrics are a round sphere, a standard projective plane, a Cli#11;ord torus and an equilateral torus. We construct an extremal metric on a Klein bottle. It is a metric

Jakobson, Dmitry

192

Sketch Retrieval via Dense Stroke Features bottle apple apple apple apple apple swan giraffe mug giraffe giraffe giraffe  

E-Print Network [OSTI]

Sketch Retrieval via Dense Stroke Features bottle apple apple apple apple apple swan giraffe mug giraffe giraffe giraffe bottle swan giraffe swan swan swan swan apple apple apple apple bottle bottle swan

Yang, Ming-Hsuan

193

Cool Storage Performance  

E-Print Network [OSTI]

Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

Eppelheimer, D. M.

1985-01-01T23:59:59.000Z

194

Storage of solar energy  

Science Journals Connector (OSTI)

A framework is presented for identifying appropriate systems for storage of electrical, mechanical, chemical, and thermal energy in solar energy supply systems. Classification categories include the nature ... su...

Theodore B. Taylor

1979-09-01T23:59:59.000Z

195

Electric Storage Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy can be wasted even when a hot water tap isn't running. This is called standby heat loss. The American Council for an Energy Efficient Economy provides a helpful...

196

Water Heaters (Storage Electric)  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards.

197

Nonaqueous Electrical Storage Device  

DOE Patents [OSTI]

An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.

McEwen, Alan B. (Melrose, MA); Evans, David A. (Seekonk, MA); Blakley, Thomas J. (Woburn, MA); Goldman, Jay L. (Mansfield, MA)

1999-10-26T23:59:59.000Z

198

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell  

E-Print Network [OSTI]

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell Dept such as the lithium-air battery, and the more advanced zinc-air battery in which only the source needs to be "bottled

Angell, C. Austen

199

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

battery Utility electricity consumption Electricity providedis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

Stadler, Michael

2009-01-01T23:59:59.000Z

200

Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities  

E-Print Network [OSTI]

In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

V. G. Baryshevsky; A. A. Gurinovich

2005-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

electrical, engineering  

E-Print Network [OSTI]

in groundbreaking community solar project PMC-based technology products enter the market Expanding our capacity: new learning educational gaming energy-efficient data storage and computing health informatics haptic education K-12 STEM electrical energy storage thermal energy storage and conversion energy production

Zhang, Junshan

202

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

D. O. Energy, “Energy Storage-A Key Enabler of the Smartof storage [electric energy storage],” Power and EnergyJ. Řstergaard, “Battery energy storage technology for power

Wang, Zuoqian

2013-01-01T23:59:59.000Z

203

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

204

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

For the ice storage system, during direct cooling, thethe building cooling load. In dynamic systems, ice is formedcooling/demand-limited storage / electric load management / full storage / ice

Akbari, H.

2010-01-01T23:59:59.000Z

205

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network [OSTI]

electric load thermal storage solar thermal storage chargingcombustion solar thermal CHP heat storage charging generateof solar thermal collectors, 1100 kWh of electrical storage,

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

206

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

207

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1334E-2009 1334E-2009 Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Michael Stadler, Chris Marnay, Afzal Siddiqui, Judy Lai, Brian Coffey, and Hirohisa Aki Environmental Energy Technologies Division Revised March 2009 http://eetd.lbl.gov/EA/EMP/emp-pubs.html The work described in this paper was funded by the Office of Electricity Delivery and Energy Reliability, Renewable and Distributed Systems Integration Program in the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct

208

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

storage, thermal storage, solar thermal collectors, PVs, andis disallowed; 5. a low storage, PV, and solar thermal priceW run 4 force low storage / PV and solar thermal results run

Stadler, Michael

2009-01-01T23:59:59.000Z

209

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules  

E-Print Network [OSTI]

electricity storage, photovoltaic panels, solar thermalof storage technology k theoretical peak solar conversionenergy storage, AC – Absorption Chiller, ST – solar thermal

Cardoso, Goncalo

2014-01-01T23:59:59.000Z

210

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network [OSTI]

energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

Meckler, G.

1985-01-01T23:59:59.000Z

211

Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Coca-Cola Bottling Co. Coca-Cola Bottling Co. Brings Hybrids to New Orleans to someone by E-mail Share Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Facebook Tweet about Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Twitter Bookmark Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Google Bookmark Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Delicious Rank Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Digg Find More places to share Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on AddThis.com... Jan. 1, 2010 Coca-Cola Bottling Co. Brings Hybrids to New Orleans

212

ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric  

E-Print Network [OSTI]

ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

213

Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems  

E-Print Network [OSTI]

State Assembly Bill 2514 – Energy storage systems,” Energy Storage for the Electricity5. D. Rastler, Electric Energy Storage Technology Options: A

Nottrott, A.; Kleissl, J.; Washom, B.

2013-01-01T23:59:59.000Z

214

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

215

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

216

Construction of a Demand Side Plant with Thermal Energy Storage  

E-Print Network [OSTI]

storage and its potential impact on the electric utilities and introduces the demand side plant concept....

Michel, M.

1989-01-01T23:59:59.000Z

217

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

218

Ultracold neutron depolarization in magnetic bottles  

Science Journals Connector (OSTI)

We analyze the depolarization of ultracold neutrons confined in a magnetic field configuration similar to those used in existing or proposed magnetogravitational storage experiments aiming at a precise measurement of the neutron lifetime. We use an extension of the semiclassical Majorana approach as well as an approximate quantum mechanical analysis, both pioneered by Walstrom et al. [Nucl. Instrum. Methods Phys. Res. A 599, 82 (2009)]. In contrast with this previous work we do not restrict the analysis to purely vertical modes of neutron motion. The lateral motion is shown to cause the predominant depolarization loss in a magnetic storage trap. The system studied also allowed us to estimate the depolarization loss suffered by ultracold neutrons totally reflected on a nonmagnetic mirror immersed in a magnetic field. This problem is of preeminent importance in polarized neutron decay studies such as the measurement of the asymmetry parameter A using ultracold neutrons, and it may limit the efficiency of ultracold neutron polarizers based on passage through a high magnetic field.

A. Steyerl; C. Kaufman; G. Müller; S. S. Malik; A. M. Desai

2012-12-07T23:59:59.000Z

219

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

charging kW Utility electricity consumption Electricityis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

Stadler, Michael

2009-01-01T23:59:59.000Z

220

ESS 2012 Peer Review - Flow-Assisted Zinc Anode Batteries for Grid-Scale Electricity Storage - Sanjoy Banerjee, CUNY Energy Institute  

Broader source: Energy.gov (indexed) [DOE]

GRID-CONNECTED SYSTEM! GRID-CONNECTED SYSTEM! !"#$%&'()* !"#$%&'()* The CUNY EI is developing and testing hardware/software systems for peak shaving applications in commercial and industrial buildings 30KWH DEMONSTRATION !"#$%&'()*+&,-./01&2134/5& 6/57+340-4/3&809-+&6/5-+6&:%-0;/& 0/68:'?&@+/0;1&A+3<484/& & '()*+&B(CC&9/&(+4/;0-4/6&B(4%&D+E F )*+& (+&F"G!& G""H&=1:C/3& I&J"K&=7C859(:&@L:(/+:1& I&M"K&@+/0;1&@L:(/+:1& & =755/0:(-C(N/6&91&>09-+&@C/:40(:&O7B/0& %.PQRR340(+;"""GS8/P(+:S:75& FLOW-ASSISTED ZINC ANODE BATTERIES FOR GRID-SCALE ELECTRICITY STORAGE !

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2 Risk perceptions of arsenic in tap water and consumption 3 of bottled water  

E-Print Network [OSTI]

.htm). In the United States today bottled water 25 constitutes a significant proportion of the beverage indus- 26 try water is safe to drink in most areas of the United States, so 36 one could question why people in the United States drink 37 bottled water, especially when bottled water can be 240 and 38 10,000 times more

Shaw, W. Douglass

222

Characterization of poly(ethylene terephthalate) used in commercial bottled water  

E-Print Network [OSTI]

Characterization of poly(ethylene terephthalate) used in commercial bottled water Cristina Bach1 into drinking water packaged in poly(ethylene terephtalate) bottles and to know the origin of these substances of molecules inside the polymer, it means the pollution of the bottled water. 1. Introduction Poly(ethylene

Paris-Sud XI, Université de

223

Bishop's University "Think Global, Drink Local" Bottled Water Free Implementation Plan  

E-Print Network [OSTI]

Bishop's University "Think Global, Drink Local" Bottled Water Free Implementation Plan 1 Table.......................................................................................Page 8 #12;Bishop's University "Think Global, Drink Local" Bottled Water Free Implementation Plan 2 Introduction: The "Think Global, Drink Local" Bottled Water Free Campaign, a student run initiative, has been

224

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

225

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

ES 2. CA nursing home electricity pattern: July weekday lowJanuary and July weekday electricity and total heat (space +CA school weekday total electricity (inclusive of cooling)

Stadler, Michael

2009-01-01T23:59:59.000Z

226

Advanced Materials and Devices for Stationary Electrical Energy...  

Broader source: Energy.gov (indexed) [DOE]

Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to...

227

Recovery Act: State Assistance for Recovery Act Related Electricity...  

Broader source: Energy.gov (indexed) [DOE]

carbon capture and storage, transmission lines, energy storage, smart grid, demand response equipment, and electric and hybrid-electric vehicles. View a full list of states...

228

QER Public Meeting in Portland, OR: Electricity Transmission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Portland, OR: Electricity Transmission, Storage and Distribution - West QER Public Meeting in Portland, OR: Electricity Transmission, Storage and Distribution - West Meeting Date...

229

Cavity-enhanced optical bottle beam as a mechanical amplifier  

Science Journals Connector (OSTI)

We analyze the resonant cavity enhancement of a hollow “optical bottle beam” for the dipole-force trapping of dark-field-seeking species. We first improve upon the basic bottle beam by adding further Laguerre-Gaussian components to deepen the confining potential. Each of these components itself corresponds to a superposition of transverse cavity modes, which are then enhanced simultaneously in a confocal cavity to produce a deep optical trap needing only a modest incident power. The response of the trapping field to displacement of the cavity mirrors offers an unusual form of mechanical amplifier in which the Gouy phase shift produces an optical Vernier scale between the Laguerre-Gaussian beam components.

Tim Freegarde and Kishan Dholakia

2002-07-30T23:59:59.000Z

230

Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module  

DOE Patents [OSTI]

The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

Pitel, I.J.

1987-02-03T23:59:59.000Z

231

Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module  

DOE Patents [OSTI]

The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

Pitel, Ira J. (Whippany, NJ)

1987-02-03T23:59:59.000Z

232

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

acid batteries flow battery thermal n/a n/a xiv The Effectslead/acid battery) and thermal storage, capabilities, withlifetime (a) thermal storage 1 flow battery 220$/kWh and

Stadler, Michael

2009-01-01T23:59:59.000Z

233

Marketing Cool Storage Technology  

E-Print Network [OSTI]

storage has been substantiated. bv research conducted by Electric Power Research Institute, and by numerous installations, it has become acknowledged that cool stora~e can provide substantial benefits to utilities and end-users alike. A need was reco...~ned to improve utility load factors, reduce peak electric demands, and other-wise mana~e the demand-side use of electricity. As a result of these many pro~rams, it became apparent that the storage of coolin~, in the form of chilled water, ice, or other phase...

McCannon, L.

234

Energy Storage | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can manage the amount of power required to supply customers at times when need is greatest, which is during peak load. These devices can also help make renewable energy, whose power output cannot be controlled by grid operators, smooth and dispatchable. They can also balance microgrids to achieve a good match between generation

235

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

236

Energy Storage Valuation Methodology and Supporting Tool  

Broader source: Energy.gov (indexed) [DOE]

Ben Kaun Ben Kaun Sr. Project Engineer Electricity Advisory Committee: Storage Valuation Panel 6-6-13 Energy Storage Valuation Methodology and Supporting Tool 2 © 2013 Electric Power Research Institute, Inc. All rights reserved. Electric Power Research Institute (EPRI) * Independent, non-profit, collaborative research institute, with full spectrum electric industry coverage * EPRI members represent ~90% of energy delivered in the U.S. * Energy Storage Research Program has over 30 funding utility members 3 © 2013 Electric Power Research Institute, Inc. All rights reserved. Storage Valuation Can be Confusing! Renewable Integration Frequency Regulation Spinning Reserve Resource Adequacy Asset Utilization Voltage Support Reduced GHG? Lower Production Costs

237

Grid Applications for Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

238

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

239

Successfully Marketing Thermal Storage in Commercial Buildings  

E-Print Network [OSTI]

This paper first reviews the key hurdles to thermal energy storage. Next, case studies of three electric utility thermal storage marketing programs are reviewed. The results of these case studies. as well as advice and experiences from other...

McDonald, C.

1988-01-01T23:59:59.000Z

240

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network [OSTI]

among PV, solar thermal, and storage systems can be complex,and solar thermal collectors; electrical storage, flow8, huge PV, solar thermal as well as storage systems will be

Stadler, Michael

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Survey of Western U.S. Electric Utility Resource Plans  

E-Print Network [OSTI]

energy distribution, and storage assumptions Effective resource planning activities can inform long-term electric

Wilkerson, Jordan

2014-01-01T23:59:59.000Z

242

Observing another universe through ringholes and Klein-bottle holes  

Science Journals Connector (OSTI)

It is argued that whereas the Shatskiy single rings produced by the gravitational inner field of a spherically symmetric wormhole and the concentric double Einstein rings generated by a toroidal ringhole could not be used without some uncertainty to identify the presence of such tunnelings in the universe or the existence of a parallel universe, the image which the inner gravitational field of a nonorientable Klein-bottle hole tunneling would leave by lensing a single luminous source is that of a truncated double spiral, which is a signature that cannot be attributed to any other single or composite astronomical object in whichever universe it may be placed. In this report we argue some more reasons to predict that such a signature would imply the discovery of one such nonorientable tunneling in our or other universe. After all, a nonorientable Klein-bottle hole is also a perfectly valid solution to the Einstein equations, and the stuff which would make it feasible is becoming more and more familiar in cosmology.

Pedro F. González-Díaz and Ana Alonso-Serrano

2011-07-20T23:59:59.000Z

243

Fiscal Year 1985 Department of Energy Authorization: uranium enrichment, electric energy systems, and storage programs. Volume VI. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Eighth Congress, Second Session, February 22, 28; March 1984  

SciTech Connect (OSTI)

Volume VI of the hearing record covers three days of testimony on uranium enrichment, electric energy systems, and storage problems. DOE Assistant Secretary for Nuclear Energy Shelby Brewer reviewed the current market crisis which threatens the US capability of continuing as a reliable enrichment supplier, and outlined DOE's response to the problem. Laboratory and non-DOE witnesses from the nuclear industry followed with their assessments of the problem. Witnesses on the third day described research on high-voltage electric fields, how electromagnetic pulses affect the electric grid, and ways to improve the delivery of electric power, as well as efficient, cost-effective energy-storage systems.

Not Available

1984-01-01T23:59:59.000Z

244

Deep-Sea Research II 50 (2003) 655674 Determining true particulate organic carbon: bottles, pumps  

E-Print Network [OSTI]

Deep-Sea Research II 50 (2003) 655­674 Determining true particulate organic carbon: bottles, pumps or by in situ filtration with pumps and analyzing the filters. The concentrations measured by these two methods-latitude waters. Here we report that the ratio of bottle POC to pump POC ranged between 20 and 200 in the Ross Sea

Hansell, Dennis

245

Concentrating on Solar Electricity and Fuels  

Science Journals Connector (OSTI)

...power, pose a “storage problem.” They...unavailable. Aside from pumped hydropower, large-scale storage of electricity is...Spain already have a storage capacity for 7 to...industrial processes, for seawater desalination, or...

Martin Roeb; Hans Müller-Steinhagen

2010-08-13T23:59:59.000Z

246

Storage Viability and Optimization Web Service  

E-Print Network [OSTI]

for electrical storage (batteries) and photovoltaics (PVs).technology parameters for the batteries and PV holds tariffsbattery, so called regular batteries, can be selected. The

Stadler, Michael

2010-01-01T23:59:59.000Z

247

Activated aluminum hydride hydrogen storage compositions and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

248

Energy storage in composite flywheel rotors.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: As the push continues for increased use of renewables on the electricity grid, the problem of energy storage is becoming more urgent than… (more)

Janse van Rensburg, Petrus J.

2011-01-01T23:59:59.000Z

249

NREL: Transportation Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits....

250

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

et al. 1996, 2003, EPRI-DOE Handbook 2003, Goldstein, L. etet al. 2003, EPRI-DOE Handbook 2003 and at the Electricitycapitalcost.htm). EPRI-DOE Handbook of Energy Storage for

Stadler, Michael

2009-01-01T23:59:59.000Z

251

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

252

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

253

Techno-economic analysis of a small size short range EES (electric energy storage) system for a PV (photovoltaic) plant serving a SME (small and medium enterprise) in a given regulatory context  

Science Journals Connector (OSTI)

Abstract Considering the case of small-medium size plants based on PV (photovoltaic), an analysis was developed in order to model, simulate and optimize an electricity storage system to be coupled to a small photovoltaic plant applied to an industry load, to calculate its profitability in a given regulatory context. The case study is the current Italian electricity market. The analysis was done on a small industrial plant in the area of Torino (North-West Italy), with its own photovoltaic plant connected to the public electrical grid. After an analysis of the present situation, the aim of the analysis is to understand the behaviour, from an economic point of view, of the self-consumption of renewable energy in case of a sudden deregulation of the market (switch off of feed in tariffs or RES (renewable energy system) kWh). The study includes a sensitivity analysis of the main technical and economic parameters in order to identify which of them have the greatest influence on economic performance, and therefore which parameters have to be considered with special care by the producers (technical and economic parameters) and the regulatory authorities (regulations) to decide and optimize the adoption of storage systems as a way to sustain the massive introduction of RES in the energy arena.

R. Scozzari; M. Santarelli

2014-01-01T23:59:59.000Z

254

Gas hydrate cool storage system  

DOE Patents [OSTI]

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

255

Explicit Solvent Simulations of Friction between Brush Layers of Charged and Neutral Bottle-Brush Macromolecules  

SciTech Connect (OSTI)

We study friction between charged and neutral brush layers of bottle-brush macromolecules using molecular dynamics simulations. In our simulations the solvent molecules were treated explicitly. The deformation of the bottle-brush macromolecules under the shear were studied as a function of the substrate separation and shear stress. For charged bottle-brush layers we study effect of the added salt on the brush lubricating properties to elucidate factors responsible for energy dissipation in charged and neutral brush systems. Our simulations have shown that for both charged and neutral brush systems the main deformation mode of the bottle-brush macromolecule is associated with the backbone deformation. This deformation mode manifests itself in the backbone deformation ratio, , and shear viscosity, , to be universal functions of the Weissenberg number W. The value of the friction coefficient, , and viscosity, , are larger for the charged bottle-brush coatings in comparison with those for neutral brushes at the same separation distance, D, between substrates. The additional energy dissipation generated by brush sliding in charged bottle-brush systems is due to electrostatic coupling between bottle-brush and counterion motion. This coupling weakens as salt concentration, cs, increases resulting in values of the viscosity, , and friction coefficient, , approaching corresponding values obtained for neutral brush systems.

Carrillo, Jan-Michael [University of Connecticut] [University of Connecticut; Brown, W Michael [ORNL] [ORNL; Dobrynin, Andrey [University of Connecticut] [University of Connecticut

2012-01-01T23:59:59.000Z

256

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

257

Storage Related News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Related News Storage Related News Storage Related News November 1, 2013 November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. August 30, 2013 September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System On Monday, September 16 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on optimizing the benefits of a photovoltaic (PV) storage system with a battery. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery

258

Vehicle Technologies Office: Electrical Machines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

259

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network [OSTI]

wind- diesel-compressed air energy storage system for remotestudy for the compressed air energy storage technology bydesign of compressed air energy storage electric power

Kim, H.-M.

2012-01-01T23:59:59.000Z

260

NETL: Carbon Storage - Geologic Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Form EIA-457E (2001) -- Household Bottled Gas Usage  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

in gallons, of this household's storage tank(s)? Enter the capacity for the two largest tanks (if there is more than one) in the boxes below. If the capacity is not known, write...

262

Fuel cells and electrochemical energy storage  

Science Journals Connector (OSTI)

Fuel cells and electrochemical energy storage ... Fuel cells and electrochemical energy storage : types of fuel cells, batteries for electrical energy storage, major batteries presently being investigated, and a summary of present major materials problems in the sodium-sulfur and lithium-alloy metal sulfide battery. ...

Anthony F. Sammells

1983-01-01T23:59:59.000Z

263

Electrochemistry: Metal-free energy storage  

Science Journals Connector (OSTI)

... % of total energy capacity will require electric-energy storage systems to be deployed. For grid-scale applications and remote generation sites, cheap and flexible storage systems are needed, but ... level as a source of potential energy) or expensive (for example, conventional batteries, flywheels and superconductive electromagnetic storage). On page 195 of this issue, Huskinson et al. ...

Grigorii L. Soloveichik

2014-01-08T23:59:59.000Z

264

Leaching of antimony from polyethylene terephthalate (PET) bottles into mineral water  

E-Print Network [OSTI]

Leaching of antimony from polyethylene terephthalate (PET) bottles into mineral water Szilvia April 2009 Available online 21 May 2009 Keywords: Antimony Water Leaching Polyethylene terephthalate SODIS The Sb leaching from polyethylene terephthalate (PET) package material into 10 different brands

Short, Daniel

265

Ship-in-Bottle Photochemistry RPM-1: A Recyclable Nanoporous Material  

E-Print Network [OSTI]

Ship-in-Bottle Photochemistry RPM-1: A Recyclable Nanoporous Material Suitable for Ship by their requirement for If one Si atom causes pyramidalization, two of them should enhance the effect. We have

Li, Jing

266

(The Elephant's Toothpaste Experiment) A clean 16 ounce plastic soda bottle  

E-Print Network [OSTI]

(The Elephant's Toothpaste Experiment) A clean 16 ounce plastic soda bottle 1/2 cup 20-volume is sometimes called "Elephant's Toothpaste" because it looks like toothpaste coming out of a tube, but don

Benitez-Nelson, Claudia

267

6.15 - Pumped Storage Hydropower Developments  

Science Journals Connector (OSTI)

Abstract This chapter details how pumped storage hydroelectric projects differ from conventional hydroelectric projects. The concept of electrical energy storage has become a controversial issue in recent years. Many questions are raised in the electricity sector: Why is energy storage needed? What are the alternatives? One of the answers is pumped storage hydropower plants, using mainly pump–turbines. In this chapter, details of some remarkable examples of pumped storage power plants are given: Okinawa Seawater in Japan, Goldisthal in Germany, Tianhuangping in China, and Coo-Trois Ponts in Belgium.

T. Hino; A. Lejeune

2012-01-01T23:59:59.000Z

268

A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure  

E-Print Network [OSTI]

In the downtown area of Austin, it is planned to build a new naturally stratified chilled water storage tank and share it among four separated chilled water plants. An underground piping system is to be established to connect these four plants...

Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

2010-01-01T23:59:59.000Z

269

EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California  

Broader source: Energy.gov [DOE]

DOE is preparing this EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California.

270

EA-1751: Smart Grid, New York State Gas & Electric, Compressed Air Energy Storage Demonstration Plant, Near Watkins Glen, Schuyler County, New York  

Broader source: Energy.gov [DOE]

DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of a compressed air energy storage demonstration plant in Schuyler County, New York.

271

Energy Storage and Distributed Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diagram of molecular structure, spectrocscopic data, low-swirl flame diagram of molecular structure, spectrocscopic data, low-swirl flame Energy Storage and Distributed Resources Energy Storage and Distributed Resources application/pdf icon esdr-org-chart-03-2013.pdf EETD researchers in the energy storage and distributed resources area conduct R&D and develops technologies that provide the electricity grid with significant storage capability for energy generated from renewable sources; real-time monitoring and response technologies for the "smart grid" to optimize energy use and communication between electricity providers and consumers; and technologies for improved electricity distribution reliability. Their goal is to identify and develop technologies, policies and strategies to enable a shift to renewable energy sources at $1 per watt for a

272

NREL: Learning - Energy Storage Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

273

Vehicle Technologies Office: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

274

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

275

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

276

Application of Hydrogen Storage Technologies for Use in Fueling  

E-Print Network [OSTI]

Application of Hydrogen Storage Technologies for Use in Fueling Fuel Cell Electric Vehicles This report describes the design, commissioning, and operation of a mobile hydrogen delivery and storage of Hydrogen Storage Technologies Prepared for the U.S. Department of Energy Office of Electricity Delivery

277

Energy Storage  

SciTech Connect (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

278

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

279

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

280

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Storage Technologies: State of Development for Stationary and  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Enhancing the Smart Grid: Integrating Clean Distributed and Renewable

282

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules  

E-Print Network [OSTI]

and gas-turbines, fuel cells, heat exchangers, absorption chillers, stationary electricity storage, photovoltaic panels, solar

Cardoso, Goncalo

2014-01-01T23:59:59.000Z

283

Heat storage with CREDA  

SciTech Connect (OSTI)

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

284

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

285

Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001  

SciTech Connect (OSTI)

A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W. [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)] [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

286

NREL: Energy Storage - Laboratory Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

287

Purchase, Delivery, and Storage of Gases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purchase, Delivery, and Storage of Gases Print Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab Chemical Inventory All gas bottles and cylinders at the ALS must be identified with bar code and logged into the Berkeley Lab Chemical Inventory by ALS staff. The inventory will be updated periodically; for more information contact Experiment Coordination. Gases are stored either in the racks between buildings 6 and 7; toxic and corrosive gases are stored in Building 6, room 6C across the walkway from beamline 10.0.

288

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network [OSTI]

lead/acid battery, and thermal storage, capabilities, withn/a n/a electrical flow battery I) thermal I) Flow batteriesor $/kWh) lifetime (a) thermal storage 8 IV) flow battery V)

Stadler, Michael

2009-01-01T23:59:59.000Z

289

An Evaluation of Thermal Storage at Two Industrial Plants  

E-Print Network [OSTI]

Thermal storage offers substantial energy cost savings potential in situations with favorable electrical rates and significant cooling demand. Full storage is usually restricted to facilities occupied only part of the day, but two industrial plants...

Brown, M. L.; Gurta, M. E.

290

Energy Programs | Advanced Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

291

pumped storage | OpenEI  

Open Energy Info (EERE)

pumped storage pumped storage Dataset Summary Description These two datasets include energy statistics for the European Union (EU). The statistics are available from the European Commission. The data includes detailed information about: production, net imports, gross inland consumption, and electricity generation for the EU as a whole, as well as the individual member countries, for the period between 1990 and 2007. Source European Commission Date Released Unknown Date Updated Unknown Keywords annual energy consumption biomass coal crude oil Electricity Generation EU gas geothermal Hydro pumped storage PV renewable energy generating capacity wind Data application/vnd.ms-excel icon EU Energy Figures 2010 (Excel file, multiple tabs) (xls, 2 MiB) application/vnd.ms-excel icon EU Electricity Generation from Renewables (xls, 190.5 KiB)

292

Utilization of CO2 as cushion gas for porous media compressed air energy storage  

E-Print Network [OSTI]

design of compressed air energy storage electric powerS and Williams RH, Compressed Air Energy Storage: Theory,Porous media compressed air energy storage (PM-CAES): theory

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

293

Electric Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

294

Universe in a (Blue) Bottle | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Universe in a (Blue) Bottle Universe in a (Blue) Bottle High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » October 2012 Universe in a (Blue) Bottle Simulating the evolution of the universe on the Argonne Leadership Computing Facility's IBM Blue Gene/Q. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of ANL Large-scale structures in the universe form over time in these stills from a supercomputer simulation of the evolution of the universe.

295

Universe in a (Blue) Bottle | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Universe in a (Blue) Bottle Universe in a (Blue) Bottle Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » October 2012 Universe in a (Blue) Bottle Simulating the evolution of the universe on the Argonne Leadership Computing Facility's IBM Blue Gene/Q. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of ANL Large-scale structures in the universe form over time in these stills from

296

Life Cycle Assessment (LCA) of PET bottles and comparative LCA of three disposal options in Mauritius  

Science Journals Connector (OSTI)

Disposal of the increasing volume of used Polyethylene Terephthalate (PET) bottles has been a cause for concern for the Mauritian Government. To assist Government in decision-making, a study on PET bottles and its disposal was undertaken using the Life Cycle Assessment (LCA) tool. Three disposal scenarios, namely (100%) landfilling; (100%) incineration; and 50% landfilling and 50% incineration were compared. Sima Pro 5.1 software was used to analyse data and Eco-indicator 99 method was used for the impact assessment. The results showed that about 90% of the total environmental impact happened during the assembly and use phase of PET bottles. 100% incineration was found to be the most preferred option.

Rajendra Kumar Foolmaun; Toolseeram Ramjeawon

2008-01-01T23:59:59.000Z

297

Potential Electricity Impacts of a 1978 California Drought  

E-Print Network [OSTI]

car batteries, Most economies are more of scale and thus, with for utilities systems Storage in- of electric appropriate energy

Sathaye, J.

2011-01-01T23:59:59.000Z

298

Electricity cost saving comparison due to tariff change and ice thermal storage (ITS) usage based on a hybrid centrifugal-ITS system for buildings: A university district cooling perspective  

Science Journals Connector (OSTI)

Abstract In this paper, the case study of a district cooling system of a university located in a South East Asia region (lat: 01°29?; long: 110°20?E) is presented. In general, the university has high peak ambient temperature of around 32–35 °C coupled with high humidity of about 85% during afternoon period. The total electricity charge for the Universiti Malaysia Sarawak Campus is very high amounting to more than $314,911 per month. In this paper, a few district cooling schemes are investigated to provide “what-if analysis” and in order to minimize the overall electricity charges. Few scenarios designed for the application of centrifugal with and without ice-thermal storage (ITS) systems on the buildings were investigated. It was found that, due to the local tariff status, marginally saving can be achieved in the range of 0.08–3.13% if a new tariff is adopted; and a total of further saving of 1.26–2.43% if ITS is operated. This marginally saving is mainly due to the local tariff conditions and lower local temperature range (?T) which are less favorable as compared with those reported in the literature elsewhere.

Mohammad Omar Abdullah; Lim Pai Yii; Ervina Junaidi; Ghazali Tambi; Mohd Asrul Mustapha

2013-01-01T23:59:59.000Z

299

cryogenic storage  

Science Journals Connector (OSTI)

Storage in which (a) the superconductive property of materials is used to store data and (b) use is made of the phenomenon that superconductivity is destroyed in the presence of a magnetic field, thus enabling...

2001-01-01T23:59:59.000Z

300

Hydrogen Storage  

Broader source: Energy.gov [DOE]

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

E (2001) - Household Electricity Usage Form E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

302

E-Print Network 3.0 - acid storage batteries Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electric power applications Summary: expensive. Pneumatic storage technology's main advantages over the lead-acid batteries are (a) unlimited... . . . . . . . . . . . . . . . . ....

303

Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water  

E-Print Network [OSTI]

polyethylene terephthalate (PET) bottles into water: Chemical analysis and potential toxicity Cristina Bach a used for the bottling of drinking water is polyethylene terephthalate (PET). Since migra- tion can

Short, Daniel

304

PJM Presentation- The Silver Bullet: Storage! (July 12, 2011)  

Broader source: Energy.gov [DOE]

Presentation by Terry Boston, President and CEO pf PJM Interconnection before the Electricity Advisorty Committee, July 12, 2011, on storage for the smart grid.

305

Hydrogen storage and supply system - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

306

Cryogenic Capable High Pressure Containers for Compact Storage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

307

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

308

Compact magnetic energy storage module  

DOE Patents [OSTI]

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

309

Compact magnetic energy storage module  

DOE Patents [OSTI]

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

Prueitt, M.L.

1994-12-20T23:59:59.000Z

310

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network [OSTI]

. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The TestPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

311

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network [OSTI]

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The Test Ban Treaty. 5. Why should you care

Gilfoyle, Jerry

312

Tunable Electrical and Thermal Transport in Ice-Templated MultiLayer Graphene Nanocomposites  

E-Print Network [OSTI]

to electrical energy storage,1­3 thermal energy storage,4­13 and composite materials.14­21 Ice applications in thermal and electrical energy storage. Phase change thermal storage seeks to reduce building offsets in energy supply and demand.6 Thermal energy storage is also an appealing way to cool power

Maruyama, Shigeo

313

Energy Storage Safety Strategic Plan Now Available  

Broader source: Energy.gov [DOE]

The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan also makes recommendations for near- and long-term actions.

314

Matt Rogers on AES Energy Storage  

SciTech Connect (OSTI)

The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

Rogers, Matt

2010-01-01T23:59:59.000Z

315

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

316

Electric Resistance Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

317

Electric Resistance Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

318

Plastic bottle oscillator as an on-off-type oscillator: Experiments, modeling, and stability analyses of single and coupled systems  

Science Journals Connector (OSTI)

An oscillatory system called a plastic bottle oscillator is studied, in which the downflow of water and upflow of air alternate periodically in an upside-down plastic bottle containing water. It is demonstrated that a coupled two-bottle system exhibits in- and antiphase synchronization according to the nature of coupling. A simple ordinary differential equation is deduced to interpret the characteristics of a single oscillator. This model is also extended to coupled oscillators, and the model reproduces the essential features of the experimental observations.

Masahiro I. Kohira; Hiroyuki Kitahata; Nobuyuki Magome; Kenichi Yoshikawa

2012-02-03T23:59:59.000Z

319

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

320

Optimizing Storages for Transmission System Operation  

Science Journals Connector (OSTI)

Abstract A growing amount of congestions is expected for future operation of electrical transmission grids in Europe. Within this context, storages can be used to assist transmission system operators in daily operation and to avoid costly redispatch measures. In this paper, a research methodology to evaluate impact and interdependencies between market operation of storages and participation in redispatch measures is presented. Furthermore, a methodology for the evaluation of benefits by storages solely administrated by TSO is introduced. The methods are evaluated in a case study for the German electricity system in the year 2020.

Jonas Eickmann; Tim Drees; Jens D. Sprey; Albert Moser

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A partial differential equation system for modelling stochastic storage in physical systems with applications to wind power generation  

Science Journals Connector (OSTI)

......system for energy, whose purpose...the physical storage system as...flow. The tool of last resort...framework for the valuation of electricity storage. Working...supply with energy storage. First Report...2004) Valuation and optimal......

Sydney D. Howell; Peter W. Duck; Andrew Hazel; Paul V. Johnson; Helena Pinto; Goran Strbac; Nathan Proudlove; Mary Black

2011-07-01T23:59:59.000Z

322

The Economic Case for Bulk Energy Storage in Transmission Systems  

E-Print Network [OSTI]

The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

323

Hydrogen storage in aligned carbon nanotubes and David T. Shaw  

E-Print Network [OSTI]

Hydrogen storage in aligned carbon nanotubes Yan Chena) and David T. Shaw Department of Electrical and thermogravimetric analysis show a hydrogen storage capacity of 5­7 wt% was achieved reproducibly at room temperature the samples to 300 °C and removing of the catalyst tips, can increase the hydrogen storage capacity up to 13

Chung, Deborah D.L.

324

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission  

E-Print Network [OSTI]

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

325

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

326

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

327

Underground Storage Tank Regulations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

328

NREL: Vehicles and Fuels Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map NREL's Energy Storage Project is leading the charge on battery thermal management, modeling, and systems solutions to enhance the performance of fuel cell, hybrid electric, and electric vehicles (FCVs, HEVs, and EVs) for a cleaner, more secure transportation future. NREL's experts work closely with the U.S. Department of Energy (DOE), industry, and automotive manufacturers to improve energy storage devices, such as battery modules and ultracapacitors, by enhancing their thermal performance and life-cycle cost. Activities also involve modeling and simulation to evaluate technical targets and energy storage parameters, and investigating combinations of energy storage systems to increase vehicle efficiency. Much of this research is conducted at our state-of-the-art energy storage

329

Argonne Chemical Sciences & Engineering - Electrochemical Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage * Basic Research * Applied R&D * Engineering * Battery Testing Electrochemical Energy Storage The Energy Storage Theme The electrochemical Energy Storage (EES) Theme is internationally recognized as a world-class center for lithium battery R&D. It effectively integrates basic research, applied R&D, engineering, and battery testing, as shown in the diagram below. ees chart Its current focus is on developing improved materials and cell chemistries that will enable lithium-ion (Li-Ion) batteries for commercial light-duty vehicle applications, e.g. hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), and electric vehicle (EV) applications. Basic Research EES recently won a new Office of Science Energy Frontier Research Center (EFRC) denoted the "Center for Electrical Energy Storage: Tailored Interfaces." This new EFRC will focus on the science of stabilizing electrode/electrolyte interfaces in lithium batteries to achieve longer life and enhanced abuse tolerance.

330

Zeolite effect in the enantioselective transhydrogenation over a Co?salen “ship?in?the?bottle” complex  

Science Journals Connector (OSTI)

Our investigations were focused on the transhydrogenation of carbonyl groups using Co(II)?salen complexes entrapped in zeolites. The Co?salen 1 complex was occluded in the zeolite as a “ship?in?the?bottle” (SI...

W. Kahlen; H.H. Wagner; W.F. Hölderich

331

Using EPR To Compare PEG-branch-nitroxide "Bivalent-Brush Polymers" and Traditional PEG Bottle-Brush Polymers: Branching  

E-Print Network [OSTI]

Using EPR To Compare PEG-branch-nitroxide "Bivalent-Brush Polymers" and Traditional PEG Bottle and a hydrophobic nitroxide domain. Electron paramagnetic resonance (EPR) spectroscopy was used to characterize

Turro, Nicholas J.

332

Simultaneous Sterilization With Surface Modification Of Plastic Bottle By Plasma?Based Ion Implantation  

Science Journals Connector (OSTI)

Dry sterilization of polymeric material is developed. The technique utilizes the plasma?based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will be simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.

N. Sakudo; N. Ikenaga

2011-01-01T23:59:59.000Z

333

Fiscal year 1986 Department of Energy Authorization (uranium enrichment and electric energy systems, energy storage and small-scale hydropower programs). Volume VI. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Ninth Congress, First Session, February 28; March 5, 7, 1985  

SciTech Connect (OSTI)

Volume VI of the hearing record covers three days of testimony on the future of US uranium enrichment and on programs involving electric power and energy storage. There were four areas of concern about uranium enrichment: the choice between atomic vapor laser isotope separation (AVLIS) and the advanced gas centrifuge (AGC) technologies, cost-effective operation of gaseous diffusion plants, plans for a gas centrifuge enrichment plant, and how the DOE will make its decision. The witnesses represented major government contractors, research laboratories, and energy suppliers. The discussion on the third day focused on the impact of reductions in funding for electric energy systems and energy storage and a small budget increase to encourage small hydropower technology transfer to the private sector. Two appendices with additional statements and correspondence follow the testimony of 17 witnesses.

Not Available

1985-01-01T23:59:59.000Z

334

Thermal Storage Applications for Commercial/Industrial Facilities  

E-Print Network [OSTI]

THERMAL STORAGE APPLICATIONS FOR COMMERCIAL/INDUSTRIAL FACILITIES Roger 1. Knipp, PE. Dallas Power & Light Company Dallas, Texas ABSTRACT Texas Utilities Electric Company has been actively encouraging installations of thermal storage... since 1981. Financial incentives and advantageous rates can make thermal storage an attractive cooling concept in Texas Utilities Electric Company service area. Currently, 14 million square feet of commercial building space in Dallas is either...

Knipp, R. L.

335

Energy Conservation Opportunities in Carbonated Soft Drink Canning/Bottling Facilities  

E-Print Network [OSTI]

drink plants in California are presented. Major savings identified are in process modification, lighting, refrigeration, compressed air and most importantly combined heat and power. Although each facility has it own unique features the measures... for the soft drink industry is about 31.2 billion dollars. Carbonated soft drink production is among the most energy intensive processes in food industry. Significant levels ofrefrigeration and heating are needed in the carbonation and bottling...

Ganji, A. R.; Hackett, B.; Chow, S.

336

Energy Storage Technologies: State of Development for Stationary and  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 3

337

DOE Hydrogen Analysis Repository: Hydrogen for Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen for Energy Storage Hydrogen for Energy Storage Project Summary Full Title: Cost and GHG Implications of Hydrogen for Energy Storage Project ID: 260 Principal Investigator: Darlene Steward Brief Description: The levelized cost of energy (LCOE) of the most promising and/or mature energy storage technologies was compared with the LCOE of several hydrogen energy storage configurations. In addition, the cost of using the hydrogen energy storage system to produce excess hydrogen was evaluated. The use of hydrogen energy storage in conjunction with an isolated wind power plant-and its effect on electricity curtailment, credit for avoided GHG emissions, and LCOE-was explored. Keywords: Energy storage; Hydrogen; Electricity Performer Principal Investigator: Darlene Steward

338

Test report : Milspray Scorpion energy storage device.  

SciTech Connect (OSTI)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

339

US DRIVE Electrochemical Energy Storage Technical Team Roadmap  

Broader source: Energy.gov [DOE]

This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

340

Electric Currents Electric Current  

E-Print Network [OSTI]

coefficient of resistivity Electric Power: = = = Also, = . So, = = 2 = 2 Unit of Power(P): Watt (WChapter 18 Electric Currents #12;Electric Current: Flow of electric charge Current is flow of positive charge. In reality it's the electron moves in solids- Electron current. #12;Ohm's Law : Resistance

Yu, Jaehoon

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

342

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network [OSTI]

PV), solar thermal, stationary batteries, thermal storage,thermal storage, AC - absorption cooling, ST-solar thermal,solar thermal collector (kW) PV (kW) stationary electric storage (

Stadler, Michael

2012-01-01T23:59:59.000Z

343

Accomodating Electric Vehicles  

E-Print Network [OSTI]

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

344

Flywheel energy storage using superconducting magnetic bearings  

SciTech Connect (OSTI)

Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

Abboud, R.G. [Commonwealth Research Corp., Chicago, IL (United States); Uherka, K.; Hull, J.; Mulcahy, T. [Argonne National Lab., IL (United States)

1994-04-01T23:59:59.000Z

345

Electric Storage in California's Commercial Buildings  

E-Print Network [OSTI]

sustainable battery technology,” Journal of Power Sources,for Energy and Innovative Technologies, Austria ViennaUniversity of Technology, Austria Instituto Superior

Stadler, Michael

2014-01-01T23:59:59.000Z

346

Sandia National Laboratories: 2013 Electricity Storage Handbook...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

347

Electric Storage in California's Commercial Buildings  

E-Print Network [OSTI]

or combined heat and power (CHP) in commercial buildings anda renewable energy source or CHP system at the commercialPV at (GW) microgrids adopted CHP and (GW) DG at microgrids

Stadler, Michael

2014-01-01T23:59:59.000Z

348

THE STORAGE OF HEAT AND ELECTRICITY  

Science Journals Connector (OSTI)

...Project to be completed in 1963, in Missouri, where water will be pumped from...the form of coal or coke piles, oil-tank farms, repressurized gas fields, or gas-filled underground cavities. Natural gas can even be transported and stored...

Bertrand A. Landry

1961-01-01T23:59:59.000Z

349

THE STORAGE OF HEAT AND ELECTRICITY  

Science Journals Connector (OSTI)

...completed in 1963, in Missouri, where water will be...of coal or coke piles, oil-tank farms, repressurized...chemical reactions requires heavy equip- ment; voltage...mostly from current, and heavy conductors are needed...qualities is mercury. This is heavy and can be toxic, although...

Bertrand A. Landry

1961-01-01T23:59:59.000Z

350

THE STORAGE OF HEAT AND ELECTRICITY  

Science Journals Connector (OSTI)

...repressurized gas fields, or gas-filled underground cavities. Natural gas can even be transported...gravel in connection with solar heating of dwellings...dry ice, and liquefied gases. The durations of time...steam on its way to a turbine. Sensible heat in recuperators...

Bertrand A. Landry

1961-01-01T23:59:59.000Z

351

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network [OSTI]

efficiency requirements - Maximum emission limits Investment constraints: - Payback period is constrained Storage constraints: - Electricity stored is limited by batterybattery minimum state of charge, dimensionless EV battery charging efficiency, dimensionless EV battery discharging efficiency, dimensionless electricity storage

Stadler, Michael

2012-01-01T23:59:59.000Z

352

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

353

Role of large scale storage in a UK low carbon energy future Philipp Grunewalda  

E-Print Network [OSTI]

round trip efficiency, both compressed air energy storage and hydrogen storage could become potentialRole of large scale storage in a UK low carbon energy future Philipp Gr¨unewalda , Tim Cockerilla Large scale storage offers the prospect of using excess electricity within a low carbon energy system

354

Author's personal copy Opportunities and barriers to pumped-hydro energy storage in the United States  

E-Print Network [OSTI]

available commercially for grid-tied electricity storage, pumped- hydro energy storage (PHES) and compressed air energy storage (CAES). Of the two, PHES is far more widely adopted. In the United StatesAuthor's personal copy Opportunities and barriers to pumped-hydro energy storage in the United

Jackson, Robert B.

355

Simulation and analysis of high-speed modular flywheel energy storage systems using MATLAB/Simulink  

Science Journals Connector (OSTI)

Storage is an extremely important area of research and has several applications, including potential of furthering the integration of renewable in the grid. An efficient and cost-effective electric storage is a transformative technology and benefits ... Keywords: PM motor, flywheel energy storage system, high-speed drives, storage system

Parag Upadhyay; Ned Mohan

2009-07-01T23:59:59.000Z

356

Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

None

2012-01-01T23:59:59.000Z

357

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

358

Calabashes and bottle gourds from Suriname. A comparative research between Maroons and Amerindians, with a case-study in Konomerume, a Kari'na village.  

E-Print Network [OSTI]

??This thesis gives a detailed overview of the use, production, decoration and iconography of calabashes (Crescentia cujete) and bottle gourds (Lagenaria siceraria) among the Amerindians… (more)

Meulenberg, I.R.M.M.

2012-01-01T23:59:59.000Z

359

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

360

Carbon Storage in Basalt  

Science Journals Connector (OSTI)

...immobile and thus the storage more secure, though...continental margins have huge storage capacities adjacent...unlimited supplies of seawater. On the continents...present in the target storage formation can be pumped up and used to dissolve...

Sigurdur R. Gislason; Eric H. Oelkers

2014-04-25T23:59:59.000Z

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

362

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

363

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

364

Electric Drive Vehicles: A Huge New Distributed Energy Resource  

E-Print Network [OSTI]

with electric power generation and storage capabilities · Three Vehicle Types in Program ­ Full ZEV: true zero) #12;Electric Drive in Vehicles -- All the Ingredients for a Distributed Power System #12;Vehicle and energy storage potential · Electric vehicle charge stations: grid connection points for power

Firestone, Jeremy

365

Superconducting energy storage  

SciTech Connect (OSTI)

This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

Giese, R.F.

1993-10-01T23:59:59.000Z

366

An Economic Study of Carbon Capture and Storage System Design and Policy  

E-Print Network [OSTI]

Carbon capture and storage (CCS) and a point of electricity generation is a promising option for mitigating greenhouse gas emissions. One issue with respect to CCS is the design of carbon dioxide transport, storage and injection system...

Prasodjo, Darmawan

2012-10-19T23:59:59.000Z

367

Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage  

E-Print Network [OSTI]

Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation...

Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

2007-01-01T23:59:59.000Z

368

Cool Storage Applications in the Texas LoanSTAR Program: Overview and Preliminary Results  

E-Print Network [OSTI]

Cool Storage Systems (CSS) are becoming a popular demand side management tool for utilities because that helps them avoid costly plant expansions and reduces summer-time peak electricity demand. This paper presents an analysis of cool storage...

Abbas, M.; Haberl, J. S.; Turner, W. D.

1994-01-01T23:59:59.000Z

369

Energy Storage | Global and Regional Solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainable Energy Technologies Department Sustainable Energy Technologies Department Energy Storage Group A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric vehicles - is essential for reducing oil dependency. Brookhaven National Laboratory conducts leading-edge research into two of the most promising technologies to move us closer to making such vehicles feasible, affordable and safe: solid-state hydrogen storage and lithium batteries. Brookhaven scientists are conducting basic electrochemical research to significantly improve the efficiency and reliability of fuel cells and batteries. They have launched a concerted effort of basic and applied research for the development of improved energy-storage materials and

370

Bottle-brush polymers as an intermediate between star and cylindrical polymers  

Science Journals Connector (OSTI)

We present a theoretical study of a single bottle-brush molecule, which consists of multiarmed polymer stars grafted densely onto a stiff backbone. Mean-field approximation and a variational approach are used to calculate the dominant trajectories of the grafted chains, the shape of the molecule, and the segment density distribution around the backbone. All these properties are calculated for an arbitrary relationship between the size of the backbone and that of a grafted star. Hence cylindrical comb copolymer brushes and spherically symmetric polymer stars are considered as the limiting cases of the present problem.

N. A. Denesyuk

2003-09-18T23:59:59.000Z

371

Finite-Size Scaling for the Ising Model on the Möbius Strip and the Klein Bottle  

Science Journals Connector (OSTI)

We study the finite-size scaling properties of the Ising model on the Möbius strip and the Klein bottle. The results are compared with those of the Ising model under different boundary conditions, that is, the free, cylindrical, and toroidal boundary conditions. The difference in the magnetization distribution function p(m) for various boundary conditions is discussed in terms of the number of the percolating clusters and the cluster size. We also find interesting aspect-ratio dependence of the value of the Binder parameter at T=Tc for various boundary conditions. We discuss the relation to the finite-size correction calculations for the dimer statistics.

Kazuhisa Kaneda and Yutaka Okabe

2001-03-05T23:59:59.000Z

372

Ising model on nonorientable surfaces: Exact solution for the Möbius strip and the Klein bottle  

Science Journals Connector (OSTI)

Closed-form expressions are obtained for the partition function of the Ising model on an M×N simple-quartic lattice embedded on a Möbius strip and a Klein bottle. The solutions all lead to the same bulk free energy, but for finite M and N the expressions are different depending on whether the strip width M is odd or even. Finite-size corrections at criticality are analyzed and compared with those under cylindrical and toroidal boundary conditions. Our results are consistent with the conformal field prediction of a central charge c=1/2, provided that the twisted Möbius boundary condition is regarded as a free or fixed boundary.

Wentao T. Lu and F. Y. Wu

2001-01-22T23:59:59.000Z

373

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

374

NREL: Energy Analysis: Electric Sector Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Sector Integration Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher levels of variable renewable electricity. Impacts of renewable electricity generation on efficiency and emissions of conventional generators. Grid expansion and planning to allow large scale deployment of renewable generation. Graphic showing a high concept diagram of how a modern electricity system can be designed to include storage and incorporate large scale renewable generation. High Renewable Generation Electric System Flexibility and Storage Impacts on Conventional Generators Transmission Infrastructure

375

Batteries and Energy Storage | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Joint Center for Energy Storage Research (JCESR) is a major research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles, and enable

376

Hydrogen storage and integrated fuel cell assembly  

DOE Patents [OSTI]

Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

Gross, Karl J. (Fremont, CA)

2010-08-24T23:59:59.000Z

377

Changes in nutritional and sensory properties of orange juice packed in PET bottles: An experimental and modelling approach  

Science Journals Connector (OSTI)

Abstract Sensitivity to oxidation of an orange juice was investigated through packaging in standard PET or active PET with oxygen scavenger bottles. The evolution of dissolved oxygen was found to be similar in all bottles, whereas ascorbic acid degradation was related to the oxygen transfer with higher losses in standard PET (53%) against active PET (31%). Moreover, when juice was exposed to high intensity light, a fold faster degradation of ascorbic acid was observed compared to total darkness. Depending also on the light intensity and regardless of the package permeability, changes in the aromatic profile of the juice were observed due to the degradation of limonene and the formation of ?-terpineol, an off-flavour. A mechanistic model was developed to predict the shelf life of orange juice. This model, coupling O2 transfer and ascorbic acid oxidation reaction in the bottled juice, confirmed that oxygen permeation through packaging material could not be neglected.

Celine Bacigalupi; Marie Hélčne Lemaistre; Naima Boutroy; Christophe Bunel; Stéphane Peyron; Valérie Guillard; Pascale Chalier

2013-01-01T23:59:59.000Z

378

Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings  

Science Journals Connector (OSTI)

The resonant frequencies of a one-dimensional bottle-shaped cavity embedded in a ground plane are calculated using a modal approach for s and p polarizations. The same formalism is used to solve the problem of scattering from a surface with a finite number of cavities and from an infinite periodic grating. We show numerical results where the resonant behavior is evidenced as dips in the curve of intensity specularly reflected from a surface with one or several bottle-shaped grooves. The surface shape resonances of a single cavity are also shown to have a great influence on the efficiency distribution of the diffracted orders from infinite gratings made of bottle-shaped cavities. The excitation of even and odd modes is analyzed for both polarizations.

Ricardo A. Depine and Diana C. Skigin

2000-04-01T23:59:59.000Z

379

One dimensional Si/Sn -based nanowires and nanotubes for lithium-ion energy storage materials  

E-Print Network [OSTI]

), electric vehicles (EVs)), bulk electricity storage at power stations and load leveling of renewable sources such as power tools, electric vehicles or efficient use of renewable energies. This can be attained by replacing candidates for transportation (hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs

Cui, Yi

380

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Department Releases Strategic Plan for Energy Storage Safety  

Broader source: Energy.gov [DOE]

The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading, also makes recommendations for near- and long-term actions. The Energy Storage Safety Strategic Plan complements two reports released by OE earlier this year: the Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States and the Inventory of Safety-related Codes and Standards for Energy Storage Systems.

382

Underground Storage Tank Regulations for the Certification of Persons Who  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

383

Chongqing Wanli Storage Battery Co | Open Energy Information  

Open Energy Info (EERE)

Wanli Storage Battery Co Wanli Storage Battery Co Jump to: navigation, search Name Chongqing Wanli Storage Battery Co. Place Chongqing Municipality, China Sector Solar, Vehicles, Wind energy Product The scope of Wanli's power storage business includes batteries made for electric motorcycles and industrial vehicles, boats, and cars. It also includes batteries to store power from solar or wind power plants. References Chongqing Wanli Storage Battery Co.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chongqing Wanli Storage Battery Co. is a company located in Chongqing Municipality, China . References ↑ "Chongqing Wanli Storage Battery Co." Retrieved from "http://en.openei.org/w/index.php?title=Chongqing_Wanli_Storage_Battery_Co&oldid=34358

384

Innovative Energy Storage Technologies Enabling More Renewable Power |  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Technologies Enabling More Renewable Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM Prosperity Energy Storage Project is the nation's first combined solar generation and storage facility to be fully integrated into a utility's power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy

385

Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Presentation - Energy Storage in State RPS - Dec. 19, 2011 Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery and Energy Reliability presented "Grid Energy Storage: The Big Picture" as one of four guest speakers for a webinar on energy storage and renewable portfolio standards (RPS). The webinar was hosted by the State-Federal RPS Collaborative and the Clean Energy States Alliance (CESA) to explore the role of energy storage in state RPS, including the integration of an increasingly higher penetration of renewables and energy storage as a generation resource. The webinar presentation slides are available below; the recorded webinar may be downloaded from CESA's website. Webinar Presentation - December 19 RPS and Energy Storage.pdf

386

The discharge characteristics of the DUHOCAMIS with a high magnetic bottle-shaped field  

E-Print Network [OSTI]

For the purpose to produce high intensity, multiply charged metal ion beams, the DUHOCAMIS (dual hollow cathode ion source for metal ions) was derived from the hot cathode Penning ion source combined with the hollow cathode sputtering experiments in 2007. It was interesting to investigate the behavior of this discharge geometry in a stronger magnetic bottle-shaped field. So a new test bench for DUHOCAMIS with a high magnetic bottle-shaped field up to 0.6 T has been set up at Peking University, on which have been made primary experiments in connection with discharge characteristics of the source. The experiments with magnetic fields from 0.13 T to 0.52 T have shown that the magnetic flux densities are very sensitive to the discharge behavior: discharge curves and ion spectra. It has been found that the slope of discharge curves in a very wide range can be controlled by changing the magnetic field as well as regulated by adjusting cathode heating power. On the other hand, by comparison of discharge curves betwe...

Fu, Dongpo; Guo, Peng; Zhu, Kun; Wang, Jinghui; Hua, Jingshan; Ren, Xiaotang; Xue, Jianming; Zhao, Hongwei; Liu, Kexin

2014-01-01T23:59:59.000Z

387

Softening of the stiffness of bottle-brush polymers by mutual interaction  

Science Journals Connector (OSTI)

We study bottle-brush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side chains with approximately 60 monomer units. The SLS and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a wormlike chain with a contour length of 380nm and a persistence length of 17.5nm. An analysis of the DLS data confirms these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottle-brush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5nm down to 5nm upon increasing the concentration from dilute solution to the highest concentration (40.59g?l) under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.

S. Bolisetty; C. Airaud; Y. Xu; A. H. E. Müller; L. Harnau; S. Rosenfeldt; P. Lindner; M. Ballauff

2007-04-30T23:59:59.000Z

388

Global potential for wind-generated electricity  

Science Journals Connector (OSTI)

...monthly averages of wind power production...negative. Very large wind power penetration...forms. Plug-in hybrid electric vehicles...excesses in electricity system, while energy-rich...storage. Potential wind-generated electricity...only wind but also solar. The additional...

Xi Lu; Michael B. McElroy; Juha Kiviluoma

2009-01-01T23:59:59.000Z

389

AZ 300 MIF Developer Process The CEPSR Clean Room stores one gallon bottles of AZ 300 MIF (metal ion free) developer  

E-Print Network [OSTI]

AZ 300 MIF Developer Process The CEPSR Clean Room stores one gallon bottles of AZ 300 MIF (metal of this developer are 2.38% weight of tetra methyl ammonium hydroxide (TMAH) and 0.261N metal ion free developer with nitrogen gun. 4) Place bottle of AZ 300 MIF back under the hood with other solvents. 5) Any used AZ 300 MIF

Kim, Philip

390

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect (OSTI)

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

391

International Battery Presentation- Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011)  

Broader source: Energy.gov [DOE]

Presentation by Ake Algrem of International Battery before the Electricity Advisorty Committee, July 12, 2011, on storage options for the smart grid.

392

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in batteries that holds promise for electric vehicles January...

393

FY 2011 Annual Progress Report for Energy Storage R&D  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

REPORT FOR ENERGY STORAGE R&D January 2012 Approved by David Howell, Hybrid Electric Systems Team Lead Vehicle Technologies Program, Energy Efficiency and Renewable Energy Table...

394

SciTech Connect: Value of Energy Storage for Grid Applications  

Office of Scientific and Technical Information (OSTI)

for Grid Applications This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation...

395

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

396

Heat pumps and energy storage – The challenges of implementation  

Science Journals Connector (OSTI)

The wider implementation of variable renewable energy sources such as wind across the UK and Ireland will demand interconnection, energy storage and more dynamic energy systems to maintain a stable energy system that makes full use of one of our best renewable energy resources. However large scale energy storage e.g. pumped storage may be economically challenging. Therefore can thermal energy storage deployed domestically fulfil an element of such an energy storage role? Current electricity pricing is based on a ˝ hourly timeframe which will be demonstrated to have some benefits for hot water heating from electrical water heaters in the first instance. However heat pumps linked to energy storage can displace fossil fuel heating systems and therefore the question is whether a renewable tariff based on “excess” wind for example is sufficient to operate heat pumps. An initial analysis of this scenario will be presented and its potential role in challenging aspects of fuel poverty.

Neil J Hewitt

2012-01-01T23:59:59.000Z

397

FY06 DOE Energy Storage Program PEER Review  

Broader source: Energy.gov (indexed) [DOE]

7 DOE Energy Storage Program 7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for modernizing and expanding the electric supply. This will improve the quality, reliability, flexibility and cost effectiveness of the existing system. Help create an energy storage industry Make energy storage ubiquitous ESS Program Makeup ESS Program Makeup ESS Base Program - CEC/DOE Data Acquisition and Project Support - NYSERDA/DOE Data Acquisition and Project Support - BPA ETO based STATCOM Project - ETO Development Project - Boeing Superconducting Flywheel - ACONF Coast Guard Project - Iowa Stored Energy Project - Electrolyte Research

398

June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook |  

Broader source: Energy.gov (indexed) [DOE]

June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 14, 2013 - 3:27pm Addthis On Tuesday, June 18 from 2 - 3 p.m. ET, Clean Energy States Alliance will host a webinar introducing the recently updated Electricity Storage Handbook released by Sandia National Laboratories and published by the U.S. Department of Energy. Titled "Highlights of the DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA," the webinar will be introduced by by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. This webinar will highlight the various topical areas of the 2013 edition of the Electricity Storage Handbook. This is a how-to guide for utility

399

Grid Energy Storage December 2013 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Grid Energy Storage December 2013 Grid Energy Storage December 2013 Grid Energy Storage December 2013 Modernizing the electric grid will help the nation meet the challenge of handling projected energy needs-including addressing climate change by relying on more energy from renewable sources-in the coming decades, while maintaining a robust and resilient electricity delivery system. By some estimates, the United States will need somewhere between 4 and 5 tera kilowatt-hours of electricity annually by 2050. Those planning and implementing grid expansion to meet this increased electric load face growing challenges in balancing economic and commercial viability, resiliency, cyber-security, and impacts to carbon emissions and environmental sustainability. Energy storage systems (ESS) will play a

400

Enhanced Reliability of Photovoltaic Systems with Energy Storage and Controls  

SciTech Connect (OSTI)

This report summarizes efforts to reconfigure loads during outages to allow individual customers the opportunity to enhance the reliability of their electric service through the management of their loads, photovoltaics, and energy storage devices.

Manz, D.; Schelenz, O.; Chandra, R.; Bose, S.; de Rooij, M.; Bebic, J.

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage  

SciTech Connect (OSTI)

GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

None

2010-09-01T23:59:59.000Z

402

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

403

University of Arizona Compressed Air Energy Storage  

SciTech Connect (OSTI)

Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z

404

NREL: Energy Storage - Energy Storage Thermal Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

405

NREL: Energy Storage - Energy Storage Systems Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed...

406

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

407

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

408

Energy Storage and Solar Power: An Exaggerated Problem  

Science Journals Connector (OSTI)

...capac-ity in an electric grid. The data base for wind correlation...intermittent sources through a grid to circumvent storage is particularly...com-pressed-air systems, flywheels, and su-perconducting magnets...compressed-air systems, flywheels, and superconducting storage...

WILLIAM D. METZ

1978-06-30T23:59:59.000Z

409

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

410

Technologies for Carbon Capture and Storage  

E-Print Network [OSTI]

FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production to optimize hydrogen production or carbon capture The prototype plant would be the world's 1st #12;24-Jun-03Gen? · The world's first plant [prototype] to: - Capture and permanently sequester carbon dioxide - Emit virtually

411

Hydrogen storage on activated carbon. Final report  

SciTech Connect (OSTI)

The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

1994-11-01T23:59:59.000Z

412

The Utility Battery Storage Systems Program Overview  

SciTech Connect (OSTI)

Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

Not Available

1994-11-01T23:59:59.000Z

413

Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface  

SciTech Connect (OSTI)

GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today’s best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations—generally less than a few minutes. ABB’s system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

None

2010-10-01T23:59:59.000Z

414

Office of the Assistant General Counsel Electricity & Fossil Energy |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity & Fossil Energy Electricity & Fossil Energy Office of the Assistant General Counsel Electricity & Fossil Energy The Office of the Assistant General Counsel for Electricity and Fossil Energy (GC-76) provides legal support and advice, and policy guidance, to the Department on electricity, fossil energy, energy regulatory and Federal Power Marketing Administration issues. The office is the lead departmental attorney for the Assistant Secretaries for Electricity Delivery and Energy Reliability, and Fossil Energy, and provides legal advice and support on matters pertaining to the generation, transmission and distribution of electricity; natural gas production, transmission, storage, importation and exportation; oil production and storage including the Strategic Petroleum

415

Energy Storage Program Planning Document | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-008689: Categorical Exclusion Determination

416

New York's Energy Storage System Gets Recharged | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

York's Energy Storage System Gets Recharged York's Energy Storage System Gets Recharged New York's Energy Storage System Gets Recharged August 2, 2010 - 1:18pm Addthis Matt Rogers, Senior Advisor to Secretary Chu, explain why grid frequency regulation matters Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this mean for me? AES Storage in New York got a $17.1M conditional loan guarantee to provide a more stable transmission grid. When thinking of clean technologies, energy storage might not be the first thing to come to mind, but with a $17.1 million conditional commitment for a loan guarantee from the Department of Energy AES Energy Storage will develop a battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission

417

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects |  

Broader source: Energy.gov (indexed) [DOE]

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 1, 2013 - 5:00pm Addthis On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss Duke Energy's six deployed battery systems, which cover a wide range of battery chemistries, sizes, locations on the grid, and applications. The deployments include the Notrees Wind Storage project, which OE supports under the Recovery Act-funded Smart Grid Energy Storage Demonstration Program. The other projects are the Rankin

418

Energy Storage Program Planning Document | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-010738: Categorical Exclusion Determination

419

Underground Natural Gas Storage by Storage Type  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1973-2014 Withdrawals 43,752 63,495 73,368 47,070 52,054 361,393 1973-2014 Salt Cavern Storage Fields Natural Gas in Storage 381,232 399,293 406,677 450,460 510,558 515,041...

420

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, News, News & Events, Partnership,...

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Onboard Storage Tank Workshop  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned...

422

Solar Energy Storage  

Science Journals Connector (OSTI)

The intermittent nature of the solar energy supply makes the provision of adequate energy storage essential for the majority of practical applications. Thermal storage is needed for both low-temperature and high-...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z

423

Storage of Solar Energy  

Science Journals Connector (OSTI)

Energy storage provides a means for improving the performance and efficiency of a wide range of energy systems. It also plays an important role in energy conservation. Typically, energy storage is used when there...

H. P. Garg

1987-01-01T23:59:59.000Z

424

Chemical Energy Storage  

Science Journals Connector (OSTI)

The oldest and most commonly practiced method to store solar energy is sensible heat storage. The underlying technology is well developed and the basic storage materials, water and rocks, are available ... curren...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

425

Safe Home Food Storage  

E-Print Network [OSTI]

Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

Van Laanen, Peggy

2002-08-22T23:59:59.000Z

426

Thermochemical Energy Storage  

Broader source: Energy.gov [DOE]

This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013.

427

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Broader source: Energy.gov (indexed) [DOE]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

428

Dish Stirling Advanced Latent Storage Feasibility  

Science Journals Connector (OSTI)

Abstract Dish-Stirling systems have been demonstrated to provide high-efficiency solar-only electrical generation, holding the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. Current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports on the technical advantages and challenges of dish Stirling with storage, to make a preliminary estimate as to the technical feasibility of such a system. The proposed system with storage incorporates high temperature latent transport and latent storage, providing an exergetic match to the isothermal input of the Stirling cycle. The transport from the receiver to the storage, and from storage to the engine, is accomplished with advanced sodium heat pipes. The storage is in a solid-liquid phase change material (PCM), likely a metallic eutectic to reduce exergy losses in thermal conduction. We model a dish Stirling system at a block level, using a combination of real data from several dish systems with and without heat pipe transport, and determine annual energy production and revenue streams based on Barstow California weather data and Southern California Edison Time of Day pricing. We optimize the system on solar multiple, capacity of storage, and several operational strategies. We find that a storage system using metallic eutectic phase change storage results in a feasible physical embodiment, with mass, volume, and complexity suitable for 25kWe dish Stirling systems. The results indicate a system with 6 hours of storage and a solar multiple of 1.25 provides the optimum impact to LCOE and profit for the range of cases studied. A storage system applied to dish Stirling will leverage the current high performance systems, increasing the value to the utilities and transmission entities. A feasible embodiment has been proposed, which with sufficient development will re-establish dish Stirling as a leading energy option.

C.E. Andraka

2014-01-01T23:59:59.000Z

429

build more efficient electrical grids, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

build more efficient electrical grids, and advance clean energy research build more efficient electrical grids, and advance clean energy research and development (R&D). The new action plan also places a greater emphasis on energy efficiency. Accomplishments to date under the CED include: (1) completing the final phase of the Weyburn-Midale Carbon Dioxide Monitoring and Storage Project, which focuses on best practices for the safe and permanent storage of carbon dioxide (CO 2

430

Coal Storage and Transportation  

Science Journals Connector (OSTI)

Abstract Coal preparation, storage, and transportation are essential to coal use. Preparation plants, located near to the mine, remove some inorganic minerals associated with raw coal. Coal is transported from the mines to the point of consumption, often an electric generating plant, by rail, barge and trucks. Railroads are the predominant form of coal transportation within a country. Global coal trade, movement by large ocean-going vessels, continues to increase. At the end use site, the coal is crushed, ground, and the moisture content reduced to the proper specifications for end use. Coal is stored at various points in the supply chain. Processed coal will weather and oxidize, changing its properties; it can self-ignite, unless precautions are taken. Technology in use today is similar to that used in previous decades. Performance improvements have come from improved software and instruments that deliver real-time data. These improve management of sub-processes in the coal supply chain and reduce costs along the supply chain.

J.M. Ekmann; P.H. Le

2014-01-01T23:59:59.000Z

431

High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with a Silver-Coated Glass Fiber with a Varying Diameter  

Science Journals Connector (OSTI)

We experimentally demonstrate that hybrid plasmon-photon modes exist in a silver-coated glass bottle resonator. The bottle resonator is realized in a glass fiber with a smoothly varying diameter, which is subsequently coated with a rhodamine 800-dye doped acryl-glass layer and a 30 nm thick silver layer. We show by means of photoluminescence experiments supported by electromagnetic simulations that the rhodamine 800 photoluminescence excites hybrid plasmon-photon modes in such a bottle resonator, which provide a plasmon-type field enhancement at the outer silver surface and exhibit quality factors as high as 1000.

Andreas Rottler; Malte Harland; Markus Bröll; Matthias Klingbeil; Jens Ehlermann; Stefan Mendach

2013-12-18T23:59:59.000Z

432

Is Energy Storage an Economic Opportunity for the Eco-Neighborhood?  

E-Print Network [OSTI]

electric vehicles1 , according to Voice et al. [18]. Other systems of storage based on hydrogen temperature in the house, thermal loss and heating efficiency of their house. At his level, the eco storage; Pricing 1 Introduction In the literature, the use of energy storage systems in homes has been

433

PCIM, Nrnberg, may 2003 FLYWHEEL ENERGY STORAGE SYSTEMS IN HYBRID AND  

E-Print Network [OSTI]

-scale storage of the type pumped hydro, compressed air, flow batteries, etc.), or even at the level of potentialPCIM, NĂĽrnberg, may 2003 FLYWHEEL ENERGY STORAGE SYSTEMS IN HYBRID AND DISTRIBUTED ELECTRICITY of the electromechanical storage of energy over long operating cycles (with time constants ranging from several minutes

Boyer, Edmond

434

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Research Basic Research * Members * Contact * Publications * Overview * CEES EES Home Electrochemical Energy Storage - Basic Research Electrochemical Energy Storage Chemistry co-op student Sara Busking loads a lithium-ion battery cell in a pouch into a test oven to evaluate its electrochemical performance. EES conducts basic research to support its applied electrochemical energy storage R&D initiatives. EES also leads an Energy Frontier Research Center (EFRC), recently awarded by DOE's Office of Science, with partners at Northwestern University and the University of Illinois (Urbana Champaign). The EFRC, the Center for Electrical Energy Storage: Tailored Interfaces (CEES), focuses on understanding electrochemical phenomena at electrode/electrolyte interfaces

435

Underground Storage Tanks (New Jersey) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

436

Modeling the Benefits of Storage Technologies to Wind Power  

SciTech Connect (OSTI)

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

Sullivan, P.; Short, W.; Blair, N.

2008-06-01T23:59:59.000Z

437

Storage Sub-committee  

Broader source: Energy.gov (indexed) [DOE]

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

438

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

439

Southern company energy storage study : a study for the DOE energy storage systems program.  

SciTech Connect (OSTI)

This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

2013-03-01T23:59:59.000Z

440

FY06 DOE Energy Storage Program PEER Review  

Broader source: Energy.gov (indexed) [DOE]

8 DOE Energy Storage 8 DOE Energy Storage and Power Electronics Program (ESPE) PEER Review FY08 DOE Energy Storage and Power Electronics Program (ESPE) PEER Review John D. Boyes Sandia National Laboratories Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000 Mission Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for modernizing and expanding the electric supply. This will improve the quality, reliability, flexibility and cost effectiveness of the existing system. Help create an energy storage industry Develop advanced power electronics for the grid of the future

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

FY06 DOE Energy Storage Program PEER Review  

Broader source: Energy.gov (indexed) [DOE]

9 DOE Energy Storage 9 DOE Energy Storage PEER Review John D. Boyes Sandia National Laboratories Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for modernizing and expanding the electric supply. This will improve the quality, reliability, flexibility and cost effectiveness of the existing system. Help create an energy storage industry Significant Events in FY09 Power Electronics Subprogram suffered a large budget cut in FY09 and was dropped as a separate program for FY10. ESSP will reabsorb power electronics development for energy storage applications back into program. Funding Due to a lengthy Congressional continuing resolution, FY09 funding was not received until April Power Electronics Sub-Program ESSP Program Highlights

442

Electromagnetic energy storage and power dissipation in nanostructures  

E-Print Network [OSTI]

The processes of storage and dissipation of electromagnetic energy in nanostructures depend on both the material properties and the geometry. In this paper, the distributions of local energy density and power dissipation in nanogratings are investigated using the rigorous coupled-wave analysis. It is demonstrated that the enhancement of absorption is accompanied by the enhancement of energy storage both for material at the resonance of its dielectric function described by the classical Lorentz oscillator and for nanostructures at the resonance induced by its geometric arrangement. The appearance of strong local electric field in nanogratings at the geometry-induced resonance is directly related to the maximum electric energy storage. Analysis of the local energy storage and dissipation can also help gain a better understanding of the global energy storage and dissipation in nanostructures for photovoltaic and heat transfer applications.

Zhao, J M

2014-01-01T23:59:59.000Z

443

Chemical Storage-Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

444

NETL: Carbon Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

445

Concrete as a thermal energy storage medium for thermocline solar energy storage systems  

Science Journals Connector (OSTI)

Abstract Rising energy costs and the adverse effect on the environment caused by the burning of fossil fuels have triggered extensive research into alternative sources of energy. Harnessing the abundance of solar energy has been one of the most attractive energy alternatives. However, the development of an efficient and economical solar energy storage system is of major concern. According to the Department of Energy (DOE), the cost per kilowatt hour electric from current technologies which utilize solar energy is high, estimated at approximately $0.15–$0.20/kW helectric, while the unit cost to store the thermal energy is approximately $30.00/kW hthermal. Based on traditional means of producing electricity (through burning fossil fuels), the unit cost of electricity is $0.05–$0.06/kW h. Clearly, current solar energy technologies cannot compete with traditional forms of electricity generation. In response, the DOE has established a goal of reducing the cost of solar generated electricity to $0.05–$0.07/kW helectric and achieving thermal storage costs below $15.00/kW hthermal. Reduction in the cost of the storage medium is one step in achieving the stated goal. In this research program economical concrete mixtures were developed that resisted temperatures up to 600 °C. This temperature level represents a 50% increase over the operating temperature of current systems, which is approximately 400 °C. However, long-term testing of concrete is required to validate its use. At this temperature, the unit cost of energy stored in concrete (the thermal energy storage medium) is estimated at $0.88–$1.00/kW hthermal. These concrete mixtures, used as a thermal energy storage medium, can potentially change solar electric power output allowing production through periods of low to no insolation at lower unit costs.

Emerson John; Micah Hale; Panneer Selvam

2013-01-01T23:59:59.000Z

446

Electricity Reliability  

E-Print Network [OSTI]

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

447

The Impact of Electric Passenger Transport Technology under an Economy-Wide Climate Policy in the United States: Carbon Dioxide Emissions, Coal Use, and Carbon Dioxide Capture and Storage  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratory’s MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions.

Wise, Marshall A.; Kyle, G. Page; Dooley, James J.; Kim, Son H.

2010-03-01T23:59:59.000Z

448

A resin-buffered nutrient solution for controlling metal speciation in the algal bottle assay  

Science Journals Connector (OSTI)

Metal speciation in solution is uncontrolled during algal growth in the traditional algal bottle assay. A resin-buffered nutrient solution was developed to overcome this problem and this was applied to test the effect of chloride (Cl?) on cadmium (Cd) uptake. Standard nutrient solution was enriched with 40 mM of either NaNO3 or NaCl, and was prepared to contain equal Cd2+ but varying dissolved Cd due to the presence of CdCln2?n complexes. Both solutions were subsequently used in an algal assay in 100 mL beakers that contained only the solution (designated “?R”) or contained the solution together with a cation exchange sulfonate resin (2 g L?1, designated “+R”) as a deposit on the bottom of the beaker. Pseudokirchneriella subcapitata was grown for 72 h (1.4 × 105–1.4 × 106 cells mL?1) in stagnant solution and shaken three times a day. Growth was unaffected by the presence of the resin (p > 0.05). The Cd concentrations in solution of the ?R devices decreased with 50–58% of initial values due to Cd uptake. No such changes were found in the +R devices or in abiotic controls. Cd uptake was unaffected by either NaNO3 or NaCl treatment in the +R device, confirming that Cd2+ is the preferred Cd species in line with the general concept of metal bioavailability. In contrast, Cd uptake in the ?R devices was two-fold larger in the NaCl treatment than in the NaNO3 treatment (p < 0.001), suggesting that CdCln2?n complexes are bioavailable in this traditional set-up. However this bioavailability is partially, but not completely, an apparent one, because of the considerable depletion of solution 109Cd in this set-up. Resin-buffered solutions are advocated in the algal bottle assay to control trace metal supply and to better identify the role of metal complexes on bioavailability.

L. Verheyen; R. Merckx; E. Smolders

2012-01-01T23:59:59.000Z

449

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

450

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

451

High density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for solar disinfection of drinking water in northern region, Ghana  

E-Print Network [OSTI]

The purpose of this study is to investigate the technical feasibility of high density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for the solar disinfection of drinking water ...

Yazdani, Iman

2007-01-01T23:59:59.000Z

452

120 MeV Ni Ion beam induced modifications in poly (ethylene terephthalate) used in commercial bottled water  

SciTech Connect (OSTI)

We report the effects of heavy ion irradiation on the optical, structural, and chemical properties of polyethylene terephthalate (PET) film used in commercial bottled water. PET bottles were exposed with 120 MeV Ni ions at fluences varying from 3 x 10{sup 10} to 3 x 10{sup 12} ion/cm{sup 2}. The modifications so induced were analyzed by using UV-Vis, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Substantial decrease in optical band gap is observed with the increase in ion fluence. In the FTIR spectra, most of bands are decreased due the degradation of the molecular structure. XRD measurements show the decrease in peak intensity, which reflects the loss of crystallinity after irradiation.

Kumar, Vijay; Sonkawade, R. G.; Ali, Yasir; Dhaliwal, A. S. [Department of Physics, Sant Longowal Institute of Engineering and Technology Longowal, Punjab-148106 (India); School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow-226025 (India); Department of Physics, Sant Longowal Institute of Engineering and Technology Longowal, Punjab-148106 (India)

2012-06-05T23:59:59.000Z

453

Electricity Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

March 10, 2011 March 10, 2011 8:30 am - 4:30 pm EST 7:30 - 8:30 am Continental Breakfast and Networking (EAC members only) 8:30 - 8:45 am WELCOME and Introductions Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy Richard Cowart, Electricity Advisory Committee Chair 8:45 - 9:45 am ENERGY STORAGE TECHNOLOGIES SUBCOMMITTEE Ralph Masiello, Subcommittee Chair 9:45 - 10:45 am SMART GRID SUBCOMMITTEE Fred Butler, Subcommittee Chair Joe Paladino, Senior Advisor, Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy 10:45 - 11:10 am Break 11:10 - 12:00 pm ENVIRONMENTAL REGULATIONS & RELIABILITY WORKING GROUP

454

Electricity Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

Meeting Agenda Thursday, December 11, 2008 Marriott Crystal City at Reagan National Airport 1999 Jefferson Davis Highway Arlington, Virginia Potomac Salon D-E (All times are EST) 8:30 - 9:00 am Committee Meeting Registration 9:00 - 9:15 am Welcome and Opening Comments Kevin Kolevar, Assistant Secretary for Electricity Delivery and Energy Reliability Linda Stuntz, Chair, Electricity Advisory Committee 9:15 - 10:45 am Discussion and Approval of Energy Storage Technologies Report 10:45 - 11:00 am Break 11:00 am - 12:00 pm Discussion and Approval of Smart Grid Report 12:00 - 12:30 pm Lunch 12:30 - 1:30 pm Discussion and Approval of Recommendations in the Electricity Supply Adequacy Draft Report 1:30 - 3:30 pm Discussion of Year Two Work Plan

455

Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun’s not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MIT’s heat storage materials are designed to melt at high temperatures and conduct heat well—this makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MIT’s low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

None

2011-11-21T23:59:59.000Z

456

Design and evaluation of an advanced adiabatic compressed air energy storage system at the Michigan-Utah mine.  

E-Print Network [OSTI]

??Compressed air energy storage (CAES) is considered a viable option for matching intermittent sustainable energy and the production of peak electrical demand. Economic advantages of… (more)

Beeman, Michael G

2010-01-01T23:59:59.000Z

457

Strategies for demonstration and early deployment of carbon capture and storage : a technical and economic assessment of capture percentage .  

E-Print Network [OSTI]

??Carbon capture and storage (CCS) is a critical technology for reducing greenhouse gas emissions from electricity production by coal-fired power plants. However, full capture (capture… (more)

Hildebrand, Ashleigh Nicole

2009-01-01T23:59:59.000Z

458

Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size  

Broader source: Energy.gov [DOE]

Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

459

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Broader source: Energy.gov (indexed) [DOE]

Investment in Nuclear Fuel Storage Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

460

Fact Sheet: Community Energy Storage for Grid Support (October 2012) |  

Broader source: Energy.gov (indexed) [DOE]

Fact Sheet: Community Energy Storage for Grid Support (October Fact Sheet: Community Energy Storage for Grid Support (October 2012) Fact Sheet: Community Energy Storage for Grid Support (October 2012) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to customers whose circuits are often heavily loaded and would benefit from the power conditioning advantages provided from a CES. The performance data of the CES units and control systems will be analyzed under real-world operating conditions to standardize design, installation, and use across the U.S. Fact Sheet: Community Energy Storage for Grid Support (October 2012) More Documents & Publications New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

January EAC Teleconference to Discuss National Energy Storage Strategy |  

Broader source: Energy.gov (indexed) [DOE]

January EAC Teleconference to Discuss National Energy Storage January EAC Teleconference to Discuss National Energy Storage Strategy January EAC Teleconference to Discuss National Energy Storage Strategy January 10, 2014 - 3:18pm Addthis The Electricity Advisory Committee (EAC) will hold a teleconference meeting on January 24, 2014 at 2 p.m. ET to discuss the National Grid Energy Storage Strategy document drafted by the EAC's Energy Storage subcommittee. The public may attend using the following access information: Attendee Link: https://iser.webex.com/iser/onstage/g.php?d=667952835&t=a Event password: energy Call-in Number: Call-in toll number (US/Canada): 1-650-479-3208 Access code: 667 952 835 Addthis Related Articles January EAC Teleconference to Discuss National Energy Storage Strategy Conference Call and Web Chat on Small Businesses and Government Contracting

462

Fact Sheet: Community Energy Storage for Grid Support (October 2012) |  

Broader source: Energy.gov (indexed) [DOE]

Community Energy Storage for Grid Support (October Community Energy Storage for Grid Support (October 2012) Fact Sheet: Community Energy Storage for Grid Support (October 2012) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to customers whose circuits are often heavily loaded and would benefit from the power conditioning advantages provided from a CES. The performance data of the CES units and control systems will be analyzed under real-world operating conditions to standardize design, installation, and use across the U.S. Fact Sheet: Community Energy Storage for Grid Support (October 2012) More Documents & Publications New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2

463

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Broader source: Energy.gov (indexed) [DOE]

Announces New Investment in Nuclear Fuel Storage Announces New Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

464

Test report : Raytheon / KTech RK30 energy storage system.  

SciTech Connect (OSTI)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-10-01T23:59:59.000Z

465

Test report : Princeton power systems prototype energy storage system.  

SciTech Connect (OSTI)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

466

Fact Sheet: Community Energy Storage for Grid Support (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

Detroit Edison Detroit Edison American Recovery and Reinvestment Act (ARRA) Community Energy Storage for Grid Support Demonstrating advanced implementation of community energy storage technologies for grid support Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory, and two of the CES units will utilize secondary- use electric vehicle batteries. The CES system will use a number of battery energy storage units utilizing lithium batteries with the required electronics and energy conditioning devices to locate backup power near to the customer. The energy storage system consists of 20 separate 25 kW (50 kWh) CES units and a 500 kW lithium battery storage device integrated with a photovoltaic solar module. At just under 1 MW the CES units, coupled

467

21 - Thermal energy storage systems for concentrating solar power (CSP) technology  

Science Journals Connector (OSTI)

Abstract The option to supply electricity on demand is a key advantage of solar thermal power plants with integrated thermal storage. Diurnal storage systems providing thermal power in the multi-MW range for several hours are required here, the temperature range being between 250 °C and 700 °C. This chapter describes the state of the art in commercial storage systems used in solar thermal power generation. An overview of alternative and innovative storage concepts for this application area is given.

W.-D. Steinmann

2015-01-01T23:59:59.000Z

468

Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators  

Science Journals Connector (OSTI)

We report on the controlled light confinement in microtube bottle resonators formed by rolled-up strained semiconductor bilayers. We experimentally and theoretically discuss two important properties of this novel kind of microcavities: the axial light confinement and the mode splitting by broken rotational symmetry. Our model bases on the adiabatic separation of circular and axial mode propagation. The circular problem is solved by a simple waveguide model for the specific geometry along the microtube axis. These solutions act as a quasipotential in a quasi-Schrödinger equation for the axial propagation. We experimentally investigated microtubes with two different axial confinement mechanisms: lobes of varying winding number in the rolling edge and etched rings of a varying wall thickness along the microtube axis. For the microtubes with lobes, we observe a very good quantitative agreement with our model and show that axial mode dispersion can even be tailored by the shape of the lobe. For the microtubes with etched rings, we observe only a qualitative agreement. These microtubes exhibit a well pronounced mode splitting by broken rotational symmetry that is analyzed by two-dimensional finite-difference time-domain simulations. We observe an oscillating behavior of the amplitude of the splitting as well as of the quality factors of the split modes under variation of the winding number. We show that the splitting is connected to the axial confinement.

Ch. Strelow; C. M. Schultz; H. Rehberg; M. Sauer; H. Welsch; A. Stemmann; Ch. Heyn; D. Heitmann; T. Kipp

2012-04-30T23:59:59.000Z

469

Sizing the Electrical Grid Omid Ardakanian, S. Keshav, and Catherine Rosenberg  

E-Print Network [OSTI]

1 Sizing the Electrical Grid Omid Ardakanian, S. Keshav, and Catherine Rosenberg University of Waterloo Technical Report CS-2011-18 Abstract--Transformers and storage batteries in the electrical grid the electrical grid, obtaining the capacity region corresponding to a given transformer and storage size

Waterloo, University of

470

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

471

NETL: Carbon Storage - Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

472

Sorption Storage Technology Summary  

Broader source: Energy.gov [DOE]

Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

473

Molten Oxide Glass Materials for Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Halotechnics, Inc. is developing an energy storage system utilizing a low melting point molten glass as the heat transfer and thermal storage material. This work is supported under a grant from the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E). Advanced oxide glasses promise a potential breakthrough as a low cost, earth abundant, and stable thermal storage material. The system and new glass material will enable grid scale electricity storage at a fraction of the cost of batteries by integrating the thermal storage with a large heat pump device. Halotechnics is combining its proven expertise in combinatorial chemistry with advanced techniques for handling molten glass to design and build a two-tank thermal energy storage system. This system, operating at a high temperature of 1200 °C and a low temperature of 400 °C, will demonstrate sensible heat thermal energy storage using a uniquely formulated oxide glass. Our molten glass thermal storage material has the potential to significantly reduce thermal storage costs once developed and deployed at commercial scale. Thermal storage at the target temperature can be integrated with existing high temperature gas turbines that significantly increase efficiencies over today's steam turbine technology. This paper describes the development and selection of Halotechnics’ molten glass heat transfer fluids with some additional systems considerations.

B. Elkin; L. Finkelstein; T. Dyer; J. Raade

2014-01-01T23:59:59.000Z

474

Electrochemical Energy Storage Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Electrochemical Energy Storage Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to

475

1 BASEMENT STORAGE 3 MICROSCOPE LAB  

E-Print Network [OSTI]

MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

Boonstra, Rudy

476

NREL: Electricity Integration Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities NREL's electricity integration research is conducted in state-of-the-art facilities. These facilities assist industry in the development of power systems and address the operational challenges of full system integration. The Energy Systems Integration Facility can be used to design, test, and analyze components and systems to enable economic, reliable integration of renewable electricity, fuel production, storage, and building efficiency technologies with the U.S. electricity delivery infrastructure. New grid integration capabilities at the National Wind Technology Center will allow testing of many grid integration aspects of multi-megawatt, utility-scale variable renewable generation and storage technologies. The Distributed Energy Resources Test Facility can be used to characterize,

477

NETL: Carbon Storage - Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

478

Flow Cells for Energy Storage Workshop Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Delivery Electricity Delivery & Energy Reliability Organized by: Energy Efficiency & Renewable Energy W i t h h e l p b y : Agenda Day/Time Speaker Subject Wednesday, March 07, 2012 8:45-9:00 Adam Weber, LBNL Welcome and workshop overview 9:00-9:30 Various, EERE, OFCT Background, approach, and reversible fuel cells 9:30-9:55 Michael Perry, UTRC Renaissance in flow cells: opportunities 9:55-10:20 Joe Eto, LBNL Energy storage requirements for the smart grid 10:20-10:35 AM Break 10:35-11:00 Robert Savinell, CWRU Revisiting flow-battery R&D 11:00-11:25 Stephen Clarke, Applied Intellectual Capital Lessons learned and yet to be learned from 20 years in RFB R&D 11:25-11:45 Imre Gyuk, DOE OE Research and deployment of stationary storage at DOE

479

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

480

Physicochemical and sensory characteristics of virgin olive oils in relation to cultivar, extraction system and storage conditions  

Science Journals Connector (OSTI)

Abstract This research was carried out to evaluate the effects of variety, extraction system and storage conditions such as packaging type and temperature variation on the quality of virgin olive oil. Several parameters were studied, namely, quality indices, polyphenols, tocopherols, volatile compounds and sensory properties. Thus, two olive varieties Chemlali (Tunisia) and Coratina (Italy) were selected. The olive oils were extracted by different industrial processes (super press, dual and triple phase decanter) then stored in the established conditions (ambient and refrigerator temperature) in the following packaging materials: clear and dark glass bottles and metal bottles. The oils were analyzed before and after being stored for 9 months. Principal Component Analysis and Graphical Modeling were applied to fully explore the influence of the studied factors. Results revealed that among samples, oils from Coratina cultivar were the richest in ?-tocopherol while Chemlali oils contained the highest amount of ?-tocopherol. Quality indices namely K232 and K270 values were mainly influenced by the storage date and packaging material. Meanwhile, free acidity and peroxide value were mainly influenced by the extraction system. Concerning tocopherols, ?-tocopherol content was mainly influenced by the packaging material, ?-tocopherol was mainly affected by the storage date, for ?-tocopherol content the main influencing factor was the cultivar whereas for ?-tocopherol the main influencing factor was the extraction system. Regarding volatile compounds their amounts were influenced mainly by the storage date, that was influenced by the packaging material, where a considerable decrease was observed after storage which was reflected by the change of sensory characteristics of stored oils: loss of positive attributes fruitiness, bitterness and pungency and onset of defects which were mainly influenced by the storage date (fruity and bitter attributes), packaging material (pungent, rancid and fusty attributes) and extraction system (musty attribute).

Kaouther Ben-Hassine; Amani Taamalli; Sana Ferchichi; Anis Mlaouah; Cinzia Benincasa; Elvira Romano; Guido Flamini; Aida Lazzez; Naziha Grati-kamoun; Enzo Perri; Dhafer Malouche; Mohamed Hammami

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottling electricity storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics  

Science Journals Connector (OSTI)

Solid-state reversible hydrogen storage systems hold great promise for onboard applications. ... key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodyn...

William Osborn; Tippawan Markmaitree; Leon L. Shaw; Ruiming Ren; Jianzhi Hu…

2009-04-01T23:59:59.000Z

482

Large Scale Energy Storage  

Science Journals Connector (OSTI)

This work is mainly an experimental investigation on the storage of solar energy and/or the waste heat of a ... lake or a ground cavity. A model storage unit of (1×2×0.75)m3 size was designed and constructed. The...

F. Çömez; R. Oskay; A. ?. Üçer

1987-01-01T23:59:59.000Z

483

Boosting CSP Production with Thermal Energy Storage  

SciTech Connect (OSTI)

Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

Denholm, P.; Mehos, M.

2012-06-01T23:59:59.000Z

484

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

485

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

486

Compressed Air Storage Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 Compressed Air Storage...

487

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

488

Electricity Markets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Markets Electricity Markets Researchers in the electricity markets area conduct technical, economic, and policy analysis of energy topics centered on the U.S. electricity sector. Current research seeks to inform public and private decision-making on public-interest issues related to energy efficiency and demand response, renewable energy, electricity resource and transmission planning, electricity reliability and distributed generation resources. Research is conducted in the following areas: Energy efficiency research focused on portfolio planning and market assessment, design and implementation of a portfolio of energy efficiency programs that achieve various policy objectives, utility sector energy efficiency business models, options for administering energy efficiency

489

Category:Smart Grid Projects - Energy Storage Demonstrations | Open Energy  

Open Energy Info (EERE)

Energy Storage Demonstrations Energy Storage Demonstrations Jump to: navigation, search Smart Grid Energy Storage Demonstration Projects category. Pages in category "Smart Grid Projects - Energy Storage Demonstrations" The following 16 pages are in this category, out of 16 total. 4 44 Tech Inc. Smart Grid Demonstration Project A Amber Kinetics, Inc. Smart Grid Demonstration Project B Beacon Power Corporation Smart Grid Demonstration Project C City of Painesville Smart Grid Demonstration Project D Duke Energy Business Services, LLC Smart Grid Demonstration Project E East Penn Manufacturing Co. Smart Grid Demonstration Project K Ktech Corporation Smart Grid Demonstration Project N New York State Electric & Gas Corporation Smart Grid Demonstration Project P Pacific Gas & Electric Company Smart Grid Demonstration Project

490

Compressed Air Energy Storage (CAES) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Compressed Air Energy Storage (CAES) Jump to: navigation, search Contents 1 Introduction 2 Technology Description 3 Plants 4 References Introduction Compressed air energy storage (CAES) is a way to store energy that is generated at night and deliver the energy during the day to meet peak demand. This is performed by compressing air and storing it during periods of excess electricity and expanding the air through a turbine when electricity is needed. Technology Description Diabatic Diabatic compressed air energy storage is what the two existing compressed air energy storage facilities currently employ. This method is

491

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

492

Grid regulation services for energy storage devices based on grid frequency  

DOE Patents [OSTI]

Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

2014-04-15T23:59:59.000Z

493

An algorithm for scheduling a large pumped storage plant  

SciTech Connect (OSTI)

The Michigan Electric Coordination Center (MEPCC), operated by Consumers Power and Detroit Edison Companies, has the responsibility for scheduling the Ludington pumped storage plant. Ludington has an extremely large economic effect on the Consumers Power and Detroit Edison Companies' system due to its size (over 1800 MW net demonstrated generating capability). This paper presents a dynamic programming algorithm for scheduling large pumped storage plants and shows how this method can be coordinated with the commitment of the thermal units of the system.

Cohen, A.I.; Wan, S.H.

1985-08-01T23:59:59.000Z

494

Electrical Engineer  

Broader source: Energy.gov [DOE]

This position is located in the Office of Electric Reliability. The Office of Electric Reliability helps protect and improve the reliability and security of the nation's bulk power system through...

495

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

496

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

497

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

498

Hydrogen storage gets new hope  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

499

Value of Energy Storage for Grid Applications (Report Summary) (Presentation)  

SciTech Connect (OSTI)

This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. Storage devices were simulated in a utility system in the western United States, and the operational costs of generation was compared to the same system without the added storage. This operational value of storage was estimated for devices of various sizes, providing different services, and with several sensitivities to fuel price and other factors. Overall, the results followed previous analyses that demonstrate relatively low value for load-leveling but greater value for provision of reserve services. The value was estimated by taking the difference in operational costs between cases with and without energy storage and represents the operational cost savings from deploying storage by a traditional vertically integrated utility. The analysis also estimated the potential revenues derived from a merchant storage plant in a restructured market, based on marginal system prices. Due to suppression of on-/off-peak price differentials and incomplete capture of system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit provided to the system. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

Denholm, P.; Jorgenson, J.; Hummon, M.; Jenkin, T.; Palchak, D.; Kirby, B.; Ma, O.; O'Malley, M.

2013-06-01T23:59:59.000Z

500

A partial differential equation system for modelling stochastic storage in physical systems with applications to wind power generation  

Science Journals Connector (OSTI)

......Figure 3 shows the time development of the mean NPV for successively...approach for natural gas storage valuation. SIAM...Pumped-storage hydro-turbine bidding strategies in a com- petitive electricity...H. (2009) Natural gas storage valuation and......

Sydney D. Howell; Peter W. Duck; Andrew Hazel; Paul V. Johnson; Helena Pinto; Goran Strbac; Nathan Proudlove; Mary Black

2011-07-01T23:59:59.000Z