Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Propane, Liquefied Petroleum Gas (LPG)  

NLE Websites -- All DOE Office Websites (Extended Search)

Propane: Liquefied Petroleum Gas (LPG) Propane: Liquefied Petroleum Gas (LPG) Ford F-150 (Dual-Fuel LPG) Propane or liquefied petroleum gas (LPG) is a clean-burning fossil fuel that can be used to power internal combustion engines. LPG-fueled vehicles can produce significantly lower amounts of some harmful emissions and the greenhouse gas carbon dioxide (CO2). LPG is usually less expensive than gasoline, it can be used without degrading vehicle performance, and most LPG used in U.S. comes from domestic sources. The availability of LPG-fueled light-duty passenger vehicles is currently limited. A few light-duty vehicles-mostly larger trucks and vans-can be ordered from a dealer with a prep-ready engine package and converted to use propane. Existing conventional vehicles can also be converted for LPG use.

2

Legal nature of LPG (liquefied petroleum gas) regulation  

SciTech Connect

The commercial exploitation of Liquefied Petroleum Gas (LPG) in New Zealand has occurred without a particular and comprehensive concern for any legal implications. The paper in Part I examines definitional questions, assesses in Part II the ability of courts and quasi-courts to evaluate risks associated with the product, examines in Part III the utility of common law remedies for injuries or associated with or arising from LPG, analyzes in Part IV the statutory regulation of LPG, concentrating particularly on the Dangerous Goods (Class 2 - Gases) Regulations 1980, discusses in Part V recent planning case-law concerning LPG development, and concludes that some reform is necessary to produce a more-coherent and precise regulatory regime that takes into account both the needs of developers and those affected by the development of LPG.

Liddell, G.

1986-08-01T23:59:59.000Z

3

Answers to Frequently Asked Questions About the Household Bottled ...  

U.S. Energy Information Administration (EIA)

Form EIA-457D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey

4

Upgrading Fischer-Tropsch LPG (liquefied petroleum gas) with the Cyclar process  

SciTech Connect

The use of the UOP/BP Cyclar{reg sign} process for upgrading Fischer-Tropsch (F-T) liquefied petroleum gas (LPG) was studied at UOP{reg sign}. The Cyclar process converts LPG into aromatics. The LPG derived from F-T is highly olefinic. Two routes for upgrading F-T LPG were investigated. In one route, olefinic LPG was fed directly to a Cyclar unit (Direct Cyclar). The alternative flow scheme used the Huels CSP process to saturate LPG olefins upstream of the Cyclar unit (Indirect Cyclar). An 18-run pilot plant study verified that each route is technically feasible. An economic evaluation procedure was designed to choose between the Direct and Indirect Cyclar options for upgrading LPG. Four situations involving three different F-T reactor technologies were defined. The main distinction between the cases was the degree of olefinicity, which ranged between 32 and 84 wt % of the fresh feed. 8 refs., 80 figs., 44 tabs.

Gregor, J.H.; Gosling, C.D.; Fullerton, H.E.

1989-04-28T23:59:59.000Z

5

System and method for converting wellhead gas to liquefied petroleum gases (LPG)  

SciTech Connect

A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

May, R.L.; Sinclair, B.W.

1984-07-31T23:59:59.000Z

6

Method and apparatus for transfer of liquefied gas. [hydrogen, LPG, or LNG  

SciTech Connect

A method and apparatus for transferring a liquefied gas (hydrogen, LPG, or LNG) from a first container into a second container without removal of vapor from the second container is disclosed.

Gee, D.E.; Worboys, R.V.

1976-06-15T23:59:59.000Z

7

System and method for converting wellhead gas to liquefied petroleum gases (LPG)  

SciTech Connect

A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

May, R.L.; Snow, N.J. Jr.

1983-12-06T23:59:59.000Z

8

Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities  

SciTech Connect

This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

1989-01-01T23:59:59.000Z

9

New and existing gas wells promise bountiful LPG output in Michigan  

SciTech Connect

Michigan remains the leading LP-gas producer in the Northeast quadrant of the U.S. This paper reports that boosted by a number of new natural gas wells and a couple of new gas processing plants, the state is firmly anchored in the butane/propane production business. Since 1981, more than 100 deep gas wells, most in excess of 8000 feet in depth, have been completed as indicated producers in the state. Many of these are yielding LPG-grade stock. So, combined with LPG-grade production from shallower geologic formations, the supply picture in this area looks promising for the rest of the country.

1991-01-01T23:59:59.000Z

10

Converting LPG caverns to natural-gas storage permits fast response to market  

Science Conference Proceedings (OSTI)

Deregulation of Canada`s natural-gas industry in the late 1980s led to a very competitive North American natural-gas storage market. TransGas Ltd., Regina, Sask., began looking for method for developing cost-effective storage while at the same time responding to new market-development opportunities and incentives. Conversion of existing LPG-storage salt caverns to natural-gas storage is one method of providing new storage. To supply SaskEnergy Inc., the province`s local distribution company, and Saskatchewan customers, TransGas previously had developed solution-mined salt storage caverns from start to finish. Two Regina North case histories illustrate TransGas` experiences with conversion of LPG salt caverns to gas storage. This paper provides the testing procedures for the various caverns, cross-sectional diagrams of each cavern, and outlines for cavern conversion. It also lists storage capacities of these caverns.

Crossley, N.G. [TransGas Ltd., Regina, Saskatchewan (Canada)

1996-02-19T23:59:59.000Z

11

New concept: deepwater NGL/LPG plant. [Natural gas liquids and liquefied petroleum gas  

SciTech Connect

Floating platforms for processing natural gas liquids and liquefied petroleum gas (NGL/LPG) need to be stable for the processing and transfer of the products. Floating platforms are economically more attractive for producing marginal fields in deeper waters. Most of the proposed designs for crude oil and natural gas production have been tension-leg platforms, but 3 Norwegian companies are offering a converted ship as an alternative. The 3 companies will used a ship fitted with pontoons that can be raised and lowered to increase the vessel's stability. The NGL/LPG system was designed for a North Sea oil field. The feasibility study which the 3 companies completed was for a liquefaction and storage ship with a capacity of 75,000 cu m. The joint venture feels a ship has several advantages: large payload capacity; large storage capacity; ample deck space for equipment; easy to maintain; can be drydocked if necessary; and has a lower building cost. The 2 key elements to the system are the stabilization system and the turret platform.

1978-12-01T23:59:59.000Z

12

Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel  

SciTech Connect

The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

McCoy, G.A.; Kerstetter, J.

1983-10-01T23:59:59.000Z

13

LPG in Venezuela  

SciTech Connect

The use of LPG for domestic consumption in Venezuela began in late 1929 when LPG was imported in lots of 500 cylinders. These cylinders were then returned to the U.S. for refilling. Total consumption at that time was some 40M/sup 3/ (250 barrels) per year and by 1937 had grown to some 540M/sup 3/ (3,400 barrels) per year. Local production of LPG from gas began in the mid thirties with a small cooling plant in the Mene Grande Field in the Lake Maracaibo area, the first field to produce oil in Venezuela (1914). This plant produced gasoline for a refinery and some of the first LPG used in Venezuela for domestic consumption. The capacity of this plant was insufficient to satisfy the growing demand for LPG which was supplied from refinery production until the development of the natural gas processing industry. At the present time, Venezuelan refineries are net consumers of LPG.

Romero, O.

1986-01-01T23:59:59.000Z

14

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

DOE Green Energy (OSTI)

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

1992-09-01T23:59:59.000Z

15

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

DOE Green Energy (OSTI)

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

Willson, B. [Colorado State Univ., Fort Collins, CO (United States)

1992-09-01T23:59:59.000Z

16

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

SciTech Connect

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

1992-09-01T23:59:59.000Z

17

Make aromatics from LPG  

SciTech Connect

Liquefied petroleum gas (LPG) consists mainly of the propane and butane fraction recovered from gas fields, associated petroleum gas and refinery operations. Apart from its use in steam cracking and stream reforming, LPG has few petrochemical applications. The relative abundance of LPG and the strong demand for aromatics - benzene, toluene and xylenes (BTX) - make it economically attractive to produce aromatics via the aromatization of propane and butanes. This paper describes the Cyclar process, which is based on a catalyst formulation developed by BP and which uses UOP's CCR catalyst regeneration technology, converts propane, butanes or mixtures thereof to petrochemical-quality aromatics in a single step.

Doolan, P.C. (BP Exploration Co. Ltd., London (GB)); Pujado, P.R. (UOP, Des Plaines, IL (US))

1989-09-01T23:59:59.000Z

18

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

DOE Green Energy (OSTI)

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

19

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

SciTech Connect

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

20

Jet fuel from LPG  

SciTech Connect

Explains how jet fuel can be manufactured from propane and/or butane with attractive rates of return. This scheme is advantageous where large reserves of LPG-bearing gas is available or LPG is in excess. The following sequence of processes in involved: dehydrogenation of propane (and/or butane) to propylene (and/or butylene); polymerization of this monomer to a substantial yield of the desired polymer by recycling undesired polymer; and hydrotreating the polymer to saturate double bonds. An attribute of this process scheme is that each of the individual processes has been practiced commercially. The process should have appeal in those parts of the world which have large reserves of LPG-bearing natural gas but little or no crude oil, or where large excesses of LPG are available. Concludes that economic analysis shows attractive rates of return in a range of reasonable propane costs and product selling prices.

Maples, R.E.; Jones, J.R.

1983-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; Hathaway, W.T.; Kangas, R.

1996-09-01T23:59:59.000Z

22

Improved water-driven lpg slug process  

SciTech Connect

The economics of oil recovery by the LPG-slug process depends upon increasing the sweep efficiency and recovering the injected LPG. There are 2 basic forms of the LPG-slug processes--the gas-driven and the water-driven. The pressure required for miscibility between dry gas and LPG prohibits the use of the gas-driven LPG process in shallow reservoirs. The water-driven LPG slug process normally exhibits good sweep efficiency. However, displacement of the LPG by water is poor. An improvement in this process appears possible by injecting a slug of carbon dioxide between the LPG slug and the water drive. Laboratory experiments were conducted in linear core systems to determine the effect of pressure on the various displacement zones. A displacement test was conducted with LPG and carbon dioxide slugs large enough to avoid interference between the oil-LPG, LPG-carbon dioxide and carbon dioxide- water displacement zones. Under these conditions, essentially complete oil and LPG recovery was obtained. However, a substantial amount of carbon dioxide was left in the core at water breakthrough.

Thompson, J.L.

1966-01-01T23:59:59.000Z

23

LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS  

SciTech Connect

The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

PACE, M.E.

2004-01-13T23:59:59.000Z

24

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

F (2001) -- Household Natural Gas Usage Form F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Natural Gas Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

25

New LPG loss-control standards  

SciTech Connect

API'S (American Petroleum Institute) Committee on Liquified Hydrocarbon Gas and the Committee and Safety and Fire Protection have modified Standard 2510 and added a supplemental Standard 2510A, in response to bad LPG incidents. Requirements have been tightened, with a major objective to prevent LPG releases. Fire protection Standards for the design and operation of LPG facilities are specifically revised. Following important changes are specifically discussed: Versel design, site selection, spacing and impounding; foundations and supports; and piping requirements.

Blomquist, D.L. (Chevron Corp., San Francisco, CA (US))

1988-12-01T23:59:59.000Z

26

Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG  

Science Conference Proceedings (OSTI)

The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

2009-08-15T23:59:59.000Z

27

Gas processing/The boiling behavior of LPG and liquid ethane, ethylene, propane, and n-butane spilled on water  

SciTech Connect

Boiling-rate calorimeter studies showed that unlike liquid nitrogen, methane, and LNG, LPG (84.7% propane, 6.0% ethane, and 9.3% n-butane; 442/sup 0/C bp), or pure propane, when rapidly spilled on water, reacted violently, ejecting water and ice into the vapor space; but in 1-2 sec, a coherent ice layer was formed and further boiloff was quiet and well predicted by a simple one-dimensional, moving-boundary-value, heat transfer model with a growing ice shield. Increasing the content of ethane and butane in LPG to 20% and 10%, respectively, had almost no effect on the LPG boiling, indicating that boiling may be modeled by using pure propane. Ethane, ethylene, and n-butane behaved quite differently from LPG. In spills of pure liquid propane on solid ice, the boiloff rate was almost identical to that predicted by the moving-boundary model.

Reid, R.C.; Smith, K.A.

1978-04-01T23:59:59.000Z

28

Liquefied Petroleum Gas (LPG) storage facility study Fort Gordon, Georgia. Final report  

SciTech Connect

Fort Gordon currently purchases natural gas from Atlanta Gas Light Company under a rate schedule for Large Commercial Interruptible Service. This offers a very favorable rate for `interruptible` gas service, however, Fort Gordon must maintain a base level of `firm gas`, purchased at a significantly higher cost, to assure adequate natural gas supplies during periods of curtailment to support family housing requirements and other single fuel users. It is desirable to provide a standby fuel source to meet the needs of family housing and other single fuel users and eliminate the extra costs for the firm gas commitment to Atlanta Gas Light Company. Therefore, a propane-air standby fuel system is proposed to be installed at Fort Gordon.

NONE

1992-09-01T23:59:59.000Z

29

LPG storage vessel cracking experience  

SciTech Connect

In order to evaluate liquefied petroleum gas (LPG) handling and storage hazards, Caltex Petroleum Corp. (Dallas) surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one-third of the storage vessels. In most cases, the cracking appeared to be due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems found were due to exposure to wet hydrogen sulfide. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. This article's recommendations concern minimizing cracking on new and existing LPG storage vessels.

Cantwell, J.E. (Caltex Petroleum Corp., P.O. Box 619500, Dallas, TX (US))

1988-10-01T23:59:59.000Z

30

Catalytic conversion of LPG  

Science Conference Proceedings (OSTI)

The low reactivity of light paraffins has long hindered their utilization as petrochemical feedstocks. Except for their use in ethylene crackers, LPG fractions have traditionally been consumed as fuel. New catalytic processes now being commercialized open new avenues for the utilization of LPG as sources of valuable petrochemical intermediates. This paper discusses processes for the dehydrogenation and aromatization of LPG.

Pujado, P.R.; Vora, B.V.; Mowry, J.R.; Anderson, R.F.

1986-01-01T23:59:59.000Z

31

The SONATRACH jumbo LPG plant  

SciTech Connect

The authors aim is to give to the 17 TH world gas conference a general idea on SONATRACH LPG PLANT which is located in the ARZEW area. They develop this communication as follows: general presentation of LPG plant: During the communication, the author's will give the assistance all the information concerning the contractions the erection's date and the LPG PLANT process, start-up of the plant: In this chapter, the authors's will describe the start-up condition, the performance test result, the flexibility test result and the total mechanical achievement of the plant; operation by SONATRACH: After the success that obtained during the mechanical achievement and performance test, the contractor handed over the plant to SONATRACH.

Ahmed Khodja, A.; Bennaceur, A.

1988-01-01T23:59:59.000Z

32

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

33

LPG in Mexico  

SciTech Connect

The authors review LPG in Mexico. They attempt to project numbers to the year 2000 using a supply/demand comparison.

Miles, E.L.

1986-01-01T23:59:59.000Z

34

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-12-31T23:59:59.000Z

35

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-01-01T23:59:59.000Z

36

LPG in Missouri  

SciTech Connect

This study presents a brief history of the LPG industry, the overall consumption and sector usage for both the U.S. and Missouri, the movement and storage of LPG, the future supply and demand, and the identification of various state and federal regulations.

1978-01-01T23:59:59.000Z

37

Indonesia's Arun LPG plant production is unique in Far East markets  

Science Conference Proceedings (OSTI)

Entry of the Arun (Indonesia) LNG plant into the LPG Far East markets is significant because its supplies for those markets are not tied to gas being extracted in association with crude oil. Arun LPG products are extracted from gas that is processed into and marketed as LNG. This article on the Arun LNG plant analyzes its LPG process and the significance of the LPG project on the plant's markets. Particular attention is paid to: 1.) LPG recovery; 2.) LPG fractionation; and 3.) Far East trade.

Naklie, M.M.; Penick, D.P.; Denton, L.A.; Kartiyoso, I.

1987-08-03T23:59:59.000Z

38

U.S. LPG pipeline begins deliveries to Pemex terminal  

SciTech Connect

LPG deliveries began this spring to the new Mendez LPG receiving terminal near Juarez, State of Chihuahua, Mexico. Supplying the terminal is the 265-mile, 8-in. Rio Grande Pipeline that includes a reconditioned 217-mile, 8-in. former refined-products pipeline from near Odessa, Texas, and a new 48-mile, 8-in. line beginning in Hudspeth County and crossing the US-Mexico border near San Elizario, Texas. Capacity of the pipeline is 24,000 b/d. The LPG supplied to Mexico is a blend of approximately 85% propane and 15% butane. Before construction and operation of the pipeline, PGPB blended the propane-butane mix at a truck dock during loading. Demand for LPG in northern Mexico is strong. Less than 5% of the homes in Juarez have natural gas, making LPG the predominant energy source for cooking and heating in a city of more than 1 million. LPG also is widely used as a motor fuel.

Bodenhamer, K.C. [Mid-America Pipeline Co., Tulsa, OK (United States)

1997-08-11T23:59:59.000Z

39

Venezuela. [LPG marketing and production  

SciTech Connect

Liquefied petroleum gas marketing and production from Venezuela are not very complicated or big in the business. There is moderate LPG production since the main production comes from oil. There is about 2.3 million bpd of oil production compared with less than 70,000 bpd of gas liquids. Of more than 95% of the associated gas produced with the oil, 50% is injected as a condensate recovery process. Up to now, the LPG plants have been producing only a trickle, most of it from gas before it was injected. In the future program for gas utilization, it is estimated that by 1980 about twice the liquid that is now being produced would be available for exportation to natural markets of the Gulf of Mexico and the east coast. The production of about 7 million tons until the year 2000 can be continued with good conservation and with the future potential area that has been discovered in the south part of the lake and offshore Venezuela.

Reyes, A.

1977-01-01T23:59:59.000Z

40

Custody transfer measurements for LNG/LPG  

SciTech Connect

The buying, selling, and transportation of Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) requires the use of sophisticated measurement systems for accurate determination of the total quantity and energy content for custody transfer reporting and safe cargo handling of these cryogenic products. These systems must meet strict safety standards for operation in a hazardous environment and, at the same time, provide accurate, reliable information for the storage, transfer, and data reporting required for both operational and financial accounting purposes. A brief discussion of LNG and LPG characteristics and detailed description of these special measurement techniques are given in this presentation.

Williams, R.A.

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Impact of foreign LPG operations on domestic LPG markets  

SciTech Connect

During 1978 the federal government passed legislation allowing a major increase in natural gas prices and offering hope that some portion of the supply will be allowed to reach free market levels. The mechanism for decontrol of crude oil was also put into effect. This favorable government action and higher world oil prices have led to a major resurgence in domestic exploration. In addition to the supply effects, there appears to have been a substantial demand response to the latest round of world oil price increases. The purpose of this paper is to discuss how these events have affected domestic LPG markets and pricing.

Jones, C.

1981-01-01T23:59:59.000Z

42

The Fuel Control System and Performance Optimization of a Spark-Ignition LPG Engine  

Science Conference Proceedings (OSTI)

This paper presents an approach to control air fuel ratio of a Liquefied Petroleum Gas (LPG) automotive engine. The optimization of compression ratio is also described in this paper. HC, CO & NOx emissions of LPG engines can be reduced after the application ... Keywords: control, LPG engine, air fuel ratio, optimization

Hongwei Cui

2009-04-01T23:59:59.000Z

43

Determination of usage patterns and emissions for propane/LPG in California. Final report  

SciTech Connect

The purpose of the study was to determine California usage patterns of Liquified Petroleum Gas (LPG), and to estimate propane emissions resulting from LPG transfer operations statewide, and by county and air basin. The study is the first attempt to quantify LPG transfer emissions for California. This was accomplished by analyzing data from a telephone survey of California businesses that use LPG, by extracting information from existing databases.

Sullivan, M.

1992-05-01T23:59:59.000Z

44

Use expander cycles for LPG recovery  

SciTech Connect

Expander-type cycles are competitive with other gas recovery processes even when applied to relatively rich gas feeds for a high recovery of only propane plus. These cycles are the most economical to use when (1) ''free pressure drop'' is available between feed and residue gas pressure; (2) product requires demethanization only; (3) feed is very lean and propane plus heavier components are required; (4) a small, unattended, prefabricated unit for LPG recovery is needed; (5) an offshore LPG facility is required to be built on a platform where space and weight allowance is at a premium; (6) a facility is initially built for propane recovery, but is planned for future conversion to ethane recovery; and (7) relatively low-pressure gas feeds (which are usually quite rich) must be processed for a high recovery of ethane. A flow chart for an oil absorption plant is presented.

Valdes, A.R.

1974-01-01T23:59:59.000Z

45

LPG | OpenEI  

Open Energy Info (EERE)

LPG LPG Dataset Summary Description The JodiOil World Database is freely available from the Joint Organisations Data Initiative (JODI) and is updated on or around the 20th of each month. Source JODI Date Released October 01st, 2004 (10 years ago) Date Updated March 21st, 2011 (3 years ago) Keywords crude oil diesel fuel oil gasoline kerosene LPG Data application/zip icon Text file, all JODI Database data: Jan 2002 - Jan 2011 (zip, 14.5 MiB) application/pdf icon Definitions of Abbreviations and Codes (pdf, 698.3 KiB) application/pdf icon Column Headings for Dataset (pdf, 13.4 KiB) Quality Metrics Level of Review Some Review Comment Some of the data has "some review" and some of the data has "no review"; the supplemental documentation provides definitions for the assessment codes for each piece of data in the datasets (essentially, 1 = some review, 2 = use with caution, 3 = not reviewed)

46

LPG fuel shutoff system  

SciTech Connect

An LPG fuel shutoff system for use with a vehicle having an LPG fuel engine and having a solenoid valve to supply and shut off LPG fuel is described including: a relay having a relay contact which is closed when an electric current is fed to a coil of the relay; a pressure switch having a first position and a second position and adapted to be in the first position when engine oil pressure rises above a predetermined level; and an oil lamp adapted to light when the engine oil pressure is below the predetermined level, and wherein a solenoid coil of the solenoid valve is connected at one side to a battery through an ignition switch and a fuel switch. The solenoid coil also is connected, at another side of the solenoid coil, in series to the relay contact and the pressure switch in the second position respectively, the coil of the relay is connected to the solenoid valve side of the ignition switch through a starting switch, the oil lamp is connected between the ignition switch and the pressure switch.

Watanabe, T.; Miyata, K.

1988-01-26T23:59:59.000Z

47

LPG-recovery processes for baseload LNG plants examined  

SciTech Connect

With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

Chiu, C.H. [Bechtel Corp., Houston, TX (United States)

1997-11-24T23:59:59.000Z

48

Monitoring, safety systems for LNG and LPG operators  

Science Conference Proceedings (OSTI)

Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

True, W.R.

1998-11-16T23:59:59.000Z

49

Fire safety of LPG in marine transportation  

SciTech Connect

This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

1980-08-01T23:59:59.000Z

50

Emissions from ethanol- and LPG-fueled vehicles  

SciTech Connect

This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

Pitstick, M.E.

1995-06-01T23:59:59.000Z

51

LPG fuel supply system. [Patent for automotive  

SciTech Connect

A fuel supply system for an internal combustion engine operated on gaseous fuels, for example, liquid petroleum gas (Lpg). The system includes a housing having a chamber for vaporizing liquid gas, including means for heating the vaporizing chamber. Also included in the housing is a mixing chamber for mixing the vaporized gas with incoming air for delivery to the intake manifold of an internal combustion engine through a standard carburetor. The fuel supply system includes means for mounting the system on the carburetor, including means for supporting an air filter circumjacent the mixing chamber.

Pierson, W.V.

1982-09-07T23:59:59.000Z

52

Blast rips Texas LPG storage site  

SciTech Connect

This paper reports that Seminole Pipeline Co. at presstime last week had planned to reopen its 775 mile liquefied petroleum gas pipeline in South Texas by Apr. 12 after a huge explosion devastated the area around a Seminole LPG storage salt dome near Brenham, Tex., forcing the pipeline shutdown. A large fire was still burning at the storage site at presstime last week. The blast - shortly after 7 a.m. Apr. 7 - occurred at a pipeline connecting the main Seminole line with the storage facility and caused shock waves felt 130 miles away. A 5 year old boy who lived in a trailer near Seminole's LPG storage dome was killed, and 20 persons were injured.

1992-04-13T23:59:59.000Z

53

Table A58. Capability to Switch from LPG to Alternative Energy Sources by  

U.S. Energy Information Administration (EIA) Indexed Site

8. Capability to Switch from LPG to Alternative Energy Sources by" 8. Capability to Switch from LPG to Alternative Energy Sources by" " Industry Group, Selected Industries, and Selected Characteristics, 1991" " (Estimates in Thousand Barrels)" ,," LPG",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity",,,,,,,"Row" ,,"Consumed(b)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","and Breeze","Other(e)","Factors"

54

Mounded LPG storage - Experience and developments  

SciTech Connect

Liquefied petroleum gas (LPG) is stored after production, and for distribution and use, in pressure vessels which vary in size from a few kilogrammes to many thousands of tons. The types of LPG under consideration are commercial butane, commercial propane, or mixtures of the two gases in varying proportions. Mounded storage systems are becoming popular as an alternative to the better-known traditional systems. The most widely used and therefore best-known of the traditional systems are the above-ground pressure-vessel designs. These more commonly comprise factory-made cylinders which are installed horizontally, being supported on saddles at each end of the vessel. When such vessels are installed in an LPG terminal, depot, or filling plant, they are required in multiple units to facilitate the storage of more than one grade of product and to enable regular maintenance and inspection to be carried out. Today's safety regulations require such installations to be divided into sub-groups of six tanks, with all the tanks located at a safe distance from one another, and from other facilities in the immediate area. These safety distances are being increased as a result of experience, which means terminals now require large areas of land.

Barber, D.

1988-01-01T23:59:59.000Z

55

Risks of LNG and LPG. [Review  

SciTech Connect

Since the use of liquefied natural gas (LNG) and liquefied petroleum gases (LPG) as fuels is likely to increase and will certainly persist for some time to come, assessment of the safety of LNG/LPG systems will continue to draw attention and is quite likely to force continuing review of operating and design standards for LNG/LPG facilities. Scientific investigations to date appear to have identified the major hazards. Except for the dispersive behavior of vapor clouds - a not-insignificant factor in risk evaluation - the consequences of spills are well circumscribed by current analyses. The physically significant effects accompanying nonexplosive combustion of spilled material are fairly well documented; yet, potentially substantial uncertainties remain. Catastrophic spills of 10/sup 4/-10/sup 5/ m/sup 3/ on land or water are possible, given the current size of storage vessels. Almost all experimental spills have used less than 10 m/sup 3/ of liquid. There is thus some uncertainty regarding the accuracy and validity of extrapolation of current empirical information and physical models to spills of catastrophic size. The less-likely but still-possible explosive or fireball combustion modes are not well understood in respect to their inception. The troubling experience with such violent combustion of similar combustible vapors suggests that this possibility will need further definition. Extant LNG and LPG risk analyses illustrate the difficulties of substantiating the numerous event probabilities and the determination of all event sequences that can lead to hazardous consequences. Their disparate results show that significant improvements are needed. Most importantly, a detailed critique of past efforts and a determination of an exhaustive set of criteria for evaluating the adequacy of a risk analysis should precede any further attempts to improve on existing studies. 44 references, 1 table.

Fay, J.A.

1980-01-01T23:59:59.000Z

56

Numerical Simulations of Leakage from Underground LPG Storage Caverns  

SciTech Connect

To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

Yamamoto, Hajime; Pruess, Karsten

2004-09-01T23:59:59.000Z

57

Demand for petrochem feedstock to buoy world LPG industry  

Science Conference Proceedings (OSTI)

This paper reports that use of liquefied petroleum gas as petrochemical feedstock will increase worldwide, providing major growth opportunities for LPG producers. World exports of liquefied petroleum gas will increase more slowly than production as producers choose to use LPG locally as chemical feedstock and export in value added forms such as polyethylene. So predicts Poten and Partners Inc., New York. Poten forecasts LPG production in exporting countries will jump to 95 million tons in 2010 from 45 million tons in 1990. However, local and regional demand will climb to 60 million tons/year from 23 million tons/year during the same period. So supplies available for export will rise to 35 million tons in 2010 from 22 million tons in 1990.

Not Available

1992-05-18T23:59:59.000Z

58

End to deficit of LPG. [Argentina  

SciTech Connect

In the Buenos Aires province of Argentina, Gas de Estado is constructing the future heart of the petrochemical complex, Bahia Blanca. The complex contains 2 absorption-refrigeration plants, a gas compressing plant, equipment maintenance shops and an important operations base for the Argentine truck gas pipelines. This will be the largest LPG plant in Latin America. The General Cerri plant, under construction, is located in an area of 40,000 sq m with new installations to extract ethane and higher hydrocarbons. The design optimizes the extraction of hydrocarbons from the natural gas and recovers 76% of the ethane. Selection of the process resulted from an investigation that compared the system with processes that use water cooling and absorption with refrigerated oil.

Andrich, V.

1980-03-01T23:59:59.000Z

59

LPG storage vessel cracking experience  

SciTech Connect

As part of an overall company program to evaluate LPG handling and storage hazards the authors surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one third of the storage vessels. In most cases the cracking appeared due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems due to exposure to wet hydrogen sulfide were found. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. Recommendations are made to minimize cracking on new and existing LPG storage vessels.

Cantwell, J.E.

1988-01-01T23:59:59.000Z

60

Experience with Bi-Fuel LPG Pickups in Texas  

DOE Green Energy (OSTI)

The State of Texas requires state agencies to purchase alternative fuel vehicles (AFVs). In 1996, Texas Department of Transportation (TxDOT) representatives added about 400 bi-fuel liquefied petroleum gas (LPG) pickup trucks to their fleet. The fleet managers were willing to share information about their fleets and the operation of these vehicles, so a study was launched to collect operations, maintenance, and cost data for selected LPG and gasoline vehicles (as controls) throughout 18 months of vehicle operation. This case study presents the results of that data collection and its subsequent analysis.

Whalen, P.

1999-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Industrial cooperation in the field of LPG  

SciTech Connect

The years to come should confirm the availability of LPG worldwide and enable future users in developing countries to satisfy energy requirements which today are only partly covered, if at all. This paper is designed to point the benefits that these new LPG markets could derive from active cooperation with experienced companies operating in mature LPG markets.

Stefano, M.; Trollux, J.; Dune, J.J.

1988-01-01T23:59:59.000Z

62

Utilization of LPG for vehicles in Japan  

SciTech Connect

LPG demand for vehicles amounts to 1.8 MM tons annually, equivalent to about 11% of the total LPG consumption in Japan. The feature which dominates the demand of LPG as a vehicle fuel in Japan is the high penetration of LPG powered vehicles into taxi fleets. This has been made possible following the rationalization in the taxi business in the early 1960s. Today, three quarters of LPG vehicles, numbering some 235,000 while representing only about 1% of the total number of vehicles, account for nearly 93% of all taxicabs.

Kusakabe, M.; Makino, M.; Tokunoh, M.

1988-01-01T23:59:59.000Z

63

Genome in a Bottle Consortium  

Science Conference Proceedings (OSTI)

Genome in a Bottle Consortium. Summary: NIST has organized the "Genome in a Bottle Consortium" to develop the reference ...

2013-03-15T23:59:59.000Z

64

Successful operation of a large LPG plant. [Kuwait  

SciTech Connect

The LPG plant located at Mina-Al Ahmadi, Kuwait, is the heart of Kuwait Oil Co.'s massive Gas Project to use the associated gas from Kuwait's oil production. Operation of this three-train plant has been very successful. A description is given of the three process trains consisting of four basic units: extraction, fractionation, product treating, and refrigeration. Initial problems relating to extraction, fractionation, product treating and, refrigeration are discussed. 1 ref.

Shtayieh, S.; Durr, C.A.; McMillan, J.C.; Collins, C.

1982-03-01T23:59:59.000Z

65

GAO report sabotages LPG industry  

SciTech Connect

A massive report by the U.S. General Accounting Office (GAO) on the liquefied energy gases (LEG), which include LPG and LNG, covers the possible hazards and recommends that facilities either be located in rural areas or, if in urban areas, be operated according to nuclear plant standards. One section concerns the ability of storage tanks to withstand earthquakes, floods, winds, and tornadoes. Another section treats transportation recommendations to eliminate as far as possible all opportunities for injury or destruction due to tank car or tank truck accidents. A discussion of the GAO report, only a portion of which has been released, sees the far-ranging recommendations as a threat to the LPG industry; notes that a great deal of information pertinent to the industry is presented in pointing out the problems, but finds that the GAO seems to have encountered considerable difficulty in finding practical solutions to the problems, e.g., in finding suitable sites for LPG terminals so that all such terminals can be in non-urban areas by 1980.

Roberts, B.

1978-03-01T23:59:59.000Z

66

Dehydrocyclodimerization, converting LPG to aromatics  

SciTech Connect

British Petroleum (BP) recognized the potential need for ways of exploiting feedstocks with low opportunity cost and commenced a research program at its Sunbury Research Center to discover and develop a catalyst for the conversion of LPG to a liquid product. The successful outcome of this research program is the Cyclar /SUP SM/ process, a joint development of UOP Process Division and British Petroleum. The Cyclar process offers a single-step conversion of LPG to an aromatic product which has a highvalue, is easily transported and useful both to fuel and petrochemical applications. The LPG producer can invest in a single unit, avoiding the need to identify and develop markets for multiple C/sub 3/ and C/sub 4/ products. This catalytic process, which employs UOP Continuous Catalyst Regeneration (CCR) technology, can also be applied to refinery light ends to produce a high-quality gasoline. Aromatic and hydrogen yields from propane and butane feeds surpass those obtained from catalytic reforming of Light Arabian naphtha. This paper describes the principles of the Cyclar process and illustrates yields and economics for several interesting applications.

Johnson, J.A.; Hilder, G.K.

1984-03-01T23:59:59.000Z

67

Fire safety of LPG in marine transportation. Final report  

SciTech Connect

This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

1980-06-01T23:59:59.000Z

68

Carbon footprints of heating oil and LPG heating systems  

SciTech Connect

For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

2012-07-15T23:59:59.000Z

69

LPG dealers, manufacturers report diverse effects of recession and war  

SciTech Connect

The author presents a survey of LPG marketers. The effects of the Persian Gulf War and U.S. recession on the LPG industry are discussed.

Prowler, S.

1991-01-01T23:59:59.000Z

70

Algeria LPG pipeline is build by Bechtel  

SciTech Connect

The construction of the 313 mile long, 24 in. LPG pipeline from Hassi R'Mel to Arzew, Algeria is described. The pipeline was designed to deliver 6 million tons of LPG annually using one pumping station. Eventually an additional pumping station will be added to raise the system capacity to 9 million tons annually.

Horner, C.

1984-08-01T23:59:59.000Z

71

Africa gaining importance in world LPG trade  

Science Conference Proceedings (OSTI)

Major LPG projects planned or under way in Africa will increase the importance of that region`s presence in world LPG trade. Supplies will nearly double between 1995 and 2005, at which time they will remain steady for at least 10 years. At the same time that exports are leveling, however, increasing domestic demand for PG is likely to reduce export-market participation by Algeria, Nigeria, Egypt, and Libya. The growth of Africa`s participation in world LPG supply is reflected in comparisons for the next 15--20 years. Total world supply of LPG in 1995 was about 165 million metric tons (tonnes), of which Africans share was 7.8 million tonnes. By 2000, world supply will grow to slightly more than 200 million tonnes, with Africa`s share expected to increase to 13.2 million tonnes (6.6%). And by 2005, world LPG supply will reach nearly 230 million tonnes; Africa`s overall supply volumes by that year will be nearly 16.2 million tonnes (7%). World LPG supply for export in 1995 was on order of 44 million tonnes with Africa supply about 4 million tonnes (9%). By 2005, world export volumes of LPG will reach nearly 70 million tonnes; Africa`s share will have grown by nearly 10 million tonnes (14.3%).

Haun, R.R. [Purvin and Gertz Inc., Dallas, TX (United States); Otto, K.W.; Whitley, S.C. [Purvin and Gertz Inc., Houston, TX (United States)

1997-05-12T23:59:59.000Z

72

What's ahead for LNG/LPG  

SciTech Connect

The growth of the LNG, LPG, and pipeline bulk distribution gas markets depends on the availability of capital, including an estimated $60 billion by the end of the 1980's for LNG alone to support a network of projects moving approx. 15 billion cu ft/day throughout the world, which will require long-term (averaging over 20 yr) index-linked contracts for the gas. According to the American Gas Association, import of LNG as opposed to an equivalent amount of energy from crude oil would offer the U.S. several advantages, including significant capital investment for LNG facilities in the U.S. and a larger proportion of imports moving in U.S. owned and constructed tankers. The growth of international LNG trade will also depend on the extent to which gas processing and transportation costs can be decreased by increasing LNG tanker size, on the demand for natural gas, and on U.S. gas pricing policy. Plausible trends in LNG/LPG trade through the 1980's, and the requirement for high gas prices as an incentive for gas resource development in several countries, including the U.S., are discussed.

Remington, P.; Fraser, M.

1979-09-01T23:59:59.000Z

73

Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability  

DOE Green Energy (OSTI)

This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

Sinor, J E [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

1994-05-01T23:59:59.000Z

74

Overfilling of cavern blamed for LPG blasts  

Science Conference Proceedings (OSTI)

Three explosions and a fire Apr. 7 at an LPG salt dome storage cavern near Brenham, Tex., were triggered when the cavern was overfilled, the Texas Railroad Commission (TRC) has reported. This paper reports that a TRC investigation found that LPG escaped to the surface at the Brenham site through brine injection tubing after excessive fill from an LPG line forced the cavern's water level below the brine tubing's bottom. At the surface, LPG was released into a brine storage pit where it turned into a dense, explosive vapor. At 7:08 a.m., the vapor was ignited by an unknown source. The resulting blast killed three persons and injured 19 and brought operations at the site to a halt.

Not Available

1992-07-06T23:59:59.000Z

75

LPG land transportation and storage safety. Final report  

SciTech Connect

This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 through 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

Martinsen, W.E.; Cavin, W.D.

1981-09-01T23:59:59.000Z

76

LPG land transportation and storage safety. Final report  

SciTech Connect

This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 to 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

1981-09-01T23:59:59.000Z

77

C:\\...\\mailquestionnaire. [PFP#1121010499  

U.S. Energy Information Administration (EIA) Indexed Site

Natural gas from underground pipes Bottled gas (LPG or propane) Fuel oil Kerosene Wood Some other fuel (Specify): ...

78

Cause not found for Texas LPG site blast  

SciTech Connect

This paper reports that National Transportation Safety Board investigators completed the first phase of tests at Seminole Pipeline Co.'s liquid petroleum gas storage dome near Brenham, Tex., without finding the cause of an explosion there Apr. 7. But in a week of investigation, NTSB determined that a release of brine and product occurred at the 350,000 bbl LPG storage dome, about 45 miles northwest of Houston, just before the blast. The explosion sent shock waves felt as far as 130 miles away. Three persons have died from injuries suffered in the accident. Another 18 were injured.

1992-04-20T23:59:59.000Z

79

New method developed for LPG offshore loading  

SciTech Connect

An innovative concept for refrigerated LPG offshore loading has been developed by TOTAL and Enterprise D'Equipments Mecaniques at Hydrauliques. Known as CHAGAL, the system integrates with the catenary anchor leg mooring offshore loading system commonly used for crude oil. CHAGAL provides a suitable answer to short-term development schemes of LPG trade. It can be adapted for possible extrapolation to cryogenic temperatures of LNG and it opens a new way to the development of offshore liquefaction projects for which the offloading of production is still an unsolved key problem.

1985-10-01T23:59:59.000Z

80

Getting performance without sacrificing economy or emissions control in a heavy-duty LPG engine  

SciTech Connect

A commercial 637 CID liquefied petroleum gas (LPG) engine was evaluated as a candidate powerplant for new bus purchases and/or as a replacement for obsolete LPG engines currently being used in metropolitan Chicago bus service. Limited route service experience with LPG conversion of a gasoline engine indicated both its potential and the need for its optimization in order to take advantage of the unique characteristics of LPG. The engine-dynamometer study, with emphasis on fuel system-ignition relationships, led to substantial improvement in fuel economy without depreciation of engine power. The 637 CID LPG engine fuel economy was increased from an average of 1.77 mpg for 1965 to 1971 to 2.60 mpg for the Dec. 1971 to April 1972 period in Chicago field tests. Cylinder head redesign permitted lean mixture operation that reduced exhaust emissions to levels calculated to conform to the 1973 Federal standards and the 1973-1974 California Air Resources Board requirements for heavy-duty engines. The exhaust emissions data obtained with the optimized 7.5:1 CR engine based on the California 13-mode cycle were 8.3 g/bhp/hr carbon monoxide and 9.9 g/bhp/hr hydrocarbons plus nitrogen dioxide.

Mengelkamp, R.A.; Linnard, R.E.

1973-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Genome in a Bottle Consortium Workshop  

Science Conference Proceedings (OSTI)

Genome in a Bottle Consortium Workshop. Purpose: NIST ... well. Related Project(s): Genome in a Bottle Consortium. Details: ...

2013-08-13T23:59:59.000Z

82

Alternative fuel information: Facts about CNG and LPG conversion  

DOE Green Energy (OSTI)

As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

O`Connor, K.

1994-06-01T23:59:59.000Z

83

Section H: FUELS USED - Energy Information Administration  

U.S. Energy Information Administration (EIA)

underground pipes and bottled gas (LPG or propane) in your home. ... Heating your home .....1.....0 Heating water ...

84

Fuel switching from wood to LPG can benefit the environment  

SciTech Connect

The Himalaya in India is one of the world's biodiversity hotspots. Various scientific studies have reported and proven that many factors are responsible for the tremendous decline of the Himalayan forests. Extraction of wood biomass from the forests for fuel is one of the factors, as rural households rely entirely on this for their domestic energy. Efforts continue for both conservation and development of the Himalayan forests and landscape. It has been reported that people are still looking for more viable solutions that could help them to improve their lifestyle as well as facilitate ecosystem conservation and preservation of existing biodiversity. In this direction, we have documented the potential of the introduction of liquefied petroleum gas (LPG), which is one of the solutions that have been offered to the local people as a substitute for woodfuel to help meet their domestic energy demand. The results of the current study found dramatic change in per capita woodfuel consumption in the last two decades in the villages where people are using LPG. The outcome showed that woodfuel consumption had been about 475 kg per capita per year in the region, but after introduction of LPG, this was reduced to 285 kg per capita per year in 1990-1995, and was further reduced to 46 kg per capita per year in 2000-2005. Besides improving the living conditions of the local people, this transformation has had great environmental consequences. Empirical evidence shows that this new paradigm shift is having positive external effects on the surrounding forests. Consequently, we have observed a high density of tree saplings and seedlings in adjacent forests, which serves as an assessment indicator of forest health. With the help of the current study, we propose that when thinking about a top-down approach to conservation, better solutions, which are often ignored, should be offered to local people.

Nautiyal, Sunil [Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Socioeconomics, Eberswalder Str. 84, 15374 Muencheberg (Germany)], E-mail: sunil.nautiyal@zalf.de; Kaechele, Harald [Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Socioeconomics, Eberswalder Str. 84, 15374 Muencheberg (Germany)

2008-11-15T23:59:59.000Z

85

Future of LPG as a petrochemical feedstock  

SciTech Connect

An evaluation is made of probable LPG (primarily propane) supplies and demand factors through 1985. The analysis indicates that because of diminishing domestic supplies and the transportation economics for foreign supplies the petrochemical industry will be forced to convert to the use of naphtha or heavy crude components for ethylene production. (JSR)

Skillern, M.P.

1976-10-01T23:59:59.000Z

86

Product transfer service chosen over LPG flaring  

SciTech Connect

Seadrift Pipeline Corp. recently decommissioned its Ella Pipeline, an 108-mile, 8-in. line between the King Ranch and a Union Carbide plant at Seadrift, Texas. The pipeline company opted for the product transfer services of pipeline Dehydrators Inc. to evacuate the ethane-rich LPG mixture from the pipeline instead of flaring the LPG or displacing it with nitrogen at operating pressures into another pipeline. The product transfer system of Pipeline Dehydrators incorporates the use of highly specialized portable compressors, heat exchangers and interconnected piping. The product transfer process of evacuating a pipeline is an economically viable method that safely recovers a very high percentage of the product while maintaining product purity. Using positive-displacement compressors, PLD transferred the LPG from the idled 8-in. Ella line into an adjacent 12-in. ethane pipeline that remained in service at approximately 800 psig. Approximately 4.3 million lb of LPG (97% ethane, 2.7% methane and 0.3% propane) were transferred into the ethane pipeline, lowering the pressure on the Ella Pipeline from 800 psig to 65 psig.

Horn, J.; Powers, M.

1994-07-01T23:59:59.000Z

87

Risk analysis of an LPG facility  

SciTech Connect

This paper describes methods used to conduct a safety review of an existing LPG loading, processing, and storage facility. An engineering team conducted a Hazard and Operability study of the plant to identify potential problems. A Probabilistic Risk Assessment was also made on the facility where the probability and consequences of worst case accidents were estimated. Stone and Webster recently completed an analysis of an LPG terminal to determine if there were any engineering, design, or operating deficiencies which could jeopardize the operability of the facility or make operation hazardous. The facility includes a dock for off-loading refrigerated propane and butane, transfer piping from the dock to storage, a heating system, pressurized storage, dehydration, product transfer and loading.

Daley, H.F.; Chapman, P.D.L.

1986-01-01T23:59:59.000Z

88

Monitoring system tested during LPG tanker unloading  

SciTech Connect

A specially developed computer-based hazardous-materials monitoring system has been successfully field tested. The test of the portable system occurred during the unloading of 45,000 metric tons of LPG from a 740-ft tanker at the petroleum dock of a plant along the Mississippi River. The function of this system is to detect, report, alarm, and record unacceptable concentrations of hazardous vapors during marine-transfer operations.

1990-05-14T23:59:59.000Z

89

The operation of LPG relief valves  

SciTech Connect

As stipulated by NFPA 58, all LPG storage containers must be equipped with one or more pressure relief devices. These devices are sized to prevent rupture of a normally charged container when exposed to fire. This paper describes in detail the functioning of the spring-loaded relief valve. The author discusses how the venting of LPGs can produce unacceptable risks and how training is a necessary part of controlling such a situation.

Stannard, J.H. Jr

1989-11-01T23:59:59.000Z

90

LPG Electrical, Inc | Open Energy Information  

Open Energy Info (EERE)

LPG Electrical, Inc LPG Electrical, Inc Jump to: navigation, search Name LPG Electrical, Inc Address 13833 Wellington Trace Rd. #4 Place Wellington, Florida Zip 33414 Sector Services Product underwater power generators Year founded 2009 Number of employees 1-10 Phone number 5615786611 Website [www.lpgelectrical.com www.lpgelectrical.com ] Coordinates 26.663684°, -80.267246° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.663684,"lon":-80.267246,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Combination process for the conversion of heavy distillates to LPG  

SciTech Connect

Maximum conversion of heavy distillates to LPG is achieved through a combination process involving two-stage hydrocracking. 9 claims, no drawings.

Hilfman, L.

1976-06-15T23:59:59.000Z

92

Direct liquid injection of liquid petroleum gas  

SciTech Connect

A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

Lewis, D.J.; Phipps, J.R.

1984-02-14T23:59:59.000Z

93

Current and future USA-world seaborne imports at LPG  

SciTech Connect

An outline of the current and historical situation of the international LPG trade and comparison between the US and other countries covers methods of marine transportation, including fully refrigerated vessels, semirefrigerated vessels, pressure vessels, and LNG ships fitted for LPG; the temporary abundance of LPG; a comparison of the markets in Japan, Europe, South America, and the US to indicate the potential market in the future, e.g., the need in Japan for LPG as a basic fuel, main use in Europe as a feedstock and as domestic fuel, use as a basic fuel but mainly in the winter months inSouth America, and the volatile spot market in the US; and the conclusion that the capacity to produce LPG will keep pace with demand only as long as adequate prices are paid to offset production costs.

Bassa, G.

1980-01-01T23:59:59.000Z

94

Radiological health implications of lead-210 and polonium-210 accumulations in LPG refineries  

SciTech Connect

Radon-222, a naturally occurring radioactive noble gas, is often a contaminant in natural gas. During fractionation at processing plants, Radon tends to be concentrated in the Liquified Petroleum Gas (LPG) product stream. Radon-222 decays into a number of radioactive metallic daughters which can plate out on the interior surfaces of plant machinery. The hazards associated with gamma-emitting short-lived radon daughters have been investigated previously. The present work reports an analysis of the hazards associated with the long-lived daughters; Pb-210, Bi-210, and Po-210. These nuclides do not emit appreciable penetrating radiation, and hence do not represent a hazard as long as they remain on the inside surfaces of equipment. However, when equipment that has had prolonged exposure to an LPG stream is disassembled for repair or routine maintenance, opportunities for exposure to radioactive materials can occur. A series of measurements made on an impeller taken from a pump in an LPG facility is reported. Alpha spectroscopy revealed the presence of Po-210, and further measurements showed that the amount on the impeller surface was well above the exempt quantity. Breathing zone measurements made in the course of cleaning the impeller showed that an inhalation exposure equivalent to breathing Po-210 at the Maximum Permissible Concentration (MPC) for 60 hours could be delivered in less than half an hour. It was concluded that maintenance and repair work on LPG and derivitive product stream equipment must be carried out with the realization that a potential radiological health problem exists.

Summerlin, J. Jr.; Prichard, H.M.

1985-04-01T23:59:59.000Z

95

Alvord (3,000-ft strawn) LPG flood - design and performance evaluation  

SciTech Connect

Mitchell Energy Corporation has implemented a LPG-dry gas miscible process in the Alvord (3000' Strawn) Unit in Wise County, Texas utilizing the DOE tertiary incentive program. The field had been waterflooded for 14 years and was producing near its economic limit at the time this project was started. This paper presents the results of the reservoir simulation study that was conducted to evaluate pattern configuration and operating alternatives so as to maximize LPG containment and oil recovery performance. Several recommendations resulting from this study were implemented for the project. Based on the model predictions, tertiary oil recovery is expected to be between 100,000 and 130,000 bbls, or about 7 percent of the oil originally in place in the Unit. 12 refs.

Frazier, G.D.; Todd, M.R.

1982-01-01T23:59:59.000Z

96

N/sub 2/-driven LPG achieves miscibitity at high temperatures  

SciTech Connect

Shows that miscibility can be achieved at very low pressures above the critical temperature of propane. One can calculate the critical pressure and temperature for a variety of fluids of practical interest in achieving miscibility between the miscible slug and driving gas when applying enhanced oil recovery programs. A study of the critical properties of normally available reservoir fluids indicates that one method of achieving miscibility at lower pressures, even at high reservoir temperatures, might be to use LPG slugs pushed by nitrogen. Table gives the oil recovery for different LPG slug sizes when operating at a reservoir pressure of 2,000 psig and a reservoir temperature of 250F. Diagram shows the approximate critical temperature loci for ternary systems made up of 3 components from the group nitrogen, methane, ethane, and propane. By finding the desired reservoir temperature and then estimating the critical pressure required, one may select compositions and operating pressures required to achieve critical slug-driving gas mixtures for use in enhanced oil recovery programs. When using CO/sub 2/ for miscibility, the miscibility pressure increases with temperature. Use of LPG slugs results in a substantial reduction in the pressure required for miscibility.

Carlisle, L.; Crawford, P.B.; Montes, M. Jr.; Reeves, S.

1982-11-01T23:59:59.000Z

97

Charcoal versus LPG grilling: A carbon-footprint comparison  

SciTech Connect

Undoubtedly, grilling is popular. Britons fire up their barbeques some 60 million times a year, consuming many thousands of tonnes of fuel. In milder climates consumption is even higher, and in the developing world, charcoal continues to be an essential cooking fuel. So it is worth comparing the carbon footprints of the two major grill types, charcoal and LPG, and that was the purpose of the study this paper documents. Charcoal and LPG grill systems were defined, and their carbon footprints were calculated for a base case and for some plausible variations to that base case. In the base case, the charcoal grilling footprint of 998 kg CO{sub 2}e is almost three times as large as that for LPG grilling, 349 kg CO{sub 2}e. The relationship is robust under all plausible sensitivities. The overwhelming factors are that as a fuel, LPG is dramatically more efficient than charcoal in its production and considerably more efficient in cooking. Secondary factors are: use of firelighters, which LPG does not need; LPG's use of a heavier, more complicated grill; and LPG's use of cylinders that charcoal does not need.

Johnson, Eric, E-mail: ejohnson@ecosite.co.u [Atlantic Consulting, Obstgartenstrasse 14, 8136 Gattikon (Switzerland)

2009-11-15T23:59:59.000Z

98

LPG export growth will exceed demand by 2000  

SciTech Connect

LPG supplies for international trade will increase sharply through 2000 and begin to outstrip demand by 1997 or 1998. This outlook depends on several production projects proceeding as planned. Leading the way to increased volumes are projects in Algeria, Nigeria, and Australia, among others. Purvin and Gertz, Dallas, projected this trend earlier this year at an international LPG seminar near Houston. Representatives from LPG-supplying countries also presented information to support this view and subsequently supplied more specifics to OGJ in response to questions. This paper discusses this information. Trends in Africa, Australia, North America, and South America are forecast.

True, W.R.

1994-08-08T23:59:59.000Z

99

Letter to the editor/Shell treats LPG  

SciTech Connect

In response to an article on the MALAPROP process Shell International Petroleum Mij. B.V. notes that Shell's Adip process has gained a solid position world-wide in economically treating very large amounts of LPG for the removal of hydrogen sulfide and carbonyl sulfide. Most Shell refineries are equipped with the Adip process, which cumulatively treates approx. 7000 tons/day of LPG. Middle East LPG facilities designed for the Arabian American Oil Co. treat 30,000 tons/day, and an additional 16,000 will come on stream in Jan. 1983. The removal of carbonyl sulfide to a few parts-per-million is easy.

1979-10-01T23:59:59.000Z

100

FCC LPG olefinicity and branching enhanced by octane catalysts  

SciTech Connect

Refiners are increasingly recognizing the downstream opportunities for fluid catalytic cracking LPG olefins for the production of methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE, if the ethanol subsidy is extended to the production of ETBE), and as petrochemical feedstocks. Some of new gasoline FCC octane-enhancing catalysts can support those opportunities because their low non-framework alumina (low NFA) preserve both LPG olefinicity and promote branching of the LPG streams from the FCCU. The combined effect results in more isobutane for alkylate feed, more propylene in the propane/propylene stream, and more isobutene - which makes the addition of an MTBE unit very enticing.

Keyworth, D.A.; Reid, T.A.; Kreider, K.R.; Yatsu, C.A.

1989-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

World lpg forecast and implications for the U. S. Merchant Marine, 1978-1990  

SciTech Connect

This study summarizes historical and current LPG trade and vessels operating worldwide. It also forecasts LPG trade required for the U.S. and other major markets through 1990. Using an economic model to assess the market for LPG ships, the study forecasts vessel requirements for U.S. LPG trade and prospects for building required vessels in the U.S.

1978-05-01T23:59:59.000Z

102

LNG-LPG marine transportation and terminal safety  

SciTech Connect

A discussion of the vapor cloud behavior study the US Coast Guard has been carrying out since 1973 to develop design and operational controls for LNG and LPG ships and port facilities covers a brief review of the research work in the third phase of this study and the safety measures proposed by the Coast Guard and other regulatory bodies for operating LNG and LPG ships and waterfront facilities.

Bonekemper, E.H.

1977-01-01T23:59:59.000Z

103

River resort owners find LPG a power behind their success  

SciTech Connect

This paper reports on a restaurant and resort which runs entirely on LPG. It has two generators converted to LPG that supply the power for the complex. Energy supplied from the propane is used in the kitchens, to drive the water pump and provide electricity for lighting and other power needs, and to heat the swimming pool. Far more importantly for the owners has been the fuel cost savings of at least 60%.

1991-01-01T23:59:59.000Z

104

Accurate LPG analysis begins with sampling procedures, equipment  

SciTech Connect

Proper equipment and procedures are essential for obtaining representative samples from an LPG stream. This paper discusses how sampling of light liquid hydrocarbons generally involves one of two methods: flow- proportional composite sampling by a mechanical device or physical transfer of hydrocarbon fluids from a flowing pipeline or other source into a suitable portable sample container. If sampling by proper techniques and equipment supports careful chromatographic analysis, full advantage of accurate mass measurement of LPG can be realized.

Wilkins, C.M. (Koch Pipelines, Inc., Medford, OK (US))

1990-11-05T23:59:59.000Z

105

World`s LPG supply picture will change by 2000  

SciTech Connect

Middle East LPG producers will continue to dominate world export markets in 1996. Led by Saudi Arabia, the Middle East will produce nearly 26 million metric tons of LPG in million metric tons of LPG in 1996, more than 54% of the world`s almost 48 million metric tons of export LPG. In 2000, however, with world exports of LPG expanding to 58.9 million metric tons, Middle East suppliers; share will have remained flat, making up 31.7 million metric tons, or 53.9%. Saudi Arabia`s contribution will exceed 15 million metric tons, reflecting essentially no growth since 1995. These and other patterns, from data compiled by Purvin and Gertz, Dallas, and published earlier this year, show other suppliers of LPG, especially African (Algeria/Nigeria), North Sea, and Latin American (Venezuela/Argentina), picking up larger shares in the last 5 years of this decade. This scenario assumes completion of several major supply projects that are either panned, under construction, or nearing start up in most of these areas. The paper discusses the global picture, the supply situation in the Middle East, Africa, the North Sea, and South America.

True, W.R.

1995-11-06T23:59:59.000Z

106

Rio Grande pipeline introduces LPG to Mexico  

SciTech Connect

Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

NONE

1997-06-01T23:59:59.000Z

107

Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Propane (LPG)

108

Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Propane (LPG) The list below contains summaries of all Iowa laws and incentives related

109

Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Propane (LPG) The list below contains summaries of all Utah laws and incentives related

110

Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Propane (LPG) The list below contains summaries of all Texas laws and incentives related

111

Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Propane (LPG) The list below contains summaries of all Maine laws and incentives related

112

Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Propane (LPG)

113

Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Propane (LPG)

114

Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Propane (LPG)

115

Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Propane (LPG)

116

Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Propane (LPG) The list below contains summaries of all Idaho laws and incentives related

117

Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for Propane (LPG) The list below contains summaries of all Ohio laws and incentives related

118

Section B: KITCHEN APPLIANCES  

U.S. Energy Information Administration (EIA)

Which of these cooking appliances do you have in your kitchen? (Mark all ... Natural gas from underground pipes . 01 Bottled gas (LPG or Propane) ...

119

Pressurized release of liquefied fuel gases (LNG and LPG). Topical report, May 1993-February 1996  

SciTech Connect

This report is an important contribution to the behavior of pressurized liquefied gases when accidentally released into the atmosphere. LNG vehicle fueling stations and LPG storage facilities operate at elevated pressures. Accidental releases could result in rainout and the formation of an aerosol in the vapor cloud. These factors must be considered when estimating the extent of the hazard zone of the vapor cloud using a heavier-than-air gas dispersion model such as DEGADIS (or its Windows equivalent DEGATEC). The DOS program PREL has been incorporated in the Windows program LFGRISK.

Atallah, S.; Janardhan, A.

1996-02-01T23:59:59.000Z

120

The importance of FCC catalyst selection on LPG profitability  

SciTech Connect

Recently the value of LPG in chemical operations downstream of the FCC unit has increased. Such downstream operations utilize propylene not only in alkylate, but also in rapid growth petrochemical applications such as for a raw material in the manufacture of polypropylene and propylene oxide. Isobutane and the butenes (particularly butene-2 in sulfuric acid catalyzed alkylation units) are prized for alkylate feed. The profit potential and incentives to use other LPG components such as isobutene to make MTBE is now increased because of legislative actions and increased octane performance demand; and because of the greater isobutene content in the LPG from the new FCC octane catalysts. A low non-framework alumina (NFA) zeolite studied made a more olefinic LPG with higher iso-to normal C4 ratio than the other zeolites. Pilot plant data has also shown the new low NFA zeolite gave not only outstanding motor octane (MON) performance, but produced an LPG with better propylene to propane ratio, more isobutene, more n-butenes and more C4 branching than other RE promoted zeolite catalysts. Commercial results have verified the improved performance and profitability for the new low-NFA type zeolite catalysts. Three commercial examples are described.

Keyworth, D.A.; Gilman, R.; Pearce, J.R. (AKZO Catalysts, 13000 Bay Park Road, Pasadena, TX (US))

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

Science Conference Proceedings (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

122

Transportation in Developing Countries: Greenhouse Gas Scenarios for Delhi, India  

E-Print Network (OSTI)

hand, compressed natural gas (CNG) and liquefied petroleumcost of owning and operating CNG and LPG vehicles couldto store the fuels. Each CNG bus, for example, currently

2001-01-01T23:59:59.000Z

123

Assessment of research and development (R and D) needs in LPG safety and environmental control  

Science Conference Proceedings (OSTI)

The report characterizes the LPG industry covering all operations from production to end use, reviews current knowledge of LPG release phenomenology, summarizes the status of current LPG release prevention and control methodology, and identifies any remaining safety and environmental problems and recommends R and D strategies that may mitigate these problems. (ACR)

DeSteese, J.G.

1982-05-01T23:59:59.000Z

124

Control and extinguishment of LPG fires. Final report  

SciTech Connect

Approximately 100 fire control and fire extinguishment tests were run on free-burning LPG pool fires from 25 ft/sup 2/ to 1600 ft/sup 2/ in area. The LPG was contained in concrete pits, and the pit floors were allowed to cool before the fires were ignited so that the burning rates were not influenced by boiloff from the warm floor. High expansion foam was used for fire control. The foam was applied from fixed generators located on the upwind side of the pit. Fires were controlled after foam application of less than a minute to about 10 minutes, depending on the application rate. Fires were extinguished with dry chemical agents applied through fixed piping systems with tankside nozzles and by manual application using hoselines and portable extinguishers. Fires could readily be extinguished in times ranging from a few seconds to about half a minute, depending on the application rate, system design, and ambient conditions. Additional tests were conducted in 1-ft/sup 2/ and 5-ft/sup 2/ pits to determine the boiloff rates for LPG spilled on concrete, a sand/soil mix, and polyurethane foam substrates. Burning rates for free-burning LPG pool fires from 1 ft/sup 2/ to 1600 ft/sup 2/ in area are also reported.

1980-06-01T23:59:59.000Z

125

U.S. LPG's Consumed at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. LPG's Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 8,966: 8,021: 9,466: 11,962 ...

126

Control and extinguishment of LPG fires. Final report  

SciTech Connect

Approximately 100 fire control and fire extinguishment tests were run on free-burning liquefied petroleum gases (LPG) pool fires from 25 ft/sup 2/ to 1600 ft/sup 2/ in area. The LPG was contained in concrete pits, and the pit floors were allowed to cool before the fires were ignited so that the burning rates were not influenced by boiloff from the warm floor. High expansion foam was used for fire control. The foam was applied from fixed generators located on the upwind side of the pit. Fires were controlled after foam application of less than a minute to about 10 minutes, depending on the application rate. Fires were extinguished with dry chemical agents applied through fixed piping systems with tankside nozzles and by manual application using hoselines and portable extinguishers. Fires could readily be extinguished in times ranging from a few seconds to about half a minute, depending on the application rate, system design, and ambient conditions. Additional tests were conducted in 1-ft/sup 2/ and 5-ft/sup 2/ pits to determine the boiloff rates for LPG spilled on concrete, a sand/soil mix, and polyurethane foam substrates. Burning rates for free-burning LPG pool fires from 1 ft/sup 2/ to 1600 ft/sup 2/ in area are also reported.

Johnson, D.W.; Martinsen, W.E.; Cavin, W.D.; Chilton, P.D.; Lawson, H.P.; Welker, J.R.

1980-08-01T23:59:59.000Z

127

Stably Free Modules Over the Klein Bottle.  

E-Print Network (OSTI)

??This paper is concerned with constructing countably many, non-free stably free modules for the Klein bottle group. The work is based on the papers Stably (more)

Misseldine, Andrew

2010-01-01T23:59:59.000Z

128

CHEMICAL WASTE RECYCLING PROGRAM EMPTY CHEMICAL BOTTLES: which include all glass, plastic and metal bottles that  

E-Print Network (OSTI)

CHEMICAL WASTE RECYCLING PROGRAM EMPTY CHEMICAL BOTTLES: which include all glass, plastic and metal bottles that previously contained chemicals (hazardous or non-hazardous) are collected by CWS for recycling. Bottles should be dry and empty without chemical residue. Rinse and collect rinsate in chemical

Ungerleider, Leslie G.

129

Six years' operating experience at Ardjuna field helps prove out LPG SBS system  

SciTech Connect

The permanent yoke mooring system and the two-product flexpipe riser of the Arjuna Sakti LPG storage barge have completely lived up to their expectations. The LPG offtake system, the terminaling function of the storage unit, has also performed extremely well. Experience gained at Ardjuna provides confidence for future openocean mooring of large methanol or LNG plants. Mooring systems of these future units will likely have a different configuration, such as the single anchor leg storage (SALS) mooring. However, the basic system components have been used, both at Ardjuna and in comparable situations elsewhere in the world. Engineers who are working on floating, large scale, gas processing plants for mooring in the open ocean could profitably join their efforts in a team comprised of process specialists, naval architects, and mooring experts. Specific areas of consideration should be: length-to-beam and lengthto-depth ratios and shape of bow. This could result in a storage/process barge design with better motion characteristics and lower mooring forces than proposed at present.

Smulders, L.H.

1983-02-21T23:59:59.000Z

130

Bottling Electricity: Storage as a Strategic Tool for Managing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a...

131

Development of Syringe/Bottle Hybrids for Sampling Slurries  

SciTech Connect

A convenient and effective sample bottle system based on simple modifications of disposable plastic syringes and bottles has been devised and tested for slurry samples. Syringe/ bottle hybrids (hereafter referred to as syringe bottles) have the convenience of regular flat-bottom bottles with screw cap closures. In addition, the syringe imparts a sliding and adjustable bottom to the bottle that forces the entire contents from the bottle. The system was designed especially to collect samples for high temperature work-ups of DWPF slurry samples. The syringe bottles together with fixed-bottom sample vial inserts would provide the DWPF with convenient and reliable methods for dealing with slurry samples.

Coleman, C.J. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1998-01-08T23:59:59.000Z

132

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

133

Atomic Force Microscopy Studies of Lipophosphoglycan (LPG) Molecules in Lipid Bilayers  

SciTech Connect

Lipophosphoglycan (LPG) is a lypopolysaccharide found on the surface of the parasite Leishmania donovani that is thought to play an essential role in the infection of humans with leishamniasis. LPG acts as an adhesion point for the parasite to the gut of the sand fly, whose bite is responsible for transmitting the disease. In addition, LPG acts to inhibit protein kinase C (PKC) in the human macrophage, possibly by structural changes in the membrane. The Ca{sup 2+} ion is believed to play a role in the infection cycle, acting both as a crosslinker between LPG molecules and by playing a part in modulating PKC activity. To gain insight into the structure of LPG within a supported lipid membrane and into the structural changes that occur due to Ca{sup 2+} ions, we have employed the atomic force microscope (AFM). We have observed that the LPG molecules inhibit bilayer fusion, resulting in bilayer islands on the mica surface. One experiment suggests that the LPG molecules are parallel to the mica surface and that the structure of the LPG changes upon addition of Ca{sup 2+}, with an increase in the height of the LPG molecules from the bilayer surface and an almost complete coverage of LPG on the bilayer island.

LAST, JULIE A.; HUBER, TINA; SASAKI, DARRYL Y.; SALVATORE, BRIAN; TURCO, SALVATORE J.

2003-03-01T23:59:59.000Z

134

New construction era reflected in East Texas LPG pipeline  

SciTech Connect

Installation of 240 miles of 6, 10, and 12-in. LPG pipelines from Mont Belvieu to Tyler, Tex., has provided greater feedstock-supply flexibility to a petrochemical plant in Longview, Tex. The project, which took place over 18 months, included tie-ins with metering at four Mont Belvieu suppliers. The new 10 and 12-in. pipelines now transport propane while the new and existing parts of a 6-in. pipeline transport propylene.

Mittler, T.J. (Texas Eastman Co., Longview, TX (US))

1990-04-02T23:59:59.000Z

135

Far East LPG sales will grow faster than in West  

SciTech Connect

LPG sales through 2010 in regions east of the Suez Canal (East of Suez) will grow at more than twice those in regions west of the canal. East-of-Suez sales will grow at more than 4.0%/year, compared to slightly less than 2.0%/year growth in sales West of Suez. East-of-Suez sales will reach 92 million tons/year (tpy) by 2010, accounting for 39% of the worldwide total. This share was 31% in1995 and only 27% in 1990. LPG sales worldwide will reach 192 million tons in 2000 and 243 million tpy by 2010. In 1995, they were 163 million tons. These are some of the major conclusions of a recent study by Frank R. Spadine, Christine Kozar, and Rudy Clark of New York City-based consultant Poten and Partners Inc. Details of the study are in the fall report ``World Trade in LPG 1990--2010``. This paper discusses demand segments, seaborne balance, Western sources, largest trading region, North American supplies, and other supplies.

1996-12-30T23:59:59.000Z

136

Asia, North America lead way in growth of NGL, LPG trade  

SciTech Connect

Recent analyses of world NGL trade indicate that important changes in LPG supply and demand are under way in Asia and North America. LPG markets in the 1990s reflect a rapidly shifting balance between East-of-Suez and West-of-Suez markets. This shift has increased concern about availability of future LPG supplies for Asia. The paper discusses world developments, East versus West of Suez, end uses and supplies in Asia, Canadian ethane, propane, butane, and natural gasoline, Mexican ethane, LPG, and natural gasoline, US ethane, propane, butanes, and iso-C{sub 4} and C{sub 5}.

Otto, K.; Gist, R.; Whitley, C. [Purvin and Gertz Inc., Houston, TX (United States); Haun, R. [Purvin and Gertz Inc., Dallas, TX (United States)

1998-01-12T23:59:59.000Z

137

Cracking in liquid petroleum gas Horton spheres  

Science Conference Proceedings (OSTI)

A gas processing plant on the western coast of India produces sweet gas after processing sour natural gas. Liquid petroleum gas (LPG) is recovered from the sweet gas. The LPG, containing a H{sub 2}S concentration of 10 ppm to 20 ppm, is stored in Horton spheres, each 17 m in diameter with a capacity of {minus}27 C to 55 C. Horton spheres for containing liquid petroleum gas (LPG) were fabricated on-site using prestressed plates of high-strength carbon steel (CS) SA 537 Class-1 with post-weld heat treatment. High-residual tensile stresses and hydrogen absorption from H{sub 2}S present in LPG could be the cause of cracking at weld and heat-affected zone interfaces at high hardness locations. Recommendations are given for inspection and use of lower-strength CS and improved welding procedures.

Trivedi, D.K. Gupta, S.C. [Oil and Natural Gas Corp., Surat (India). Hazari Gas Processing Complex

1997-07-01T23:59:59.000Z

138

New pemex agency, smog checks greet Mexican LPG vehicle users  

Science Conference Proceedings (OSTI)

This paper reports that the relaxation of prohibitions on the use of propane as a motor fuel has spurred sizeable business activity in carburetion and higher demand for LPG throughout Mexico and particularly in Mexico City. However, a number of unforeseen problems have developed that required tough, immediate solutions. After the alternative fuels project began at city hall in Mexico City, publicity spread nationwide, reportedly spurring conversion activity in many other cities. That led to additional demand for fuel of a magnitude that few people had anticipated. In order to assume control of the situation, the national oil company, Pemex, established an official LPG Motor Fuel Department on June 1. Operating in conjunction with the Ministry of Industry, the new department has been busy registering every major propane-powered fleet in the country. Most important, the rate of conversion work must now be pegged to the availability of fuel. It is believed that conversion activity has become more evenly paced since the new Pemex agency took over.over.

Not Available

1992-10-01T23:59:59.000Z

139

Latest techniques and equipment for the conversion of motor vehicles to LPG/petroleum use  

SciTech Connect

Liquified petroleum gases (LPG) has been used for transportation in Europe, the United States, Japan and to a much lesser extent in Australia for many years. In most cases, the vehicles have been powered by engines designed for petrol operation and subsequently converted to use LPG. The application of LPG as an automotive fuel in different countries depends heavily on the availability of the fuel and the tax policy of the government. The demand for dual fuel equipment is increasing. Some of the problems facing Australia to convert vehicles to LPG use emphasize the institutional and hardware obstacles. Before LPG can be considered to be a safe, viable alternative fuel to petrol, improvements will have to be made in safety standards, in reduced exhaust emissions, in increased fuel efficiency, and in the involvement of car manufacturers. (SAC)

Armstrong, R.

1980-01-01T23:59:59.000Z

140

Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality  

Science Conference Proceedings (OSTI)

Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

Blake, D.R.; Rowland, F.S. [Univ. of California, Irvine, CA (United States)

1995-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Overcoming Fuel Gas Containment Limitations to Energy Improvement  

E-Print Network (OSTI)

Oil refineries convert crude oil into high value products such as gasoline, diesel, liquefied petroleum gas (LPG), and petrochemical feedstocks. After squeezing as much saleable product from the crude oil as possible, there remains a light gas stream, typ

Davis, J.

2004-01-01T23:59:59.000Z

142

Compressed natural gas and liquefied petroleum gas as alternative fuels  

Science Conference Proceedings (OSTI)

The use of alternative fuels in the transportation industry has gained a strong support in recent years. In this paper an attempt was made to evaluate the use of liquefied petroleum gas (LPG) and compressed natural gas (NG) by 25 LPG-bifuel and 14 NG-bifuel vehicles that are operated by 33 transit systems throughout Nebraska. A set of performance measures such as average fuel efficiency in kilometers per liter, average fuel cost per kilometer, average oil consumption, and average operation and maintenance cost for alternatively fueled vehicles were calculated and compared with similar performance measures of gasoline powered vehicles. The results of the study showed that the average fuel efficiency of gasoline is greater than those of LPG and NG, and the average fuel costs (dollars per kilometer) for LPG and NG are smaller than those for gasoline for most of the vehicles under this study.

Moussavi, M.; Al-Turk, M. (Univ. of Nebraska, Omaha, NE (United States). Civil Engineering Dept.)

1993-12-01T23:59:59.000Z

143

Global gas processing will strengthen to meet expanding markets  

SciTech Connect

The worldwide LPG industry continues to expand faster than the petroleum industry -- 4%/year for LPG vs. 2%/year for petroleum in 1995 and less than 1%/year in the early 1990s. This rapid expansion of LPG markets is occurring in virtually every region of the world, including such developing countries as China. The Far East is the focus of much of the LPG industry`s attention, but many opportunities exist in other regions such as the Indian subcontinent, Southeast Asia, and Latin America. The investment climate is improving in all phases of downstream LPG marketing, including terminaling, storage, and wholesale and retail distribution. The world LPG supply/demand balance has been relatively tight since the Gulf War and should remain so. Base demand (the portion of demand that is not highly price-sensitive) is expanding more rapidly than supplies. As a result, the proportion of total LPG supplies available for price-sensitive petrochemical feedstock markets is declining, at least in the short term. The paper discusses importers, price patterns, world LPG demand, world LPG supply, US NGL supply, US gas processing, ethane and propane supply, butane, isobutane, and natural gasoline supply, and US NGL demand.

Haun, R.R. [Purvin and Gertz Inc., Dallas, TX (United States); Otto, K.W.; Whitley, S.C.; Gist, R.L. [Purvin and Gertz Inc., Houston, TX (United States)

1996-07-01T23:59:59.000Z

144

Table 4. LPG Consumption and Expeditures in U.S. Households by End ...  

U.S. Energy Information Administration (EIA)

Table 4. LPG Consumption and Expeditures in U.S. Households by End Uses and Census Region, 2001 RSE Column Factor: Total U.S. Census Region RSE Row

145

Century-Midas steps slowly into the RV (recreational vehicles) LPG conversion market  

SciTech Connect

Midas International will obtain LPG carburetion equipment from Century for installation in up to 20,000 RV. The market for gasoline-powered RV has been depressed since the surge in gasoline prices, and the installation of Century's equipment represents an attempt to attract customers by reducing RV operating costs. According to J. Kincaid (Midas Inst.), propane, besides being cheaper than gasoline, is also cheaper than diesel fuel, despite the better mileage obtained with diesel fuel, because the use of diesel fuel requires the installation of a diesel engine, which is far more expensive than installation of LPG carburetion. Although most of the LPG carburetion manufacturers, with a backlog of orders, did not evince interest in Midas' search for conversion equipment for RV, Century responded, at least partly because Midas also manufactures fleet delivery trucks, which represent a potentially much larger market for LPG conversion and use.

Kincaid, J.

1980-02-01T23:59:59.000Z

146

Evaluation of aftermarket LPG conversion kits in light-duty vehicle applications. Final report  

DOE Green Energy (OSTI)

SwRI was contracted by NREL to evaluate three LPG conversion kits on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of these kits, and compare their performance to gasoline-fueled operation and to each other. Varying LPG fuel blends allowed a preliminary look at the potential for fuel system disturbance. The project required kit installation and adjustment according to manufacturer`s instructions. A limited amount of trouble diagnosis was also performed on the fuel systems. A simultaneous contract from the Texas Railroad Commission, in cooperation with NREL, provided funds for additional testing with market fuels (HD5 propane and industry average gasoline) and hydrocarbon (HC) emissions speciation to determine the ozone-forming potential of LPG HC emissions. This report documents the procurement, installation, and testing of these LPG conversion kits.

Bass, E.A. [Southwest Research Inst., San Antonio, TX (US)] [Southwest Research Inst., San Antonio, TX (US)

1993-06-01T23:59:59.000Z

147

Gas, Mister, not gasoline  

SciTech Connect

A prototype rechargeable CNG commuter car with an LP-gas standby reserve avoids the need for area fueling stations while providing an emergency range-extending technique through its LPG system. Operating on a household power line, the charging compressor fills each tank to 1000 psig at an electric cost of less than 7 cents/100 CF of compressed gas. The four fuel tanks weigh only 120 lb and give the small Opel GT car a range of 75 miles. A 10-gal LPG tank adds 300 miles to this range.

Axworthy, R.T.

1982-10-01T23:59:59.000Z

148

Offshore refrigerated LPG loading/unloading terminal using a CALM buoy  

SciTech Connect

In existing Liquefied Petroleum Gases terminals, the transfer of liquefied gases to the tanker is performed via articulated loading arms or flexible hoses, working under quasistatic conditions. The tanker has to be firmly moored alongside a jetty or a process barge in a protected area (such as a harbour in most cases). This paper gives the main results of the development of an offshore refrigerated LPG (-48/sup 0/C) loading/unloading system, using a CALM buoy and LPG floating hoses working under dynamic conditions. The aim of this new concept is to replace the standard harbour structure for loading/unloading refrigerated LPG and to provide a considerable reduction in investments and a greater flexibility regarding the terminal location. The main components of that terminal have been designed so as to enable the loading of a 75 000 cubic meter LPG carrier in 15 hours. The results of static and dynamic low temperature tests on a LPG swivel joint for CALM buoy and LPG floating hoses show that such a SPM terminal is now a realistic solution.

Bonjour, E.L.; Simon, J.M.

1985-03-01T23:59:59.000Z

149

Spray bottle apparatus with force multiply pistons  

DOE Patents (OSTI)

The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

Eschbach, Eugene A. (Richland, WA)

1992-01-01T23:59:59.000Z

150

Spray bottle apparatus with pressure multiplying pistons  

DOE Patents (OSTI)

The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and a corresponding piston which is acted upon the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

Moss, Owen R. (Kennewick, WA); Gordon, Norman R. (Kennewick, WA); DeFord, Henry S. (Kennewick, WA)

1990-01-01T23:59:59.000Z

151

NGL (natural gas liquids) shipping and terminals. [Japan, Europe, USA  

SciTech Connect

An analysis of the world LPG market covers the need for a world-wide planning organization to develop that market; the shortage of ships between 1000 and 20,000 cu m capacity and the excess of large ships (> 50,000 cu m capacity); the status of the Japanese and European LPG markets; the failure of the U.S. LPG market to develop as expected; and the need for the U.S. to keep its gas for the future by putting a very high price at the well head, to build terminals and ships so as to minimize the effect of LPG and LNG imports on the balance-of-payment deficit; and the availability of LPG from nearby sources (Venezuela, Mexico, the North Sea, and Algeria).

Boudet, R.

1979-01-01T23:59:59.000Z

152

The growing world LP-gas supply  

Science Conference Proceedings (OSTI)

The possible range of future (LPG) export availabilities is huge, but actual production levels depend on factors, many of which are beyond our direct control - world demand for crude oil and gas, developments in technology, and the price of both energy in general and LPG specifically. Although these factors limit some of the potential developments, a substantial increase in LPG supply is certain, and this is likely to depress its price relative to other products. Over the last few years, a dramatic expansion has taken place in the industry. From 1980 to 1987, non-Communist world production of LPG increased by close to 35%, to a total of 115 million tonnes. If this is set against the general energy scene, LPG represented 3.7% of crude oil production by weight in 1980, rising to 5.4% in 1987. This growth reflects rise in consciousness around the world of the value of the product. LPG is no longer regarded as a byproduct, which is flared or disposed of at low value, but increasingly as a co-product, and much of the growth in production has been due to the installation of tailored recovery systems. LPG markets historically developed around sources of supply, constrained by the costs of transportation. The major exceptions, of course, were the Middle East, the large exporter, and Japan, the large importer.

Hoare, M.C.

1988-11-01T23:59:59.000Z

153

High-Speed Fracture Phenomena of Glass Bottle by Underwater ...  

Science Conference Proceedings (OSTI)

Presentation Title, High-Speed Fracture Phenomena of Glass Bottle by Underwater Shock Wave. Author(s), Hidetoshi Sakamoto, Shinjirou Kawabe, Yoshifumi...

154

Determination of combustion products from alternative fuels - part 1. LPG and CNG combustion products  

SciTech Connect

This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. Speciation data showed greater than 87 percent of all LPG and greater than 95 percent of all CNG hydrocarbon exhaust constituents to be composed of C{sub 1} to C{sub 3} compounds. In addition, toxic emissions from the combustion of CNG and LPG were as low as 10 percent of those generated by combustion of gasoline. A comparison of ozone forming potential of the three fuels was made based on the Maximum Incremental Reactivity scale used by the California Air Resources Board. Post-catalyst results from stoichiometric operation indicated that LPG and CNG produced 63 percent and 88 percent less potential ozone than reformulated gasoline, respectively. On average over all equivalence ratios, CNG and LPG exhaust constituents were approximately 65 percent less reactive than those from reformulated gasoline. 4 refs., 3 figs., 14 tabs.

Whitney, K.A.; Bailey, B.K.

1994-10-01T23:59:59.000Z

155

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

equipment = furnace Heating fuel = oil Home type = single orequipment = boiler Heating fuel = oil Home type = single orHOME HEATING FUEL CON 3 NATURAL GAS FROM UNDERGROUND PIPES = 1 BOTTLED GAS (LPG OR PROPANE) = 2 FUEL OIL

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

156

Squeeze bottle apparatus with force multiplying pistons  

DOE Patents (OSTI)

The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber, and a corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area, thereby generating greater hydraulic pressure for use in forming the spray.

Moss, Owen R. (Cary, NC); Gordon, Norman R. (Kennewick, WA); DeFord, Henry S. (Kennewick, WA); Eschbach, Eugene A. (Richland, WA)

1994-01-01T23:59:59.000Z

157

Cascaded'' pilot regulators help reduce LPG loss in hot weather  

SciTech Connect

Fina Oil and Chemical Co. and Fisher Controls International used engineering resourcefulness to overcome heat-induced product loss from LPG storage bullets at Fina's Port Arthur, Tex., refinery. Fina had installed Fisher's Easy Joe 399A-6365, a pilot-operated, back-pressure-type regulator, on its LPG storage facility in 1991 as part of a fuel products modernization project. The regulators helped control the accumulation of noncondensible vapors, which collect in the storage bullets above the LPG. But summer heat extremes and surges in the tanks and lines made it possible for the operating pressure to increase so that the safety relief valve was activated before the pilot regulator was able to stabilize the pressure. The installation of pilot-type regulators, in cascaded, or series, formation, reduced product venting through relief valves.

1994-08-08T23:59:59.000Z

158

Design and implementation of an economic gas leakage detector  

Science Conference Proceedings (OSTI)

Gas leakage is a major concern with residential, commercial premises and gas powered transportation vehicles. One of the preventive measures to avoid the danger associated with gas leakage is to install a gas leakage detector at vulnerable locations. ... Keywords: LPG, audio-visual alarm, gas leakage detection, leakage exposure limits, safety system

A. Mahalingam; R. T. Naayagi; N. E. Mastorakis

2012-03-01T23:59:59.000Z

159

Laboratory investigation of the performance of a Holden engine operating on liquified petroleum gas  

SciTech Connect

A laboratory investigation into the relative performances of an engine when operated on both liquified petroleum gas (LPG) and petrol showed that the engine operated at higher termal efficiency on LPG and also that it would operate satisfactorily at leaner air-fuel mixtures on this fuel. Engine performance was less affected by retarded ignition for LPG than for petrol. Furthermore a large increase in dwell angle from the recommended setting had no significant effect on LPG performance. The LPG carburettor when installed in its normal configuration maintained an essentially constant mixture strength with no part throttle leaning of mixtures to give better efficiency nor corresponding full throttle enrichment to give best engine torque.

Webb, N.

1979-08-01T23:59:59.000Z

160

Bottling Electricity: Storage as a Strategic Tool for Managing Variability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bottling Electricity: Storage as a Strategic Tool for Managing Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) The objectives of this report are to provide the Secretary of Energy with the Electricity Advisory Committee's proposed five-year plan for integrating basic and applied research on energy storage technology applications. This report recommends policies that the U.S. Department of Energy (DOE) should consider as it develops and implements an energy storage technologies program, as authorized by the Energy Independence and Security Act of 2007. Bottling Electricity: Storage as a Strategic Tool for Managing Variability

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Measurement of liquified petroleum gas  

SciTech Connect

Propane, iso-butane, and normal butane commonly referred to as Liquified Petroleum Gases or LPG's are used as heating and transportation fuels, feed-stocks for petrochemical plants, gasoline additives, and aerosol propellents. These liquids are commonly stored in high pressure vessels, underground caverns, or salt domes. Pipelines, trucks, and rail cars are used for transporting these fluids. LPG's must conform to industry accepted specifications regarding their composition and the allowable amounts of contaminants that may be present such as sulphur, heavy hydrocarbons, and water. GPA Standard 2140-80, Liquified Petroleum Gas Specifications and Test Methods, outlines the test procedures to be followed in determining product quality. The physical properties of LPG's including low specific gravities (0.498 to 0.584), high vapor pressures, low boiling points, and lack of lubricity must be considered when storing, transporting, or measuring them. LPG's are easily measured if certain precautions are taken. The equipment must be properly installed, maintained, and calibrated. If meters are used, product flow must be in liquid phase. Due to the considerable effect of temperature and pressure on LPG's, volumes obtained at operating conditions must be reduced to standard conditions.

Vehe, R.E.

1984-04-01T23:59:59.000Z

162

Form EIA-457E (2001) -- Household Bottled Gas Usage  

Annual Energy Outlook 2012 (EIA)

Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the...

163

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

E (2001) - Household Electricity Usage Form E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

164

LPG buses in southern California leave the competition at the curb  

SciTech Connect

This paper reports that after the first year of a landmark experiment in which LPG has been competing against methanol and CNG in city buses, propane appears to be pulling out in front of the pack. According to Efren Medellin, superintendent of vehicle maintenance at the Orange County Transit Authority, two LPG buses had registered a total of 31,000 moles with relatively little, if any, downtime. The two methanol buses had run a total of 30,000 miles while the two CNG buses had traveled only 5000 miles. Furthermore the methanol and CNG buses have had their share of downtime for new parts and other problems. The propane-powered buses appear to be running consistently well without mechanical difficulties. The only problem that occurred was occasional backfiring. As a result, the electronic controls were replaced and no subsequent complaints were heard.

1992-03-01T23:59:59.000Z

165

Conception and construction of an LPG tank using a composite membrane technology  

SciTech Connect

TECHNIGAZ and TOTAL C.F.P. have developed a new LPG storage technology derived from the membrane concept used for LNG storage and transportation. This technology called GMS uses a composite membrane as primary barrier. A 2 000 m/sup 3/ storage pilot unit, based on that concept, is under construction in TOTAL's refinery at DUNKIRK (France) since September 1983.

Fuvel, P.; Claude, J.

1985-03-01T23:59:59.000Z

166

Oil, gas tanker industry responding to demand, contract changes  

SciTech Connect

Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

True, W.R.

1998-03-02T23:59:59.000Z

167

Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coca-Cola Bottling Co. Coca-Cola Bottling Co. Brings Hybrids to New Orleans to someone by E-mail Share Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Facebook Tweet about Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Twitter Bookmark Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Google Bookmark Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Delicious Rank Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Digg Find More places to share Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on AddThis.com... Jan. 1, 2010 Coca-Cola Bottling Co. Brings Hybrids to New Orleans

168

Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery  

SciTech Connect

An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

2008-06-20T23:59:59.000Z

169

Confined boiling rates of liquefied petroleum gas on water  

SciTech Connect

Results of a program to measure the rate of boiling of liquefied petroleum gas (LPG) on water surface and to develop an analytical model to describe the phenomena involved are reported. Primary emphasis was placed on liquid propane or LPG mixtures containing small quantities of ethane or butane or both. A few exploratory tests were, however, made with pure liquid ethane, ethylene, and n-butane. The investigation was conducted to provide quantitative data and analytical models to delineate the rate of vaporization, the spread rate and the degree of fractionation, should an LPG tanker suffer an accident leading to a major spill on water. For propane or LPG spills on water, immediately following the contact, violent boiling commenced. Ice quickly formed; in most cases, ice was even thrown onto the sidewalls of the vessel. In some instances sprays of water/ice and propane were ejected from the calorimeter. Within a few seconds, however, the interaction quieted and the surface was covered by a rough ice sheet. The LPG boiled on the surface of this ice, but large gas bubbles occasionally appeared under the ice shield and were trapped. The boiling rate decreased with time with a concomitant increase in the thickness of the ice shield. In the first second or two, very high boiling heat fluxes were experienced. The mass of LPG lost was approximately half that spilled originally. It is estimated that only 5 to 15% could have been ejected as liquid if the water loss is used as a reference. However, since the water surface is very agitated during this period, it is not possible to obtain reliable quantitative values of the boiling flux. Also, as noted, the mass lost in the very early time period was approximately proportional to the original mass of LPG used. It may be inferred that larger spills lead to more mixing and boiling before the ice shield prevents a direct contact between the LPG and the water.

Reid, R.C.; Smith, K.A.

1978-05-01T23:59:59.000Z

170

Ergonomics Designs of Aluminum Beverage Cans and Bottles  

Science Conference Proceedings (OSTI)

This paper introduced the finite element analyses into the ergonomics designs to evaluate the human feelings numerically and objectively. Two design examples in developing aluminum beverage cans and bottles are presented. The first example describes a design of the tab of the can with better finger access. A simulation of finger pulling up the tab of the can has been performed and a pain in the finger has been evaluated by using the maximum value of the contact stress of a finger model. The finger access comparison of three kinds of tab ring shape designs showed that the finger access of the tab that may have a larger contact area with finger is better. The second example describes a design of rib-shape embossed bottles for hot vending. Analyses of tactile sensation of heat have been performed and the amount of heat transmitted from hot bottles to finger was used to present the hot touch feeling. Comparison results showed that the hot touch feeling of rib-shape embossed bottles is better than that of cylindrical bottles, and that the shape of the rib also influenced the hot touch feeling.

Han Jing; Itoh, Ryouiti; Shinguryo, Takuro [Technical Development Department, Aluminum Company, Mitsubishi Materials Corporation, 1500 Suganuma, Oyama-Cho, Sunto-Gun, Shizuoka, 410-1392 (Japan); Yamazaki, Koetsu [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanazawa University, 2-40-20 Kodatsuno, Kanazawa, Ishikawa, 920-8667 (Japan); Nishiyama, Sadao [Aluminum Company, Mitsubishi Materials Corporation, 19F Otemachi First Square West, 1-5-1, Ohtemachi, Chiyoda-Ku. Tokyo, 100-8117 (Japan)

2005-08-05T23:59:59.000Z

171

Criticality experiments with planar arrays of three-liter bottles containing plutonium nitrate solution  

SciTech Connect

The objective of these experiments was to provide benchmark data to validate calculational codes used in critically safety assessments of plant configurations. Arrays containing up to as many as sixteen three-liter bottles filled with plutonium nitrate were used in the experiments. A split-table device was used in the final assembly of the arrays. Ths planar arrays were reflected with close fitting plexiglas on each side and on the bottom but not the top surface. The experiments addressed a number of factors effecting criticality: the critical air gap between bottles in an array of fixed number of bottles, the number of bottles required for criticality if the bottles were touching, and the effect on critical array spacing and critical bottle number due to the insertion of an hydrogeneous substance into the air gap between bottles. Each bottle contained about 2.4l of Pu(NO{sub 3}){sub 4} solution at a Pu concentration of 105g Pu/l, with the {sup 240}Pu content being 2.9 wt% at a free acid molarity H{sup +} of 5.1. After the initial series of experiments were performed with bottles separated by air gaps, plexiglas shells of varying thicknesses were placed around each bottle to investigate how moderation between bottles affects both the number of bottles required for criticality and the critical spacing between each bottle. The minimum of bottles required for criticality was found to be 10.9 bottles, occurring for a square array with bottles in contact. As the bottles were spaced apart, the critical number increased. For sixteen bottles in a square array, the critical separation between surfaces in both x and y direction was 0.96 cm. The addition of plexiglas around each bottle decreased the critical bottle number, compared to those separated in air, but the critical bottle number, even with interstitial plastic in place was always greater than 10.9 bottles. The most reactive configuration was a tightly packed array of bottles with no intervening material.

Durst, B.M.; Clayton, E.D.; Smith, J.H.

1985-01-01T23:59:59.000Z

172

Risk assessment of storage and transport of liquefied natural gas and LP-gas. Final report  

SciTech Connect

A method for assessing the societal risk of transporting liquefied petroleum gas (LPG) and liquefied natural gas (LNG) is described, and is illustrated by application to the transport of LPG by tank truck and LNG by tanker ship in the U.S. Data on past experience and projected future handling of these liquefied gases are used with analysis of flammable plume formation and ignition, and population distributions, to estimate the risks of fatalities from tank truck and tanker ship accidents. From an estimated 52 significant accidents per year with LPG tank trucks at the present truck-associated transportation rate of 20 billion gallons of LPG per year, a fatality rate of 1.2 per year is calculated. For the projected 1980 importation of 33 billion gallons by tanker ship, a fatality rate of 0.4 per year is calculated, using a conservatively high one chance in 20,000 of a significant accident per trip. Comparison with fires and explosions from all causes in the U.S. and Canada leading to 10 or more fatalities shows that these are 100 times more frequent than the predicted frequency of comparable LPG and LNG accidents. Tabulations of experience with spills of flammable volatile liquids are included. (GRA)

Simmons, J.A.

1974-11-25T23:59:59.000Z

173

LPG--a direct source of C/sub 3/-C/sub 4/ olefins  

SciTech Connect

This article describes the selective production of olefins by the catalytic dehydrogenation of the corresponding paraffins by means of UOP's Oleflex process. In this process, propylene can be obtained at about 85 mol % selectivity by the catalytic dehydrogenation of propane. Isobutylene can be obtained at selectivities in excess of 90 mol % from isobutane, and n-butenes (1-butene plus 2-butene) at about 80 mol % from n-butane. The availability of this technology, coupled with an abundant supply of LPG (C/sub 3/ and C/sub 4/ paraffins), opens new avenues for the selective production of propylene and butylenes.

Pujado, P.R.; Berg, R.C.; Vora, B.V.

1983-03-28T23:59:59.000Z

174

Safety audit of refrigerated liquefied gas facilities  

SciTech Connect

An Exxon Research and Engineering Co. comprehensive review of engineering practices and application of safety requirements at Exxon's world-wide refrigerated liquefied hydrocarbon gas storage and handling installations, which included a field audit of about 90 tanks at 30 locations, showed that catastrophic tank failure was not a credible event with properly operated and maintained tanks designed, constructed, and tested in accordance with API Standard 620, Design and Construction of Large Welded Low-Pressure Storage Tanks, although supplemental requirements were suggested to further enhance safety. The review also showed that any meaningful safety audit should be comprehensive and must include all facilities with careful attention to detail. The review embraces products of -1 to -167C and included LNG, ethylene, LPG, and LPG olefins. Recent and proposed LNG safety legislation; some field audit results; and recommendations as to design, construction, and operation of LNG and LPG storage facilities, marine terminals, and tankers, are also discussed.

Feely, F.J.; Sommer, E.C.; Marshall, B.T.; Palmer, A.J.

1980-01-01T23:59:59.000Z

175

Planning and care mark repair of 14-year old leak in Kuwait Oil Co. LPG tank 95  

SciTech Connect

This paper points out that the leak, which had been present for such a long time, completely saturated the perlite insulation with hydrocarbons, thus rendering the entire operation of inspection, repair, and maintenance of the inner tank a hazardous operation. It emphasizes the safety aspects, which were complicated by the saturated perlite as well as by the fact that the tank is situated in the middle of the LPG storage area with LPG tanks on either side. Tank design, making preparations, inspection, and repair are discussed. The fact that the leaking flanges were originally installed damaged, indicated the future need of tighter company quality control of all contractors work.

Shtayieh, S.

1983-01-10T23:59:59.000Z

176

X-ray photoelectron spectroscopy studies on Pd doped SnO{sub 2} liquid petroleum gas sensor  

Science Conference Proceedings (OSTI)

The present investigation deals with the electrical response of palladium doped tin oxide, as a means of improving the selectivity for liquid petroleum gas (LPG) in the presence of CO, CH{sub 4}. The sensor element with the composition of Pd(1.5 wt{percent}) in the base material SnO{sub 2} sintered at 800{degree}C, has shown a high sensitivity towards LPG with a negligible cross interference of CO and CH{sub 4} at an operating temperature of 350{degree}C. This greatly suggests the possibility of utilizing the sensor for the detection of LPG. X-ray photoelectron spectroscopy studies have been carried out to determine the possible chemical species involved in the gas-solid interaction and the enhancing mechanism of the Pd doped SnO{sub 2} sensor element, towards LPG sensitivity. {copyright} {ital 1997 American Institute of Physics.}

Phani, A.R. [Department of Physics, University of LAquila, 67040, LAquila (Italy)

1997-10-01T23:59:59.000Z

177

Simultaneous boiling and spreading of liquefied petroleum gas on water. Final report, December 12, 1978-March 31, 1981  

SciTech Connect

An experimental and theoretical investigation was carried out to study the boiling and spreading of liquid nitrogen, liquid methane and liquefied petroleum gas (LPG) on water in a one-dimensional configuration. Primary emphasis was placed on the LPG studies. Experimental work involved the design and construction of a spill/spread/boil apparatus which permitted the measurement of spreading and local boil-off rates. With the equations of continuity and momentum transfer, a mathematical model was developed to describe the boiling-spreading phenomena of cryogens spilled on water. The model accounted for a decrease in the density of the cryogenic liquid due to bubble formation. The boiling and spreading rates of LPG were found to be the same as those of pure propane. An LPG spill was characterized by the very rapid and violent boiling initially and highly irregular ice formation on the water surface. The measured local boil-off rates of LPG agreed reasonably well with theoretical predictions from a moving boundary heat transfer model. The spreading velocity of an LPG spill was found to be constant and determined by the size of the distributor opening. The maximum spreading distance was found to be unaffected by the spilling rate. These observations can be explained by assuming that the ice formation on the water surface controls the spreading of LPG spills. While the mathematical model did not predict the spreading front adequately, it predicted the maximum spreading distance reasonably well.

Chang, H.R.; Reid, R.C.

1981-04-01T23:59:59.000Z

178

The plastic bottle: A multi-industry impact  

Science Conference Proceedings (OSTI)

Recent changes in motor oil packaging project the future rate of change for packaging operations of companies committed to the marketing of motor oil. Highlighted by the widespread conversion to the plastic bottle as a new standard container for motor oil is the need for the development of higher speed, more cost effective packaging machinery which will meet and eventually exceed historical line speeds and operating efficiencies. The significant investments required for evolving equipment and packaging systems require rethinking of traditional manufacturing concepts and relationships; onetime investments in packaging plants are decisions of the past. The plastic bottle for motor oil truly impacts packaging operations, distribution networks, retail outlets and packaging machinery manufacturers. It is a multi-industry impact.

Noel, J.F.

1986-01-01T23:59:59.000Z

179

Design features and availability of liquefied gas carriers  

SciTech Connect

A discussion covers the growth of seaborne LPG trade, various designs of liquefied gas carriers (independent tank, of semimembrane, and integral tank) for the transportation of LPG within the framework of the Intergovernmental Maritime Consultative Organization (IMCO) code as well as U.S. Coast Guard regulations including insulation systems, ballast storage between the cargo tank and the hull, and methods by which the cargo tank either supports the weight of the cargo or transfers it to the hull; the development of the world liquefied gas carrier fleet including pressurized ships, combination ships (which can carry cargo either partially or fully pressurized and/or fully refrigerated) and the fully refrigerated ships; new design developments; tanker availability; and their economic impact on the transportation costs of seaborne LPG.

Rasch, J.M.B.

1978-01-01T23:59:59.000Z

180

Chemically reactive coatings for passive fire protection in LNG and LPG storage and transporation  

SciTech Connect

According to Van Dyke Associates and TSI Inc., supporting and containing steels used to store and transport LNG and LPG are best protected in case of fire by thermally reactive subliming compounds. When exposed to fire, such compounds undergo an endothermic reaction; thus the substrate material beneath the coating will not heat up beyond the temperature at which this reaction occurs. Gases released by the sublimation reaction pass outward through the pores of the char, breaking down further as they absorb more energy. Numerous tests confirm that in comparison with other types of coatings, subliming compounds require the smallest thickness of coating for any specified level of protection. Routine spraying application techniques further reduce the cost of this passive fire-protection method.

Van Dyke, B.H.; Kawaller, S.T.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report  

SciTech Connect

Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

1982-05-01T23:59:59.000Z

182

SNG seen bolstering LP-gas traffic  

SciTech Connect

A surge in SNG production from LPG, which could stem in part from government policies, may raise the declining profits of marine transporters and U.S. importers of LPG; such SNG would have a distinct cost advantage over Alaskan gas and coal-derived gas and could compete with LNG; if LNG costs $5/million Btu in 1984, it would equal the cost of SNG made from butane at $0.30/gal (butane will probably be the favored SNG feed); an industrial market for LPG would develop immediately if there were a 10% cut in the price spread between LPG and No. 2 fuel oil, which were priced at $3.50 and $2.47/million Btu, respectively, in the summer 1977. At the seminar, H. Nygaard (Norw. Guarantee Inst. Ships and Drilling Vessels A/S) proposed a plan calling for independent tanker-owners to charter-in their tankers, probably for a two-year period; inefficient tankers would be laid up, and over-all profits from working tankers would be redistributed between their owners and owners of laid-up tankers. U.S. Government crude-import policies and tanker safety standards are discussed.

Becraft, J.; Nygaard, H.

1978-03-27T23:59:59.000Z

183

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

184

Levels of financial responsibility for liquefied-natural-gas and liquefied-petroleum-gas facilities  

SciTech Connect

Pursuant to Section 7(a) of the Pipeline Safety Act of 1979, a study was conducted of the risks associated with liquefied natural gas (LNG) and liquefied petroleum gas (LPG) facilities, and of methods of assuring adequate levels of financial responsibility for those who own and/or operate facilities. The main purpose of the study is to provide a basis for determining general levels of financial responsibility for LNG and LPG facilities, as measured by the risk they represent to the public. It must be emphasized that the quantification of risk is a complicated subject. As used in this study, risk is defined as the occurrence of a maximum credible accident and the consequences that would result from such an accident. Part I of the study describes in detail the methodology used in the report to estimate the magnitude of the financial responsibility requirements associated with nine major facility types - e.g., tankships, pipelines, barges, rail tank car, tank truck, etc. - used to store and transport LNG and LPG under 48 separate operational and storage containment modes. Parts II and III of the study, in addition to providing estimates of the risks and corresponding levels of financial responsibility, contain information on the historical safety record and structure of the LNG facilities and LPG facilities.

1981-05-30T23:59:59.000Z

185

Atom trapping in a bottle beam created by a diffractive optical element  

E-Print Network (OSTI)

A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE and demonstrate trapping of cold Cesium atoms inside a bottle beam.

V. V. Ivanov; J. A. Isaacs; M. Saffman; S. A. Kemme; A. R. Ellis; G. R. Brady; J. R. Wendt; G. W. Biedermann; S. Samora

2013-05-23T23:59:59.000Z

186

Free planar actions of the Klein bottle group Frederic Le Roux  

E-Print Network (OSTI)

Free planar actions of the Klein bottle group Fr´ed´eric Le Roux January 16, 2011 Abstract We describe the structure of the free actions of the fundamental group of the Klein bottle torsion free groups that cannot act freely on the plane. We also find some properties which

Paris-Sud XI, Université de

187

Atom trapping in a bottle beam created by a diffractive optical element  

E-Print Network (OSTI)

A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE and demonstrate trapping of cold Cesium atoms inside a bottle beam.

Ivanov, V V; Saffman, M; Kemme, S A; Ellis, A R; Brady, G R; Wendt, J R; Biedermann, G W; Samora, S

2013-01-01T23:59:59.000Z

188

www.mdpi.com/journal/ijerph Bottled Water: United States Consumers and Their Perceptions of Water Quality  

E-Print Network (OSTI)

Abstract: Consumption of bottled water is increasing worldwide. Prior research shows many consumers believe bottled water is convenient and has better taste than tap water, despite reports of a number of water quality incidents with bottled water. The authors explore the demographic and social factors associated with bottled water users in the U.S. and the relationship between bottled water use and perceptions of the quality of local water supply. They find that U.S. consumers are more likely to report bottled water as their primary drinking water source when they perceive that drinking water is not safe. Furthermore, those who give lower ratings to the quality of their ground water are more likely to regularly purchase bottle water for drinking and use bottle water as their primary drinking water source.

Zhihua Hu; Lois Wright Morton; Robert L. Mahler

2011-01-01T23:59:59.000Z

189

Ford Liquefied Petroleum Gas-Powered F-700 May Set Sales Records  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

he introduction in 1992 of an he introduction in 1992 of an American-made truck with a fully factory-installed/war- ranted liquefied petroleum gas (LPG) engine represents another "Ford first" in the alternative fuel arena. Now the company has introduced an LPG- powered F-700, a medium/heavy- duty truck. According to Tom Steckel, Ford's medium-duty marketing man- ager, Ford's latest sales figures already prove the alternative fuel F-700's popularity. With a little more than 10 months of the model year finished, Ford has produced 1600 units and ordered 600 more, for a total of 2200 units. That's triple the number of LPG units produced and ordered at the same time last year. In addition, the possibility of applying federal and state tax credits is being investigated. Cummins B 5.9G Natural Gas

190

Performance of a short 'magnetic bottle' electron spectrometer  

Science Conference Proceedings (OSTI)

In this article, a newly constructed electron spectrometer of the magnetic bottle type is described. The instrument is part of an apparatus for measuring the electron spectra of free clusters using synchrotron radiation. Argon and helium outer valence photoelectron spectra have been recorded in order to investigate the characteristic features of the spectrometer. The energy resolution (E/{Delta}E) has been found to be {approx}30. Using electrostatic retardation of the electrons, it can be increased to at least 110. The transmission as a function of kinetic energy is flat, and is not impaired much by retardation with up to 80% of the initial kinetic energy. We have measured a detection efficiency of most probably 0.6{sub -0.1}{sup +0.05}, but at least of 0.4. Results from testing the alignment of the magnet, and from trajectory simulations, are also discussed.

Mucke, M.; Lischke, T.; Arion, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Foerstel, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Bradshaw, A. M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Hergenhahn, U. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany)

2012-06-15T23:59:59.000Z

191

6000 tpd SRC-I Demonstration Plant gas systems. Design baseline package, Volume 8. [DEA process  

SciTech Connect

Volume 8 contains the design of the fuel gas desulfurization process (DEA) and of the liquefied petroleum gases (LPG) section of the plant. The removal of acid gases is accomplished by intimately contacting the feed stream with the descending DEA solution. A partially regenerated semi-lean DEA solution is fed to an intermediate tray of the column for the bulk removal of H/sub 2/S and CO/sub 2/ while a fully regenerated lean DEA solution is fed at the top tray for the removal of the remaining acid gases in the top section of the absorber. The lean solution stream temperature is maintained at 10 to 15/sup 0/F above the absorber feed gas temperature to prevent hydrocarbon condensation in the column with consequent foaming and flooding of the column. The overhead gas (Stream 6305) leaving the H.P. DEA absorber is cooled and passed through the Sweet Gas K.O. Drum (bottom section of V-15305) to separate any condensate. The gas leaving the drum is further contacted with a 3 weight percent caustic solution in the bottom section of the Treated Gas Wash Column (T-15303) for removal of residual acid gases in order to comply with the sweet gas specifications of 1 ppMv H/sub 2/S and 10 ppMv CO/sub 2/. The LPG Recovery Unit is designed to process 15.95 MMSCFD of low pressure fuel reject gas from the HPU to recover approximately 60 percent of the propane and most of the heavier hydrocarbons. The recovered hydrocarbons are produced as liquefied petroleum gas (LPG) product. Specifications for the LPG product are: (1) Ethane/Propane (Vol/Vol) 0.02; and (2) LPG product should meet GPA Publication 2140-77 Commercial B-P mixture specifications.

1983-01-27T23:59:59.000Z

192

Draft environmental impact report. California Department of Water Resources, Bottle Rock geothermal power plant, Lake County, CA  

SciTech Connect

The California Department of Water Resources (DWR) proposes to construct the Bottle Rock power plant, a 55 MW geothermal power plant, at The Geysers Known Geothermal Resource Area (KGRA). The plant is projected to begin operation in April of 1983, and will be located in Lake County near the Sonoma County line on approximately 7.2 acres of the Francisco leasehold. The steam to operate the power plant, approximately 1,000,000 pounds/h, will be provided by McCulloch Geothermal Corporation. The power plant's appearance and operation will be basically the same as the units in operation or under construction in the KGRA. The power plant and related facilities will consist of a 55 MW turbine generator, a 1.1 mile (1.81 km) long transmission line, a condensing system, cooling tower, electrical switchyard, gas storage facility, cistern, and an atmospheric emission control system. DWR plans to abate hydrogen sulfide (H/sub 2/S) emissions through the use of the Stretford Process which scrubs the H/sub 2/S from the condenser vent gas stream and catalytically oxides the gas to elemental sulfur. If the Stretford Process does not meet emission limitations, a secondary H/sub 2/S abatement system using hydrogen peroxide/iron catalyst is proposed. The Bottle Rock project and other existing and future geothermal projects in the KGRA may result in cumulative impacts to soils, biological resources, water quality, geothermal steam resources, air quality, public health, land use, recreation, cultural resources, and aesthetics.

1979-12-01T23:59:59.000Z

193

Draft environmental impact report. California Department of Water Resources, Bottle Rock geothermal power plant, Lake County, CA  

DOE Green Energy (OSTI)

The California Department of Water Resources (DWR) proposes to construct the Bottle Rock power plant, a 55 MW geothermal power plant, at The Geysers Known Geothermal Resource Area (KGRA). The plant is projected to begin operation in April of 1983, and will be located in Lake County near the Sonoma County line on approximately 7.2 acres of the Francisco leasehold. The steam to operate the power plant, approximately 1,000,000 pounds/h, will be provided by McCulloch Geothermal Corporation. The power plant's appearance and operation will be basically the same as the units in operation or under construction in the KGRA. The power plant and related facilities will consist of a 55 MW turbine generator, a 1.1 mile (1.81 km) long transmission line, a condensing system, cooling tower, electrical switchyard, gas storage facility, cistern, and an atmospheric emission control system. DWR plans to abate hydrogen sulfide (H/sub 2/S) emissions through the use of the Stretford Process which scrubs the H/sub 2/S from the condenser vent gas stream and catalytically oxides the gas to elemental sulfur. If the Stretford Process does not meet emission limitations, a secondary H/sub 2/S abatement system using hydrogen peroxide/iron catalyst is proposed. The Bottle Rock project and other existing and future geothermal projects in the KGRA may result in cumulative impacts to soils, biological resources, water quality, geothermal steam resources, air quality, public health, land use, recreation, cultural resources, and aesthetics.

Not Available

1979-12-01T23:59:59.000Z

194

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

D (2005) - Household Propane (Bottled Gas or LPG) Usage Form D (2005) - Household Propane (Bottled Gas or LPG) Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Propane (Bottled Gas or LPG) Usage Form Service Address: If the customer account number is not shown on the label, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and answer the seven questions for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality

195

2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions  

U.S. Energy Information Administration (EIA) Indexed Site

D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Bottled Gas (LPG or Propane) Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

196

Well fracturing method using liquefied gas as fracturing fluid  

SciTech Connect

A method is described for fracturing an oil well or gas well with a mixture of liquid carbon dioxide and liquid petroleum gas. The objective is to be able to inject the liquid into the well bore at a relatively high pumping rate without causing the liquid to boil. Prior to injection, both the liquid CO/sub 2/ and the LPG are held in separate supply tanks at a temperature and pressure at which the liquid phase will not boil. The temperature of the LPG is substantially higher than the liquid CO/sub 2/. During the pumping operation, part of the liquid CO/sub 2/ and all of the LPG are fed through a heat exchanger. In the exchanger, the amount of heat transferred from the LPG to the liquid CO/sub 2/ is enough to vaporize the liquid. The CO/sub 2/ vapor is then circulated back into the CO/sub 2/ tank. The recycled vapor thus maintains the liquid-vapor phase in the tank at equilibrium, so that the liquid will not boil at the desired pumping rate. (4 claims)

Zingg, W.M.; Grassman, D.D.

1974-10-22T23:59:59.000Z

197

Recovering associated gas from marginal fields  

SciTech Connect

To enable production from offshore gasfields too small to justify a pipeline, LGA Gastechnik G.m.b.H. has designed for a capacity of 30-90 million cu ft/day a system comprising a floating production unit on a catamaran barge complete with its own powerplant and personnel quarters plus a 15,000 cu m LNG/LPG/NGL tanker in the form of a catamaran holding two long cylindrical tanks. The catamaran barge production unit has a standard breadth of 27.5 m and depth of 6.5 m, with the length varying from 90 m to 120 m according to production and storage needs. There are ten cargo tanks located below decks in the two hulls. The tanker draft is either 7.7 m with LNG or 9.0 m with LPG. Tankers can be designed to match the actual production slate of a field. A possible third component of the system is a floating or a shore-based storage installation with capacity for 27,000 cu m LNG, 15,000 cu m LPG, and 7000 cu m natural gas liquids. At the beginning of 1978, Liquid Gas International G.m.b.H. was given an order for the preconstruction planning of a gas production and transport system such as described above.

1978-02-01T23:59:59.000Z

198

An Evaluation of the Annular Fuel and Bottle-Shaped Fuel Concepts for Sodium Fast Reactors  

E-Print Network (OSTI)

Two innovative fuel concepts, the internally and externally cooled annular fuel and the bottle-shaped fuel, were investigated with the goal of increasing the power density and reduce the pressure drop in the sodium-cooled ...

Memmott, Matthew

199

Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles  

SciTech Connect

Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

C.C. Baker; T.M. Pfeiffer; J.C. Price

2013-09-01T23:59:59.000Z

200

Natural gas liquids consumption, production, and reserves  

Science Conference Proceedings (OSTI)

Natural gas liquids are condensates that occur during production and liquids recovered during processing, and they are classified as lease condensate or natural gas plant liquids (NGPL). There has been a decline in total domestic production, but an increase in ethane and liquefied petroleum gas (LPG) during the past decade. Statistical tables illustrate trends in the production of NGPLs and liquefied refinery gases (LRG), imports and exports, and marketing and sales. World production data show that, while the US now produces close to 41% of world output, the production trends in other areas are increasing as ours decline. 10 tables. (DCK)

Sala, D.

1983-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Universe in a (Blue) Bottle | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Universe in a (Blue) Bottle Universe in a (Blue) Bottle High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » October 2012 Universe in a (Blue) Bottle Simulating the evolution of the universe on the Argonne Leadership Computing Facility's IBM Blue Gene/Q. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of ANL Large-scale structures in the universe form over time in these stills from a supercomputer simulation of the evolution of the universe.

202

Universe in a (Blue) Bottle | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Universe in a (Blue) Bottle Universe in a (Blue) Bottle Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » October 2012 Universe in a (Blue) Bottle Simulating the evolution of the universe on the Argonne Leadership Computing Facility's IBM Blue Gene/Q. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of ANL Large-scale structures in the universe form over time in these stills from

203

Fission gas release restrictor for breached fuel rod  

DOE Patents (OSTI)

In the event of a breach in the cladding of a rod in an operating liquid metal fast breeder reactor, the rapid release of high-pressure gas from the fission gas plenum may result in a gas blanketing of the breached rod and rods adjacent thereto which impairs the heat transfer to the liquid metal coolant. In order to control the release rate of fission gas in the event of a breached rod, the substantial portion of the conventional fission gas plenum is formed as a gas bottle means which includes a gas pervious means in a small portion thereof. During normal reactor operation, as the fission gas pressure gradually increases, the gas pressure interiorly of and exteriorly of the gas bottle means equalizes. In the event of a breach in the cladding, the gas pervious means in the gas bottle means constitutes a sufficient restriction to the rapid flow of gas therethrough that under maximum design pressure differential conditions, the fission gas flow through the breach will not significantly reduce the heat transfer from the affected rod and adjacent rods to the liquid metal heat transfer fluid flowing therebetween.

Kadambi, N. Prasad (Gaithersburg, MD); Tilbrook, Roger W. (Monroeville, PA); Spencer, Daniel R. (Unity Twp., PA); Schwallie, Ambrose L. (Greensburg, PA)

1986-01-01T23:59:59.000Z

204

Gas from the top of the barrel  

SciTech Connect

Refining management has recently entailed a search for that special niche in all the refinery process options that will make the overall operation profitable in the face of increasing impact of environmental regulation, decreasing demand through conservation, and variations in crude oil pricing. One such niche, bottom of the barrel processing, was attractive enough to result in major new and revamp projects which have contributed positively to direct refinery cost economics but not significantly to profitability. Today, proposed regulations reducing gasoline vapor pressure and forecasts of excess LPG supplies suggest that the other end of the barrel - the top - should be considered. Conventional uses of LPG in home heating and cooling, as petrochemical feedstocks, in gasoline blending, and, in limited amounts, as transportation fuels are well, or over, served. At the same time, recovery of LPG's from gas and refinery processing is increasing the supply. Those C/sub 3/-C/sub 4/ paraffin hydrocarbons can be converted economically to transportation fuels.

Andre, R.S.; Clark, R.G.; Craig, R.G.; Dufallo, J.M.

1988-01-01T23:59:59.000Z

205

Adhesion Force Control and Active Gravitational Compensation for Autonomous Inspection in LPG Storage Spheres  

Science Conference Proceedings (OSTI)

This paper presents a climbing robot based in wheel locomotion and magnetic adherence, a common mechanical topology applicable to a wide range of industrial tasks. The robot is applied to perform internal/external inspection in liquefied petroleum gas ... Keywords: climbing robot, adherence, storage spheres, dynamic control

Andre Schneider de Oliveira; Lucia Valeria Ramos de Arruda; Flavio Neves Jr.; Rodrigo Valerio Espinoza; Joao Pedro Battistella Nadas

2012-10-01T23:59:59.000Z

206

Energy Policy 33 (2005) 18251832 Letting the (energy) Gini out of the bottle: Lorenz curves of  

E-Print Network (OSTI)

Energy Policy 33 (2005) 1825­1832 Letting the (energy) Gini out of the bottle: Lorenz curves of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity Arne Jacobsona , Anita D. Milmana , Daniel M. Kammena,b, * a Energy and Resources Group, University of California

Kammen, Daniel M.

207

Playful bottle: a mobile social persuasion system to motivate healthy water intake  

Science Conference Proceedings (OSTI)

This study of mobile persuasion system explores the use of a mobile phone, when attached to an everyday object used by an everyday behavior, becomes a tool to sense and influence that behavior. This mobile persuasion system, called Playful Bottle system, ... Keywords: hydration behavior, mobile computing, persuasive technology, ubiquitous computting

Meng-Chieh Chiu; Shih-Ping Chang; Yu-Chen Chang; Hao-Hua Chu; Cheryl Chia-Hui Chen; Fei-Hsiu Hsiao; Ju-Chun Ko

2009-09-01T23:59:59.000Z

208

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test BanPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

209

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. TestingPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

210

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The TestPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

211

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

by the Soviets. Nuclear Non-Proliferation Treaty (NPT) enters into force (1970). Prevent the spread of nuclear and eliminate nuclear weapons (1953). Vetoed by the Soviets. Nuclear Non-Proliferation Treaty (NPT) entersPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle

Gilfoyle, Jerry

212

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

weapons (1953). Vetoed by the Soviets. Nuclear Non-Proliferation Treaty (NPT) enters into force (1970Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1

Gilfoyle, Jerry

213

Technology and market assessment of gas-fueled vehicles in New York State. Volume III. Institutional barriers and market assessment. Final report  

SciTech Connect

Volume III deals primarily with the institutional barriers and market forces affecting the potential conversion of vehicles in New York State (NYS) to gaseous fuels. The results of a market research survey are presented along wth the current supply conditions for fuels in NYS. The indigenous resources of gaseous fuels in NYS are identified and quantified. The potential number of vehicles in NYS that are favorable candidates for conversion are estimated, and the effect of these potential gaseous-fueled vehicles on NYS gaseous fuels supplies is presented. The market research survey found that fleet managers appear to be more aware of the specifics of LPG vehicles relative to CNG vehicles. In those fleets with some LPG or CNG vehicles, a tentativeness to further conversion was detected. Many fleet managers are deferring conversion plans due to uncertain conversion costs and future fuel prices. The need for fleet manager education about gaseous fuel vehicle (GFV) operation and economics was identified. NYS currently has an excess supply of natural gas and could support a significant GFV population. However, the pipeline system serving NYS may not be able to serve a growing GFV population without curtailment in the future if natural gas demands in other sectors increase. LPG supply in NYS is dependent primarily on how much LPG can be imported into NYS. A widespread distribution system (pipeline and truck transport) exists in NYS and could likely support a signficant LPG vehicle population. It is estimated that about 35% of the passenger cars and 43% of the trucks in NYS are potential candidates for conversion to CNG. For LPG, about 36% and 46% of passenger cars and trucks are potential candidates. Applying a gross economic screen results in an estimated potential liquid fuel displacement of 1.3 billion gallons in 1990. 20 figs., 63 tabs.

1983-08-01T23:59:59.000Z

214

liquefied natural gas LNG | OpenEI  

Open Energy Info (EERE)

liquefied natural gas LNG liquefied natural gas LNG Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

215

compressed natural gas | OpenEI  

Open Energy Info (EERE)

compressed natural gas compressed natural gas Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (3 years ago) Date Updated December 13th, 2010 (3 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

216

Assessment of potential radiological population health effects from radon in liquefied petroleum gas  

SciTech Connect

Liquefied petroleum gas (LPG) contains varying amounts of radon-222 which becomes dispersed within homes when LPG is used in unvented appliances. Radon-222 decays to alpha-emitting daughter products which are associated with increased lung cancer when inhaled and deposited in the respiratory system. The average dose equivalents to the bronchial epithelium from the use of LPG in unvented kitchen ranges and space heaters are estimated to be about 0.9 and 4.0 mrem/year, respectively. When extrapolated to the United States population at risk, the estimated tracheobronchial dose equivalents are about 20,000 and 10,000 person-rems/year for these appliances, or a total of about 30,000 person-rems/year. These doses are very small compared to other natural and man-made sources of ionizing radiation. It is estimated that these low doses would result in less than one lung cancer a year for the total U.S. population. Consequently, the use of LPG containing radon-222 does not contribute significantly to the incidence of lung cancer in the United States.

Gesell, T.F.; Johnson, R.H. Jr; Bernhardt, D.E.

1977-02-01T23:59:59.000Z

217

SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS  

DOE Green Energy (OSTI)

Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

2003-11-21T23:59:59.000Z

218

Landi-Hartog U. S. A. adjusts to the U. S. market. [Marketing of LPG carburetor systems for using propane as an automotive fuel  

SciTech Connect

Landi-Hartog U.S.A. has adjusted to the U.S. market in providing LPG carburetor systems for passenger cars. Landi-Hartog (LH) had to completely redesign the components on the system to be compatible with U.S. 300-525 cu in. engines. The company has California Air Resources Board approval for 300 cu in. engines and above in dual-fuel service. However, the U.S. market will remain severely restricted unless basic distribution (and the political) changes are made. The U.S. is st

1980-10-01T23:59:59.000Z

219

Texas Bi-Fuel Liquefied Petroleum Gas Pickup Study: Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

represent selected fuel economy data.) ...11 Figure 4. Monthly purchase prices of gasoline and LPG (Note: the price of LPG was higher in the Corpus district than...

220

Gas Mileage Tips - Driving More Efficiently  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving More Efficiently Driving More Efficiently Personalize Fuel Prices Select the fuel type and enter your fuel price to personalize savings estimates. Regular Midgrade Premium Diesel E85 CNG LPG $ 3.33 /gal Save My Prices Use Default Prices Click "Save My Prices" to apply your prices to other pages, or click "Use Default Prices" use national average prices. Drive Sensibly frustrated driver Aggressive driving (speeding, rapid acceleration and braking) wastes gas. It can lower your gas mileage by 33% at highway speeds and by 5% around town. Sensible driving is also safer for you and others, so you may save more than gas money. Fuel Economy Benefit: 5%-33% Equivalent Gasoline Savings: $0.17-$1.10/gallon Observe the Speed Limit (New Information) Graph showing MPG decreases rapidly at speeds above 50 mph

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Volume Transfer, LPG Prover  

Science Conference Proceedings (OSTI)

... the prover is drained for a 30 ( 5) second period after cessation of the main flow. ... 87, i, Include a Pressure Correction Table 1 and Chart with your ...

2013-05-22T23:59:59.000Z

222

The temperature dependence of ultra-cold neutron wall losses in material bottles coated with deuterated polystryene  

Science Conference Proceedings (OSTI)

Ultra-cold neutrons (UCN) from the LANSCE super-thermal deuterium source were used to fill an acrylic bottle coated with deuterated polystyrene. The bottle was constructed to minimize losses through the filling valve. The storage time was extracted from a series of measurements where the number of neutrons was counted after they were held in the bottle for durations varying from 60-1200 s. The data were collected at temperatures of 18, 40, 65, 105, and 295 K. The data has been analyzed in terms of the ratio of the imaginary to real part of the wall potential. The analysis considers the velocity dependence of the probability per bounce of wall loss. The implication of these measurements for the SNS electric dipole moment search will be presented.

Cooper, Martiin D [Los Alamos National Laboratory; Bagdasarova, Yelena [Los Alamos National Laboratory; Clayton, Steven M [Los Alamos National Laboratory; Currie, Scott A [Los Alamos National Laboratory; Griffith, William C [Los Alamos National Laboratory; Ito, Takeyasu [Los Alamos National Laboratory; Makela, Mark F [Los Alamos National Laboratory; Morris, Cheistopher [Los Alamos National Laboratory; Rahaman, Mohamad S [Los Alamos National Laboratory; Ramsey, John C [Los Alamos National Laboratory; Saunders, Alexander [Los Alamos National Laboratory; Rios, Raymond [IDAHO STATE UNIV.

2011-01-18T23:59:59.000Z

223

Process qualification and testing of LENS deposited AY1E0125 D-bottle brackets.  

SciTech Connect

The LENS Qualification team had the goal of performing a process qualification for the Laser Engineered Net Shaping{trademark}(LENS{reg_sign}) process. Process Qualification requires that a part be selected for process demonstration. The AY1E0125 D-Bottle Bracket from the W80-3 was selected for this work. The repeatability of the LENS process was baselined to determine process parameters. Six D-Bottle brackets were deposited using LENS, machined to final dimensions, and tested in comparison to conventionally processed brackets. The tests, taken from ES1E0003, included a mass analysis and structural dynamic testing including free-free and assembly-level modal tests, and Haversine shock tests. The LENS brackets performed with very similar characteristics to the conventionally processed brackets. Based on the results of the testing, it was concluded that the performance of the brackets made them eligible for parallel path testing in subsystem level tests. The testing results and process rigor qualified the LENS process as detailed in EER200638525A.

Atwood, Clinton J.; Smugeresky, John E. (Sandia National Labs, Livermore,CA); Jew, Michael (Sandia National Labs, Livermore,CA); Gill, David Dennis; Scheffel, Simon (Sandia National Labs, Livermore,CA)

2006-11-01T23:59:59.000Z

224

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

Oil LPG Refinery Gas Other Petroleum Products Natural GasOil LPG Refinery Gas Other Petroleum Products Natural GasEquipment Chemicals Food Petroleum & Coking Textiles Paper

Lu, Hongyou

2013-01-01T23:59:59.000Z

225

Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles  

Science Conference Proceedings (OSTI)

Electrical and gas sensing properties of nanocrystalline ZnO:Cu, having Cu X wt% (X = 0.0, 0.5, 1.0, and 1.5) in ZnO, in the form of pellet were investigated. Copper chloride and zinc acetate were used as precursors along with oxalic acid as a precipitating reagent in methanol. Material characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and inductive coupled plasma with optical emission spectrometry (ICP-OES). FE-SEM showed the self-aligned Cu-doped ZnO nano-clusters with particles in the range of 40-45 nm. The doping of 0.5% of copper changes the electrical conductivity by an order of magnitude whereas the temperature coefficient of resistance (TCR) reduces with increase in copper wt% in ZnO. The material has shown an excellent sensitivity for the H{sub 2}, LPG and CO gases with limited temperature selectivity through the optimized operating temperature of 130, 190 and 220 deg. C for H{sub 2}, LPG and CO gases, respectively at 625 ppm gas concentration. The %SF was observed to be 1460 for H{sub 2} at 1% Cu doping whereas the 0.5% Cu doping offered %SF of 950 and 520 for CO and LPG, respectively. The response and recovery time was found to be 6 to 8 s and 16 s, respectively.

Sonawane, Yogesh S. [Thin Film Laboratory, Department of Physics, University of Pune, Pune 411007 (India); Kanade, K.G. [Department of Chemistry, Mahatma Phule College, Pimpari, Pune 411017 (India); Kale, B.B. [Nanocrystalline Materials Laboratory, Center for Materials for Electronics Technology (CMET), Pune 411008 (India)], E-mail: kbbb1@yahoo.co.in; Aiyer, R.C. [Center for Sensor Studies, Department of Physics, University of Pune, Pune 411007 (India)], E-mail: rca@physics.unipune.ernet.in

2008-10-02T23:59:59.000Z

226

Using NMR to study full intact wine bottles A.J. Weekley, P. Bruins, M. Sisto, and M.P. Augustine*  

E-Print Network (OSTI)

Using NMR to study full intact wine bottles A.J. Weekley, P. Bruins, M. Sisto, and M.P. Augustine 2002; revised 19 November 2002 Abstract A nuclear magnetic resonance (NMR) probe and spectrometer Sauvignons with high resolution 1 H NMR spectroscopy. Selected examples of full bottle 13 C NMR spectra

Augustine, Mathew P.

227

Liquefied natural gas and liquefied petroleum gas, views and practices, policy and safety  

SciTech Connect

Public concern over the dangers of LNG and LPG has necessitated the publication of a set of LNG and LPG regulations covering 1) properties and hazards, 2) carrier design and construction, 3) facilities and operational controls, and 4) personnel training and qualifications. The appendixes to these rules provide answers to common questions concerning LNG and LPG, as well as a bibliography for further reading.

1980-01-01T23:59:59.000Z

228

Gas evolution from geopressured brines  

DOE Green Energy (OSTI)

The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

Matthews, C.S.

1980-06-01T23:59:59.000Z

229

A Case Study to Bottle the Biogas in Cylinders as Source of Power for Rural Industries Development in Pakistan  

E-Print Network (OSTI)

Abstract: Pakistan is one of the developing countries with very low energy consumption, correspondingly low standard of living and high population growth. The country is trying to improve its living standards by increasing its energy consumption and establishing appropriate industries. It has immense hydropower potential, which is almost untapped at the present time. Employment generation and poverty alleviation are the two main issues related with rural development. These issues can be tackled by rural industrialization using local resources and appropriate technologies. However, sufficient number of industries can not be set up in rural areas so far due to scarcity of energy supply i.e. electricity, diesel etc. Biogas, a renewable fuel may be able to fill the gap in energy availability in the rural areas. Biogas can supply energy near to biogas plant which makes it hindrance in its wide spread application and therefore mobility of biogas is must, which is achieved by bottling of biogas. Here a model is conceptualized to bottle the biogas in cylinders and then use it to power the rural industries. It is found that use of bottled biogas can save diesel of the worth US $ 147 in 12 hours and also generate employment for 12 persons. Key words: Employment rural industries biogas bottling

Syed Zafar Ilyas

2006-01-01T23:59:59.000Z

230

HYDROGEN GENERATION FROM SLUDGE SAMPLE BOTTLES CAUSED BY RADIOLYSIS AND CHEMISTRY WITH CONCETNRATION DETERMINATION IN A STANDARD WASTE BOX (SWB) OR DRUM FOR TRANSPORT  

DOE Green Energy (OSTI)

A volume of 600 mL of sludge, in 4.1 L sample bottles (Appendix 7.6), will be placed in either a Super Pig (Ref. 1) or Piglet (Ref. 2, 3) based on shielding requirements (Ref. 4). Two Super Pigs will be placed in a Standard Waste Box (SWB, Ref. 5), as their weight exceeds the capacity of a drum; two Piglets will be placed in a 55-gallon drum (shown in Appendix 7.2). The generation of hydrogen gas through oxidation/corrosion of uranium metal by its reaction with water will be determined and combined with the hydrogen produced by radiolysis. The hydrogen concentration in the 55-gallon drum and SWB will be calculated to show that the lower flammability limit of 5% hydrogen is not reached. The inner layers (i.e., sample bottle, bag and shielded pig) in the SWB and drum will be evaluated to assure no pressurization occurs as the hydrogen vents from the inner containers (e.g., shielded pigs, etc.). The reaction of uranium metal with anoxic liquid water is highly exothermic; the heat of reaction will be combined with the source term decay heat, calculated from Radcalc, to show that the drum and SWB package heat load limits are satisfied. This analysis does five things: (1) Estimates the H{sub 2} generation from the reaction of uranium metal with water; (2) Estimates the H{sub 2} generation from radiolysis (using Radcalc 4.1); (3) Combines both H{sub 2} generation amounts, from Items 1 and 2, and determines the percent concentration of H{sub 2} in the interior of an SWB with two Super Pigs, and the interior of a 55-gallon drum with two Piglets; (4) From the combined gas generation rate, shows that the pressure at internal layers is minimal; and (5) Calculates the maximum thermal load of the package, both from radioactive decay of the source and daughter products as calculated/reported by Radcalc 4.1, and from the exothermic reaction of uranium metal with water.

RILEY DL; BRIDGES AE; EDWARDS WS

2010-03-30T23:59:59.000Z

231

Extensive expansion at Karsto gas plant under way  

SciTech Connect

By 2000, the gas and condensate plant at Karsto, Norway, will have been expanded extensively: gas-processing capacity will increase to 2.2 bscfd from current 775 MMscfd; and production capacity for LPG, naphtha, and condensate will reach approximately 10 million metric tons/year (mty). Prompting this expansion is the landing of Karsto in 2000 of a 42-in., rich-gas pipeline from Haltenbanken, offshore mid-Norway, and installation of the 42-in. Europipe II dry-gas pipeline from Karsto to Germany. In the same period, several spin-off projects adding value to the overall concept may be constructed. These could include a 350-mw power plant and ethane-shipment facilities. Total investment at Karsto in the next 3--4 years will reach approximately $1.1 billion (US). Civil work began in June 1997; the detail engineering contract was awarded in August 1997. The paper describes the project.

Svenes, S. [Den Norske Stats Oljeselskap AS, Haugesund (Norway)

1998-07-27T23:59:59.000Z

232

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited

233

High density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for solar disinfection of drinking water in northern region, Ghana  

E-Print Network (OSTI)

The purpose of this study is to investigate the technical feasibility of high density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for the solar disinfection of drinking water ...

Yazdani, Iman

2007-01-01T23:59:59.000Z

234

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network (OSTI)

Central Air, Fuels = Oil and Gas, Other = LPG and Misc. (3)Central Air, Fuels = Oil and Gas, LPG and Misc. (3) Sources:Central Air, Fuels = Oil and Gas, Other = LPG and Misc. (3)

Johnson, F.X.

2010-01-01T23:59:59.000Z

235

Playful bottle: a mobile social persuasion system to motivate healthy water intake Ubicomp'09  

E-Print Network (OSTI)

This study of mobile persuasion system explores the use of a mobile phone, when attached to an everyday object used by an everyday behavior, becomes a tool to sense and influence that behavior. This mobile persuasion system, called Playful Bottle system, makes use of a mobile phone attached to an everyday drinking mug and motivates office workers to drink healthy quantities of water. A camera and accelerometer sensors in the phone are used to build a vision/motion-based water intake tracker to detect the amount and regularity of water consumed by the user. Additionally, the phone includes hydration games in which natural drinking actions are used as game input. Two hydration games are developed: a single-user TreeGame with automated computer reminders and a multi-user ForestGame with computer-mediated social reminders from members of the group playing the game. Results from 7-week user study with 16 test subjects suggest that both hydration games are effective for encouraging adequate and regular water intake by users. Additionally, results of this study suggest that adding social reminders to the hydration game is more effective than system reminders alone.

Meng-chieh Chiu; Shih-ping Chang; Yu-chen Chang; Hao-hua Chu; Cheryl Chia-hui Chen; Fei-hsiu Hsiao; Ju-chun Ko

2009-01-01T23:59:59.000Z

236

The Bumpy Road to Hydrogen  

E-Print Network (OSTI)

gases (LPG) and compressed natural gas (CNG) have persistedbenefits from compressed natural gas, ethanol, methanol,

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

237

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

238

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network (OSTI)

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver, Colorado. The refrigeration unit is designed to provide refrigeration for two process units at the refinery while utilizing waste heat as the energy source. The added refrigeration capacity benefits the refinery by recovering salable products, debottlenecking process units, avoiding additional electrical demand, and reducing the refinery Energy Intensity Index. In addition, the WHAARP unit lowers air pollutant emissions by reducing excess fuel gas that is combusted in the refinery flare. A comprehensive utility and process efficiency Master Plan developed for the Denver refinery by Planetec provided the necessary platform for implementing this distinctive project. The $2.3 million WHAARP system was paid for in part by a $760,000 grant from the U.S. Department of Energy, as part of their "Industry of the Future Program". Total combined benefits are projected to be approximately $1 million/year with a 1.6 year simple payback including the grant funding.

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

1998-04-01T23:59:59.000Z

239

,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

10.3 Relative Standard Errors for Table 10.3;" 10.3 Relative Standard Errors for Table 10.3;" " Unit: Percents." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",2,8.6,4,21.7,13.8,22.3,59.7,15.9,"X",24.9

240

LP-gas sales gain in estimated 4%; severe winter to boost 1977 sales  

SciTech Connect

The National LP-Gas Association reports that sales of LP-gas rose 4.0% in 1976 to an estimated 15.81 billion gal. Residential and commercial sales accounted for 7.13 billion gal, a 1.6% increase; sales to the chemical industry 4.41 billion, 5.6% more; the engine-fuel market 1.17 billion, up 0.5%; and utility sales 0.45 billion, a 12.0% rise. Industrial sales declined 1.3% to 1.07 billion gal in 1976. The ''other'' category, including agricultural uses and feedstock for the manufacture of synthetic gas, jumped 16.8% to 1.60 billion gal. U.S. production of LPG declined 0.4% to 18.02 billion gal, while imports rose 12.3% to 1.94 billion gal. The difference between production and sales is accounted for by the use of LPG in gasoline blending, inventory additions, and exports.

Hartzell, J.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

242

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

243

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

244

Multi-bottle, no compressor, mean pressure control system for a Stirling engine  

SciTech Connect

The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

Corey, John A. (Melrose, NY)

1990-01-01T23:59:59.000Z

245

Multi-bottle, no compressor, mean pressure control system for a Stirling engine  

DOE Patents (OSTI)

The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

Corey, John A. (Melrose, NY)

1990-01-01T23:59:59.000Z

246

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

247

Exploration, Drilling and Development Operations in the Bottle Rock Area of the Geysers Steam Field, With New Geologic Insights and Models Defining Reservoir Parameters  

Science Conference Proceedings (OSTI)

MCR Geothermal Corporation pioneered successful exploratiory drilling the Bottle Rock area of the Geysers Steam Field in 1976. The wellfield is characterized by a deep reservoir with varied flowrates, temperatures, pressures, and stem chemistries being quite acceptable. More detailed reservoir engineering tests will follow as production commences.

Hebein, Jeffrey J.

1983-12-15T23:59:59.000Z

248

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network (OSTI)

South Gas LPG Oil Electricity Source: US DOE 1995 forLPG -- FRN RM - Oil - OTH Other Source: US DOE 1995b. OilLPG H20 FRN - Oil RM OTH Other Source: US DOE 1995b. Oil

Wenzel, T.P.

2010-01-01T23:59:59.000Z

249

Modeling of solar receiver for cracking of liquid petroleum gas  

SciTech Connect

The paper presents the model of an industrial solar receiver/reactor for thermal cracking of liquid petroleum gas (LPG) at the typical temperature range of 800--850 C. The concentrated solar radiation enters the receiver located on the ground and provided with a compound parabolic concentrator (CPC) at the ceiling. This is achieved with a reflecting solar tower. The radiative model uses the classical concept of equivalent gray plane to represent a panel of 40 cracking tubes placed in parallel of a refractory wall of the receiver. The radiative flux distribution on each wall is calculated and the chemistry in each reactor tube is evaluated until convergence is achieved. The design of an industrial size receiver, its behavior, and performance have been evaluated using this model. The computer program based on this model was run for a variety of flow conditions, feed compositions, and pressures.

Segal, A.; Epstein, M. [Weizmann Inst. of Science, Rehovot (Israel). Solar Research Facilities Unit

1997-02-01T23:59:59.000Z

250

Classic Template - Blue  

Science Conference Proceedings (OSTI)

... Fire detecting and extinguishing equipment Liquefied Petroleum Gas (LPG) utilization equipment (commercial and industrial) ...

2012-10-30T23:59:59.000Z

251

Distributed Fiber Optic Gas Sensing for Harsh Environments  

NLE Websites -- All DOE Office Websites (Extended Search)

primary technology products include: * High-quality sapphire long period grating (LPG) or fiber Bragg grating (FBG) sensors - both single and multiple grating devices, *...

252

Titania Prepared by Ball Milling: Its Characterization and Application as Liquefied Petroleum Gas Sensor  

E-Print Network (OSTI)

Present paper reports the LPG sensing of TiO2 obtained through ball milling. The milled powder was characterized by XRD, TEM and UV-visible spectroscopy. Further the ball milled powder was compressed in to pellet using hydraulic press. This pellet was investigated with the exposure of LPG. Variations in resistance with exposure of LPG to the sensing pellet were recorded. The sensitivity of the sensor was ~ 11 for 5 vol.% of LPG. Response and recovery times of the sensor were ~ 100 and 250 sec. The sensor was quite sensitive to LPG and results were found reproducible within 91%.

Yadav, B C; Singh, Satyendra; Yadav, T P

2012-01-01T23:59:59.000Z

253

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

= methanol, CNG = compressed natural gas, LNG = liquefiedvehicles; CNG = compressed natural gas; LPG = liquefieddiesel, CNG = compressed natural gas, LNG = liquefied

Delucchi, Mark

2005-01-01T23:59:59.000Z

254

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

= methanol, CNG = compressed natural gas, LNG = liquefiedvehicles; CNG = compressed natural gas; LPG = liquefieddiesel, CNG = compressed natural gas, LNG = liquefied

Delucchi, Mark

2005-01-01T23:59:59.000Z

255

Development of Energy Balances for the State of California  

E-Print Network (OSTI)

Additives & Ethanol Crude Still Gas LPG Motor Gas Aviation Gas Jet Fuel Kerosene Dist Fuel Res Fuel Pet Coke Lubricants

Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

2005-01-01T23:59:59.000Z

256

Evaporative Testing Requirements for Dual-Fuel Compressed Natural Gas (CNG)/Gasoline and Liquefied Petroleum Gas (LPG)/Gasoline Vehicles Revision of MAC #99-01 To Allow Subtraction of Methane Emissions from  

E-Print Network (OSTI)

The attached MAC clarifies the Air Resources Board's procedures regarding evaporative emission testing of dual-fuel CNG/gasoline vehicles. This MAC revises and supersedes MAC #99-01 by allowing manufacturers to determine, report, and subtract methane emissions when a dual-fuel CNG/gasoline vehicle is tested for evaporative emissions. A related revision clarifies that for dual-fuel CNG/gasoline medium-duty vehicles, the applicable LEV I evaporative emission standards, which are dependent on the fuel tank capacity of the medium-duty vehicles, are determined solely on the fuel tank capacity of the gasoline fuel system. If you have any questions or comments, please contact Mr. Steven Hada, Air

Alan C. Lloyd, Ph.D.; Arnold Schwarzenegger; All Heavy-duty Vehicle Manufacturers

2004-01-01T23:59:59.000Z

257

Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report  

Science Conference Proceedings (OSTI)

Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

none

1998-09-30T23:59:59.000Z

258

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

259

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

260

DOE/EA-1674: Environmental Assessment for 10 CFR 431 Energy Conservation Program: Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines (August 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Environmental Assessment for 10 CFR 431 Energy Conservation Program: Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines August 2009 16-i CHAPTER 16. ENVIRONMENTAL IMPACT ANALYSIS TABLE OF CONTENTS 16.1 INTRODUCTION ............................................................................................................ 16-1 16.2 AIR EMISSIONS ANALYSIS......................................................................................... 16-1 16.2.1 Air Emissions Descriptions................................................................................ 16-1 16.2.2 Air Quality Regulation....................................................................................... 16-3 16.2.3 Analytical Methods for Air Emissions

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

Motta, R.C.; Kelly, K.J.; Warnock, W.W.

1996-04-01T23:59:59.000Z

262

USE AND CALIBRATION OF A GAS CHROMATOGRAPH FOR GAS ANALYSIS AT THE PROJECT ROVER TEST FACILITY  

DOE Green Energy (OSTI)

A gas-chromatograph system operated by test site personnel was used for over a year to monitor the purity of gases used at the Project Rover test facilities at the Nuclear Rocket Development Station. Information was obtained on the efficiency of gas line purges, total impurities of frozen air in a large liquid hydrogen dewar, and the quality of room inerting systems. Daily monitoring of several block and bleed systems, which prevent hydrogen gas from entering a system through a leaky valve, and periodic monitoring of all gas added to the 10/sup 6/ cubic feet gas storage bottles are required for safe facilities operation. In addition the chromatograph proved useful in special cases for leak detection in vacuum and high pressure systems. The calibration and operation of the chromatograph system using a column of Linde 5A Molecular Sieve for analysis of H/sub 2/, N/sub 2/, land O/sub 2/ is described. Observations of a thermal conductivity reversal in the binary mixture He--H/sub 2/ is presented. (auth)

Liebenberg, D.H.; Edeskuty, F.J.

1963-10-31T23:59:59.000Z

263

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to (more)

Elkjr, Jonas Bondegaard

2009-01-01T23:59:59.000Z

264

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

GHG fuels such as compressed natural gas, low-GHG ethanol,LPG) Methane Compressed natural gas (CNG) Ethanol production

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

265

Bottle Rock Power Corporation  

E-Print Network (OSTI)

production wells that include two re-injection wells. All steam production wells and one injection well have to the injection well(s). Geotachnical/Seismic Hazards Suspend original Conditions 7-1 through 7-3. No new been temporarily suspended by installing a bridge plug at some depth in each well. Removal of the plugs

266

Genome in a Bottle  

Science Conference Proceedings (OSTI)

... As new high-throughput Next Generation DNA sequencing methods are moving ... the stability and homogeneity, we expect to distribute this DNA as ...

2013-09-18T23:59:59.000Z

267

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

n.a. n.a. n.a. n.a. n.a. Coke oil n.a. n.a. n.a. n.a. n.a.CG RFG Diesel FTD Fuel oil Stillgas Coke LPG LPG CNG NuclearFTD NG Fuel oil Still gas Coke oil oil oil LPG oil LPG NGL57

Delucchi, Mark

2005-01-01T23:59:59.000Z

268

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

n.a. n.a. n.a. n.a. n.a. Coke oil n.a. n.a. n.a. n.a. n.a.CG RFG Diesel FTD Fuel oil Stillgas Coke LPG LPG CNG NuclearFTD NG Fuel oil Still gas Coke oil oil oil LPG oil LPG NGL57

Delucchi, Mark

2005-01-01T23:59:59.000Z

269

LP-Gas transport safety claims confirmed  

SciTech Connect

According to data compiled by the National LPG Association and the National Fire Protection Association (NFPA), the majority of accidents involving LPG transport are not caused by the LPG or by malfunction of the container. In a 34 yr period, only 14 incidents occurred in which permanent storage tanks larger than 500 gal were ruptured. Fewer than 600 of the 44,432 railroad derailments between 1969 and 1975 involved uninsulated pressure-tank cars (generally but not entirely cars containing LPG), and of these derailed cars, only 170 lost some or all of their lading. Over 70% of the derailments were caused by track or equipment problems. LPG trucks in the last five years were involved in only 192 highway and bulk plant incidents; of these, 50 involved tank trucks with leakage which was controlled, and 32 involved fire or container rupture. Most fire or rupture accidents occurred in bulk plant facilities during loading operations, but the installation of new emergency shutoff valves, required by NFPA 58, should diminish this type of accident.

1979-08-01T23:59:59.000Z

270

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

271

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

272

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

273

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

274

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

275

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

276

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

277

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

278

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

279

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

280

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

282

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

283

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

284

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

285

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

286

Lifecycle Analyses of Biofuels  

E-Print Network (OSTI)

sulfur) ICEV, natural gas (CNG) ICEV, LPG (P95/BU5) ICEV,Methanol Ethanol Methane (CNG, LNG) Propane (LPG) Hydrogen (M85 (wood) Natural gas CNG (wood) Note: percentage changes

Delucchi, Mark

2006-01-01T23:59:59.000Z

287

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network (OSTI)

oil hydronic, electric room, and electric (air source) heatFuels = Oil and Gas, LPG and Misc. (3) Sources: 1990 RECS (Fuels = Oil and Gas, Other = LPG and Misc. (3) Sources: 1990

Johnson, F.X.

2010-01-01T23:59:59.000Z

288

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

289

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

290

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

291

Carbon Taxes: A Review of Experience and Policy Design Considerations  

NLE Websites -- All DOE Office Websites (Extended Search)

oil Light only Liquified petroleum gas (LPG) Home heating oil Permitted facilities Tax Rate As shown in Figure 1, carbon...

292

Periodic review enhances LPG metering performance  

SciTech Connect

Because of the loss of experienced personnel throughout the industry, the author says one must start over teaching the basics of liquid measurement. Warren Petroleum Co., a division of Chevron U.S.A. Inc., has developed a checklist review method for its metering systems, complete with enough explanation to allow the reviewer to understand why each item is important. Simultaneously, it continues with more in-depth and theoretical training in training course. This article describes the review process.

Van Orsdol, F.G.

1988-01-25T23:59:59.000Z

293

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

294

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

295

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

296

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

297

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

298

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

299

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

300

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

302

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

303

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

304

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

305

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

306

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

307

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

308

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

309

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

310

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

311

OpenEI - hydrogen  

Open Energy Info (EERE)

biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Tue, 14 Dec 2010...

312

OpenEI - ethanol  

Open Energy Info (EERE)

biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Tue, 14 Dec 2010...

313

Fuel Efficient Vehicle Tax Incentives Information Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Credits AFVs include vehicles using compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), hydrogen, or any liquid at least 85% methanol by...

314

Para Vehculos Eficientes en Consumo de Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

incluyen vehculos que utilizan gas natural comprimido (CNG), gas natural lquido (LNG), gas lquido de petrleo (LPG), hidrgeno, o cualquier otro lquido de por lo...

315

Federal Tax Credits for Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

of the following alternative fuels: Compressed natural gas (CNG) Liquefied natural gas (LNG) Liquefied petroleum gas (LPG) Hydrogen Any liquid at least 85% methanol by volume...

316

Microsoft PowerPoint - IGFC_Cleanup_SECA_Presentation_072910...  

NLE Websites -- All DOE Office Websites (Extended Search)

the removal of organic sulfur species from various hydrocarbons * Natural gas, LPG and biogas desulfurization * Warm gas and hot reformate gas desulfurization * Diesel fuel and...

317

Clean-Burning Motor Fuel or Electric Vehicle Personal Credit...  

Open Energy Info (EERE)

compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), methanol, and electricity. These credits expire January 2009. (Reference...

318

Clean-Burning Motor Fuel or Electric Vehicle Corporate Credit...  

Open Energy Info (EERE)

compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), methanol, and electricity. These credits expire January 2009. (Reference...

319

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

van bus no CNG = compressed natural gas; LPG = liquefiedcylinders for compressed natural gas). We also have added ae.g. , cylinders for compressed natural gas). The parameters

Delucchi, Mark

1996-01-01T23:59:59.000Z

320

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Gas laser  

SciTech Connect

According to the invention, the gas laser comprises a housing which accommodates two electrodes. One of the electrodes is sectional and has a ballast resistor connected to each section. One of the electrodes is so secured in the housing that it is possible to vary the spacing between the electrodes in the direction of the flow of a gas mixture passed through an active zone between the electrodes where the laser effect is produced. The invention provides for a maximum efficiency of the laser under different operating conditions.

Kosyrev, F. K.; Leonov, A. P.; Pekh, A. K.; Timofeev, V. A.

1980-08-12T23:59:59.000Z

322

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15:

323

Mississippi Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

324

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

325

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

326

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

327

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

328

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

329

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

330

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

331

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

332

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

333

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

334

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

335

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

336

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

337

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

338

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

339

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

340

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

342

Gas Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Prices Gasoline Prices for U.S. Cities Click on the map to view gas prices for cities in your state. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV VA NC SC FL GA AL MS TN KY IN...

343

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

344

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

345

Development of a robot localization and environment mapping system  

E-Print Network (OSTI)

The intent of this research is to develop a robust, efficient, self-contained localization module for use in a robotic liquefied petroleum gas (LPG) tank inspection system. Inspecting large LPG tanks for defects is difficult, ...

Panas, Cynthia Dawn Walker

2012-01-01T23:59:59.000Z

346

Texas Bi-Fuel Liquefied Petroleum Gas Pickup Study: Final Report  

DOE Green Energy (OSTI)

Alternative fuels may be an effective means for decreasing America's dependence on imported oil; creating new jobs; and reducing emissions of greenhouse gases, exhaust toxics, and ozone-forming hydrocarbons. However, data regarding in-use fuel economy and maintenance characteristics of alternative fuel vehicles (AFVs) have been limited in availability. This study was undertaken to compare the operating and maintenance characteristics of bi-fuel vehicles (which use liquefied petroleum gas, or propane, as the primary fuel) to those of nominally identical gasoline vehicles. In Texas, liquefied petroleum gas is one of the most widely used alternative fuels. The largest fleet in Texas, operated by the Texas Department of Transportation (TxDOT), has hundred of bi-fuel (LPG and gasoline) vehicles operating in normal daily service. The project was conducted over a 2-year period, including 18 months (April 1997-September 1998) of data collection on operations, maintenance, and fuel consumption of the vehicles under study. This report summarizes the project and its results.

Huang, Y.; Matthews, R. D.; Popova, E. T.

1999-05-24T23:59:59.000Z

347

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

348

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

349

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Texas Natural Gas Exports...

350

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

351

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Montana Natural Gas Exports...

352

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Michigan Natural Gas Exports...

353

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

354

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

by numerical simulation below. pipeline gas shalecushion gas sand shale CH4 working gas CH4 working gas sand

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

355

GAS SEAL  

DOE Patents (OSTI)

A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

Monson, H.; Hutter, E.

1961-07-11T23:59:59.000Z

356

Shale gas is natural gas trapped inside  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

357

Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles and Fuels in India  

NLE Websites -- All DOE Office Websites (Extended Search)

CNG,CNG-H2 Vehicles and Fuels CNG,CNG-H2 Vehicles and Fuels in India December 10-11, 2009 Ambrish Mishra Director (Marketing Operations) Oil Industry safety Directorate Ministry of Petroleum and Natural Gas Government Of India email : ambrish.mishra@gov.in OISD 2 1. Refineries: 17 PSU + 3 Private 2. POL Storage (PSU): More than 400 3. LPG storage and Bottling Plant (PSU): 179 4. Others Gas processing Plants of GAIL and ONGC OISD 3 Major Statutory Authorities and Norms 1. Petroleum and Safety Organization (PESO) A) Petroleum rules under Petroleum Act (1934) by MOPN&G B) Various Rules (Gas Cylinder Rules and SMPV etc) under the Explosives Act under Ministry of Commerce and Industry C)To exercise some provision of Environment Act 2. Chief Inspector of Factories of Respective State A) Factories Rules under Factories Act of Ministry of Labour

358

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 152 170 165 195 224 Production (million cubic feet)...

359

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 280 300 225 240 251 Production (million cubic feet)...

360

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA)

Natural Gas Gross Withdrawals and Production (Volumes in Million Cubic Feet) Data Series: ... coalbed production data are included in Gas Well totals.

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

362

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

363

Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas: Gas in place at the time that a reservoir was converted to use as an underground storage reservoir, as in contrast to injected gas volumes. Natural Gas: A gaseous mixture...

364

Gas Metrology Portal  

Science Conference Proceedings (OSTI)

... automobile industry meeting more stringent more. Audit of EPA Protocol Gas Suppliers EPA Protocol gas mixture calibration ...

2012-12-19T23:59:59.000Z

365

Gas Sensing Properties of Platinum Doped Nanocrystalline SnO2 ...  

Science Conference Proceedings (OSTI)

The sensors dip coated for 5 minutes and sintered at 750oC show the highest sensitivity towards H2, Co and LPG which is ten times higher than undoped SnO2...

366

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

367

Table 2.5 Household Energy Consumption and Expenditures by End ...  

U.S. Energy Information Administration (EIA)

Appliances, 2 Electronics, and Lighting : Natural Gas: Elec-tricity 3: Fuel Oil 4: LPG 5: Total: Electricity 3: Natural Gas: Elec-tricity 3: Fuel Oil ...

368

Table 2.5 Household Energy Consumption and Expenditures by End Use ...  

U.S. Energy Information Administration (EIA)

Air Conditioning: Water Heating: Appliances, 2 Electronics, and Lighting : Natural Gas: Elec-tricity 3: Fuel Oil 4: LPG 5: Total: Electricity 3: Natural Gas: Elec ...

369

A Set of Comparable Carbon Footprints for Auto, Truck and Transit...  

NLE Websites -- All DOE Office Websites (Extended Search)

gasoline, diesel, liquefied petroleum gas (LPG), liquid and compressed natural gas (LNG and CNG), kerosene, bio-diesel and electricity. 2) Fuel consumption was then converted...

370

OFF-HIGHWAY TRANSPORTATION-RELATED FUEL USE  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway Administration FOKS Fuel Oil and Kerosene Sales GGE gasoline gallons equivalent LNG liquid natural gas LPG liquid petroleum gas MBPD million barrels per day MPH miles per...

371

Technical Approach: DHS needs to establish M&S technical ...  

Science Conference Proceedings (OSTI)

... Liquids such as liquefied natural gas (LNG), liquefied petroleum gas (LPG) and others are routinely stored at low temperatures and on their release ...

2011-06-07T23:59:59.000Z

372

Acronyms and Abbreviations: 2005 DOE Hydrogen Program Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

LMDS Laser modulation differential spectroscopy Lmin, lmin Liter(s) per minute LNG Liquefied natural gas LP Lattice parameter LPG Liquefied petroleum gas LPM Liters per...

373

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

E-Print Network (OSTI)

Gas and LPG consumption by 2030 The methodology results inin natural gas consumption by 2030 resulting from upcomingthe 2008- 2013 trend to 2030. Based on these assumptions,

Letschert, Virginie

2010-01-01T23:59:59.000Z

374

1?10 kW Stationary Combined Heat and Power Systems Status and...  

NLE Websites -- All DOE Office Websites (Extended Search)

These systems are fueled using reformate from natural gas, liquefied petroleum gas (LPG), and even kerosene in some demonstrations being conducted in Japan. LT-PEM fuel cell...

375

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... a 1/2-ton and a 1-ton truck run on three different fuels gasoline, compressed natural gas (CNG) and liquefied petroleum gas or propane (LPG) were ...

376

Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

gas is a fossil fuel that generates less air pollutants and greenhouse gases. CNG Logo Propane, also called liquefied petroleum gas (LPG), is a domestically abundant fossil fuel...

377

Investigation of Bottle Related Incidents  

Science Conference Proceedings (OSTI)

Analysis of a Bucketwheel Stacker Reclaimer Structural Failure Analysis of Glass Breakage Analysis of Sealed, Integrated, Automotive Wheel Bearings.

378

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

LPG oil LPG NGL57 n.e. LPG CNG NG NG n.a. 2649% 2617% n.a.diesel b ZM F-T D SD100 M100 CNG CH2c E100 calc. calc. calc.Highway k exp. Diesel M100 CNG Gas LNG LNG CH2 CH2 LH2 LH2

Delucchi, Mark

2003-01-01T23:59:59.000Z

379

Petroleum supply monthly, November 1983  

SciTech Connect

Background data relating to Liquefied Petroleum Gas (LPG) are discussed. International developments, US trends, and EIA's projections for the near future and the longer term are included. This article is supplemented by some common LPG terminology and a simplified diagram illustrating the flow between LPG sources and processing stages.

1983-11-23T23:59:59.000Z

380

Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Gas Wells...

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

382

Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million...

383

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and...

384

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price...  

Gasoline and Diesel Fuel Update (EIA)

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per...

385

North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) North Dakota Natural Gas Gross Withdrawals from Shale Gas...

386

Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Shale Gas...

387

Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Arkansas Natural Gas Gross Withdrawals from Shale Gas...

388

Montana Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

389

Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

390

Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

391

Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Virginia Natural Gas Gross Withdrawals from Shale Gas...

392

Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas...

393

California Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) California Natural Gas Gross Withdrawals from Shale Gas...

394

New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) New Mexico Natural Gas Gross Withdrawals from Shale Gas...

395

Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas...

396

West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Annual Download Data (XLS File) West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) West Virginia Natural Gas Gross Withdrawals from Shale Gas...

397

Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Shale Gas...

398

Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

399

Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Shale Gas...

400

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)...

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

402

Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic...

403

South Dakota Natural Gas Withdrawals from Gas Wells (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) South Dakota Natural Gas Withdrawals from Gas Wells...

404

South Dakota Natural Gas Removed from Natural Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Removed from Natural Gas (Million Cubic Feet) South Dakota Natural Gas Removed from Natural Gas...

405

TEXAS LPG FUEL CELL DEVELOPMENT AND DEMONSTRATION PROJECT Full-Text - Submission contains both citation data and full-text of the journal article. Full-text can be either a pre-print or post-print, but not the copyrighted article.  

Science Conference Proceedings (OSTI)

The State Energy Conservation Office has executed its first Fuel Cell Project which was awarded under a Department of Energy competitive grant process. The Texas LPG Fuel Processor Development and Fuel Cell Demonstration Program is a broad-based public/private partnership led by the Texas State Energy Conservation Office (SECO). Partners include the Alternative Fuels Research and Education Division (AFRED) of the Railroad Commission of Texas; Plug Power, Inc., Latham, NY, UOP/HyRadix, Des Plaines, IL; Southwest Research Institute (SwRI), San Antonio, TX; the Texas Natural Resource Conservation Commission (TNRCC), and the Texas Department of Transportation (TxDOT). The team proposes to mount a development and demonstration program to field-test and evaluate markets for HyRadix?s LPG fuel processor system integrated into Plug Power?s residential-scale GenSys? 5C (5 kW) PEM fuel cell system in a variety of building types and conditions of service. The program?s primary goal is to develop, test, and install a prototype propane-fueled residential fuel cell power system supplied by Plug Power and HyRadix in Texas. The propane industry is currently funding development of an optimized propane fuel processor by project partner UOP/HyRadix through its national checkoff program, the Propane Education and Research Council (PERC). Following integration and independent verification of performance by Southwest Research Institute, Plug Power and HyRadix will produce a production-ready prototype unit for use in a field demonstration. The demonstration unit produced during this task will be delivered and installed at the Texas Department of Transportation?s TransGuide headquarters in San Antonio, Texas. Simultaneously, the team will undertake a market study aimed at identifying and quantifying early-entry customers, technical and regulatory requirements, and other challenges and opportunities that need to be addressed in planning commercialization of the units. For further information please contact Mary-Jo Rowan at mary-jo.rowan@cpa.state.tx.us

SOUTHWEST RESEARCH LABORATORY SUBMITTED BY SUBCONTRACTOR, RAILROAD COMMISSION OF TEXAS

2004-07-26T23:59:59.000Z

406

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 22,442 22,117 23,554 18,774 16,718 Production...

407

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

2004 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year... 341,678 373,304 387,772 393,327 405,048 Production...

408

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 1,169 1,244 1,232 1,249 1,272 Production (million...

409

Gas Utilities (New York)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

410

Gas amplified ionization detector for gas chromatography  

DOE Patents (OSTI)

A gas-amplified ionization detector for gas chromatography which possesses increased sensitivity and a very fast response time is described. Solutes eluding from a gas chromatographic column are ionized by uv photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the uv photoionization of at least a portion of each solute passing through the detector. 4 figs.

Huston, G.C.

1989-11-27T23:59:59.000Z

411

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) Eligibility...

412

South Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas...

413

International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2004 Natural Gas Natural gas is the fastest growing primary energy source in the IEO2004 forecast. Consumption of natural gas is projected...

414

Natural Gas Annual Archives  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

415

Liquefied Natural Gas  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

416

EIA - Natural Gas Publications  

Annual Energy Outlook 2012 (EIA)

and a weather snapshot. Monthly Natural Gas Monthly Natural and supplemental gas production, supply, consumption, disposition, storage, imports, exports, and prices in the...

417

Natural Gas Annual 2005  

U.S. Energy Information Administration (EIA)

Oil and Gas Field Code Master List ... Hawaii, 2001-2005 ... Energy Information Administration/Natural Gas Annual 2005 vii 54.

418

Natural Gas Exports (Summary)  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

419

Gas scrubbing liquids  

DOE Patents (OSTI)

Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

Lackey, Walter J. (Oak Ridge, TN); Lowrie, Robert S. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

1981-01-01T23:59:59.000Z

420

Natural Gas Processed  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas prices, successful application of horizontal drilling, and hydraulic fracturing, as well as significant investments made by natural gas companies in production...

422

Natural Gas Dry Production  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

423

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service Evolving Estimate in Natural Gas Monthly.

424

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

7, 2009 Next Release: May 14, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 6, 2009) Natural gas...

425

February Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

426

November Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

427

January Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

428

March Natural Gas Monthly  

Gasoline and Diesel Fuel Update (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

429

May Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

430

CONTINUOUS GAS ANALYZER  

DOE Patents (OSTI)

A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

Katz, S.; Weber, C.W.

1960-02-16T23:59:59.000Z

431

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

432

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

433

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

434

Natural gas production from Arctic gas hydrates  

Science Conference Proceedings (OSTI)

The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture of thermogenic methane migrated from a deep source and shallow, microbial methane that was either directly converted to gas hydrate or was first concentrated in existing traps and later converted to gas hydrate. Studies of well logs and seismic data have documented a large free-gas accumulation trapped stratigraphically downdip of the gas hydrates in the Prudhoe Bay-Kuparuk River area. The presence of a gas-hydrate/free-gas contact in the Prudhoe Bay-Kuparuk River area is analogous to that in the Messoyakha gas-hydrate/free-gas accumulation, from which approximately 5.17x10[sup 9] cubic meters (183 billion cubic feet) of gas have been produced from the hydrates alone. The apparent geologic similarities between these two accumulations suggest that the gas-hydrated-depressurization production method used in the Messoyakha field may have direct application in northern Alaska. 30 refs., 15 figs., 3 tabs.

Collett, T.S. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

435

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

436

Transportation and Greenhouse Gas Mitigation  

E-Print Network (OSTI)

fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

437

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Relative Standard Errors for Table 1.4;" 1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",0.4,0.4,19.4,8.9,2,6.9,5.4,0,10.1,9.1 3112," Grain and Oilseed Milling",0,0,21.1,14.7,8.4,13.3,7.9,"X",17.9,9.1

438

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

439

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

440

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

442

North Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

443

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

444

West Virginia Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

445

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

446

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

447

New York Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

448

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

449

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

450

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

451

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

452

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

as cushion gas for natural gas storage, Energy and Fuels,GAS RECOVERY AND NATURAL GAS STORAGE Curtis M. Oldenburgits operation as a natural gas storage reservoir. In this

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

453

New Mexico Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

454

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

455

Measurements of gas permeability on crushed gas shale.  

E-Print Network (OSTI)

??In the last decade, more attention has been given to unconventional gas reservoirs, including tight gas shales. Accurate description of gas transport and permeability measurements (more)

Guarnieri, R.V.

2012-01-01T23:59:59.000Z

456

EIA - Natural Gas Pipeline Network - Natural Gas Transmission...  

Annual Energy Outlook 2012 (EIA)

Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

457

Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Natural Gas Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate Program Eligibility Commercial Savings For Other Heating...

458

Baltimore Gas and Electric Company (Gas) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

459

EIA - Natural Gas Pipeline Network - Generalized Natural Gas...  

Annual Energy Outlook 2012 (EIA)

Gas based on data through 20072008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic...

460

Natural Gas Gross Withdrawals from Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

462

The non-proliferation experiment and gas sampling as an on-site inspection activity: A progress report  

SciTech Connect

The Non-proliferation Experiment (NPE) is contributing to the development of gas sampling methods and models that may be incorporated into future on-site inspection (OSI) activities. Surface gas sampling and analysis, motivated by nuclear test containment studies, have already demonstrated the tendency for the gaseous products of an underground nuclear test to flow hundreds of meters to the surface over periods ranging from days to months. Even in the presence of a uniform sinusoidal pressure variation, there will be a net flow of cavity gas toward the surface. To test this barometric pumping effect at Rainier Mesa, gas bottles containing sulfur hexaflouride and {sup 3}He were added to the pre-detonation cavity for the 1 kt chemical explosives test. Pre-detonation measurements of the background levels of both gases were obtained at selected sites on top of the mesa. The background levels of both tracers were found to be at or below mass spectrographic/gas chromatographic sensitivity thresholds in the parts-per-trillion range. Post-detonation, gas chromatographic analyses of samples taken during barometric pressure lows from the sampling sites on the mesa indicate the presence of significant levels (300--600 ppt) of sulfur hexaflouride. However, mass spectrographic analyses of gas samples taken to date do not show the presence of {sup 3}He. To explain these observations, several possibilities are being explored through additional sampling/analysis and numerical modeling. For the NPE, the detonation point was approximately 400 m beneath the surface of Rainier Mesa and the event did not produce significant fracturing or subsidence on the surface of the mesa. Thus, the NPE may ultimately represent an extreme, but useful example for the application and tuning of cavity gas detection techniques.

Carrigan, C.R.

1994-03-01T23:59:59.000Z

463

World NGL markets continue rapid expansion  

Science Conference Proceedings (OSTI)

The international LPG industry has expanded rapidly during the 1990s and undergone significant changes. LPG consumption has expanded at nearly twice the rate of world petroleum demand. In particular, LPG use in residential and commercial markets has more than doubled in many developing countries. Markets for LPG and other petroleum products have been opened in many countries, accelerating demand growth and creating investment opportunities in all downstream segments. This has led to an overall strengthening of global LPG pricing and the development of many new export gas-processing projects. The paper discusses world LPG demand in residential and commercial markets and in petrochemicals, world LPG supply, regional increases, international trade, the US situation in natural gas, NGL supply, and NGL demand.

Otto, K.; Gist, R.; Whitley, C. [Purvin and Gertz, Houston, TX (United States); Haun, R. [Purvin and Gertz, Dallas, TX (United States)

1998-06-08T23:59:59.000Z

464

December Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

DOEEIA-0130(9712) Distribution CategoryUC-950 Natural Gas Monthly December 1997 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC...

465

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

466

Southern California Gas Co  

Gasoline and Diesel Fuel Update (EIA)

Southern California Gas Co ... 236,147,041 98,326,527 274,565,356 690,930 139,093,560 748,823,414 Lone Star Gas Co......

467

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

468

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

469

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas futures also reversed gains made in the previous week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased by 63 Bcf...

470

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

471

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

472

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

473

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,451,1,35,17,,,10,3,0,48...

474

,"Oklahoma Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,13889,36,837,1016,,,1129,181,...

475

,"Florida Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,151,-1,1,6,,,0,0,0,36...

476

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,6305,-3,226,165,,,884,391,10,...

477

,"Ohio Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,495,-3,48,11,,,113,0,31,60...

478

,"Kansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,11457,-3,122,171,,,219,21,7,7...

479

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,877,0,37,79,,,93,32,2,62...

480

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Res., 104(B10), 22985-23003. Collett, T.S. (1992), Potential of gas hydrates outlined, Oil Gas J., 90(25), 84-87. 70 Cook, A.E., Goldberg, D., and R.L. Kleinberg (2008),...

Note: This page contains sample records for the topic "bottled gas lpg" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural gas annual 1996  

Science Conference Proceedings (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

482

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

483

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173"...

484

5. Natural Gas Liquids Statistics  

U.S. Energy Information Administration (EIA)

5. Natural Gas Liquids Statistics Natural Gas Liquids Proved Reserves U.S. natural gas liquids proved reserves decreased 7 percent to 7,459 million ...

485

Transportation and Greenhouse Gas Mitigation  

E-Print Network (OSTI)

Summary of transportation greenhouse gas mitigation optionsof alternative fuels. Low greenhouse gas fuels Mixing ofreplacement. Greenhouse gas budgets for households and

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

486

,"North Dakota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Exports...

487

Natural Gas Outlook  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Ohio Oil & Gas Association ConferenceMarch 12, 2004

Information Center

2004-03-12T23:59:59.000Z

488

Gas Turbine Engines  

Science Conference Proceedings (OSTI)

...times higher than atmospheric pressure.Ref 25The gas turbine was developed generally for main propulsion and power

489

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

with active programs. More information is available at: http:www.eia.doe.govcneafelectricitypagerestructuringrestructureelect.html. Information about natural gas...

490

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

... 6 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ... 7 Task 6: Numerical Models for...

491

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

492

Natural gas annual 1995  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

493

Natural Gas Outlook  

Reports and Publications (EIA)

Presented to: Ohio Oil & Gas Association Conference, March 12, 2004 Presented by: Guy F. Caruso, Administrator, Energy Information Administration

Information Center

2004-03-12T23:59:59.000Z

494

Residual gas analysis device  

SciTech Connect

A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

Thornberg, Steven M. (Peralta, NM)

2012-07-31T23:59:59.000Z

495

Natural gas industry directory  

SciTech Connect

This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

NONE

1999-11-01T23:59:59.000Z

496

Valve for gas centrifuges  

DOE Patents (OSTI)

The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, C.A.; Rurbage, C.H.

1982-03-17T23:59:59.000Z

497

Gas turbine engines  

SciTech Connect

A core engine or gas generator is described for use in a range of gas turbine engines. A multi-stage compressor and a single stage supersonic turbine are mounted on a single shaft. The compressor includes a number of stages of variable angle and the gas generator has an annular combustion chamber.

MacDonald, A.G.

1976-05-18T23:59:59.000Z

498

Pennsylvania's Natural Gas Future  

E-Print Network (OSTI)

sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ Fossil backed by a growing portfolio of assets. #12;Shale Gas Geography 5 | MARCELLUS SHALE COALITION #12;Shale Permits Price #12;Pricing Trend of Oil and Gas in the US $- $5.00 $10.00 $15.00 $20.00 $25.00 USDper

Lee, Dongwon

499

Compressed Gas Cylinder Policy  

E-Print Network (OSTI)

, storage, and usage of compressed gas cylinders. 2.0 POLICY Colorado School of Mines ("Mines" or "the, storage, and usage requirements outlined below. This policy is applicable school-wide including all, or electrical circuits. Flammable gas cylinders must be stored in the building's gas cylinder storage cage until

500

Natural gas monthly  

Science Conference Proceedings (OSTI)

Monthly highlights of activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry are presented. Feature articles for this issue are: Natural Gas Overview for Winter 1983-1984 by Karen A. Kelley; and an Analysis of Natural Gas Sales by John H. Herbert. (PSB)

Not Available

1983-11-01T23:59:59.000Z