Powered by Deep Web Technologies
Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Radiobiology of normal rat lung in Boron Neutron Capture Therapy  

E-Print Network (OSTI)

Boron Neutron Capture Therapy (BNCT) is a binary cancer radiation therapy that utilizes biochemical tumor cell targeting and provides a mixed field of high and low Linear Energy Transfer (LET) radiation with differing ...

Kiger, Jingli Liu

2006-01-01T23:59:59.000Z

2

BERAC Subcommittee Report on Boron Neutron Capture Therapy (BNCT) Clinical  

Office of Science (SC) Website

BERAC Subcommittee Report on Boron Neutron Capture BERAC Subcommittee Report on Boron Neutron Capture Therapy (BNCT) Clinical Trials. Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings Members Charges/Reports Current BERAC Charges Archive of BERAC Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Charges/Reports BERAC Subcommittee Report on Boron Neutron Capture Therapy (BNCT) Clinical Trials. Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Subcommittee Report on Boron Neutron Capture Therapy (BNCT) Clinical Trials. In response to the charge letter from Dr. Martha Krebs, Office of Science, dated November 5, 1998. Committee members: Bijay Mukherji, M.D., Chair, University of Connecticut Health Sciences Center, Walter Curran, M.D., Thomas Jefferson University;

3

Boron containing compounds and their preparation and use in neutron capture therapy  

DOE Patents (OSTI)

The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy.

Gabel, Detlef (Bremen, DE)

1992-01-01T23:59:59.000Z

4

Development of a gamma ray telescope for online synovial dosimetry in boron neutron capture synovectomy  

E-Print Network (OSTI)

Boron Neutron Capture Synovectomy (BNCS) is a novel application of the č?B(n,?) reaction for potential treatment of rheumatoid arthritis. During BNCS clinical trials, real-time knowledge of boron dose delivered to the ...

Jiang, Hongyu, 1971-

2003-01-01T23:59:59.000Z

5

Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy  

SciTech Connect

Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

Herrera, Maria S.; Gonzalez, Sara J. [Comision National de Energia Atomica and CONICET, Buenos Aires (Argentina); Minsky, Daniel M.; Kreiner, Andres J. [Comision National de Energia Atomica and CONICET, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM, Buenos Aires (Argentina)

2010-08-04T23:59:59.000Z

6

Design and construction of an optimized neutron beam shaping assembly for Boron Neutron Capture Therapy at the Tandar accelerator  

Science Conference Proceedings (OSTI)

In this work we present an optimized neutron beam shaping assembly for epithermal Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) and discuss the simulations leading to its design.

Burlon, A. [Universidad de Gral San Martin (Argentina); Comision Nacional de Energia Atomica, (Argentina); Fundacion Sauberan (Argentina); Kreiner, A. J. [Universidad de Gral San Martin (Argentina); Comision Nacional de Energia Atomica (Argentina); CONICET (Argentina); Valda, A. A.; Somacal, H. [Universidad de Gral San Martin (Argentina); Minsky, D. M. [Comision Nacional de Energia Atomica (Argentina); Universidad de Gral San Martin (Argentina)

2007-02-12T23:59:59.000Z

7

Design of a boron neutron capture enhanced fast neutron therapy assembly  

SciTech Connect

The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm{sup 2} treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm{sup 2} collimation was 21.9% per 100-ppm {sup 10}B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm{sup 2} fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm{sup 2} collimator. Five 1.0-cm thick 20x20 cm{sup 2} tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm {sup 10}B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in the head phantom for the 5.0-cm thick tungsten filter is (16.6 {+-} 1.8)%, which agrees well with the MCNP simulation of the simplified BNCEFNT assembly, (16.4 {+-} 0.5)%. The error in the calculated dose enhancement only considers the statistical uncertainties. The total dose rate measured at 5.0-cm depth using the non-borated ion chamber is (0.765 {+-} 0.076) Gy/MU, about 61% of the fast neutron standard dose rate (1.255Gy/MU) at 5.0-cm depth for the standard 10x10 cm{sup 2} treatment beam. The increased doses to other organs due to the use of the BNCEFNT assembly were calculated using MCNP5 and a MIRD phantom. The activities of the activation products produced in the BNCEFNT assembly after neutron beam delivery were computed. The photon ambient dose rate due to the radioactive activation products was also estimated.

Wang, Zhonglu; /Georgia Tech

2006-08-01T23:59:59.000Z

8

MCNP speed advances for boron neutron capture therapy  

Science Conference Proceedings (OSTI)

The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject`s head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers.

Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

1998-04-01T23:59:59.000Z

9

Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy  

E-Print Network (OSTI)

There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

2003-01-01T23:59:59.000Z

10

A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture Therapy Application  

DOE Green Energy (OSTI)

Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator applications. By using a 2.5-cm-diameter RF-driven multicusp source and a computer designed 100 keV accelerator column, peak extractable hydrogen current exceeding 1 A from a 3-mm-diameter aperture, together with H{sup +} yields over 94% have been achieved. These experimental findings together with recent moderator design will enable one to develop compact 14 MeV neutron generators based on the D-T fusion reaction. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without pumping. With a 120 keV and 1 A deuteron beam, it is estimated that a treatment time of {approx} 45 minutes is needed for boron neutron capture therapy.

Leung, K.-N.; Leung, K.N.; Lee, Y.; Verbeke, J.M.; Vurjic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

1998-06-01T23:59:59.000Z

11

Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method  

DOE Patents (OSTI)

A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

Yoon, Woo Y. (Idaho Falls, ID); Jones, James L. (Idaho Falls, ID); Nigg, David W. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

12

Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor  

SciTech Connect

During the past several years, there has been growing interest in Boron Neutron Capture Therapy (BNCT) using epithermal neutron beams. The dosimetry of these beams is challenging. The incident beam is comprised mostly of epithermal neutrons, but there is some contamination from photons and fast neutrons. Within the patient, the neutron spectrum changes rapidly as the incident epithermal neutrons scatter and thermalize, and a photon field is generated from neutron capture in hydrogen. In this paper, a method to determine the doses from thermal and fast neutrons, photons, and the B-10([ital n],[alpha])Li-7 reaction is presented. The photon and fast neutron doses are measured with ionization chambers, in realistic phantoms, using the dual chamber technique. The thermal neutron flux is measured with gold foils using the cadmium difference technique; the thermal neutron and B-10 doses are determined by the kerma factor method. Representative results are presented for a unilateral irradiation of the head. Sources of error in the method as applied to BNCT dosimetry, and the uncertainties in the calculated doses are discussed.

Rogus, R.D.; Harling, O.K.; Yanch, J.C. (Massachusetts Institute of Technology, Nuclear Reactor Laboratory, Cambridge, Massachusetts 02139 (United States))

1994-10-01T23:59:59.000Z

13

Optimization of Boron Neutron Capture Therapy for the Treatment of Undifferentiated Thyroid Cancer  

Science Conference Proceedings (OSTI)

Purpose: To analyze the possible increase in efficacy of boron neutron capture therapy (BNCT) for undifferentiated thyroid carcinoma (UTC) by using p-boronophenylalanine (BPA) plus 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX (BOPP) and BPA plus nicotinamide (NA) as a radiosensitizer of the BNCT reaction. Methods and Materials: Nude mice were transplanted with a human UTC cell line (ARO), and after 15 days they were treated as follows: (1) control, (2) NCT (neutrons alone), (3) NCT plus NA (100 mg/kg body weight [bw]/day for 3 days), (4) BPA (350 mg/kg bw) + neutrons, (5) BPA + NA + neutrons, and (6) BPA + BOPP (60 mg/kg bw) + neutrons. The flux of the mixed (thermal + epithermal) neutron beam was 2.8 x 10{sup 8} n/cm{sup 2}/sec for 83.4 min. Results: Neutrons alone or with NA caused some tumor growth delay, whereas in the BPA, BPA + NA, and BPA + BOPP groups a 100% halt of tumor growth was observed in all mice at 26 days after irradiation. When the initial tumor volume was 50 mm{sup 3} or less, complete remission was found with BPA + NA (2 of 2 mice), BPA (1 of 4), and BPA + BOPP (7 of 7). After 90 days of complete regression, recurrence of the tumor was observed in BPA + NA (2 of 2) and BPA + BOPP (1 of 7). The determination of apoptosis in tumor samples by measurements of caspase-3 activity showed an increase in the BNCT (BPA + NA) group at 24 h (p < 0.05 vs. controls) and after the first week after irradiation in the three BNCT groups. Terminal transferase dUTP nick end labeling analysis confirmed these results. Conclusions: Although NA combined with BPA showed an increase of apoptosis at early times, only the group irradiated after the combined administration of BPA and BOPP showed a significantly improved therapeutic response.

Dagrosa, Maria Alejandra; Thomasz, Lisa M.Sc. [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Longhino, Juan [Nuclear Reactor RA-6 (Bariloche Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Perona, Marina [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Calzetta, Osvaldo; Blaumann, Herman [Nuclear Reactor RA-6 (Bariloche Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Rebagliati, Raul Jimenez [Department of Chemistry (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Cabrini, Romulo [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Kahl, Steven [Department of Pharmaceutical Chemistry, University of California, San Francisco, CA (United States); Juvenal, Guillermo Juan [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Pisarev, Mario Alberto [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires (Argentina)], E-mail: pisarev@cnea.gov.ar

2007-11-15T23:59:59.000Z

14

Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model  

SciTech Connect

Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA–BNCT, boronophenylalanine (BPA) ? neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA–BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks posttreatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA–BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mgfell significantly to 19 ± 16 mg for BPA–BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA–BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA– BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.

David W. Nigg

2012-08-01T23:59:59.000Z

15

Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report  

SciTech Connect

The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

Kabalka, G. W.

2005-06-28T23:59:59.000Z

16

Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)  

SciTech Connect

In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

Burlon, Alejandro A.; Valda, Alejandro A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av Gral. Paz 1499, San Martin (1650) (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, M. Irigoyen 3100 (1650), San Martin (Argentina); Girola, Santiago [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av Gral. Paz 1499, San Martin (1650) (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, M. Irigoyen 3100 (1650), San Martin (Argentina); Vidt Centro Medico, Vidt 1924 (1425), Buenos Aires (Argentina); Minsky, Daniel M.; Kreiner, Andres J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av Gral. Paz 1499, San Martin (1650) (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, M. Irigoyen 3100 (1650), San Martin (Argentina); CONICET, Av Rivadavia 1917 (1033), Buenos Aires (Argentina)

2010-08-04T23:59:59.000Z

17

First Evaluation of the Biologic Effectiveness Factors of Boron Neutron Capture Therapy (BNCT) in a Human Colon Carcinoma Cell Line  

Science Conference Proceedings (OSTI)

Purpose: DNA lesions produced by boron neutron capture therapy (BNCT) and those produced by gamma radiation in a colon carcinoma cell line were analyzed. We have also derived the relative biologic effectiveness factor (RBE) of the neutron beam of the RA-3- Argentine nuclear reactor, and the compound biologic effectiveness (CBE) values for p-boronophenylalanine ({sup 10}BPA) and for 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX ({sup 10}BOPP). Methods and Materials: Exponentially growing human colon carcinoma cells (ARO81-1) were distributed into the following groups: (1) BPA (10 ppm {sup 10}B) + neutrons, (2) BOPP (10 ppm {sup 10}B) + neutrons, (3) neutrons alone, and (4) gamma rays ({sup 60}Co source at 1 Gy/min dose-rate). Different irradiation times were used to obtain total absorbed doses between 0.3 and 5 Gy ({+-}10%) (thermal neutrons flux = 7.5 10{sup 9} n/cm{sup 2} sec). Results: The frequency of micronucleated binucleated cells and the number of micronuclei per micronucleated binucleated cells showed a dose-dependent increase until approximately 2 Gy. The response to gamma rays was significantly lower than the response to the other treatments (p < 0.05). The irradiations with neutrons alone and neutrons + BOPP showed curves that did not differ significantly from, and showed less DNA damage than, irradiation with neutrons + BPA. A decrease in the surviving fraction measured by 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay as a function of the absorbed dose was observed for all the treatments. The RBE and CBE factors calculated from cytokinesis block micronucleus (CBMN) and MTT assays were, respectively, the following: beam RBE: 4.4 {+-} 1.1 and 2.4 {+-} 0.6; CBE for BOPP: 8.0 {+-} 2.2 and 2.0 {+-} 1; CBE for BPA: 19.6 {+-} 3.7 and 3.5 {+-} 1.3. Conclusions: BNCT and gamma irradiations showed different genotoxic patterns. To our knowledge, these values represent the first experimental ones obtained for the RA-3 in a biologic model and could be useful for future experimental studies for the application of BNCT to colon carcinoma.

Dagrosa, Maria Alejandra, E-mail: dagrosa@cnea.gov.a [Department of Radiobiology, National Atomic Energy Commission, Buenos Aires (Argentina); National Research Council (Argentina); Crivello, Martin [Department of Radiobiology, National Atomic Energy Commission, Buenos Aires(Argentina); Perona, Marina [Department of Radiobiology, National Atomic Energy Commission, Buenos Aires (Argentina); National Research Council (Argentina); Thorp, Silvia; Santa Cruz, Gustavo Alberto [Department of Instrumentation and Control, National Atomic Energy Commission, Buenos Aires (Argentina); Pozzi, Emiliano [Argentina Reactor, National Atomic Energy Commission, Buenos Aires (Argentina); Casal, Mariana [Institute of Oncology 'Angel H. Roffo', University of Buenos Aires (Argentina); Thomasz, Lisa; Cabrini, Romulo [Department of Radiobiology, National Atomic Energy Commission, Buenos Aires (Argentina); Kahl, Steven [Department of Pharmaceutical Chemistry, University of California, San Francisco, CA (United States); Juvenal, Guillermo Juan [Department of Radiobiology, National Atomic Energy Commission, Buenos Aires (Argentina); National Research Council (Argentina); Pisarev, Mario Alberto [Department of Radiobiology, National Atomic Energy Commission, Buenos Aires (Argentina); National Research Council (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires (Argentina)

2011-01-01T23:59:59.000Z

18

Lithium-6 filter for a fission converter-based Boron Neutron Capture Therapy irradiation facility beam  

E-Print Network (OSTI)

(cont.) A storage system was designed to contain the lithium-6 filter safely when it is not in use. A mixed field dosimetry method was used to measure the photon, thermal neutron and fast neutron dose. The measured advantage ...

Gao, Wei, Ph. D.

2005-01-01T23:59:59.000Z

19

Phantoms with {sup 10}BF{sub 3} detectors for boron neutron capture therapy applications  

Science Conference Proceedings (OSTI)

Two acrylic cube phantoms have been constructed for BNCT applications that allow the depth distribution of neutrons to be measured with miniature {sup 10}BF{sub 3} detectors in 0.5-cm steps beginning at 1-cm depth. Sizes and weights of the cubes are 14 cm, 3.230 kg, and 11 cm, 1.567 kg. Tests were made with the epithermal neutron beam from the patient treatment port of the Brookhaven Medical Research Reactor. Thermal neutron depth profiles were measured with a bare {sup 10}BF{sub 3} detector at a reactor power of 50 W, and Cd-covered detector profiles were measured at a reactor power of 1 kW. The resulting plots of counting rate versus depth illustrate the dependence of neutron moderation on the size of the phantom. But more importantly the data can serve as benchmarks for testing the thermal and epithermal neutron profiles obtained with accelerator-based BNCT facilities. Such tests could be made with these phantoms at power levels about five orders of magnitude lower than that required for the treatment of patients with brain tumors. {copyright} {ital 1998 American Association of Physicists in Medicine.}

Alburger, D.E.; Raparia, D.; Zucker, M.S. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

1998-09-01T23:59:59.000Z

20

Computer simulation of neutron capture therapy.  

E-Print Network (OSTI)

Analytical methods are developed to simulate on a large digital computer the production and use of reactor neutron beams f or boron capture therapy of brain tumors. The simulation accounts for radiation dose distributions ...

Olson, Arne Peter

1967-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Workshop on neutron capture therapy  

SciTech Connect

Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

Fairchild, R.G.; Bond, V.P. (eds.)

1986-01-01T23:59:59.000Z

22

Neutron detectors comprising boron powder  

DOE Patents (OSTI)

High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

2013-05-21T23:59:59.000Z

23

Computational aspects of treatment planning for neutron capture therapy  

E-Print Network (OSTI)

Boron Neutron Capture Therapy (BNCT) is a biochemically targeted form of binary radiation therapy that has the potential to deliver radiation to cancers with cellular dose selectivity. Accurate and efficient treatment ...

Albritton, James Raymond, 1977-

2010-01-01T23:59:59.000Z

24

Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer  

Science Conference Proceedings (OSTI)

We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

D. W. Nigg

2012-01-01T23:59:59.000Z

25

Thiourea derivatives, methods of their preparation and their use in neutron capture therapy of maligant melanoma  

DOE Patents (OSTI)

Boronated thioureas have been proposed for neutron capture therapy, but no boronated analog has been reported in the literature. The major difficulty in synthesizing such derivatives lies in the properties of the dihydroxylboryl group, which is easily cleaved off organic molecules by either acids or alkali. The aim of the present invention is to provide stable boron-containing thiourea derivatives for neutron capture therapy, and give procedures for their synthesis. 17 refs., 9 figs., 6 tabs.

Gabel, D.

1989-01-27T23:59:59.000Z

26

Comparison of doses to normal brain in patients treated with boron neuron capture therapy at Brookhaven National Laboratory and MIT  

E-Print Network (OSTI)

A number of boron neutron capture therapy (BNCT) clinical trials are currently underway around the world. Due to the small number of patients at each of the individual centers, it is desirable to pool the clinical data ...

Turcotte, Julie Catherine

2004-01-01T23:59:59.000Z

27

Proceedings of the first international symposium on neutron capture therapy  

SciTech Connect

This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration.

Fairchild, R.G.; Brownell, G.L. (eds.)

1982-01-01T23:59:59.000Z

28

Benchmarking a surrogate reaction for neutron capture  

Science Conference Proceedings (OSTI)

{sup 171,173}Yb(d,p{gamma}) reactions are measured, with the goal of extracting the neutron capture cross-section ratio as a function of the neutron energy using the external surrogate ratio method. The cross-section ratios obtained are compared to the known neutron capture cross sections. Although the Weisskopf-Ewing limit is demonstrated not to apply for these low neutron energies, a prescription for deducing surrogate cross sections is presented. The surrogate cross-section ratios deduced from the {sup 171,173}Yb(d,p{gamma}) measurements agree with the neutron capture results within 15%.

Hatarik, R.; Cizewski, J. A.; Hatarik, A. M.; O'Malley, P. D. [Rutgers University, New Brunswick, New Jersey 08903 (United States); Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Escher, J. E.; Lesher, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gibelin, J.; Phair, L.; Rodriguez-Vieitez, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Goldblum, B. L. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nuclear Engineering Department, University of California, Berkeley, California 94720 (United States); Swan, T. [Rutgers University, New Brunswick, New Jersey 08903 (United States); University of Surrey, Guildford GU2 7XH, Surrey (United Kingdom); Wiedeking, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2010-01-15T23:59:59.000Z

29

Boron-Lined Neutron Detector Measurements  

Science Conference Proceedings (OSTI)

Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a newly designed boron-lined proportional counter option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Reuter Stokes.

Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Siciliano, Edward R.

2009-11-02T23:59:59.000Z

30

Boron-Lined Neutron Detector Measurements  

Science Conference Proceedings (OSTI)

PNNL-18938 Revision Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a newly designed boron-lined proportional counter option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of two successive prototypes of a system manufactured by GE Reuter Stokes.

Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Siciliano, Edward R.; Woodring, Mitchell L.

2010-03-07T23:59:59.000Z

31

High Resolution Quantitative Auto-Radiography to determine microscopic distributions of B-10 in neutron capture therapy  

E-Print Network (OSTI)

The success of Boron Neutron Capture Therapy (BNCT) is heavily dependent on the microscopic distribution of B-10 in tissue. High Resolution Quantitative Auto-Radiography (HRQAR) is a potentially valuable analytical tool ...

Harris, Thomas C. (Thomas Cameron)

2006-01-01T23:59:59.000Z

32

Determination of thermal neutron capture gamma yields.  

E-Print Network (OSTI)

A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

Harper, Thomas Lawrence

1969-01-01T23:59:59.000Z

33

Neutron capture in the r-process  

Science Conference Proceedings (OSTI)

Recently we have shown that neutron capture rates on nuclei near stability significantly influence the r-process abundance pattern. We discuss the different mechanisms by which the abundance pattern is sensitive to the capture rates and identify key nuclei whose rates are of particular im- portance. Here we consider nuclei in the A = 130 and A = 80 regions.

Surman, Rebecca [Union College; Mclaughlin, Gail C [North Carolina State University; Mumpower, Matthew [North Carolina State University; Hix, William Raphael [ORNL; Jones, K. L. [University of Tennessee, Knoxville (UTK)

2010-01-01T23:59:59.000Z

34

License amendment for neutron capture therapy at the MIT research reactor  

SciTech Connect

This paper reports the issuance by the U.S. Nuclear Regulatory Commission (NRC) of a license amendment to the Massachusetts Institute of Technology (MIT) for the use of the MIT Research Reactor's (MITR-II) medical therapy facility beam for the treatment of humans using neutron capture therapy (NCT). This amendment is one of 11 required approvals. The others are those of internal MIT committees, review panels of the Tufts-New England Medical Center (NEMC), which is directing the program jointly with MIT, that of the U.S. Food and Drug Administration, and an NRC amendment to the NEMC hospital license. This amendment is the first of its type to be issued by NRC, and as such it establishes a precedent for the conduct of human therapy using neutron beams. Neutron capture therapy is a bimodal method for treating cancer that entails the administration of a tumor-seeking boronated drug followed by the irradiation of the target organ with neutrons. The latter cause boron nuclei to fission and thereby release densely ionizing helium and lithium nuclei, which destroy cancerous cells while leaving adjacent healthy cells undamaged. Neutron capture therapy is applicable to glioblastoma multiforme (brain tumors) and metastasized melanoma (skin cancer). Both Brookhaven National Laboratory and MIT conducted trials of NCT more than 30 yr ago. These were unsuccessful because the available boron drugs did not concentrate sufficiently in tumor and because the thermal neutron beams that were used did not enable neutrons to travel deep enough into the brain.

Bernard, J.A. (Massachusetts Institute of Technology, Cambride, MA (United States))

1993-01-01T23:59:59.000Z

35

Introduction to Neutron Coincidence Counter Design Based on Boron-10  

SciTech Connect

The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

2012-01-22T23:59:59.000Z

36

DYNAMICAL CAPTURE BINARY NEUTRON STAR MERGERS  

SciTech Connect

We study dynamical capture binary neutron star mergers as may arise in dense stellar regions such as globular clusters. Using general-relativistic hydrodynamics, we find that these mergers can result in the prompt collapse to a black hole or in the formation of a hypermassive neutron star, depending not only on the neutron star equation of state but also on impact parameter. We also find that these mergers can produce accretion disks of up to a tenth of a solar mass and unbound ejected material of up to a few percent of a solar mass. We comment on the gravitational radiation and electromagnetic transients that these sources may produce.

East, William E.; Pretorius, Frans [Department of Physics, Princeton University, Princeton, NJ 08544 (United States)

2012-11-20T23:59:59.000Z

37

Uranium Neutron Coincidence Collar Model Utilizing Boron-10 Lined Tubes  

SciTech Connect

The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report, providing results for model development of Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) designs, is a deliverable under Task 2 of the project.

Rogers, Jeremy L.; Ely, James H.; Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

2012-09-18T23:59:59.000Z

38

Boron-Lined Multitube Neutron Proportional Counter Test  

Science Conference Proceedings (OSTI)

Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, “multitube” proportional counter manufactured by Centronic Ltd. (Surry, U.K. and Houston, TX). This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detector.

Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

2010-09-07T23:59:59.000Z

39

Direct neutron capture and related mechanisms  

Science Conference Proceedings (OSTI)

We consider the evidence for the role of direct and related mechanisms in neutron capture at low and medium energies. Firstly, we compare the experimental data on the thermal neutron cross sections for El transitions in light nuclei with careful estimates of direct capture. Over the full range of light nuclei with small cross sections direct capture is found to be the predominant mechanism, in some cases being remarkable accurate, but in a few showing evidence for collective effects. When resonance effects become substantial there is evidence for an important contribution from the closely related valence mechanism, but full agreement with the data in such cases appears to require the introduction of a more generalised valence model. The possibility of direct and valence mechanisms playing a role in M1 capture is studied, and it is concluded that in light nuclei at relatively low gamma ray energies, it does indeed play some role. In heavier nuclei it appears that the evidence, especially from the correlations between E1 and M1 transitions to the same final states, favours the hypothesis that the main transition strength is governed by the M1 giant resonance. 31 refs., 2 tabs.

Lynn, J.E. (Los Alamos National Lab., NM (USA)); Raman, S. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

40

Boronated porhyrins and methods for their use  

DOE Patents (OSTI)

The present invention covers boronated porphyrins containing multiple carborane cages which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies such as boron neutron capture therapy and photodynamic therapy. 3 figs.

Miura, M.; Shelnutt, J.A.; Slatkin, D.N.

1999-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

In vivo boron-10 analysis for the pre-screening of compounds for BNCS  

E-Print Network (OSTI)

An in vivo boron-10 screening technique was developed to analyze the boron biodistribution in a rabbit knee for the pre-screening of compounds for Boron Neutron Capture Synovectomy (BNCS). Three approaches were investigated: ...

Zhu, Xuping, 1970-

2004-01-01T23:59:59.000Z

42

Neutron tube design study for boron neutron capture therapy application  

E-Print Network (OSTI)

This work is supported by Sandia National Laboratory and theThis work is supported by Sandia National Laboratory and the

1999-01-01T23:59:59.000Z

43

Neutron Tube Design Study for Boron Neutron Capture Therapy Application  

E-Print Network (OSTI)

This work is supported by Sandia National Laboratory and theThis work is supported by Sandia National Laboratory and the

1998-01-01T23:59:59.000Z

44

Neutron capture therapy: Years of experimentation---Years of reflection  

Science Conference Proceedings (OSTI)

This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program.

Farr, L.E.

1991-12-16T23:59:59.000Z

45

Boron-Lined Straw-Tube Neutron Detector Test  

Science Conference Proceedings (OSTI)

Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a boron-lined proportional counter design variation. In the testing described here, the neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Proportional Technologies, Inc, was tested.

Kouzes, Richard T.; Ely, James H.; Stromswold, David C.

2010-08-07T23:59:59.000Z

46

Neutron capture therapy with deep tissue penetration using capillary neutron focusing  

DOE Patents (OSTI)

An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

Peurrung, Anthony J. (Richland, WA)

1997-01-01T23:59:59.000Z

47

Neutron capture rates and r-process nucleosynthesis  

E-Print Network (OSTI)

Simulations of r-process nucleosynthesis require nuclear physics information for thousands of neutron-rich nuclear species from the line of stability to the neutron drip line. While arguably the most important pieces of nuclear data for the r-process are the masses and beta decay rates, individual neutron capture rates can also be of key importance in setting the final r-process abundance pattern. Here we consider the influence of neutron capture rates in forming the A~80 and rare earth peaks.

Surman, R; McLaughlin, G C; Sinclair, R; Hix, W R; Jones, K L

2013-01-01T23:59:59.000Z

48

Neutron capture rates and r-process nucleosynthesis  

E-Print Network (OSTI)

Simulations of r-process nucleosynthesis require nuclear physics information for thousands of neutron-rich nuclear species from the line of stability to the neutron drip line. While arguably the most important pieces of nuclear data for the r-process are the masses and beta decay rates, individual neutron capture rates can also be of key importance in setting the final r-process abundance pattern. Here we consider the influence of neutron capture rates in forming the A~80 and rare earth peaks.

R. Surman; M. Mumpower; G. C. McLaughlin; R. Sinclair; W. R. Hix; K. L. Jones

2013-08-31T23:59:59.000Z

49

Plate-shape voids in neutron irradiated boron carbide  

SciTech Connect

From symposium on pore structures and properties of materials; Prague, Czechoslovakia (18 Sep 1973). Several processes are known to produce lattice vacancies in sufficient excess of the thermal equilibrium concentration that they precipitate out as voids. In the case of certain nuclear transmutations, a solid solution of gas is simultaneously produced at a concentration corresponding to a high equilibrium pressure and, if this gas diffuses into the voids, the equilibrium shape for the void is a thin flat cavity. Transmission electron microscopy was used to examine both the nucleation of such voids in neutron- irradiated boron carbide and their transformation to more compact shapes during fission gas release. (auth)

Ashbee, K.H.G.; DuBose, C.K.H.

1974-04-30T23:59:59.000Z

50

Initiation of a phase-I trial of neutron capture therapy at the MIT research reactor  

Science Conference Proceedings (OSTI)

The Massachusetts Institute of Technology (MIT), the New England Medical Center (NEMC), and Boston University Medical Center (BUMC) initiated a phase-1 trial of boron neutron capture therapy (BNCT) on September 6, 1994, at the 5-MW(thermal) MIT research reactor (MITR). A novel form of experimental cancer therapy, BNCT is being developed for certain types of highly malignant brain tumors such as glioblastoma and melanoma. The results of the phase-1 trials on patients with tumors in the legs or feet are described.

Harling, O.K.; Bernard, J.A.; Yam, Chun-Shan [Massachussets Institute of Technology, Cambridge, MA (United States)] [and others

1995-12-31T23:59:59.000Z

51

Neutron capture therapy: Years of experimentation---Years of reflection  

SciTech Connect

This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven`s Medical Research Center program.

Farr, L.E.

1991-12-16T23:59:59.000Z

52

Cosmogenic neutron-capture-produced nuclides in stony meteorites  

SciTech Connect

The distribution of neutrons with energies below 15 MeV in spherical stony meteoroids is calculated using the ANISN neutron-transport code. The source distributions and intensities of neutrons are calculated using cross sections for the production of tritium. The meteoroid's radius and chemical composition strongly influence the total neutron flux and the neutron energy spectrum, while the location within a meteoroid only affects the relative neutron intensities. Meteoroids need to have radii of more than 50 g/cm/sup 2/ before they have appreciable fluxes of neutrons near thermal energies. Meteoroids with high hydrogen or low iron contents can thermalize neutrons better than chondrites. Rates for the production of /sup 60/Co, /sup 59/Ni, and /sup 36/Cl are calculated with evaluated neutron-capture cross sections and neutron fluxes determined for carbonaceous chondrites with high hydrogen contents, L-chondrites, and aubrites. For most meteoroids with radii < 300 g/cm/sup 2/, the production rates of these neutron-capture nuclides increase monotonically with depth. The highest calculated /sup 60/Co production rate in an ordinary chondrite is 375 atoms/(min g-Co) at the center of a meteoroid with a 250 g/cm/sup 2/ radius. The production rates calculated for spallogenic /sup 60/Co and /sup 59/Ni are greater than the neutron-capture rates for radii less than approx.50-75 g/cm/sup 2/. Only for very large meteoroids and chlorine-rich samples is the neutron-capture production of /sup 36/Cl important. The results of these calculations are compared with those of previous calculations and with measured activities in many meteorites. 44 refs., 15 figs., 1 tab.

Spergel, M.S.; Reedy, R.C.; Lazareth, O.W.; Levy, P.W.

1985-01-01T23:59:59.000Z

53

Applications and misapplications of the channel-capture formalism of direct neutron capture  

Science Conference Proceedings (OSTI)

We discuss the channel-capture approximation of slow neutron direct-capture theory. We show that this approximation gives a generally good representation of the neutron capture cross sections for several electric dipole transitions in a broad range of nuclides from A = 9 to A = 136; these are mostly near-spherical nuclei. Despite this body of agreement, we examine the accuracy we can expect from the simple channel-capture theory. Comparison with calculations of the potential-capture cross section from physically more realistic optical model calculations show that, in general, the channel-capture cross section can be up to approx. =40% in error. In cases where the expected channel-capture cross section is much smaller than the ''hard-sphere'' capture cross-section estimate, the disagreement with potential capture can be much worse than this. Also, in these cases, compound-nucleus capture can be of comparable or greater magnitude. These effects have been shown to completely undermine recent attempts to determine nuclear interaction radii for targets, such as /sup 12/C and /sup 9/Be, by application of the channel-capture formula to capture cross-section data. 20 refs.

Raman, S.; Lynn, J.E.

1985-01-01T23:59:59.000Z

54

Neutron capture therapy with deep tissue penetration using capillary neutron focusing  

DOE Patents (OSTI)

An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.

Peurrung, A.J.

1997-08-19T23:59:59.000Z

55

Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture  

SciTech Connect

The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

Scott Wilde, Raymond Keegan

2008-07-01T23:59:59.000Z

56

Thermal-neutron capture for A=36-44  

SciTech Connect

The prompt gamma-ray data of thermal- neutron captures fornuclear mass number A=26-35 had been evaluated and published in "ATOMICDATA AND NUCLEAR DATA TABLES, 26, 511 (1981)". Since that time the manyexperimental data of the thermal-neutron captures have been measured andpublished. The update of the evaluated prompt gamma-ray data is verynecessary for use in PGAA of high-resolution analytical prompt gamma-rayspectroscopy. Besides, the evaluation is also very needed in theEvaluated Nuclear Structure Data File, ENSDF, because there are no promptgamma-ray data in ENSDF. The levels, prompt gamma-rays and decay schemesof thermal-neutron captures fornuclides (26Mg, 27Al, 28Si, 29Si, 30Si,31P, 32S, 33S, 34S, and 35Cl) with nuclear mass number A=26-35 have beenevaluated on the basis of all experimental data. The normalizationfactors, from which absolute prompt gamma-ray intensity can be obtained,and necessary comments are given in the text. The ENSDF format has beenadopted in this evaluation. The physical check (intensity balance andenergy balance) of evaluated thermal-neutron capture data has been done.The evaluated data have been put into Evaluated Nuclear Structure DataFile, ENSDF. This evaluation may be considered as an update of the promptgamma-ray from thermal-neutron capture data tables as published in"ATOMIC DATA AND NUCLEAR DATA TABLES, 26, 511 (1981)".

Chunmei, Z.; Firestone, R.B.

2003-01-01T23:59:59.000Z

57

Neutron capture therapy beams at the MIT Research Reactor  

SciTech Connect

Several neutron beams that could be used for neutron capture therapy at MITR-II are dosimetrically characterized and their suitability for the treatment of glioblastoma multiforme and other types of tumors are described. The types of neutron beams studied are: (1) those filtered by various thicknesses of cadmium, D2O, 6Li, and bismuth; and (2) epithermal beams achieved by filtration with aluminum, sulfur, cadmium, 6Li, and bismuth. Measured dose vs. depth data are presented in polyethylene phantom with references to what can be expected in brain. The results indicate that both types of neutron beams are useful for neutron capture therapy. The first type of neutron beams have good therapeutic advantage depths (approximately 5 cm) and excellent in-phantom ratios of therapeutic dose to background dose. Such beams would be useful for treating tumors located at relatively shallow depths in the brain. On the other hand, the second type of neutron beams have superior therapeutic advantage depths (greater than 6 cm) and good in-phantom therapeutic advantage ratios. Such beams, when used along with bilateral irradiation schemes, would be able to treat tumors at any depth in the brain. Numerical examples of what could be achieved with these beams, using RBEs, fractionated-dose delivery, unilateral, and bilateral irradiation are presented in the paper. Finally, additional plans for further neutron beam development at MITR-II are discussed.

Choi, J.R.; Clement, S.D.; Harling, O.K.; Zamenhof, R.G. (Massachusetts Institute of Technology, Cambridge (USA))

1990-01-01T23:59:59.000Z

58

Quantitative interpretation of pulsed neutron capture logs: Part 1 --Fast numerical simulation  

E-Print Network (OSTI)

NEUTRON CAPTURE LOGS IN THINLY-BEDDED FORMATIONS Jordan G. Mimoun and Carlos Torres-VerdĂ­n, The University to capture neutrons. The lower the neutron energy, the more likely capture phenomena will take place; hence neutrons at thermal energies are the most likely to be absorbed. Consequently, monitoring the population

Torres-VerdĂ­n, Carlos

59

Methods for boron delivery to mammalian tissue  

DOE Patents (OSTI)

Boron neutron capture therapy can be used to destroy tumors. This treatment modality is enhanced by delivering compounds to the tumor site where the compounds have high concentrations of boron, the boron compounds being encapsulated in the bilayer of a liposome or in the bilayer as well as the internal space of the liposomes. Preferred compounds, include carborane units with multiple boron atoms within the carborane cage structure. Liposomes with increased tumor specificity may also be used.

Hawthorne, M. Frederick (Encino, CA); Feaks, Debra A. (Los Angeles, CA); Shelly, Kenneth J. (Los Angeles, CA)

2003-01-01T23:59:59.000Z

60

Neutronic design of a fission converter-based epithermal neutron beam for neutron capture therapy  

SciTech Connect

To meet the needs for neutron capture theory (NCT) irradiations, a high-intensity, high-quality fusion converter-based epithermal neutron beam has been designed for the MITR-II research reactor. This epithermal neutron beam, capable of delivering treatments in a few minutes with negligible background contamination from fast neutrons and photons, will be installed in the present thermal column and hohlraum of the 5-MW MITR-II research reactor. Spent or fresh MITR-II fuel elements will be used to fuel the converter. With a fission converter power of {approximately}80 kW using spent fuel, epithermal fluxes (1 eV < E < 10 keV) in excess of 10{sup 10} n/cm{sup 2} {center_dot} s are achievable at the target position with negligible photon and fast neutron contamination, i.e., <2 {times} 10{sup {minus}11}cGy-cm{sup 2}/n. With the currently available {sup 10}B delivery compound boronophenylalanine-fructose, average therapeutic ratios of {approximately}5 can be achieved using this beam for brain irradiations with deep effective penetration ({approximately}9.5 cm) and high dose rates of up to 400 to 600 RBE cGy/min. If NCT becomes an accepted therapy, fission converter-based beams constructed at existing reactors could meet a large fraction of the projected requirements for intense, low-background epithermal neutron beams at a relatively low cost. The results of an extensive set of neutronic design studies investigating all components of the beam are presented. These detailed studies can be useful as guidance for others who may wish to use the fission converter approach to develop epithermal beams for NCT.

Kiger, W.S. III; Sakamoto, S.; Harling, O.K. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science  

SciTech Connect

Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

Cizewski, J. A.; Peters, W. A.; Allen, J.; Hatarik, R.; Matthews, C.; O'Malley, P. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Jones, K. L. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Kozub, R. L.; Howard, J.; Patterson, N.; Paulauskas, S. V.; Rogers, J.; Sissom, D. J. [Department of Physics, Tennessee Technological University, Cookeville, TN 38505 (United States); Pain, S. D. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Adekola, A. [Department of Physics and Astronomy, Ohio University, Athens, OH 45703 (United States); Bardayan, D. W.; Blackmon, J. C.; Liang, F.; Nesaraja, C. D.; Pittman, S. T. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)] (and others)

2009-03-10T23:59:59.000Z

62

Neutron capture measurements at a RIA-type facility  

E-Print Network (OSTI)

Neutron capture cross sections of unstable isotopes are important for neutron induced nucleosynthesis as well as for technological applications. The Rare Isotope Accelerator (RIA) or comparable facilities will be able to produce radioactive ion beams up to 10**12 particles/s and would therefore be a suitable place for (n,g) studies on radioactive isotopes with half-lives between days and months. We propose a facility for measurements of (n,g) cross sections of unstable isotopes in the keV range suited for minimal sample masses down to 10**15 atoms, corresponding to minimum half-lives of only 10 d.

R. Reifarth; R. C. Haight; M. Heil; F. Kaeppeler; D. J. Vieira

2004-01-22T23:59:59.000Z

63

Solar Abundance of Elements from Neutron-Capture Cross Sections  

E-Print Network (OSTI)

Excess lightweight products of slow neutron capture in the photosphere, over the mass range of 25 to 207 amu, confirm the solar mass separation recorded by excess lightweight isotopes in the solar wind, over the mass range of 3 to 136 amu [Solar Abundance of the Elements, Meteoritics, volume 18, 1983, pages 209 to 222]. Both measurements show that major elements inside the Sun are Fe, O, Ni, Si and S, like those in rocky planets.

O. Manuel; W. A. Myers; Y. Singh; M. Pleess

2004-12-19T23:59:59.000Z

64

Thermal Neutron Capture y's (CapGam)  

DOE Data Explorer (OSTI)

The National Nuclear Data Center (NNDC) presents two tables showing energy and photon intensity with uncertainties of gamma rays as seen in thermal-neutron capture.  One table is organized in ascending order of gamma energy, and the second is organized by Z, A of the target. In the energy-ordered table the three strongest transitions are indicated in each case. The nuclide given is the target nucleus in the capture reaction. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. %I? (per 100 n-captures) for the strongest transition is given, where known. All data are taken from the Evaluated Nuclear Structure Data File (ENSDF), a computer file of evaluated nuclear structure data and from the eXperimental Unevaluated Nuclear Data List (XUNDL). (Specialized Interface)

65

Is (d,p{gamma}) a surrogate for neutron capture?  

SciTech Connect

To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured and compared with the neutron capture cross sections measured by Wisshak et al. The (d,p{gamma}) ratios were measured using an 18.5 MeV deuteron beam from the 88-Inch Cyclotron at LBNL. Preliminary results comparing the surrogate ratios with the known (n,{gamma}) cross sections are discussed.

Hatarik, R.; Cizewski, J. A.; O'Malley, P. D. [Rutgers University, Department of Physics and Astronomy, New Brunswick, NJ 08901 (United States); Bernstein, L. A.; Burke, J. T.; Lesher, S. R. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Gibelin, J. D.; Phair, L. W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Swan, T. [Rutgers University, Department of Physics and Astronomy, New Brunswick, NJ 08901 (United States); University of Surrey, Physics Department, Guildford GU2 7XH, Surrey (United Kingdom)

2008-04-17T23:59:59.000Z

66

Glossary Term - Electron Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Electron Previous Term (Electron) Glossary Main Index Next Term (Electron Volt (eV)) Electron Volt (eV) Electron Capture After electron capture, an atom contains one less proton and one more neutron. Electron capture is one process that unstable atoms can use to become more stable. During electron capture, an electron in an atom's inner shell is drawn into the nucleus where it combines with a proton, forming a neutron and a neutrino. The neutrino is ejected from the atom's nucleus. Since an atom loses a proton during electron capture, it changes from one element to another. For example, after undergoing electron capture, an atom of carbon (with 6 protons) becomes an atom of boron (with 5 protons). Although the numbers of protons and neutrons in an atom's nucleus change

67

Neutron Capture Cross Section Measurement on $^{238}$Pu at DANCE  

Science Conference Proceedings (OSTI)

The proposed neutron capture measurement for {sup 238}Pu was carried out in Nov-Dec, 2010, using the DANCE array at LANSCE, LANL. The total beam-on-target time is about 14 days plus additional 5 days for the background measurement. The target was prepared at LLNL with the new electrplating cell capable of plating the {sup 238}Pu isotope simultaneously on both sides of the 3-{micro}m thick Ti backing foil. A total mass of 395 {micro}g with an activity of 6.8 mCi was deposited onto the area of 7 mm in diameter. The {sup 238}Pu sample was enriched to 99.35%. The target was covered by 1.4 {micro}m double-side aluminized mylar and then inserted into a specially designed vacuum-tight container, shown in Fig. 1, for the {sup 238}Pu containment. The container was tested for leaks in the vacuum chamber at LLNL. An identical container without {sup 238}Pu was made as well and used as a blank for the background measurement.

Chyzh, A; Wu, C Y

2011-02-14T23:59:59.000Z

68

(A clinical trial of neutron capture therapy for brain tumors)  

Science Conference Proceedings (OSTI)

This report describes progress made in refining of neutron-induced alpha tract autoradiography, in designing epithermal neutron bean at MITR-II and in planning treatment dosimetry using Monte Carlo techniques.

Zamenhof, R.G.

1988-01-01T23:59:59.000Z

69

Literature survey of chemical analysis by thermal neutron induced capture gamma ray spectrometry  

DOE Green Energy (OSTI)

A brief discussion of the principles and techniques of chemical analysis by neutron capture gamma radiation is presented, and the widely scattered literature is collected into a single table arranged by element measured.

Gladney, E.S.

1979-09-01T23:59:59.000Z

70

A new NCNPX PTRAC coincidence capture file capability: a tool for neutron detector design  

SciTech Connect

The existing Monte Carlo N-Particle (MCNPX) particle tracking (PTRAC) coincidence capture file allows a full list of neutron capture events to be recorded in any simulated detection medium. The originating event history number (e.g. spontaneous fission events), capture time, location and source particle number are tracked and output to file for post-processing. We have developed a new MCNPX PTRAC coincidence capture file capability to aid detector design studies. New features include the ability to track the nuclides that emitted the detected neutrons as well as induced fission chains in mixed samples before detection (both generation number and nuclide that underwent induced fission). Here, the power of this tool is demonstrated using a detector design developed for the non-destructive assay (NDA) of spent nuclear fuel. Individual capture time distributions have been generated for neutrons originating from Curium-244 source spontaneous fission events and induced fission events in fissile nuclides of interest: namely Plutonium-239, Plutonium-241, and Uranium-235. Through this capability, a full picture for the attribution of neutron capture events in the detector can be simulated.

Evans, Louise G [Los Alamos National Laboratory; Schear, Melissa A [Los Alamos National Laboratory; Hendricks`, John S [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory

2011-01-13T23:59:59.000Z

71

A new MCNPX PTRAC coincidence capture file capability: a tool for neutron detector design  

SciTech Connect

The existing Monte Carlo N-Particle (MCNPX) particle tracking (PTRAC) coincidence capture file allows a full list of neutron capture events to be recorded in any simulated detection medium. The originating event history number (e.g. spontaneous fission events), capture time, location and source particle number are tracked and output to file for post-processing. We have developed a new MCNPX PTRAC coincidence capture file capability to aid detector design studies. New features include the ability to track the nuclides that emitted the detected neutrons as well as induced fission chains in mixed samples before detection (both generation number and nuclide that underwent induced fission). Here, the power of this tool is demonstrated using a detector design developed for the non-destructive assay (NDA) of spent nuclear fuel. Individual capture time distributions have been generated for neutrons originating from Curium-244 source spontaneous fission events and induced fission events in fissile nuclides of interest: namely Plutonium-239, Plutonium-241, and Uranium-235. Through this capability, a full picture for the attribution of neutron capture events in the detector can be simulated.

Evans, Louise G [Los Alamos National Laboratory; Schear, Melissa A [Los Alamos National Laboratory; Hendricks, John S [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory

2011-02-16T23:59:59.000Z

72

A new MCNPX PTRAC coincidence capture file capability: a tool for neutron detector design  

SciTech Connect

The existing MCNPX{trademark} PTRAC coincidence capture file allows a full list of neutron capture events to be recorded in any simulated detection medium. The originating event history number (e.g. spontaneous fission events), capture time, location and source particle number are tracked and output to file for post-processing. We have developed a new MCNPX PTRAC coincidence capture file capability to aid detector design studies. New features include the ability to track the isotopes that emitted the detected neutrons as well as induced fission chains in mixed samples before detection (both generation number and isotope). Here, the power of this tool is demonstrated using a detector design that has been developed for the non-destructive assay (NDA) of spent nuclear fuel. Individual capture time distributions have been generated for neutrons originating from Curium-244 source spontaneous fission events and induced fission events in fissile isotopes of interest: namely Plutonium-239, Plutonium-241, and Uranium-235. Through this capability, a full picture for the attribution of neutron capture events in the detector can be simulated.

Evans, Louise G [Los Alamos National Laboratory; Schear, Melissa A [Los Alamos National Laboratory; Hendricks, John S [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory

2010-12-14T23:59:59.000Z

73

Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors  

Science Conference Proceedings (OSTI)

Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated. The experimental epithermal-neutron beam has a maximum usable circular diameter of 20 cm, and with 30 ppm of B-10 in tumor and 3 ppm of B-10 in blood, it produces a beam-axis advantage depth of 7.4 cm, a beam-axis advantage ratio of 1.83, a global advantage ratio of 1.70, and an advantage depth RBE-dose rate to tumor of 20.6 RBE-cGy/min (cJ/kg-min). These characteristics make this beam well suited for clinical applications, enabling an RBE-dose of 2,000 RBE-cGy/min (cJ/kg-min) to be delivered to tumor at brain midline in six fractions with a treatment time of approximately 16 minutes per fraction.

Zamenhof, R.G.; Clement, S.D.; Harling, O.K.; Brenner, J.F.; Wazer, D.E.; Madoc-Jones, H.; Yanch, J.C. (Tufts-New England Medical Center, Boston, MA (USA))

1990-01-01T23:59:59.000Z

74

Neutron capture on 130Sn during r-process freeze-out  

E-Print Network (OSTI)

We examine the role of neutron capture on 130Sn during r-process freeze-out in the neutrino-driven wind environment of the core-collapse supernova. We find that the global r-process abundance pattern is sensitive to the magnitude of the neutron capture cross section of 130Sn. The changes to the abundance pattern include not only a relative decrease in the abundance of 130Sn and an increase in the abundance of 131Sn, but also a shift in the distribution of material in the rare earth and third peak regions.

J. Beun; J. C. Blackmon; W. R. Hix; G. C. McLaughlin; M. S. Smith; R. Surman

2008-06-24T23:59:59.000Z

75

Using {sup 171,173}Yb(d,p{gamma}) to Benchmark a Surrogate Reaction for Neutron Capture  

SciTech Connect

The {sup 171,173}Yb(d,p{gamma}) reactions have been measured to determine the efficacy of this reaction as a surrogate for neutron capture on radioactive nuclei. Preliminary results for the surrogate cross section ratios, with gating conditions that best mimic the spin distribution of neutron capture, reproduce the Wisshak et al., (n,{gamma}) cross section ratios within 15%.

Hatarik, R.; Cizewski, J. A.; Hatarik, A. M.; O'Malley, P. D. [Rutgers University, New Brunswick NJ 08903 (United States); Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Lesher, S. R. [Lawrence Livermore National Laboratory, Livermore CA 94550 (United States); Gibelin, J.; Phair, L. [Lawrence Berkeley National Laboratory, Berkeley CA 94720 (United States); Swan, T. [Rutgers University, New Brunswick NJ 08903 (United States); University of Surrey, Guildford GU2 7XH, Surrey (United Kingdom)

2009-03-10T23:59:59.000Z

76

Neutron capture cross section measurements at the beam line 04 of J-PARC/MLF  

Science Conference Proceedings (OSTI)

An Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) at the beam line 04 of MLF (Material and Life Sciences Experimental Facilities) of J-PARC (Japan Proton Accelerator Research Complex) was installed to measure neutron capture cross sections related to the research and development of innovative nuclear systems, the study on nuclear astrophysics, etc. ANNRI has two gamma-ray spectrometers: one is a Ge detector array placed at 22 m from the coupled type moderator of the spallation neutron source of J-PARC/MLF and the other is a pair of NaI(Tl) detectors at 28 m. Until the 11th of March, 2011, when we had big earthquakes, we measured capture cross sections of Zr-93, Tc-99, Pd-107, I-129, Cm-244, Cm-246, etc. After checking and repairing ANNRI, we restarted measurements, and ANNRI has been open to worldwide users at present.

Igashira, Masayuki; Harada, Hideo; Kiyanagi, Yoshiaki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama 2-12-1-N1-26, Meguro-ku, Tokyo 152-8550 (Japan); Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Shirakata-shirane 2-4, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

2012-11-12T23:59:59.000Z

77

Optimization of an accelerator-based epithermal neutron source for neutron capture therapy  

E-Print Network (OSTI)

Nowadays at several nuclear reactors were created BNCTand intensity. Nuclear reactors as neutron source forsource based on a nuclear reactor [4]. The comparison shows

Kononov, O.E.; Kononov, V.N.; Bokhovko, M.V.; Korobeynikov, V.V.; Soloviev, A.N.; Chu, W.T.

2004-01-01T23:59:59.000Z

78

MSc thesis topic: Coupled Thermal-hydraulic MC neutronic calculations  

E-Print Network (OSTI)

Institute of Nuclear Physics the source of epithermal neutrons based on a vacuum insulation tandem At the Budker Institute of Nuclear Physics the VITA-facility for the boron neutron capture therapyNew technical solution for using the time-of-flight technique to measure neutron spectra V. Aleynik

Haviland, David

79

Neutron Scattering Society of America Purpose and New Initiatives  

E-Print Network (OSTI)

's personal copy Dosimetry and spectrometry at accelerator based neutron source for boron neutron capture Institute of Nuclear Physics, 11 Lavrentiev Ave., 630090 Novosibirsk, Russia Federation a r t i c l e i n f Keywords: Epithermal neutrons Accelerator Time-of-flight technique a b s t r a c t An innovative

80

Gamma-ray cascade transitions from resonant neutron capture in Cd-111 and Cd-113  

SciTech Connect

A neutron-capture experiment on {sup nat}Cd has been carried out at DANCE. Multiple-fold coincidence {gamma}-ray spectra have been collected from J=0, 1 resonances in {sup 111}Cd and {sup 113}Cd. The cascades ending at the ground state can be described by the SLO model while the cascades ending at the 2+ states are better reproduced by the mixed SLO+KMF model.

Rusev, Gencho Y. [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Measurement of neutron capture on $^{48}$Ca at thermal and thermonuclear energies  

E-Print Network (OSTI)

At the Karlsruhe pulsed 3.75\\,MV Van de Graaff accelerator the thermonuclear $^{48}$Ca(n,$\\gamma$)$^{49}$Ca(8.72\\,min) cross section was measured by the fast cyclic activation technique via the 3084.5\\,keV $\\gamma$-ray line of the $^{49}$Ca-decay. Samples of CaCO$_3$ enriched in $^{48}$Ca by 77.87\\,\\% were irradiated between two gold foils which served as capture standards. The capture cross-section was measured at the neutron energies 25, 151, 176, and 218\\,keV, respectively. Additionally, the thermal capture cross-section was measured at the reactor BR1 in Mol, Belgium, via the prompt and decay $\\gamma$-ray lines using the same target material. The $^{48}$Ca(n,$\\gamma$)$^{49}$Ca cross-section in the thermonuclear and thermal energy range has been calculated using the direct-capture model combined with folding potentials. The potential strengths are adjusted to the scattering length and the binding energies of the final states in $^{49}$Ca. The small coherent elastic cross section of $^{48}$Ca+n is explained through the nuclear Ramsauer effect. Spectroscopic factors of $^{49}$Ca have been extracted from the thermal capture cross-section with better accuracy than from a recent (d,p) experiment. Within the uncertainties both results are in agreement. The non-resonant thermal and thermonuclear experimental data for this reaction can be reproduced using the direct-capture model. A possible interference with a resonant contribution is discussed. The neutron spectroscopic factors of $^{49}$Ca determined from shell-model calculations are compared with the values extracted from the experimental cross sections for $^{48}$Ca(d,p)$^{49}$Ca and $^{48}$Ca(n,$\\gamma$)$^{49}$Ca.

H. Beer; C. Coceva; P. V. Sedyshev; Yu. P. Popov; H. Herndl; R. Hofinger; P. Mohr; H. Oberhummer

1996-08-07T23:59:59.000Z

82

A capture-gated neutron calorimeter using plastic scintillators and 3He drift tubes  

SciTech Connect

A segmented neutron calorimeter using nine 4-inch x 4-inch x 48-inch plastic scintillators and sixteen 2-inch-diameter 48-inch-long 200-mbar-{sup 3}He drift tubes is described. The correlated scintillator and neutron-capture events provide a means for n/{gamma} discrimination, critical to the neutron calorimetry when the {gamma} background is substantial and the {gamma} signals are comparable in amplitude to the neutron signals. A single-cell prototype was constructed and tested. It can distinguish between a {sup 17}N source and a {sup 252}Cf source when the {gamma} and the thermal neutron background are sufficiently small. The design and construction of the nine-cell segmented detector assembly follow the same principle. By recording the signals from individual scintillators, additional {gamma}-subtraction schemes, such as through the time-of-flight between two scintillators, may also be used. The variations of the light outputs from different parts of a scintillator bar are less than 10%.

Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher L [Los Alamos National Laboratory; Spaulding, Randy J [Los Alamos National Laboratory; Bacon, Jeffrey D [Los Alamos National Laboratory; Borozdin, Konstantin N [Los Alamos National Laboratory; Chung, Kiwhan [Los Alamos National Laboratory; Clark, Deborah J [Los Alamos National Laboratory; Green, Jesse A [Los Alamos National Laboratory; Greene, Steven J [Los Alamos National Laboratory; Hogan, Gary E [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Lisowski, Paul W [Los Alamos National Laboratory; Makela, Mark F [Los Alamos National Laboratory; Mariam, Fessaha G [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Murray, Matthew M [Los Alamos National Laboratory; Saunders, Alexander [Los Alamos National Laboratory; Wysocki, Frederick J [Los Alamos National Laboratory; Gray, Frederick E [REGIS UNIV.

2010-01-01T23:59:59.000Z

83

Neutron Capture Rates near A=130 which Effect a Global Change to the r-Process Abundance Distribution  

Science Conference Proceedings (OSTI)

We investigate the impact of neutron capture rates near the A=130 peak on the r-process abundance pattern. We show that these capture rates can alter the abundances of individual nuclear species, not only in the region of A=130 peak but also throughout the abundance pattern. We discuss in general the nonequilibrium processes that produce these abundance changes and determine which capture rates have the most significant impact.

Surman, Rebecca [Union College; Beun, Joshua [North Carolina State University; Mclaughlin, Gail C [North Carolina State University; Hix, William Raphael [ORNL

2009-01-01T23:59:59.000Z

84

Neutron Capture Rates near A=130 which Effect a Global Change to the r-Process Abundance Distribution  

E-Print Network (OSTI)

We investigate the impact of neutron capture rates near the A=130 peak on the $r$-process abundance pattern. We show that these capture rates can alter the abundances of individual nuclear species, not only in the region of A=130 peak, but also throughout the abundance pattern. We discuss the nonequilibrium processes that produce these abundance changes and determine which capture rates have the most significant impact.

R. Surman; J. Beun; G. C. McLaughlin; W. R. Hix

2008-06-23T23:59:59.000Z

85

Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE  

SciTech Connect

Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of {sup 157}Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of {sup nat}Gd which is (49360 {+-} 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1{sigma}, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 {+-} 500) b. (authors)

Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Hentati, A. [International School in Nuclear Engineering, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

2012-07-01T23:59:59.000Z

86

Design and optimization of 6li neutron-capture pulse mode ion chamber  

E-Print Network (OSTI)

The purpose of this research is to design and optimize the performance of a unique, inexpensive 6Li neutron-capture pulse-mode ion chamber (LiPMIC) for neutron detection that overcomes the fill-gas contamination stemming from outgas of detector components. This research also provides a demonstration of performance of LiPMICs. Simulations performed with GARFIELD, a drift-chamber simulation package for ion transport in an electrostatic field, have shown that argon-methane mixtures of fill-gas allow maintenance of electron drift velocity through a surprisingly wide range of fill-gas content. During the design stage of LiPMIC development, the thicknesses of lithium metallization layer, the neutron energy conversion site of the detector, and the thickness of neutron moderator, the high-density polyethylene body, are optimized through analytical and MCNPX calculations. Also, a methodology of obtaining the suitable combination of electric field strength, electron drift velocity, and fill-gas mixtures has been tested and simulated using argon-methane gas mixtures. The LiPMIC is shown to have comparable efficiency to 3He proportional counters at a fraction of cost. Six-month long baseline measurements of overall detector performance shows there is a 3% reduction in total counts for 252Cf sources, which provides a good indicator for the longevity of the detector.

Chung, Kiwhan

2008-08-01T23:59:59.000Z

87

Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II)  

Science Conference Proceedings (OSTI)

Monte Carlo methods of coupled neutron/photon transport are being used in the design of filtered beams for Neutron Capture Therapy (NCT). This method of beam analysis provides segregation of each individual dose component, and thereby facilitates beam optimization. The Monte Carlo method is discussed in some detail in relation to NCT epithermal beam design. Ideal neutron beams (i.e., plane-wave monoenergetic neutron beams with no primary gamma-ray contamination) have been modeled both for comparison and to establish target conditions for a practical NCT epithermal beam design. Detailed models of the 5 MWt Massachusetts Institute of Technology Research Reactor (MITR-II) together with a polyethylene head phantom have been used to characterize approximately 100 beam filter and moderator configurations. Using the Monte Carlo methodology of beam design and benchmarking/calibrating our computations with measurements, has resulted in an epithermal beam design which is useful for therapy of deep-seated brain tumors. This beam is predicted to be capable of delivering a dose of 2000 RBE-cGy (cJ/kg) to a therapeutic advantage depth of 5.7 cm in polyethylene assuming 30 micrograms/g 10B in tumor with a ten-to-one tumor-to-blood ratio, and a beam diameter of 18.4 cm. The advantage ratio (AR) is predicted to be 2.2 with a total irradiation time of approximately 80 minutes. Further optimization work on the MITR-II epithermal beams is expected to improve the available beams. 20 references.

Clement, S.D.; Choi, J.R.; Zamenhof, R.G.; Yanch, J.C.; Harling, O.K. (Massachusetts Institute of Technology, Cambridge (USA))

1990-01-01T23:59:59.000Z

88

System and method for delivery of neutron beams for medical therapy  

DOE Patents (OSTI)

A neutron delivery system that provides improved capability for tumor control during medical therapy. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention.

Nigg, David W. (Idaho Falls, ID); Wemple, Charles A. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

89

System and method for delivery of neutron beams for medical therapy  

DOE Patents (OSTI)

A neutron delivery system that provides improved capability for tumor control during medical therapy is disclosed. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention. 5 figs.

Nigg, D.W.; Wemple, C.A.

1999-07-06T23:59:59.000Z

90

Use of pulsed-neutron capture logs to identify steam breakthrough  

Science Conference Proceedings (OSTI)

This paper reports on identification of steam-breakthrough zones in a stacked sand/shale sequence with variable lateral continuity which is difficult. Such identification, however, would allow the modification of field operations to enhance recovery through improved vertical sweep and heat injection. Twenty pulsed-neutron capture (PNC) logs were run to identify the steam-breakthrough zone(s) in a seven-pattern area of Mobil's Middle expansion (MIDX) Steamflood Project in the South Belridge field. These PNC data were combined with data from recent replacement wells and a detailed geologic analysis. Evaluation of this combined information allowed identification of potential steam-breakthrough zone(s), and operations were modified to reduce and eliminate steam breakthrough.

Masse, P.J.; Gosney, T.C. (Mobil E and P U.S. Inc. (US)); Long, D.L. (Halliburton Logging Services Inc. (US))

1991-09-01T23:59:59.000Z

91

Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei  

Science Conference Proceedings (OSTI)

Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. {sup 242}Es was produced via the {sup 233}U({sup 14}N,5n){sup 242}Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 {+-} 3 seconds. The ECDF of {sup 242}Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 {+-} 18 MeV. The probability of delayed fission (P{sub DF}) was measured to be 0.006 {+-} 0.002. In conjunction with this experiment, the excitation functions of the {sup 233}U({sup 14}N,xn){sup 247{minus}x}Es and {sup 233}U({sup 15}N,xn){sup 248{minus}x}Es reactions were measured for {sup 243}Es, {sup 244}Es and {sup 245}Es at projectile energies between 80 MeV and 100 MeV.

Shaughnessy, Dawn A.

2000-01-05T23:59:59.000Z

92

SETTABLE NEUTRON RADIATION SHIELDING MATERIAL  

DOE Patents (OSTI)

A settable, viscous, putty-like shielding composition is described. It consists of an intimate admixture of a major proportion of a compound having a ratio of hydrogen atoms to all other atoms therein within the range of from 0.5: 1 to 2:l. from 0.5 to 10% by weight of boron, and a fluid resinous carrier This composition when cured is adapted to attenuate fast moving neutrons and capture slow moving neutrons.

Axelrad, I.R.

1960-11-22T23:59:59.000Z

93

Nuclear Instruments and Methods in Physics Research A 540 (2005) 464469 Fusion neutron detector calibration using a table-top laser  

E-Print Network (OSTI)

BINP accelerator based epithermal neutron source V. Aleynik a , A. Burdakov a , V. Davydenko a , A Institute of Nuclear Physics,11 Lavrentiev avenue, 630090 Novosibirsk, Russia b Neurosurgery Center, 2a: Boron neutron capture therapy Epithermal neutron source Accelerator a b s t r a c t Innovative facility

Ditmire, Todd

94

Database of prompt gamma rays from slow neutron capture forelemental analysis  

Science Conference Proceedings (OSTI)

The increasing importance of Prompt Gamma-ray ActivationAnalysis (PGAA) in a broad range of applications is evident, and has beenemphasized at many meetings related to this topic (e.g., TechnicalConsultants' Meeting, Use of neutron beams for low- andmedium-fluxresearch reactors: radiography and materialscharacterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993).Furthermore, an Advisory Group Meeting (AGM) for the Coordination of theNuclear Structure and Decay Data Evaluators Network has stated that thereis a need for a complete and consistent library of cold- and thermalneutron capture gammaray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended theorganization of an IAEA CRP on the subject. The International NuclearData Committee (INDC) is the primary advisory body to the IAEA NuclearData Section on their nuclear data programmes. At a biennial meeting in1997, the INDC strongly recommended that the Nuclear Data Section supportnew measurements andupdate the database on Neutron-induced PromptGamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As aconsequence of the various recommendations, a CRP on "Development of aDatabase for Prompt Gamma-ray Neutron Activation Analysis (PGAA)" wasinitiated in 1999. Prior to this project, several consultants had definedthe scope, objectives and tasks, as approved subsequently by the IAEA.Each CRP participant assumed responsibility for the execution of specifictasks. The results of their and other research work were discussed andapproved by the participants in research co-ordination meetings (seeSummary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; andINDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method,capable of rapid or simultaneous "in-situ" multi-element analyses acrossthe entire Periodic Table, from hydrogen to uranium. However, inaccurateand incomplete data were a significant hindrance in the qualitative andquantitative analysis of complicated capture-gamma spectra by means ofPGAA. Therefore, the main goal of the CRP was to improve the quality andquantity of the required data in order to make possible the reliableapplication of PGAA in fields such as materials science, chemistry,geology, mining, archaeology, environment, food analysis and medicine.This aim wasachieved thanks to the dedicated work and effort of theparticipants. The CD-ROM included with this publication contains thedatabase, the retrieval system, the three CRM reports, and otherimportant electronic documents related to the CRP. The IAEA wishes tothanks all CRP participants who contributed to the success of the CRP andthe formulation of this publication. Special thanks are due to R.B.Firestone for his leading roll in the development of this CRP and hiscomprehensive compilation, analysis and provision of the adopteddatabase, and to V. Zerkin for the software developments associatedwiththe retrieval system. An essential component of this data compilation isthe extensive sets of new measurements of capture gamma-ray energies andintensities undertaken at Budapest by Zs. Revay under the direction ofG.L. Molnar. The extensive participation and assistance of H.D. Choi isalso greatly appreciated. Other participants inthis CRP were: R.M.Lindstrom, S.M. Mughabghab, A.V.R. Reddy, V.H. Tan and C.M. Zhou. Thanksare also due to S.C. Frankle and M.A. Lone for their active participationas consultants at some of the meetings. Finally, the participants wish tothank R. Paviotti-Corcuera (Nuclear Data Section, Division of Physicaland Chemical Sciences), who was the IAEA responsible officer for the CRP,this publication and the resulting database. The participants aregrateful to D.L. Muir and A.L. Nichols, successive Heads of the NuclearData Section, for their active and enthusiastic encouragement infurthering the work of the CRP.

Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou,C.M.; Zerkin, V.

2004-12-31T23:59:59.000Z

95

Design, construction, and characterization of a facility for neutron capture gamma ray analysis of sulfur in coal using californium-252  

SciTech Connect

A study of neutron capture gamma ray analysis of sulfur in coal using californium-252 as a neutron source is reported. Both internal and external target geometries are investigated. The facility designed for and used in this study is described. The external target geometry is found to be inappropriate because of the low thermal neutron flux at the sample location, which must be outside the biological shielding. The internal target geometry is found to have a sufficient thermal neutron flux, but an excessive gamma ray background. A water filled plastic facility, rather than the paraffin filled steel one used in this study, is suggested as a means of increasing flexibility and decreasing the beackground in the internal target geometry.

Layfield, J.R.

1980-03-01T23:59:59.000Z

96

Prompt Gamma Rays in {sup 77}Ge after Neutron Capture on {sup 76}Ge  

SciTech Connect

The observation of neutrinoless double beta decay would be proof of the Majorana nature of the neutrino. Half-lives for these decays are very long (for {sup 76}Ge:>10{sup 25} y), so background reduction and rejection is the major task for double beta experiments. The GERDA (GERmanium Detector Array) experiment at the Gran Sasso Laboratory of the INFN (LNGS) searches for neutrinoless double beta decay of {sup 76}Ge. The isotope {sup 76}Ge is an ideal candidate because it can be used as source and detector at the same time. A large remaining contribution to the background arises from the prompt gamma cascade after neutron capture by {sup 76}Ge followed by {beta}{sup -}-decay of {sup 77}Ge. Since the prompt gamma decay scheme is poorly known, measurements with isotopically enriched Germanium samples were carried out at the PGAA facility at the research reactor FRM II (Munich). With the known prompt gamma spectrum it will be possible to improve the overall veto efficiency of the GERDA experiment.

Meierhofer, Georg; Grabmayr, Peter; Jochum, Josef [Physikalisches Institut, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 14, 72076 Tuebingen (Germany); Canella, Lea [Institut fuer Radiochemie, Technische Universitaet Muenchen, Walther-Meissner-Str. 3, 85748 Garching (Germany); Jolie, Jan; Kudejova, Petra; Warr, Nigel [Institut fuer Kernphysik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Cologne (Germany)

2009-01-28T23:59:59.000Z

97

Short-lived fission product measurements from >0.1 MeV neutron-induced fission using boron carbide.  

Science Conference Proceedings (OSTI)

A boron carbide shield was designed, custom fabricated, and used to create a fast fission energy neutron spectrum. The fissionable isotopes 233, 235, 238U, 237Np, and 239Pu were separately placed inside of this shield and irradiated under pulsed conditions at the Washington State University 1 MW TRIGA reactor. A unique set of fission product gamma spectra were collected at short times (4 minutes to 1 week) post-fission. Gamma spectra were collected on single-crystal high purity germanium detectors and on Pacific Northwest National Laboratory's (PNNL's) Direct Simultaneous Measurement (DSM) system composed of HPGe detectors connected in coincidence. This work defines the experimental methods used to produce and collect the gamma data, and demonstrates the validity of the measurements. It is important to fully document this information so the data can be used with high confidence for the advancement of nuclear science and non-proliferation applications. The gamma spectra collected in these and other experiments will be made publicly available at https://spcollab.pnl.gov/sites/gammadata or via the link at http://rdnsgroup.pnl.gov. A revised version of this publication will be posted with the data to make the experimental details available to those using the data.

Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce D.; Friese, Judah I.; Kephart, Rosara F.; Kephart, Jeremy D.

2012-02-01T23:59:59.000Z

98

[A clinical trial of neutron capture therapy for brain tumors]. Technical progress report 1988  

Science Conference Proceedings (OSTI)

This report describes progress made in refining of neutron-induced alpha tract autoradiography, in designing epithermal neutron bean at MITR-II and in planning treatment dosimetry using Monte Carlo techniques.

Zamenhof, R.G.

1988-12-31T23:59:59.000Z

99

Compositions for boron delivery to mammalian tissue  

DOE Patents (OSTI)

Boron neutron capture therapy can utilize X.sub.y B.sub.20 H.sub.17 L where X is an alkali metal, y is 1 to 4, and L is a two electron donor such as NH.sub.3, and Na.sub.2 B.sub.10 H.sub.9 NCO, among others. These borane salts may be used free or encapsulated in liposomes. Liposomes may also have embedded within their bilayers carboranes to increase the amount of delivered .sup.10 B and/or to increase the tumor specificity of the liposome.

Hawthorne, M. Frederick (Encino, CA); Feaks, Debra Arlene (Los Angeles, CA); Shelly, Kenneth John (Los Angeles, CA)

2001-01-01T23:59:59.000Z

100

Boron: Modeling, Superconductivity  

Science Conference Proceedings (OSTI)

Oct 8, 2012 ... Boron, Boron Compounds, and Boron Nanomaterials: Structure, Properties, Processing and Applications: Boron: Modeling, Superconductivity

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Resonance Parameters and Uncertainties Derived from Epithermal Neutron Capture and Transmission Measurements of Natural Molybdenum  

E-Print Network (OSTI)

MAR. 2010 #12;The zero TOF was determined by fitting 238 U reso- nances from a depleted uranium sample measurement consisted of two molybdenum samples ~2.54 and 6.35 mm!, two depleted uranium samples, 13.2 and 4 tail of the distri- bution was fitted to be 60 ns from depleted uranium capture measurements.13

Danon, Yaron

102

Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections  

Science Conference Proceedings (OSTI)

An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

2010-01-01T23:59:59.000Z

103

Determination of the gamma-ray asymmetry in the capture of polarized neutrons on hydrogen and deuterium.  

DOE Green Energy (OSTI)

The n+p{yields}d+{gamma} experiment measures the parity-violating directional gamma-ray asymmetry, A{gamma}, with uncertainties of 0.5x10{sup -8} when cold polarized neutrons are captured by para-hydrogen. This precision measurement will determine the long-range pion-nucleon weak coupling constant, H{sub {pi}}{sup 1}, with a precision of 10% of its predicted value, and thus will help to clarify our understanding of the weak interaction between nucleons. The n+p{yields}d+{gamma} experiment on the SNS beamline 14B is designed to take advantage of the high intensity of the source and its pulsed nature. The experiment requires a 30-Hz pulsed beam for optimal performance. In three months of run time the experiment will achieve a statistical uncertainty of 0.5x10{sup -8}.

Bowman, J. D. (J. David); Greene, G. L. (Geoff L.); Knudson, J. N. (James N.); Lamoreaux, Steve Keith; Mitchell, G. S. (Gregory S.); Morgan, G. L. (George Lake); Wilburn, W. S. (Wesley S.); Yuan, V. W. (Vincent W.); Penttila, S. I. (Seppo I.)

2001-01-01T23:59:59.000Z

104

Thermal neutron shield and method of manufacture  

DOE Patents (OSTI)

A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

Brindza, Paul Daniel; Metzger, Bert Clayton

2013-05-28T23:59:59.000Z

105

Microdosimetric investigations at the fast neutron therapy facility at Fermilab  

SciTech Connect

Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e., oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 {+-} 0.04 was determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e{sup *} and R, with field size and depth in tissue. Maximal variation in e{sup *} and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated.

Langen, K.M.

1997-12-01T23:59:59.000Z

106

Calculations of Branching Ratios for Radiative-Capture, One-Proton, and Two-Neutron Channels in the Fusion Reaction $^{209}$Bi+$^{70}$Zn  

E-Print Network (OSTI)

We discuss the possibility of the non-one-neutron emission channels in the cold fusion reaction $^{70}$Zn + $^{209}$Bi to produce the element Z=113. For this purpose, we calculate the evaporation-residue cross sections of one-proton, radiative-capture, and two-neutron emissions relative to the one-neutron emission in the reaction $^{70}$Zn + $^{209}$Bi. To estimate the upper bounds of those quantities, we vary model parameters in the calculations, such as the level-density parameter and the height of the fission barrier. We conclude that the highest possibility is for the 2n reaction channel, and its upper bounds are 2.4$%$ and at most less than 7.9% with unrealistic parameter values, under the actual experimental conditions of [J. Phys. Soc. Jpn. {\\bf 73} (2004) 2593].

Takatoshi Ichikawa; Akira Iwamoto

2010-12-20T23:59:59.000Z

107

Calculations of Branching Ratios for Radiative-Capture, One-Proton, and Two-Neutron Channels in the Fusion Reaction $^{209}$Bi+$^{70}$Zn  

E-Print Network (OSTI)

We discuss the possibility of the non-one-neutron emission channels in the cold fusion reaction $^{70}$Zn + $^{209}$Bi to produce the element Z=113. For this purpose, we calculate the evaporation-residue cross sections of one-proton, radiative-capture, and two-neutron emissions relative to the one-neutron emission in the reaction $^{70}$Zn + $^{209}$Bi. To estimate the upper bounds of those quantities, we vary model parameters in the calculations, such as the level-density parameter and the height of the fission barrier. We conclude that the highest possibility is for the 2n reaction channel, and its upper bounds are 2.4$%$ and at most less than 7.9% with unrealistic parameter values, under the actual experimental conditions of [J. Phys. Soc. Jpn. {\\bf 73} (2004) 2593].

Ichikawa, Takatoshi; 10.1143/JPSJ.79.074201

2010-01-01T23:59:59.000Z

108

NEUTRONIC REACTOR CONTROL ELEMENT  

DOE Patents (OSTI)

A boron-10 containing reactor control element wherein the boron-10 is dispersed in a matrix material is describeri. The concentration of boron-10 in the matrix varies transversely across the element from a minimum at the surface to a maximum at the center of the element, prior to exposure to neutrons. (AEC)

Beaver, R.J.; Leitten, C.F. Jr.

1962-04-17T23:59:59.000Z

109

A MASS-DEPENDENT YIELD ORIGIN OF NEUTRON-CAPTURE ELEMENT ABUNDANCE DISTRIBUTIONS IN ULTRA-FAINT DWARFS  

SciTech Connect

One way to constrain the nature of the high-redshift progenitors of the Milky Way (MW) is to look at the low-metallicity stellar populations of the different Galactic components today. For example, high-resolution spectroscopy of very metal poor (VMP) stars demonstrates remarkable agreement between the distribution of [Ti/Fe] in the stellar populations of the MW halo and ultra-faint dwarf (UFD) galaxies. In contrast, for the neutron-capture (nc) abundance ratio distributions [(Sr, Ba)/Fe], the peak of the small UFD sample (6 stars) exhibits a significant under-abundance relative to the VMP stars in the larger MW halo sample ({approx}300 stars). We present a simple scenario that can simultaneously explain these similarities and differences by assuming: (1) that the MW VMP stars were predominately enriched by a prior generation of stars which possessed a higher total mass than the prior generation of stars that enriched the UFD VMP stars; and (2) a much stronger mass-dependent yield (MDY) for nc-elements than for the (known) MDY for Ti. Simple statistical tests demonstrate that conditions (1) and (2) are consistent with the observed abundance distributions, albeit without strong constraints on model parameters. A comparison of the broad constraints for these nc-MDY with those derived in the literature seems to rule out Ba production from low-mass supernovae (SNe) and affirms models that primarily generate yields from high-mass SNe. Our scenario can be confirmed by a relatively modest (factor of {approx}3-4) increase in the number of high-resolution spectra of VMP stars in UFDs.

Lee, Duane M.; Johnston, Kathryn V. [Department of Astronomy, Columbia University, New York City, NY 10027 (United States); Tumlinson, Jason [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Sen, Bodhisattva [Department of Statistics, Columbia University, New York City, NY 10027 (United States); Simon, Joshua D. [The Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

2013-09-10T23:59:59.000Z

110

Microdosimetric investigations at the Fast Neutron Therapy Facility at Fermilab  

Science Conference Proceedings (OSTI)

Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e. oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 {+-} 0.04 determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e{sup *} and R, with field size and depth in tissue. Maximal variation in e{sup *} and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated. In the unmodified beam, a negligible enhancement for a 50 ppm boron loading was measured. To boost the boron dose enhancement to 3% it was necessary to change the primary proton energy from 66 MeV and to filter the beam by 90 mm of tungsten.

Langen, K.M.

1997-12-31T23:59:59.000Z

111

Neutrons  

NLE Websites -- All DOE Office Websites (Extended Search)

School on Neutron and X-ray Scattering Oak Ridge 10-24 August 2013 John M. Carpenter ANL, ORNLSNS 18 August 2013 2 Neutron Detection How does one detect a neutron? - It is...

112

Boron-10 Lined Proportional Counter Wall Effects  

SciTech Connect

The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube based system in the configuration of a coincidence counter. This report provides information about how variations in proportional counter radius and gas pressure in a typical coincident counter design might affect the observed signal from boron-lined tubes. A discussion comparing tubes to parallel plate counters is also included.

Siciliano, Edward R.; Kouzes, Richard T.

2012-05-01T23:59:59.000Z

113

Accelerator based neutron source for neutron capture therapy B. Bayanov, Yu. Belchenko, V. Belov, V. Davydenko, A. Donin, A. Dranichnikov, A. Ivanov,  

E-Print Network (OSTI)

OF LOW-ENERGY NEUTRONS IN SOLAR FLARES AND THE IMPORTANCE OF THEIR DETECTION IN THE INNER HELIOSPHERE R 20375, USA; murphy@ssd5.nrl.navy.mil 2 Department of Physics and Astronomy, Tel Aviv University, Tel ABSTRACT Neutron detectors on spacecraft in the inner heliosphere can observe the low-energy (

Taskaev, Sergey Yur'evich

114

FORMALISM FOR INCLUSION OF MEASURED REACTION CROSS SECTIONS IN STELLAR RATES INCLUDING UNCERTAINTIES AND ITS APPLICATION TO NEUTRON CAPTURE IN THE s-PROCESS  

Science Conference Proceedings (OSTI)

A general formalism to include experimental reaction cross sections into calculations of stellar rates is presented. It also allows us to assess the maximally possible reduction of uncertainties in the stellar rates by experiments. As an example for the application of the procedure, stellar neutron capture reactivities from KADoNiS v0.3 are revised and the remaining uncertainties shown. Many of the uncertainties in the stellar rates are larger than those obtained experimentally. This has important consequences for s-process models and the interpretation of meteoritic data because it allows the rates of some reactions to vary within a larger range than previously assumed.

Rauscher, Thomas [Department of Physics, University of Basel, CH-4056 Basel (Switzerland)

2012-08-10T23:59:59.000Z

115

New Gadolinium and Boron Containing Radiation Absorbing ...  

Science Conference Proceedings (OSTI)

At the capture of neutron in wide energy spectrum, the (n, ?) reaction takes place ... and Welding Conditions of Monopile and Transition for Offshore Wind Plant.

116

Neutronic reactor  

DOE Patents (OSTI)

A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

Wende, Charles W. J. (West Chester, PA)

1976-08-17T23:59:59.000Z

117

Direct current sputtering of boron from boron/boron mixtures  

DOE Patents (OSTI)

A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod. 2 figures.

Timberlake, J.R.; Manos, D.; Nartowitz, E.

1994-12-13T23:59:59.000Z

118

Boron-10 Lined Proportional Counter Model Validation  

SciTech Connect

The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project “Coincidence Counting With Boron-Based Alternative Neutron Detection Technology” at Pacific Northwest National Laboratory (PNNL) for the development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube-based alternative system in the configuration of a coincidence counter. This report discusses the validation studies performed to establish the degree of accuracy of the computer modeling methods current used to simulate the response of boron-lined tubes. This is the precursor to developing models for the uranium neutron coincidence collar under Task 2 of this project.

Lintereur, Azaree T.; Siciliano, Edward R.; Kouzes, Richard T.

2012-06-30T23:59:59.000Z

119

Neutronic design studies for the MIT fission converter beam  

SciTech Connect

Currently available epithermal neutron beams at the Massachusetts Institute of Technology (MIT) are not sufficiently intense to meet the anticipated demand for boron neutron capture therapy (BNCT) treatments if initial, currently in progress clinical trials of BNCT prove successful. Indeed, they are not really adequate for extensive (phase-III) clinical trials. To fulfill this need, a high-intensity, high-quality fission converter-based epithermal neutron beam for BNCT has been designed for the MIT Research Reactor, (MITR-II). This epithermal neutron beam, capable of delivering treatments in a few minutes with negligible beam background contamination, would be installed in the present thermal column and hohlraum of the MITR-II.

Kiger, W.S. III; Harling, O.K. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

1996-12-31T23:59:59.000Z

120

Boron uptake in tumors, cerebrum and blood from (/sup 10/B)Na/sub 4/B/sub 24/H/sub 22/S/sub 2/  

DOE Patents (OSTI)

A stable boronated (/sup 10/B-labeled) compound, sodium mercaptoundecahydrododecaborate is infused in the form of the disulfide dimer, (/sup 10/B)Na/sub 4/B/sub 24/H/sub 22/S/sub 2/, at a dose of about 200 ..mu..g /sup 10/B per gm body weight. The infusion is preformed into the blood or peritoneal cavity of the patient slowly over a period of many days, perhaps one week or more, at the rate of roughly 1 ..mu..g /sup 10/B per gm body weight per hour. Use of this particular boronated dimer in the manner or similarly to the manner so described permits radiotherapeutically effective amounts of boron to accumulate in tumors to be treated by boron neutron capture radiation therapy and also permits sufficient retention of boron in tumor after the cessation of the slow infusion, so as to allow the blood concentration of /sup 10/B to drop or to be reduced artificially to a radiotherapeutically effective level, less than one-half of the concentration of /sup 10/B in the tumor. 1 tab.

Slatkin, D.N.; Micca, P.L.; Fairchild, R.G.

1986-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Boron nitride nanotubes  

Science Conference Proceedings (OSTI)

Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

Smith, Michael W. (Newport News, VA); Jordan, Kevin (Newport News, VA); Park, Cheol (Yorktown, VA)

2012-06-06T23:59:59.000Z

122

Boron Based Materials for Hydrogen Storage  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Boron, Boron Compounds, and Boron Nanomaterials: Structure, Properties, ...

123

Technology Commercialization and Partnerships | BSA 01-10 ...  

Physics; Superconducting Magnet; Photon Sciences; Support Organizations ... including boron neutron capture therapy and photodynamic therapy.

124

A neutronic feasibility study for LEU conversion of the Brookhaven Medical Research Reactor (BMRR).  

SciTech Connect

A neutronic feasibility study for converting the Brookhaven Medical Research Reactor from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with Brookhaven National Laboratory. Two possible LEU cores were identified that would provide nearly the same neutron flux and spectrum as the present HEU core at irradiation facilities that are used for Boron Neutron Capture Therapy and for animal research. One core has 17 and the other has 18 LEU MTR-type fuel assemblies with uranium densities of 2.5g U/cm{sup 3} or less in the fuel meat. This LEU fuel is fully-qualified for routine use. Thermal hydraulics and safety analyses need to be performed to complete the feasibility study.

Hanan, N. A.

1998-01-14T23:59:59.000Z

125

Apparatus and method for identification of matrix materials in which transuranic elements are embedded using thermal neutron capture gamma-ray emission  

DOE Patents (OSTI)

An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)

Close, D.A.; Franks, L.A.; Kocimski, S.M.

1984-08-16T23:59:59.000Z

126

Microwave sintering of boron carbide  

DOE Patents (OSTI)

A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

1988-06-10T23:59:59.000Z

127

Advanced neutron absorber materials  

DOE Patents (OSTI)

A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

128

Boron-10 ABUNCL Prototype Initial Testing  

SciTech Connect

The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results of initial testing of an Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Several configurations of the ABUNCL models, which use 10B-lined proportional counters in place of 3He proportional counters for the neutron detection elements, were previously reported. The ABUNCL tested is of a different design than previously modeled. Initial experimental testing of the as-delivered passive ABUNCL was performed, and modeling will be conducted. Testing of the system reconfigured for active testing will be performed in the near future, followed by testing with nuclear fuel.

Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

2012-12-01T23:59:59.000Z

129

Neutron absorbing coating for nuclear criticality control  

DOE Patents (OSTI)

A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

Mizia, Ronald E. (Idaho Falls, ID); Wright, Richard N. (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID); Lister, Tedd E. (Idaho Falls, ID); Pinhero, Patrick J. (Idaho Falls, ID)

2007-10-23T23:59:59.000Z

130

Data Capture Form Data capture form  

E-Print Network (OSTI)

Data Capture Form Data capture form Please make use of the data capture form relevant not on the common lists. The data capture form must be printed and used in the field during the census to capture all the data during the BCW. All data captured onto this form must please be submitted by the team

de Villiers, Marienne

131

THE SAL NEUTRON DETECTOR EFFICIENCY USING PHOTODISINTEGRATION OF THE DEUTERON  

E-Print Network (OSTI)

of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, NovosibirskAccelerator based neutron source for neutron capture therapy B. Bayanov, Yu. Belchenko, V. Belov, V

Saskatchewan, University of

132

Direct current sputtering of boron from boron/coron mixtures  

DOE Patents (OSTI)

A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.

Timberlake, John R. (Allentown, NJ); Manos, Dennis (Williamsburg, VA); Nartowitz, Ed (Edison, NJ)

1994-01-01T23:59:59.000Z

133

Direct current sputtering of boron from boron/carbon mixtures  

DOE Patents (OSTI)

A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached and coating the substrate material with boron by sputtering from the boron-containing rod.

Timberlake, J.R.; Manos, D.; Nartowitz, E.

1993-12-31T23:59:59.000Z

134

Minerals Yearbook, 1988. Boron  

Science Conference Proceedings (OSTI)

U.S. production and sales of boron minerals and chemicals decreased during the year. Glass-fiber insulation was the largest use for borates, followed by sales to distributors, textile-grade glass fibers, and borosilicate glasses. California was the only domestic source of boron minerals. The report discusses the following: domestic data coverage; legislation and government programs; domestic production; comsumption and uses; prices; foreign trade; world capacity; world review--Argentina, Chile, France, Italy, Turkey, United Kingdom; Technology.

Lyday, P.A.

1988-01-01T23:59:59.000Z

135

Layered semiconductor neutron detectors  

SciTech Connect

Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

Mao, Samuel S; Perry, Dale L

2013-12-10T23:59:59.000Z

136

FABRICATION OF NEUTRON SOURCES  

DOE Patents (OSTI)

A method is presented for preparing a neutron source from polonium-210 and substances, such as beryllium and boron, characterized by emission of neutrons upon exposure to alpha particles from the polonium. According to the invention, a source is prepared by placing powdered beryllium and a platinum foil electroplated with polonium-2;.0 in a beryllium container. The container is sealed and then heated by induction to a temperature of 450 to 1100 deg C to volatilize the polonium off the foil into the powder. The heating step is terminated upon detection of a maximum in the neutron flux level.

Birden, J.H.

1959-04-21T23:59:59.000Z

137

Method for separating boron isotopes  

SciTech Connect

A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

Rockwood, Stephen D. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

138

Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments  

Science Conference Proceedings (OSTI)

Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global thermal and mixed-field thermal neutron sensitivities derived from measurements performed at the RA-6 were compared and no significant differences were found. Global RA-6-based thermal neutron sensitivity showed agreement with pure thermal neutron sensitivity measurements performed in the RA-3 spectrum. Additionally, the detector response proved nearly unchanged by differences in neutron spectra from real (RA-6 BNCT beam) and ideal (considered for calibration calculations at RA-3) neutron source descriptions. The results confirm that the special design of the Rh SPND can be considered as having a pure thermal response for neutron spectra with epithermal-to-thermal flux ratios up to 12%. In addition, the linear response of the detector to thermal flux allows the use of a mixed-field thermal neutron sensitivity of 1.95 {+-} 0.05 x 10{sup -21} A n{sup -1}{center_dot}cm{sup 2}{center_dot}s. This sensitivity can be used in spectra with up to 21% epithermal-to-thermal flux ratio without significant error due to epithermal neutron and gamma induced effects. The values of the measured fluxes in clinical applications had discrepancies with calculated results that were in the range of -25% to +30%, which shows the importance of a local on-line independent measurement as part of a treatment planning quality control system. Conclusions: The usefulness of the CNEA Rh SPND for the on-line local measurement of thermal neutron flux on BNCT patients has been demonstrated based on an appropriate neutron spectra calibration and clinical applications.

Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

2011-12-15T23:59:59.000Z

139

It's Elemental - Isotopes of the Element Boron  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon Isotopes of the Element Boron [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 10 19.9% STABLE 11 80.1% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 6 No Data Available Double Proton Emission (suspected) No Data Available 7 3.255×10-22 seconds Proton Emission No Data Available Alpha Decay No Data Available 8 770 milliseconds Electron Capture 100.00% Electron Capture with delayed Alpha Decay 100.00% 9 8.439×10-19 seconds Proton Emission 100.00% Double Alpha Decay 100.00%

140

Boron hydride polymer coated substrates  

DOE Patents (OSTI)

A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

1986-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Boron hydride polymer coated substrates  

DOE Patents (OSTI)

A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

Pearson, Richard K. (Pleasanton, CA); Bystroff, Roman I. (Livermore, CA); Miller, Dale E. (Livermore, CA)

1987-01-01T23:59:59.000Z

142

Process for microwave sintering boron carbide  

DOE Patents (OSTI)

A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

Holcombe, C.E.; Morrow, M.S.

1993-10-12T23:59:59.000Z

143

High-flux neutron source based on a liquid-lithium target  

SciTech Connect

A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

Halfon, S. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Feinberg, G. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

2013-04-19T23:59:59.000Z

144

FAST NEUTRONIC REACTOR  

DOE Patents (OSTI)

This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

Snell, A.H.

1957-12-01T23:59:59.000Z

145

Boron Nanotechnology-driven Cancer Therapy  

Science Conference Proceedings (OSTI)

Presentation Title, Boron Nanotechnology-driven Cancer Therapy ... Current research focuses on both the design and synthesis of high boron containing ...

146

Structure and Stability of Small Boron and Boron Oxide Clusters  

SciTech Connect

In order to rationally design and explore a potential energy source based on the highly exothermic oxidation of boron, density functional theory (DFT) was used to characterize small boron clusters with 0-3 oxygen atoms and total of up to ten atoms. The structures, vibrational frequencies, and stabilities were calculated for each of these clusters. A quantum molecular dynamics procedure was used to locate the global minimum for each species, which proved to be crucial given the unintuitive structure of many of the most stable isomers. Additionally, due to the plane-wave, periodic DFT code used in this study, a straightforward comparison of these clusters to the bulk boron and B2O3 structures was possible, despite the great structural and energetic differences between the two forms. Through evaluation of previous computational and experimental work, the relevant low-energy structures of all but one of the pure boron clusters can be assigned with great certainty. Nearly all of the boron oxide clusters are described here for the first time, but there are strong indications that the DFT procedure chosen is particularly well-suited for the task. Insight into the trends in boron and boron oxide cluster stabilities, as well as the ultimate limits of growth for each, are also provided. The work reported herein provides crucial information towards understanding the oxidation of boron at a molecular level.

Sumpter, Bobby G [ORNL; Drummond, Michael L [ORNL; Meunier, Vincent [ORNL

2007-01-01T23:59:59.000Z

147

Feasibility of air capture  

E-Print Network (OSTI)

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

148

Carbon Capture & Sequestration  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the Energy Department's work to capture and transport CO2 into underground geologic formations, also known as carbon capture and sequestration.

149

Sampling and Analysis Procedures: Boron  

Science Conference Proceedings (OSTI)

Boron is a common constituent in fly ash leachate, and accurate analytical methods are the most critical aspect related to reporting and interpretation of data about its occurrence and transport. This report outlines and discusses the most widely accepted analytical techniques for the determination of the element boron as it occurs in liquids and solids at coal combustion product (CCP) management sites.

2009-12-17T23:59:59.000Z

150

Boron in Coal Combustion Products  

Science Conference Proceedings (OSTI)

This Technical Brief summarizes EPRI data on boron in CCPs, along with general information on its occurrence, health effects, and treatment. Much of the information presented is summarized from the 2005 EPRI technical report 1005258, Chemical Constituents in Coal Combustion Product Leachate: Boron, and is updated where appropriate.

2012-12-30T23:59:59.000Z

151

It's Elemental - The Element Boron  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon The Element Boron [Click for Isotope Data] 5 B Boron 10.811 Atomic Number: 5 Atomic Weight: 10.811 Melting Point: 2348 K (2075°C or 3767°F) Boiling Point: 4273 K (4000°C or 7232°F) Density: 2.37 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 2 Group Number: 13 Group Name: none What's in a name? From the Arabic word Buraq and the Persian word Burah, which are both words for the material "borax." Say what? Boron is pronounced as BO-ron. History and Uses: Boron was discovered by Joseph-Louis Gay-Lussac and Louis-Jaques Thénard, French chemists, and independently by Sir Humphry Davy, an English chemist,

152

Supercool Neutrons (Ultracold Neutrons)  

E-Print Network (OSTI)

in the USA. Why neutrons? Neutrons possess physical properties that make them valuable investigative tools Spallation Neutron Source (SNS) The world's most intense pulsed accelerator-based neutron source. High Flux Isotope Reactor (HFIR) The highest flux reactor-based neutron source for condensed matter research

Martin, Jeff

153

Application of neural network on solid boronizing  

Science Conference Proceedings (OSTI)

This paper discusses an application of neural network system on the performance prediction of solid boronizing. To build the mathematics model between the solid boronizing and the prediction of boronizing performance, a neural network approach is adopted. ... Keywords: mathematics model, neural network, solid boronizing

YuXi Liu; ZhiFeng Zhang

2011-08-01T23:59:59.000Z

154

Technology Commercialization and Partnerships | BSA 06-08 ...  

Sponsored Research; Search Technologies; Patents; Contacts. TCP Director Connie Cleary. ... Tags: boron neutron capture, cancer, MRI, PET, PET/MRI. ...

155

Reducing Boron Toxicity by Microbial Sequestration  

SciTech Connect

While electricity is a clean source of energy, methods of electricity-production, such as the use of coal-fired power plants, often result in significant environmental damage. Coal-fired electrical power plants produce air pollution, while contaminating ground water and soils by build-up of boron, which enters surrounding areas through leachate. Increasingly high levels of boron in soils eventually overcome boron tolerance levels in plants and trees, resulting in toxicity. Formation of insoluble boron precipitates, mediated by mineral-precipitating bacteria, may sequester boron into more stable forms that are less available and toxic to vegetation. Results have provided evidence of microbially-facilitated sequestration of boron into insoluble mineral precipitates. Analyses of water samples taken from ponds with high boron concentrations showed that algae present contained 3-5 times more boron than contained in the water in the samples. Boron sequestration may also be facilitated by the incorporation of boron within algal cells. Experiments examining boron sequestration by algae are in progress. In bacterial experiments with added ferric citrate, the reduction of iron by the bacteria resulted in an ironcarbonate precipitate containing boron. An apparent color change showing the reduction of amorphous iron, as well as the precipitation of boron with iron, was more favorable at higher pH. Analysis of precipitates by X-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectroscopy revealed mineralogical composition and biologicallymediated accumulation of boron precipitates in test-tube experiments.

Hazen, T.; Phelps, T.J.

2002-01-01T23:59:59.000Z

156

Boron loaded scintillator  

DOE Patents (OSTI)

A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carborane units can either be a carborane molecule dispersed in the rubber with the aid of a compatiblization agent or can be covalently bound to the silicone.

Bell, Zane William (Oak Ridge, TN); Brown, Gilbert Morris (Knoxville, TN); Maya, Leon (Knoxville, TN); Sloop, Jr., Frederick Victor (Oak Ridge, TN)

2009-10-20T23:59:59.000Z

157

NETL: Carbon Capture FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

How is CO2 captured? How is CO2 captured? Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Carbon dioxide (CO2) capture involves separating CO2 from other gases generated by industrial processes or burning fossil fuels. CO2 capture can remove as much as 95% of the CO2 from these processes. There are two major types of anthropogenic CO2 sources: mobile and stationary. Mobile sources include things like cars, trucks, trains, boats, and aircrafts that burn fossil fuels and generate CO2. Capturing CO2 from mobile sources is currently impractical. Stationary sources include power plants and industrial facilities that burn fossil fuels, as

158

Cryogenic Carbon Capture  

SciTech Connect

IMPACCT Project: SES is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation - the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES’ capture technology facilitates the prudent use of available energy resources. Coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES’ capture technology can be readily added to our existing energy infrastructure.

None

2010-07-15T23:59:59.000Z

159

EEE 562 Nuclear Reactor Theory and Design (3 hrs) Catalog Description: Principles of neutron chain reacting systems. Neutron diffusion and moderation.  

E-Print Network (OSTI)

important part of reactor physics. As the neutrons are produced in neutron induced fission of a fissile physical processes like neutron capture, elastic and inelastic scattering, upscattering, etc. Neutron technique is a scattering of free neutrons by matter. It is used in biophysics, physics, chemistry

160

Boron doping a semiconductor particle  

DOE Patents (OSTI)

A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

Stevens, Gary Don (18912 Ravenglen Ct., Dallas, TX 75287); Reynolds, Jeffrey Scott (703 Horizon, Murphy, TX 75094); Brown, Louanne Kay (2530 Poplar Tr., Garland, TX 75042)

1998-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Design and development of a 3He replacement safeguards neutron counter based on 10B-lined proportional detector technology  

SciTech Connect

This presentation represents an overview of the experimental evaluation of a boron-lined proportional technology performed within an NA-241 sponsored project on testing of boron-lined proportional counters for the purpose of replacement of {sup 3}He technologies. The presented boron-lined technology will be utilized in a design of a full scale safeguards neutron coincidence counter. The design considerations and the Monte Carlo performance predictions for the counter are also presented.

Henzlova, Daniela [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Rael, Carlos D. [Los Alamos National Laboratory; Martinez, Isaac P. [Los Alamos National Laboratory; Marlow, Johnna B. [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

162

Method of separating boron isotopes  

SciTech Connect

A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

Jensen, Reed J. (Los Alamos, NM); Thorne, James M. (Provo, UT); Cluff, Coran L. (Provo, UT); Hayes, John K. (Salt Lake City, UT)

1984-01-01T23:59:59.000Z

163

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

PartTec PartTec ORNL, PartTec Inc. Licensing Agreement ORNL and PartTec sign licensing agreement (Front) ORNL Deputy Director for Science & Technology Thomas Zacharia and PartTec CEO Herschel Workman. (Back) Bruce Hannan (SNS), PartTec production manager Craig Kline, Rick Riedel (SNS), Jason Hodges (SNS) and Ron Cooper (SNS). The SNS guys were on the development team. Representatives from Oak Ridge National Laboratory and PartTec, an Indiana-based firm, formally signed a licensing agreement Thursday, Aug. 12, to market an advanced neutron detector system developed for the Spallation Neutron Source. The Shifting Scintillator Neutron Detector can determine the time and position of captured neutrons, which enables researchers to obtain very accurate time-of-flight measurements.

164

BADGER, a Probe for Nondestructive Testing of Residual Boron-10 Absorber Density in Spent-Fuel Storage Racks: Development and Demons tration  

Science Conference Proceedings (OSTI)

The in-service degradation of Boraflex -- a neutron absorber material used in spent-fuel racks for criticality control -- is a problem at some 50 U.S. nuclear plants. EPRI has developed the BADGER probe to nondestructively measure the residual boron-10 areal density in Boraflex. The probe has been demonstrated in BWR and PWR spent-fuel pools. BADGER measurements can be used to monitor the loss of boron-10 and confirm the integrity of the remaining Boraflex.

1997-12-09T23:59:59.000Z

165

Low energy neutron-proton interactions  

E-Print Network (OSTI)

There have been few measurements of cross sections for neutron-proton scattering and radiative capture below 1 MeV. Those measurements which do exist are at a small number of energies and are often inconsistent with ...

Daub, Brian (Brian Hollenberg)

2012-01-01T23:59:59.000Z

166

IMPACCT: Carbon Capture Technology  

Science Conference Proceedings (OSTI)

IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

None

2012-01-01T23:59:59.000Z

167

Glossary Term - Neutron Emission  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Previous Term (Neutron) Glossary Main Index Next Term (Niobe) Niobe Neutron Emission After neutron emission, an atom contains one less neutron. Neutron emission is one...

168

Method for preparing boron-carbide articles  

DOE Patents (OSTI)

The invention is directed to the preparation of boron carbide articles of various configurations. A stoichiometric mixture of particulate boron and carbon is confined in a suitable mold, heated to a temperature in the range of about 1250 to 1500$sup 0$C for effecting a solid state diffusion reaction between the boron and carbon for forming the boron carbide (B$sub 4$C), and thereafter the resulting boron-carbide particles are hot-pressed at a temperature in the range of about 1800 to 2200$sup 0$C and a pressure in the range of about 1000 to 4000 psi for densifying and sintering the boron carbide into the desired article.

Benton, S.T.; Masters, D.R.

1975-10-21T23:59:59.000Z

169

Capture.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Barriers for Carbon Capture, Storage and Sequestration Barriers for Carbon Capture, Storage and Sequestration Sarah M. Forbes, National Energy Technology Laboratory November, 2002 The success of carbon capture, storage and sequestration as a greenhouse gas mitigation strategy will be, in part, dependent on the regulatory framework used to govern its implementation. Creating a science-based regulatory framework that is designed with enough flexibility to encourage greenhouse gas offset activity, effective means of measuring the costs of taking action to reduce greenhouse gas emissions, and ample protection for human and ecosystem health may prove challenging. For the purposes of this paper we will assume that there is an existing incentive to capture, store and sequester carbon and focus on how to regulate the process. Accounting practices and

170

NETL: Carbon Capture FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

(table below). These include four natural gas processing operations and a synthesis gas (syngas) production facility in which more than 1 million tons of CO2 are captured per...

171

Capturing Undocumented Expert Knowledge  

Science Conference Proceedings (OSTI)

Public Service Electric and Gas Company (PSEG) faces the retirements of skilled, productive experts in the areas of asset management system protection engineering and pipe-type cable design and operations. The project team used the Electric Power Research Institute (EPRI) guidelines and methods, described in the EPRI report Capturing and Using High-Value Undocumented Knowledge in the Nuclear Industry: Guidelines and Methods (1002896) to capture and retain the tacit knowledge held by these key experts. Th...

2005-08-31T23:59:59.000Z

172

Process for making boron nitride using sodium cyanide and boron phosphate  

DOE Patents (OSTI)

This is a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

Bamberger, C.E.

1987-02-27T23:59:59.000Z

173

Health Effects for Boron and Borates  

Science Conference Proceedings (OSTI)

Boron occurs in varying concentrations in coal fly ash and is typically found in fly ash leachates. The U.S. Environmental Protection Agency (EPA) is in the process of performing a risk assessment to determine safe levels of boron for human ingestion. This report describes existing information on the health effects of boron and how that information is being used to calculate a reference dose (RfD) and acceptable concentration in drinking water.

2004-03-29T23:59:59.000Z

174

Method for making boron carbide cermets  

DOE Patents (OSTI)

A method for synthesizing low density cermets of boron carbide and a metal binder, using decomposition of a metallic compound at controlled temperature and pressure is disclosed.

Cline, C.F.; Fulton, F.J.

1987-11-03T23:59:59.000Z

175

Available Technologies: Synthesizing Boron Nitride Nanotubes and ...  

Nano- & Micro-technology; Software and IT ; Licensing Interest Form Receive Customized Tech Alerts. Synthesizing Boron Nitride Nanotubes and Related Nanoparticles

176

Carbon Capture Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

177

Challenge of carbon capture  

SciTech Connect

Finding more-effective, less-expensive ways to capture the CO{sub 2} produced by coal-fired power plants could significantly lower the cost of reducing emissions while preserving coal as a vital energy resource. Several technological approaches have been proposed, but all options currently available would, indeed, impose substantial costs and impact plant efficiencies. Ongoing research promises to provide a suite of improved technologies that will give plant owners viable options to meet their specific needs. The article discusses the options for CO{sub 2} capture by precombustion based on IGCC systems, post combustion, or oxyfuel combustion. EPRI's work to develop a process to capture CO{sub 2} using chilled ammonia (rather than the more usual MEA) as a solvent is described. A 5 MW pilot plant is to be built at the We Energies Pleasant Prairie Power Plant. Other research programs (in Europe and Australia) are also mentioned. Deployment of a new generation of ultrasuperciritcal pulverized coal power plants designed to have greater efficiency and hence lower CO{sub 2} emissions is under development. Efforts to improve precombustion capture are reported in the article. Also noted are two recent studies (one by the IEA Greenhouse Gas R & D Programme and another by CPS Energy) comparing the performance of IGCC and supercritical PC plants incorporating CO{sub 2} capture. 3 figs., 3 photos.

Douglas, J.

2007-04-01T23:59:59.000Z

178

High-power liquid-lithium jet target for neutron production  

E-Print Network (OSTI)

A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution and angular distribution. Liquid lithium is circulated through the target loop at ~200oC and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of > 4 kW/cm2 and volume power density of ~ 2 MW/cm3 at a lithium flow of ~4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91- 2.5 MeV, 1-2 mA) at SARAF.

S. Halfon; A. Arenshtam; D. Kijel; M. Paul; D. Berkovits; I. Eliyahu; G. Feinberg; M. Friedman; N. Hazenshprung; I. Mardor; A. Nagler; G. Shimel; M. Tessler; I. Silverman

2013-11-13T23:59:59.000Z

179

Neutron Radiography  

Science Conference Proceedings (OSTI)

Table 8   Characteristics of neutron radiography at various neutron-energy ranges...Good discrimination between materials and ready availability

180

Neutron Sources  

Science Conference Proceedings (OSTI)

Table 1   Characteristics of neutron radiography at various neutron-energy ranges...Good discrimination between materials, and ready

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CAPTURE DOCUMENT ORAUTEAM  

Office of Legacy Management (LM)

DATA DATA CAPTURE DOCUMENT ORAUTEAM ---- Dose Reconstruction ~v~:7 DISCOVERY AND REVIEW dA'~ Project for NIOSH The attached document may contain Privacy Act data. This information is protected by the Privacy Act, 5 U.S.C. §552a; disclosure to any third party without written consent of the individual to whom the information pertains is strictly prohibited. Data Capture Team or Other ORAU Team Member Capturing Data: Complete all information that applies to the data/document being submitted lor uploading to the Site Research Database (SRDB), attach this lonm to the lront olthe document, and send to: ORAU Team, Attention: SRDB Uploading, 4850 Smith Rd., Suite 200, Cincinnati, Ohio 45212. I ~ -!-R"e"guestor and Reviewer 1. Data Requestor: RSET Group 2. Reviewer Name (if different from Requestor): Don Morris 3. Target Data: Document Specified by Requestor Any relevant

182

Adiabatic capture and debunching  

Science Conference Proceedings (OSTI)

In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

Ng, K.Y.; /Fermilab

2012-03-01T23:59:59.000Z

183

Porcelain enamel neutron absorbing material  

DOE Patents (OSTI)

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

Iverson, D.C.

1987-11-20T23:59:59.000Z

184

Carbon Capture and Transport  

E-Print Network (OSTI)

of careers in the Energy sector including positions within power generation companies, CO2 captureĂ?FluidĂ?Dynamics The module introduces Computational Fluid Dynamics techniques for modelling, simulating and analysing satisfies approximately 88% of the global commercial primary energy demand and in spite of the significant

185

BACKSCATTER GUAGE DESCRIPTION FOR INSPECTION OF NEUTRON ABSORBER AND UNIFORMITY  

SciTech Connect

This paper describes design, calibration, and testing of a dual He-3 detector neutron backscatter gauge for use in the Savannah River Site Mixed Oxide Fuel project. The gauge is demonstrated to measure boron content and uniformity in concrete slabs used in the facility construction.

Dewberry, R.; Gibbs, K.; Couture, A.

2012-05-23T23:59:59.000Z

186

Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances  

SciTech Connect

Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

Thompson, I J [Lawrence Livermore National Laboratory (LLNL); Escher, Jutta E [ORNL; Arbanas, Goran [ORNL

2013-01-01T23:59:59.000Z

187

Glossary Term - Neutron  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutrino Previous Term (Neutrino) Glossary Main Index Next Term (Neutron Emission) Neutron Emission Neutron A Neutron Neutrons are uncharged particles found within atomic nuclei....

188

Determinations of Boron Deposit Quality by Neutron Depth ...  

Science Conference Proceedings (OSTI)

... the hollow straw. A pulse signal is read out via the suspended wire running through the center of the straw. Many straws ...

2012-10-01T23:59:59.000Z

189

Boron-10 Neutron Detectors for Helium-3 Replacement  

NLE Websites -- All DOE Office Websites (Extended Search)

to monitor people and cargos for smuggled nuclear materials and are often incorporated in nuclear power plant design to monitor power levels and ensure safe operations. With the...

190

About Neutrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Basics Neutron Basics A neutron is one of the fundamental particles that make up matter. This uncharged particle exists in the nucleus of a typical atom, along with its positively charged counterpart, the proton. Protons and neutrons each have about the same mass, and both can exist as free particles away from the nucleus. In the universe, neutrons are abundant, making up more than half of all visible matter. Find Out What a Neutron Is Youtube icon Properties of Neutrons How Can Neutrons Be Used for Research? Image of glucose movement in plants Neutron imaging techniques have been able to determine the precise movement of glucose in plants. This knowledge can help scientists better understand how biomass can be efficiently converted into fuel. Neutrons have many properties that make them ideal for certain types of

191

New technical solution for using the time-of-flight technique to measure neutron spectra  

E-Print Network (OSTI)

-Russian Research Institute of Technical Physics, Snezhinsk, Russia Pilot innovative facility for neutron capture. Conclusion At Budker Institute of Nuclear Physics the first experiments on generation of neutrons for BNCT772 RESULTS OF FIRST EXPERIMENTS ON NEUTRON GENERATION IN THE VITA NEUTRON SOURCE B. F. Bayanov1

Taskaev, Sergey Yur'evich

192

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron/Proton Capture Neutron/Proton Capture Beam Line 13 Fuels Discovery Fever for Fundamental Physicists Research Contact: Geoff Greene June 2011, Written by Agatha Bardoel Serpil Kucuker Dogan (left) and Matthew Musgrave prepare a helium-3 cooling cell that is used to measure the angle at which the neutron beam strikes the liquid hydrogen sample. The simplest, most sensible " Big Bang" universe, theoretical physicists believe, would be one in which equal numbers of particles and antiparticles are formed in pairs. As the universe cools, most of these particles would encounter their antiparticles, and they would annihilate. "In many ways, the most reasonable universe would be one in which there is no matter," says the University of Tennessee's Dr. Geoff Greene.

193

Advanced Telemetry Data Capturing  

SciTech Connect

This project developed a new generation or advanced data capturing process specifically designed for use in future telemetry test systems at the Kansas City Plant (KCP). Although similar data capturing processes are performed both commercially and at other DOE weapon facilities, the equipment used is not specifically designed to perform acceptance testing requirements unique to the KCP. Commercially available equipment, despite very high cost (up to $125,000), is deficient in reliability and long-term maintainability necessary in test systems at this facility. There are no commercial sources for some requirements, specifically Terminal Data Analyzer (TDA) data processing. Although other custom processes have been developed to satisfy these test requirements, these designs have become difficult to maintain and upgrade.

Paschke, G.A.

2000-05-16T23:59:59.000Z

194

Densification of nano-sized boron carbide .  

E-Print Network (OSTI)

??Boron carbide nano-powders, singly-doped over a range of compositions, were pressurelessly-sintered at identical temperature and atmospheric conditions in a dif- ferential dilatometer to investigate sintering… (more)

Shupe, John

2009-01-01T23:59:59.000Z

195

Boron chemistry reported in Chemical Reviews  

NLE Websites -- All DOE Office Websites (Extended Search)

813chemistry 03282013 Boron chemistry reported in Chemical Reviews Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly A ball-and-stick structural model of...

196

Capturing the Daylight Dividend  

Science Conference Proceedings (OSTI)

Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

Peter Boyce; Claudia Hunter; Owen Howlett

2006-04-30T23:59:59.000Z

197

Uranium Neutron Coincidence Collar Model Utilizing 3He  

SciTech Connect

The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube based alternative system in a configuration typically used for 3He-based coincidence counter applications. The specific application selected for boron-lined tube replacement in this project was one of the Uranium Neutron Coincidence Collar (UNCL) designs. This report, providing results for model development of a UNCL, is a deliverable under Task 2 of the project. The current UNCL instruments utilize 3He tubes. As the first step in developing and optimizing a boron-lined proportional counter based version of the UNCL, models of eight different 3He-based UNCL detectors currently in use were developed and evaluated. A comparison was made between the simulated results and measured efficiencies for those systems with values reported in the literature. The reported experimental measurements for efficiencies and die-away times agree to within 10%.

Siciliano, Edward R.; Rogers, Jeremy L.; Schweppe, John E.; Lintereur, Azaree T.; Kouzes, Richard T.

2012-07-30T23:59:59.000Z

198

Neutron dosimetry  

DOE Patents (OSTI)

A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

Quinby, Thomas C. (Kingston, TN)

1976-07-27T23:59:59.000Z

199

Synthesis, Characterization and Anion Binding Properties of Boron-based Lewis Acids  

E-Print Network (OSTI)

The recognition and capture of fluoride, cyanide and azide anions is attracting great deal of attention due to the negative effects of these anions on the environment and on human health. One of common methods used for the recognition and capture of these anions is based on triarylboranes, the Lewis acidity of which can be enhanced via variation the steric and electronic properties of the boron substituents. This dissertation is dedicated to the synthesis of novel boron-based anion receptors that, for the most part, feature an onium group bound to one of the aryl substituents. The presence of this group is shown to increase the anion affinity of the boron center via Coulombic effects. Another interesting effect is observed when the onium group is juxtaposed with the boron atom. This is for example the case of naphthalene-based compounds bearing a dimesitylboryl moiety at one of the peri-position and a sulfonium or telluronium unit at the other peri position. Fluoride anion complexation studies with these sulfonium or telluronium boranes, show that the boron-bound fluoride anion is further stabilized by formation of a B-F->Te/S bridge involving a lp(F)->sigma*(Te/S-C) donor acceptor interaction. Some of the sulfonium boranes investigated have been shown to efficiently capture fluoride anions from wet methanolic solutions. The resulting fluoride/sulfonium borane adducts can be triggered to release a "naked" fluoride equivalent in organic solution and thus show promise as new reagents for nucleophilic fluorination chemistry. Interestingly, the telluronium systems show a greater fluoride anion affinity than their sulfonium analogs. This increase is assigned to the greater spatial and energetic accessibility of the sigma* orbital on the tellurium atom which favors the formation of a strong B-F->Te interaction. This dissertation is concluded by an investigation of the Lewis acidic properties of B(C6Cl5)3. This borane, which has been reported to be non-Lewis acidic by other researchers, is found by us to bind fluoride, azide and cyanide anions in dichloromethane with large binding constants. This borane is also reactive toward neutral Lewis bases, such as p-dimethylaminopyridine, in organic solvents.

Zhao, Hai Yan

2012-05-01T23:59:59.000Z

200

Robust automated knowledge capture.  

SciTech Connect

This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Distribution of boron, calcium and aluminium between silicon and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Distribution of boron, calcium and aluminium between ... Electrochemical deposition of high purity silicon from molten fluoride electrolytes.

202

Final Report on Actinide Glass Scintillators for Fast Neutron Detection  

Science Conference Proceedings (OSTI)

This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a signal for fast neutron capture.

Bliss, Mary; Stave, Jean A.

2012-10-01T23:59:59.000Z

203

Industrial Carbon Capture Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

204

Resource capture by single leaves  

DOE Green Energy (OSTI)

Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

Long, S.P.

1992-05-01T23:59:59.000Z

205

Neutron Sources  

Science Conference Proceedings (OSTI)

... for Neutron Reaction Rate Measurements, JA Grundl, V. Spiegel, CM Eisenhauer, HT Heaton II, DM Gilliam (NBS), and J. Bigelow (ORNL), Nucl. ...

2013-07-27T23:59:59.000Z

206

Nuclear fusion of protons with boron  

SciTech Connect

Two methods are investigated in this paper to convert the released fusion energy directly in electric power. The first is very simply the use of a beam of protons traversing a fixed target of Boron. Unfortunately this method cannot be made to work, but its investigation naturally yields to the second method which makes use of two beams, one of protons and one of ions of Boron, colliding with each other. This second method is feasible but it requires a significant amount of research and development in accelerator technology.

Ruggiero, A.G.

1992-09-01T23:59:59.000Z

207

Muon capture on Chlorine-35  

E-Print Network (OSTI)

We report measurements of $\\gamma$--ray spectra from muon capture on $^{35}$Cl. For the allowed Gamow--Teller transitions to the $^{35}$S$(2939, 3/2^+)$ state and the $^{35}$S$(3421, 5/2^+)$ state we obtained their capture rates, hyperfine dependences and $\\gamma$--$\

S. Arole; D. S. Armstrong; T. P. Gorringe; M. D. Hasinoff; M. A. Kovash; V. Kuzmin; B. A. Moftah; R. Sedlar; T. J. Stocki; T. Tetereva

2002-04-30T23:59:59.000Z

208

Magnetron sputtered boron films and Ti/B multilayer structures  

DOE Patents (OSTI)

A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor 5 deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity 10 from grazing to normal incidence.

Makowiecki, D.M.; Jankowski, A.F.

1991-03-11T23:59:59.000Z

209

Capturing Carbon Dioxide From Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing Carbon Dioxide From Air Capturing Carbon Dioxide From Air Klaus S. Lackner (kl2010@columbia.edu; 212-854-0304) Columbia University 500 West 120th Street New York, NY 10027 Patrick Grimes (pgrimes@worldnet.att.net; 908-232-1134) Grimes Associates Scotch Plains, NJ 07076 Hans-J. Ziock (ziock@lanl.gov; 505-667-7265) Los Alamos National Laboratory P.O.Box 1663 Los Alamos, NM 87544 Abstract The goal of carbon sequestration is to take CO 2 that would otherwise accumulate in the atmosphere and put it in safe and permanent storage. Most proposed methods would capture CO 2 from concentrated sources like power plants. Indeed, on-site capture is the most sensible approach for large sources and initially offers the most cost-effective avenue to sequestration. For distributed, mobile sources like cars, on-board capture at affordable cost would not be

210

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Capture & Storage Industrial Capture & Storage Technologies Industrial Capture & Storage The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

211

Neutron source  

DOE Patents (OSTI)

A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

Cason, J.L. Jr.; Shaw, C.B.

1975-10-21T23:59:59.000Z

212

Identification of limiting case between DBA and SBDBA (CL break area sensitivity): A new model for the boron injection system  

SciTech Connect

Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and (e.g., oblique Control Rods, Positive Void coefficient) required a developed and validated complex three dimensional (3D) neutron kinetics (NK) coupled thermal hydraulic (TH) model. Reactor shut-down is obtained by oblique CRs and, during accidental conditions, by an emergency shut-down system (JDJ) injecting a highly concentrated boron solution (boron clouds) in the moderator tank, the boron clouds reconstruction is obtained using a CFD (CFX) code calculation. A complete LBLOCA calculation implies the application of the RELAP5-3D{sup C} system code. Within the framework of the third Agreement 'NA-SA - Univ. of Pisa' a new RELAP5-3D control system for the boron injection system was developed and implemented in the validated coupled RELAP5-3D/NESTLE model of the Atucha 2 NPP. The aim of this activity is to find out the limiting case (maximum break area size) for the Peak Cladding Temperature for LOCAs under fixed boundary conditions. (authors)

Gonzalez Gonzalez, R.; Petruzzi, A.; D'Auria, F. [San Piero A Grado Nuclear Research Group GRNSPG, Univ. of Pisa, Via Livornese 1291-56122, San Piero a Grado - Pisa (Italy); Mazzantini, O. [Nucleo-electrica Argentina Sociedad Anonima (NA-SA), Buenos Aires (Argentina)

2012-07-01T23:59:59.000Z

213

Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

214

Directionally Sensitive Neutron Detector For Homeland Security Applications  

E-Print Network (OSTI)

With an increase in the capabilities and sophistication of terrorist networks worldwide comes a corresponding increase in the probability of a radiological or nuclear device being detonated within the borders of the United States. One method to decrease the risk associated with this threat is to interdict the material during transport into the US. Current RPMS have limitations in their ability to detect shielded nuclear materials. It was proposed that directionally sensitive neutron detectors might be able to overcome many of these limitations. This thesis presents a method to create a directionally sensitive neutron detector using a unique characteristic of 10B. This characteristic is the Doppler broadening of the de-excitation gamma-ray from the 10B(n, alpha) reaction. Using conservation principles and the method of cone superposition, the mathematics for determining the incoming neutron direction vector from counts in a boron loaded cloud chamber and boron loaded semiconductor were derived. An external routine for MCNPX was developed to calculate the Doppler broaden de-excitation gamma-rays. The calculated spectrum of Doppler broadened de-excitation gamma-rays was then compared to measured and analytical spectrums and matched with a high degree of accuracy. MCNPX simulations were performed for both a prototype 10B loaded cloud chamber and prototype 10B loaded semiconductor detector. These simulations assessed the detectors' abilities to determine incoming neutron direction vectors using simulated particle reactant data. A sensitivity analysis was also performed by modifying the energy and direction vector of the simulated output data for 7Li* particles. Deviation coefficients showed a respective angular uncertainty of 1.86 degrees and 6.07 degrees for the boron loaded cloud chamber and a boron loaded semiconductor detectors. These capabilities were used to propose a possible RPM design that could be implemented.

Spence, Grant

2011-12-01T23:59:59.000Z

215

Boron injection/dilution capabilities in TRACB/NEM coupled code  

SciTech Connect

The coupled code TRAC-BF1/NEM is a thermal-hydraulic-neutronic code which allows transient simulations considering neutronic 3D and thermal-hydraulic process in multiple channels with one-dimensional geometry. TRAC-BF1 and NEM can be executed either in stand-alone mode, i.e. without coupling, as well as coupled. In stand-alone calculations NEM code is used without coupling and the thermal-hydraulic conditions (fuel temperature, moderator density and boron concentration) and xenon concentration for each node are taken from the SIMULATE3 output files. The NEM's source code has been modified to be able to read these conditions from external files when it is executed without being coupled. The coupling between TRAC-BF1 and NEM follows an integration scheme in which the thermal-hydraulic solution of TRAC-BF1 is sent to NEM to incorporate the feedback effects through the cross sections. TRAC-BF1 solves heat conduction equations inside of the heat structures using the 3D power distribution from NEM. The coupling is carried out through the communication protocol functions of PVM (Parallel Virtual Machine). The present article presents a study which constitutes an advance in the simulation of injection, transport and mix of boron in the reactor, increasing the capabilities of TRAC-BF1/NEM coupled code. This article shows the modifications introduced in the TRAC-BF1/NEM's source code to allow a more realistic simulation of boron injection transients. The qualification of these improvements in both codes is performed simulating a steady state of a generic BWR at nominal power. The results have been compared with SIMULATE3 which is used as a reference to obtain the cross sections through the SIMTAB methodology. (authors)

Jambrina, A.; Barrachina, T.; Miro, R.; Verdu, G. [Inst. for the Industrial, Radiophysical and Environmental Safety ISIRYM, Universitat Politecnica de Valencia UPV (Spain)

2012-07-01T23:59:59.000Z

216

Radial elasticity of multi-walled boron nitride nanotubes  

Science Conference Proceedings (OSTI)

We investigated the radial mechanical properties of multi-walled boron nitride nanotubes (MW-BNNTs) using atomic force microscopy. The employed MW-BNNTs were synthesized using pressurized vapor/condenser (PVC) methods and were dispersed in aqueous solution using ultrasonication methods with the aid of ionic surfactants. Our nanomechanical measurements reveal the elastic deformational behaviors of individual BNNTs with two to four tube walls in their transverse directions. Their effective radial elastic moduli were obtained through interpreting their measured radial deformation profiles using Hertzian contact mechanics models. Our results capture the dependences of the effective radial moduli of MW-BNNTs on both the tube outer diameter and the number of tube layers. The effective radial moduli of double-walled BNNTs are found to be several-fold higher than those of single-walled BNNTs within the same diameter range. Our work contributes directly to a complete understanding of the fundamental structural and mechanical properties of BNNTs and the pursuits of their novel structural and electronics applications.

Michael W. Smith, Cheol Park, Meng Zheng, Changhong Ke ,In-Tae Bae, Kevin Jordan

2012-02-01T23:59:59.000Z

217

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

218

Carbon Capture and Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and...

219

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

Wigner, E.P.

1960-11-22T23:59:59.000Z

220

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

Fraas, A.P.; Mills, C.B.

1961-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NEUTRON SOURCES  

DOE Patents (OSTI)

A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

Richmond, J.L.; Wells, C.E.

1963-01-15T23:59:59.000Z

222

Neutron range spectrometer  

DOE Patents (OSTI)

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

Manglos, S.H.

1988-03-10T23:59:59.000Z

223

ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's Neutron Science Future: Integrating Neutron Scattering Across the Laboratory Greg Smith, HFIR Center for Neutron Scattering Upgrade Status and Scientific Opportunities...

224

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

Wigner, E.P.

1958-04-22T23:59:59.000Z

225

Thermal testing of solid neutron shielding materials  

Science Conference Proceedings (OSTI)

Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800[degree]C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280[degree]F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found.

Boonstra, R.H.

1992-09-01T23:59:59.000Z

226

BISICLES Captures Details of Retreating Antarctic Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

BISICLES Captures Details of Retreating Antarctic Ice BISICLES Captures Details of Retreating Antarctic Ice March 30, 2013 | Tags: Climate Research, Hopper, Math & Computer Science...

227

Carbon Capture Pilots (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture Pilots (Kentucky) Carbon Capture Pilots (Kentucky) Eligibility Commercial Fed. Government StateProvincial Govt Utility Program Information Kentucky Program Type...

228

Speeding Up Zeolite Evaluation for Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Speeding Up Zeolite Evaluation for Carbon Capture Speeding Up Zeolite Evaluation for Carbon Capture Zeolite.png Schematic of an important class of porous materials known as...

229

Better Buildings Neighborhood Program: Massachusetts Captures...  

NLE Websites -- All DOE Office Websites (Extended Search)

Massachusetts Captures Home Energy Waste to someone by E-mail Share Better Buildings Neighborhood Program: Massachusetts Captures Home Energy Waste on Facebook Tweet about Better...

230

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputers Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space...

231

Low-loss binder for hot pressing boron nitride  

DOE Patents (OSTI)

This report describes an invention utilizing Borazine derivatives as low-loss binders and precursors for making ceramic boron nitirde structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.

Maya, L.

1989-06-02T23:59:59.000Z

232

Boron compounds as anion binding agents for nonaqueous battery electrolytes  

DOE Patents (OSTI)

Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.

Lee, Hung Sui (East Setauket, NY); Yang, Xia-Oing (Port Jefferson Station, NY); McBreen, James (Bellport, NY); Xiang, Caili (Upton, NY)

2000-02-08T23:59:59.000Z

233

Boron, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Boron, California: Energy Resources Boron, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9994202°, -117.6497822° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9994202,"lon":-117.6497822,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Capturing carbon and saving coal  

SciTech Connect

Electric utilities face a tangle of choices when figuring how to pull CO{sub 2} from coal-fired plants. The article explains the three basic approaches to capturing CO{sub 2} - post-combustion, oxyfuel combustion and pre-combustion. Researchers at US DOE labs and utilities are investigating new solvents that capture CO{sub 2} more efficiently than amines and take less energy. Ammonium carbonate has been identified by EPRI as one suitable solvent. Field research projects on this are underway in the USA. Oxyfuel combustion trials are also being planned. Pre-combustion, or gasification is a completely different way of pulling energy from coal and, for electricity generation, this means IGCC systems. AEP, Southern Cinergy and Xcel are considering IGCC plants but none will capture CO{sub 2}. Rio Tinto and BP are planning a 500 MW facility to gasify coke waste from petroleum refining and collect and sequester CO{sub 2}. However, TECO recently dropped a project to build a 789 MW IGCC coal fired plant even though it was to receive a tax credit to encourage advanced coal technologies. The plant would not have captured CO{sub 2}. The company said that 'with uncertainty of carbon capture and sequestration regulations being discussed at the federal and state levels, the timing was not right'. 4 figs.

Johnson, J.

2007-10-15T23:59:59.000Z

235

Available Technologies: Boron Nitride Nanotubes with Modified Surfaces  

Nano- & Micro-technology; Software and IT ; Licensing Interest Form Receive Customized Tech Alerts. Boron Nitride Nanotubes with Modified Surfaces . IB-2331 and IB-2332 .

236

Cooling Rate Dependence of Boron Distribution in Low Carbon Steel  

Science Conference Proceedings (OSTI)

Presentation Title, Cooling Rate Dependence of Boron Distribution in Low ... the transformation of austenite to ferrite by reducing the grain boundary energy.

237

Synthesis, Characterization and Growth Mechanism of Boron-Rich ...  

Science Conference Proceedings (OSTI)

However, the underlying physical reason of the diversity has been seldom investigated. Here, we present a detailed study of the growth of boron-rich whiskers ...

238

Microstructural Characterization of Superalloy 718 with Boron and ...  

Science Conference Proceedings (OSTI)

OF SUPERALLOY 718 WITH. BORON AND PHOSPHORUS ADDITIONS. J. A. Horton, C. G. McKamey, M. K. Miller*. Oak Ridge National Laboratory, Oak Ridge,  ...

239

Boron-carbide-aluminum and boron-carbide-reactive metal cermets  

SciTech Connect

Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

Halverson, Danny C. (Manteca, CA); Pyzik, Aleksander J. (Seattle, WA); Aksay, Ilhan A. (Seattle, WA)

1986-01-01T23:59:59.000Z

240

Carbon Capture and Storage Research | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Research Carbon Capture and Storage Research Clean Coal Carbon Capture and Storage Capture Storage Utilization MVA Regional Partnerships Oil & Gas Atlas...

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Weak Interaction Neutron Production Rates in Fully Ionized Plasmas  

E-Print Network (OSTI)

Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enhanced neutron production rate. The scattering wave function should replace the bound state wave function for estimates of the enhanced neutron production rate on water plasma drenched cathodes of chemical cells.

A. Widom; J. Swain; Y. N. Srivastava

2013-05-19T23:59:59.000Z

242

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Technologies Industrial Capture & Storage Area 1 Large-Scale Industrial CCS Program The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

243

Carbon Capture & Sequestration Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory Battelle Memorial Institute CARBON CAPTURE & SEQUESTRATION TECHNOLOGIES J. Edmonds, J.J. Dooley, and S.H. Kim Battelle Pacific Northwest National Laboratory Battelle Memorial Institute Pacific Northwest National Laboratory Battelle Memorial Institute THE ROADMAP * Greenhouse gas emissions may not control themselves. * Climate policy may happen.--There are smart and dumb ways to proceed. The smart ways involve getting both the policy and the technology right--the GTSP. * There are no silver bullets--Expanding the set of options to include carbon capture and sequestration can help limit the cost of any ceiling on CO 2 concentrations. * Managing greenhouse emissions means managing carbon. * Carbon can be captured, transported, and sequestered in many ways.

244

Neutron Repulsion  

E-Print Network (OSTI)

Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

Oliver K. Manuel

2011-02-08T23:59:59.000Z

245

Californium Neutron Irradiation Facility  

Science Conference Proceedings (OSTI)

Californium Neutron Irradiation Facility. Summary: ... Cf irradiation facility (Photograph by: Neutron Physics Group). Lead Organizational Unit: pml. Staff: ...

2013-07-23T23:59:59.000Z

246

Neutron Physics Group  

Science Conference Proceedings (OSTI)

... spectrum and fluencies is essential for several ... Neutron Interferometer and Optics Facility performed a ... other neutron scattering facilities depends on ...

2011-10-24T23:59:59.000Z

247

Cold Neutron and Ultracold Neutron Sources  

Science Conference Proceedings (OSTI)

... Moderators • Solid Methane – CH 4 – CD 4 ... In a cold neutron flux with a continuous spectrum, more neutrons could ... Magneto-vibrational Scatt. + ...

2009-07-13T23:59:59.000Z

248

Chapter 13 - NEUTRON AREA DETECTORS 1. NEUTRON ...  

Science Conference Proceedings (OSTI)

... The neutron peak corresponds to both reaction products being entirely absorbed in the ... 6. A fission chamber is a very low efficiency neutron detector ...

2009-11-29T23:59:59.000Z

249

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

Wigner, E.P.; Weinberg, A.W.; Young, G.J.

1958-04-15T23:59:59.000Z

250

Characterization of a ballistic supermirror neutron guide  

E-Print Network (OSTI)

We describe the beam characteristics of the first ballistic supermirror neutron guide H113 that feeds the neutron user facility for particle physics PF1B of the Institute Laue-Langevin, Grenoble (ILL). At present, the neutron capture flux density of H113 at its 20x6cm2 exit window is 1.35x10^10/cm^2/s, and will soon be raised to above 2x10^10/cm^2/s. Beam divergence is no larger than beam divergence from a conventional Ni coated guide. A model is developed that permits rapid calculation of beam profiles and absolute event rates from such a beam. We propose a procedure that permits inter-comparability of the main features of beams emitted from ballistic or conventional neutron guides.

H. Abele; D. Dubbers; H. Haese; M. Klein; A. Knoepfler; M. Kreuz; T. Lauer; B. Maerkisch; D. Mund; V. Nesvizhevsky; A. Petoukhov; C. Schmidt; M. Schumann; T. Soldner

2005-10-26T23:59:59.000Z

251

Image capture system colors transforms  

Science Conference Proceedings (OSTI)

The goal of this paper is to simulate the colors transforms of the reflected light from an illuminated object that passes trough an image capture system. We are interested to see the colors differences at the output of each component from which the light ... Keywords: CIE standards, human eye response, lenses and filters transmittance, spectral images

Toadere Florin

2010-02-01T23:59:59.000Z

252

Boron containing amino acid compounds and methods for their use  

DOE Patents (OSTI)

The present invention provides new boron containing amino acid compounds and methods for making these compounds by contacting melphalan or another nitrogen mustard derivative and sodium borocaptate. The present invention also provides a method of treating a mammal having a tumor by administering to the mammal a therapeutically effective amount of the new boron containing amino acid compounds.

Glass, John D. (Shoreham, NY); Coderre, Jeffrey A. (Wading River, NY)

2000-01-01T23:59:59.000Z

253

Method for removal of phosgene from boron trichloride  

DOE Patents (OSTI)

Selective ultraviolet photolysis using an unfiltered mercury arc lamp has been used to substantially reduce the phosgene impurity in a mixture of boron trichloride and phosgene. Infrared spectrophotometric analysis of the sample before and after irradiation shows that it is possible to highly purify commercially available boron trichloride with this method. 5 figs.

Freund, S.M.

1983-09-20T23:59:59.000Z

254

Branched Polymeric Media: Boron-Chelating Resins from Hyperbranched Polyethylenimine  

E-Print Network (OSTI)

magnesium oxide from brines, and (iv) nuclear power generation.1-4 Boron is an essential nutrient for plants.5 However, it adversely affects plant growth and damages crops (e.g., citrus and corn) when desalination, ultrapure water production, and nuclear power generation. Today's commercial boron

Goddard III, William A.

255

BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES  

DOE Green Energy (OSTI)

This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

2010-11-01T23:59:59.000Z

256

Method for removal of phosgene from boron trichloride  

SciTech Connect

Selective ultraviolet photolysis using an unfiltered mercury arc lamp has been used to substantially reduce the phosgene impurity in a mixture of boron trichloride and phosgene. Infrared spectrophotometric analysis of the sample before and after irradiation shows that is is possible to highly purify commercially available boron trichloride with this method.

Freund, Samuel M. (Santa Fe, NM)

1983-01-01T23:59:59.000Z

257

Chemical Constituents in Coal Combustion Product Leachate: Boron  

Science Conference Proceedings (OSTI)

This report profiles the element boron as it occurs in leachate at coal combustion product management sites. Included are discussions of boron's occurrence in soils and water, concentrations in coal combustion products (CCPs), CCP leaching characteristics, effects on human health and ecology, geochemistry, and treatment options for removal from water.

2005-03-21T23:59:59.000Z

258

NEUTRONIC REACTORS  

DOE Patents (OSTI)

The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

Anderson, H.L.

1958-10-01T23:59:59.000Z

259

capture  

E-Print Network (OSTI)

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Workshop On Gasification; Jared Ciferno; Subcritical Pc; Supercritical Pc; F Cop

2007-01-01T23:59:59.000Z

260

Methods for absorbing neutrons  

DOE Patents (OSTI)

A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

2012-07-24T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Neutron reflecting supermirror structure  

DOE Patents (OSTI)

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

Wood, James L. (Drayton Plains, MI)

1992-01-01T23:59:59.000Z

262

Neutron reflecting supermirror structure  

DOE Patents (OSTI)

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

Wood, J.L.

1992-12-01T23:59:59.000Z

263

Boron abundance and solar neutrino spectrum distortion  

E-Print Network (OSTI)

The presence of neutrinos from Boron decay in the flux observed on Earth is attested by the observation of their energy spectrum. Possible distortions of the spectrum investigated in current detectors are often interpreted in terms of evidence in favour or against various schemes of neutrino oscillations. We stress here that a distortion of the spectrum at high energies could also result from an increase in the ratio of neutrinos originating from ($^3$He+p) and $^8$B reactions. While a $^8$B neutrino depletion would contribute to this effect, an increase in the Hep contribution seems also needed to reproduce the preliminary data.

R. Escribano; J. -M. Frere; A. Gevaert; D. Monderen

1998-05-06T23:59:59.000Z

264

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options  

E-Print Network (OSTI)

‘Capture Ready’ is a design concept enabling fossil fuel plants to be retrofitted more economically with carbon dioxide capture and storage (CCS) technologies, however financing the cost of capture ready can be problematic, especially...

Liang, Xi; Reiner, David; Gibbons, Jon; Li, Jia

265

NETL-Developed Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

2, Issue 26 2, Issue 26 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award page 2 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society page 4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs page 5 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY 2 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award _____________________________2 Field-proven Meter Rapidly Determines Carbon Dioxide Levels in Groundwater ____________________________3 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society _______4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs ______________________________5 NETL Issued Patent for Novel Catalyst Technology ______6

266

HAWC Observatory captures first image  

NLE Websites -- All DOE Office Websites (Extended Search)

April » April » HAWC Observatory captures first image HAWC Observatory captures first image The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. April 30, 2013 The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. HAWC is under construction inside the Parque Nacional Pico de Orizaba, a Mexican national park. An international team of researchers, including scientists from Los Alamos, has taken the first image of the High-Altitude Water Cherenkov Observatory, or HAWC. The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. HAWC is under

267

Natural materials for carbon capture.  

Science Conference Proceedings (OSTI)

Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

2010-11-01T23:59:59.000Z

268

Fabrication of Pillar-Structured Thermal Neutron Detectors  

SciTech Connect

Pillar detector is an innovative solid state device structure that leverages advanced semiconductor fabrication technology to produce a device for thermal neutron detection. State-of-the-art thermal neutron detectors have shortcomings in achieving simultaneously high efficiency, low operating voltage while maintaining adequate fieldability performance. By using a 3-dimensional silicon PIN diode pillar array filled with isotopic boron 10, ({sup 10}B) a high efficiency device is theoretically possible. The fabricated pillar structures reported in this work are composed of 2 {micro}m diameter silicon pillars with a 4 {micro}m pitch and pillar heights of 6 and 12 {micro}m. The pillar detector with a 12 {micro}m height achieved a thermal neutron detection efficiency of 7.3% at 2V.

Nikolic, R J; Conway, A M; Reinhardt, C E; Graff, R T; Wang, T F; Deo, N; Cheung, C L

2007-11-19T23:59:59.000Z

269

Neutron Scattering Facilities 1982  

NLE Websites -- All DOE Office Websites (Extended Search)

NEUTRON SOURCES NEUTRON SOURCES ïŹTypes of Sources ïŹU.S. Sources Available for Users ïŹPlans for the Future ïŹThe Neutron Scattering Society of America (NSSA) SNS/ANL School on Neutron and x-Ray Scattering, June 2011 Jim Rhyne Lujan Neutron Scattering Center Los Alamos National Lab. What do we need to do neutron scattering? * Neutron Source - produces neutrons * Diffractometer or Spectrometer - Allows neutrons to interact with sample - Sorts out discrete wavelengths by monochromator (reactor) or by time of flight (pulse source) - Detectors pick up neutrons scattered from sample * Analysis methods to determine material properties * Brain power to interpret results Sources of neutrons for scattering * Nuclear Reactor - Neutrons produced from fission of 235 U - Fission spectrum neutrons

270

Neutron-Induced Cross Sections Measurements of Calcium  

Science Conference Proceedings (OSTI)

To support the US Department of Energy Nuclear Criticality Safety Program neutron induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Institute for Reference Material and Measurements of the Joint Research Centers, European Union. Neutron capture and transmission measurements were carried out using a metallic calcium sample. The obtained data will be used for a new calcium evaluation, which will be submitted with its covariances to the ENDBF/B nuclear data base.

Guber, Klaus H [ORNL; Kopecky, S. [EC-JRC-IRMM, Geel, Belgium; Schillebeeckx, P. [EC-JRC-IRMM, Geel, Belgium; Kauwenberghs, K. [EC-JRC-IRMM, Geel, Belgium; Siegler, P. [EC-JRC-IRMM, Geel, Belgium

2013-01-01T23:59:59.000Z

271

NETL: Solvents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvents for CO2 Capture Project No.: R&D 048 The most attractive physical solvents for carbon dioxide (CO2) capture are those having such properties as high thermal stability,...

272

Computational Studies of Physical Properties of Boron Carbide  

SciTech Connect

The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

Lizhi Ouyang

2011-09-30T23:59:59.000Z

273

Realistic costs of carbon capture  

Science Conference Proceedings (OSTI)

There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

2009-07-01T23:59:59.000Z

274

Capturing Carbon Dioxide from Power Plants  

Science Conference Proceedings (OSTI)

The purpose of this report is to review the current state of CO2 capture technologies in order to provide input into the design of a CO2 capture and storage test facility. First, an overview of the three major approaches to CO2 capture is provided, noting that only one of these options, post-combustion capture, is compatible with the design criteria for the test facility. Second, current research efforts for post-combustion capture are reviewed, giving examples of technologies that may be appropriate for...

2004-12-16T23:59:59.000Z

275

Contact ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences Organization Charts Neutron Sciences Directorate Associate Laboratory Director for Neutron Sciences, Kelly Beierschmitt Biology and Soft Matter Division Director, Paul...

276

NEUTRON SOURCE  

DOE Patents (OSTI)

A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

1959-01-13T23:59:59.000Z

277

Spallation Neutron Source | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutron Source SNS site, Spring 2012 The 80-acre SNS site is located on the east end of the ORNL campus and is about a three-minute drive from her sister neutron...

278

Method of boronizing transition metal surfaces  

SciTech Connect

A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

Koyama, Koichiro (Hyogo, JP); Shimotake, Hiroshi (Hinsdale, IL)

1983-01-01T23:59:59.000Z

279

Method of boronizing transition-metal surfaces  

DOE Green Energy (OSTI)

A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB/sub 2/, or CrB/sub 2/. A transition metal to be coated is immersed in the melt at a temperature of no more than 700/sup 0/C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

Koyama, K.; Shimotake, H.

1981-08-28T23:59:59.000Z

280

NEUTRON REACTOR HAVING A Xe$sup 135$ SHIELD  

DOE Patents (OSTI)

Shielding for reactors of the type in which the fuel is a chain reacting liquid composition comprised essentially of a slurry of fissionable and fertile material suspended in a liquid moderator is discussed. The neutron reflector comprises a tank containing heavy water surrounding the reactor, a shield tank surrounding the reflector, a gamma ray shield surrounding said shield tank, and a means for conveying gaseous fission products, particularly Xe/sup 135/, from the reactor chamber to the shield tank, thereby serving as a neutron shield by capturing the thermalized neutrons that leak outwardly from the shield tank.

Stanton, H.E.

1957-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems  

DOE Green Energy (OSTI)

Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

Aggarwal, J.K.; Palmer, M.R.

1995-01-01T23:59:59.000Z

282

Effective Boron Removal by Calcium Silicate Slags Combined with ...  

Science Conference Proceedings (OSTI)

A New Centrifuge CVD Reactor that will Challenge the Siemens Process ... Boron Removal from Silicon Melts by H2O/H2 Gas Blowing – Gas-phase Mass ...

283

Research on the Forecast Model of the Boron Removal from ...  

Science Conference Proceedings (OSTI)

A New Centrifuge CVD Reactor that will Challenge the Siemens Process ... Boron Removal from Silicon Melts by H2O/H2 Gas Blowing – Gas-phase Mass ...

284

Science | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science Neutron Science Neutron Scattering Science Neutrons are one of the fundamental particles that make up matter and have properties that make them ideal for certain types of research. In the universe, neutrons are abundant, making up more than half of all visible matter. Neutron scattering provides information about the positions, motions, and magnetic properties of solids. When a beam of neutrons is aimed at a sample, many neutrons will pass through the material. But some will interact directly with atomic nuclei and "bounce" away at an angle, like colliding balls in a game of pool. This behavior is called neutron diffraction, or neutron scattering. Using detectors, scientists can count scattered neutrons, measure their energies and the angles at which they scatter, and map their final position

285

Thin boron phosphide coating as a corrosion-resistant layer  

DOE Patents (OSTI)

A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anticorrosive, and providing it with unexpectedly improved photoresponsive properties.

Not Available

1982-08-25T23:59:59.000Z

286

Method for wetting a boron alloy to graphite  

DOE Patents (OSTI)

A method is provided for wetting a graphite substrate and spreading a a boron alloy over the substrate. The wetted substrate may be in the form of a needle for an effective ion emission source. The method may also be used to wet a graphite substrate for subsequent joining with another graphite substrate or other metal, or to form a protective coating over a graphite substrate. A noneutectic alloy of boron is formed with a metal selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt) with excess boron, i.e., and atomic percentage of boron effective to precipitate boron at a wetting temperature of less than the liquid-phase boundary temperature of the alloy. The alloy is applied to the substrate and the graphite substrate is then heated to the wetting temperature and maintained at the wetting temperature for a time effective for the alloy to wet and spread over the substrate. The excess boron is evenly dispersed in the alloy and is readily available to promote the wetting and spreading action of the alloy. 1 fig.

Storms, E.K.

1987-08-21T23:59:59.000Z

287

ORNL neutron facilities deliver neutrons  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) resumed full power operations on May 16, 2007. There were three experiment cycles of 23 to 25 days in FY2007 and another six are proposed for FY2008 beginning in November 2007. During FY 2007, the High Flux Isotope Reactor delivered 1178 operating hours to users. Commissioning of two SANS instruments is under way and these instruments will join the user program in 2008. The Neutron Scattering Science Advisory Committee endorsed language encouraging development of the science case for two instruments proposed for HFIR.

Ekkebus, Allen E [ORNL

2008-01-01T23:59:59.000Z

288

2010 Neutron Review: ORNL Neutron Sciences Progress Report  

SciTech Connect

During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron pnictides and chalcogenides), a class of materials discovered in 2008. This research is yielding new insights into the relationship between magnetism and superconductivity and has established several key features of this family of high-temperature superconducting (HTS ) materials: the maximum magnetic field at which they can function, the nature of the electrons involved in the superconductivity, the dependence of the properties upon chemical substitution, and the character of the magnetic fluctuations in the material. The results suggest that despite important differences between these materials and the HTS copper oxides, a universal mechanism may be responsible for the unconventional superconductivity. (4) Coal Sequestration Research: A New Home for Greenhouse Gases - One possibility for slowing down the increasing levels of carbon dioxide (CO{sub 2}) in the atmosphere is to capture the gas in natural underground features such as coal seams. Critical to the feasibility of this technology is determining how much CO{sub 2} can be stored, no method for which has been found - until now. (5) Accelerator Reliability Passes 92% - In December 2010, SNS set a new record for itself when the accelerator ran at 1 MW with 100% reliability. Target Performance Exceeds All Expectations - The mercury target used at SNS is the first of its kind. During the design and planning for SNS, many people were skeptical that the target would work. In 2010, it was confirmed that the target was working not only well but much better than anyone would have imagined. (6) Changing the World of Data Acquisition - Researchers at SNS are starting to benefit from event-based data analysis. Event data mode captures and stores an individual data set for every single neutron that strikes a detector - precisely when and where the neutron is detected. This technique provides numerous advantages over traditional methods. Event data mode allows researchers to process their data at the highest resolution possible with no loss of data. This method of data collection provides a much more efficient way for users to gather data a

Bardoel, Agatha A [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

2011-06-01T23:59:59.000Z

289

Gamma-Free Neutron Detector Based upon Lithium Phosphate Nanoparticles  

Science Conference Proceedings (OSTI)

A gamma-free neutron-sensitive scintillator is needed to enhance radiaition sensing and detection for nonproliferation applications. Such a scintillator would allow very large detectors to be placed at the perimeter of spent-fuel storage facilities at commercial nuclear power plants, so that any movement of spontaneously emitted neutrons from spent nuclear fuel or weapons grade plutonium would be noted in real-time. This task is to demonstrate that the technology for manufacturing large panels of fluor-doped plastic containing lithium-6 phosphate nanoparticles can be achieved. In order to detect neutrons, the nanoparticles must be sufficiently small so that the plastic remains transparent. In this way, the triton and alpha particles generated by the capture of the neutron will result in a photon burst that can be coupled to a wavelength shifting fiber (WLS) producing an optical signal of about ten nanoseconds duration signaling the presence of a neutron emitting source.

Steven Wallace

2007-08-28T23:59:59.000Z

290

ALTERNATIVES TO HELIUM-3 FOR NEUTRON MULTIPLICITY DETECTORS  

Science Conference Proceedings (OSTI)

Collaboration between the Pacific Northwest National Laboratory (PNNL) and the Los Alamos National Laboratory (LANL) is underway to evaluate neutron detection technologies that might replace the high-pressure helium (3He) tubes currently used in neutron multiplicity counter for safeguards applications. The current stockpile of 3He is diminishing and alternatives are needed for a variety of neutron detection applications including multiplicity counters. The first phase of this investigation uses a series of Monte Carlo calculations to simulate the performance of an existing neutron multiplicity counter configuration by replacing the 3He tubes in a model for that counter with candidate alternative technologies. These alternative technologies are initially placed in approximately the same configuration as the 3He tubes to establish a reference level of performance against the 3He-based system. After these reference-level results are established, the configurations of the alternative models will be further modified for performance optimization. The 3He model for these simulations is the one used by LANL to develop and benchmark the Epithermal Neutron Multiplicity Counter (ENMC) detector, as documented by H.O. Menlove, et al. in the 2004 LANL report LA-14088. The alternative technologies being evaluated are the boron-tri-fluoride-filled proportional tubes, boron-lined tubes, and lithium coated materials previously tested as possible replacements in portal monitor screening applications, as documented by R.T. Kouzes, et al. in the 2010 PNNL report PNNL-72544 and NIM A 623 (2010) 1035–1045. The models and methods used for these comparative calculations will be described and preliminary results shown

Ely, James H.; Siciliano, Edward R.; Swinhoe, Martyn T.

2012-02-07T23:59:59.000Z

291

Boron-doped back-surface fields using an aluminum-alloy process  

DOE Green Energy (OSTI)

Boron-doped back-surface fields (BSF`s) have potentially superior performance compared to aluminum-doped BSF`s due to the higher solid solubility of boron compared to aluminum. However, conventional boron diffusions require a long, high temperature step that is both costly and incompatible with many photovoltaic-grade crystalline-silicon materials. We examined a process that uses a relatively low-temperature aluminum-alloy process to obtain a boron-doped BSF by doping the aluminum with boron. In agreement with theoretical expectations, we found that thicker aluminum layers and higher boron doping levels improved the performance of aluminum-alloyed BSF`s.

Gee, J.M.; Bode, M.D.; Silva, B.L.

1997-10-01T23:59:59.000Z

292

Experimental Search for the Singlet Metastable Deuteron in the Radiative n-p Capture  

E-Print Network (OSTI)

We performed an experimental search for the bound state singlet deuteron predicted in some microscopic calculations. The experiment consists in a high statistics measurement of gamma ray spectra after thermal neutron capture by hydrogen nuclei. The upper limit is obtained for the probability of the 3S1 - 1S0 -transition population of the deuteron singlet bound state with the bound energy in the interval 25-125 keV.

S. B. Borzakov; N. A. Gundorin; Yu. N. Pokotilovski

2013-08-08T23:59:59.000Z

293

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

Wigner, E.P.; Young, G.J.

1958-10-14T23:59:59.000Z

294

Neutron reflecting supermirror structure  

DOE Patents (OSTI)

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

Wood, James L. (Drayton Plains, MI)

1992-01-01T23:59:59.000Z

295

FE Carbon Capture and Storage News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

carbon-capture-storage-news Office of Fossil Energy carbon-capture-storage-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution http://energy.gov/articles/energy-department-invests-drive-down-costs-carbon-capture-support-reductions-greenhouse-gas capture-support-reductions-greenhouse-gas" class="title-link">Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution

296

The Versatile Neutron Imaging Instrument at SNS | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Versatile Neutron Imaging Instrument at SNS VENUS: Neutron imaging to advance energy efficiency VENUS: Neutron imaging to advance energy efficiency. As its name indicates,...

297

IGCC Design Considerations for CO2 Capture  

Science Conference Proceedings (OSTI)

This report contains technical design, plant performance, cost estimates, and economic analysis of IGCC power plants designed with future retrofit for full CO2 capture in mind. The gasification technologies supplied by General Electric, Shell, and Siemens studied in the report were designed to initially produce power without CO2 capture; but their designs included moderate pre-investment to economically accommodate retrofit of full CO2 capture at a later date. The base plant designs include deep sulfur r...

2009-03-31T23:59:59.000Z

298

Imaging with Scattered Neutrons  

E-Print Network (OSTI)

We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

2006-10-30T23:59:59.000Z

299

New Materials Make Methane Capture Possible  

Science Conference Proceedings (OSTI)

May 8, 2013... SBN, captured enough medium source methane to turn it to high purity methane, which in turn could be used to generate efficient electricity.

300

Capturing Latino Students in the Academic Pipeline  

E-Print Network (OSTI)

The Latino Educational Pipeline Why Latino Students are atSTUDENTS IN THE ACADEMIC PIPELINE CAPTURING LATINO STUDENTSIN THE ACADEMIC PIPELINE Patricia Gcindara, Editor Katherine

Gándara, Patricia; Larson, Katherine; Mehan, Hugh; Rumberger, Russell

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: 2011 - Carbon Capture Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture Peer Review During July 18 - 21, 2011, a total of 16 projects from NETL's Innovations for Existing Plants and Carbon Sequestration Programs were peer reviewed....

302

NETL: 2013 - Carbon Capture Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

3 - Independent Peer Reviews of NETL Technology Programs NETL: 2013 - Carbon Capture Peer Review Carbon Storage Peer Review During October 22 - 26, 2012, a total of 16 projects...

303

More Efficient Carbon Capture Material Developed  

Science Conference Proceedings (OSTI)

Mar 11, 2013 ... The previously underused material—known as SIFSIX-1-Cu—has been found to offer a highly efficient mechanism for carbon capture.

304

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Provide Web Site Feedback: info@es.net Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space...

305

Directorate Organization | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL Neutron Sciences Directorate The Neutron Sciences Directorate (NScD) manages and operates the Spallation Neutron Source and the High Flux Isotope Reactor, two of the world's...

306

Neutron And Gamma Detector Using An Ionization Chamber With An Integrated  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron And Gamma Detector Using An Ionization Chamber Neutron And Gamma Detector Using An Ionization Chamber Neutron And Gamma Detector Using An Ionization Chamber With An Integrated Body And Moderator A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. Available for thumbnail of Feynman Center (505) 665-9090 Email Neutron And Gamma Detector Using An Ionization Chamber With An Integrated Body And Moderator A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an

307

Evaluation of the Science in Support of Human Health Ambient Water Criteria Values for Boron Compounds  

Science Conference Proceedings (OSTI)

This study evaluated the available human health water quality criteria for boron and boron compounds and critically reviewed the science that results in different water quality criteria recommended by different regulatory bodies. Currently, water quality criteria for boron and boron compounds are recommended by several regulatory bodies, including EPA, the World Health Organization, Health Canada, the Dutch National Institute for Public Health and the Environment, California Department of Public Health, ...

2011-12-16T23:59:59.000Z

308

Free-standing polycrystalline boron phosphide film and method for production thereof  

DOE Patents (OSTI)

A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

Baughman, R.J.; Ginley, D.S.

1982-09-09T23:59:59.000Z

309

Method for production of free-standing polycrystalline boron phosphide film  

DOE Patents (OSTI)

A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

Baughman, Richard J. (Albuquerque, NM); Ginley, David S. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

310

NEUTRONIC REACTOR  

DOE Patents (OSTI)

This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

1958-09-01T23:59:59.000Z

311

Capture Effect of Randomly Addressed Polling Protocol  

Science Conference Proceedings (OSTI)

The capture effect, discussed in this paper, is generally considered to enhance the system‘s performance in a wireless network. This paper also considers the Randomly Addressed Polling (RAP) protocol in the presence of a fading mobile radio ... Keywords: capture effect, noiseless, randomly addressed polling protocol

Jiang-Whai Dai

1999-06-01T23:59:59.000Z

312

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options  

E-Print Network (OSTI)

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options Xi Liang, Jia Li, Jon Gibbons and David Reiner December 2007 EPRG 0728 & CWPE 0761 #12;FINANCING CAPTURE READY COAL supercritical pulverized coal power plant in China, using a cash flow model with Monte-Carlo simulations

Aickelin, Uwe

313

Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material  

SciTech Connect

Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows for surface alloying well in excess of the thermodynamically dictated solubility limits, an effect that is particularly relevant to this research due to the negligible solubility of boron and gadolinium in zirconium. University of Wisconsin is performing the near surface materials characterization and analysis, aiding Sandia in process optimization, and promoting educational activities. Westinghouse is performing process manufacturability and scale-up analysis and is performing autoclave testing of the surface treated samples. The duration of this NERI project is 2 years, from 9/2002 to 9/2004.

Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

2004-12-14T23:59:59.000Z

314

Carbon Capture Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search This information is taken from DOE's information on Carbon Capture Carbon Capture Research Before carbon dioxide (CO2) gas can be sequestered from power plants and other point sources, it must be captured as a relatively pure gas. On a mass basis, CO2 is the 19th largest commodity chemical in the United States, and CO2 is routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H2 production, and limestone calcination. Existing capture technologies, however, are not cost-effective when considered in the context of sequestering CO2 from power plants. Most power plants and other large point sources use air-fired combustors, a process that exhausts CO2 diluted with nitrogen. Flue gas from coal-fired power

315

Neutron streak camera  

DOE Patents (OSTI)

Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

Wang, C.L.

1981-05-14T23:59:59.000Z

316

Organic metal neutron detector  

DOE Patents (OSTI)

A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

Butler, M.A.; Ginley, D.S.

1984-11-21T23:59:59.000Z

317

Chemical Attenuation Coefficients for Boron Using Soil Samples Collected from Selected Power Plant Sites  

Science Conference Proceedings (OSTI)

This report contains results of laboratory batch equilibrium studies for adsorption of boron by soils from three coal-fired power plant sites and results of long-term leaching of boron from four coal fly ashes. Together this information can be used to more accurately predict long-term release and groundwater transport of boron derived from coal combustion product (CCP) management facilities.

2008-03-13T23:59:59.000Z

318

Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes  

SciTech Connect

Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.

Lee, Hung Sui (East Setauket, NY); Yang, Xiao-Qing (Port Jefferson Station, NY); McBreen, James (Bellport, NY); Sun, Xuehui (Middle Island, NY)

2002-01-01T23:59:59.000Z

319

MATERIALS FOR SPALLATION NEUTRON SOURCES: IV: Neutronics  

Science Conference Proceedings (OSTI)

The Department of Energy has initiated a pre-conceptual design study for the National Spallation Neutron Source (NSNS) and given preliminary approval for the ...

320

Ordering of carbon atoms in boron carbide structure  

Science Conference Proceedings (OSTI)

Boron carbide crystals have been obtained in the entire compositional range according to the phase diagram by self-propagating high-temperature synthesis (SHS). Based on the results of X-ray diffraction investigations, the samples were characterized by the unit-cell metric and reflection half-width in the entire range of carbon concentrations. A significant spread in the boron carbide unit-cell parameters for the same carbon content is found in the data in the literature; this spread contradicts the structural concepts for covalent compounds. The SHS samples have not revealed any significant spread in the unit-cell parameters. Structural analysis suggests that the spread of parameters in the literary data is related to the unique process of ordering of carbon atoms in the boron carbide structure.

Ponomarev, V. I., E-mail: i2212@yandex.ru; Kovalev, I. D.; Konovalikhin, S. V.; Vershinnikov, V. I. [Russian Academy of Sciences, Institute of Structural Macrokinetics and Materials Science (Russian Federation)

2013-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Instruments | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

NScD Careers NScD Careers Supporting Organizations Neutron Science Home | Science & Discovery | Neutron Science | Instruments SHARE Instruments at SNS and HFIR SNS Instrument Name HFIR Instrument Name 1B NOMAD - Nanoscale-Ordered Materials Diffractometer CG-1 Development Beam Line 2 BASIS - Backscattering Spectrometer CG-1D IMAGING - Neutron Imaging Prototype Facility 3 SNAP - Spallation Neutrons and Pressure Diffractometer CG-2 GP-SANS - General-Purpose Small-Angle Neutron Scattering Diffractometer 4A MR - Magnetism Reflectometer CG-3 Bio-SANS - Biological Small-Angle Neutron Scattering Instrument 4B LR - Liquids Reflectometer CG-4C CTAX - Cold Neutron Triple-Axis Spectrometer 5 CNCS - Cold Neutron Chopper Spectrometer HB-1 PTAX - Polarized Triple-Axis Spectrometer

322

Ultrafast neutron detector  

DOE Patents (OSTI)

A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

Wang, C.L.

1985-06-19T23:59:59.000Z

323

Pulsed-neutron monochromator  

DOE Patents (OSTI)

In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

Mook, H.A. Jr.

1984-01-01T23:59:59.000Z

324

Procurement - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

for the acquisition of goods and services for neutron scattering operations at SNS and HFIR. If you're interested in conducting business with the Neutron Sciences Directorate or...

325

Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope Reactor. The pulsed neutron source at SNS and the continuous neutron source at HFIR complement each other well and, along with their state-of-the-art instruments, provide...

326

Preparation and uses of amorphous boron carbide coated substrates  

DOE Patents (OSTI)

Cloth is coated at a temperature below about 1000/sup 0/C with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

Riley, R.E.; Newkirk, L.R.; Valencia, F.A.; Wallace, T.C.

1979-12-05T23:59:59.000Z

327

Preparation and uses of amorphous boron carbide coated substrates  

DOE Patents (OSTI)

Cloth is coated at a temperature below about 1000.degree. C. with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

Riley, Robert E. (Los Alamos, NM); Newkirk, Lawrence R. (Los Alamos, NM); Valencia, Flavio A. (Santa Fe, NM)

1981-09-01T23:59:59.000Z

328

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

Stevens, C.G.

1978-08-29T23:59:59.000Z

329

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

Stevens, Charles G. (Pleasanton, CA)

1978-01-01T23:59:59.000Z

330

Retrofitting CO{sub 2} capture  

SciTech Connect

Retrofitting existing fossil-fueled plants with the first available carbon dioxide capture technologies could play an important role in paving the way for development of lower-cost, reliable carbon capture and storage systems. EPRI research is helping utilities better understand the engineering challenges and economic consequences. Studies are being conducted on retrofitting five different plants with advanced amine PCC technologies. Other studies include: process optimization studies; valuing operating flexibility; CO{sub 2} capture for CTCC plants; and assessing the impact of climate policy on retrofitting investment.

Weisel, J.

2009-07-01T23:59:59.000Z

331

Arsenic activation neutron detector  

DOE Patents (OSTI)

A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

Jacobs, E.L.

1980-01-28T23:59:59.000Z

332

Physics @ Oxford SCATTERING NEUTRONS  

E-Print Network (OSTI)

1 Neutron Scattering Society of America (NSSA) Purpose and New Initiatives www.neutronscattering.org SNS/ANL School on Neutron and X-Ray Scattering June 2011 Visit us now on Facebook #12;2 What is the NSSA? NSSA is an organization of scientists and engineers with a common interest in using neutron

Herz, Laura M.

333

Shock Capturing with Discontinuous Galerkin Method  

E-Print Network (OSTI)

Shock capturing has been a challenge for computational fluid dynamicists over the years. This article deals with discontinuous Galerkin method to solve the hyperbolic equations in which solutions may develop discontinuities ...

Nguyen, Vinh Tan

334

Economic assessment of CO? capture and disposal  

E-Print Network (OSTI)

A multi-sector multi-region general equilibrium model of economic growth and emissions is used to explore the conditions that will determine the market penetration of CO2 capture and disposal technology.

Eckaus, Richard S.; Jacoby, Henry D.; Ellerman, A. Denny.; Leung, Wing-Chi.; Yang, Zili.

335

Regulating carbon dioxide capture and storage  

E-Print Network (OSTI)

This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

De Figueiredo, Mark A.

2007-01-01T23:59:59.000Z

336

Converting Captured CO2 into Useful Materials  

Science Conference Proceedings (OSTI)

Aug 2, 2010... algae production technology that can capture at least 60 percent of flue gas CO2 from an industrial coal-fired source to produce biofuel and ...

337

High energy neutron dosimeter  

DOE Patents (OSTI)

A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

Rai, K.S.F.

1994-01-11T23:59:59.000Z

338

High energy neutron dosimeter  

DOE Patents (OSTI)

A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

Sun, Rai Ko S.F. (Albany, CA)

1994-01-01T23:59:59.000Z

339

Novel Solvent System for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvent System for CO Solvent System for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

340

National Carbon Capture Center: 2010 Report  

Science Conference Proceedings (OSTI)

The Power Systems Development Facility (PSDF), a large-scale test facility located in Wilsonville, Alabama, was established in 1994 to develop coal-based power generation technologies that are reliable, environmentally acceptable, and cost effective. In 2009, the PSDF became the National Carbon Capture Center (NCCC) with the mission of supporting the development of cost-effective, commercially viable CO2 capture technologies for both coal-derived syngas and flue gas. The project continues to be funded pr...

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Boron nitride substrates for high-quality graphene electronics  

E-Print Network (OSTI)

Boron nitride substrates for high-quality graphene electronics C. R. Dean1,2 *, A. F. Young3 , I and J. Hone2 * Graphene devices on standard SiO2 substrates are highly disor- dered, exhibiting report the fabrication and characterization of high-quality exfoliated mono- and bilayer graphene devices

Shepard, Kenneth

342

Boron nitride substrates for high-quality graphene electronics  

E-Print Network (OSTI)

(right axis) versus gate voltage at B Π14 T (solid line) and 8.5 T (dashed line) for monolayer grapheneBoron nitride substrates for high-quality graphene electronics C. R. Dean1,2 *, A. F. Young3 , I and J. Hone2 * Graphene devices on standard SiO2 substrates are highly disor- dered, exhibiting

Kim, Philip

343

Spallation Neutron Source, SNS  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutron Source Spallation Neutron Source Providing the most intense pulsed neutron beams in the world... Accumulator Ring Commissioning Latest Step for Spallation Neutron Source The Spallation Neutron Source, located at Oak Ridge National Laboratory, has passed another milestone on the way to completion this year--the commissioning of the proton accumulator ring. Brookhaven led the design and construction of the accumulator ring, which will allow an order of magnitude more beam power than any other facility in the world. The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built in Oak Ridge, Tennessee, by the U.S. Department of Energy. The figure on the right shows a schematic of the accumulator ring and transport beam lines that are being designed and built by Brookhaven

344

NETL: 2013 Conference Proceedings - 2013 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 NETL CO2 Capture Technology Meeting 2013 NETL CO2 Capture Technology Meeting July 8-11, 2013 Previous Proceedings 2012: NETL CO2 Capture Technology Meeting 2011: NETL CO2 Capture Technology Meeting 2010: NETL CO2 Capture Technology Meeting 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting Proceedings of the 2013 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, July 8 Opening/Overview Post-Combustion Sorbent-Based Capture Tuesday, July 9 Post-Combustion Solvent-Based Capture CO2 Compression Wednesday, July 10 Post-Combustion Membrane-Based Capture Pre-Combustion Capture Projects Thursday, July 11 ARPA-E Capture Projects System Studies and Modeling Oxy-Combustion and Chemical Looping Posters PRESENTATIONS Monday, July 8, 2013 Opening/Overview Introduction [PDF-MB]

345

Carbon Capture and Storage (CCS) Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage (CCS) Studies Carbon Capture and Storage (CCS) Studies Fossil Energy Studies for the next 6 months,December 2008-June 2009, Carbon Capture and Storage...

346

Noise-optimal capture for high dynamic range photography  

E-Print Network (OSTI)

Taking multiple exposures is a well-established approach both for capturing high dynamic range (HDR) scenes and for noise reduction. But what is the optimal set of photos to capture? The typical approach to HDR capture ...

Hasinoff, Samuel William

347

Neutrino energy loss rates and positron capture rates on $^{55}$Co for presupernova and supernova physics  

E-Print Network (OSTI)

Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has recently being used for calculation of stellar weak interaction rates of $fp$-shell nuclide with success. Neutrino losses from proto-neutron stars play a pivotal role to decide if these stars would be crushed into black holes or explode as supernovae. The product of abundance and positron capture rates on $^{55}$Co is substantial and as such can play a role in fine tuning of input parameters of simulation codes specially in the presupernova evolution. Recently we introduced our calculation of capture rates on $^{55}$Co, in a luxurious model space of $7 \\hbar \\omega$, employing the pn-QRPA theory with a separable interaction. Simulators, however, may require these rates on a fine scale. Here we present for the first time an expanded calculation of the neutrino energy loss rates and positron capture rates on $^{55}$Co on an extensive temperature-density scale. These type of scale is appropriate for interpolation purposes and of greater utility for simulation codes. The pn-QRPA calculated neutrino energy loss rates are enhanced roughly up to two orders of magnitude compared with the large-scale shell model calculations and favor a lower entropy for the core of massive stars.

Jameel-Un Nabi; Muhammad Sajjad

2011-08-03T23:59:59.000Z

348

Imaging and Neutrons - IAN 2006 - Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS Home Saturday, January 11, 2014 SNS Home Saturday, January 11, 2014 Go IAN 2006 Imaging and Neutrons 2006 October 23-25, 2006 Iran Thomas Auditorium Central Laboratory and Office Building Spallation Neutron Source Oak Ridge National Laboratory, Oak Ridge, TN Who Should Attend Synopsis Goals and Expected Outcomes Application Areas Techniques International Advisory Committee Local Organizing Committee Agenda with Presentations NEW Confirmed Speakers Frequently Asked Questions - FAQ Satellite Workshop - Progress in Electron Volt Neutron Spectroscopy eV Worshop Agenda presentations NEW Lodging, Transportation, Bus Schedule Location Directions and Map Registration CLOSED Abstracts, Posters, Contributed Talks Scholarships Sponsors Vendors May Attend Relevant Reports Important Dates Weather Attractions

349

NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR  

DOE Patents (OSTI)

The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

Young, G.J.

1959-06-30T23:59:59.000Z

350

General Approach To Materials Classification Using Neutron Analysis Techniques  

Science Conference Proceedings (OSTI)

The 'neutron in, gamma out' method of elemental analysis has been known and used in many applications as an elemental analysis tool. This method is non-intrusive, non-destructive, fast and precise. This set of advantages makes neutron analysis attractive for even wider variety of uses beyond simple elemental analysis. The question that is addressed within this study is under what conditions neutron analysis can be used to differentiate materials of interest from a group or class of materials in the face of knowing that what is truly of interest is the molecular content of any sample under interrogation. Purpose of the study was to develop a neutron-based scanner for rapid differentiation of classes of materials sealed in small bottles. Developed scanner employs D-T neutron generator as a neutron source and HPGe gamma detectors. Materials can be placed into classes by many different properties. However, neutron analysis method can be used only few of them, such as elemental content, stoichiometric ratios and density of the scanned material. Set of parameters obtainable through neutron analysis serves as a basis for a hyperspace, where each point corresponds to a certain scanned material. Sub-volumes of the hyperspace correspond to different classes of materials. One of the most important properties of the materials are stoichiometric ratios of the elements comprising the materials. Constructing an algorithm for converting the observed gamma ray counts into quantities of the elements in the scanned sample is a crucial part of the analysis. Gamma rays produced in both fast inelastic scatterings and neutron captures are considered. Presence of certain elements in materials, such as hydrogen and chlorine can significantly change neutron dynamics within the sample, and, in turn, characteristic gamma lines development. These effects have been studied and corresponding algorithms have been developed to account for them.

Solovyev, Vladimir G. [Saint Gobain Crystals and Detectors, 12345 Kinsman Rd, Newbury, OH 44124 (United States); Koltick, David S. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

2006-03-13T23:59:59.000Z

351

Sustaining knowledge in the neutron generator community and benchmarking study.  

SciTech Connect

In 2004, the Responsive Neutron Generator Product Deployment department embarked upon a partnership with the Systems Engineering and Analysis knowledge management (KM) team to develop knowledge management systems for the neutron generator (NG) community. This partnership continues today. The most recent challenge was to improve the current KM system (KMS) development approach by identifying a process that will allow staff members to capture knowledge as they learn it. This 'as-you-go' approach will lead to a sustainable KM process for the NG community. This paper presents a historical overview of NG KMSs, as well as research conducted to move toward sustainable KM.

Barrentine, Tameka C.; Kennedy, Bryan C.; Saba, Anthony W.; Turgeon, Jennifer L.; Schneider, Julia Teresa; Stubblefield, William Anthony; Baldonado, Esther

2008-03-01T23:59:59.000Z

352

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network (OSTI)

and HB 90:Carbon capture and sequestration, http://legisweb.conference on carbon capture and sequestration, Pittsburgh,The DOE’s Regional Carbon Sequestration Partnerships are

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

353

Secretary Chu Announces $3 Billion Investment for Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Billion Investment for Carbon Capture and Sequestration Secretary Chu Announces 3 Billion Investment for Carbon Capture and Sequestration December 4, 2009 - 12:00am Addthis...

354

EFRC Carbon Capture and Sequestration Activities at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

355

Better Buildings Neighborhood Program: Step 10: Capture Lessons...  

NLE Websites -- All DOE Office Websites (Extended Search)

10: Capture Lessons Learned to someone by E-mail Share Better Buildings Neighborhood Program: Step 10: Capture Lessons Learned on Facebook Tweet about Better Buildings Neighborhood...

356

Ohio State Develops Breakthrough Membranes for Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage...

357

New Recovery Act Funding Boosts Industrial Carbon Capture and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and...

358

Changes related to "Cost and Performance of Carbon Dioxide Capture...  

Open Energy Info (EERE)

icon Changes related to "Cost and Performance of Carbon Dioxide Capture from Power Generation" Cost and Performance of Carbon Dioxide Capture from Power Generation...

359

Post-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Post-Combustion Carbon Capture Research Post-Combustion Carbon Capture Research Fossil fuel fired electric generating plants are the cornerstone of America's central power system....

360

Pre-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a...

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Department Invests to Drive Down Costs of Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in...

362

2013 NETL CO2 Capture Technology Meeting Sheraton Station Square...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA July 8 - 11, 2013 ION Novel Solvent System for CO 2 Capture FE0005799 Nathan Brown ION Engineering...

363

Spatially-explicit impacts of carbon capture and sequestration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spatially-explicit impacts of carbon capture and sequestration on water supply and demand Title Spatially-explicit impacts of carbon capture and sequestration on water supply and...

364

CO2 Capture Poject CCP | Open Energy Information  

Open Energy Info (EERE)

companies and government organisations that are undertaking research and development of carbon capture and storage technologies. References CO2 Capture Poject (CCP)1 LinkedIn...

365

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Eligibility Commercial Industrial Utility Program...

366

Capture, Separation and Triggered Release of CO2 with Metal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Capture, Separation and Triggered Release of CO2 with Metal ... pores can be tailored to act as high capacity sites for carbon dioxide capture.

367

Grangemouth Advanced CO2 Capture Project GRACE | Open Energy...  

Open Energy Info (EERE)

GRACE is a project consortium that aims to develop cost improving technologies for carbon capture and separation. References Grangemouth Advanced CO2 Capture Project...

368

NETL: News Release - Worldwide Carbon Capture and Storage Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2009 Worldwide Carbon Capture and Storage Projects on the Increase International Efforts to Reduce Greenhouse Gas Emissions Through Carbon Capture and Storage Showcased with DOE...

369

Membrane Materials for Carbon Capture from Power Processes  

Science Conference Proceedings (OSTI)

Symposium, Materials for CO2 Capture and Conversion. Presentation Title, Membrane Materials for Carbon Capture from Power Processes. Author(s), Tim ...

370

Lab captures five Society for Technical Communication awards  

NLE Websites -- All DOE Office Websites (Extended Search)

captures five Society for Technical Communication awards Lab captures five Society for Technical Communication awards Reducing Global Threats through Innovative Science and...

371

Strategies for demonstration and early deployment of carbon capture and storage : a technical and economic assessment of capture percentage  

E-Print Network (OSTI)

Carbon capture and storage (CCS) is a critical technology for reducing greenhouse gas emissions from electricity production by coal-fired power plants. However, full capture (capture of nominally 90% of emissions) has ...

Hildebrand, Ashleigh Nicole

2009-01-01T23:59:59.000Z

372

Measurements of ultracold neutron upscattering and absorption in polyethylene and vanadium  

E-Print Network (OSTI)

The study of neutron cross sections for elements used as efficient ``absorbers'' of ultracold neutrons (UCN) is crucial for many precision experiments in nuclear and particle physics, cosmology and gravity. In this context, ``absorption'' includes both the capture and upscattering of neutrons to the energies above the UCN energy region. The available data, especially for hydrogen, do not agree between themselves or with the theory. In this report we describe measurements performed at the Los Alamos National Laboratory UCN facility of the UCN upscattering cross sections for vanadium and for hydrogen in CH$_2$ using simultaneous measurements of the radiative capture cross sections for these elements. We measured $\\sigma_{up}=1972\\pm130$ b for hydrogen in CH$_2$, which is below theoretical expectations, and $\\sigma_{up} < 25\\pm9$ b for vanadium, in agreement with the expectation for the neutron heating by thermal excitations in solids.

E. I. Sharapov; C. L. Morris; M. Makela; A. Saunders; Evan R. Adamek; Yelena Bagdasarova; L. J. Broussard; C. B. Cude-Woods; Deon E Fellers; Peter Geltenbort; S. I. Hasan; K. P. Hickerson; G. Hogan; A. T. Holley; Chen-Yu Liu; M. P. Mendenhall; J. Ortiz; R. W. Pattie Jr.; D. G. Phillips; J. Ramsey; D. J. Salvat; S. J. Seestrom; E. Shaw; Sky Sjue; W. E. Sondheim; B. VornDick; Z. Wang; T. L. Womack; A. R. Young; B. A. Zeck

2013-06-05T23:59:59.000Z

373

A COUPLED TH/NEUTRONICS/CRUD FRAMEWORK IN PREDICTION OF CIPS PHENOMENON  

SciTech Connect

A coupled TH/Neutronics/CRUD framework, which is able to simulate the CRUD deposits impact on CIPS phenomenon, was described in this paper. This framework includes the coupling among three essential physics, thermal-hydraulics, CRUD and neutronics. The overall framework was implemented by using the CFD software STAR-CCM+, developing CRUD codes, and using the neutronics code DeCART. The coupling was implemented by exchanging data between softwares using intermediate exchange files. A typical 3 by 3 PWR fuel pin problem was solved under this framework. The problem was solved in a 12 months length period of time. Time-dependent solutions were provided, including CRUD deposits inventory and their distributions on fuels, boron hideout amount inside CRUD deposits, as well as power shape changing over time. The results clearly showed the power shape suppression in regions where CRUD deposits exist, which is a strong indication of CIPS phenomenon.

Ling Zou; Hongbin Zhang; Jess Gehin; Brendan Kochunas

2012-04-01T23:59:59.000Z

374

NETL: 2011 Conference Proceedings - 2011 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 NETL CO2 Capture Technology Meeting 2011 NETL CO2 Capture Technology Meeting August 22 - 26, 2011 Previous Proceedings 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting 2010: 2010 NETL CO2 Capture Technology Meeting Proceedings of the 2011 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, August 22 Opening/Overview Post-combustion Sorbent-Based Capture Post-combustion Membrane-Based Capture Tuesday, August 23 Post-combustion Solvent-Based Capture ARPA-E Capture Projects Wednesday, August 24 Oxy-Combustion and Oxygen Production Chemical Looping Process CO2 Compression Thursday, August 25 FutureGen 2.0, CCPI and ICCS Demonstration Projects System Studies and Modeling Pre-Combustion Capture Projects Friday, August 26 Pre-combustion Capture Projects Posters

375

Fukushima plutonium effect and blow-up regimes in neutron-multiplying media  

E-Print Network (OSTI)

It is shown that the capture and fission cross-sections of 238U and 239Pu increase with temperature within 1000-3000 K range, in contrast to those of 235U, that under certain conditions may lead to the so-called blow-up modes, stimulating the anomalous neutron flux and nuclear fuel temperature growth. Some features of the blow-up regimes in neutron-multiplying media are discussed.

V. D. Rusov; V. A. Tarasov; V. M. Vaschenko; E. P. Linnik; T. N. Zelentsova; M. E. Beglaryan; S. A. Chernegenko; S. I. Kosenko; P. A. Molchinikolov; V. P. Smolyar; E. V. Grechan

2012-08-05T23:59:59.000Z

376

Fukushima plutonium effect and blow-up regimes in neutron-multiplying media  

E-Print Network (OSTI)

It is shown that the capture and fission cross-sections of 238U and 239Pu increase with temperature within 1000-3000K range, in contrast to those of 235U, that under certain conditions may lead to the so-called blow-up modes, stimulating the anomalous neutron flux and nuclear fuel temperature growth. Some features of the blow-up regimes in neutron-multiplying media are discussed.

Rusov, V D; Vaschenko, V M; Linnik, E P; Zelentsova, T N; Beglaryan, M E; Chernegenko, S A; Kosenko, S I; Molchinikolov, P A; Smolyar, V P; Grechan, E V

2012-01-01T23:59:59.000Z

377

An Analysis Technique for Active Neutron Multiplicity Measurements Based on First Principles  

SciTech Connect

Passive neutron multiplicity counting is commonly used to quantify the total mass of plutonium in a sample, without prior knowledge of the sample geometry. However, passive neutron counting is less applicable to uranium measurements due to the low spontaneous fission rates of uranium. Active neutron multiplicity measurements are therefore used to determine the {sup 235}U mass in a sample. Unfortunately, there are still additional challenges to overcome for uranium measurements, such as the coupling of the active source and the uranium sample. Techniques, such as the coupling method, have been developed to help reduce the dependence of calibration curves for active measurements on uranium samples; although, they still require similar geometry known standards. An advanced active neutron multiplicity measurement method is being developed by Texas A&M University, in collaboration with Los Alamos National Laboratory (LANL) in an attempt to overcome the calibration curve requirements. This method can be used to quantify the {sup 235}U mass in a sample containing uranium without using calibration curves. Furthermore, this method is based on existing detectors and nondestructive assay (NDA) systems, such as the LANL Epithermal Neutron Multiplicity Counter (ENMC). This method uses an inexpensive boron carbide liner to shield the uranium sample from thermal and epithermal neutrons while allowing fast neutrons to reach the sample. Due to the relatively low and constant fission and absorption energy dependent cross-sections at high neutron energies for uranium isotopes, fast neutrons can penetrate the sample without significant attenuation. Fast neutron interrogation therefore creates a homogeneous fission rate in the sample, allowing for first principle methods to be used to determine the {sup 235}U mass in the sample. This paper discusses the measurement method concept and development, including measurements and simulations performed to date, as well as the potential limitations.

Evans, Louise G [Los Alamos National Laboratory; Goddard, Braden [Los Alamos National Laboratory; Charlton, William S [Los Alamos National Laboratory; Peerani, Paolo [European Commission, EC-JRC-IPSC

2012-08-13T23:59:59.000Z

378

The Neutron Residual Stress Mapping Facility at HFIR | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Residual Stress Mapping Facility at HFIR Neutron Residual Stress Mapping Facility (HB-2B) Neutron Residual Stress Mapping Facility (HB-2B). The HB-2B beam port is optimized...

379

Neutron sources and applications  

Science Conference Proceedings (OSTI)

Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-01-01T23:59:59.000Z

380

Spallation Neutron Source  

NLE Websites -- All DOE Office Websites (Extended Search)

D/gim D/gim Spallation Neutron Source SNS is an accelerator-based neutron source. This one-of-a-kind facility pro- vides the most intense pulsed neutron beams in the world. When ramped up to its full beam power of 1.4 MW, SNS will be eight times more powerful than today's best facility. It will give researchers more detailed snapshots of the smallest samples of physical and biological materials than ever before

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NETL: Industrial Capture & Storage Area 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Technologies Industrial Capture & Storage Area 2 Innovative Concepts for Beneficial CO2 Use The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

382

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputers Capture Supercomputers Capture Turbulence in the Solar Wind News & Publications ESnet in the News ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December 16, 2013 | Tags: ESnet News, National Energy Research Scientific Computing Linda Vu, +1 510 495 2402, lvu@lbl.gov eddies1.jpg This visualization zooms in on current sheets revealing the "cascade of turbulence" in the solar wind occurring down to electron scales. This is

383

Speeding Up Zeolite Evaluation for Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Speeding Up Speeding Up Zeolite Evaluation for Carbon Capture Speeding Up Zeolite Evaluation for Carbon Capture Zeolite.png Schematic of an important class of porous materials known as zeolites. The large red structure in the center of this periodic structure is a cavity that might be a good candidate for adsorption of a gas such as carbon dioxide. The seven small red areas at the corners (plus the one hidden by the yellow ball) are not suitable and need to be eliminated from studies that attempt to predict guest-related properties using molecular simulation techniques. A new method developed at NERSC uses software to differentiate between suitable and unsuitable pockets, thereby speeding up discovery of new materials. Why it Matters: Capturing and sequestering waste carbon dioxide (CO2) is a

384

Carbon Capture Corporation | Open Energy Information  

Open Energy Info (EERE)

Carbon Capture Corporation Carbon Capture Corporation Jump to: navigation, search Name Carbon Capture Corporation Address 7825 Fay Avenue Place La Jolla, California Zip 92037 Sector Carbon Product Developing ways to use algae to absorb CO2 emitted from gas- and coal-fired power plants Website http://www.carbcc.com/ Coordinates 32.845391°, -117.275033° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.845391,"lon":-117.275033,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Neutron-detection apparatus  

DOE Patents (OSTI)

An atomic fission counting apparatus used for neutron detection is provided with spirally curved electrode plates uniformly spaced apart in a circular array and coated with fissile material.

Kopp, M.K.; Valentine, K.H.

1981-04-24T23:59:59.000Z

386

Education | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter Physics Neutron Scattering in Quantum Condensed Matter Physics flyer The first cyber enabled collaborative graduate course was launched in Fall semester 2012. It addresses...

387

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

388

Neutron Spin Filters  

Science Conference Proceedings (OSTI)

... many nice scientific results from the use of high intensity polarized neutrons ... Electromagnetic radiation of exactly the right energy can exert a sort of ...

2013-03-12T23:59:59.000Z

389

Physics Out Loud - Neutron  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter Previous Video (Matter) Physics Out Loud Main Index Next Video (Niobium) Niobium Neutron Karl Slifer, a physicist based at the University of New Hampshire and who conducts...

390

Neutron Scattering Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaithersburg, Maryland, USA Peruvian Institute of Nuclear Energy (IPEN), Lima, Peru Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA University of...

391

Neutron Scattering Web  

NLE Websites -- All DOE Office Websites (Extended Search)

at neutronsources.org. The information contained here in the Neutron Scattering Web has been transferred to the new site. We will leave the current content here for...

392

Magnetization of neutron matter  

SciTech Connect

In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

Bigdeli, M. [Department of Physics, Zanjan University, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

2011-09-21T23:59:59.000Z

393

NCNR Neutron Spin Filters  

Science Conference Proceedings (OSTI)

... be characterized either by the transmission asymmetry A ... defined to be the transmissions for neutrons ... P sub n, (solid thick line), transmission T sub n ...

394

Neutron detection apparatus  

DOE Patents (OSTI)

An atomic fission counting apparatus used for neutron detection is provided with spirally curved electrode plates uniformly spaced apart in a circular array and coated with fissile material.

Kopp, Manfred K. (Oak Ridge, TN); Valentine, Kenneth H. (Lenoir City, TN)

1983-01-01T23:59:59.000Z

395

Neutron Activation Calculator  

Science Conference Proceedings (OSTI)

... and incoherent scattering cross sections). Source neutrons (Ang, meV or m/s), Density (g/cm 3 or lattice), Thickness (cm). ...

396

Neutron Scattering Template  

NLE Websites -- All DOE Office Websites (Extended Search)

Acknowledgements The graphics used on the Neutron Scattering Web Pages were designed by Tami Sharley (Information and Publishing Services Division) and Jack Carpenter (Intense...

397

Neutrons in Biology, ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Sciences Division Oak Ridge National Laboratory Phone: 865.241.2897 SNS Logo HFIR Logo General Information The unique potential of neutron scattering in structural...

398

Neutrons in Biology, ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Sciences Division Oak Ridge National Laboratory Phone: 865.576.2779 SNS Logo HFIR Logo General Information The unique potential of neutron scattering in structural...

399

Neutrons in Biology, ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Division Oak Ridge National Laboratory Phone: 865.241.5176 SNS Logo HFIR Logo General Information The unique potential of neutron scattering in structural...

400

ORNL Neutron Sciences Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

at other facilties by Neutron Sciences Directorate staff. We strongly encourage SNS and HFIR users to submit citation information, including URLs, for all publications regarding...

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Towards a Neutron Microscope  

Science Conference Proceedings (OSTI)

Towards a Neutron Microscope. Summary: ... The novel lens is a Wolter Optic similar in design to the telescope of the CHANDRA x-ray observatory. ...

2013-07-23T23:59:59.000Z

402

Carbon Capture and Sequestration Newsletter, Issue #2  

Science Conference Proceedings (OSTI)

This issue of the Carbon Capture and Sequestration (CC&S) Newsletter consists of updates on ongoing work in the CC&S target. The feature article covers the status of the ongoing economics work. Two parallel efforts proceeded during 2001 in this area: (1) an update of the previous work on Innovative Fossil Cycles Incorporating CO2 Removal, which developed costs associated with new plants; and (2) a study of the costs of capturing carbon dioxide from existing plants. Also covered are two meetings held in C...

2002-01-16T23:59:59.000Z

403

Neutrons in Soft Matter Science | Education | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Complex Materials on Mesoscopic Scales Neutron in Soft Matter Science flyer The new cyber-enabled collaborative graduate course "Neutrons in Soft Matter Science: Complex...

404

Neutron Science Facilities Operating Status | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science Facilities Operating Status High Flux Isotope Reactor The reactor is currently operating at 100% power for fuel cycle 449. Spallation Neutron Source SNS is shutdown...

405

Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system  

Science Conference Proceedings (OSTI)

A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

2013-02-12T23:59:59.000Z

406

Neutronic Aspects and Recent Experimental Results with ...  

Science Conference Proceedings (OSTI)

... Neutronic Aspects and Recent Experimental Results with Methane Moderators at IUCF Low Energy Neutron Source (LENS). ...

407

Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.  

DOE Green Energy (OSTI)

The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.

Peter C. Eklund (deceased); T. C. Mike Chung; Henry C. Foley; Vincent H. Crespi

2011-05-01T23:59:59.000Z

408

NETL: 2010 Conference Proceedings - 2010 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 NETL CO2 Capture Technology Meeting 2010 NETL CO2 Capture Technology Meeting September 13-17, 2010 Table of Contents Presentations Monday, September 13 Opening/Overview Post-combustion Sorbent Based Capture Post-combustion Solvent Based Capture Tuesday, September 14 Post-combustion Membrane Based Capture Pulverized Coal Oxy-combustion ARPA-E Projects Wednesday, September 15 National Carbon Capture Center Chemical Looping Processes Systems Studies and Modeling Efforts CO2 Compression New CO2 Capture Projects Thursday, September 16 New CO2 Capture Projects - Cont'd CCPI and ICCS Demonstration Projects Pre-combustion Capture Projects Friday, September 17 Pre-combustion Capture Projects - Cont'd Posters Advanced Research Projects Agency - Energy (ARPA-E) NETL Office of Research and Development Research Projects

409

Neutron Diffraction @ TOPAZ  

NLE Websites -- All DOE Office Websites (Extended Search)

Topaz Guide Bender Topaz Guide Bender Neutron Diffraction @ TOPAZ Workshop on Single Crystal Neutron Diffraction picture 2 September 29 - October 1, 2011 * Spallation Neutron Source * Oak Ridge National Laboratory * Oak Ridge TN, USA TOPAZ 2011 Home Contacts Agenda and Important Deadlines Registration and Payment filler Workshop summary and purpose A workshop on single crystal neutron diffraction will be held at the Spallation Neutron Source at the Oak Ridge National Laboratory (ORNL). It will present invited and contributed talks to showcase cutting edge science and examples where neutron diffraction can make significant contributions; and provide training in neutron structure analysis and sample screening for the preparation of instrument beam-time proposals. TOPAZ is a high resolution wavelength-resolved Laue diffractometer with a versatile sample environment. Commissioning user experiments have demonstrated successfully the instrument capability for structural study of a vitamin B12 derivative, ion distribution in Li-ion battery materials, order and disorder in shape memory intermetallics, magnetic phase transition in multiferroic single crystal and functional thin films. The workshop is directed towards experienced neutron diffraction users and new users alike and encourages members to highlight their research and interest in structure analysis and investigation. The workshop will give opportunity to bring your own single crystal and screen sample quality and scattering power on TOPAZ @ room temperature, to evaluate data collection time and quality for an anticipated experiment. Finally, an opportunity to compose a proposal for neutron beam time (http://neutrons.ornl.gov/users/proposals.shtml) with staff will be provided in the framework of the workshop. The workshop format is well suited for researchers to contribute by showcasing their research and bring their research group or graduate student, who would like to test a single crystal sample. User access training for the ORNL neutron scattering facility will be included. It will be valid for future experiments.

410

Methods for Verification of the Hydrogen and Boron Content of the RCSB for Storage of HEU at the HEUMF  

DOE Green Energy (OSTI)

BoroBond{trademark}, which is a ceramic material containing natural boron carbide (B{sub 4}C, a neutron absorber) and water (a neutron attenuator), is the filler material of the Rackable Can Storage Boxes (RCSBs) that will store highly enriched uranium in cans at the Highly Enriched Uranium Materials Facility (HEUMF). Both attenuation and absorption are essential for criticality safety of the fissile material stored in RCSBs. This BoroBond{trademark} material has not yet been used for storage of highly enriched uranium (HEU). To characterize the neutron attenuation and neutron absorption properties of this material, ORNL has performed an extensive series of measurements (over 900) which included: fast neutron and gamma time-of-flight transmission utilizing the Nuclear Materials Identification System (NMIS), thermal and epithermal neutron counting with {sup 3}He proportional counters, and activation analysis with gamma ray spectrometry using a high purity germanium (HPGe) detector. These measurements were performed for a series of 12 x 12-inch square blocks of thickness varying from 2 to 12 inches, with natural B{sub 4}C contents of approximately 0, 2.3, 4.6, and 9 wt%, and varying water contents achieved by baking the blocks to remove approximately 5/6 of the water. These measurements were also performed with a special mockup of the RCSB of BoroBond. material with {approx} 4.6% natural B{sub 4}C. All three methods used Cf-252 sources. This report does not describe these measurements in any detail, but presents a method of verifying and quantifying the B{sub 4}C and hydrogen content of the RCSBs at the factory, upon receipt at Y-12, and at any time later while in use at the HEUMF. The data from these measurements can be used to assess the uniformity of the BoroBond in the RCSB and be stored for future comparisons. The details of these measurements are given in ORNL/TM-2002/254.

Mihalczo, JT

2002-11-21T23:59:59.000Z

411

Lead-and Boron-Based Chemically Bonded Phosphates Ceramics ...  

Science Conference Proceedings (OSTI)

... they not only could be used for shielding gamma rays and neutrons as well, but also to ... Burst, Ring and Biaxial Creep of Zircaloy Cladding – Applications to ...

412

NIST: NIF - Neutron Imaging Facility  

Science Conference Proceedings (OSTI)

... 1 above) is located at Beam Tube 2 (BT-2 ... Figure 2. Plan view of the neutron imaging facility ... still a significant amount of high energy neutrons and ...

413

Neutron and Nano User Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Science @ Neutron and Nano Facilities User Workshops Integrated Agendas Venue Travel Information Contacts and Sponsors Registration Talks Neutron and Nano User Meeting August...

414

Neutron and Nano User Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Science @ Neutron and Nano Facilities Science @ Neutron and Nano Facilities: Complementary Techniques Oak Ridge National Laboratory, Building 5200 Tuesday-Wednesday, August 13-14,...

415

News & Awards | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards Events and Conferences Supporting Organizations Neutron Science Home | Science & Discovery | Neutron Science | News and Awards SHARE News and Awards 1-6 of 6 Results...

416

Biominetic Membrane for Co2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Membrane for CO Biomimetic Membrane for CO 2 Capture from Flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport, and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post

417

A Study of Effects of Phosphorus, Sulfur, Boron and Carbon on ...  

Science Conference Proceedings (OSTI)

456. 12. R. F. Decker and 'J. W. Freeman, "The Mechanism of. Beneficial. Effects of Boron and Zirconium on Creep. Properties of a Complex Heat resistant. Alloy ...

418

Boron and Marine Life: A New Look at an Enigmatic Bioelement  

E-Print Network (OSTI)

enigmatic. Keywords AI-2 . Algae . Boromycin . Boron .essential element for marine algae. However, the potentialas a Nutrient of Marine Algae While a number of studies

Carrano, Carl J.; Schellenberg, Stephen; Amin, Shady A.; Green, David H.; Küpper, Frithjof C.

2009-01-01T23:59:59.000Z

419

Process for producing electrodes from carbonaceous particles and a boron source  

Science Conference Proceedings (OSTI)

A method is described of making an electric arc furnace graphite electrode comprising: (a) calcining a carbonaceous material selected form the group consisting of anthracite coal, bituminous coal, lignites, and nos. 2 and 3 cokes; (b) mixing the calcined carbonaceous material with pitch, a lubricant, and a boron source selected from the group consisting of elemental boron, boron carbide, silicon tetraboride, and iron boride, in an amount such that the boron content is from about 0.1 to about 5.0 percent by weight of the graphite electrode to form a mixture; (c) extruding the mixture into an electrode form; (d) and graphitizing the electrode form to provide a graphite electrode.

Sara, R.V.

1988-09-13T23:59:59.000Z

420

Method for enhancing the solubility of boron and indium in silicon  

DOE Patents (OSTI)

A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

Sadigh, Babak (Oakland, CA); Lenosky, Thomas J. (Pleasanton, CA); Diaz de la Rubia, Tomas (Danville, CA); Giles, Martin (Hillsborough, OR); Caturla, Maria-Jose (Livermore, CA); Ozolins, Vidvuds (Pleasanton, CA); Asta, Mark (Evanston, IL); Theiss, Silva (St. Paul, MN); Foad, Majeed (Santa Clara, CA); Quong, Andrew (Livermore, CA)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Enhanced-wetting, boron-based liquid-metal ion source and method  

DOE Patents (OSTI)

A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.

Bozack, Michael J. (Opelika, AL); Swanson, Lynwood W. (Portland, OR); Bell, Anthony E. (McMinnville, OR); Clark Jr., William M. (Thousand Oaks, CA); Utlaut, Mark W. (Saugus, CA); Storms, Edmund K. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

422

Enhanced-wetting, boron-based liquid-metal ion source and method  

DOE Patents (OSTI)

A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.

Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.

1999-02-16T23:59:59.000Z

423

Proton Driver Linac for the Frankfurt Neutron Source  

SciTech Connect

The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will deliver high neutron fluxes in the energy range of 1 to 500 keV. The Activation Mode provides a high averaged neutron flux created by a cw proton beam of up to 5 mA, while in the Compressor Mode intense neutron pulses of 1 ns length are formed with a repetition rate of up to 250 kHz. The Compressor Mode is well-suited for energy-dependent neutron capture measurements using the Time-of-Flight method in combination with a 4{pi} BaF{sub 2} detector array. The design of the proton driver linac for both operation modes is presented. This includes the volume type ion source, the ExB chopper located in the low energy section, the RFQ-IH combination for beam acceleration and the bunch compressor. Finally, the neutron production at the lithium-7 target and the resulting energy spectrum is described.

Wiesner, C.; Chau, L. P.; Dinter, H.; Droba, M.; Heilmann, M.; Joshi, N.; Maeder, D.; Metz, A.; Meusel, O.; Noll, D.; Podlech, H.; Ratzinger, U.; Reichau, H.; Schempp, A.; Schmidt, S.; Schweizer, W.; Volk, K.; Wagner, C. [Institut fuer Angewandte Physik, Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); Reifarth, R. [Institut fuer Angewandte Physik, Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Mueller, I.

2010-08-04T23:59:59.000Z

424

Influence of carbon content on physicomechanical characteristics of boron carbide  

Science Conference Proceedings (OSTI)

Temperature and amplitude dependences of dynamic shear modulus (SM) and of internal friction (IF) have been measured on boron carbide samples with different carbon content. The samples were investigated at frequencies of torsion oscillations from 0.5 to 5 Hz and at amplitudes of oscillatory deformation from 5x10{sup -6} to 1x10{sup -2} at temperatures from 80 to 1000 K. It was shown that absolute values of SM, of critical amplitudes of oscillatory deformation and of shear elastic limit decreased with the decrease of carbon content in the samples. Simultaneously, activation energy of the intensive relaxation-type IF in the vicinity of 450-470 K was also decreased. Cyclic deformation at 1000 K provided additional decrease to physicomechanical characteristics while at annealing in vacuum at the temperatures of 1273 and 1773 K these structure-sensitive properties significantly increased. The observed changes of physicomechanical characteristics were attributed to possible changes of inter-atomic forces in the structure of boron carbide samples. - Graphical abstract: Amplitude dependence of the IF of the compacted samples of boron carbide: B{sub 4,3}C initial-(1) and after annealing at the 1773 K, 5 h-(2); B{sub 6,5}C initial-(3) and after annealing at the 1773 K, 5 h-(4)

Lezhava, D. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia)]. E-mail: t_otari@hotmail.com; Darsavelidze, G. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia); Gabunia, D. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia); Tsagareishvili, O. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia); Antadze, M. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia); Gabunia, V. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia)

2006-09-15T23:59:59.000Z

425

Carbon Capture and Storage at Scale  

Science Conference Proceedings (OSTI)

This report examines different scenarios for how the nascent carbon capture and sequestration (CCS) industry might evolve through an examination of the emergence and growth of three analog industries: liquefied natural gas (LNG), SO2 controls for power plants, and nuclear power.

2010-01-28T23:59:59.000Z

426

Carbon Dioxide Capture from Coal-Fired  

E-Print Network (OSTI)

Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

427

Mobile device protection from loss and capture  

Science Conference Proceedings (OSTI)

Mobile devices play a critical role in assistive environments. How to authenticate and secure communications among them has become more important especially against loss and capture of the devices. In this paper, we present an approach to protect signing ... Keywords: assistive environment, authentication, digital signature, forward security, mobile device

Zhengyi Le; Yi Ouyang; Yurong Xu; Fillia Makedon

2008-07-01T23:59:59.000Z

428

Constraint capture and maintenance in engineering design  

Science Conference Proceedings (OSTI)

The Designers' Workbench is a system developed by the Advanced Knowledge Technologies Consortium to support designers in large organizations, such as Rolls-Royce, to ensure that the design is consistent with the specification for the particular design ... Keywords: Application Conditions, Capture, Constraints, Design, Maintenance, Rationales

Suraj Ajit; Derek Sleeman; David w. Fowler; David Knott

2008-11-01T23:59:59.000Z

429

Capture and Utilisation of Landfill Gas  

E-Print Network (OSTI)

Biomass Capture and Utilisation of Landfill Gas What is the potential for additional utilisation of landfill gas in the USA and around the world? By Nickolas Themelis and Priscilla Ulloa, Columbia University. In his 2003 review of energy recovery from landfill gas, Willumsen1 reported that as of 2001, there were

Columbia University

430

Capturing conflict and confusion in CSP  

Science Conference Proceedings (OSTI)

Traditionally, developers of concurrent systems have adopted two distinct approaches: those with truly concurrent semantics and those with interleaving semantics. In the coarser interleaving interpretation parallelism can be captured in terms of non-determinism ... Keywords: CSP, Petri nets, automatic verification, conflict, confusion, interleaving concurrency, true concurrency

Christie Marrne Bolton

2007-07-01T23:59:59.000Z

431

Synthesis of optimal adsorptive carbon capture processes.  

SciTech Connect

Solid sorbent carbon capture systems have the potential to require significantly lower regeneration energy compared to aqueous monoethanol amine (MEA) systems. To date, the majority of work on solid sorbents has focused on developing the sorbent materials themselves. In order to advance these technologies, it is necessary to design systems that can exploit the full potential and unique characteristics of these materials. The Department of Energy (DOE) recently initiated the Carbon Capture Simulation Initiative (CCSI) to develop computational tools to accelerate the commercialization of carbon capture technology. Solid sorbents is the first Industry Challenge Problem considered under this initiative. An early goal of the initiative is to demonstrate a superstructure-based framework to synthesize an optimal solid sorbent carbon capture process. For a given solid sorbent, there are a number of potential reactors and reactor configurations consisting of various fluidized bed reactors, moving bed reactors, and fixed bed reactors. Detailed process models for these reactors have been modeled using Aspen Custom Modeler; however, such models are computationally intractable for large optimization-based process synthesis. Thus, in order to facilitate the use of these models for process synthesis, we have developed an approach for generating simple algebraic surrogate models that can be used in an optimization formulation. This presentation will describe the superstructure formulation which uses these surrogate models to choose among various process alternatives and will describe the resulting optimal process configuration.

chang, Y.; Cozad, A.; Kim, H.; Lee, A.; Vouzis, P.; Konda, M.; Simon, A.; Sahinidis, N.; Miller, D.

2011-01-01T23:59:59.000Z

432

High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams  

SciTech Connect

High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.

Seo, P. -N. [Los Alamos National Laboratory (LANL); Barron-Palos, L. [Arizona State University; Bowman, J. D. [Los Alamos National Laboratory (LANL); Chupp, T. E. [University of Michigan; Crawford, C. [University of Tennessee, Knoxville (UTK); Dabaghyan, M. [University of New Hampshire; Dawkins, M. [Indiana University; Freedman, S. J. [University of California; Gentile, T. R. [National Institute of Standards and Technology (NIST); Gericke, M. T. [University of Manitoba, Canada; Gillis, R. C. [University of Manitoba, Canada; Greene, G. L. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Hersman, F. W. [University of New Hampshire; Jones, G. L. [Hamilton College, New York; Kandes, M. [University of Michigan; Lamoreaux, S. [Los Alamos National Laboratory (LANL); Lauss, B. [University of California, Berkeley; Leuschner, M. B. [Indiana University; Mahurin, R. [University of Tennessee, Knoxville (UTK); Mason, M. [University of New Hampshire; Mei, J. [Indiana University; Mitchell, G. S. [Los Alamos National Laboratory (LANL); Nann, H. [Indiana University; Page, S. A. [University of Manitoba, Canada; Penttila, S. I. [Los Alamos National Laboratory (LANL); Ramsay, W. D. [University of Manitoba & TRIUMF, Canada; Salas Bacci, A. [Los Alamos National Laboratory (LANL); Santra, S. [Indiana University; Sharma, M. [University of Michigan; Smith, T. B. [University of Dayton, Ohio; Snow, W. [Indiana University; Wilburn, W. S. [Los Alamos National Laboratory (LANL); Zhu, H. [University of New Hampshire

2008-01-01T23:59:59.000Z

433

Using a Borated Panel to Form a Dual Neutron-Gamma Detector  

SciTech Connect

A borated polyethylene plane placed between a neutron source and a gamma spectrometer is used to form a dual neutron-gamma detection system. The polyethylene thermalizes the source neutrons so that they are captured by {sup 10}B to produce a flux of 478 keV gamma-rays that radiate from the plane. This results in a buildup of count rate in the detector over that from a disk of the same diameter as the detector crystal (same thickness as the panel). Radiation portal systems are a potential application of this technique.

Scott Wilde; Raymond Keegan

2008-06-20T23:59:59.000Z

434

FAST NEUTRON REACTOR  

DOE Patents (OSTI)

A reactor comprising fissionable material in concentration sufficiently high so that the average neutron enengy within the reactor is at least 25,000 ev is described. A natural uranium blanket surrounds the reactor, and a moderating reflector surrounds the blanket. The blanket is thick enough to substantially eliminate flow of neutrons from the reflector.

Soodak, H.; Wigner, E.P.

1961-07-25T23:59:59.000Z

435

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry and Neutron Science Industry and Neutron Science Industry and Neutron Science: Working To Make a Match "In fundamental research, we want to know everything. Industry wants to know enough to answer a question." Research Contact: Mike Crawford September 2011, Written by Deborah Counce Mike Crawford and Souleymane Diallo Mike Crawford of Dupont (right) and Souleymane Diallo, instrument scientist for the Backscattering Spectrometer at SNS, prepare a material sample for an experiment on the instrument. Industrial users are starting to eye the potential of neutron science for solving problems that can't be solved in any other way. At the same time, the SNS and HFIR neutron science facilities at ORNL are exploring ways to woo such users and to make a match of it, to the benefit of both.

436

Neutron Scattering Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Software Software A new portal for neutron scattering has just been established at neutronsources.org. The information contained here in the Neutron Scattering Web has been transferred to the new site. We will leave the current content here for archival purposes but no new content will be added. We encourage everyone interested in neutron scattering to take full advantage of this exciting new resource for our community. Neutronsources.org Data Formats NeXus: Neutron and X-ray Data Format Crystallographic Binary Format (CBF/imgCIF) Hierarchical Data Format (HDF) Data Analysis and Visualization Data Analysis for Neutron Scattering Experiments (DANSE): distributed data analysis project Large Array Manipulation Program (LAMP): IDL-based data analysis and visualization

437

Pocked surface neutron detector  

DOE Patents (OSTI)

The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

2003-04-08T23:59:59.000Z

438

THERMAL NEUTRON BACKSCATTER IMAGING.  

DOE Green Energy (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

439

Pulsed neutron detector  

DOE Patents (OSTI)

A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

1989-03-21T23:59:59.000Z

440

SINGLE CRYSTAL NEUTRON DIFFRACTION.  

SciTech Connect

Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

KOETZLE,T.F.

2001-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Physics of solar neutron production: Questionable detection of neutrons  

E-Print Network (OSTI)

) A short introduction is given to astrophysics of neutron stars and to physics of dense matter in neutron stars. Observed properties of astro- physical objects containing neutron stars are discussed. Current scenarios regarding formation and evolution of neutron stars in those objects are presented. Physical

Share, Gerald

442

Carbon Capture R&D | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capture R&D Capture R&D Carbon Capture R&D DOE's Carbon Capture Program, administered by the Office of Fossil Energy and the National Energy Technology Laboratory, is conducting research and development activities on Second Generation and Transformational carbon capture technologies that have the potential to provide step-change reductions in both cost and energy penalty as compared to currently available First Generation technologies. The Carbon Capture Program consists of two core research Technology Areas: (1) Post-Combustion Capture; and (2) Pre-Combustion Capture. Post-combustion capture is primarily applicable to fossil fuel based systems such as conventional pulverized coal (PC)-fired power plants, where the fuel is burned with air in a boiler to produce steam that drives

443

A review of nanostructured based radiation sensors for neutron  

SciTech Connect

Currently radiation sensors with various mechanisms such as radio thermo luminescence, radiographic and radiochromic film, semiconductor and ionization have been used for the detection of nuclear radiation. Sensitivity, handling procedure, heating condition, energy response, nonlinearity, polarization, non-uniform electric field, high bias voltage and spatial resolution due to large physical size are some of the key issues faced by these sensors. Due to the excellent electrical and mechanical properties, nanostructured materials such as carbon nanotubes (CNTs) have been researched as sensing elements in the sensors to overcome the mentioned problems. However CNTs are found to pose different problems, arising from the uncontrolled helicity and small cross-sectional area. Therefore, alternative sensing elements are still been sought after and the possibility of using boron nitride nanotubes for sensing neutron is considered in this review.

Ahmad, Pervaiz; Mohamed, Norani Muti; Burhanudin, Zainal Arif [Center of Excellence in Nanotechnology Department of Fundamental and Applied Sciences, Department of Electrical and Electronic Engineering Universiti Teknologi PETRONAS (Malaysia)

2012-09-26T23:59:59.000Z

444

Neutronics and safety characteristics of a 100% MOX fueled PWR using weapons grade plutonium  

Science Conference Proceedings (OSTI)

Preliminary neutronics and safety studies, pertaining to the feasibility of using 100% weapons grade mixed-oxide (MOX) fuel in an advanced PWR Westinghouse design are presented in this paper. The preliminary results include information on boron concentration, power distribution, reactivity coefficients and xenon and control rode worth for the initial and the equilibrium cycle. Important safety issues related to rod ejection and steam line break accidents and shutdown margin requirements are also discussed. No significant change from the commercial design is needed to denature weapons-grade plutonium under the current safety and licensing criteria.

Biswas, D.; Rathbun, R.; Lee, Si Young [Westinghouse Savannah River Co., Aiken, SC (United States); Rosenthal, P. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

1993-12-31T23:59:59.000Z

445

Double radiative pion capture on hydrogen and deuterium and the nucleon's pion cloud  

E-Print Network (OSTI)

We report measurements of double radiative capture in pionic hydrogen and pionic deuterium. The measurements were performed with the RMC spectrometer at the TRIUMF cyclotron by recording photon pairs from pion stops in liquid hydrogen and deuterium targets. We obtained absolute branching ratios of $(3.02 \\pm 0.27 (stat.) \\pm 0.31 (syst.)) \\times 10^{-5}$ for hydrogen and $(1.42 \\pm ^{0.09}_{0.12} (stat.) \\pm 0.11 (syst.)) \\times 10^{-5}$ for deuterium, and relative branching ratios of double radiative capture to single radiative capture of $(7.68 \\pm 0.69(stat.) \\pm 0.79(syst.)) \\times 10^{-5}$ for hydrogen and $(5.44 \\pm^{0.34}_{0.46}(stat.) \\pm 0.42(syst.)) \\times 10^{-5}$ for deuterium. For hydrogen, the measured branching ratio and photon energy-angle distributions are in fair agreement with a reaction mechanism involving the annihilation of the incident $\\pi^-$ on the $\\pi^+$ cloud of the target proton. For deuterium, the measured branching ratio and energy-angle distributions are qualitatively consistent with simple arguments for the expected role of the spectator neutron. A comparison between our hydrogen and deuterium data and earlier beryllium and carbon data reveals substantial changes in the relative branching ratios and the energy-angle distributions and is in agreement with the expected evolution of the reaction dynamics from an annihilation process in S-state capture to a bremsstrahlung process in P-state capture. Lastly, we comment on the relevance of the double radiative process to the investigation of the charged pion polarizability and the in-medium pion field.

S. Tripathi; D. S. Armstrong; M. E. Christy; J. H. D. Clark; T. P. Gorringe; M. D. Hasinoff; M. A. Kovash; D. H. Wright; P. A. Zolnierczuk

2007-01-02T23:59:59.000Z

446

Versatile neutron NDA  

SciTech Connect

Non-destructive analysis (NDA) of bulk samples is a major tool in international safeguards and domestic MC&A. Yet, enhancements are needed to reduce inspection time, financial cost, and radiation exposure-while improving reliability and accuracy-particularly for mixtures of fissile and fertile isotopes. Perhaps the greatest remaining direction for NDA improvement is the development of a single controllable neutron source that would add versatility and capability. One of the primary prospects is a switchable radioactive neutron source (SRNS) that has been under advanced-concept development at Argonne with DOE funding. The SRNS would be in a sealed capsule that can be remotely switched on and off, or pulsed at a controllable rate. Li({alpha}, n) or Be({alpha}, n) reactions could give a choice of sub-threshold or hard-spectrum neutrons at yields ranging from 10{sup 4}/s to more than 10{sup 8}s. The SRNS would provide improved capabilities for (1) simultaneous or alternating interrogation with fast and slow neutrons, (2) detection of the first few seconds of delayed neutrons, (3) measurements in the presence of high neutron and/or gamma background, and (4) inspection of heterogeneous materials. When the neutrons are switched off, the source would be portable with vastly reduced shielding. Proof-of-concept with a single switchable plate has been established under laboratory conditions.

DeVolpi, A.

1995-07-01T23:59:59.000Z

447

Carbon Dioxide Capture Process with Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Dioxide Capture Process with Regenerable Sorbents Dioxide Capture Process with Regenerable Sorbents sorbent material. Additionally, the design of the system incorporates a cross- flow moving-bed reactor where the gas flows horizontally through a "panel" of solid sorbent that is slowly moving down-wards under gravity flow. With the expanded use of fossil fuels expected throughout the world, the increase in CO 2 emissions may prove to contribute even more significantly to global climate change. To address this problem, carbon sequestration scientists and engineers have proposed a number of methods to remove CO 2 from gas streams, such as chemical absorption with a solvent, membrane separation, and cryogenic fractionation. However, all of these methods are expensive and possibly cost-prohibitive for a specific application.

448

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputers Supercomputers Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December 16, 2013 Linda Vu, +1 510 495 2402, lvu@lbl.gov eddies1.jpg This visualization zooms in on current sheets revealing the "cascade of turbulence" in the solar wind occurring down to electron scales. This is a phenomenon common in fluid dynamics-turbulent energy injected at large eddies is transported to successively smaller scales until it is dissipated as heat. (Image by Burlen Loring, Berkeley Lab) As inhabitants of Earth, our lives are dominated by weather. Not just in the form of rain and snow from atmospheric clouds, but also a sea of charged particles and magnetic fields generated by a star sitting 93

449

Polarized photons in radiative muon capture  

E-Print Network (OSTI)

We discuss the measurement of polarized photons arising from radiative muon capture. The spectrum of left circularly polarized photons or equivalently the circular polarization of the photons emitted in radiative muon capture on hydrogen is quite sensitive to the strength of the induced pseudoscalar coupling constant $g_P$. A measurement of either of these quantities, although very difficult, might be sufficient to resolve the present puzzle resulting from the disagreement between the theoretical prediction for $g_P$ and the results of a recent experiment. This sensitivity results from the absence of left-handed radiation from the muon line and from the fact that the leading parts of the radiation from the hadronic lines, as determined from the chiral power counting rules of heavy-baryon chiral perturbation theory, all contain pion poles.

Shung-ichi Ando; Harold W. Fearing; Dong-Pil Min

2001-04-25T23:59:59.000Z

450

Ordinary Muon Capture in Hydrogen Reexamined  

E-Print Network (OSTI)

The rate of muon capture in a muonic hydrogen atom is calculated in heavy-nucleon chiral perturbation theory up to next-to-next-to leading order. To this order, we present the systematic evaluation of all the corrections due to the QED and electroweak radiative corrections and the proton-size effect. Since the low-energy constants involved can be determined from other independent sources of information, the theory has predictive power. For the hyperfine-singlet $\\mu p$ capture rate $\\Gamma_0$, our calculation gives $\\Gamma_0=710 \\,\\pm 5\\,s^{-1}$, which is in excellent agreement with the experimental value obtained in a recent high-precision measurement by the MuCap Collaboration.

U. Raha; F. Myhrer; K. Kubodera

2013-03-25T23:59:59.000Z

451

Hypernuclear Physics for Neutron Stars  

E-Print Network (OSTI)

The role of hypernuclear physics for the physics of neutron stars is delineated. Hypernuclear potentials in dense matter control the hyperon composition of dense neutron star matter. The three-body interactions of nucleons and hyperons determine the stiffness of the neutron star equation of state and thereby the maximum neutron star mass. Two-body hyperon-nucleon and hyperon-hyperon interactions give rise to hyperon pairing which exponentially suppresses cooling of neutron stars via the direct hyperon URCA processes. Non-mesonic weak reactions with hyperons in dense neutron star matter govern the gravitational wave emissions due to the r-mode instability of rotating neutron stars.

Jurgen Schaffner-Bielich

2008-01-24T23:59:59.000Z

452

Carbon Capture and Sequestration Newsletter, Issue #1  

Science Conference Proceedings (OSTI)

This is the inaugural edition of the EPRI Carbon Capture and Sequestration (CC&S) newsletter. The newsletter will provide periodic updates on research conducted through EPRI's CC&S target, and on related issues. Coverage will include: o summaries of, and EPRI perspectives on, significant issues (such as the likelihood of success and the applicability of the various technical concepts under development), perspectives on governmental research and development (R&D) policy, and important research findings; o...

2001-07-19T23:59:59.000Z

453

Method of chemical vapor deposition of boron nitride using polymeric cyanoborane  

DOE Patents (OSTI)

Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film.

Maya, Leon (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

454

Method of chemical vapor deposition of boron nitride using polymeric cyanoborane  

DOE Patents (OSTI)

Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.

Maya, L.

1994-06-14T23:59:59.000Z

455

Neutron Coincidence Counting Studies  

SciTech Connect

The efficiency comparison for measured and simulated responses of a 10B-lined proportional counter and a 3He proportional counter in a close, symmetrical geometry are presented. The measurement geometry was modeled in MCNPX to validate the methods used for simulating the response of both the 3He and 10B-lined tubes. The MCNPX models agree within 1% with the 3He tube measurements and within 3% for the 10B-lined tubes when a 0.75-”m boron-metal lining is used.

Rogers, Jeremy L.; Ely, James H.; Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

2012-08-31T23:59:59.000Z

456

Switchable radioactive neutron source device  

DOE Patents (OSTI)

This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

1987-11-06T23:59:59.000Z

457

Impact of Triaxiality on the Emission and Absorption of Neutrons and Gamma Rays in Heavy Nuclei  

E-Print Network (OSTI)

For many spin-0 target nuclei neutron capture measurements yield information on level densities at the neutron separation energy. Also the average photon width has been determined from capture data as well as Maxwellian average cross sections for the energy range of unresolved resonances. Thus it is challenging to use this data set for a test of phenomenological prescriptions for the prediction of radiative processes. An important ingredient for respective calculations is the photon strength function for which a parameterization was proposed using a fit to giant dipole resonance shapes on the basis of theoretically determined ground state deformations including triaxiality. Deviations from spherical and axial symmetry also influence level densities and it is suggested to use a combined parameterization for both, level density and photon strength. The formulae presented give a good description of the data for low spin capture into 124 nuclei with 72

Grossea, Eckart; Massarczyk, Ralph

2013-01-01T23:59:59.000Z

458

Measurements of ultracold neutron upscattering and absorption in polyethylene and vanadium  

E-Print Network (OSTI)

The study of neutron cross sections for elements used as efficient ``absorbers'' of ultracold neutrons (UCN) is crucial for many precision experiments in nuclear and particle physics, cosmology and gravity. In this context, ``absorption'' includes both the capture and upscattering of neutrons to the energies above the UCN energy region. The available data, especially for hydrogen, do not agree between themselves or with the theory. In this report we describe measurements performed at the Los Alamos National Laboratory UCN facility of the UCN upscattering cross sections for vanadium and for hydrogen in CH$_2$ using simultaneous measurements of the radiative capture cross sections for these elements. We measured $\\sigma_{up}=1972\\pm130$ b for hydrogen in CH$_2$, which is below theoretical expectations, and $\\sigma_{up} heating by thermal excitations in solids.

Sharapov, E I; Makela, M; Saunders, A; Adamek, Evan R; Bagdasarova, Yelena; Broussard, L J; Cude-Woods, C B; Fellers, Deon E; Geltenbort, Peter; Hasan, S I; Hickerson, K P; Hogan, G; Holley, A T; Liu, Chen-Yu; Mendenhall, M P; Ortiz, J; Pattie, R W; Phillips, D G; Ramsey, J; Salvat, D J; Seestrom, S J; Shaw, E; Sjue, Sky; Sondheim, W E; VornDick, B; Wang, Z; Womack, T L; Young, A R; Zeck, B A

2013-01-01T23:59:59.000Z

459

A 4p BaF2 detector for (n,g) cross section measurements at a spallation neutron source  

E-Print Network (OSTI)

The quest for improved neutron capture cross sections for advanced reactor concepts, transmutation of radioactive wastes as well as for astrophysical scenarios of neutron capture nucleosynthesis has motivated new experimental efforts based on modern techniques. Recent measurements in the keV region have shown that a 4p BaF2 detector represents an accurate and versatile instrument for such studies. The present work deals with the potential of such a 4p BaF2 detector in combination with spallation neutron sources, which offer large neutron fluxes over a wide energy range. Detailed Monte Carlo simulations with the GEANT package have been performed to investigate the critical backgrounds at a spallation facility, to optimize the detector design, and to discuss alternative solutions.

M. Heil; R. Reifarth; M. M. Fowler; R. C. Haight; F. Käppeler; R. S. Rundberg; E. H. Seabury; J. L. Ullmann; J. B. Wilhelmy; K. Wisshak

2013-10-16T23:59:59.000Z

460

Education | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Education banner Education banner Sunil Sinha A Chat with Sunil Sinha, Distinguished Professor of Physics at the University of California-San Diego and speaker at the recent CNMS-SNS Research Forum more... The purpose of the Spallation Neutron Source and the High Flux Isotope Reactor is to facilitate neutron scattering as an integral tool for scientific research and technological development across many scientific and engineering domains within the scientific, academic,and industrial communities. Coupled with this role is a recognized need to inspire, educate, and facilitate the next generation of users and hence foster enhanced use of the unique neutron scattering facilities at ORNL. This is the central theme of the education activities within the Neutron Sciences Directorate (NScD).

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ORNL Neutron Sciences Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

Instruments banner Instruments banner ORNL Neutron Sciences Instruments SNS and HFIR provide researchers with two complementary world-class suites of neutron scattering instruments and beam lines. All the instruments are supported by a variety of sample environments and data analysis and visualization capabilities. Before submitting a proposal for a specific instrument, please contact the appropriate instrument scientist to make sure your research is feasible for that instrument. Instruments Currently Available to Users SNS Beam Line Instrument Name HFIR Beam Line Instrument Name 1B NOMAD Nanoscale-Ordered Materials Diffractometer CG-1 Development Beam Line 2 BASIS Backscattering Spectrometer CG-1D IMAGING Neutron Imaging Prototype Facility 3 SNAP Spallation Neutrons and Pressure Diffractometer CG-2 GP-SANS

462

Awards | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

| Neutron Science | News and Awards | Awards SHARE Awards for Excellence 1-2 of 2 Results ORNL team wins R&D 100 award for wavelength-shifting scintillator detector January...

463

Personnel neutron dosimetry  

Science Conference Proceedings (OSTI)

This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs. (ACR)

Hankins, D.

1982-04-01T23:59:59.000Z

464

Neutron personnel dosimetry  

Science Conference Proceedings (OSTI)

The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

Griffith, R.V.

1981-06-16T23:59:59.000Z

465

Neutron Scattering Science User ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS) will be accepted via the web-based proposal system...

466

ORNL Neutron Sciences Users  

NLE Websites -- All DOE Office Websites (Extended Search)

SHUG banner SNS-HFIR User Group The SNS-HFIR User Group (SHUG) consists of all persons interested in using the neutron scattering facilities at Oak Ridge. It provides input to the...

467

Readout of Secretary Chu Meetings on Carbon Capture and Sequestration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Meetings on Carbon Capture and Sequestration and State Grid Readout of Secretary Chu Meetings on Carbon Capture and Sequestration and State Grid July 16, 2009 - 12:00am Addthis...

468

New Funding from DOE Boosts Carbon Capture and Storage Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from DOE Boosts Carbon Capture and Storage Research and Development New Funding from DOE Boosts Carbon Capture and Storage Research and Development September 16, 2009 - 12:00am...

469

Carbon Pollution Being Captured, Stored and Used to Produce More...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil May 10, 2013 - 11:38am...

470

CO2 Capture and Storage Project, Education and Training Center...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage. It's the process of capturing and storing or re-using carbon dioxide (CO2) from coal-fired power plants and industrial sources. In Decatur, Illinois, a new carbon capture...

471

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Carbon Dioxide Capture/Sequestration Tax Deduction allows a taxpayer a deduction to adjusted gross income with respect to the amortization of the amortizable costs of carbon dioxide capture,...

472

Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron  

Office of Scientific and Technical Information (OSTI)

Clifford Shull, Neutron Diffraction, and Neutron Scattering Clifford Shull, Neutron Diffraction, and Neutron Scattering Resources with Additional Information Clifford G. Shull was awarded the 1994 Nobel Prize in Physics "for the development of the neutron diffraction technique". 'Professor Shull's prize was awarded for his pioneering work in neutron scattering, a technique that reveals where atoms are within a material like ricocheting bullets reveal where obstacles are in the dark. Clifford Shull Photo Courtesy of Oak Ridge National Laboratory When a beam of neutrons is directed at a given material, the neutrons bounce off, or are scattered by, atoms in the sample being investigated. The neutrons' directions change, depending on the location of the atoms they hit, and a diffraction pattern of the atoms' positions can then be obtained.

473

NEUTRON FLUX INTENSITY DETECTION  

DOE Patents (OSTI)

A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

Russell, J.T.

1964-04-21T23:59:59.000Z

474

FABRICATION OF NEUTRON SOURCES  

DOE Patents (OSTI)

A method is presented for preparing a more efficient neutron source comprising inserting in a container a quantity of Po-210, inserting B powder coated with either Ag, Pt, or Ni. The container is sealed and then slowly heated to about 450 C to volatilize the Po and effect combination of the coated powder with the Po. The neutron flux emitted by the unit is moritored and the heating step is terminated when the flux reaches a maximum or selected level.

Birden, J.H.

1959-01-20T23:59:59.000Z

475

Facilities and Capabilities | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope Reactor and the Spallation Neutron Source. The continuous neutron source at HFIR and the pulsed neutron source at SNS complement each other well and, along with their...

476

Science Education Programs | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

What are Neutrons Why Research with Neutrons Graduate & Post-doctoral Programs Student & Teacher Programs Science Forum Neutron Scattering Tutorials Kids' Corner News and Awards...

477

ORNL Neutron Sciences Directorate Executive Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Sciences Directorate Executive Office Kelly Beierschmitt ORNL Associate Laboratory Director for Neutron Sciences Kelly Beierschmitt. The Neutron Sciences Directorate (NScD)...

478

FACT SHEET: CARBON CAPTURE USE AND STORAGE ACTION GROUP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CARBON CAPTURE USE AND STORAGE ACTION GROUP CARBON CAPTURE USE AND STORAGE ACTION GROUP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers pledged to establish a Carbon Capture Use and Storage Action Group to be led by the United Kingdom and Australia to facilitate political and business leadership and develop a Global Strategic Implementation Plan to examine how to overcome key barriers to the deployment of Carbon Capture Use and Storage (CCUS).

479

Effect of nuclear deformation on direct capture reactions  

E-Print Network (OSTI)

The direct radiative capture process is well described by the spherical potential model. In order for the model to explain direct captures more accurately, the effect of the nuclear deformation has been added and analyzed in this work, since most nucleuses are not spherical. The results imply that the nuclear deformation largely affects the direct capture and should be taken into account during discussing direct capture reactions.

G. W. Fan; X. L. Cai; M. Fukuda; Zhongzhou Ren; W. Xu

2013-05-01T23:59:59.000Z

480

Polarized neutrons in RHIC  

Science Conference Proceedings (OSTI)

There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. This paper discusses techniques for accelerating polarized {sup 3}He nuclei and deuterons.

Courant, E.D.

1998-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "boron neutron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Observation of Neutrons with a Gadolinium Doped Water Cerenkov Detector  

E-Print Network (OSTI)

Spontaneous and induced fission in Special Nuclear Material (SNM) such as 235U and 239Pu results in the emission of neutrons and high energy gamma-rays. The multiplicities of and time correlations between these particles are both powerful indicators of the presence of fissile material. Detectors sensitive to these signatures are consequently useful for nuclear material monitoring, search, and characterization. In this article, we demonstrate sensitivity to both high energy gamma-rays and neutrons with a water Cerenkov based detector. Electrons in the detector medium, scattered by gamma-ray interactions, are detected by their Cerenkov light emission. Sensitivity to neutrons is enhanced by the addition of a gadolinium compound to the water in low concentrations. Cerenkov light is similarly produced by an 8 MeV gamma-ray cascade following neutron capture on the gadolinium. The large solid angle coverage and high intrinsic efficiency of this detection approach can provide robust and low cost neutron and gamma-ray detection with a single device.

S. Dazeley; A. Bernstein; N. S. Bowden; R. Svoboda

2008-08-02T23:59:59.000Z

482

MAGNETIC NEUTRON SCATTERING  

SciTech Connect

Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

ZALIZNYAK,I.A.; LEE,S.H.

2004-07-30T23:59:59.000Z

483

Post-Combustion CO2 Capture 11 -13 July 2010  

E-Print Network (OSTI)

Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Tufts European Center Talloires, France Institute | | Clean Air Task Force | | Asia Clean Energy Innovation Initiative | #12;Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Talloires, France PROCEEDINGS: Post-Combustion CO2 Capture Workshop

484

Capture-ready power plants : options, technologies and economics  

E-Print Network (OSTI)

A plant can be considered to be capture-ready if, at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The concept of capture-ready is not a specific ...

Bohm, Mark (Mark C.)

2006-01-01T23:59:59.000Z

485

Optimal Carbon Capture and Storage policies  

E-Print Network (OSTI)

Following the IPCC's report (2005), which recommended the development and the use of carbon capture and sequestration (CCS) technologies in order to achieve the environmental goals, de ned by the Kyoto Protocol, the issue addressed in this paper concerns the optimal strategy regarding the long-term use of CCS technologies. The aim of this paper is to study the optimal carbon capture and sequestration policy. The CCS technologies has motivated a number of empirical studies, via complex integrated assessment models. This literature always considers that the existing technology allows sequestrating a fraction of the carbon emissions and concludes that the early introduction of sequestration can lead to a substantial decrease in the cost of environmental externality. But, the level of complexity of such operational models, aimed at de ning some speci c cli