National Library of Energy BETA

Sample records for borrego springs microgrid

  1. Borrego springs microgrid demonstration project

    SciTech Connect (OSTI)

    None, None

    2013-09-30

    SDG&E has been developing and implementing the foundation for its Smart Grid platform for three decades – beginning with its innovations in automation and control technologies in the 1980s and 1990s, through its most recent Smart Meter deployment and re-engineering of operational processes enabled by new software applications in its OpEx 20/20 (Operational Excellence with a 20/20 Vision) program. SDG&E’s Smart Grid deployment efforts have been consistently acknowledged by industry observers. SDG&E’s commitment and progress has been recognized by IDC Energy Insights and Intelligent Utility Magazine as the nation’s “Most Intelligent Utility” for three consecutive years, winning this award each year since its inception. SDG&E also received the “Top Ten Utility” award for excellence in Smart Grid development from GreenTech Media.

  2. Borrego springs microgrid demonstration project (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    demonstration project SDG&E has been developing and implementing the foundation for its Smart Grid platform for three decades - beginning with its innovations in automation and...

  3. Borrego Springs, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Springs, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2558717, -116.375012 Show Map Loading map... "minzoom":false,"mappingse...

  4. Borrego Solar | Open Energy Information

    Open Energy Info (EERE)

    Borrego Solar Jump to: navigation, search Logo: Borrego Solar Name: Borrego Solar Address: 2560 9th Street Place: Berkeley, California Zip: 94710 Region: Bay Area Sector: Solar...

  5. microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microgrid - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  6. Borrego Solar Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Cajon, California Zip: 92020 Product: US-based installer of PV systems for commercial and public projects. References: Borrego Solar Systems Inc1 This article is a stub. You can...

  7. Categorical Exclusion Determinations: Office of Electricity Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... June 7, 2011 CX-006054: Categorical Exclusion Determination San Diego Gas & Electric Borrego Springs Microgrid Demo (Utility Integration of Distributed Energy Storage Systems) ...

  8. Microgrid Testing

    SciTech Connect (OSTI)

    Shirazi, M.; Kroposki, B.

    2012-01-01

    With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

  9. Sandia Energy Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Across America: A Policy Discussion on Microgrid Technology http:energy.sandia.govenergy-across-america-a-policy-discussion-on-microgrid-technology http:energy.sandia.gov...

  10. Microgrid Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development » Smart Grid » Microgrids » Microgrid Activities Microgrid Activities Federal programs, institutions, and the private sector are increasing microgrid development and deployment. The number of successfully deployed microgrids will verify the benefits and decrease implementation risks further expanding the market for microgrids. Federal programs, institutions, and the private sector are increasing microgrid development and deployment. The number of successfully deployed

  11. A Toolkit for Microgrid Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To aid in optimal design of microgrids, and help avoid potential problems with maintenance, safety, power quality, and stability, Sandia has developed the Microgrid Design Toolkit ...

  12. Making Microgrids Work

    SciTech Connect (OSTI)

    Kroposki, B.; Lasseter, R.; Ise, T.; Morozumi, S.; Papathanassiou, S.; Hatziargyriou, N.

    2008-05-01

    Distributed energy resources including distributed generation and distributed storage are sources of energy located near local loads and can provide a variety of benefits including improved reliability if they are properly operated in the electrical distribution system. Microgrids are systems that have at least one distributed energy resource and associated loads and can form intentional islands in the electrical distribution systems. This paper gives an overview of the microgrid operation. Microgrid testing experiences from different counties was also provided.

  13. Computing architecture for autonomous microgrids

    DOE Patents [OSTI]

    Goldsmith, Steven Y.

    2015-09-29

    A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the microgrid.

  14. NREL: Technology Deployment - Microgrid Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid Design Photo of a microgrid test site at the National Wind Technology Center. NREL designs independent electrical generation and distribution systems called microgrids, which deliver energy that is reliable, economical, and sustainable. NREL experts work with military, government, industry, and other organizations that cannot afford to lose power to develop reliable and cost-effective microgrid systems. Expertise and Knowledge NREL offers microgrid technical expertise and project

  15. Microgrids | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrids Think small: microgrids offer the flexibility, quick response and control, and security that the larger grid can't. NREL's cyber-physical test platform for microgrids reduces deployment risks and helps optimize hardware, communications, and security performance. Photo of three men standing in front of microgrid hardware in a laboratory NREL's microgrid research focuses on getting technologies from the factory into the field. The megawatt (MW)-scale Energy Systems Integration Facility

  16. CX-003950: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    San Diego Gas and Electric Borrego Springs Microgrid Demonstration (Community Component)CX(s) Applied: B3.11, B4.4, B4.6, B5.1Date: 09/22/2010Location(s): Borrego Springs, CaliforniaOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  17. CX-006054: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    San Diego Gas & Electric Borrego Springs Microgrid Demo (Utility Integration of Distributed Energy Storage Systems)CX(s) Applied: A1, A9, B3.11, B4.4Date: 06/07/2011Location(s): Borrego Springs, CaliforniaOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  18. CX-003952: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    San Diego Gas and Electric Borrego Springs Microgrid Demonstration (Substation Component)CX(s) Applied: B3.11, B4.4, B4.6, B5.1Date: 09/22/2010Location(s): Borrego Springs, CaliforniaOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  19. 2012 Microgrid Workshop Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Microgrid Workshop July 30-31, 2012 Chicago, Illinois 2012 DOE Microgrid Workshop Report Page i Acknowledgment The U.S. Department of Energy (DOE) would like to acknowledge the support provided by the organizations represented on the workshop planning committee in developing the workshop process and sessions. The preparation of this workshop report was coordinated by Energy & Environmental Resources Group, LLC (E2RG). The report content is based on the workshop session discussions,

  20. CERTS Microgrid Laboratory Test Bed

    SciTech Connect (OSTI)

    ETO, J.; LASSETER, R.; SCHENKMAN, B.; STEVENS, J.; KLAPP, D.; VOLKOMMER, H.; LINTON, E.; HURTADO, H.; ROY, J.

    2010-06-08

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1 a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2 an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3 a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources.

  1. Computing architecture for autonomous microgrids

    DOE Patents [OSTI]

    Goldsmith, Steven Y.

    2015-09-29

    A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the .

  2. Shape of the microgrid

    SciTech Connect (OSTI)

    Marnay, Chris; Rubio, F. Javier; Siddiqui, Afzal S.

    2000-11-01

    Restrictions on expansion of traditional centralized generating and delivery systems may be becoming so tight in the industrialized countries that they cannot reasonably be expected meet future electricity demand growth at acceptable cost. Meanwhile, technological advances, notably improved power electronics that permit grid interconnection of asynchronous generation sources, is tilting the economics of power generation back towards smaller scales, thereby reversing a century long trend towards the central control paradigm. Special power quality requirements or opportunities for combined heat and power applications make on-site generation an even more attractive option for customers. The existence of a significant amount of electricity sources dispersed throughout the low voltage distribution system could create a power system quite different to the one we are familiar with and creating it offers significant research and engineering challenges. Moreover, the electrical and economic relationships between customers and the distribution utility and among customers may take forms quite distinct from those we know today. For example, rather than devices being individually interconnected in parallel with the grid, they may be grouped with loads in a semi-autonomous neighborhood that could be termed a microgrid. A microgrid is a cluster of small (by the standards of current power systems, e.g. < 500 kW) sources, storage systems, and loads which presents itself to the grid as a legitimate single entity. The heart of the microgrid concept is the notion of a flexible, yet controllable electronic interface between the microgrid and the familiar wider power system, or macrogrid. This interface essentially isolates the two sides electrically; and yet connects them economically by allowing delivery and receipt of electrical energy and ancillary services (EE&AS) at the interface. From the customer side of the interface, the microgrid should appear as an autonomous power system

  3. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Energy Savers [EERE]

    Find out about the Microgrid 2014 MVP Challenge which runs until August 29, 2014. For more information about how OE supports activities to improve microgrid functionality and ...

  4. How Microgrids Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Microgrid equipment at the National Wind Technology Center in Colorado. | Photo courtesy of the National Renewable Energy Lab. Microgrid equipment at the National Wind Technology...

  5. Renewable Microgrid STEM Education & Colonias Outreach Program...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Renewable Microgrid STEM Education & Colonias Outreach Program Citation Details In-Document Search Title: Renewable Microgrid STEM Education & Colonias Outreach ...

  6. 2012 Microgrid Workshop Summary Released

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy has released the summary report from the July 30-31, 2012 Microgrid Workshop presented by the Office of Electricity Delivery and Energy Reliability at the Illinois Institute of Technology in Chicago. The workshop was held in response to discussions at the preceding DOE Microgrid Workshop, held in August 2011, which called for sharing lessons learned and best practices for system integration from existing projects in the U.S. (including military microgrids) and internationally.

  7. CERTS Microgrid Laboratory Test Bed

    SciTech Connect (OSTI)

    Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

    2009-06-18

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations

  8. System and method for controlling microgrid

    DOE Patents [OSTI]

    Bose, Sumit; Achilles, Alfredo Sebastian; Liu, Yan; Ahmed, Emad Ezzat; Garces, Luis Jose

    2011-07-19

    A system for controlling a microgrid includes microgrid assets and a tieline for coupling the microgrid to a bulk grid; and a tieline controller coupled to the tieline. At least one of the microgrid assets comprises a different type of asset than another one of the microgrid assets. The tieline controller is configured for providing tieline control signals to adjust active and reactive power in respective microgrid assets in response to commands from the bulk grid operating entity, microgrid system conditions, bulk grid conditions, or combinations thereof.

  9. How Microgrids Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microgrids Work How Microgrids Work June 17, 2014 - 10:27am Addthis Microgrid equipment at the National Wind Technology Center in Colorado. | Photo courtesy of the National Renewable Energy Lab. Microgrid equipment at the National Wind Technology Center in Colorado. | Photo courtesy of the National Renewable Energy Lab. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs How can I participate? Join us today for our microgrids Twitter Office Hours at 2 p.m. ET,

  10. Microgrid and Inverter Control and Simulator Software

    SciTech Connect (OSTI)

    2012-09-13

    A collection of software that can simulate the operation of an inverter on a microgrid or control a real inverter. In addition, it can simulate the control of multiple nodes on a microgrid." Application: Simulation of inverters and microgrids; control of inverters on microgrids." The MMI submodule is designed to control custom inverter hardware, and to simulate that hardware. The INVERTER submodule is only the simulator code, and is of an earlier generation than the simulator in MMI. The MICROGRID submodule is an agent-based simulator of multiple nodes on a microgrid which presents a web interface. The WIND submodule produces movies of wind data with a web interface.

  11. Microgrid cyber security reference architecture.

    SciTech Connect (OSTI)

    Veitch, Cynthia K.; Henry, Jordan M.; Richardson, Bryan T.; Hart, Derek H.

    2013-07-01

    This document describes a microgrid cyber security reference architecture. First, we present a high-level concept of operations for a microgrid, including operational modes, necessary power actors, and the communication protocols typically employed. We then describe our motivation for designing a secure microgrid; in particular, we provide general network and industrial control system (ICS)-speci c vulnerabilities, a threat model, information assurance compliance concerns, and design criteria for a microgrid control system network. Our design approach addresses these concerns by segmenting the microgrid control system network into enclaves, grouping enclaves into functional domains, and describing actor communication using data exchange attributes. We describe cyber actors that can help mitigate potential vulnerabilities, in addition to performance bene ts and vulnerability mitigation that may be realized using this reference architecture. To illustrate our design approach, we present a notional a microgrid control system network implementation, including types of communica- tion occurring on that network, example data exchange attributes for actors in the network, an example of how the network can be segmented to create enclaves and functional domains, and how cyber actors can be used to enforce network segmentation and provide the neces- sary level of security. Finally, we describe areas of focus for the further development of the reference architecture.

  12. Lessons Learned from Microgrid Demonstrations Worldwide

    SciTech Connect (OSTI)

    Marnay, Chris; Zhou, Nan; Qu, Min; Romankiewicz, John

    2012-01-31

    The survey leads to policy recommendations for starting a microgrid demonstration program and overall development of microgrid and distributed energy. Additionally, specific recommendations have been made for China specifically.

  13. What is the deal with DC Microgrids?

    Energy Savers [EERE]

    2015 Acuity Brands What is the deal with DC Microgrids? and why would a Lighting company care? Yan Rodriguez VP Product and Technology 2015 Acuity Brands * Why DC Microgrids? *...

  14. Energy Security: Microgrid Planning and Design (Presentation)

    SciTech Connect (OSTI)

    Giraldez, J.

    2012-05-01

    Energy Security: Microgrid Planning and Design presentation to be given at the 2012 WREF in Denver, CO.

  15. The Advanced Microgrid: Integration and Interoperability (March 2014) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Advanced Microgrid: Integration and Interoperability (March 2014) The Advanced Microgrid: Integration and Interoperability (March 2014) This white paper provides a synopsis of many elements of microgrid component technologies and system configurations that can subsequently be used for an "advanced microgrid" development activity. The paper offers a compilation of microgrid status, advanced microgrid goals and requirements, new challenges and opportunities,

  16. DC Microgrids Scoping Study: Estimate of Technical and Economic...

    Office of Environmental Management (EM)

    Microgrid demonstrations and deployments have shown the ability of microgrids to provide higher reliability and higher power quality than utility power systems and improved energy ...

  17. Modified Microgrid Concept for Rural Electrification in Africa...

    Open Energy Info (EERE)

    Modified Microgrid Concept for Rural Electrification in Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Modified Microgrid Concept for Rural Electrification in...

  18. DERIREC 22@Microgrid (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    DERIREC 22@Microgrid (Smart Grid Project) Jump to: navigation, search Project Name DERIREC 22@Microgrid Country Spain Headquarters Location Barcelona, Spain Coordinates...

  19. Report Now Available: DC Microgrids Scoping Study--Estimate of...

    Office of Environmental Management (EM)

    Report Now Available: DC Microgrids Scoping Study--Estimate of Technical and Economic Benefits (March 2015) Report Now Available: DC Microgrids Scoping Study--Estimate of Technical ...

  20. Validation of the CERTS Microgrid Concept The CEC/CERTS MicrogridTestbed

    SciTech Connect (OSTI)

    Nichols, David K.; Stevens, John; Lasseter, Robert H.; Eto,Joseph H.

    2006-06-01

    The development of test plans to validate the CERTSMicrogrid concept is discussed, including the status of a testbed.Increased application of Distributed Energy Resources on the Distributionsystem has the potential to improve performance, lower operational costsand create value. Microgrids have the potential to deliver these highvalue benefits. This presentation will focus on operationalcharacteristics of the CERTS microgrid, the partners in the project andthe status of the CEC/CERTS microgrid testbed. Index Terms DistributedGeneration, Distributed Resource, Islanding, Microgrid,Microturbine

  1. Energy manager design for microgrids

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatch decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency.

  2. CERTS Microgrid Laboratory Test Bed

    SciTech Connect (OSTI)

    Lasseter, R. H.; Eto, J. H.; Schenkman, B.; Stevens, J.; Volkmmer, H.; Klapp, D.; Linton, E.; Hurtado, H.; Roy, J.

    2010-06-08

    CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a 'microgrid'. The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults.

  3. Microgrid and Inverter Control and Simulator Software

    Energy Science and Technology Software Center (OSTI)

    2012-09-13

    A collection of software that can simulate the operation of an inverter on a microgrid or control a real inverter. In addition, it can simulate the control of multiple nodes on a microgrid." Application: Simulation of inverters and microgrids; control of inverters on microgrids." The MMI submodule is designed to control custom inverter hardware, and to simulate that hardware. The INVERTER submodule is only the simulator code, and is of an earlier generation than themore » simulator in MMI. The MICROGRID submodule is an agent-based simulator of multiple nodes on a microgrid which presents a web interface. The WIND submodule produces movies of wind data with a web interface.« less

  4. Value Streams in Microgrids: A literature Review

    SciTech Connect (OSTI)

    Stadler, Michael; Cardoso, Gonçalo; Mashayekh, Salman; Forget, Thibault; DeForest, Nicholas; Agarwal, Ankit; Schönbein, Anna

    2015-10-01

    Microgrids are an increasingly common component of the evolving electricity grids with the potential to improve local reliability, reduce costs, and increase penetration rates for distributed renewable generation. The additional complexity of microgrids often leads to increased investment costs, creating a barrier for widespread adoption. These costs may result directly from specific needs for islanding detection, protection systems and power quality assurance that would otherwise be avoided in simpler system configurations. However, microgrids also facilitate additional value streams that may make up for their increased costs and improve the economic viability of microgrid deployment. This paper analyses the literature currently available on research relevant to value streams occurring in microgrids that may contribute to offset the increased investment costs. A review on research related to specific microgrid requirements is also presented.

  5. Microgrid Portfolio of Activities | Department of Energy

    Office of Environmental Management (EM)

    help communities better prepare for future weather events, and keep the nation moving toward a cleaner energy future. ... and 2012. OE's microgrid program goals are to develop ...

  6. Opportunities & Challenges for Microgrids and Distributed Energy...

    Broader source: Energy.gov (indexed) [DOE]

    & Resiliency Islanding Protocol will be Key to Reliability, Survivability & Resiliency The Microgrid Saves the UCSD Campus 850,000 Per Month Yes, 850,000 Per Month ...

  7. The Advanced Microgrid: Integration and Interoperability (March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The value of microgrids to protect the nation's electrical grid from power outages is becoming increasingly important in the face of the increased frequency and intensity of events ...

  8. NREL: Technology Deployment - Microgrid Innovation Advances through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid Innovation Advances through Demonstration and Deployment at MCAS Miramar News ... Through a continuous improvement loop of analysis, research, development, demonstration, ...

  9. The Role of Microgrids in Helping to Advance the Nation's Energy...

    Energy Savers [EERE]

    2013 The U.S. Department of Energy's Microgrid Initiative DC Microgrids Scoping Study: ... the U.S., September 2014 The Advanced Microgrid: Integration and Interoperability, March ...

  10. The advanced microgrid. Integration and interoperability

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Ton, Dan T.; Guttromson, Ross; Glover, Steven F; Stamp, Jason Edwin; Bhatnagar, Dhruv; Reilly, Jim

    2014-02-01

    This white paper focuses on "advanced microgrids," but sections do, out of necessity, reference today's commercially available systems and installations in order to clearly distinguish the differences and advances. Advanced microgrids have been identified as being a necessary part of the modern electrical grid through a two DOE microgrid workshops, the National Institute of Standards and Technology, Smart Grid Interoperability Panel and other related sources. With their grid-interconnectivity advantages, advanced microgrids will improve system energy efficiency and reliability and provide enabling technologies for grid-independence to end-user sites. One popular definition that has been evolved and is used in multiple references is that a microgrid is a group of interconnected loads and distributed-energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode. Further, an advanced microgrid can then be loosely defined as a dynamic microgrid.

  11. Microgrid Workshop Report August 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microgrid Workshop Report August 2011 Microgrid Workshop Report August 2011 The U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) held the Microgrid Workshop on August 30-31, 2011, in San Diego, California. The purpose of the workshop was to convene experts and practitioners to assist the DOE in identifying and prioritizing research and development (R&D) areas in the field of microgrids. The targets of the OE microgrid initiative are to develop

  12. DC Microgrids Scoping Study: Estimate of Technical and Economic Benefits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (March 2015) | Department of Energy Microgrids Scoping Study: Estimate of Technical and Economic Benefits (March 2015) DC Microgrids Scoping Study: Estimate of Technical and Economic Benefits (March 2015) Microgrid demonstrations and deployments have shown the ability of microgrids to provide higher reliability and higher power quality than utility power systems and improved energy utilization. The vast majority of these microgrids are based on AC power, but some manufacturers, power system

  13. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster)

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.; O'Keefe, M.

    2010-12-01

    Fort Carson, a United States Army installation located south of Colorado Springs, Colorado, is seeking to be a net-zero energy facility. As part of this initiative, the base will be constructing a micro-grid that ties to various forms of renewable energy. To reduce petroleum consumption, Fort Carson is considering grid-connected vehicles (GCVs) such as pure electric trucks to replace some of its on-base truck fleet. As the availability and affordability of distributed renewable energy generation options increase, so will the GCV options (currently, three all-electric trucks are available on the GSA schedule). The presence of GCVs on-base opens up the possibility to utilize these vehicles to provide stability to the base micro-grid. This poster summarizes work to estimate the potential impacts of three electric vehicle grid interactions between the electric truck fleet and the Fort Carson micro-grid: 1) full-power charging without management, 2) full-power charging capability controlled by the local grid authority, and 3) full-power charge and discharge capability controlled by the local grid authority. We found that even at relatively small adoption rates, the control of electric vehicle charging at Fort Carson will aid in regulation of variable renewable generation loads and help stabilize the micro-grid.

  14. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect (OSTI)

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  15. Camp Smith Microgrid Controls and Cyber Security

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCING THE POWER OF ENERGY Camp Smith Microgrid Controls and Cyber Security Darrell D. Massie, PhD, PE Aura Lee Keating, CISSP SPIDERS Industry Day - Camp Smith, HI 27 August ...

  16. DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Fact sheet on microgrid model created by the Electric Vehicle Grid Integration program at the Fort Carson Army facility.

  17. Research Call Issued for Design Support Tool for Remote Microgrids |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Research Call Issued for Design Support Tool for Remote Microgrids Research Call Issued for Design Support Tool for Remote Microgrids May 18, 2015 - 1:54pm Addthis DOE's National Energy Technology Laboratory (NETL), on behalf of the Office of Electricity Delivery and Energy Reliability, has issued a research call for proposals for a "Design Support Tool for Remote Off-grid Microgrids" which facilitates the design of microgrids that encompass mixes of generation

  18. 2012 DOE Microgrid Workshop Summary Report (September 2012) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy DOE Microgrid Workshop Summary Report (September 2012) 2012 DOE Microgrid Workshop Summary Report (September 2012) The July 30-31, 2012 Microgrid Workshop was presented by the Office of Electricity Delivery and Energy Reliability at the Illinois Institute of Technology in Chicago. The workshop was held in response to discussions at the preceding DOE Microgrid Workshop, held in August 2011, which called for sharing lessons learned and best practices for system integration from existing

  19. Village microgrids: The Chile project

    SciTech Connect (OSTI)

    Baring-Gould, E.I.

    1997-12-01

    This paper describes a village application in Chile. The objective was to demonstrate the technical, economic and institutional viability of renewable energy for rural electrification, as well as to allow local partners to gain experience with hybrid/renewable technology, resource assessment, system siting and operation. A micro-grid system is viewed as a small village system, up to 1200 kWh/day load with a 50 kW peak load. It can consist of components of wind, photovoltaic, batteries, and conventional generators. It is usually associated with a single generator source, and uses batteries to cover light day time loads. This paper looks at the experiences learned from this project with regard to all of the facets of planning and installing this project.

  20. CX-003951: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    San Diego Gas and Electric Borrego Springs Microgrid Demonstration (Office Component)CX(s) Applied: A1, A9Date: 09/22/2010Location(s): San Diego, CaliforniaOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  1. Development of Hardware-in-the-loop Microgrid Testbed

    SciTech Connect (OSTI)

    Xiao, Bailu; Prabakar, Kumaraguru; Starke, Michael R; Liu, Guodong; Dowling, Kevin; Ollis, T Ben; Irminger, Philip; Xu, Yan; Dimitrovski, Aleksandar D

    2015-01-01

    A hardware-in-the-loop (HIL) microgrid testbed for the evaluation and assessment of microgrid operation and control system has been presented in this paper. The HIL testbed is composed of a real-time digital simulator (RTDS) for modeling of the microgrid, multiple NI CompactRIOs for device level control, a prototype microgrid energy management system (MicroEMS), and a relay protection system. The applied communication-assisted hybrid control system has been also discussed. Results of function testing of HIL controller, communication, and the relay protection system are presented to show the effectiveness of the proposed HIL microgrid testbed.

  2. Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  5. Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... High-Resolution Computational Algorithms for Simulating Offshore Wind Farms Innovative Offshore Vertical-Axis Wind Turbine Rotors Offshore Wind RD&D: Sediment Transport Offshore ...

  6. Microgrids

    Office of Environmental Management (EM)

    Reginald Agunwah Water and Environmental Specialist Ramona Band of Cahuilla March 4, 2015 ... Project * Tribal housing units * Water Supply Wells Land Locked: Electric Grid ...

  7. Microgrid Sizing Capability v 1.0

    SciTech Connect (OSTI)

    2015-11-20

    The MSC is an optimization model, written in Python, that is used to make an initial determination of the types and quantities of electric power generation and energy storage technologies that should be purchased when developing a microgrid. In addition to determining which technologies to purchase, the model determines the optimal policies for operating the microgrid. The model selects the purchases and operating polices in a manner that minimizes annual energy costs (operating costs plus annualized capital costs), while ensuring that that the purchased technologies are paid back within a reasonable timeframe.

  8. Microgrid Sizing Capability v 1.0

    Energy Science and Technology Software Center (OSTI)

    2015-11-20

    The MSC is an optimization model, written in Python, that is used to make an initial determination of the types and quantities of electric power generation and energy storage technologies that should be purchased when developing a microgrid. In addition to determining which technologies to purchase, the model determines the optimal policies for operating the microgrid. The model selects the purchases and operating polices in a manner that minimizes annual energy costs (operating costs plusmore » annualized capital costs), while ensuring that that the purchased technologies are paid back within a reasonable timeframe.« less

  9. The Role of Microgrids in Helping to Advance the Nation's Energy...

    Broader source: Energy.gov (indexed) [DOE]

    2013 The President's Climate Action Plan, June 2013 The U.S. Department of Energy's Microgrid Initiative DC Microgrids Scoping Study: Estimate of Technical and Economic Benefits,...

  10. Microgrid Equipment Selection and Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microgrid Equipment Selection and Control Microgrid Equipment Selection and Control Project Objective The U.S.-China Clean Energy Research Center (CERC) is a pioneering research and development (R&D) consortium bringing together governments, key policymakers, researchers, and industry to develop a long-term platform for sustainable U.S.-China joint R&D. Ultra-efficient buildings and microgrids require complex optimization both for operations and when choosing equipment. This CERC project

  11. Microgrid-Ready Solar PV; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Designing new solar projects to be 'microgrid-ready' enables the U.S. DoD, other federal agencies, and the private sector to plan future microgrid initiatives to utilize solar PV as a generating resource. This fact sheet provides background information with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  12. Microgrid V2G Charging Station Interconnection Testing (Presentation)

    SciTech Connect (OSTI)

    Simpson, M.

    2013-07-01

    This presentation by Mike Simpson of the National Renewable Energy Laboratory (NREL) describes NREL's microgrid vehicle-to-grid charging station interconnection testing.

  13. DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... model of a system specific to Fort Carson will include a photovoltaic canopy that provides shade for vehicles while feeding energy to the microgrid and vehicle charging stations. ...

  14. Microgrid Design Toolkit (MDT) Technical Documentation and Component Summaries

    SciTech Connect (OSTI)

    Arguello, Bryan; Gearhart, Jared Lee; Jones, Katherine A.; Eddy, John P.

    2015-09-01

    The Microgrid Design Toolkit (MDT) is a decision support software tool for microgrid designers to use during the microgrid design process. The models that support the two main capabilities in MDT are described. The first capability, the Microgrid Sizing Capability (MSC), is used to determine the size and composition of a new microgrid in the early stages of the design process. MSC is a mixed-integer linear program that is focused on developing a microgrid that is economically viable when connected to the grid. The second capability is focused on refining a microgrid design for operation in islanded mode. This second capability relies on two models: the Technology Management Optimization (TMO) model and Performance Reliability Model (PRM). TMO uses a genetic algorithm to create and refine a collection of candidate microgrid designs. It uses PRM, a simulation based reliability model, to assess the performance of these designs. TMO produces a collection of microgrid designs that perform well with respect to one or more performance metrics.

  15. Microsoft PowerPoint - DOD Microgrid 102513 SHORT.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steve Bossart, Senior Energy Analyst Smart Grids & Microgrids for Government & Military Symposium October 24-25, 2013, Arlington, VA Topics * OE ARRA Smart Grid Program * OE ARRA ...

  16. Energy Department Launches Microgrid Competition to Support Resiliency...

    Broader source: Energy.gov (indexed) [DOE]

    586-4940 WASHINGTON - Today, the Energy Department launched the Microgrid 2014 MVP Challenge, a competition to support resiliency and adaptation in communities across America. The...

  17. Distributed Control of Inverter-Based Lossy Microgrids for Power...

    Office of Scientific and Technical Information (OSTI)

    Distributed Control of Inverter-Based Lossy Microgrids for Power Sharing and Frequency Regulation Under Voltage Constraints Citation Details In-Document Search Title: Distributed ...

  18. Microgrid-Ready Solar PV (Fact Sheet), NREL (National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrids allow hospitals, data centers, or other critical facilities to operate even ... The solar energy industry is one of the fastest growing industries in the United States. In ...

  19. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    SciTech Connect (OSTI)

    Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

    2008-07-25

    The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

  20. Microgrids and Heterogeneous Power Quality and Reliability

    SciTech Connect (OSTI)

    LaCommare, Kristina; Marnay, Chris

    2007-10-01

    This paper describes two stylized alternative visions of how the power system might evolve to meet future requirements for the high quality electricity service that modern digital economies demand, a supergrids paradigm and a dispersed paradigm. Some of the economics of the dispersed vision are explored, and perspectives are presented on both the choice of homogeneous universal power quality upstream in the electricity supply chain and on the extremely heterogeneous requirements of end-use loads. It is argued that meeting the demanding requirements of sensitive loads by local provision of high quality power may be more cost effective than increasing the quality of universal homogeneous supply upstream in the legacy grid. Finally, the potential role of microgrids in delivering heterogeneous power quality is demonstrated by reference to two ongoing microgrid tests in the U.S. and Japan.

  1. Status of Overseas Microgrid Programs:Microgrid Research Activities in the U.S.

    SciTech Connect (OSTI)

    Marnay, Chris; Marnay, Chris; Zhou, Nan

    2008-02-01

    Research on microgrids in the U.S. has taken a somewhat different path than parallel efforts in Japan and Europe, and this distinction is often noted in international research forums. In general, reliability and power quality in North America is poor compared to other developed countries. For example, in the U.S., the average annual expected outage duration is a few hours, whereas in Japan, it is only a few minutes. Power quality problems in the U.S. are both large scale, such as the August 2003 blackout, and local, such as damaging voltage sags. Meeting the increasingly demanding requirements of a modern digital economy would then seem to offer a more daunting challenge for the U.S. than elsewhere, and certainly, concern that the existing power delivery system will prove inadequate for future gourmet requirements has been a motivating driver of U.S. research. This objective tends to translate into a desire for microgrids to seamlessly island when grid power is interrupted or its quality is inadequate, and to (also seamlessly) reconnect when normal service has been restored. In a sense, the microgrid is perceived as acting as an uninterruptible power supply (UPS), and sometimes even as a competitor to existing UPS options. Nonetheless, this difference is often over-stated, and the other threads that motivate microgrid research also exist in the U.S., e.g. the desire to expand renewable generation and the need to increase the efficiency of fossil-fired generation by the useful local application of waste heat in combined heat and power (CHP) systems, Further, over time, the differences are blurring as concerns about climate change increasingly dominate objectives worldwide. This article describes the CERTS Microgrid, which is almost certainly the best known U.S. example, and also briefly mentions some other U.S. microgrid research.

  2. Methodology for Preliminary Design of Electrical Microgrids

    SciTech Connect (OSTI)

    Jensen, Richard P.; Stamp, Jason E.; Eddy, John P.; Henry, Jordan M; Munoz-Ramos, Karina; Abdallah, Tarek

    2015-09-30

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory

  3. Renewable Microgrid STEM Education & Colonias Outreach Program

    SciTech Connect (OSTI)

    None, None

    2015-04-01

    To provide Science, Technology, Engineering, and Math (STEM) outreach and education to secondary students to encourage them to select science and engineering as a career by providing an engineering-based problem-solving experience involving renewable energy systems such as photovoltaic (PV) panels or wind turbines. All public and private schools, community colleges, and vocational training programs would be eligible for participation. The Power Microgrids High School Engineering Experience used renewable energy systems (PV and wind) to provide a design capstone experience to secondary students. The objective for each student team was to design a microgrid for the student’s school using renewable energy sources under cost, schedule, performance, and risk constraints. The students then implemented their designs in a laboratory environment to evaluate the completeness of the proposed design, which is a unique experience even for undergraduate college students. This application-based program was marketed to secondary schools in the 28th Congressional District through the Texas Education Agency’s (TEA) Regional Service Centers. Upon application, TEES identified regionally available engineers to act as mentors and supervisors for the projects. Existing curriculum was modified to include microgrid and additional renewable technologies and was made available to the schools.

  4. Continuously Optimized Reliable Energy (CORE) Microgrid: Models & Tools (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    This brochure describes Continuously Optimized Reliable Energy (CORE), a trademarked process NREL employs to produce conceptual microgrid designs. This systems-based process enables designs to be optimized for economic value, energy surety, and sustainability. Capabilities NREL offers in support of microgrid design are explained.

  5. SMART FUEL CELL OPERATED RESIDENTIAL MICRO-GRID COMMUNITY

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam University of South Alabama ECE Department, EEB 75 Mobile, AL 36688-0002 Phone: 251-460-6117 Fax: 251-460-6028

    2005-04-13

    To build on the work of year one by expanding the smart control algorithm developed to a micro-grid of ten houses; to perform a cost analysis; to evaluate alternate energy sources; to study system reliability; to develop the energy management algorithm, and to perform micro-grid software and hardware simulations.

  6. Customized electric power storage device for inclusion in a collective microgrid

    DOE Patents [OSTI]

    Robinett, III, Rush D.; Wilson, David G.; Goldsmith, Steven Y.

    2016-02-16

    An electric power storage device is described herein, wherein the electric power storage device is included in a microgrid. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for a collective microgrid. The collective microgrid includes at least two connected microgrids. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the at least two connected microgrids and specified load parameters in the at least two connected microgrids.

  7. EERE Success Story-NREL to Advance Technologies for Microgrid...

    Broader source: Energy.gov (indexed) [DOE]

    GE will also develop an enhanced microgrid control system with two main goals in mind: to provide resilient, high-quality power delivery to the local community and efficient, ...

  8. Distributed Generation Investment by a Microgrid under Uncertainty

    SciTech Connect (OSTI)

    Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

    2008-08-11

    This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

  9. Microgrid Policy Review of Selected Major Countries, Regions, and Organizations

    SciTech Connect (OSTI)

    Qu, Min; Marnay, Chris; Zhou, Nan

    2011-11-30

    This report collects and reviews policies and regulations related to microgrid development, and is intended as a reference. The material is divided into three parts under five dimensions: interconnection, RD&D, tariff policy, other policies, and recommendations.

  10. Resilient Distribution System by Microgrids Formation After Natural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can be further utilized for power quality control and can be connected to a larger microgrid before the restoration of the main grids is complete. Numerical results based on...

  11. Webinar Presentation: Energy Storage Solutions for Microgrids (November

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012) | Department of Energy Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean Energy States Aliance (CESA) hosted a webinar with Connecticut DEEP in conjuction with Sandia National Lab and DOE on State and Federal Energy Storage Technology Partnership (ESTAP). The four guest speakers were Veronica Szczerkowski (CT DEEP), Imre Gyuk (DOE), Matt Lazarewicz (CESA

  12. Energy Surety Microgrid(tm) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Wind Energy Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Energy Storage Energy Storage Electricity Transmission Electricity Transmission Find More Like This Return to Search Energy Surety Microgrid(tm) Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (813 KB) Technology Marketing SummaryThe Energy Surety Microgrid(tm) (ESM) is a Risk Assessment Methodology (RAM) which is a

  13. Economic Dispatch for Microgrid Containing Electric Vehicles via Probabilistic Modelling

    SciTech Connect (OSTI)

    Yao, Yin; Gao, Wenzhong; Momoh, James; Muljadi, Eduard

    2015-10-06

    In this paper, an economic dispatch model with probabilistic modeling is developed for microgrid. Electric power supply in microgrid consists of conventional power plants and renewable energy power plants, such as wind and solar power plants. Due to the fluctuation of solar and wind plants' output, an empirical probabilistic model is developed to predict their hourly output. According to different characteristics of wind and solar plants, the parameters for probabilistic distribution are further adjusted individually for both power plants. On the other hand, with the growing trend of Plug-in Electric Vehicle (PHEV), an integrated microgrid system must also consider the impact of PHEVs. Not only the charging loads from PHEVs, but also the discharging output via Vehicle to Grid (V2G) method can greatly affect the economic dispatch for all the micro energy sources in microgrid. This paper presents an optimization method for economic dispatch in microgrid considering conventional, renewable power plants, and PHEVs. The simulation results reveal that PHEVs with V2G capability can be an indispensable supplement in modern microgrid.

  14. OE Announces Awardees Under the Remote Off-Grid Microgrid Design...

    Energy Savers [EERE]

    Awardees Under the Remote Off-Grid Microgrid Design Support Tool Research Call OE Announces Awardees Under the Remote Off-Grid Microgrid Design Support Tool Research Call September ...

  15. Why Two Grids Can Be Better Than One: How the CERTS Microgrid...

    Energy Savers [EERE]

    Why Two Grids Can Be Better Than One: How the CERTS Microgrid Evolved from Concept to Practice Why Two Grids Can Be Better Than One: How the CERTS Microgrid Evolved from Concept to ...

  16. A Robust Load Shedding Strategy for Microgrid Islanding Transition

    SciTech Connect (OSTI)

    Liu, Guodong; Xiao, Bailu; Starke, Michael R; Ceylan, Oguzhan; Tomsovic, Kevin

    2016-01-01

    A microgrid is a group of interconnected loads and distributed energy resources. It can operate in either gridconnected mode to exchange energy with the main grid or run autonomously as an island in emergency mode. However, the transition of microgrid from grid-connected mode to islanded mode is usually associated with excessive load (or generation), which should be shed (or spilled). Under this condition, this paper proposes an robust load shedding strategy for microgrid islanding transition, which takes into account the uncertainties of renewable generation in the microgrid and guarantees the balance between load and generation after islanding. A robust optimization model is formulated to minimize the total operation cost, including fuel cost and penalty for load shedding. The proposed robust load shedding strategy works as a backup plan and updates at a prescribed interval. It assures a feasible operating point after islanding given the uncertainty of renewable generation. The proposed algorithm is demonstrated on a simulated microgrid consisting of a wind turbine, a PV panel, a battery, two distributed generators (DGs), a critical load and a interruptible load. Numerical simulation results validate the proposed algorithm.

  17. DC Microgrids Scoping Study. Estimate of Technical and Economic Benefits

    SciTech Connect (OSTI)

    Backhaus, Scott N.; Swift, Gregory William; Chatzivasileiadis, Spyridon; Tschudi, William; Glover, Steven; Starke, Michael; Wang, Jianhui; Yue, Meng; Hammerstrom, Donald

    2015-03-23

    Microgrid demonstrations and deployments are expanding in US power systems and around the world. Although goals are specific to each site, these microgrids have demonstrated the ability to provide higher reliability and higher power quality than utility power systems and improved energy utilization. The vast majority of these microgrids are based on AC power transfer because this has been the traditionally dominant power delivery scheme. Independently, manufacturers, power system designers and researchers are demonstrating and deploying DC power distribution systems for applications where the end-use loads are natively DC, e.g., computers, solid-state lighting, and building networks. These early DC applications may provide higher efficiency, added flexibility, reduced capital costs over their AC counterparts. Further, when onsite renewable generation, electric vehicles and storage systems are present, DC-based microgrids may offer additional benefits. Early successes from these efforts raises a question - can a combination of microgrid concepts and DC distribution systems provide added benefits beyond what has been achieved individually?

  18. Distributed Generation Investment by a Microgrid UnderUncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris

    2006-06-16

    This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.

  19. Microgrids and Heterogeneous Security, Quality, Reliability, andAvailability

    SciTech Connect (OSTI)

    Marnay, Chris

    2007-01-31

    This paper describes two stylized alternative visions inpopular currencyof how the power system might evolve to meet futurerequirements for the high quality electricity service that modern digitaleconomies demand, a supergrids paradigm and a dispersed paradigm. Some ofthe economics of the dispersed vision are explored. Economic perspectivesare presented on both the choice of homogeneous universal power qualityupstream in the electricity supply, and also on the extremelyheterogeneous require-ments of end-use loads. Finally, the potential roleof microgrids in delivering heterogeneous power quality is demonstratedby reference to two ongoing microgrid tests in the U.S. andJapan.

  20. GE Partners on Microgrid Project | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE, Utility, Government, and Academia Partner on Microgrid Project Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE, Utility, Government, and Academia Partner on Microgrid Project GE Awarded a $1.2M Department of Energy Grant to Design Technology to Keep Electricity Flowing after Catastrophic Weather Events NISKAYUNA,

  1. International Microgrid Assessment. Governance, INcentives, and Experience (IMAGINE)

    SciTech Connect (OSTI)

    Marnay, Chris; Zhou, Nan; Qu, Min; Romankiewicz, John

    2012-06-01

    Microgrids can provide an avenue for increasing the amount of distributed generation and delivery of electricity, where control is more dispersed and quality of service is locally tailored to end-use requirements. Much of this functionality is very different from the predominant utility model to date of centralized power production which is then transmitted and distributed across long distances with a uniform quality of service. This different functionality holds much promise for positive change, in terms of increasing reliability, energy efficiency, and renewable energy while decreasing and carbon emissions. All of these functions should provide direct cost savings for customers and utilities as well as positive externalities for society. As we have seen from the international experience, allowing microgrids to function in parallel with the grid requires some changes in electricity governance and incentives to capture cost savings and actively price in positive externalities. If China can manage to implement these governance changes and create those incentive policies, it will go beyond the establishment of a successful microgrid demonstration program and become an international leader in microgrid deployment.

  2. Recent Sandia Secure, Scalable Microgrid Advanced Controls Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accomplishments Secure, Scalable Microgrid Advanced Controls Research Accomplishments - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  3. OE Announces Awardees Under the Remote Off-Grid Microgrid Design Support

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool Research Call | Department of Energy Awardees Under the Remote Off-Grid Microgrid Design Support Tool Research Call OE Announces Awardees Under the Remote Off-Grid Microgrid Design Support Tool Research Call September 15, 2015 - 9:50am Addthis The Office of Electricity Delivery and Energy Reliability has selected Lawrence Berkeley National Laboratory (LBNL) and Oak Ridge National Laboratory (ORNL) as awardees under the Remote Off-Grid Microgrid Design Support Tool Research Call. The

  4. Energy Department Launches Microgrid Competition to Support Resiliency in Communities Across America

    Broader source: Energy.gov [DOE]

    WASHINGTON – Today, the Energy Department launched the Microgrid 2014 MVP Challenge, a competition to support resiliency and adaptation in communities across America.

  5. Novel Approach for Calculation and Analysis of Eigenvalues and Eigenvectors in Microgrids: Preprint

    SciTech Connect (OSTI)

    Li, Y.; Gao, W.; Muljadi, E.; Jiang, J.

    2014-02-01

    This paper proposes a novel approach based on matrix perturbation theory to calculate and analyze eigenvalues and eigenvectors in a microgrid system. Rigorous theoretical analysis to solve eigenvalues and the corresponding eigenvectors for a system under various perturbations caused by fluctuations of irradiance, wind speed, or loads is presented. A computational flowchart is proposed for the unified solution of eigenvalues and eigenvectors in microgrids, and the effectiveness of the matrix perturbation-based approach in microgrids is verified by numerical examples on a typical low-voltage microgrid network.

  6. Wireless Communication for Controlling Microgrids: Co-simulation and Performance Evaluation

    SciTech Connect (OSTI)

    Mao, Rukun; Xu, Yan; Li, Huijuan; Li, Husheng

    2013-01-01

    A microgrid with wireless communication links for microgrid control has been designed and developed. The complete simulation model has been developed in MatLab SimuLink with seamless integration of the power subsystem and the communication subsystem. Unlike the conventional co-simulators that usually glue two existing simulators together by creating an interface, which has a steep learning curve, the proposed simulator is a compact single-unit model. Detailed modeling of the power subsystem and communication system is presented as well as the microgrid control architecture and strategies. The impact of different communication system performances on microgrid control has been studied and evaluated in the proposed simulator.

  7. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    SciTech Connect (OSTI)

    Lasseter, Robert; Eto, Joe

    2010-05-15

    The CERTS Microgrid concept is an advanced approach for enabling integration of, in principle, an unlimited quantity of distributed energy resources into the electricity grid. A key feature of a microgrid, is its ability, during a utility grid disturbance, to separate and isolate itself from the utility seamlessly with no disruption to the loads within the microgrid (including no reduction in power quality). Then, when the utility grid returns to normal, the microgrid automatically resynchronizes and reconnects itself to the grid, in an equally seamless fashion. What is unique about the CERTS Microgrid is that it can provide this technically challenging functionality without extensive (i.e., expensive) custom engineering. In addition, the design of the CERTS Microgrid also provides high system reliability and great flexibility in the placement of distributed generation within the microgrid. The CERTS Microgrid offers these functionalities at much lower costs than traditional approaches by incorporating peer-to-peer and plug-and-play concepts for each component within the Microgrid. The predecessor to the current project involved the construction of and completion of initial testing using the world's first, full-scale, inverter-based, distributed generation test bed. The project demonstrated three advanced techniques, collectively referred to as the CERTS Microgrid concept, which collectively significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques are: (1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; (2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and (3) a method for microgrid control that achieves voltage and frequency stability under both grid and islanded conditions without requiring high-speed communications. The work conducted in this phase of RD

  8. EERE Success Story-NREL to Advance Technologies for Microgrid Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy to Advance Technologies for Microgrid Projects EERE Success Story-NREL to Advance Technologies for Microgrid Projects October 15, 2015 - 3:51pm Addthis NREL will test microgrid controllers developed by EPRI and GE using its megawatt-scale power hardware-in-the-loop capability, which is part of the Energy System Integration Facility. NREL will test microgrid controllers developed by EPRI and GE using its megawatt-scale power hardware-in-the-loop capability, which is part

  9. Micro-Grids for Colonias (TX)

    SciTech Connect (OSTI)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid

  10. Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure

    SciTech Connect (OSTI)

    Marnay, Chris; Venkataramanan, Giri

    2006-02-01

    The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

  11. Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming

    SciTech Connect (OSTI)

    Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-05-23

    This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.

  12. Energy Across America: A Policy Discussion on Microgrid Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Across America: A Policy Discussion on Microgrid Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense

  13. Microsoft PowerPoint - DOD Microgrid 102513 SHORT.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in DOE's ARRA Smart Grid Program Steve Bossart, Senior Energy Analyst Smart Grids & Microgrids for Government & Military Symposium October 24-25, 2013, Arlington, VA # Topics * OE ARRA Smart Grid Program * OE ARRA Smart Grid Progress * Case Studies/Success Stories * Life After ARRA Smart Grid # DOE OE ARRA Smart Grid Program # American Recovery and Reinvestment Act ($4.5B) * Smart Grid Investment Grants (99 projects) - $3.4 billion Federal; $4.7 billion private sector - > 800 PMUs

  14. A Green Prison: The Santa Rita Jail Campus Microgrid

    SciTech Connect (OSTI)

    Marnay, Chris; DeForest, Nicholas; Lai, Judy

    2012-01-22

    A large microgrid project is nearing completion at Alameda County’s twenty-two-year-old 45 ha 4,000-inmate Santa Rita Jail, about 70 km east of San Francisco. Often described as a green prison, it has a considerable installed base of distributed energy resources (DER) including an eight-year old 1.2 MW PV array, a five-year old 1 MW fuel cell with heat recovery, and considerable efficiency investments. A current US$14 M expansion adds a 2 MW-4 MWh Li-ion battery, a static disconnect switch, and various controls upgrades. During grid blackouts, or when conditions favor it, the Jail can now disconnect from the grid and operate as an island, using the on-site resources described together with its back-up diesel generators. In other words, the Santa Rita Jail is a true microgrid, or μgrid, because it fills both requirements, i.e. it is a locally controlled system, and it can operate both grid connected and islanded. The battery’s electronics includes Consortium for Electric Reliability Technology (CERTS) Microgrid technology. This enables the battery to maintain energy balance using droops without need for a fast control system.

  15. Development of a High-Speed Static Switch for Distributed Energy and Microgrid Applications

    SciTech Connect (OSTI)

    Kroposki, B.; Pink, C.; Lynch, J.; John, V.; Meor Daniel, S.; Benedict, E.; Vihinen, I.

    2007-01-01

    Distributed energy resources can provide power to local loads in the electric distribution system and benefits such as improved reliability. Microgrids are intentional islands formed at a facility or in an electrical distribution system that contains at least one distributed resource and associated loads. Microgrids that operate both electrical generation and loads in a coordinated manner can offer additional benefits to the customer and local utility. The loads and energy sources can be disconnected from and reconnected to the area or local utility with minimal disruption to the local loads, thereby improving reliability. This paper details the development and testing of a highspeed static switch for distributed energy and microgrid applications.

  16. Guidelines for Implementing Advanced Distribution Management Systems-Requirements for DMS Integration with DERMS and Microgrids

    SciTech Connect (OSTI)

    Wang, Jianhui; Chen, Chen; Lu, Xiaonan

    2015-08-01

    This guideline focuses on the integration of DMS with DERMS and microgrids connected to the distribution grid by defining generic and fundamental design and implementation principles and strategies. It starts by addressing the current status, objectives, and core functionalities of each system, and then discusses the new challenges and the common principles of DMS design and implementation for integration with DERMS and microgrids to realize enhanced grid operation reliability and quality power delivery to consumers while also achieving the maximum energy economics from the DER and microgrid connections.

  17. Hardware Development of a Laboratory-Scale Microgrid Phase 2: Operation and Control of a Two-Inverter Microgrid

    SciTech Connect (OSTI)

    Illindala, M. S.; Piagi, P.; Zhang, H.; Venkataramanan, G.; Lasseter, R. H.

    2004-03-01

    This report summarizes the activities of the second year of a three-year project to develop control software for microsource distributed generation systems. In this phase, a laboratory-scale microgrid was expanded to include: (1) Two emulated distributed resources; (2) Static switchgear to allow rapid disconnection and reconnection; (3) Electronic synchronizing circuitry to enable transient-free grid interconnection; (4) Control software for dynamically varying the frequency and voltage controller structures; and (5) Power measurement instrumentation for capturing transient waveforms at the interconnect during switching events.

  18. The CERTS microgrid and the future of the macrogrid

    SciTech Connect (OSTI)

    Marnay, Chris; Bailey, Owen C.

    2004-06-01

    The blackouts of summer 2003 underscored the dependence of western economies on reliable supply of electricity with tight tolerances of quality. While demand for electricity continues to grow, expansion of the traditional electricity supply system is constrained and is unlikely to keep pace with the growing thirst western economies have for electricity. Furthermore, no compelling case has been made that perpetual improvement in the overall power quality and reliability (PQR) delivered is possible or desirable. An alternative path to providing for sensitive loads is to provide for generation close to them. This would alleviate the pressure for endless improvement in grid PQR and might allow the establishment of a sounder economically based level of universal grid service. Providing for loads by means of local power generation is becoming increasingly competitive with central station generation for a number of reasons, four key ones being non-technical constraints on expansion of the grid, improvements in small scale technologies, opportunities for CHP application, and the ubiquitous nature of sensitive loads in advanced economies. Along with these new technologies, concepts for operating them partially under local control in microgrids are emerging, the CERTS Microgrid being one example. It has been demonstrated in simulation, and a laboratory test of a three microturbine system is planned for early 2005, to be followed by a field demonstration. A systemic energy analysis of a southern California naval base building demonstrates a current economic on-site power opportunity.

  19. Integration& Operation of a Microgrid at Santa Rita Jail

    SciTech Connect (OSTI)

    Chevron Energy Solutions; Alameda County; DeForest, Nicholas; Lai, Judy; Stadler, Michael; Mendes, Goncalo; Marnay, Chris; Donadee, Jon

    2011-05-01

    Santa Rita Jail is a 4,500 inmate facility located in Dublin CA, approximately 40 miles (65 km) east of San Francisco. Over the past decade, a series of Distributed Energy Resources (DER) installations and efficiency measures have been undertaken to transform the 3MW facility into a"Green Jail". These include a 1.2MW rated rooftop PV system installed in 2002, a 1MW molten carbonate fuel cell with CHP, and retrofits to lighting and HVAC systems to reduce peak loads. With the upcoming installation of a large-scale battery and fast static disconnect switch, Santa Rita Jail will become a true microgrid, with full CERTS Microgrid functionality. Consequently, the jail will be able to seamlessly disconnect from the grid and operate as an island in the event of a disturbance, reconnecting again once the disturbance has dissipated. The extent to which that jail is capable of islanding is principally dependant on the energy capacity of the battery-one focus of this investigation. Also presented here are overviews of the DER currently installed at the jail, as well as the value it provides by offsetting the purchase of electricity under the current Pacific Gas& Electric (PG&E) tariff.

  20. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  1. The Role of Microgrids in Helping to Advance the Nation’s Energy System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Microgrids, which are localized grids that can disconnect from the traditional grid to operate autonomously and help mitigate grid disturbances to strengthen grid resilience, can play an important role in transforming the nation’s electric grid. Microgrids can strengthen grid resilience and help mitigate grid disturbances because they are able to continue operating while the main grid is down, and they can function as a grid resource for faster system response and recovery.

  2. Report Now Available: DC Microgrids Scoping Study--Estimate of Technical and Economic Benefits (March 2015)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Los Alamos National Laboratory has released a report titled DC Microgrids Scoping Study: Estimate of Technical and Economic Benefits, which presents the results of a study by several national labs and funded by the Office of Electricity Delivery & Energy Reliability. The study provides a preliminary examination of the benefits and drawbacks of potential DC microgrid applications relative to their AC counterparts, using several metrics for comparison, and offers recommendations for potential future research and deployment activities.

  3. Why Two Grids Can Be Better Than One: How the CERTS Microgrid Evolved from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concept to Practice | Department of Energy Why Two Grids Can Be Better Than One: How the CERTS Microgrid Evolved from Concept to Practice Why Two Grids Can Be Better Than One: How the CERTS Microgrid Evolved from Concept to Practice Congress, concerned about the reliability of national electricity transmission, turned to the U.S. Department of Energy (DOE) for guidance in the late 1990s. What started as a conversation about maximizing distributed generation to relieve stress on an overtaxed

  4. Integration of distributed energy resources. The CERTS Microgrid Concept

    SciTech Connect (OSTI)

    Lasseter, Robert; Akhil, Abbas; Marnay, Chris; Stephens, John; Dagle, Jeff; Guttromsom, Ross; Meliopoulous, A. Sakis; Yinger, Robert; Eto, Joe

    2002-04-01

    Evolutionary changes in the regulatory and operational climate of traditional electric utilities and the emergence of smaller generating systems such as microturbines have opened new opportunities for on-site power generation by electricity users. In this context, distributed energy resources (DER)--small power generators typically located at users' sites where the energy (both electric and thermal) they generate is used--have emerged as a promising option to meet growing customer needs for electric power with an emphasis on reliability and power quality. The portfolio of DER includes generators, energy storage, load control, and, for certain classes of systems, advanced power electronic interfaces between the generators and the bulk power provider. This white paper proposes that the significant potential of smaller DER to meet customers' and utilities' needs can be best captured by organizing these resources into MicroGrids.

  5. Design and Performance of Solar Decathlon 2011 High-Penetration Microgrid: Preprint

    SciTech Connect (OSTI)

    Stafford, B.; Coddington, M.; Butt, R.; Solomon, S.; Wiegand, G.; Wagner, C.; Gonzalez, B.

    2012-04-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The Solar Decathlon 2011 was held in Washington, D.C., from September 23 to October 2, 2011 . A high-penetration microgrid was designed, installed, and operated for the Solar Decathlon 2011 to grid-connect 19 highly energy-efficient, solar-powered competition houses to a single utility connection point. The capacity penetration of this microgrid (defined as maximum PV generation divided by maximum system load over a two-week period) was 74% based on 1-minute averaged data. Temporary, ground-laid conductors and electrical distribution equipment were installed to grid-connect the Solar Decathlon village, which included the houses as well as other electrical loads used by the event organizers. While 16 of the houses were connected to the 60 Hz microgrid, three houses from Belgium, China, and New Zealand were supplied with 50 Hz power. The design of the microgrid, including the connection of the houses powered by 50 Hz and a standby diesel generator, is discussed in this paper. In addition to the utility-supplied net energy meters at each house, a microgrid monitoring system was installed to measure and record energy consumption and PV energy production at 1-second intervals at each house. Bidirectional electronic voltage regulators were installed for groups of competition houses, which held the service voltage at each house to acceptable levels. The design and successful performance of this high-penetration microgrid is presented from the house, microgrid operator, and utility perspectives.

  6. Microgrid Design, Development and Demonstration - Final Report for Phase I and Phase II

    SciTech Connect (OSTI)

    Bose, Sumit; Krok, Michael

    2011-02-08

    This document constitutes GE’s final report for the Microgrid Design, Development and Demonstration program for DOE’s Office of Electricity Delivery and Energy Reliability, Award DE-FC02-05CH11349. It contains the final report for Phase I in Appendix I, and the results the work performed in Phase II. The program goal was to develop and demonstrate a Microgrid Energy Management (MEM) framework for a broad set of Microgrid applications that provides unified controls, protection, and energy management. This project contributed to the achievement of the U.S. Department of Energy’s Renewable and Distributed Systems Integration Program goals by developing a fully automated power delivery microgrid network that: - Reduces carbon emissions and emissions of other air pollutants through increased use of optimally dispatched renewable energy, - Increases asset use through integration of distributed systems, - Enhances reliability, security, and resiliency from microgrid applications in critical infrastructure protection, constrained areas of the electric grid, etc. - Improves system efficiency with on-site, distributed generation and improved economic efficiency through demand-side management.

  7. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine

  8. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    SciTech Connect (OSTI)

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

  9. A Framework for the Evaluation of the Cost and Benefits of Microgrids

    SciTech Connect (OSTI)

    Morris, Greg Young; Abbey, Chad; Joos, Geza; Marnay, Chris

    2011-07-15

    A Microgrid is recognized as an innovative technology to help integrate renewables into distribution systems and to provide additional benefits to a variety of stakeholders, such as offsetting infrastructure investments and improving the reliability of the local system. However, these systems require additional investments for control infrastructure, and as such, additional costs and the anticipated benefits need to be quantified in order to determine whether the investment is economically feasible. This paper proposes a methodology for systematizing and representing benefits and their interrelationships based on the UML Use Case paradigm, which allows complex systems to be represented in a concise, elegant format. This methodology is demonstrated by determining the economic feasibility of a Microgrid and Distributed Generation installed on a typical Canadian rural distribution system model as a case study. The study attempts to minimize the cost of energy served to the community, considering the fixed costs associated with Microgrids and Distributed Generation, and suggests benefits to a variety of stakeholders.

  10. Microgrid Design Analysis Using Technology Management Optimization and the Performance Reliability Model

    SciTech Connect (OSTI)

    Stamp, Jason E.; Eddy, John P.; Jensen, Richard P.; Munoz-Ramos, Karina

    2016-01-01

    Microgrids are a focus of localized energy production that support resiliency, security, local con- trol, and increased access to renewable resources (among other potential benefits). The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capa- bility Technology Demonstration (JCTD) program between the Department of Defense (DOD), Department of Energy (DOE), and Department of Homeland Security (DHS) resulted in the pre- liminary design and deployment of three microgrids at military installations. This paper is focused on the analysis process and supporting software used to determine optimal designs for energy surety microgrids (ESMs) in the SPIDERS project. There are two key pieces of software, an ex- isting software application developed by Sandia National Laboratories (SNL) called Technology Management Optimization (TMO) and a new simulation developed for SPIDERS called the per- formance reliability model (PRM). TMO is a decision support tool that performs multi-objective optimization over a mixed discrete/continuous search space for which the performance measures are unrestricted in form. The PRM is able to statistically quantify the performance and reliability of a microgrid operating in islanded mode (disconnected from any utility power source). Together, these two software applications were used as part of the ESM process to generate the preliminary designs presented by SNL-led DOE team to the DOD. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military instal- lations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Tarek Abdallah, Melanie

  11. August 22 ESTAP Webinar: A Solar Storage Microgrid for the Energy City of the Future

    Broader source: Energy.gov [DOE]

    On Friday, August 22, 2014 from 1 - 2 p.m. ET, Clean Energy State Alliance will host a webinar to discuss a project to build a solar plus storage microgrid located in Rutland, Vermont. OE is partnering with the State of Vermont Public Service, Green Mountain Power, and Dynapower on a resilience microgrid that will combine 2.5 MW of solar generation with 4MW of energy storage. Webinar speakers include OE's Imre Gyuk, Energy Storage Program Manager. The event is free but registration is required.

  12. Networked Microgrids for Self-healing Power Systems

    SciTech Connect (OSTI)

    Wang, Zhaoyu; Chen, Bokan; Wang, Jianhui; Chen, Chen

    2015-06-17

    This paper proposes a transformative architecture for the normal operation and self-healing of networked microgrids (MGs). MGs can support and interchange electricity with each other in the proposed infrastructure. The networked MGs are connected by a physical common bus and a designed two-layer cyber communication network. The lower layer is within each MG where the energy management system (EMS) schedules the MG operation; the upper layer links a number of EMSs for global optimization and communication. In the normal operation mode, the objective is to schedule dispatchable distributed generators (DGs), energy storage systems (ESs) and controllable loads to minimize the operation costs and maximize the supply adequacy of each MG. When a generation deficiency or fault happens in a MG, the model switches to the self-healing mode and the local generation capacities of other MGs can be used to support the on-emergency portion of the system. A consensus algorithm is used to distribute portions of the desired power support to each individual MG in a decentralized way. The allocated portion corresponds to each MG’s local power exchange target which is used by its EMS to perform the optimal schedule. The resultant aggregated power output of networked MGs will be used to provide the requested power support. Test cases demonstrate the effectiveness of the proposed methodology.

  13. Analysis of electric vehicle interconnection with commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Mendes, Goncalo; Marnay, Chris; Mégel, Olivier; Lai, Judy

    2011-04-01

    The outline of this presentation is: (1) global concept of microgrid and electric vehicle (EV) modeling; (2) Lawrence Berkeley National Laboratory's Distributed Energy Resources Customer Adoption Model (DER-CAM); (3) presentation summary - how does the number of EVs connected to the building change with different optimization goals (cost versus CO{sub 2}); (3) ongoing EV modeling for California: the California commercial end-use survey (CEUS) database, objective: 138 different typical building - EV connections and benefits; (4) detailed analysis for healthcare facility: optimal EV connection at a healthcare facility in southern California; and (5) conclusions. Conclusions are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions. Why? Stationary storage is available 24 hours a day for energy management - more effective; (3) stationary storage will be charged by PV, mobile only marginally; (4) results will depend on the considered region and tariff - final work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

  14. Effects of a carbon tax on microgrid combined heat and power adoption

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

    2004-11-01

    This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A microgrid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The microgrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without combined heat and power (CHP) equipment, such as water and space heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the microgrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.

  15. Energy storage requirements of dc microgrids with high penetration renewables under droop control

    SciTech Connect (OSTI)

    Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; Wilson, David G.

    2015-01-09

    Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Given a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.

  16. Energy storage requirements of dc microgrids with high penetration renewables under droop control

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; Wilson, David G.

    2015-01-09

    Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Givenmore » a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.« less

  17. Design, Operation, and Controlled-Island Operation of the U.S. Department of Energy Solar Decathlon 2013 Microgrid

    SciTech Connect (OSTI)

    Kurnik, C.; Butt, R. S.; Metzger, I.; Lavrova, O.; Patibandla, S.; Wagner, V.; Frankosky, M.; Wiegand, G.

    2015-04-22

    This document reports on the design and operation of a high-capacity and high-penetration-ratio microgrid, which consists of 19 photovoltaic-powered residential houses designed by collegiate teams as part of their participation in the U.S. Department of Energy Solar Decathlon 2013. The microgrid was interconnected with the local utility, and resulting net-power and power-quality events were recorded in high detail (1-minute data sampling or better). Also, a controlled-island operation test was conducted to evaluate the microgrid response to additional events such as increased loads (e.g., from electric vehicles) and bypassing of voltage regulators. This temporary ground-laid microgrid was stable under nominal and island-operation conditions; adverse weather and loads did not lead to power-quality degradation.

  18. Comparative Study of DC and AC Microgrids in Commercial Buildings Across Different Climates and Operating Profiles: Preprint

    SciTech Connect (OSTI)

    Fregosi, D.; Ravula, S.; Brhlik, D.; Saussele, J.; Frank, S.; Bonnema, E.; Scheib, J.; Wilson, E.

    2015-04-22

    Bosch has developed and demonstrated a novel DC microgrid system designed to maximize utilization efficiency for locally generated photovoltaic energy while offering high reliability, safety, redundancy, and reduced cost compared to equivalent AC systems. Several demonstration projects validating the system feasibility and expected efficiency gains have been completed and additional ones are in progress. This work gives an overview of the Bosch DC microgrid system and presents key results from a large simulation study done to estimate the energy savings of the Bosch DC microgrid over conventional AC systems. The study examined the system performance in locations across the United States for several commercial building types and operating profiles and found that the Bosch DC microgrid uses generated PV energy 6%–8% more efficiently than traditional AC systems.

  19. A Micro-Grid Simulator Tool (SGridSim) using Effective Node-to-Node Complex Impedance (EN2NCI) Models

    SciTech Connect (OSTI)

    Udhay Ravishankar; Milos manic

    2013-08-01

    This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSim micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.

  20. Coil spring venting arrangement

    DOE Patents [OSTI]

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  1. Spring bypass assembly

    DOE Patents [OSTI]

    Jablonski, Henry; Roughgarden, Jeffrey D.

    1984-02-07

    Pipe clamp comprises two substantially semicircular rim halves biased toward each other by spring assemblies. Adjustable stop means limit separation of the rim halves when the pipe expands.

  2. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    SciTech Connect (OSTI)

    Marnay, Chris; Lai, Judy; Stadler, Michael; Siddiqui, Afzal

    2009-05-07

    The Distributed Energy Resources Customer Adoption Model is used to estimate the value an Oakland nursing home, a Riverside high school, and a Sunnyvale data center would need to put on higher electricity service reliability for them to adopt a Consortium for Electric Reliability Technology Solutions Microgrid (CM) based on economics alone. A fraction of each building's load is deemed critical based on its mission, and the added cost of CM capability to meet it added to on-site generation options. The three sites are analyzed with various resources available as microgrid components. Results show that the value placed on higher reliability often does not have to be significant for CM to appear attractive, about 25 $/kWcdota and up, but the carbon footprint consequences are mixed because storage is often used to shift cheaper off-peak electricity to use during afternoon hours in competition with the solar sources.

  3. Assessment of the Economic Potential of Microgrids for Reactive Power Supply

    SciTech Connect (OSTI)

    Appen, Jan von; Marnay, Chris; Stadler, Michael; Momber, Ilan; Klapp, David; Scheven, Alexander von

    2011-05-01

    As power generation from variable distributed energy resources (DER) grows, energy flows in the network are changing, increasing the requirements for ancillary services, including voltage support. With the appropriate power converter, DER can provide ancillary services such as frequency control and voltage support. This paper outlines the economic potential of DERs coordinated in a microgrid to provide reactive power and voltage support at its point of common coupling. The DER Customer Adoption Model assesses the costs of providing reactive power, given local utility rules. Depending on the installed DER, the cost minimizing solution for supplying reactive power locally is chosen. Costs include the variable cost of the additional losses and the investment cost of appropriately over-sizing converters or purchasing capacitors. A case study of a large health care building in San Francisco is used to evaluate different revenue possibilities of creating an incentive for microgrids to provide reactive power.

  4. Accelerating the Customer-Driven Microgrid Through Real-Time Digital Simulation

    SciTech Connect (OSTI)

    I. Leonard; T. Baldwin; M. Sloderbeck

    2009-07-01

    Comprehensive design and testing of realistic customer-driven microgrids requires a high performance simulation platform capable of incorporating power system and control models with external hardware systems. Traditional non real-time simulation is unable to fully capture the level of detail necessary to expose real-world implementation issues. With a real-time digital simulator as its foundation, a high-fidelity simulation environment that includes a robust electrical power system model, advanced control architecture, and a highly adaptable communication network is introduced. Hardware-in-the-loop implementation approaches for the hardware-based control and communication systems are included. An overview of the existing power system model and its suitability for investigation of autonomous island formation within the microgrid is additionally presented. Further test plans are also documented.

  5. Motor Gasoline Assessment, Spring 1997

    Reports and Publications (EIA)

    1997-01-01

    Analyzes the factors causing the run up of motor gasoline prices during spring 1996 and the different market conditions during spring 1997 that caused prices to decline.

  6. Register for the EPRI-Sandia Symposium on Secure and Resilient Microgrids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aug, 29th-31st Register for the EPRI-Sandia Symposium on Secure and Resilient Microgrids Aug, 29th-31st - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  7. NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar on the Grid | Energy Systems Integration | NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More Solar on the Grid February 22, 2016 Effectively integrating large amounts of renewable energy such as solar photovoltaics (PV) onto the electric grid requires finding ways to manage the inherent variability of the resource. That's where energy storage technologies like batteries come in-when integrated into PV systems, storage can allow solar to power homes and

  8. NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar on the Grid | Grid Modernization | NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More Solar on the Grid February 22, 2016 Effectively integrating large amounts of renewable energy such as solar photovoltaics (PV) onto the electric grid requires finding ways to manage the inherent variability of the resource. That's where energy storage technologies like batteries come in-when integrated into PV systems, storage can allow solar to power homes and businesses even

  9. Opportunities & Challenges for Microgrids and Distributed Energy Resources as a Grid Asset

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Challenges for Microgrids and Distributed Energy Resources as a Grid Asset Dispatchable Distributed Generation: Manufacturing's Role in Support of Grid Modernization Byron Washom, Director Strategic Energy Initiatives UC San Diego February 11, 2016 CA's future electricity system will consist of near zero net energy buildings, highly efficient businesses, low- carbon generation, sustainable bioenergy systems, more localized generation, and electrification of transportation, supported by a

  10. CDP Spring Workshop 2016

    Broader source: Energy.gov [DOE]

    Combating climate change requires Silicon Valley innovation, which is why CDP (formerly the Carbon Disclosure Project), has partnered with Google for its annual Spring Workshop, which will be held...

  11. AESP Spring Conference

    Broader source: Energy.gov [DOE]

    The Association of Energy Services Professionals (AESP) is hosting its annual Spring Conference in Portland, Oregon, where attendees can hear from experts on the critical role technology and effective implementation play in energy efficiency programs.

  12. Defining and enabling resiliency of electric distribution systems with multiple microgrids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chanda, Sayonsom; Srivastava, Anurag K.

    2016-05-02

    This paper presents a method for quantifying and enabling the resiliency of a power distribution system (PDS) using analytical hierarchical process and percolation theory. Using this metric, quantitative analysis can be done to analyze the impact of possible control decisions to pro-actively enable the resilient operation of distribution system with multiple microgrids and other resources. Developed resiliency metric can also be used in short term distribution system planning. The benefits of being able to quantify resiliency can help distribution system planning engineers and operators to justify control actions, compare different reconfiguration algorithms, develop proactive control actions to avert power systemmore » outage due to impending catastrophic weather situations or other adverse events. Validation of the proposed method is done using modified CERTS microgrids and a modified industrial distribution system. Furthermore, simulation results show topological and composite metric considering power system characteristics to quantify the resiliency of a distribution system with the proposed methodology, and improvements in resiliency using two-stage reconfiguration algorithm and multiple microgrids.« less

  13. Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Guodong; Xu, Yan; Tomsovic, Kevin

    2016-01-01

    In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG and price responsive loads. The microgrid coordinates the energy consumption or production of its components and trades electricity in both the day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total costmore » of operation minus total benefit of demand. This formulation can be solved by mixed integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator, a battery and a responsive load show the advantage of stochastic optimization in addition to robust optimization.« less

  14. Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization

    SciTech Connect (OSTI)

    Liu, Guodong; Xu, Yan; Tomsovic, Kevin

    2016-01-01

    In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG and price responsive loads. The microgrid coordinates the energy consumption or production of its components and trades electricity in both the day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total cost of operation minus total benefit of demand. This formulation can be solved by mixed integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator, a battery and a responsive load show the advantage of stochastic optimization in addition to robust optimization.

  15. Confederated Tribes of Warm Springs - Biomass Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    05 June 2005 A Case Study: A Case Study: Warm Springs Warm Springs Cal Mukumoto Cal Mukumoto Warm Springs Forest Warm Springs Forest Products Industries Products Industries Warm Springs Indian Warm Springs Indian Reservation of Oregon Reservation of Oregon Warm Springs Forest Warm Springs Forest Products Industries (WSFPI) Products Industries (WSFPI) Enterprise of the Confederated Enterprise of the Confederated Tribes of the Warm Springs Tribes of the Warm Springs Reservation of Oregon

  16. Roller belleville spring damper

    SciTech Connect (OSTI)

    Hebel, J.B.

    1981-07-07

    A double acting damper for use in rotary drilling includes a splined tubular telescopic joint and employs plural paralleled stacks of double acting series stacked roller belleville spring washers in an annular pocket between the inner and outer tubular members of the joint. The springs, spline and telescopic bearings are in an oil filled volume sealed from the outside by a pressure seal at the lower end of the damper and a floating seal at the upper end. Electric and magnetic means are provided to check on the condition and quantity of the lubricant.

  17. Energy Matters - Spring 2002

    SciTech Connect (OSTI)

    2002-03-01

    Quarterly newsletter from DOE's Industrial Technologies Program to promote the use of energy-efficient industrial systems. The focus of the Spring 2002 Issue of Energy Matters focuses on premium energy efficiency systems, with articles on new gas technologies, steam efficiency, the Augusta Newsprint Showcase, and more.

  18. A MILP-Based Distribution Optimal Power Flow Model for Microgrid Operation

    SciTech Connect (OSTI)

    Liu, Guodong; Starke, Michael R; Zhang, Xiaohu; Tomsovic, Kevin

    2016-01-01

    This paper proposes a distribution optimal power flow (D-OPF) model for the operation of microgrids. The proposed model minimizes not only the operating cost, including fuel cost, purchasing cost and demand charge, but also several performance indices, including voltage deviation, network power loss and power factor. It co-optimizes the real and reactive power form distributed generators (DGs) and batteries considering their capacity and power factor limits. The D-OPF is formulated as a mixed-integer linear programming (MILP). Numerical simulation results show the effectiveness of the proposed model.

  19. Pebble Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Pebble Springs Wind Farm Facility Pebble Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Tuana Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  1. Thousand Springs Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Spring Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. 200 N. Spring Street

    Office of Legacy Management (LM)

    Dipartment of Energy. ,' Washington,DC20585 ., .\ FEB 1 7 ' 19g5' ,The Honorable Richa,rd. Riordon .', 200 N. Spring Street 'Los Angeles, California ,90012 '~ Dear Mayor Riordon: " Secretary of Energy Hazel O'Leary'has announced a neb approach to openness ins- the Department of Energy (DOE) and its communications with the public. fin support of this initiative, we are pleased~ to forward the enclosed information related to the. former Shannon Luminous Metals site in your jurisdiction that

  4. Borrego Solar (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    East Place: Lowell, Massachusetts Zip: 01852 Region: Greater Boston Area Sector: Solar Product: Design and install solar systems Website: www.borregosolar.com Coordinates:...

  5. Baltazor Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Baltazor Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location...

  6. Spring 2015 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders ...

  7. Spring 2016 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation ...

  8. Residential Energy Efficiency Stakeholder Meeting - Spring 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Building America Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 The ...

  9. Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs...

    Open Energy Info (EERE)

    p. () Related Geothermal Exploration Activities Activities (3) Gas Flux Sampling At Brady Hot Springs Area (Lechler And Coolbaugh, 2007) Gas Flux Sampling At Desert Peak Area...

  10. AMF Deployment, Steamboat Springs, Colorado

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and...

  11. Spring loaded thermocouple module

    DOE Patents [OSTI]

    McKelvey, T.E.; Guarnieri, J.J.

    1984-03-13

    A thermocouple arrangement is provided for mounting in a blind hole of a specimen. The thermocouple arrangement includes a cup-like holder member, which receives an elongated thermal insulator, one end of which is seated at an end wall of the holder. A pair of thermocouple wires, threaded through passageways in the insulator, extend beyond the insulator member, terminating in free ends which are joined together in a spherical weld bead. A spring, held captive within the holder, applies a bias force to the weld bead, through the insulator member. The outside surface of the holder is threaded for engagement with the blind hole of the specimen. When the thermocouple is installed in the specimen, the spherical contact surface of the weld bead is held in contact with the end wall of the blind hole, with a predetermined bias force.

  12. Spring loaded thermocouple module

    DOE Patents [OSTI]

    McKelvey, Thomas E.; Guarnieri, Joseph J.

    1985-01-01

    A thermocouple arrangement is provided for mounting in a blind hole of a specimen. The thermocouple arrangement includes a cup-like holder member, which receives an elongated thermal insulator, one end of which is seated at an end wall of the holder. A pair of thermocouple wires, threaded through passageways in the insulator, extend beyond the insulator member, terminating in free ends which are joined together in a spherical weld bead. A spring, held captive within the holder, applies a bias force to the weld bead, through the insulator member. The outside surface of the holder is threaded for engagement with the blind hole of the specimen. When the thermocouple is installed in the specimen, the spherical contact surface of the weld bead is held in contact with the end wall of the blind hole, with a predetermined bias force.

  13. Optimal planning and design of a renewable energy based supply system for microgrids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hafez, Omar; Bhattacharya, Kankar

    2012-03-03

    This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are alsomore » presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.« less

  14. Enhanced photocatalytic activity of Ag microgrid connected TiO{sub 2} nanocrystalline films

    SciTech Connect (OSTI)

    Pan Feng; Zhang Junying; Zhang Weiwei; Wang Tianmin; Cai Chao

    2007-03-19

    One reason for the high degree of photogenerated carrier recombination was found to be the charge accumulation caused by the uneven reaction area on the photocatalyst surface. The authors connected TiO{sub 2} nanoparticles with conducting Ag microgrid. Obvious photocatalytic activity improvement (81%) over the pure TiO{sub 2} was observed, which is attributed to the electron-hole pairs separation by the metal-semiconductor contact and the large specific area of metal grid, which increased the O{sub 2} absorption and transported the electrons to the sites needed for the deoxidize reactions. This structure lowers the electron accumulation on the particles and improves the utilization ratio of the photoexcited carriers.

  15. Spring loaded locator pin assembly

    DOE Patents [OSTI]

    Groll, T.A.; White, J.P.

    1998-03-03

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  16. Spring loaded locator pin assembly

    DOE Patents [OSTI]

    Groll, Todd A.; White, James P.

    1998-01-01

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  17. SpringWorks | Open Energy Information

    Open Energy Info (EERE)

    SpringWorks Jump to: navigation, search Name: SpringWorks Place: Minnetonka, Minnesota Zip: 55343-8684 Product: SpringWorks was created to discover and nurture incubation companies...

  18. NTSF Spring 2011 Agenda | Department of Energy

    Office of Environmental Management (EM)

    1 Agenda NTSF Spring 2011 Agenda Final Agenda for NTSF meeting in Denver Colorado. NTSF Spring 2011 Agenda (317.78 KB) More Documents & Publications NTSF 2014 Meeting Agenda NTSF Newcomers' Orientation NTSF Spring 2014 Preliminary

  19. Camp Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Camp Springs Wind Farm Facility Camp Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho...

  1. Warm Springs Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility...

  2. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Butte Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  3. Belmont Springs Hatchery Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Belmont Springs Hatchery Aquaculture Low Temperature Geothermal Facility Facility...

  4. Silver Spring Networks Inc | Open Energy Information

    Open Energy Info (EERE)

    Spring Networks Inc Jump to: navigation, search Name: Silver Spring Networks Inc Place: Redwood City, California Zip: 94063 Product: California-based, developer of utility...

  5. Spring Home Maintenance: Windows, Windows, Windows! | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring Home Maintenance: Windows, Windows, Windows Spring Home Maintenance: Windows, Windows, Windows April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air ...

  6. Wessington Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Wessington Springs Wind Farm Facility Wessington Springs Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. UVIG 2015 Spring Technical Workshop

    Broader source: Energy.gov [DOE]

    The 2015 UVIG Spring Technical Workshop will provide attendees with an expanded perspective on the status of wind and solar generation in utility systems in the United States and other countries....

  8. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2009-03-10

    Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York, (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage, and (3) to make an initial effort towards adding consideration of power quality and reliability (PQR) to the capabilities of DER-CAM. All of these objectives have been pursued via analysis of the attractiveness of a Consortium for Electric Reliability Technology Solutions (CERTS) Microgrid consisting of multiple nameplate 100 kW Tecogen Premium Power Modules (CM-100). This unit consists of an asynchronous inverter-based variable speed internal combustion engine genset with combined heat and power (CHP) and power surge capability. The essence of CERTS Microgrid technology is that smarts added to the on-board power electronics of any microgrid device enables stable and safe islanded operation without the need for complex fast supervisory controls. This approach allows plug and play development of a microgrid that can potentially provide high PQR with a minimum of specialized site-specific engineering. A notable feature of the CM-100 is its time-limited surge rating of 125 kW, and DER-CAM capability to model this feature was also a necessary model enhancement.

  9. Balancing Autonomy and Utilization of Solar Power and Battery Storage for Demand Based Microgrids.

    SciTech Connect (OSTI)

    Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  10. Motor gasoline assessment, Spring 1997

    SciTech Connect (OSTI)

    1997-07-01

    The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

  11. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Tomás; Marnay, Chris; Beer, Sebastian; Lai, Judy; Battaglia, Vincent

    2010-08-25

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from

  12. Biorenewable Deployment Consortium Spring Symposium

    Broader source: Energy.gov [DOE]

    The Biorenewable Deployment Consortium Spring Symposium will be held this year in downtown Charleston, South Carolina on March 30—31, 2016. Bioenergy Technologies Office Technology Manager Elliott Levine will be giving an update on the Office’s programs and recently announced solicitations and activities. The symposium will also include other federal agency updates and commercial progress panels, especially concerning sugar conversion processes.

  13. Microgrids: An emerging paradigm for meeting building electricityand heat requirements efficiently and with appropriate energyquality

    SciTech Connect (OSTI)

    Marnay, Chris; Firestone, Ryan

    2007-04-10

    The first major paradigm shift in electricity generation,delivery, and control is emerging in the developed world, notably Europe,North America, and Japan. This shift will move electricity supply awayfrom the highly centralised universal service quality model with which weare familiar today towards a more dispersed system with heterogeneousqualities of service. One element of dispersed control is the clusteringof sources and sinks into semi-autonomous mu grids (microgrids).Research, development, demonstration, and deployment (RD3) of mu gridsare advancing rapidly on at least three continents, and significantdemonstrations are currently in progress. This paradigm shift will resultin more electricity generation close to end-uses, often involvingcombined heat and power application for building heating and cooling,increased local integration of renewables, and the possible provision ofheterogeneous qualities of electrical service to match the requirementsof various end-uses. In Europe, mu grid RD3 is entering its third majorround under the 7th European Commission Framework Programme; in the U.S.,one specific mu grid concept is undergoing rigorous laboratory testing,and in Japan, where the most activity exists, four major publiclysponsored and two privately sponsored demonstrations are in progress.This evolution poses new challenges to the way buildings are designed,built, and operated. Traditional building energy supply systems willbecome much more complex in at least three ways: 1. one cannot simplyassume gas arrives at the gas meter, electricity at its meter, and thetwo systems are virtually independent of one another; rather, energyconversion, heat recovery and use, and renewable energy harvesting mayall be taking place simultaneously within the building energy system; 2.the structure of energy flows in the building must accommodate multipleenergy processes in a manner that permits high overall efficiency; and 3.multiple qualities of electricity may be supplied to

  14. Effects of a carbon tax on combined heat and power adoption by a microgrid

    SciTech Connect (OSTI)

    Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

    2002-10-01

    This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid ((mu)Grid) consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A (mu)Grid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The (mu)Grid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without CHP equipment, such as water- and space-heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the (mu)Grid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean generation in California.

  15. Colorado's Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Colorado's Hot Springs Author D. Frazier Published Pruett Publishing Company, 2000 DOI Not...

  16. NNMCAB Newsletter: Spring 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 NNMCAB Newsletter: Spring 2014 Inside This Issue: Environmental Justice Conference New Pojoaque Valley Student Art Chairs Corner Recommendation 2014-01 FY'16 Budget Priorities Volume II, Issue II - Spring 2014 (2.35

  17. Roosevelt Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Roosevelt Hot Springs Geothermal...

  18. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Ranch Geothermal Area (Redirected from Hot Springs Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hot Springs Ranch Geothermal Area Contents 1...

  19. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Area (Redirected from Pilgrim Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pilgrim Hot Springs Geothermal Area...

  20. Verde Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Verde Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Verde Hot Springs...

  1. Crane Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Crane Hot Springs Geothermal Area (Redirected from Crane Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Crane Hot Springs Geothermal Area Contents 1...

  2. Spring 2014 Composite Data Products: Backup Power

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Saur, G.

    2014-06-01

    This report includes 30 composite data products (CDPs) produced in Spring 2014 for fuel cell backup power systems.

  3. Spring 2006 ASA Meeting Disclaimer

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you may find unedited transcripts of EIA's spring 2006 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings may be found to the right of the Thursday and Friday transcripts. The public meeting took place April 6 and 7,

  4. Spring 2006 ASA Meeting Disclaimer

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2007 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place April 19 and

  5. Spring 2008 ASA Meeting Disclaimer

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2008 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place on April 9,

  6. Spring 2009 ASA Meeting Disclaimer

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2009 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place on April 2

  7. Leach Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Leach Hot Springs Geothermal Project Project Location Information...

  8. Neal Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Neal Hot Springs Geothermal Project Project Location Information...

  9. Stallion Springs, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Stallion Springs, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0888553, -118.6425912 Show Map Loading map......

  10. ARM - Field Campaign - Spring SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSpring SCM IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring SCM IOP 1998.04.27 - 1998.05.17 Lead Scientist : David Randall For data sets, see below. Abstract The Spring 1998 SCM/Cloud IOP was conducted from 27 April to 17 May 1998 at the ARM SGP site. All objectives outlined in the planning document were addressed to some degree. As is typical of mid-spring in Oklahoma, the

  11. Spring into Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into Energy Savings Spring into Energy Savings April 14, 2009 - 6:00am Addthis Amy Foster Parish No winter lasts forever; no spring skips its turn. - Hal Borland In my part of the country, winter seems to hang on an interminably long time. So I always look forward to the first signs of spring with unbridled glee. At the first glimpse of a cherry blossom, the winter boots are banished to the back of the closet and the sandals are put to work in earnest. But while spring may give the perfect

  12. FUPWG Spring 2013 Report and Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report and presentations from the Federal Utility Partnership Working Group's Spring 2013 meeting held May 22-23, 2013 in San Francisco, California.

  13. FUPWG Spring 2014 Agenda and Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Agenda and presentations from the Federal Utility Partnership Working Group's Spring 2014 meeting held May 7-8, 2014 in Virginia Beach, Virginia.

  14. Alaska Energy Pioneer Spring 2016 Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy's Alaska Energy Pioneer Spring 2016 newsletter highlights opportunities and actions to accelerate Alaska Native energy development.

  15. Paleomagnetic Measurements At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    of the Roosevelt Hot Springs Geothermal Area. Notes Paleomagnetic dating performed by Brown (1977) on opal samples in order to date the age of the hydrothermal system. The...

  16. Addison (Webster Springs), West Virginia: Energy Resources |...

    Open Energy Info (EERE)

    Addison (Webster Springs), West Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.4780477, -80.4090044 Show Map Loading map......

  17. STATISTICAL PERFORMANCE EVALUATION OF SPRING OPERATED PRESSURE...

    Office of Scientific and Technical Information (OSTI)

    VALVE RELIABILITY IMPROVEMENTS 2004 TO 2014 Citation Details In-Document Search Title: STATISTICAL PERFORMANCE EVALUATION OF SPRING OPERATED PRESSURE RELIEF VALVE RELIABILITY ...

  18. Detachment Faulting & Geothermal Resources - Pearl Hot Spring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic ...

  19. Glenwood Springs Amendments | Open Energy Information

    Open Energy Info (EERE)

    2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Glenwood Springs Amendments Citation BLM Colorado River Valley Field Office...

  20. Colorado Springs Utilities- Energy Efficient Builder Program

    Broader source: Energy.gov [DOE]

    The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR qualified homes within the CSU service area. The incentive range...

  1. STATISTICAL PERFORMANCE EVALUATION OF SPRING OPERATED PRESSURE...

    Office of Scientific and Technical Information (OSTI)

    STATISTICAL PERFORMANCE EVALUATION OF SPRING OPERATED PRESSURE RELIEF VALVE RELIABILITY IMPROVEMENTS 2004 TO 2014 Citation Details In-Document Search Title: STATISTICAL PERFORMANCE ...

  2. Weldon Spring Site Archived Soil & Groundwater Master Reports | Department

    Office of Environmental Management (EM)

    of Energy Weldon Spring Site Archived Soil & Groundwater Master Reports Weldon Spring Site Archived Soil & Groundwater Master Reports Weldon Spring Site Archived Soil & Groundwater Master Reports Weldon Spring Site - Chemical Plant East Plume (17.9 KB) Weldon Spring Site - Chemical Plant Quarry (17.53 KB) Weldon Spring Site - Chemical Plant VOC (16.06 KB) Weldon Spring Site - Chemical Plant West Plume (18.61 KB) More Documents & Publications South Valley Archived Soil &

  3. NTSF Spring 2012 Agenda | Department of Energy

    Office of Environmental Management (EM)

    2 Agenda NTSF Spring 2012 Agenda Meeting agenda with times and descriptions of events. NTSF Spring 2012 Agenda (449.02 KB) More Documents & Publications Northeast High-Level Radioactive Waste Transportation Task Force Agenda Midwestern Radioactive Materials Transportation Committee Agenda NTSF 2015

  4. Weldon Spring historical dose estimate

    SciTech Connect (OSTI)

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  5. Cross-shaped torsional spring

    DOE Patents [OSTI]

    Williamson, M.M.; Pratt, G.A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  6. Cross-shaped torsional spring

    DOE Patents [OSTI]

    Williamson, Matthew M.; Pratt, Gill A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  7. Silver Spring Networks comments on DOE NBP RFI: Data Access ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Access Silver Spring Networks comments on DOE NBP RFI: Data Access Silver Spring Networks comments on DOE NBP RFI: Data Access Silver Spring Networks comments on DOE NBP RFI: ...

  8. Spring and Summer Energy-Saving Tips | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips Simple and inexpensive actions can help you save energy and money during the warm spring and summer ...

  9. Spring/dimple instrument tube restraint

    DOE Patents [OSTI]

    DeMario, E.E.; Lawson, C.N.

    1993-11-23

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs. 7 figures.

  10. Spring/dimple instrument tube restraint

    DOE Patents [OSTI]

    DeMario, Edmund E.; Lawson, Charles N.

    1993-01-01

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs.

  11. NTSF Spring 2015 Registration Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Registration Announcement NTSF Spring 2015 Registration Announcement It's time to register for the 2015 U.S. Department of Energy National Transportation Stakeholders Forum being held in Albuquerque, New Mexico on May 12-14. NTSF Spring 2015 Registration Announcement (45.1 KB) More Documents & Publications NTSF Spring 2015 Save the Date NTSF Spring 2015 Registration Announcement Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico NTSF Spring 2013 Save The Date

  12. ARM - Field Campaign - Spring 2002 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSpring 2002 SCM IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring 2002 SCM IOP 2002.05.25 - 2002.06.15 Lead Scientist : David Randall For data sets, see below. Abstract The proposed single column model (SCM) IOP for Spring 2002 is the standard 3-week IOP with sonde launches every 3 hours from the Central Facility and four boundary facilities. The timing is selected to be most

  13. Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Bathhouse Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356, -106.692258 Show Map Loading map......

  14. Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002...

    Open Energy Info (EERE)

    Jemez Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Jemez Springs Area (Goff & Janik,...

  15. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  16. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1985) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  17. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1985) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  18. Silver Spring Networks comments on DOE NBP RFI: Comms Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comms Requirements Silver Spring Networks comments on DOE NBP RFI: Comms Requirements Comments of Silver Spring Networks on Implementing the National Broadband Plan by Studying the ...

  19. Crump's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Survey GTP ARRA Spreadsheet Ground Magnetics At Crump's Hot Springs Area (DOE GTP) Ground Magnetics GTP ARRA Spreadsheet Reflection Survey At Crump's Hot Springs Area (DOE...

  20. Reflection Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    At Neal Hot Springs Geothermal Area (Colwell, Et Al., 2012) Exploration Activity Details Location Neal Hot Springs Geothermal Area Exploration Technique Reflection Survey Activity...

  1. Valles Caldera - Sulphur Springs Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Valles Caldera - Sulphur Springs Geothermal Area (Redirected from Valles Caldera - Sulphur Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Valles Caldera...

  2. GEOTHERMAL CASE STUDY: WAUNITA HOT SPRINGS, GUNNISON COUNTY,...

    Open Energy Info (EERE)

    GEOTHERMAL CASE STUDY: WAUNITA HOT SPRINGS, GUNNISON COUNTY, COLORADO Travis Brown and Kamran Bakhsh, Colorado School of Mines I. Details 1. Area Overview Waunita Hot Springs is...

  3. Valles Caldera - Sulphur Springs Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Valles Caldera - Sulphur Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Valles Caldera - Sulphur Springs Geothermal Area Contents 1 Area...

  4. Gila Hot Springs District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Show Map...

  5. Masson Radium Springs Farm Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Temperature Geothermal Facility Facility Masson Radium Springs Farm Sector Geothermal energy Type Greenhouse Location Radium Springs, New Mexico Coordinates 32.501453,...

  6. Ch. IV, A hydrogeochemical comparison of the Waunita Hot Springs...

    Open Energy Info (EERE)

    A hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle Rock and Anderson Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  7. Port Moller Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Port Moller Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Port Moller Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  8. Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

  9. Steamboat Springs Health and Rec. Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Springs Health and Rec. Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Springs Health and Rec. Pool & Spa Low Temperature Geothermal...

  10. Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility...