National Library of Energy BETA

Sample records for borehole calibration models

  1. Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (April 1984) | Department of Energy Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) (3.25 MB) More Documents & Publications Grade Assignments for Models Used for Calibration of Gross-Count

  2. Calibration models for density borehole logging - construction report

    SciTech Connect (OSTI)

    Engelmann, R.E.; Lewis, R.E.; Stromswold, D.C.

    1995-10-01

    Two machined blocks of magnesium and aluminum alloys form the basis for Hanford`s density models. The blocks provide known densities of 1.780 {plus_minus} 0.002 g/cm{sup 3} and 2.804 {plus_minus} 0.002 g/cm{sup 3} for calibrating borehole logging tools that measure density based on gamma-ray scattering from a source in the tool. Each block is approximately 33 x 58 x 91 cm (13 x 23 x 36 in.) with cylindrical grooves cut into the sides of the blocks to hold steel casings of inner diameter 15 cm (6 in.) and 20 cm (8 in.). Spacers that can be inserted between the blocks and casings can create air gaps of thickness 0.64, 1.3, 1.9, and 2.5 cm (0.25, 0.5, 0.75 and 1.0 in.), simulating air gaps that can occur in actual wells from hole enlargements behind the casing.

  3. Parameter assignments for spectral gamma-ray borehole calibration models. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Heistand, B.E.; Novak, E.F.

    1984-04-01

    This report documents the work performed to determine the newly assigned concentrations for the spectral gamma-ray borehole calibration models. Thirty-two models, maintained by the US Department of Energy, are included in this study, and are grouped into eight sets of four models each. The eight sets are located at sites across the United States, and are used to calibrate logging instruments. The assignments are based on in-situ logging data to ensure self-consistency in the assigned concentrations, and on laboratory assays of concrete samples from each model to provide traceability to the New Brunswick Laboratory (NBL) standards. 13 references, 7 figures, 17 tables.

  4. Borehole Fluid Conductivity Model

    Energy Science and Technology Software Center (OSTI)

    2004-03-15

    Dynamic wellbore electrical conductivity logs provide a valuable means to determine the flow characteristics of fractures intersectin a wellbore, in order to study the hydrologic behavior of fractured rocks. To expedite the analysis of log data, a computer program called BORE II has been deveoloped that considers multiple inflow or outflow points along the wellbore, including the case of horizontal flow across the wellbore, BORE II calculates the evolution of fluid electrical conducivity (FEC) profilesmore »in a wellbore or wellbore section, which may be pumped at a low rate, and compares model results to log data in a variety of ways. FEC variations may arise from inflow under natural-state conditions or due to tracer injected in a neighboring well (interference tests). BORE II has an interactive, graphical user interface and runs on a personal computer under the Windows operating system. BORE II is a modification and extension of older codes called BORE and BOREXT, which considered inflow points only. Finite difference solution of the one-dimensional advection-diffusion equation with explicit time stepping; feed points treated as prescribed-mass sources or sinks; assume quadratic relationship between fluid electrical conductivity and ion consentration. Graphical user interface; interactive modification of model parameters and graphical display of model results and filed data in a variety of ways. Can examine horizontal flow or arbitarily complicated combination of upflow, downflow, and horizontal flow. Feed point flow rate and/or concentration may vary in time.« less

  5. 1990 yearly calibration of Pacific Northwest Laboratory's gross-gamma borehole geophysical logging system

    SciTech Connect (OSTI)

    Arthur, R.J.

    1990-08-01

    This report describes the 1990 yearly calibration of a gross-gamma geophysical pulse logging system owned by the US Department of Energy (DOE) and operated by Pacific Northwest Laboratory (PNL). The calibration was conducted to permit the continued use of this system for geological and hydrologic studies associated with remedial investigation at the Hanford Site. Primary calibrations to equivalent uranium units were conducted in borehole model standards that were recently moved to the Hanford Site from the DOE field calibration facility in Spokane, Washington. The calibrations were performed in borehole models SBL/SBH and SBA/SBB, which contain low equivalent-uranium concentrations. The integrity of the system throughout the previous year from gamma-ray monitoring was demonstrated using the before- and after-logging field calibration readings with the field source in calibration Positions 1 and 2. Most of the Position 1 readings are within an 8% limit that is set by the governing PNL technical reference procedure as a critical value above which the instrument is considered suspect. Many of the Position 2 readings exceed the 8% limit; however, the fluctuation was traced to field-source geometry variability that affected Position 1 count rates by up to 6% and Position 2 count rates by as much as 16%. Correlations were established based on two similar approaches for relating observed count rate in before- and after-logging field calibrations to equivalent uranium concentrations. The temperature drift of the gamma-ray probe was documented and amounts to less than 0.1%/{degree}C within the temperature range 0{degree}C to 42{degree}C. The low-energy cutoff for the gross gamma-ray probe was determined to be between 46.5 and 59.5 keV. 10 refs., 4 figs., 13 tabs.

  6. FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...

    Open Energy Info (EERE)

    FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: FMI Borehole Geology, Geomechanics and 3D...

  7. Next Generation Calibration Models with Dimensional Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibration Models with Dimensional Modeling Next Generation Calibration Models with ... Calibration Optimization for Next Generation Diesel Engines An Accelerated Aging ...

  8. Borehole Logging Methods for Exploration and Evaluation of Uranium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984

  9. Calibration of a Neutron Hydroprobe for Moisture Measurements in Small-Diameter Steel-Cased Boreholes

    SciTech Connect (OSTI)

    Ward, Anderson L.; Wittman, Richard S.

    2009-08-01

    Computation of soil moisture content from thermalized neutron counts for the T-Farm Interim cover requires a calibration relationship but none exists for 2-in tubes. A number of calibration options are available for the neutron probe, including vendor calibration, field calibration, but none of these methods were deemed appropriate for the configuration of interest. The objective of this work was to develop a calibration relation for converting neutron counts measured in 2-in access tubes to soil water content. The calibration method chosen for this study was a computational approach using the Monte Carlo N-Particle Transport Code (MCNP). Model calibration was performed using field measurements in the Hanford calibration models with 6-in access tubes, in air and in the probe shield. The bet-fit model relating known water content to measured neutron counts was an exponential model that was essentially equivalent to that currently being used for 6-in steel cased wells. The MCNP simulations successfully predicted the neutron count rate for the neutron shield and the three calibration models for which data were collected in the field. However, predictions for air were about 65% lower than the measured counts . This discrepancy can be attributed to uncertainties in the configuration used for the air measurements. MCNP-simulated counts for the physical models were essentially equal to the measured counts with values. Accurate prediction of the response in 6-in casings in the three calibration models was motivation to predict the response in 2-in access tubes. Simulations were performed for six of the seven calibration models as well as 4 virtual models with the entire set covering a moisture range of 0 to 40%. Predicted counts for the calibration models with 2-in access tubes were 40 to 50% higher than in the 6-inch tubes. Predicted counts for water were about 60% higher in the 2-in tube than in the 6-in tube. The discrepancy between the 2-in and 6-in tube can be

  10. Gross Gamma-Ray Calibration Blocks (May 1978) | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for, and the Procedures Currently Utilized in, Gross Gamma-Ray Log Calibration (October 1976) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984

  11. Development of a Dynamic DOE Calibration Model

    Broader source: Energy.gov [DOE]

    A dynamic heavy duty diesel engine model was developed. The model can be applied for calibration and control system optimization.

  12. Accounting for Model Error in the Calibration of Physical Models...

    Office of Scientific and Technical Information (OSTI)

    Accounting for Model Error in the Calibration of Physical Models. Citation Details In-Document Search Title: Accounting for Model Error in the Calibration of Physical Models. ...

  13. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    SciTech Connect (OSTI)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  14. Bayesian Calibration of the Community Land Model using Surrogates...

    Office of Scientific and Technical Information (OSTI)

    Bayesian Calibration of the Community Land Model using Surrogates Citation Details In-Document Search Title: Bayesian Calibration of the Community Land Model using Surrogates We ...

  15. Model-Based Transient Calibration Optimization for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Based Transient Calibration Optimization for Next Generation Diesel Engines Model-Based Transient Calibration Optimization for Next Generation Diesel Engines 2005 Diesel Engine...

  16. Calibration models for measuring moisture in unsaturated formations by neutron logging

    SciTech Connect (OSTI)

    Engelman, R.E.; Lewis, R.E.; Stromswold, D.C.

    1995-10-01

    Calibration models containing known amounts of hydrogen have been constructed to simulate unsaturated earth formations for calibrating neutron well logging tools. The models are made of dry mixtures of hydrated alumina (Al(OH){sub 3}) with either silica sand (SiO{sub 2}) or aluminum oxide (Al{sub 2}O{sub 3}). Hydrogen in the hydrated alumina replaces the hydrogen in water for neutron scattering, making it possible to simulate partially saturated formations. The equivalent water contents for the models are 5%, 12%, 20%, and 40% by volume in seven tanks that have a diameter of 1.5 m and a height of 1.8 m. Steel casings of inside diameter 15.4 cm (for three models) and diameter 20.3 cm (for four models) allow logging tool access to simulate logging through cased boreholes.

  17. A Prototype Performance Assessment Model for Generic Deep Borehole Repository for High-Level Nuclear Waste - 12132

    SciTech Connect (OSTI)

    Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.; Hadgu, Teklu; Freeze, Geoff; Wang, Yifeng

    2012-07-01

    A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using the approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)

  18. High Accuracy Transistor Compact Model Calibrations

    SciTech Connect (OSTI)

    Hembree, Charles E.; Mar, Alan; Robertson, Perry J.

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  19. Calibration and Comparison of Climate Models: Accounting for...

    Office of Scientific and Technical Information (OSTI)

    Models: Accounting for Structural and Discretization Error. Citation Details In-Document Search Title: Calibration and Comparison of Climate Models: Accounting for ...

  20. Calibration Pad Assignments for Spectral Gamma (November 1985) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Pad Assignments for Spectral Gamma (November 1985) Calibration Pad Assignments for Spectral Gamma (November 1985) Calibration Pad Assignments for Spectral Gamma (November 1985) Calibration Pad Assignments for Spectral Gamma (November 1985) (5.3 MB) More Documents & Publications Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) Grade

  1. Logging Calibration Models for Fission Neutron Sondes (September...

    Energy Savers [EERE]

    A Model for Water Factor Measurements With Fission-Neutron Logging Tools (May 1983) Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium ...

  2. Calibration Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards

  3. Evaluation of “Autotune” calibration against manual calibration of building energy models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chaudhary, Gaurav; New, Joshua; Sanyal, Jibonananda; Im, Piljae; O’Neill, Zheng; Garg, Vishal

    2016-08-26

    Our paper demonstrates the application of Autotune, a methodology aimed at automatically producing calibrated building energy models using measured data, in two case studies. In the first case, a building model is de-tuned by deliberately injecting faults into more than 60 parameters. This model was then calibrated using Autotune and its accuracy with respect to the original model was evaluated in terms of the industry-standard normalized mean bias error and coefficient of variation of root mean squared error metrics set forth in ASHRAE Guideline 14. In addition to whole-building energy consumption, outputs including lighting, plug load profiles, HVAC energy consumption,more » zone temperatures, and other variables were analyzed. In the second case, Autotune calibration is compared directly to experts’ manual calibration of an emulated-occupancy, full-size residential building with comparable calibration results in much less time. Lastly, our paper concludes with a discussion of the key strengths and weaknesses of auto-calibration approaches.« less

  4. Calibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    techniques for a fast duo spectrometer J. T. Chapman and D. J. Den Hartog Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Presented on 13 May 1996͒ We have completed the upgrade and calibration of the ion dynamics spectrometer ͑IDS͒, a high-speed Doppler duo spectrometer which measures ion flow and temperature in the MST reversed-field pinch. This paper describes an insitu calibration of the diagnostic's phase and frequency response. A single clock was

  5. Calibration model for the DCXC x-ray camera

    SciTech Connect (OSTI)

    Fehl, D.L.; Chang, J.

    1980-01-01

    A physical model for the DCXC camera used in x-radiographic studies of inertial confinement fusion (ICF) targets is described. Empirical calibration procedures, based on pulsed, bremsstrahlung sources, are proposed.

  6. Optical Measurement Methods used in Calibration and Validation of Modeled

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Spray Characteristics | Department of Energy Optical Measurement Methods used in Calibration and Validation of Modeled Injection Spray Characteristics Optical Measurement Methods used in Calibration and Validation of Modeled Injection Spray Characteristics Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-07_klyza.pdf (363.89 KB) More Documents & Publications Effect of Ambient Pressure

  7. Model-Based Transient Calibration Optimization for Next Generation Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Model-Based Transient Calibration Optimization for Next Generation Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_atkinson.pdf (585.55 KB) More Documents & Publications Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Integrated Engine and Aftertreatment Technology Roadmap for EPA

  8. Increased Efficiency with Model Based Calibration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency with Model Based Calibration Increased Efficiency with Model Based Calibration Meeting future TIER 4 emission limits requires the integration of many new technology elements. deer09_diewald.pdf (1.04 MB) More Documents & Publications Vehicle Evaluation of Downsized Dow ACM DPF Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine Review of Emerging Diesel Emissions and Control

  9. Correction of steel casing effect for density log using numerical and experimental methods in the slim borehole

    SciTech Connect (OSTI)

    Hwang, Seho; Shin, Jehyun; Kim, Jongman; Won, Byeongho

    2015-03-10

    Density log is widely applied for a variety of fields such as the petroleum exploration, mineral exploration, and geotechnical survey. The logging condition of density log is normally open holes but there are frequently cased boreholes. The primary calibration curve by slim hole logging manufacturer is normally the calibration curves for the variation of borehole diameter. In this study, we have performed the correction of steel casing effects using numerical and experimental methods. We have performed numerical modeling using the Monte Carlo N-Particle (MCNP) code based on Monte Carlo method, and field experimental method from open and cased hole log. In this study, we used the FDGS (Formation Density Gamma Sonde) for slim borehole with a 100 mCi 137Cs source, three inch borehole and steel casing. The casing effect between numerical and experimental method is well matched.

  10. Calibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a Thomson scattering diagnostic for fluctuation measurements a... H. D. Stephens, b͒ M. T. Borchardt, D. J. Den Hartog, A. F. Falkowski, D. J. Holly, R. O'Connell, and J. A. Reusch Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA ͑Presented 13 May 2008; received 25 April 2008; accepted 30 June 2008; published online 31 October 2008͒ Detailed calibrations of the Madison Symmetric Torus polychromator Thomson scattering system have been made suitable for

  11. Cloud-Based Model Calibration Using OpenStudio: Preprint

    SciTech Connect (OSTI)

    Hale, E.; Lisell, L.; Goldwasser, D.; Macumber, D.; Dean, J.; Metzger, I.; Parker, A.; Long, N.; Ball, B.; Schott, M.; Weaver, E.; Brackney, L.

    2014-03-01

    OpenStudio is a free, open source Software Development Kit (SDK) and application suite for performing building energy modeling and analysis. The OpenStudio Parametric Analysis Tool has been extended to allow cloud-based simulation of multiple OpenStudio models parametrically related to a baseline model. This paper describes the new cloud-based simulation functionality and presents a model cali-bration case study. Calibration is initiated by entering actual monthly utility bill data into the baseline model. Multiple parameters are then varied over multiple iterations to reduce the difference between actual energy consumption and model simulation results, as calculated and visualized by billing period and by fuel type. Simulations are per-formed in parallel using the Amazon Elastic Cloud service. This paper highlights model parameterizations (measures) used for calibration, but the same multi-nodal computing architecture is available for other purposes, for example, recommending combinations of retrofit energy saving measures using the calibrated model as the new baseline.

  12. Regional Model Calibration for Improving Seismic Location

    SciTech Connect (OSTI)

    Swenson, J.L.; Schultz, C.A.; Myers, S.C.

    2000-07-14

    Accurate seismic event location is integral to the effective monitoring of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), as well as being a fundamental component of earthquake source characterization. To account for the effects of crustal and mantle structure on seismic travel times, and to improve seismic event location in the Middle East and North Africa (MENA), we are developing a set of radially heterogeneous and azimuthally invariant travel-time models of the crust and upper mantle for each MENA seismic station. We begin by developing an average one-dimensional velocity model that minimizes the P-phase travel-time residuals from regional through teleseismic distance at each station. To do this we (1) generate a suite of 1-D velocity models of the earth, (2) compute travel times through the 1-D models using a tau-p formulation to produce standard travel-time tables, and (3) minimize the root-mean-square (rms) residuals between the P-phase arrivals predicted by each model and a groomed set of ISC P-phase arrival times (Engdahl et al., 1991). Once we have an average one-dimensional velocity model that minimizes the P-phase travel-time residuals for all distances, we repeat steps 1 through 3, systematically perturbing the travel-time model and using a grid search procedure to optimize models within regional, upper mantle, and teleseismic distance ranges. Regionalized models are combined into one two-dimensional model, using indicator functions and smoother methodologies to reduce distance and depth discontinuity artifacts between the individual models. Preliminary results of this study at a subset of MENA stations show that we are improving predictability with these models. Cross-validating the travel-time predictions with an independent data set demonstrates a marked reduction in the variance of the travel-time model error distributions. We demonstrate the improvement provided by these 2-D models by relocating the 1991 Racha aftershock sequence. We will

  13. Bayesian calibration of the Community Land Model using surrogates

    SciTech Connect (OSTI)

    Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Swiler, Laura Painton

    2014-02-01

    We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditional on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural error in CLM under two error models. We find that surrogate models can be created for CLM in most cases. The posterior distributions are more predictive than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters' distributions significantly. The structural error model reveals a correlation time-scale which can be used to identify the physical process that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.

  14. Bayesian Calibration of the Community Land Model using Surrogates

    SciTech Connect (OSTI)

    Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Sargsyan, K.; Swiler, Laura P.

    2015-01-01

    We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditioned on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural error in CLM under two error models. We find that accurate surrogate models can be created for CLM in most cases. The posterior distributions lead to better prediction than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters’ distributions significantly. The structural error model reveals a correlation time-scale which can potentially be used to identify physical processes that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.

  15. Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:

    SciTech Connect (OSTI)

    Thornton, Jeff W.; McDowell, T. P.; Shonder, John A; Hughes, Patrick; Pahud, D.; Hellstrom, G.

    1997-06-01

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

  16. Residential vertical geothermal heat pump system models: Calibration to data

    SciTech Connect (OSTI)

    Thornton, J.W.; McDowell, T.P.; Shonder, J.A.; Hughes, P.J.; Pahud, D.; Hellstroem, G.A.J.

    1997-12-31

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was tuned to better match the measured data from the site. These tuned models were then interconnected to form the system model. The system model was then exercised in order to demonstrate its capabilities.

  17. U.S. Department of Energy Office of Legacy Management Calibration Facilities - 12103

    SciTech Connect (OSTI)

    Barr, Deborah; Traub, David; Widdop, Michael

    2012-07-01

    This paper describes radiometric calibration facilities located in Grand Junction, Colorado, and at three secondary calibration sites. These facilities are available to the public for the calibration of radiometric field instrumentation for in-situ measurements of radium (uranium), thorium, and potassium. Both borehole and hand-held instruments may be calibrated at the facilities. Aircraft or vehicle mounted systems for large area surveys may be calibrated at the Grand Junction Regional Airport facility. These calibration models are recognized internationally as stable, well-characterized radiation sources for calibration. Calibration models built in other countries are referenced to the DOE models, which are also widely used as a standard for calibration within the U.S. Calibration models are used to calibrate radiation detectors used in uranium exploration, remediation, and homeland security. (authors)

  18. Design of Experiments, Model Calibration and Data Assimilation

    SciTech Connect (OSTI)

    Williams, Brian J.

    2014-07-30

    This presentation provides an overview of emulation, calibration and experiment design for computer experiments. Emulation refers to building a statistical surrogate from a carefully selected and limited set of model runs to predict unsampled outputs. The standard kriging approach to emulation of complex computer models is presented. Calibration refers to the process of probabilistically constraining uncertain physics/engineering model inputs to be consistent with observed experimental data. An initial probability distribution for these parameters is updated using the experimental information. Markov chain Monte Carlo (MCMC) algorithms are often used to sample the calibrated parameter distribution. Several MCMC algorithms commonly employed in practice are presented, along with a popular diagnostic for evaluating chain behavior. Space-filling approaches to experiment design for selecting model runs to build effective emulators are discussed, including Latin Hypercube Design and extensions based on orthogonal array skeleton designs and imposed symmetry requirements. Optimization criteria that further enforce space-filling, possibly in projections of the input space, are mentioned. Designs to screen for important input variations are summarized and used for variable selection in a nuclear fuels performance application. This is followed by illustration of sequential experiment design strategies for optimization, global prediction, and rare event inference.

  19. Calibrating the Abaqus Crushable Foam Material Model using UNM Data

    SciTech Connect (OSTI)

    Schembri, Philip E.; Lewis, Matthew W.

    2014-02-27

    Triaxial test data from the University of New Mexico and uniaxial test data from W-14 is used to calibrate the Abaqus crushable foam material model to represent the syntactic foam comprised of APO-BMI matrix and carbon microballoons used in the W76. The material model is an elasto-plasticity model in which the yield strength depends on pressure. Both the elastic properties and the yield stress are estimated by fitting a line to the elastic region of each test response. The model parameters are fit to the data (in a non-rigorous way) to provide both a conservative and not-conservative material model. The model is verified to perform as intended by comparing the values of pressure and shear stress at yield, as well as the shear and volumetric stress-strain response, to the test data.

  20. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993

    SciTech Connect (OSTI)

    Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

    2007-02-28

    A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measureŹment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

  1. New NIR Calibration Models Speed Biomass Composition and Reactivity Characterization

    SciTech Connect (OSTI)

    2015-09-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. This highlight describes NREL's work to use near-infrared (NIR) spectroscopy and partial least squares multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  2. Accounting for Model Error in the Calibration of Physical Models

    Office of Scientific and Technical Information (OSTI)

    ... model error term in locations where key modeling assumptions and approximations are made ... to represent the truth o In this context, the data has no noise o Discrepancy ...

  3. Handling Model Error in the Calibration of Physical Models

    Office of Scientific and Technical Information (OSTI)

    ... model error term in locations where key modeling assumptions and approximations are made ... to represent the truth o In this context, the data has no noise o Discrepancy ...

  4. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, Oleg M.

    1993-01-01

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  5. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, O.M.

    1993-03-23

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  6. Statistical modeling support for calibration of a multiphysics model of subcooled boiling flows

    SciTech Connect (OSTI)

    Bui, A. V.; Dinh, N. T.; Nourgaliev, R. R.; Williams, B. J.

    2013-07-01

    Nuclear reactor system analyses rely on multiple complex models which describe the physics of reactor neutronics, thermal hydraulics, structural mechanics, coolant physico-chemistry, etc. Such coupled multiphysics models require extensive calibration and validation before they can be used in practical system safety study and/or design/technology optimization. This paper presents an application of statistical modeling and Bayesian inference in calibrating an example multiphysics model of subcooled boiling flows which is widely used in reactor thermal hydraulic analysis. The presence of complex coupling of physics in such a model together with the large number of model inputs, parameters and multidimensional outputs poses significant challenge to the model calibration method. However, the method proposed in this work is shown to be able to overcome these difficulties while allowing data (observation) uncertainty and model inadequacy to be taken into consideration. (authors)

  7. A New Perspective for the Calibration of Computational Predictor Models.

    SciTech Connect (OSTI)

    Crespo, Luis Guillermo

    2014-11-01

    This paper presents a framework for calibrating computational models using data from sev- eral and possibly dissimilar validation experiments. The offset between model predictions and observations, which might be caused by measurement noise, model-form uncertainty, and numerical error, drives the process by which uncertainty in the models parameters is characterized. The resulting description of uncertainty along with the computational model constitute a predictor model. Two types of predictor models are studied: Interval Predictor Models (IPMs) and Random Predictor Models (RPMs). IPMs use sets to characterize uncer- tainty, whereas RPMs use random vectors. The propagation of a set through a model makes the response an interval valued function of the state, whereas the propagation of a random vector yields a random process. Optimization-based strategies for calculating both types of predictor models are proposed. Whereas the formulations used to calculate IPMs target solutions leading to the interval value function of minimal spread containing all observations, those for RPMs seek to maximize the models' ability to reproduce the distribution of obser- vations. Regarding RPMs, we choose a structure for the random vector (i.e., the assignment of probability to points in the parameter space) solely dependent on the prediction error. As such, the probabilistic description of uncertainty is not a subjective assignment of belief, nor is it expected to asymptotically converge to a fixed value, but instead it is a description of the model's ability to reproduce the experimental data. This framework enables evaluating the spread and distribution of the predicted response of target applications depending on the same parameters beyond the validation domain (i.e., roll-up and extrapolation).

  8. A Workflow for Parameter Calibration and and Model Validation in SST: Interim Report.

    SciTech Connect (OSTI)

    Pebay, Philippe Pierre; Wilke, Jeremiah J; Sargsyan, Khachik

    2014-12-01

    This brief report explains the method used for parameter calibration and model validation in SST/Macro and the set of tools and workflow developed for this purpose.

  9. Calibration Model Assignments expressed as U3O8, Summary Table ES-1 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Model Assignments expressed as U3O8, Summary Table ES-1 Calibration Model Assignments expressed as U3O8, Summary Table ES-1 Calibration Model Assignments expressed as U3O8, Summary Table ES-1 Calibration Model Assignments expressed as U3O8, Summary Table ES-1 (25.9 KB) More Documents & Publications Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) Offshore Wind Market and Economic Analysis Report 2013 Natural

  10. Borehole induction coil transmitter

    DOE Patents [OSTI]

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  11. Calibration of LI-7500 sensor for 60m CO2/H20 flux system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards

  12. Improved Multivariate Calibration Models for Corn Stover Feedstock and Dilute-Acid Pretreated Corn Stover

    SciTech Connect (OSTI)

    Wolfrum, E. J.; Sluiter, A. D.

    2009-01-01

    We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.

  13. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    SciTech Connect (OSTI)

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  14. Model Calibration and Optics Correction Using Orbit Response Matrix in the Fermilab Booster

    SciTech Connect (OSTI)

    Lebedev, V.A.; Prebys, E.; Petrenko, A.V.; Kopp, S.E.; McAteer, M.J.; /Texas U.

    2012-05-01

    We have calibrated the lattice model and measured the beta and dispersion functions in Fermilab's fast-ramping Booster synchrotron using the Linear Optics from Closed Orbit (LOCO) method. We used the calibrated model to implement ramped coupling, dispersion, and beta-beating corrections throughout the acceleration cycle, reducing horizontal beta beating from its initial magnitude of {approx}30% to {approx}10%, and essentially eliminating vertical beta-beating and transverse coupling.

  15. Piezotube borehole seismic source

    DOE Patents [OSTI]

    Daley, Tom M; Solbau, Ray D; Majer, Ernest L

    2014-05-06

    A piezoelectric borehole source capable of permanent or semipermanent insertion into a well for uninterrupted well operations is described. The source itself comprises a series of piezoelectric rings mounted to an insulative mandrel internally sized to fit over a section of well tubing, the rings encased in a protective housing and electrically connected to a power source. Providing an AC voltage to the rings will cause expansion and contraction sufficient to create a sonic pulse. The piezoelectric borehole source fits into a standard well, and allows for uninterrupted pass-through of production tubing, and other tubing and electrical cables. Testing using the source may be done at any time, even concurrent with well operations, during standard production.

  16. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect (OSTI)

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable

  17. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect (OSTI)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  18. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect (OSTI)

    and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  19. Borehole sealing method and apparatus

    DOE Patents [OSTI]

    Hartley, James N.; Jansen, Jr., George

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole.

  20. An algorithmic calibration approach to identify globally optimal parameters for constraining the DayCent model

    SciTech Connect (OSTI)

    Rafique, Rashid; Kumar, Sandeep; Luo, Yiqi; Kiely, Gerard; Asrar, Ghassem R.

    2015-02-01

    he accurate calibration of complex biogeochemical models is essential for the robust estimation of soil greenhouse gases (GHG) as well as other environmental conditions and parameters that are used in research and policy decisions. DayCent is a popular biogeochemical model used both nationally and internationally for this purpose. Despite DayCent’s popularity, its complex parameter estimation is often based on experts’ knowledge which is somewhat subjective. In this study we used the inverse modelling parameter estimation software (PEST), to calibrate the DayCent model based on sensitivity and identifi- ability analysis. Using previously published N2 O and crop yield data as a basis of our calibration approach, we found that half of the 140 parameters used in this study were the primary drivers of calibration dif- ferences (i.e. the most sensitive) and the remaining parameters could not be identified given the data set and parameter ranges we used in this study. The post calibration results showed improvement over the pre-calibration parameter set based on, a decrease in residual differences 79% for N2O fluxes and 84% for crop yield, and an increase in coefficient of determination 63% for N2O fluxes and 72% for corn yield. The results of our study suggest that future studies need to better characterize germination tem- perature, number of degree-days and temperature dependency of plant growth; these processes were highly sensitive and could not be adequately constrained by the data used in our study. Furthermore, the sensitivity and identifiability analysis was helpful in providing deeper insight for important processes and associated parameters that can lead to further improvement in calibration of DayCent model.

  1. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  2. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    SciTech Connect (OSTI)

    Sun, Kaiyu; Yan , Da; Hong , Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  3. Deep Borehole Disposal Research: Demonstration Site Selection...

    Office of Environmental Management (EM)

    The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper ...

  4. Calibration and Comparison of Climate Models: Accounting for...

    Office of Scientific and Technical Information (OSTI)

    by BaKfe Since 1965 Background and Motivation * Climate models are complex * Rely on ... Support for this work was provided through the Scientific Discovery through Advanced ...

  5. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis: Modeling Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    E.T. Coon; C.J. Wilson; S.L. Painter; V.E. Romanovsky; D.R. Harp; A.L. Atchley; J.C. Rowland

    2016-02-02

    This dataset contains an ensemble of thermal-hydro soil parameters including porosity, thermal conductivity, thermal conductivity shape parameters, and residual saturation of peat and mineral soil. The ensemble was generated using a Null-Space Monte Carlo analysis of parameter uncertainty based on a calibration to soil temperatures collected at the Barrow Environmental Observatory site by the NGEE team. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) was used in the calibration to model multiphase thermal and hydrological processes in the subsurface.

  6. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    SciTech Connect (OSTI)

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.

  7. Model calibration and validation for OFMSW and sewage sludge co-digestion reactors

    SciTech Connect (OSTI)

    Esposito, G.; Frunzo, L.; Panico, A.; Pirozzi, F.

    2011-12-15

    Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Water Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can

  8. Low Noise Borehole Triaxial Seismometer Phase II

    SciTech Connect (OSTI)

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  9. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis: Modeling Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    J.C. Rowland; D.R. Harp; C.J. Wilson; A.L. Atchley; V.E. Romanovsky; E.T. Coon; S.L. Painter

    2016-02-02

    This Modeling Archive is in support of an NGEE Arctic publication available at doi:10.5194/tc-10-341-2016. This dataset contains an ensemble of thermal-hydro soil parameters including porosity, thermal conductivity, thermal conductivity shape parameters, and residual saturation of peat and mineral soil. The ensemble was generated using a Null-Space Monte Carlo analysis of parameter uncertainty based on a calibration to soil temperatures collected at the Barrow Environmental Observatory site by the NGEE team. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) was used in the calibration to model multiphase thermal and hydrological processes in the subsurface.

  10. A truncated Levenberg-Marquardt algorithm for the calibration of highly parameterized nonlinear models

    SciTech Connect (OSTI)

    Finsterle, S.; Kowalsky, M.B.

    2010-10-15

    We propose a modification to the Levenberg-Marquardt minimization algorithm for a more robust and more efficient calibration of highly parameterized, strongly nonlinear models of multiphase flow through porous media. The new method combines the advantages of truncated singular value decomposition with those of the classical Levenberg-Marquardt algorithm, thus enabling a more robust solution of underdetermined inverse problems with complex relations between the parameters to be estimated and the observable state variables used for calibration. The truncation limit separating the solution space from the calibration null space is re-evaluated during the iterative calibration process. In between these re-evaluations, fewer forward simulations are required, compared to the standard approach, to calculate the approximate sensitivity matrix. Truncated singular values are used to calculate the Levenberg-Marquardt parameter updates, ensuring that safe small steps along the steepest-descent direction are taken for highly correlated parameters of low sensitivity, whereas efficient quasi-Gauss-Newton steps are taken for independent parameters with high impact. The performance of the proposed scheme is demonstrated for a synthetic data set representing infiltration into a partially saturated, heterogeneous soil, where hydrogeological, petrophysical, and geostatistical parameters are estimated based on the joint inversion of hydrological and geophysical data.

  11. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    SciTech Connect (OSTI)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  12. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  13. Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chambers, Robert S.; Tandon, Rajan; Stavig, Mark E.

    2015-07-07

    In this study, to analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practicalmore » methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.« less

  14. Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses

    SciTech Connect (OSTI)

    Chambers, Robert S.; Tandon, Rajan; Stavig, Mark E.

    2015-07-07

    In this study, to analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practical methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.

  15. Appendix DATA Attachment A: WIPP Borehole Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad Field Office Carlsbad, New Mexico Appendix DATA-2014 Attachment A: WIPP Borehole Update Table of Contents DATA-A-1.0 WIPP Boreholes DATA-A-2.0 Individual Well Reports ...

  16. Distribution system model calibration with big data from AMI and PV inverters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  17. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  18. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  19. A Hybrid MPI/OpenMP Approach for Parallel Groundwater Model Calibration on Multicore Computers

    SciTech Connect (OSTI)

    Tang, Guoping; D'Azevedo, Ed F; Zhang, Fan; Parker, Jack C.; Watson, David B; Jardine, Philip M

    2010-01-01

    Groundwater model calibration is becoming increasingly computationally time intensive. We describe a hybrid MPI/OpenMP approach to exploit two levels of parallelism in software and hardware to reduce calibration time on multicore computers with minimal parallelization effort. At first, HydroGeoChem 5.0 (HGC5) is parallelized using OpenMP for a uranium transport model with over a hundred species involving nearly a hundred reactions, and a field scale coupled flow and transport model. In the first application, a single parallelizable loop is identified to consume over 97% of the total computational time. With a few lines of OpenMP compiler directives inserted into the code, the computational time reduces about ten times on a compute node with 16 cores. The performance is further improved by selectively parallelizing a few more loops. For the field scale application, parallelizable loops in 15 of the 174 subroutines in HGC5 are identified to take more than 99% of the execution time. By adding the preconditioned conjugate gradient solver and BICGSTAB, and using a coloring scheme to separate the elements, nodes, and boundary sides, the subroutines for finite element assembly, soil property update, and boundary condition application are parallelized, resulting in a speedup of about 10 on a 16-core compute node. The Levenberg-Marquardt (LM) algorithm is added into HGC5 with the Jacobian calculation and lambda search parallelized using MPI. With this hybrid approach, compute nodes at the number of adjustable parameters (when the forward difference is used for Jacobian approximation), or twice that number (if the center difference is used), are used to reduce the calibration time from days and weeks to a few hours for the two applications. This approach can be extended to global optimization scheme and Monte Carol analysis where thousands of compute nodes can be efficiently utilized.

  20. Use of model calibration to achieve high accuracy in analysis of computer networks

    DOE Patents [OSTI]

    Frogner, Bjorn; Guarro, Sergio; Scharf, Guy

    2004-05-11

    A system and method are provided for creating a network performance prediction model, and calibrating the prediction model, through application of network load statistical analyses. The method includes characterizing the measured load on the network, which may include background load data obtained over time, and may further include directed load data representative of a transaction-level event. Probabilistic representations of load data are derived to characterize the statistical persistence of the network performance variability and to determine delays throughout the network. The probabilistic representations are applied to the network performance prediction model to adapt the model for accurate prediction of network performance. Certain embodiments of the method and system may be used for analysis of the performance of a distributed application characterized as data packet streams.

  1. Appendix DATA Attachment A: WIPP Borehole Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A: WIPP Borehole Update United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Appendix DATA-2014 Attachment A: WIPP Borehole Update Table of Contents DATA-A-1.0 WIPP Boreholes DATA-A-2.0 Individual Well Reports DATA-A-2.1 New Wells Drilled Since the CRA-2009 DATA-A-2.2 Plugged Wells DATA-A-3.0 References List of Tables Table DATA-A- 1. Status of WIPP Boreholes December 2012 WIPP Table DATA-A-1. Status of WIPP Boreholes December 2012 WIPP

  2. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; Naber, Jeffrey D.; Pihl, Josh A.

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity andmore » the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).« less

  3. Electrical resistance tomography using steel cased boreholes as electrodes

    DOE Patents [OSTI]

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  4. Electrical resistance tomography using steel cased boreholes as electrodes

    DOE Patents [OSTI]

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  5. Shear wave transducer for boreholes

    DOE Patents [OSTI]

    Mao, N.H.

    1984-08-23

    A technique and apparatus is provided for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data are used to back-calculate the applied stress.

  6. Grade Assignments for Models Used for Calibration of Gross-Count...

    Broader source: Energy.gov (indexed) [DOE]

    Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013

  7. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  8. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Wohling, Thomas

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  9. Multi-array borehole resistivity and induced polarization method with mathematical inversion of redundant data

    DOE Patents [OSTI]

    Ward, Stanley H.

    1989-01-01

    Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth.

  10. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    much of the enhanced geothermal focus on stimulating fracture development (e.g., fracking) at depth is not directly relevant to deep borehole disposal. For deep borehole...

  11. Deep Borehole Disposal of Spent Fuel. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel. Citation Details In-Document Search Title: Deep Borehole Disposal of Spent Fuel. Abstract not provided. Authors: Brady, Patrick V. Publication...

  12. Deep Borehole Disposal of Nuclear Waste. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste. Abstract not provided. Authors: Arnold, Bill Walter ;...

  13. Formation of slot-shaped borehole breakout within weakly cementedsands...

    Office of Scientific and Technical Information (OSTI)

    of the rock's granular matrix and debris production). ... slot-shaped borehole breakout, via laboratory experiments. ... strength, and (3) fluid flow rate within the borehole on ...

  14. Deep Borehole Disposal of Nuclear Waste: Science Needs. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste: Science Needs. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste: Science Needs. Abstract not provided. ...

  15. Research, Development, and Demonstration Roadmap for Deep Borehole...

    Energy Savers [EERE]

    Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to ...

  16. Kimama Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  17. Using calibrated engineering models to predict energy savings in large-scale geothermal heat pump projects

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.; Thornton, J.W.

    1998-10-01

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  18. Using Calibrated Engineering Models To Predict Energy Savings In Large-Scale Geothermal Heat Pump Projects

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick; Thornton, Jeff W.

    1998-01-01

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  19. Optimization of Deep Borehole Systems for HLW Disposal

    SciTech Connect (OSTI)

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≀ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  20. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  1. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  2. Borehole Geophysical Methods | Open Energy Information

    Open Energy Info (EERE)

    Methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Borehole Geophysical Methods Author Carole D. Johnson Published USGS, Date Not Provided DOI Not...

  3. Borehole Geophysical Logging | Open Energy Information

    Open Energy Info (EERE)

    Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Borehole Geophysical Logging Authors Hager-Richter Geoscience and Inc. Published Publisher Not...

  4. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect (OSTI)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  5. Borehole thermal resistance: Laboratory and field studies

    SciTech Connect (OSTI)

    Remund, C.P.

    1999-07-01

    Vertical ground heat exchangers are a common method of linking geothermal heat pump systems to the earth, and they consist of pipe installed into a borehole that is subsequently backfilled with a material that forms the heat transfer link between the pipe and earth. In many states that material must also be a grout to form a barrier against water migration in any direction along the entire borehole length. Until recently, little attention has been given to the thermal properties of commonly used backfill and grouting materials or to the effect of the thermal conductivity of those materials on the thermal performance of the vertical ground heat exchanger. Laboratory studies were performed to determine the effect of grout thermal conductivity, borehole diameter, pipe size, and pipe configuration on the total thermal resistance in the borehole. It was found that borehole thermal resistance decreased with increasing grout thermal resistance decreased with increasing grout thermal conductivity, but increasing grout thermal conductivity above 1.0 Btu/h{center{underscore}dot}ft{center{underscore}dot}{degree}F provided very small additional reduction. The studies resulted in a set of relationships for borehole thermal resistance, depending on the pipe configuration in the borehole, that can be utilized in the calculation of design length of a vertical ground heat exchanger for a prescribed heating and cooling load. A series of independent field tests verified that the assumption of equal spacing between the pipes and the borehole wall conservatively accounted for the thermal conductivity of the backfill or grout material. The effect of increasing grout thermal conductivity from 0.43 to 0.85 Btu/h{center{underscore}dot}ft{center{underscore}dot}{degree}F resulted in overall reductions in thermal resistance between the circulating fluid and the earth by 15.3% to 19.5%.

  6. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale inmore » a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  7. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.

  8. Some logistical considerations in designing a system of deep boreholes for disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Gray, Genetha Anne; Brady, Patrick Vane; Arnold, Bill Walter

    2012-09-01

    Deep boreholes could be a relatively inexpensive, safe, and rapidly deployable strategy for disposing Americas nuclear waste. To study this approach, Sandia invested in a three year LDRD project entitled %E2%80%9CRadionuclide Transport from Deep Boreholes.%E2%80%9D In the first two years, the borehole reference design and backfill analysis were completed and the supporting modeling of borehole temperature and fluid transport profiles were done. In the third year, some of the logistics of implementing a deep borehole waste disposal system were considered. This report describes what was learned in the third year of the study and draws some conclusions about the potential bottlenecks of system implementation.

  9. Calibration Under Uncertainty.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  10. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    SciTech Connect (OSTI)

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; Naber, Jeffrey D.; Pihl, Josh A.

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity and the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).

  11. Method for isolating two aquifers in a single borehole

    DOE Patents [OSTI]

    Burklund, Patrick W.

    1985-10-22

    A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  12. Method for isolating two aquifers in a single borehole

    DOE Patents [OSTI]

    Burklund, P.W.

    1984-01-20

    A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  13. Method for establishing high permeability flow path between boreholes

    DOE Patents [OSTI]

    Dow, Jerome P.

    1978-01-01

    A method for linking adjacent boreholes in a subterranean formation, particularly in a coal gasification array, by firing a high velocity terradynamic projectile from one borehole to the other.

  14. Energy Department selects Battelle team for a deep borehole field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battelle team for a deep borehole field test in North Dakota Energy Department selects Battelle team for a deep borehole field test in North Dakota January 5, 2016 - 5:31pm ...

  15. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.

  16. January 28, 2016 Webinar - Borehole Disposal of Spent Radioactive Sources |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy January 28, 2016 Webinar - Borehole Disposal of Spent Radioactive Sources January 28, 2016 Webinar - Borehole Disposal of Spent Radioactive Sources Performance & RIsk Assessment (P&RA) Community of Practice (CoP) Webinar - January 28, 2016 - Borehole Disposal of Spent Radioactive Sources (Dr. Matt Kozak, INTERA). Webinar Recording Agenda & Webinar Instructions - January 28, 2016 - P&RA CoP Webinar (117.24 KB) Borehole Disposal of Spent Sources (BOSS)

  17. Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs

    Broader source: Energy.gov [DOE]

    Deep borehole disposal is one alternative for the disposal of spent nuclear fuel and other radioactive waste forms; identifying a site or areas with favorable geological, hydrogeological, and geochemical conditions is one of the first steps to a demonstration project.

  18. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.

  19. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-04-11

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes. 3 figs.

  20. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  1. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    SciTech Connect (OSTI)

    Harp, Dylan; Atchley, Adam; Painter, Scott L; Coon, Ethan T.; Wilson, Cathy; Romanovsky, Vladimir E; Rowland, Joel

    2016-01-01

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21$^{st}$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant

  2. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows formore » the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although

  3. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    SciTech Connect (OSTI)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is

  4. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harp, Dylan R.; Atchley, Adam L.; Painter, Scott L.; Coon, Ethan T.; Wilson, Cathy J.; Romanovsky, Vladimir E.; Rowland, Joel C.

    2016-02-11

    Here, the effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21more » $$^{st}$$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties

  5. Electrical resistance tomography from measurements inside a steel cased borehole

    DOE Patents [OSTI]

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  6. Experience with borehole heat exchangers in Switzerland

    SciTech Connect (OSTI)

    Rybach, L.; Hopkirk, R.J.

    1994-03-01

    Switzerland undertakes, like many other countries, great efforts to reduce its dependence from foreign fossil fuels. Indigenous sources of energy like the heat content of the subsurface are especially in focus, also due to environmental concern (greenhouse effect due to CO{sub 2} emissions). The most popular and technically advanced space heating system to use ground heat is the borehole heat exchanger (BHE). Shallow, coaxial or U-shaped BHEs are installed in 30-50 m deep, backfilled boreholes to extract, by closed-fluid circulation, heat from the ground. They feed the cold (evaporator) (e.g. floor panel) system to heat usually a single dwelling house. The energy supply for the heat exchanger comes from several sources: the vertical geothermal flux itself, the import of energy horizontally by conduction, advective transport with groundwater if present, and the compensating effect of heat exchange between the ground surface and the atmosphere. Multiple BHEs are installed for larger units like community buildings, etc. Since 1980, almost 5,000 such systems, using about 10,000 BHEs with a total length of more than 700,000 m have been installed in Switzerland. The BHE can be upscaled in order to be installed in otherwise abandoned deep boreholes (e.g., in {open_quotes}dry{close_quotes} geothermal or hydrocarbon exploratory holes). Experimental as well as theoretical studies have been pursued in Switzerland in the last 10 years to establish a sound technical and energy economics base for shallow and deep BHE systems.

  7. Characterization plan for the immobilized low-activity waste borehole

    SciTech Connect (OSTI)

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy`s (DOE`s) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment.

  8. Multi-array borehole resistivity and induced polarization method with mathematical inversion of redundant data

    DOE Patents [OSTI]

    Ward, S.H.

    1989-10-17

    Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth. 30 figs.

  9. Leveraging AMI data for distribution system model calibration and situational awareness

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; Grijalva, Santiago; Harley, Ronald G.

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less

  10. Leveraging AMI data for distribution system model calibration and situational awareness

    SciTech Connect (OSTI)

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; Grijalva, Santiago; Harley, Ronald G.

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation and regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.

  11. Canister, Sealing Method And Composition For Sealing A Borehole

    DOE Patents [OSTI]

    Brown, Donald W.; Wagh, Arun S.

    2005-06-28

    Method and composition for sealing a borehole. A chemically bonded phosphate ceramic sealant for sealing, stabilizing, or plugging boreholes is prepared by combining an oxide or hydroxide and a phosphate with water to form slurry. The slurry is introduced into the borehole where the seal, stabilization or plug is desired, and then allowed to set up to form the high strength, minimally porous sealant, which binds strongly to itself and to underground formations, steel and ceramics.

  12. Integrated calibration sphere and calibration step fixture for...

    Office of Scientific and Technical Information (OSTI)

    Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration Title: Integrated calibration sphere and calibration step fixture ...

  13. Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

    2013-09-01

    Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

  14. Borehole-Wall Imaging with Acoustic and Optical Televiewers for...

    Open Energy Info (EERE)

    hydraulic and water-quality data from packer testing and monitoring. Authors John H. Williams and Carole D. Johnson Conference Seventh International Symposium on Borehole...

  15. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Office of Scientific and Technical Information (OSTI)

    Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Arnold, Bill W.; Brady, Patrick; Sutton, Mark; Travis, Karl; MacKinnon, Robert; Gibb, Fergus;...

  16. Research Development and Demonstration Roadmap for Deep Borehole...

    Office of Scientific and Technical Information (OSTI)

    Research Development and Demonstration Roadmap for Deep Borehole Disposal. Citation Details In-Document Search Title: Research Development and Demonstration Roadmap for Deep...

  17. Analysis of borehole temperature data from the Mt. Princeton...

    Open Energy Info (EERE)

    borehole temperature data from the Mt. Princeton Hot Springs area, Chaffee County, Colorado (abstract only) Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  18. High energy gas fracture experiments in liquid-filled boreholes...

    Office of Scientific and Technical Information (OSTI)

    High energy gas fracture experiments in liquid-filled boreholes: potential geothermal application Citation Details In-Document Search Title: High energy gas fracture experiments in ...

  19. Category:Borehole Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    out of 2 total. S Single-Well And Cross-Well Seismic Imaging 1 pages V Vertical Seismic Profiling 1 pages Pages in category "Borehole Seismic...

  20. Borehole sounding device with sealed depth and water level sensors

    DOE Patents [OSTI]

    Skalski, Joseph C.; Henke, Michael D.

    2005-08-02

    A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.

  1. Research Development and Demonstration Roadmap for Deep Borehole...

    Office of Scientific and Technical Information (OSTI)

    Development and Demonstration Roadmap for Deep Borehole Disposal. Arnold, Bill W.; MacKinnon, Robert J.; Brady, Patrick V. Abstract Not Provided Sandia National Laboratories USDOE...

  2. Hostile wells: the borehole seismic challenge | Open Energy Informatio...

    Open Energy Info (EERE)

    Web Site: Hostile wells: the borehole seismic challenge Author William Wills Published Oil and Gas Engineer - Subsea & Seismic, 2013 DOI Not Provided Check for DOI availability:...

  3. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  4. Fiber optic communication in borehole applications

    SciTech Connect (OSTI)

    Franco, R.J.; Morgan, J.R.

    1997-04-01

    The Telemetry Technology Development Department have, in support of the Advanced Geophysical Technology Department and the Oil Recovery Technology Partnership, developed a fiber optic communication capability for use in borehole applications. This environment requires the use of packaging and component technologies to operate at high temperature (up to 175{degrees}C) and survive rugged handling. Fiber optic wireline technology has been developed by The Rochester Corporation under contract to Sandia National Labs and produced a very rugged, versatile wireline cable. This development has utilized commercial fiber optic component technologies and demonstrated their utility in extreme operating environments.

  5. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  6. Second ILAW Site Borehole Characterization Plan

    SciTech Connect (OSTI)

    SP Reidel

    2000-08-10

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment.

  7. Regulatory issues for deep borehole plutonium disposition

    SciTech Connect (OSTI)

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission.

  8. Calibration and Validation of a FAST Floating Wind Turbine Model of the DeepCwind Scaled Tension-Leg Platform: Preprint

    SciTech Connect (OSTI)

    Stewart, G.; Lackner, M.; Robertson, A.; Jonkman, J.; Goupee, A.

    2012-05-01

    With the intent of improving simulation tools, a 1/50th-scale floating wind turbine atop a TLP was designed based on Froude scaling by the University of Maine under the DeepCwind Consortium. This platform was extensively tested in a wave basin at MARIN to provide data to calibrate and validate a full-scale simulation model. The data gathered include measurements from static load tests and free-decay tests, as well as a suite of tests with wind and wave forcing. A full-scale FAST model of the turbine-TLP system was created for comparison to the results of the tests. Analysis was conducted to validate FAST for modeling the dynamics of this floating system through comparison of FAST simulation results to wave tank measurements. First, a full-scale FAST model of the as-tested scaled configuration of the system was constructed, and this model was then calibrated through comparison to the static load, free-decay, regular wave only, and wind-only tests. Next, the calibrated FAST model was compared to the combined wind and wave tests to validate the coupled hydrodynamic and aerodynamic predictive performance. Limitations of both FAST and the data gathered from the tests are discussed.

  9. Head assembly for multiposition borehole extensometer

    DOE Patents [OSTI]

    Frank, Donald N.

    1983-01-01

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  10. Development of a hydraulic borehole seismic source

    SciTech Connect (OSTI)

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  11. Development of a magnetostrictive borehole seismic source

    SciTech Connect (OSTI)

    Cutler, R.P.; Sleefe, G.E.; Keefe, R.G.

    1997-04-01

    A magnetostrictive borehole seismic source was developed for use in high resolution crosswell surveys in environmental applications. The source is a clamped, vertical-shear, swept frequency, reaction-mass shaker design consisting of a spring pre-loaded magnetostrictive rod with permanent magnet bias, drive coils to induce an alternating magnetic field, and an integral tungsten reaction mass. The actuator was tested extensively in the laboratory. It was then incorporated into an easily deployable clamped downhole tool capable of operating on a standard 7 conductor wireline in borehole environments to 10,000{degrees} deep and 100{degrees}C. It can be used in either PVC or steel cased wells and the wells can be dry or fluid filled. It has a usable frequency spectrum of {approx} 150 to 2000 Hz. The finished tool was successfully demonstrated in a crosswell test at a shallow environmental site at Hanford, Washington. The source transmitted signals with a S/N ratio of 10-15 dB from 150-720 Hz between wells spaced 239 feet apart in unconsolidated gravel. The source was also tested successfully in rock at an oil field test site, transmitting signals with a S/N ratio of 5-15 dB over the full sweep spectrum from 150-2000 Hz between wells spaced 282 feet apart. And it was used successfully on an 11,000{degrees} wireline at a depth of 4550{degrees}. Recommendations for follow-on work include improvements to the clamp, incorporation of a higher sample rate force feedback controller, and increases in the force output of the tool.

  12. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  13. Borehole SASW testing to evaluate log(G{sub max}) - log({sigma}{prime}) relationships in situ

    SciTech Connect (OSTI)

    Kalinski, M.E.; Stokoe, K.H. II; Young, Y.L.; Roesset, J.M.

    1999-07-01

    A new method is being developed for the in-situ measurement of shear wave velocity, V{sub s}, in the soil surrounding a borehole. The method involves the measurement of axially propagating surface waves inside an uncased borehole using the Spectral-Analysis-of-Surface-Waves (SASW) approach. Testing if performed with instrumentation housed inside an inflatable tool. Inflation pressures applied by the tool are used to vary radial stresses in the soil surrounding the borehole. Surface wave velocities over a range of frequencies are measured at each inflation pressure. These measurements are then theoretically modeled so that the variation in V{sub s} (an hence small-strain shear module, G{sub max}) with distance behind the borehole wall is determined at each pressure. The results of field tests with the borehole SASW tool at two sites composed of unsaturated clayey soil are presented. These results are compared with independent field seismic measurements and with laboratory tests on intact specimens using the torsional resonant column to assess the validity of the new field method.

  14. Method and apparatus for suppressing waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.

    2005-10-04

    Methods and apparatus for suppression of wave energy within a fluid-filled borehole using a low pressure acoustic barrier. In one embodiment, a flexible diaphragm type device is configured as an open bottomed tubular structure for disposition in a borehole to be filled with a gas to create a barrier to wave energy, including tube waves. In another embodiment, an expandable umbrella type device is used to define a chamber in which a gas is disposed. In yet another embodiment, a reverse acting bladder type device is suspended in the borehole. Due to its reverse acting properties, the bladder expands when internal pressure is reduced, and the reverse acting bladder device extends across the borehole to provide a low pressure wave energy barrier.

  15. Canister, sealing method and composition for sealing a borehole

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM); Wagh, Arun S. (Orland Park, IL)

    2003-05-13

    Canister, sealing method and composition for sealing a borehole. The canister includes a container with slurry inside the container, one or more slurry exits at one end of the container, a pump at the other end of the container, and a piston inside that pushes the slurry though the slurry exit(s), out of the container, and into a borehole. An inflatable packer outside the container provides stabilization in the borehole. A borehole sealing material is made by combining an oxide or hydroxide and a phosphate with water to form a slurry which then sets to form a high strength, minimally porous material which binds well to itself, underground formations, steel and ceramics.

  16. Methods for use in detecting seismic waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  17. Laboratory and numerical evaluation of borehole methods for subsurface horizontal flow characterization.

    SciTech Connect (OSTI)

    Pedler, William H. (Radon Abatement Systems, Inc., Golden, CO); Jepsen, Richard Alan (Sandia National Laboratories, Carlsbad, NM)

    2003-08-01

    The requirement to accurately measure subsurface groundwater flow at contaminated sites, as part of a time and cost effective remediation program, has spawned a variety of flow evaluation technologies. Validation of the accuracy and knowledge regarding the limitations of these technologies are critical for data quality and application confidence. Leading the way in the effort to validate and better understand these methodologies, the US Army Environmental Center has funded a multi-year program to compare and evaluate all viable horizontal flow measurement technologies. This multi-year program has included a field comparison phase, an application of selected methods as part of an integrated site characterization program phase, and most recently, a laboratory and numerical simulator phase. As part of this most recent phase, numerical modeling predictions and laboratory measurements were made in a simulated fracture borehole set-up within a controlled flow simulator. The scanning colloidal borescope flowmeter (SCBFM) and advanced hydrophysical logging (NxHpL{trademark}) tool were used to measure velocities and flow rate in a simulated fractured borehole in the flow simulator. Particle tracking and mass flux measurements were observed and recorded under a range of flow conditions in the simulator. Numerical models were developed to aid in the design of the flow simulator and predict the flow conditions inside the borehole. Results demonstrated that the flow simulator allowed for predictable, easily controlled, and stable flow rates both inside and outside the well. The measurement tools agreed well with each other over a wide range of flow conditions. The model results demonstrate that the Scanning Colloidal Borescope did not interfere with the flow in the borehole in any of the tests. The model is capable of predicting flow conditions and agreed well with the measurements and observations in the flow simulator and borehole. Both laboratory and model results showed a

  18. Calibration of Regional Seismic Stations in the Middle East with Shots in Turkey

    SciTech Connect (OSTI)

    Toksoz, M N; Kuleli, S; Gurbuz, C; Kalafat, D; Nekler, T; Zor, K; Yilmazer, M; Ogutcu, Z; Schultz, C A; Harris, D B

    2003-07-21

    The objective of this project is to calibrate regional travel-times and propagation characteristics of seismic waves in Turkey and surrounding areas in the Middle East in order to enhance detection and location capabilities in the region. Important data for the project will be obtained by large calibration shots in central and eastern Turkey. The first, a two-ton shot, was fired in boreholes near Keskin in central Anatolia on 23 November 2002. The explosives were placed in 14 holes, each 80 m deep, arranged in concentric circular arrays. Ninety temporary seismic stations were deployed within a 300 km radius around the shot. The permanent stations of the Turkish National Seismic Network provided a good azimuthal coverage as well as three radial traverses. Most stations within a radius of 200 km recorded the shot. Travel-time data have been analyzed to obtain a detailed crustal model under the shot and along the profiles. The model gives a 35 km thick crust, characterized by two layers with velocities of 5.0 and 6.4 km/s. The P{sub n} velocity was found to be 7.8 km/s. The crustal thickness decreases to the north where the profile crosses the North Anatolian fault. There is a slight increase in crustal velocities, but no change in crustal thickness to the west. Data analysis effort is continuing to refine the regional velocity models and to obtain station corrections.

  19. Bond strength of cementitious borehole plugs in welded tuff

    SciTech Connect (OSTI)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  20. Mercury Continuous Emmission Monitor Calibration

    SciTech Connect (OSTI)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  1. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  2. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  3. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

  4. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-11-21

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

  5. COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE

    SciTech Connect (OSTI)

    Colarusso, Angela; Crowe, Bruce; Cochran, John R.

    2003-02-27

    Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the performance

  6. Breakthroughs in Seismic and Borehole Characterization of Basalt Sequestration Targets

    SciTech Connect (OSTI)

    Sullivan, E. C.; Hardage, Bob A.; McGrail, B. Peter; Davis, Klarissa N.

    2011-04-01

    Mafic continental flood basalts form a globally important, but under-characterized CO2 sequestration target. The Columbia River Basalt Group (CRBG) in the northwestern U.S. is up to 5 km thick and covers over 168,000 km2. In India, flood basalts are 3 km thick and cover greater than 500,000 km2. Laboratory experiments demonstrate that the CRBG and other basalts react with formation water and super critical (sc) CO2 to precipitate carbonates, thus adding a potential mineral trapping mechanism to the standard trapping mechanisms of most other types of CO2 sequestration reservoirs. Brecciated tops of individual basalt flows in the CRBG form regional aquifers that locally have greater than 30% porosity and three Darcies of permeability. Porous flow tops are potential sites for sequestration of gigatons of scCO2 in areas where the basalts contain unpotable water and are at depths greater than 800 m. In this paper we report on the U.S. DOE Big Sky Regional Carbon Sequestration Partnership surface seismic and borehole geophysical characterization that supports a field test of capacity, integrity, and geochemical reactivity of CRBG reservoirs in eastern Washington, U.S.A. Traditional surface seismic methods have had little success in imaging basalt features in on-shore areas where the basalt is thinly covered by sediment. Processing of the experimental 6.5 km, 5 line 3C seismic swath included constructing an elastic wavefield model, identifying and separating seismic wave modes, and processing the swath as a single 2D line. Important findings include: (1) a wide variety of shear wave energy modes swamp the P-wave seismic records; (2) except at very short geophone offsets, ground roll overprints P-wave signal; and (3) because of extreme velocity contrasts, P-wave events are refracted at incidence angles greater than 7-15 degrees. Subsequent removal of S-wave and other noise during processing resulted in tremendous improvement in image quality. The application of wireline

  7. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  8. Deep Borehole Field Test Requirements and Controlled Assumptions.

    SciTech Connect (OSTI)

    Hardin, Ernest

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  9. Three-component borehole wall-locking seismic detector

    DOE Patents [OSTI]

    Owen, Thomas E.

    1994-01-01

    A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

  10. MMCR Calibration Report

    SciTech Connect (OSTI)

    Mead, D

    2010-03-23

    Calibration report for the Millimeter Wavelength Cloud Radar performed for the ARM Climate Research Facility by ProSensing Inc.

  11. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  12. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    SciTech Connect (OSTI)

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  13. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    SciTech Connect (OSTI)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-09-01

    contaminated boreholes around T-106 do not clearly identify the leading edge of the plume. However, the profiles do collectively suggest that bulk of tank-related fluids (center of mass) still resides in Ringold Formation Taylor Flats member fine-grained sediments. Most of the chemical data, especially the nitrate and technetium-99 distributions with depth, support a flow conceptual model that suggests vertical percolation through the Hanford formation H2 unit near T-106 and then a strong horizontal spreading within the CCUu unit followed by more slow vertical percolation, perhaps via diffusion, into the deeper strata. Slow flushing by enhanced recharge and rapid snow melt events (Feb. 1979) appear to lead to more horizontal movement of the tank fluids downgradient towards C4105. The inventories as a function of depth of potential contaminants of concern, nitrate, technetium, uranium, and chromium, are provided. In-situ Kd values were calculated from water and acid extract measurements. For conservative modeling purposes we recommend using Kd values of 0 mL/g for nitrate, Co-60, and technetium-99, a value of 0.1 mL/g for uranium near borehole C4104 and 10 mL/g for U near borehole C4105, and 1 mL/g for chromium to represent the entire vadose zone profile from the bottoms of the tanks to the water table. A technetium-99 groundwater plume exists northeast and east of T WMA. The highest technetium-99 concentration in fiscal year 2003 was 9,200 pCi/L in well 299-W11-39. The most probable source for the technetium-99 is the T waste management area. Groundwater from wells in the west (upgradient) and north of WMA T appear to be highly influenced by wastes disposed to the cribs and trenches on the west side of the WMA. Groundwater from wells at the northeast corner and the east side of the WMA appears to be evolving towards tank waste that has leaked from T-101 or T-106.

  14. An Attempt to Calibrate and Validate a Simple Ductile Failure Model Against Axial-Torsion Experiments on Al 6061-T651.

    SciTech Connect (OSTI)

    Reedlunn, Benjamin; Lu, Wei-Yang

    2015-01-01

    This report details a work in progress. We have attempted to calibrate and validate a Von Mises plasticity model with the Johnson-Cook failure criterion ( Johnson & Cook , 1985 ) against a set of experiments on various specimens of Al 6061-T651. As will be shown, the effort was not successful, despite considerable attention to detail. When the model was com- pared against axial-torsion experiments on tubes, it over predicted failure by 3 x in tension, and never predicted failure in torsion, even when the tube was twisted by 4 x further than the experiment. While this result is unfortunate, it is not surprising. Ductile failure is not well understood. In future work, we will explore whether more sophisticated material mod- els of plasticity and failure will improve the predictions. Selecting the appropriate advanced material model and interpreting the results of said model are not trivial exercises, so it is worthwhile to fully investigate the behavior of a simple plasticity model before moving on to an anisotropic yield surface or a similarly complicated model.

  15. Method and system for advancement of a borehole using a high power laser

    DOE Patents [OSTI]

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  16. Methods for enhancing the efficiency of creating a borehole using high power laser systems

    DOE Patents [OSTI]

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-06-24

    Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.

  17. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect (OSTI)

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  18. Deep Borehole Disposal Remediation Costs for Off-Normal Outcomes

    SciTech Connect (OSTI)

    Finger, John T.; Cochran, John R.; Hardin, Ernest

    2015-08-17

    This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.

  19. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect (OSTI)

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  20. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  1. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOE Patents [OSTI]

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  2. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  3. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  4. Radiometer Calibration and Characterization

    Energy Science and Technology Software Center (OSTI)

    1994-12-31

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating solar radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer’s response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument’s responsivity.

  5. WACR Calibration Report

    SciTech Connect (OSTI)

    Mead, D

    2010-03-23

    Calibration report for the W-Band (95 GHz) ARM Cloud Radar performed for the ARM Climate Research Facility by ProSensing Inc.

  6. Effect of radon transport in groundwater upon gamma-ray borehole logs

    SciTech Connect (OSTI)

    Nelson, P.H.; Rachiele, R.; Smith, A.

    1980-09-01

    Granitic rock at an experimental waste storage site at Stripa, Sweden, is unusually high in natural radioelements (40 ppM uranium) with higher concentrations occurring locally in thin chloritic zones and fractures. Groundwater seeping through fractures into open boreholes is consequently highly anomalous in its radon content, with activity as high as one microcurie per liter. When total count gamma-ray logs are run in boreholes where groundwater inflow is appreciable, the result is quite unusual: the radon daughter activity in the water adds considerably to the contribution from the rock, and in fact often dominates the log response. The total gamma activity increases where radon-charged groundwater enters a borehole, and remains at a high level as the water flows along the hole in response to the hydraulic gradient. As a consequence, the gamma log serves as a flow profile, locating zones of water entry (or loss) by an increase (or decrease) in the total gamma activity. A simple model has been developed for flow through a thin crack emanating radon at a rate E showing that the radon concentration of water entering a hole is E/..lambda..h, where ..lambda.. is the radon decay rate and h the crack aperture, assuming that the flow rate and crack source area are such that an element of water resides within the source area for several radon half-lives or more. Concentration measurements can provide a measurement of the inflow rate. Data from the 127-mm holes in the time-scale drift behave in this fashion.

  7. Sandia WIPP calibration traceability

    SciTech Connect (OSTI)

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  8. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    SciTech Connect (OSTI)

    Sevougian, S. David

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  9. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method of emplacing the array in a long, horizontal borehole. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  10. Shear wave transducer for stress measurements in boreholes

    DOE Patents [OSTI]

    Mao, Nai-Hsien

    1987-01-01

    A technique and apparatus for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data is used to back-calculate the applied stress.

  11. Calibration method for spectroscopic systems

    DOE Patents [OSTI]

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  12. Calibration method for spectroscopic systems

    DOE Patents [OSTI]

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  13. Electrical resistance tomography using steel cased boreholes as long electrodes

    SciTech Connect (OSTI)

    Daily, W; Newmark, R L; Ramirez, A

    1999-07-20

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. Several possibilities can be considered. The first case we investigated uses an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. The second case uses an array of traditional point borehole electrodes combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes but the merits depend strongly on details of each application. Field tests using these configurations are currently being conducted.

  14. Calibration of a Convective Parameterization Scheme in the WRF Model and its Impact on the Simulation of East Asian Summer Monsoon Precipitation

    SciTech Connect (OSTI)

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Huang, Anning; Yan, Huiping

    2015-03-26

    Reasonably modeling the magnitude, south-north gradient and seasonal propagation of precipitation associated with the East Asian Summer Monsoon (EASM) is a challenging task in the climate community. In this study we calibrate five key parameters in the Kain-Fritsch convection scheme in the WRF model using an efficient importance-sampling algorithm to improve the EASM simulation. We also examine the impacts of the improved EASM precipitation on other physical process. Our results suggest similar model sensitivity and values of optimized parameters across years with different EASM intensities. By applying the optimal parameters, the simulated precipitation and surface energy features are generally improved. The parameters related to downdraft, entrainment coefficients and CAPE consumption time (CCT) can most sensitively affect the precipitation and atmospheric features. Larger downdraft coefficient or CCT decrease the heavy rainfall frequency, while larger entrainment coefficient delays the convection development but build up more potential for heavy rainfall events, causing a possible northward shift of rainfall distribution. The CCT is the most sensitive parameter over wet region and the downdraft parameter plays more important roles over drier northern region. Long-term simulations confirm that by using the optimized parameters the precipitation distributions are better simulated in both weak and strong EASM years. Due to more reasonable simulated precipitation condensational heating, the monsoon circulations are also improved. By using the optimized parameters the biases in the retreating (beginning) of Mei-yu (northern China rainfall) simulated by the standard WRF model are evidently reduced and the seasonal and sub-seasonal variations of the monsoon precipitation are remarkably improved.

  15. Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Huang, Anning; Yan, Huiping

    2014-03-26

    Reasonably modeling the magnitude, south-north gradient and seasonal propagation of precipitation associated with the East Asian Summer Monsoon (EASM) is a challenging task in the climate community. In this study we calibrate five key parameters in the Kain-Fritsch convection scheme in the WRF model using an efficient importance-sampling algorithm to improve the EASM simulation. We also examine the impacts of the improved EASM precipitation on other physical process. Our results suggest similar model sensitivity and values of optimized parameters across years with different EASM intensities. By applying the optimal parameters, the simulated precipitation and surface energy features are generally improved.more » The parameters related to downdraft, entrainment coefficients and CAPE consumption time (CCT) can most sensitively affect the precipitation and atmospheric features. Larger downdraft coefficient or CCT decrease the heavy rainfall frequency, while larger entrainment coefficient delays the convection development but build up more potential for heavy rainfall events, causing a possible northward shift of rainfall distribution. The CCT is the most sensitive parameter over wet region and the downdraft parameter plays more important roles over drier northern region. Long-term simulations confirm that by using the optimized parameters the precipitation distributions are better simulated in both weak and strong EASM years. Due to more reasonable simulated precipitation condensational heating, the monsoon circulations are also improved. Lastly, by using the optimized parameters the biases in the retreating (beginning) of Mei-yu (northern China rainfall) simulated by the standard WRF model are evidently reduced and the seasonal and sub-seasonal variations of the monsoon precipitation are remarkably improved.« less

  16. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    SciTech Connect (OSTI)

    Feister, Uwe; Meyer, Gabriele; Kirst, Ulrich

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  17. Roundness calibration standard

    DOE Patents [OSTI]

    Burrus, Brice M.

    1984-01-01

    A roundness calibration standard is provided with a first arc constituting the major portion of a circle and a second arc lying between the remainder of the circle and the chord extending between the ends of said first arc.

  18. Method and apparatus for coupling seismic sensors to a borehole wall

    DOE Patents [OSTI]

    West, Phillip B.

    2005-03-15

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  19. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Fernandez, J.A.; Case, J.B.; Givens, C.A.; Carney, B.C.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  20. Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration

    DOE Patents [OSTI]

    Clifford, Harry J.

    2011-03-22

    A method and apparatus for mounting a calibration sphere to a calibration fixture for Coordinate Measurement Machine (CMM) calibration and qualification is described, decreasing the time required for such qualification, thus allowing the CMM to be used more productively. A number of embodiments are disclosed that allow for new and retrofit manufacture to perform as integrated calibration sphere and calibration fixture devices. This invention renders unnecessary the removal of a calibration sphere prior to CMM measurement of calibration features on calibration fixtures, thereby greatly reducing the time spent qualifying a CMM.

  1. Working Group Reports Calibration of Radiation Codes Used in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Reports Calibration of Radiation Codes Used in Climate Models: Comparison of Clear-Sky Calculations with Observations from the Spectral Radiation Experiment and the ...

  2. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    SciTech Connect (OSTI)

    Hill, L.R.; Aguilar, R.; Mercer, J.W.; Newman, G.

    1997-01-01

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with borehole locations and times-of-drilling charts are included.

  3. Temporal Shifts in the Geochemistry and Microbial Community Structure of an Ultradeep Mine Borehole Following Isolation

    SciTech Connect (OSTI)

    Moser, Duane P. ); Onstott, T C.; Fredrickson, Jim K. ); Brockman, Fred J. ); Balkwill, David L.; Drake, G R.; Pfiffner, S; White, D C.; Takai, K Project Japan); Pratt, L M.; Fong, J; Lollar, B S.; Slater, G; Phelps, T J. ); Spoelstra, N ); Deflaun, M; Southam, G; Welty, A T.; Baker, B J.; Hoek, J

    2003-12-01

    A borehole draining a water-bearing dyke fracture at 3.2 km depth in a South African Au mine was isolated from the open mine environment...

  4. Water inflow into boreholes during the Stripa heater experiments

    SciTech Connect (OSTI)

    Nelson, P.H.; Rachiele, R.; Remer, J.S.; Carlsson, H.

    1981-04-01

    During the operation of three in-situ heater experiments at Stripa, Sweden, groundwater flowed into many of the instrumentation and heater boreholes. These flows were recovered and measured routinely. The records of water inflow indicate two origins: inflow attributed to local hydrological pressure gradients, and water migration from cracks closing under the rapidly increasing, thermal-induced stress changes. The latter component appeared as a main pulse that occurred when the heaters were turned on, and lasted about 30 to 40 days, steadily declining over the next several months, and decreasing sharply when heater power was decreased or stopped. The magnitude of the total inflow per hole ranged over more than five decades, from 0.1 to over 10,000 liters over the 500 to 600 day time periods. When plotted against the logarithm of total volume, the frequency distribution displays a normal curve dependence with a mean of approximately 10 liters. Of this amount, 1 to 2 liters of flow into 38-mm-diam boreholes accompanied an increase in applied heat load. These amounts are compatible with rock porosities of a fraction of one percent. Inflow into the 3.6 and 5.0 kW heater holes peaked within 3 to 6 days after heater turn on, then declined to zero inflow, with no further inflow measured for the remainder of the experiments. In the heater holes of the time-scaled experiment, which operated at 1.125 kW or less, the initial pulse of inflow took much longer to decay, and 7 of 8 heater holes continued to flow throughout the experiment. The packing off and isolation of a borehole some 40 m distant in the ventilation drift dramatically increased the inflow into the heater holes in one of the three heater experiments. This demonstrated the existence of permeable flow paths among a number of boreholes. The records of water inflow demonstrate the need for a thorough understanding of the nature of fluid flow and storage in fractured crystalline rock.

  5. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-06-01

    This report describes the technical progress on a project to design and construct a multichannel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  6. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-08-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  7. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-01-01

    This report describes the technical progress on a project to design and construct a multichannel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  8. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  9. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for orienting the sensor once it is emplaced in the borehole. If the sensors (geophones) do not have the same orientation, the data will be essentially worthless. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  10. Drilling equipment with adaptor for steering long boreholes

    SciTech Connect (OSTI)

    Williams, D. R.

    1984-10-16

    Drilling equipment for steering relatively long boreholes in rock strata comprises an adaptor for installation adjacent to the drill bit, the adaptor having an inner rotary component drivably connected between the drill rod assembly and the drill bit and a relatively outer component. Releasable latch means are provided having two operational modes in the first of which the inner and outer components are fixedly engaged for rotary motion and in the second mode of which the inner component can rotate relative to the outer component. Also actuatable means are provided for controlling the operational mode of the releasable latch means.

  11. Gamma-Ray Logging Workshop (February 1981) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984)

  12. ARM - SGP Radiometric Calibration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometric Calibration Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Radiometric Calibration Facility The Radiometric Calibration Facility (RCF) provides shortwave radiometer

  13. Calibration Systems Final Report

    SciTech Connect (OSTI)

    Myers, Tanya L.; Broocks, Bryan T.; Phillips, Mark C.

    2006-02-01

    The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact Quantum Cascade (QC) laser-based calibration systems for infrared imaging systems. These on-board systems will improve the calibration technology for passive sensors, which enable stand-off detection for the proliferation or use of weapons of mass destruction, by replacing on-board blackbodies with QC laser-based systems. This alternative technology can minimize the impact on instrument size and weight while improving the quality of instruments for a variety of missions. The potential of replacing flight blackbodies is made feasible by the high output, stability, and repeatability of the QC laser spectral radiance.

  14. Reversible rigid coupling apparatus and method for borehole seismic transducers

    DOE Patents [OSTI]

    Owen, Thomas E.; Parra, Jorge O.

    1992-01-01

    An apparatus and method of high resolution reverse vertical seismic profile (VSP) measurements is shown. By encapsulating the seismic detector and heaters in a meltable substance (such as wax), the seismic detector can be removably secured in a borehole in a manner capable of measuring high resolution signals in the 100 to 1000 hertz range and higher. The meltable substance is selected to match the overall density of the detector package with the underground formation, yet still have relatively low melting point and rigid enough to transmit vibrations to accelerometers in the seismic detector. To minimize voids in the meltable substance upon solidification, the meltable substance is selected for minimum shrinkage, yet still having the other desirable characteristics. Heaters are arranged in the meltable substance in such a manner to allow the lowermost portion of the meltable substance to cool and solidify first. Solidification continues upwards from bottom-to-top until the top of the meltable substance is solidified and the seismic detector is ready for use. To remove, the heaters melt the meltable substance and the detector package is pulled from the borehole.

  15. Sealing of boreholes using natural, compatible materials: Granular salt

    SciTech Connect (OSTI)

    Finley, R.E.; Zeuch, D.H.; Stormont, J.C.; Daemen, J.J.K.

    1994-05-01

    Granular salt can be used to construct high performance permanent seals in boreholes which penetrate rock salt formations. These seals are described as seal systems comprised of the host rock, the seal material, and the seal rock interface. The performance of these seal systems is defined by the complex interactions between these seal system components through time. The interactions are largely driven by the creep of the host formation applying boundary stress on the seal forcing host rock permeability with time. The immediate permeability of these seals is dependent on the emplaced density. Laboratory test results suggest that careful emplacement techniques could results in immediate seal system permeability on the order of 10{sup {minus}16} m{sup 2} to 10{sup {minus}18} m{sup 2} (10{sup {minus}4} darcy to 10{sup {minus}6}). The visco-plastic behavior of the host rock coupled with the granular salts ability to ``heal`` or consolidate make granular salt an ideal sealing material for boreholes whose permanent sealing is required.

  16. Electrical resistance tomography using steel cased boreholes as electrodes

    SciTech Connect (OSTI)

    Newmark, R L; Daily, W; Ramirez, A

    1999-03-22

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. The first case we investigated used an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. A hybrid case uses traditional point electrode arrays combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes.

  17. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  18. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  19. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    DOE Patents [OSTI]

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-10-08

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating within a borehole an intermittent low frequency vibration that propagates as a tube wave longitudinally to the borehole and induces a nonlinear response in one or more features in the material that are substantially perpendicular to a longitudinal axis of the borehole; generating within the borehole a sequence of high frequency pulses directed such that they travel longitudinally to the borehole within the surrounding material; and receiving, at one or more receivers positionable in the borehole, a signal that includes components from the low frequency vibration and the sequence of high frequency pulses during intermittent generation of the low frequency vibration, to investigate the material surrounding the borehole.

  20. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics. [Patient application

    DOE Patents [OSTI]

    Barnard, R.W.; Jensen, D.H.

    1980-11-05

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or epithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  1. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics

    DOE Patents [OSTI]

    Barnard, Ralston W.; Jensen, Dal H.

    1982-01-01

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or eqithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  2. Two Approaches to Calibration in Metrology

    SciTech Connect (OSTI)

    Campanelli, Mark

    2014-04-01

    Inferring mathematical relationships with quantified uncertainty from measurement data is common to computational science and metrology. Sufficient knowledge of measurement process noise enables Bayesian inference. Otherwise, an alternative approach is required, here termed compartmentalized inference, because collection of uncertain data and model inference occur independently. Bayesian parameterized model inference is compared to a Bayesian-compatible compartmentalized approach for ISO-GUM compliant calibration problems in renewable energy metrology. In either approach, model evidence can help reduce model discrepancy.

  3. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  4. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  5. Mesoscale hybrid calibration artifact

    DOE Patents [OSTI]

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  6. TIME CALIBRATED OSCILLOSCOPE SWEEP

    DOE Patents [OSTI]

    Owren, H.M.; Johnson, B.M.; Smith, V.L.

    1958-04-22

    The time calibrator of an electric signal displayed on an oscilloscope is described. In contrast to the conventional technique of using time-calibrated divisions on the face of the oscilloscope, this invention provides means for directly superimposing equal time spaced markers upon a signal displayed upon an oscilloscope. More explicitly, the present invention includes generally a generator for developing a linear saw-tooth voltage and a circuit for combining a high-frequency sinusoidal voltage of a suitable amplitude and frequency with the saw-tooth voltage to produce a resultant sweep deflection voltage having a wave shape which is substantially linear with respect to time between equal time spaced incremental plateau regions occurring once each cycle of the sinusoidal voltage. The foregoing sweep voltage when applied to the horizontal deflection plates in combination with a signal to be observed applied to the vertical deflection plates of a cathode ray oscilloscope produces an image on the viewing screen which is essentially a display of the signal to be observed with respect to time. Intensified spots, or certain other conspicuous indications corresponding to the equal time spaced plateau regions of said sweep voltage, appear superimposed upon said displayed signal, which indications are therefore suitable for direct time calibration purposes.

  7. Internet-Based Calibration of a Multifunction Calibrator

    SciTech Connect (OSTI)

    BUNTING BACA,LISA A.; DUDA JR.,LEONARD E.; WALKER,RUSSELL M.; OLDHAM,NILE; PARKER,MARK

    2000-12-19

    A new way of providing calibration services is evolving which employs the Internet to expand present capabilities and make the calibration process more interactive. Sandia National Laboratories and the National Institute of Standards and Technology are collaborating to set up and demonstrate a remote calibration of multijunction calibrators using this Internet-based technique that is becoming known as e-calibration. This paper describes the measurement philosophy and the Internet resources that can provide real-time audio/video/data exchange, consultation and training, as well as web-accessible test procedures, software and calibration reports. The communication system utilizes commercial hardware and software that should be easy to integrate into most calibration laboratories.

  8. Internet-based calibration of a multifunction calibrator

    SciTech Connect (OSTI)

    BUNTING BACA,LISA A.; DUDA JR.,LEONARD E.; WALKER,RUSSELL M.; OLDHAM,NILE; PARKER,MARK

    2000-04-17

    A new way of providing calibration services is evolving which employs the Internet to expand present capabilities and make the calibration process more interactive. Sandia National Laboratories and the National Institute of Standards and Technology are collaborating to set up and demonstrate a remote calibration of multifunction calibrators using this Internet-based technique that is becoming known as e-calibration. This paper describes the measurement philosophy and the Internet resources that can provide real-time audio/video/data exchange, consultation and training, as well as web-accessible test procedures, software and calibration reports. The communication system utilizes commercial hardware and software that should be easy to integrate into most calibration laboratories.

  9. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    SciTech Connect (OSTI)

    Gardner, Martin G.; Price, Randall K.

    2007-02-01

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  10. Crop physiology calibration in the CLM

    SciTech Connect (OSTI)

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurements of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.

  11. Crop physiology calibration in the CLM

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  12. Conceptual waste packaging options for deep borehole disposal

    SciTech Connect (OSTI)

    Su, Jiann -Cherng; Hardin, Ernest L.

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  13. Numerical Modeling At Coso Geothermal Area (2010) | Open Energy...

    Open Energy Info (EERE)

    model was developed using Poly3D to simulate the distribution and magnitude of stress concentration in the vicinity of the borehole floor, and determine the conditions...

  14. Field Calibration Facilities for Environmental Measurement of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and ... Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and ...

  15. Energy Department selects Battelle team for a deep borehole field test in North Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has selected a Battelle Memorial Institute-led team to drill a test borehole of over 16,000 feet into a crystalline basement rock formation near Rugby, North Dakota.

  16. 3-D Inversion Of Borehole-To-Surface Electrical Data Using A...

    Open Energy Info (EERE)

    Inversion Of Borehole-To-Surface Electrical Data Using A Back-Propagation Neural Network Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3-D...

  17. New developments in high resolution borehole seismology and their applications to reservoir development and management

    SciTech Connect (OSTI)

    Paulsson, B.N.P.

    1997-08-01

    Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

  18. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research...

    Open Energy Info (EERE)

    at Mirror Lake Research Site Citation U.S. Geological Survey. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Internet. 2013. U.S. Geological Survey. cited...

  19. Methods and apparatus for use in detecting seismic waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2006-05-23

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  20. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-10-24

    Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

  1. Exposure-Rate Calibration Using Large-Area Calibration Pads ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement of Radium, Thorium, and Potassium (October 2013) Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (June 1994) ...

  2. Determining resistivity of a geological formation using circuitry located within a borehole casing

    DOE Patents [OSTI]

    Vail III, William Banning

    2006-01-17

    Geological formation resistivity is determined. Circuitry is located within the borehole casing that is adjacent to the geological formation. The circuitry can measure one or more voltages across two or more voltage measurement electrodes associated with the borehole casing. The measured voltages are used by a processor to determine the resistivity of the geological formation. A common mode signal can also be reduced using the circuitry.

  3. Permeameter studies of water flow through cement and clay borehole seals in granite, basalt and tuff

    SciTech Connect (OSTI)

    South, D.L.; Daemen, J.J.K.

    1986-10-01

    Boreholes near a repository must be sealed to prevent rapid migration of radionuclide-contaminated water to the accessible environment. The objective of this research is to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. Flow through a sealed borehole is compared with flow through intact rock. Cement or bentonite seals have been tested in granite, basalt, and welded tuff. The main conclusion is that under laboratory conditions, existing commercial materials can form high quality seals. Triaxial stress changes about a borehole do not significantly affect seal performance if the rock is stiffer than the seal. Temperature but especially moisture variations (drying) significantly degrade the quality of cement seals. Performance partially recovers upon resaturation. A skillfully sealed borehole may be as impermeable as the host rock. Analysis of the influence of relative seal-rock permeabilities shows that a plug with permeability one order of magnitude greater than that of the rock results in a flow increase through the hole and surrounding rock of only 1-1/2 times compared to the undisturbed rock. Since a borehole is only a small part of the total rock mass, the total effect is even less pronounced. The simplest and most effective way to decrease flow through a rock-seal system is to increase the seal length, assuming it can be guaranteed that no dominant by-pass flowpath through the rock exists.

  4. Fracture identification and evaluation using borehole imaging and full wave form logs in the Permian basin

    SciTech Connect (OSTI)

    Sanders, L. )

    1994-03-01

    The borehole imaging and acoustic full wave form logs provide an excellent means for identifying and evaluating naturally occurring fractures. The natural fractures can provide the porosity and permeability essential for a productive reservoir. The detection of these fractures may be accomplished by tow types of wireline logging tools: borehole imaging devices and acoustic full wave form tools. The borehole imaging tools produce images based upon the electromagnetic or the acoustic properties of the borehole wall. Fractures will appear as darker images that are distinct from the nonfracture formation. These images are coupled with a reference azimuth that allows for the determination of the orientation of the fracture image. The acoustic full wave form logs are used to detect fractures by analyzing various acoustic properties of the formation. The travel time, amplitude, and frequency responses of fractured formations differ remarkably from the responses of nonfractured formations because of the reduction of the acoustic energy in the fractures. The various field examples from the Queen sandstone to the Ellenburger formation demonstrate the advantages and disadvantages unique to the borehole imaging and the acoustic full wave form devices. Within this geologic framework, comparisons are made among the data extracted from whole cores, borehole imaging devices, and the acoustic full wave form tools in establishing a systematic approach for the identification and evaluation of fractures.

  5. Inspection system calibration methods

    DOE Patents [OSTI]

    Deason, Vance A.; Telschow, Kenneth L.

    2004-12-28

    An inspection system calibration method includes producing two sideband signals of a first wavefront; interfering the two sideband signals in a photorefractive material, producing an output signal therefrom having a frequency and a magnitude; and producing a phase modulated operational signal having a frequency different from the output signal frequency, a magnitude, and a phase modulation amplitude. The method includes determining a ratio of the operational signal magnitude to the output signal magnitude, determining a ratio of a 1st order Bessel function of the operational signal phase modulation amplitude to a 0th order Bessel function of the operational signal phase modulation amplitude, and comparing the magnitude ratio to the Bessel function ratio.

  6. Estimates of in situ deformability with an NX borehole jack, Spent Fuel Test - Climax, Nevada test site

    SciTech Connect (OSTI)

    Patrick, W.C.; Yow, J.L. Jr.; Axelrod, M.C.

    1985-12-01

    A series of borehole modulus measurements was obtained at the Spent Fuel Test - Climax (SFT-C) facility following removal of heat sources and a subsequent 1-year cooling period. A total of 212 measurements were obtained using a standard hardrock NX borehole (Goodman) jack. The results of 64 measurements made at the site before heating were reanalyzed for comparison with the post-heat data. Modulus values were calculated from the straight-line portion of the pressure vs displacement curves. Although the deformation modulus was observed to be highly variable, models were developed to explain much of this variability. Typically, spacial effects, anisotropy, and heating effects were present. The test results indicate that the deformation modulus tended to increase in the pillars between the underground openings where temperatures increased about 10{sup 0}C above the ambient 24{sup 0}C during the SFT-C. Conversely, a decrease in modulus was observed where temperatures were near 60{sup 0}C for a three-year period. In most cases, we found the modulus values to be slightly higher for vertical than for horizontal loading. There was a tendency for the modulus to be lower near excavated openings. While this effect was not ubiquitous, it was statistically significant.

  7. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    SciTech Connect (OSTI)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.

    2004-03-01

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four

  8. Exposure-rate calibration using large-area calibration pads

    SciTech Connect (OSTI)

    Novak, E.F.

    1988-09-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center (TMC) at the DOE Grand Junction Projects Office (GJPO) in Grand Junction, Colorado, to standardize, calibrate, and compare measurements made in support of DOE remedial action programs. A set of large-area, radioelement-enriched concrete pads was constructed by the DOE in 1978 at the Walker Field Airport in Grand Junction for use as calibration standards for airborne gamma-ray spectrometer systems. The use of these pads was investigated by the TMC as potential calibration standards for portable scintillometers employed in measuring gamma-ray exposure rates at Uranium Mill Tailings Remedial Action (UMTRA) project sites. Data acquired on the pads using a pressurized ionization chamber (PIC) and three scintillometers are presented as an illustration of an instrumental calibration. Conclusions and recommended calibration procedures are discussed, based on the results of these data.

  9. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  10. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    DOE Patents [OSTI]

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-11-05

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.

  11. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  12. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    DOE Patents [OSTI]

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  13. Hydrothermally altered and fractured granite as an HDR reservoir in the EPS-1 borehole, Alsace,

    SciTech Connect (OSTI)

    Genter, A.; Traineau, H.

    1992-01-01

    As part of the European Hot Dry Rocks Project, a second exploration borehole, EPS-1, has been cored to a depth of 2227 m at Soultz-sous-Forets (France). The target was a granite beginning at 1417 m depth, overlain by post-Paleozoic sedimentary cover. Structural analysis and petrographic examination of the 800-m porphyritic granite core, have shown that this rock has undergone several periods of hydrothermal alteration and fracturing. More than 3000 natural structures were recorded, whose distribution pattern shows clusters where low-density fracture zones (less than 1 per meter) alternate with zones of high fracture density (more than 20 per meter). Vein alteration, ascribed to paleohydrothermal systems, developed within the hydrothermally altered and highly fractured zones, transforming primary biotite and plagioclase into clay minerals. One of these zones at 2.2 km depth produced a hot-water outflow during coring, indicating the existence of a hydrothermal reservoir. Its permeability is provided by the fracture network and by secondary porosity of the granitic matrix resulting from vein alteration. This dual porosity in the HDR granite reservoir must be taken into account in the design of the heat exchanger, both for modeling the water-rock interactions and for hydraulic testing.

  14. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.

  15. High-temperature batteries for geothermal and oil/gas borehole applications

    SciTech Connect (OSTI)

    GUIDOTTI,RONALD A.

    2000-05-25

    A literature survey and technical evaluation was carried out of past and present battery technologies with the goal of identifying appropriate candidates for use in geothermal borehole and, to a lesser extent, oil/gas boreholes. The various constraints that are posed by such an environment are discussed. The promise as well as the limitations of various candidate technologies are presented. Data for limited testing of a number of candidate systems are presented and the areas for additional future work are detailed. The use of low-temperature molten salts shows the most promise for such applications and includes those that are liquid at room temperature. The greatest challenges are to develop an appropriate electrochemical couple that is kinetically stable with the most promising electrolytes--both organic as well as inorganic--over the wide operating window that spans both borehole environments.

  16. Method for locating underground anomalies by diffraction of electromagnetic waves passing between spaced boreholes

    DOE Patents [OSTI]

    Lytle, R. Jeffrey; Lager, Darrel L.; Laine, Edwin F.; Davis, Donald T.

    1979-01-01

    Underground anomalies or discontinuities, such as holes, tunnels, and caverns, are located by lowering an electromagnetic signal transmitting antenna down one borehole and a receiving antenna down another, the ground to be surveyed for anomalies being situated between the boreholes. Electronic transmitting and receiving equipment associated with the antennas is activated and the antennas are lowered in unison at the same rate down their respective boreholes a plurality of times, each time with the receiving antenna at a different level with respect to the transmitting antenna. The transmitted electromagnetic waves diffract at each edge of an anomaly. This causes minimal signal reception at the receiving antenna. Triangulation of the straight lines between the antennas for the depths at which the signal minimums are detected precisely locates the anomaly. Alternatively, phase shifts of the transmitted waves may be detected to locate an anomaly, the phase shift being distinctive for the waves directed at the anomaly.

  17. Extending Sensor Calibration Intervals in Nuclear Power Plants

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Shumaker, Brent; Hashemian, Hash

    2012-11-15

    Currently in the USA, sensor recalibration is required at every refueling outage, and it has emerged as a critical path item for shortening outage duration. International application of calibration monitoring, such as at the Sizewell B plant in UK, has shown that sensors may operate for eight years, or longer, within calibration tolerances. Online monitoring can be employed to identify those sensors which require calibration, allowing for calibration of only those sensors which need it. The US NRC accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no plants have been granted the necessary license amendment to apply it. This project addresses key issues in advanced recalibration methodologies and provides the science base to enable adoption of best practices for applying online monitoring, resulting in a public domain standardized methodology for sensor calibration interval extension. Research to develop this methodology will focus on three key areas: (1) quantification of uncertainty in modeling techniques used for calibration monitoring, with a particular focus on non-redundant sensor models; (2) accurate determination of acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and (3) the use of virtual sensor estimates to replace identified faulty sensors to extend operation to the next convenient maintenance opportunity.

  18. Rotary mode system initial instrument calibration

    SciTech Connect (OSTI)

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  19. Probabilistic methods for sensitivity analysis and calibration...

    Office of Scientific and Technical Information (OSTI)

    calibration in the NASA challenge problem Citation Details In-Document Search Title: Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem ...

  20. Disposition of excess weapon plutonium in deep boreholes - site selection handbook

    SciTech Connect (OSTI)

    Heiken, G.; Woldegabriel, G.; Morley, R.; Plannerer, H.; Rowley, J.

    1996-09-01

    One of the options for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology needed to begin designing this means of disposition already exists, and there are many attractive sites available within the conterminous United States. There are even more potential sites for this option within Russia. The successful design of a borehole system must address two criteria: (1) how to dispose of 50 metric tons of weapons plutonium while making it inaccessible for unauthorized retrieval, and (2) how to prevent contamination of the accessible biosphere, defined here as the Earth`s surface and usable groundwaters.

  1. Vertical borehole design and completion practices used to remove methane gas from mineable coalbeds

    SciTech Connect (OSTI)

    Lambert, S.W.; Trevits, M.A.; Steidl, P.F.

    1980-08-01

    Coalbed gas drainage from the surface in advance of mining has long been the goal of researchers in mine safety. Bureau of Mines efforts to achieve this goal started about 1965 with the initiation of an applied research program designed to test drilling, completion, and production techniques for vertical boreholes. Under this program, over 100 boreholes were completed in 16 different coalbeds. The field methods derived from these tests, together with a basic understanding of the coalbed reservoir, represent an available technology applicable to any gas drainage program whether designed primarily for mine safety or for gas recovery, or both.

  2. System and method to estimate compressional to shear velocity (VP/VS) ratio in a region remote from a borehole

    DOE Patents [OSTI]

    Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves

    2012-10-16

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  3. DEFORMATION AND FRACTURE OF POORLY CONSOLIDATED MEDIA - Borehole Failure Mechanisms in High-Porosity Sandstone

    SciTech Connect (OSTI)

    Bezalel c. Haimson

    2005-06-10

    We investigated failure mechanisms around boreholes and the formation of borehole breakouts in high-porosity sandstone, with particular interest to grain-scale micromechanics of failure leading to the hitherto unrecognized fracture-like borehole breakouts and apparent compaction band formation in poorly consolidated granular materials. We also looked at a variety of drilling-related factors that contribute to the type, size and shape of borehole breakouts. The objective was to assess their effect on the ability to establish correlations between breakout geometry and in situ stress magnitudes, as well as on borehole stability prediction, and hydrocarbon/water extraction in general. We identified two classes of medium to high porosity (12-30%) sandstones, arkosic, consisting of 50-70% quartz and 15 to 50% feldspar, and quartz-rich sandstones, in which quartz grain contents varied from 90 to 100%. In arkose sandstones critical far-field stress magnitudes induced compressive failure around boreholes in the form of V-shaped (dog-eared) breakouts, the result of dilatant intra-and trans-granular microcracking subparallel to both the maximum horizontal far-field stress and to the borehole wall. On the other hand, boreholes in quartz-rich sandstones failed by developing fracture-like breakouts. These are long and very narrow (several grain diameters) tabular failure zones perpendicular to the maximum stress. Evidence provided mainly by SEM observations suggests a failure process initiated by localized grain-bond loosening along the least horizontal far-field stress springline, the packing of these grains into a lower porosity compaction band resembling those discovered in Navajo and Aztec sandstones, and the emptying of the loosened grains by the circulating drilling fluid starting from the borehole wall. Although the immediate several grain layers at the breakout tip often contain some cracked or even crushed grains, the failure mechanism enabled by the formation of the

  4. Industry guidelines for the calibration of maximum anemometers

    SciTech Connect (OSTI)

    Bailey, B.H.

    1996-12-31

    The purpose of this paper is to report on a framework of guidelines for the calibration of the Maximum Type 40 anemometer. This anemometer model is the wind speed sensor of choice in the majority of wind resource assessment programs in the U.S. These guidelines were established by the Utility Wind Resource Assessment Program. In addition to providing guidelines for anemometers, the appropriate use of non-calibrated anemometers is also discussed. 14 refs., 1 tab.

  5. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    SciTech Connect (OSTI)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  6. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2006-10-18

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to Tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. Sediments from borehole 299-E27-22 were considered to be background uncontaminated sediments against which to compare contaminated sediments for the C Tank Farm characterization effort. This report also presents our interpretation of the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the C Tank Farm. The information presented in this report supports the A-AX, C and U Waste Management Area field investigation report(a) in preparation by CH2M HILL Hanford Group, Inc. A core log was generated for both boreholes and a geologic evaluation of all core samples was performed at the time of opening. Aliquots of sediment from the borehole core samples were analyzed and characterized in the laboratory for the following parameters: moisture content, gamma-emitting radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Two key radiocontaminants

  7. Calibration of electrical impedance tomography

    SciTech Connect (OSTI)

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  8. Recombinant fluorescent protein microsphere calibration standard

    DOE Patents [OSTI]

    Nolan, John P.; Nolan, Rhiannon L.; Ruscetti, Teresa; Lehnert, Bruce E.

    2001-01-01

    A method for making recombinant fluorescent protein standard particles for calibration of fluorescence instruments.

  9. Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole

    SciTech Connect (OSTI)

    Bevan, John E.; King, Grant W.

    1997-12-01

    An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole.

  10. Letter Report: Borehole Flow and Horizontal Hydraulic Conductivity with Depth at Well ER-12-4

    SciTech Connect (OSTI)

    Phil L. Oberlander; Charles E. Russell

    2005-12-31

    Borehole flow and fluid temperature during pumping were measured at well ER-12-4 at the Nevada Test Site in Nye County, Nevada. This well was constructed to characterize the carbonate aquifer. The well is cased from land surface to the total depth at 1,132 m (3,713 ft bgs) below ground surface (bgs). The screened section of the well consists of alternating sections of slotted well screen and blank casing from 948 to 1,132 m bgs (3,111 to 3,713 ft bgs). Borehole flow velocity (LT-1) with depth was measured with an impeller flowmeter from the top of the screened section to the maximum accessible depth while the well was pumped and under ambient conditions. A complicating factor to data interpretation is that the well was not filter packed and there is upward and downward vertical flow in the open annulus under ambient and pumping conditions. The open annulus in the well casing likely causes the calculated borehole flow rates being highly nonrepresentative of inflow from the formation. Hydraulic conductivities calculated under these conditions would require unsupportable assumptions and would be subject to very large uncertainties. Borehole hydraulic conductivities are not presented under these conditions.

  11. Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole

    DOE Patents [OSTI]

    Bevan, John E.; King, Grant W.

    1998-01-01

    An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole.

  12. Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole

    DOE Patents [OSTI]

    Bevan, J.E.; King, G.W.

    1998-12-08

    An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole. 8 figs.

  13. Self-calibrating multiplexer circuit

    DOE Patents [OSTI]

    Wahl, Chris P.

    1997-01-01

    A time domain multiplexer system with automatic determination of acceptable multiplexer output limits, error determination, or correction is comprised of a time domain multiplexer, a computer, a constant current source capable of at least three distinct current levels, and two series resistances employed for calibration and testing. A two point linear calibration curve defining acceptable multiplexer voltage limits may be defined by the computer by determining the voltage output of the multiplexer to very accurately known input signals developed from predetermined current levels across the series resistances. Drift in the multiplexer may be detected by the computer when the output voltage limits, expected during normal operation, are exceeded, or the relationship defined by the calibration curve is invalidated.

  14. Calibration Facilities Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Calibration Facilities » Calibration Facilities Documents Calibration Facilities Documents October 17, 2013 Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) The first edition of this report, released in October 1982, presented physical-characteristic information for the various DOE radiologic-instrument calibration facilities located throughout the U.S. Three subsequent editions have been released in an effort to update

  15. Method for calibrating mass spectrometers

    DOE Patents [OSTI]

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  16. Hanford Borehole Geologic Information System (HBGIS) Updated User’s Guide for Web-based Data Access and Export

    SciTech Connect (OSTI)

    Mackley, Rob D.; Last, George V.; Allwardt, Craig H.

    2008-09-24

    The Hanford Borehole Geologic Information System (HBGIS) is a prototype web-based graphical user interface (GUI) for viewing and downloading borehole geologic data. The HBGIS is being developed as part of the Remediation Decision Support function of the Soil and Groundwater Remediation Project, managed by Fluor Hanford, Inc., Richland, Washington. Recent efforts have focused on improving the functionality of the HBGIS website in order to allow more efficient access and exportation of available data in HBGIS. Users will benefit from enhancements such as a dynamic browsing, user-driven forms, and multi-select options for selecting borehole geologic data for export. The need for translating borehole geologic data into electronic form within the HBGIS continues to increase, and efforts to populate the database continue at an increasing rate. These new web-based tools should help the end user quickly visualize what data are available in HBGIS, select from among these data, and download the borehole geologic data into a consistent and reproducible tabular form. This revised user’s guide supersedes the previous user’s guide (PNNL-15362) for viewing and downloading data from HBGIS. It contains an updated data dictionary for tables and fields containing borehole geologic data as well as instructions for viewing and downloading borehole geologic data.

  17. Apparatus and method for field calibration of nuclear surface density gauges

    SciTech Connect (OSTI)

    Regimand, A.; Gilbert, A.B.

    1999-07-01

    Nuclear gauge density measurements are routinely used for compliance verification with specifications for road and construction projects. The density of construction materials is an important indicator of structural performance and quality. Due to speed of measurement, flexibility and accuracy, nuclear gauge density measurement methods are becoming the preferred standard around the world. Requirements dictate that gauges be verified or calibrated once every 12 to 18 months. Presently, there are no field portable devices available for verification of the gauge calibration. Also, the density references used for calibration of gauges, are large and not designed for field portability. Therefore, to meet the present standards, users are required to ship gauges back to a service facility for calibration. This paper presents results obtained by a newly developed device for field verification and calibration of nuclear density gauges from three different manufacturers. The calibrations obtained by this device are compared to the factory calibration methods and accuracies are reported for each gauge model.

  18. Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments

    SciTech Connect (OSTI)

    Wang, Guohui; Serne, R. Jeffrey; Lindberg, Michael J.; Um, Wooyong; Bjornstad, Bruce N.; Williams, Benjamin D.; Kutynakov, I. V.; Wang, Zheming; Qafoku, Nikolla

    2012-11-26

    In this study, sediments collected from boreholes drilled in 2010 and 2011 as part of a remedial investigation/feasibility study were characterized. The wells, located within or around two process ponds and one process trench waste site, were characterized in terms of total uranium concentration, mobile fraction of uranium, particle size, and moisture content along the borehole depth. In general, the gravel-dominated sediments of the vadose zone Hanford formation in all investigated boreholes had low moisture contents. Based on total uranium content, a total of 48 vadose zone and periodically rewetted zone sediment samples were selected for more detailed characterization, including measuring the concentration of uranium extracted with 8 M nitric acid, and leached using bicarbonate mixed solutions to determine the liable uranium (U(VI)) contents. In addition, water extraction was conducted on 17 selected sediments. Results from the sediment acid and bicarbonate extractions indicated the total concentrations of anthropogenic labile uranium in the sediments varied among the investigated boreholes. The peak uranium concentration (114.84 ”g/g, acid extract) in <2-mm size fractions was found in borehole 399 1-55, which was drilled directly in the southwest corner of the North Process Pond. Lower uranium concentrations (~0.3–2.5 ”g/g, acid extract) in <2-mm size fractions were found in boreholes 399-1-57, 399-1-58, and 399-1-59, which were drilled either near the Columbia River or inland and upgradient of any waste process ponds or trenches. A general trend of “total” uranium concentrations was observed that increased as the particle size decreased when relating the sediment particle size and acid extractable uranium concentrations in two selected sediment samples. The labile uranium bicarbonate leaching kinetic experiments on three selected sediments indicated a two-step leaching rate: an initial rapid release, followed by a slow continual release of uranium from

  19. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    SciTech Connect (OSTI)

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-02-28

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.

  20. Hydrologic calibration of paired watersheds using a MOSUM approach

    SciTech Connect (OSTI)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  1. Hydrologic calibration of paired watersheds using a MOSUM approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managedmore » loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.« less

  2. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  3. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc.

  4. Method of measuring material properties of rock in the wall of a borehole

    DOE Patents [OSTI]

    Overmier, David K.

    1985-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  5. Method of measuring material properties of rock in the wall of a borehole

    DOE Patents [OSTI]

    Overmier, D.K.

    1984-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurements of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  6. Portable apparatus and method for assisting in the removal and emplacement of pipe strings in boreholes

    DOE Patents [OSTI]

    Mitchell, Brian R.

    2005-03-22

    A portable pipe installation/removal support apparatus for assisting in the installation/removal of a series of connectable pipe strings from a ground-level borehole. The support apparatus has a base, an upright extending from the base, and, in an exemplary embodiment, a pair of catch arms extending from the upright to define a catch platform. The pair of catch arms serves to hold an upper connector end of a pipe string at an operator-convenient standing elevation by releasably catching an underside of a pipe coupler connecting two pipe strings of the series of connectable pipe strings. This enables an operator to stand upright while coupling/uncoupling the series of connectable pipe strings during the installation/removal thereof from the ground-level borehole. Additionally, a process for installing and a process for removing a series of connectable pipe strings is disclosed utilizing such a support apparatus.

  7. Borehole temperatures and a baseline for 20th-century global warming estimates

    SciTech Connect (OSTI)

    Harris, R.N.; Chapman, D.S.

    1997-03-14

    Lack of a 19th-century baseline temperature against which 20th-century warming can be referenced constitutes a deficiency in understanding recent climate change. Combination of borehole temperature profiles, which contain a memory of surface temperature changes in previous centuries, with the meteorologicl archive of surface air temperatures can provide a 19th-century baseline temperature tied to the current observational record. A test case in Utah, where boreholes are interspersed with meteorological stations belonging to the Historical Climatological network, Yields a noise reduction in estimates of 20th-century warming and a baseline temperature that is 0.6{degrees} {+-} 0.1{degrees}C below the 1951 to 1970 mean temperature for the region. 22 refs., 3 figs., 1 tab.

  8. Analysis of well test data from selected intervals in Leuggern deep borehole

    SciTech Connect (OSTI)

    Karasaki, K. )

    1990-07-01

    Applicability of the PTST technique was verified by conducting a sensitivity study to the various parameters. The study showed that for ranges of skin parameters the true formation permeability was still successfully estimated using the PTST analysis technique. The analysis technique was then applied to field data from the deep borehole in Leuggern, Northern Switzerland. The analysis indicated that the formation permeability may be as much as one order of magnitude larger than the value based on no-skin analysis. Swabbing data from the Leuggern deep borehole were also analyzed assuming that they are constant pressure tests. The analysis of the swabbing data indicates that the formation transmissivity is as much as 20 times larger than the previously obtained value. This study is part of an investigation of the feasibility of geologic isolation of nuclear wastes being carried out by the US Department of Energy and the National Cooperative for the Storage of Radioactive Waste of Switzerland.

  9. Borehole data package for well 699-37-47A, PUREX Plant Cribs, CY 1996

    SciTech Connect (OSTI)

    Lindberg, J.W.; Williams, B.A.; Spane, F.A.

    1997-02-01

    A new groundwater monitoring well (699-37-47A) was installed in 1996 as a downgradient well near the PUREX Plant Cribs Treatment, Storage, and Disposal Facility at Hanford. This document provides data from the well drilling and construction operations, as well as data from subsequent characterization of groundwater and sediment samples collected during the drilling process. The data include: well construction documentation, geologist`s borehole logs, results of laboratory analysis of groundwater samples collected during drilling and of physical tests conducted on sediment samples collected during drilling, borehole geophysics, and results of aquifer testing including slug tests and flowmeter analysis. This well (699-37-47A) was constructed in support of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-24-00H and interim milestone M-24-35 (Ecology et al. 1994), and was funded under Project W-152.

  10. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Chirstopher

    2013-10-15

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.

  11. Bulk and mechanical properties of the Paintbrush tuff recovered from boreholes UE25 NRG-2, 2A, 2B, and 3: Data report

    SciTech Connect (OSTI)

    Boyd, P.J.; Martin, R.J.; Noel, J.S. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves characterization of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from boreholes UE25 NRG-2, 2A, 2B, and 3 drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. The holes penetrated the Timber Mountain tuff and two thermal/mechanical units of the Paintbrush tuff. The thermal/mechanical stratigraphy was defined by Ortiz to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy for each borehole is presented. The tuff samples in this study have a wide range of welding characteristics (usually reflected in sample porosity), and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties.

  12. Site Characterization Data from the U3ax/bl Exploratory Boreholes at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-08-01

    This report provides qualitative analyses and preliminary interpretations of hydrogeologic data obtained from two 45-degree, slanted exploratory boreholes drilled within the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site. Borehole UE-3bl-D1 was drilled beneath the U3ax/bl mixed waste disposal unit, and Borehole UE-3bl-U1 was drilled in undisturbed alluvium adjacent to the disposal unit. The U3ax/bl disposal unit is located within two conjoined subsidence craters, U3ax and U3bl, which were created by underground nuclear testing. Data from these boreholes were collected to support site characterization activities for the U3ax/bl disposal unit and the entire Area 3 RWMS. Site characterization at disposal units within the Area 3 RWMS must address the possibility that subsidence craters and associated disturbed alluvium of the chimneys beneath the craters might serve as pathways for contaminant migration. The two boreholes were drilled and sampled to compare hydrogeologic properties of alluvium below the waste disposal unit with those of adjacent undisturbed alluvium. Whether Borehole UE-3bl-D1 actually penetrated the chimney of the U3bl crater is uncertain. Analyses of core samples showed little difference in hydrogeologic properties between the two boreholes. Important findings of this study include the following: No hazardous or radioactive constituents of waste disposal concern were found in the samples obtained from either borehole. No significant differences in physical and hydrogeologic properties between boreholes is evident, and no evidence of significant trends with depth for any of these properties was observed. The values observed are typical of sandy materials. The alluvium is dry, with volumetric water content ranging from 5.6 to 16.2 percent. Both boreholes exhibit a slight increase in water content with depth, the only such trend observed. Water potential measurements on core samples from both boreholes show a large positive

  13. ARM - Evaluation Product - Calibrated KAZR Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calibrated and corrected via a new value-added product (VAP) KAZRCAL. The nsakazrgeC1.a1 and nsakazrmdC1.a1 datastreams are used as input, in addition to a set of calibration...

  14. Spinning angle optical calibration apparatus

    DOE Patents [OSTI]

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  15. Uncertainty Quantification and Calibration of Physical Models...

    Office of Scientific and Technical Information (OSTI)

    20-25, 2014 in Barcelona, Spain.; Related Information: Proposed for presentation at the 11th World Congress on Computational Mechanics held July 20-25, 2014 in Barcelona, Spain

  16. Multivariate Calibration Models for Sorghum Composition using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Madison, WI: American Society of Agronomy-Crop Science Society of America-Soil Science Society of America, 2004. 15. Williams, P. and Norris, K., eds. Near-Infrared Technology in ...

  17. Model Calibration and Forward Uncertainty Quantification for...

    Office of Scientific and Technical Information (OSTI)

    16, 2015 bOFtb hhlbe h a..1 -1 benbomni SAND2014-19999 PE Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States ...

  18. Model Calibration and Forward Uncertainty Quantification for...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2014-11-01 OSTI Identifier: 1242238 Report Number(s): SAND2014-19999PE 547258 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: ...

  19. Model Calibration and Forward Uncertainty Quantification for...

    Office of Scientific and Technical Information (OSTI)

    ... ludRoChain Monte Carlo algorithm -H-y-rr,-, I-tff ;n- t-.v-.i. ?v.:; Sandia ... ludRoChain Monte Carlo algorithm -H-y-rr,-, I-tff ;n- t-.v-.i. ?v.:; Sandia ...

  20. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect (OSTI)

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  1. Calibrating thermal behavior of electronics

    DOE Patents [OSTI]

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2016-05-31

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  2. Marine04 Marine radiocarbon age calibration, 26 ? 0 ka BP

    SciTech Connect (OSTI)

    Hughen, K; Baille, M; Bard, E; Beck, J; Bertrand, C; Blackwell, P; Buck, C; Burr, G; Cutler, K; Damon, P; Edwards, R; Fairbanks, R; Friedrich, M; Guilderson, T; Kromer, B; McCormac, F; Manning, S; Bronk-Ramsey, C; Reimer, P; Reimer, R; Remmele, S; Southon, J; Stuiver, M; Talamo, S; Taylor, F; der Plicht, J v; Weyhenmeyer, C

    2004-11-01

    New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration datasets extend an additional 2000 years, from 0-26 ka cal BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically dated tree-ring samples, converted with a box-diffusion model to marine mixed-layer ages, cover the period from 0-10.5 ka cal BP. Beyond 10.5 ka cal BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific {sup 14}C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 ka cal BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the radiocarbon age to calculate the underlying calibration curve. The marine datasets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring datasets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al.

  3. SRRL: Broadband Outdoor Radiometer CALibrations (BORCAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Outdoor Radiometer Calibrations Accurate measurements of solar radiation require regular recalibration of the radiometers used to make the irradiance measurement. NREL has developed the Broadband Outdoor Radiometer Calibration (BORCAL) approach for the annual calibration of pyranometers, pyrheliometers, and pyrgeometers used by the Department of Energy. BORCALs are conducted at the Solar Radiation Research Laboratory (SRRL) and at the Atmospheric Radiation Measurement (ARM) Program's

  4. Quantification of Wellbore Leakage Risk Using Non-destructive Borehole Logging Techniques

    SciTech Connect (OSTI)

    Duguid, Andrew; Butsch, Robert; Cary, J.; Celia, Michael; Chugunov, Nikita; Gasda, Sarah; Hovorka, Susan; Ramakrishnan, T. S.; Stamp, Vicki; Thingelstad, Rebecca; Wang, James

    2014-08-29

    Well integrity is important at all potential CCS locations and may play a crucial role establishing leakage risk in areas where there is a high density of existing wells that could be impacted by the storage operations including depleted petroleum fields where EOR or CCS will occur. To address a need for risk quantification methods that can be directly applied to individual wells using borehole logging tools a study was conducted using data from five wells in Wyoming. The objectives of the study were: Objective 1: Develop methods to establish the baseline flow parameters (porosity and permeability or mobility) from individual measurements of the material properties and defects in a well. Objective 2: Develop a correlation between field flow-property data and cement logs that can be used to establish the flow-properties of well materials and well features using cement mapping tools. Objective 3: Establish a method that uses the flow-property model (Objective 2) to analyze the statistical uncertainties associated with individual well leakage that can provide basis for uncertainty in risk calculations. The project objectives were met through the logging of five wells in Carbon and Natrona County Wyoming to collect data that was used to estimate individual and average well flow properties and model the results using ultrasonic data collected during the logging. Three of the five wells provided data on point and average flow properties for well annuli. Data from the other two wells were used to create models of cement permeability and test whether information collected in one well could be used to characterize another well. The results of the in-situ point measurements were confirmed by the lab measurements sidewall cores collected near the same depths Objective 1 was met using the data collected through logging, testing, and sampling. The methods were developed that can establish baseline flow parameters of wells by both point and average test methods. The methods to

  5. Calibration curves for some standard Gap Tests

    SciTech Connect (OSTI)

    Bowman, A.L.; Sommer, S.C.

    1989-01-01

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  6. Application of the electromagnetic borehole flowmeter and evaluation of previous pumping tests at Paducah Gaseous Diffusion Plant. Final report, June 15, 1992--August 31, 1992

    SciTech Connect (OSTI)

    Young, S.C.; Julian, S.C.; Neton, M.J.

    1993-01-01

    Multi-well pumping tests have been concluded at wells MW79, MW108, and PW1 at the Paducah Gaseous Diffusion Plant (PGDP) to determine the hydraulic properties of the Regional Gravel Aquifer (RGA). Soil cores suggest that the RGA consists of a thin sandy facies (2 to 6 feet) at the top of a thicker (> 10 feet) gravelly facies. Previous analyses have not considered any permeability contrast between the two facies. To assess the accuracy of this assumption, TVA personnel conducted borehole flowmeter tests at wells MW108 and PW1. Well MW79 could not be tested. The high K sand unit is probably 10 times more permeable than comparable zone in the gravelly portion of the RGA. Previous analyses of the three multi-well aquifer tests do not use the same conceptual aquifer model. Data analysis for one pumping test assumed that leakance was significant. Data analysis for another pumping test assumed that a geologic boundary was significant. By collectively analyzing all three tests with the borehole flowmeter results, the inconsistency among the three pumping tests can be explained. Disparity exists because each pumping test had a different placement of observation wells relative to the high K zone delineating by flowmeter testing.

  7. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, A. L.; Painter, S. L.; Harp, D. R.; Coon, E. T.; Wilson, C. J.; Liljedahl, A. K.; Romanovsky, V. E.

    2015-04-14

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  8. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    SciTech Connect (OSTI)

    Atchley, A. L.; Painter, S. L.; Harp, D. R.; Coon, E. T.; Wilson, C. J.; Liljedahl, A. K.; Romanovsky, V. E.

    2015-04-14

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.

  9. Gearbox Reliability Collaborative High Speed Shaft Tapered Roller Bearing Calibration

    SciTech Connect (OSTI)

    Keller, J.; Guo, Y.; McNiff, B.

    2013-10-01

    The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) is a project investigating gearbox reliability primarily through testing and modeling. Previous dynamometer testing focused upon acquiring measurements in the planetary section of the test gearbox. Prior to these tests, the strain gages installed on the planetary bearings were calibrated in a load frame.

  10. Air-injection testing in vertical boreholes in welded and nonwelded Tuff, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    LeCain, G.D.

    1997-12-31

    Air-injection tests, by use of straddle packers, were done in four vertical boreholes (UE-25 UZ-No.16, USW SD-12, USW NRG-6, and USW NRG-7a) at Yucca Mountain, Nevada. The geologic units tested were the Tiva Canyon Tuff, nonwelded tuffs of the Paintbrush Group, Topopah Spring Tuff, and Calico Hills Formation. Air-injection permeability values of the Tiva Canyon Tuff ranged from 0.3 x 10{sup -12} to 54.0 x 10{sup -12} m{sup 2}(square meter). Air-injection permeability values of the Paintbrush nonwelded tuff ranged from 0.12 x 10{sup -12} to 3.0 x 10{sup -12} m{sup 2}. Air-injection permeability values of the Topopah Spring Tuff ranged from 0.02 x 10{sup -12} to 33.0 x 10{sup -12} m{sup 2}. The air-injection permeability value of the only Calico Hills Formation interval tested was 0.025 x 10{sup -12} m{sup 2}. The shallow test intervals of the Tiva Canyon Tuff had the highest air-injection permeability values. Variograms of the air-injection permeability values of the Topopah Spring Tuff show a hole effect; an initial increase in the variogram values is followed by a decrease. The hole effect is due to the decrease in permeability with depth identified in several geologic zones. The hole effect indicates some structural control of the permeability distribution, possibly associated with the deposition and cooling of the tuff. Analysis of variance indicates that the air-injection permeability values of borehole NRG-7a of the Topopah Spring Tuff are different from the other boreholes; this indicates areal variation in permeability.

  11. Borehole induction logging for the Dynamic Underground Stripping Project LLNL gasoline spill site

    SciTech Connect (OSTI)

    Boyd, S.; Newmark, R.; Wilt, M.

    1994-01-21

    Borehole induction logs were acquired for the purpose of characterizing subsurface physical properties and monitoring steam clean up activities at the Lawrence Livermore National Laboratory. This work was part of the Dynamic Underground Stripping Project`s demonstrated clean up of a gasoline spin. The site is composed of unconsolidated days, sands and gravels which contain gasoline both above and below the water table. Induction logs were used to characterize lithology, to provide ``ground truth`` resistivity values for electrical resistance tomography (ERT), and to monitor the movement of an underground steam plume used to heat the soil and drive volatile organic compounds (VOCs) to the extraction wells.

  12. Calibration Monitor for Dark Energy Experiments

    SciTech Connect (OSTI)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  13. NREL: Measurements and Characterization - Reference Cell Calibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Cell Calibration The National Renewable Energy Laboratory (NREL) calibrates primary reference cells for in-house use and for use by other national laboratories. We also do so to provide our clients and partners with a path for traceability to standards. Our laboratory is one of only four facilities in the world certified to calibrate reference cells in accordance with the world photovoltaic scale, and these measurements are accredited to International Organization for Standardization

  14. FY2008 Calibration Systems Final Report

    SciTech Connect (OSTI)

    Cannon, Bret D.; Myers, Tanya L.; Broocks, Bryan T.

    2009-01-01

    The Calibrations project has been exploring alternative technologies for calibration of passive sensors in the infrared (IR) spectral region. In particular, we have investigated using quantum cascade lasers (QCLs) because these devices offer several advantages over conventional blackbodies such as reductions in size and weight while providing a spectral source in the IR with high output power. These devices can provide a rapid, multi-level radiance scheme to fit any nonlinear behavior as well as a spectral calibration that includes the fore-optics, which is currently not available for on-board calibration systems.

  15. Tool calibration system for micromachining system

    DOE Patents [OSTI]

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  16. Radiometer Calibration and Characterization (RCC) User's Manual...

    Office of Scientific and Technical Information (OSTI)

    (RCC) User's Manual: Windows Version 4.0 Citation Details In-Document Search Title: Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0 ...

  17. Radiometer Calibration and Characterization (RCC) User's Manual...

    Office of Scientific and Technical Information (OSTI)

    RCC provides a unique method of calibrating broadband atmospheric longwave and solar ... Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar ...

  18. Gearbox Reliability Collaborative Bearing Calibration

    SciTech Connect (OSTI)

    van Dam, J.

    2011-10-01

    NREL has initiated the Gearbox Reliability Collaborative (GRC) to investigate the root cause of the low wind turbine gearbox reliability. The GRC follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. At the core of the project are two 750kW gearboxes that have been redesigned and rebuilt so that they are representative of the multi-megawatt gearbox topology currently used in the industry. These gearboxes are heavily instrumented and are tested in the field and on the dynamometer. This report discusses the bearing calibrations of the gearboxes.

  19. Cement technology for plugging boreholes in radioactive-waste-repository sites. Progress report, October 1, 1978-September 30, 1979

    SciTech Connect (OSTI)

    Moore, J.G.; Morgan, M.T.; McDaniel, E.W.; Greene, H.B.; West, G.A.

    1980-08-01

    Laboratory evaluations were made of several borehole plug formulations proposed for the Bell Canyon field test. Measurements included compressive strength, permeability, density, and thermal conductivity. A few preliminary tests with saltcrete formulations showed no significant difference in physical properties of the solid as a function of fly ash or cement composition. The saltcrete proposed for the field test gave acceptable pushout strength and permeability values using miniature borehole plugs in anhydrite. Similar laboratory tests made with a freshwater formulation indicated high permeability. Electron micrographs showed dissolution cavities or cracks at the plug-wall interface. These studies showed that the reactions occurring between the borehole plug and the adjacent rock wall are an important factor in obtaining a good seal and that laboratory tests are useful to indicate the possibility of success or failure of field tests.

  20. The application of moment methods to the analysis of fluid electrical conductivity logs in boreholes

    SciTech Connect (OSTI)

    Loew, S. ); Tsang, Chin-Fu; Hale, F.V. ); Hufschmied, P. , Baden )

    1990-08-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. Previous reports have presented a procedure for analyzing a time sequence of wellbore electric conductivity logs in order to obtain outflow parameters of fractures intercepted by the borehole, and a code, called BORE, used to simulate borehole fluid conductivity profiles given these parameters. The present report describes three new direct (not iterative) methods for analyzing a short time series of electric conductivity logs based on moment quantities of the individual outflow peaks and applies them to synthetic as well as to field data. The results of the methods discussed show promising results and are discussed in terms of their respective advantages and limitations. In particular it is shown that one of these methods, the so-called Partial Moment Method,'' is capable of reproducing packer test results from field experiments in the Leuggern deep well within a factor of three, which is below the range of what is recognized as the precision of packer tests themselves. Furthermore the new method is much quicker than the previously used iterative fitting procedure and is even capable of handling transient fracture outflow conditions. 20 refs., 11 figs., 10 tabs.

  1. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first broad-band acoustic pulse at a first broad-band frequency range having a first central frequency and a first bandwidth spread; generating a second broad-band acoustic pulse at a second broad-band frequency range different than the first frequency range having a second central frequency and a second bandwidth spread, wherein the first acoustic pulse and second acoustic pulse are generated by at least one transducer arranged on a tool located within the borehole; and transmitting the first and the second broad-band acoustic pulses into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated pulse by a non-linear mixing of the first and second acoustic pulses, wherein the collimated pulse has a frequency equal to the difference in frequencies between the first central frequency and the second central frequency and a bandwidth spread equal to the sum of the first bandwidth spread and the second bandwidth spread.

  2. Method and system for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Johnson Paul A.; Ten Cate, James A.; Guyer, Robert; Le Bas, Pierre-Yves; Vu, Cung; Nihei, Kurt; Schmitt, Denis P.; Skelt, Christopher

    2012-02-14

    A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.

  3. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    SciTech Connect (OSTI)

    DeWard, L.A.; Micka, J.A.

    1993-12-31

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST).

  4. Numerical Modeling of the Nucleation Conditions of Petal-Centerline...

    Open Energy Info (EERE)

    model using Poly3D has been developed to investigate the conditions in which the stress concentration below the floor of a borehole can cause tensile stress necessary to...

  5. Calibrating Multi-machine Power System Parameters with the Extended Kalman Filter

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Sun, Yannan; Huang, Zhenyu; Du, Pengwei; Diao, Ruisheng; Anderson, Kevin K.; Li, Yulan; Lee, Barry

    2012-07-24

    Large-scale renewable resources and novel smart-grid technologies continue to increase the complexity of power systems. As power systems continue to become more complex, accurate modeling for planning and operation becomes a necessity. Inaccurate system models would result in an unreliable assessment of system security conditions and could cause large-scale blackouts. This motivates the need for model parameter calibration, since some or all of the model parameters could be unknown or inaccurate. In this paper, the extended Kalman filter is used to calibrate the parameters of a multi-machine power system. The calibration performance is tested under varying fault locations, parameter errors and measurement noise giving an insight into how many generators and which generators could be difficult to calibrate.

  6. Microfabricated field calibration assembly for analytical instruments

    DOE Patents [OSTI]

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.; Rodacy, Philip J.; Simonson, Robert J.

    2011-03-29

    A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.

  7. System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole

    DOE Patents [OSTI]

    Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

    2013-01-01

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  8. Generic Disposal System Modeling, Fiscal Year 2011 Progress Report

    Broader source: Energy.gov [DOE]

    The UFD Campaign is developing generic disposal system models (GDSM) of different disposal environments and waste form options. Currently, the GDSM team is investigating four main disposal environment options: mined repositories in three geologic media (salt, clay, and granite) and the deep borehole concept in crystalline rock (DOE 2010d). Further developed the individual generic disposal system (GDS) models for salt, granite, clay, and deep borehole disposal environments.

  9. Confinement Vessel Assay System: Calibration and Certification Report

    SciTech Connect (OSTI)

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Gomez, Cipriano; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  10. Borehole Completion and Conceptual Hydrogeologic Model for the IFRC Well Field, 300 Area, Hanford Site

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Horner, Jacob A.; Vermeul, Vincent R.; Lanigan, David C.; Thorne, Paul D.

    2009-04-20

    A tight cluster of 35 new wells was installed over a former waste site, the South Process Pond (316-1 waste site), in the Hanford Site 300 Area in summer 2008. This report documents the details of the drilling, sampling, and well construction for the new array and presents a summary of the site hydrogeology based on the results of drilling and preliminary geophysical logging.

  11. Borehole data package for the 216-S-10 pond and ditch well 299-W26-13

    SciTech Connect (OSTI)

    DG Horton; BA Williams; CS Cearlock

    2000-06-01

    One new Resource Conservation and Recovery Act (RCRA) groundwater monitoring well was installed at the 216-S-10 pond and ditch during November and December 1999 in fulfillment of Tri-Party Agreement (Ecology 1996) milestone M-24-42. The well is 299-W26-13 and is located at the northeast comer to the 216-S-10 pond, southwest of 200 West Area. The well is a new downgradient well in the monitoring network. A figure shows the locations of all wells in the 216-S-10 pond and ditch monitoring network. The new well was constructed to the specifications and requirements described in Washington Administrative Code (WAC) 173-160 and WAC 173-303, the groundwater monitoring plan for the 216-S-10 pond and ditch (Airhart et al. 1990), and the description of work for well drilling and installation. During drilling and construction of well 299-W26-13, sampling and analysis activities were done to support remedial action, closure decisions at treatment, storage and disposal facilities, and to confirm preliminary site conceptual models developed in the 200-CS-1 Work Plan (DOE/RL 1999). This document compiles information on the drilling and construction, well development, pump installation, and sediment and groundwater testing applicable to well 299-W26-13. Appendix A contains the Well Summary Sheet (as-built diagram), the Well Construction Summary Report, and the geologist's log. Appendix B contains results of field and laboratory determinations of physical and chemical properties of sediment samples. Appendix C contains borehole geophysical logs. Additional documentation concerning well construction is on file with Bechtel Hanford, Inc., Richland, Washington.

  12. Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report

    SciTech Connect (OSTI)

    Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

    1981-05-01

    The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

  13. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt; Schmitt, Denis P.; Skelt, Christopher

    2010-11-23

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  14. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher

    2012-07-31

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  15. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher

    2012-09-04

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  16. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    SciTech Connect (OSTI)

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.; Finger, J.T.; Keefe, R.; Neal, J.T.

    1996-10-01

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drilling method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).

  17. Novel Chemically-Bonded Phosphate Ceramic Borehole Sealants (Ceramicretes) for Arctic Environments

    SciTech Connect (OSTI)

    Shirish Patil; Godwin A. Chukwu; Gang Chen; Santanu Khataniar

    2008-12-31

    Novel chemically bonded phosphate ceramic borehole sealant, i.e. Ceramicrete, has many advantages over conventionally used permafrost cement at Alaska North Slope (ANS). However, in normal field practices when Ceramicrete is mixed with water in blenders, it has a chance of being contaminated with leftover Portland cement. In order to identify the effect of Portland cement contamination, recent tests have been conducted at BJ services in Tomball, TX as well as at the University of Alaska Fairbanks with Ceramicrete formulations proposed by the Argonne National Laboratory. The tests conducted at BJ Services with proposed Ceramicrete formulations and Portland cement contamination have shown significant drawbacks which has caused these formulations to be rejected. However, the newly developed Ceramicrete formulation at the University of Alaska Fairbanks has shown positive results with Portland cement contamination as well as without Portland cement contamination for its effective use in oil well cementing operations at ANS.

  18. Method Apparatus And System For Detecting Seismic Waves In A Borehole

    DOE Patents [OSTI]

    West, Phillip B.; Sumstine, Roger L.

    2006-03-14

    A method, apparatus and system for detecting seismic waves. A sensing apparatus is deployed within a bore hole and may include a source magnet for inducing a magnetic field within a casing of the borehole. An electrical coil is disposed within the magnetic field to sense a change in the magnetic field due to a displacement of the casing. The electrical coil is configured to remain substantially stationary relative to the well bore and its casing along a specified axis such that displacement of the casing induces a change within the magnetic field which may then be sensed by the electrical coil. Additional electrical coils may be similarly utilized to detect changes in the same or other associated magnetic fields along other specified axes. The additional sensor coils may be oriented substantially orthogonally relative to one another so as to detect seismic waves along multiple orthogonal axes in three dimensional space.

  19. Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources

    SciTech Connect (OSTI)

    Zarling, John [Los Alamos National Laboratory; Johnson, Peter [Los Alamos National Laboratory

    2008-01-01

    Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

  20. Digiquartz pressure transducer calibration test results

    SciTech Connect (OSTI)

    Bentzen, F.L.

    1980-12-01

    The safeguarding of strategic nuclear material in chemical fuel reprocessing plants requires the accurate determination of liquid level, which is translated to pressure through bubbler probes. To measure the pressure with sufficient accuracy requires transducers better than standard process units. The Paroscientific Inc. Digiquartz transducer meets the requirement when calibrated. Calibration was accomplished with an automatic data acquisition system using a Hewlett Packard 9825A computer and associated precision laboratory equipment and a Ruska DDR 6000 pressure calibrator. Data were taken from 0 to 15 psid over the range of 15 to 60/sup 0/C for 14 pressure transducers.

  1. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    SciTech Connect (OSTI)

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; Coon, Ethan T.; Wilson, Cathy J.; Liljedahl, Anna K.; Romanovsky, V. E.

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.

  2. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; Coon, Ethan T.; Wilson, Cathy J.; Liljedahl, Anna K.; Romanovsky, V. E.

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  3. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    SciTech Connect (OSTI)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  4. State of lithospheric stress and borehole stability at Deep Sea Drilling Project site 504B, eastern equatorial Pacific

    SciTech Connect (OSTI)

    Morin, R.H. ); Newmark, R.L. ); Barton, C.A. ); Anderson, R.N. )

    1990-06-10

    Hole 504B in the eastern equatorial Pacific is the deepest hole to penetrate oceanic basement, extending more than 1,500 m beneath the seafloor. Two borehole televiewer (BHTV) logs have been combined and processed in terms of both acoustic amplitude and travel time in order to evaluate the extent and distribution of rock failure along the borehole wall. A histogram of borehole enlargements versus azimuth depicts a dominant breakout azimuth of N122.5{degree}E which corresponds to the direction of minimum principal stress S{sub h}. Furthermore, the bimodality of this histogram, with a secondary mode orthogonal to S{sub h}, indicates that a significant number of enlargements are coalesced tensile fractures occurring along the orientation of S{sub H}, the maximum principal stress. The appearance of this orthogonal, bimodal distribution suggests that the regional horizontal stress field is highly anisotropic, a condition supported by seismic data. The frequency of borehole enlargements increases with increasing depth and depicts a systematic structural deterioration of the well bore. The tensile fractures along the S{sub H} azimuth contribute to this degradation and appear to be induced by thermal stresses due to the injection of cold water into hot rock. The frequency of these extensional features does not increase with depth. Rather, their appearances can be directly correlated with shipboard efforts at deliberately cooling the well and/or with the sudden resumption of drilling after the hole had been allowed to reequilibrate thermally for several days. These latter borehole enlargements are more pronounced than those commonly associated with hydraulic fracturing. The mechanism for fracture initiation and growth, based upon temperature contrasts between the well bore fluid and the adjacent rock may enhance rock failure.

  5. AUTOMATIC CALIBRATING SYSTEM FOR PRESSURE TRANSDUCERS

    DOE Patents [OSTI]

    Amonette, E.L.; Rodgers, G.W.

    1958-01-01

    An automatic system for calibrating a number of pressure transducers is described. The disclosed embodiment of the invention uses a mercurial manometer to measure the air pressure applied to the transducer. A servo system follows the top of the mercury column as the pressure is changed and operates an analog- to-digital converter This converter furnishes electrical pulses, each representing an increment of pressure change, to a reversible counterThe transducer furnishes a signal at each calibration point, causing an electric typewriter and a card-punch machine to record the pressure at the instant as indicated by the counter. Another counter keeps track of the calibration points so that a number identifying each point is recorded with the corresponding pressure. A special relay control system controls the pressure trend and programs the sequential calibration of several transducers.

  6. Flow through electrode with automated calibration

    DOE Patents [OSTI]

    Szecsody, James E [Richland, WA; Williams, Mark D [Richland, WA; Vermeul, Vince R [Richland, WA

    2002-08-20

    The present invention is an improved automated flow through electrode liquid monitoring system. The automated system has a sample inlet to a sample pump, a sample outlet from the sample pump to at least one flow through electrode with a waste port. At least one computer controls the sample pump and records data from the at least one flow through electrode for a liquid sample. The improvement relies upon (a) at least one source of a calibration sample connected to (b) an injection valve connected to said sample outlet and connected to said source, said injection valve further connected to said at least one flow through electrode, wherein said injection valve is controlled by said computer to select between said liquid sample or said calibration sample. Advantages include improved accuracy because of more frequent calibrations, no additional labor for calibration, no need to remove the flow through electrode(s), and minimal interruption of sampling.

  7. Jet energy calibration at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions (pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  8. The Observability Calibration Test Development Framework

    SciTech Connect (OSTI)

    Endicott-Popovsky, Barbara E.; Frincke, Deborah A.

    2007-06-20

    Abstract— Formal standards, precedents, and best practices for verifying and validating the behavior of low layer network devices used for digital evidence-collection on networks are badly needed— initially so that these can be employed directly by device owners and data users to document the behaviors of these devices for courtroom presentation, and ultimately so that calibration testing and calibration regimes are established and standardized as common practice for both vendors and their customers [1]. The ultimate intent is to achieve a state of confidence in device calibration that allows the network data gathered by them to be relied upon by all parties in a court of law. This paper describes a methodology for calibrating forensic-ready low layer network devices based on the Flaw Hypothesis Methodology [2,3].

  9. ARM: GRAMS: calibration information for the total solar broadband...

    Office of Scientific and Technical Information (OSTI)

    solar broadband radiometer (TBBR) Title: ARM: GRAMS: calibration information for the total solar broadband radiometer (TBBR) GRAMS: calibration information for the total solar ...

  10. Note: On the wavelength dependence of the intensity calibration...

    Office of Scientific and Technical Information (OSTI)

    Note: On the wavelength dependence of the intensity calibration factor of extreme ... Title: Note: On the wavelength dependence of the intensity calibration factor of extreme ...

  11. Cosmic Reionization On Computers I. Design and Calibration of...

    Office of Scientific and Technical Information (OSTI)

    I. Design and Calibration of Simulations Citation Details In-Document Search Title: Cosmic Reionization On Computers I. Design and Calibration of Simulations Authors: Gnedin, ...

  12. ARM: Microwave Radiometer: High Frequency, calibration data for...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Microwave Radiometer: High Frequency, calibration data for 150GHz channel Microwave Radiometer: High Frequency, calibration data for 150GHz channel Authors: Maria ...

  13. ARM: Microwave Radiometer: High Frequency, calibration data for...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Microwave Radiometer: High Frequency, calibration data for 90GHz channel Microwave Radiometer: High Frequency, calibration data for 90GHz channel Authors: Maria Cadeddu ...

  14. Microfabricated Field Calibration Assembly - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Startup America Startup America Industrial Technologies Industrial Technologies Find More Like This Return to Search Microfabricated Field Calibration Assembly Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (781 KB) Technology Marketing SummaryReliable determination of the presence and/or quantity of a particular analyte in the field can be greatly enhanced if the analytical instrument is equipped with a time-of-use calibration

  15. Calibration and Rating of Photovoltaics: Preprint

    SciTech Connect (OSTI)

    Emery, K.

    2012-06-01

    Rating the performance of photovoltaic (PV) modules is critical to determining the cost per watt, and efficiency is useful to assess the relative progress among PV concepts. Procedures for determining the efficiency for PV technologies from 1-sun to low concentration to high concentration are discussed. We also discuss the state of the art in primary and secondary calibration of PV reference cells used by calibration laboratories around the world. Finally, we consider challenges to rating PV technologies and areas for improvement.

  16. Calibration facility for environment dosimetry instruments

    SciTech Connect (OSTI)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-16

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∌10{sup −9} - 10{sup −8} Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  17. Handling Model Error in the Calibration of Physical Models. ...

    Office of Scientific and Technical Information (OSTI)

    Type: Conference Resource Relation: Conference: Proposed for presentation at the 15th International Conference on Numerical Combustion held April 19-22, 2015 in Avignon, France

  18. Apparatus and methods for determining gas saturation and porosity of a formation penetrated by a gas filled or liquid filled borehole

    SciTech Connect (OSTI)

    Wilson, Robert D.

    2001-03-27

    Methods and apparatus are disclosed for determining gas saturation, liquid saturation, porosity and density of earth formations penetrated by a well borehole. Determinations are made from measures of fast neutron and inelastic scatter gamma radiation induced by a pulsed, fast neutron source. The system preferably uses two detectors axially spaced from the neutron source. One detector is preferably a scintillation detector responsive to gamma radiation, and a second detector is preferably an organic scintillator responsive to both neutron and gamma radiation. The system can be operated in cased boreholes which are filled with either gas or liquid. Techniques for correcting all measurements for borehole conditions are disclosed.

  19. Application Of A Spherical-Radial Heat Transfer Model To Calculate...

    Open Energy Info (EERE)

    A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. MINOS Calibration and NA49 Hadronic Production Studies

    SciTech Connect (OSTI)

    Morse, Robert James

    2003-08-01

    An overview of the current status of the Main Injector Neutrino Oscillation Search (MINOS) is presented. MINOS is a long-baseline experiment with two detectors situated in North America. The near detector is based at the emission point of the NuMI beam at Fermilab, Chicago, the far detector is 735 km downstream in a disused iron mine in Soudan, Minnesota. A third detector, the calibration detector, is used to cross-calibrate these detectors by sampling different particle beams at CERN. A detailed description of the design and construction of the light-injection calibration system is included. Also presented are experimental investigations into proton-carbon collisions at 158 GeV/c carried out with the NA49 experiment at CERN. The NA49 experiment is a Time Projection Chamber (TPC) based experiment situated at CERN's North Area. It is a well established experiment with well known characteristics. The data gained from this investigation are to be used to parameterize various hadronic production processes in accelerator and atmospheric neutrino production. These hadronic production parameters will be used to improve the neutrino generation models used in calculating the neutrino oscillation parameters in MINOS.

  1. Calibration of a Modified Californium Shuffler

    SciTech Connect (OSTI)

    Sadowski, E.T.; Armstrong, F.; Oldham, R.; Ceo, R.; Williams, N.

    1995-06-01

    A californium shuffler originally designed to assay hollow cylindrical pieces of UA1 has been modified to assay solid cylinders. Calibration standards were characterized via chemical analysis of the molten UA1 taken during casting of the standards. The melt samples yielded much more reliable characterization data than drill samples taken from standards after the standards had solidified. By normalizing one well-characterized calibration curve to several standards at different enrichments, a relatively small number of standards was required to develop an enrichment-dependent calibration. The precision of this shuffler is 0.65%, and the typical random and systematic uncertainties are 0.53% and 0.73%, respectively, for a six minute assay of an ingot containing approximately 700 grams of {sup 235}U. This paper will discuss (1) the discrepancies encountered when UA1 standards were characterized via melt samples versus drill samples, (2) a calibration methodology employing a small number of standards, and (3) a comparison of results from a previously unused shuffler with an existing shuffler. A small number of UA1 standards have been characterized using samples from the homogeneous molten state and have yielded enrichment-dependent and enrichment-independent calibration curves on two different shufflers.

  2. Calibration-free optical chemical sensors

    DOE Patents [OSTI]

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  3. Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

    SciTech Connect (OSTI)

    Hadgu, Teklu; Stein, Emily; Hardin, Ernest; Freeze, Geoffrey A.; Hammond, Glenn Edward

    2015-11-01

    Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predict that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.

  4. Bulk and mechanical properties of the Paintbrush tuff recovered from boreholes UE25 NRG-4 and -5: Data report

    SciTech Connect (OSTI)

    Boyd, P.J.; Noel, J.S.; Martin, R.J. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    Experimental results are presented for bulk and mechanical properties measurements on specimens of the Paintbrush tuff recovered from boreholes UE25 NRG-4 and -5, at Yucca Mountain, Nevada. Measurements have been performed on three thermal/mechanical units, PTn, TSwl, and TSw2. On each specimen the following bulk properties have been reported: dry bulk density, saturated bulk density, average grain density, and porosity. Unconfined compression to failure, confined compression to failure, and indirect tensile strength tests were performed on selected specimens recovered from the boreholes. In addition, compressional and shear wave velocities were measured on specimens designated for unconfined compression and confined compression experiments. Measurements were conducted at room temperature on nominally water-saturated specimens. The nominal rate for the fracture experiments was 10{sup -5}s{sup -1}.

  5. Characterization of Vadose Zone Sediment: Borehole C3103 Located in the 216-B-7A Crib Near the B Tank Farm

    SciTech Connect (OSTI)

    Lindenmeier, Clark W.; Serne, R JEFFREY.; Bjornstad, Bruce N.; Last, George V.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2002-12-01

    This report summarizes data collected from samples in borehole C3103. Borehole C3103 was completed to further characterize the nature and extent of vadose zone contaminants supplied by intentional liquid discharges into the crib 216-B7A/7B between 1954 and 1967. These cribs received dilute waste streams from the bismuth phosphate fuel reprocessing program in the 1950's and decontamination waste in the 1960's. Elevated concentrations of several constituents were primarily measured at different depth intervals. The primary radionuclides present in this borehole are cesium-137 and uranium near the top of the borehole. Chemical characteristics attributed to wastewater-soil interaction at different locations within this zone are elevated pH, sodium, fluoride, carbonate nitrate, and sulphate

  6. Seismic Readings from the Deepest Borehole in the New Madrid Seismic Zone

    SciTech Connect (OSTI)

    Woolery, Edward W; Wang, Zhenming; Sturchio, Neil C

    2006-03-01

    Since the 1980s, the research associated with the UK network has been primarily strong-motion seismology of engineering interest. Currently the University of Kentucky operates a strong-motion network of nine stations in the New Madrid Seismic Zone. A unique feature of the network is the inclusions of vertical strong-motion arrays, each with one or two downhole accelerometers. The deepest borehole array is 260 m below the surfaces at station VASA in Fulton County, Kentucky. A preliminary surface seismic refraction survey was conducted at the site before drilling the hole at VSAS (Woolery and Wang, 2002). The depth to the Paleozoic bedrock at the site was estimated to be approximately 595 m, and the depth to the first very stiff layer (i.e. Porters Creek Clay) was found to be about 260 m. These depths and stratigraphic interpretation correlated well with a proprietary seismic reflection line and the Ken-Ten Oil Exploration No. 1 Sanger hole (Schwalb, 1969), as well as our experience in the area (Street et al., 1995; Woolery et al., 1999).

  7. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  8. Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ``area characterization`` phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ``Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.``

  9. Calibration Monitoring for Sensor Calibration Interval Extension: Gaps in the Current Science Base

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-10-09

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. International application of calibration monitoring has shown that sensors may operate for longer periods within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. Online monitoring (OLM) can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of OLM for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This paper summarizes a recent state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and OLM algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several technical needs were identified, including an understanding of the impacts of sensor degradation on measurements for both conventional and emerging sensors; the quantification of uncertainty in online calibration assessment; determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity.

  10. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-08-31

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to

  11. WAVELENGTH CALIBRATION OF THE HAMILTON ECHELLE SPECTROGRAPH

    SciTech Connect (OSTI)

    Pakhomov, Yu. V.; Zhao, G.

    2013-10-01

    We present the wavelength calibration of the Hamilton Echelle Spectrograph at Lick Observatory. The main problem with the calibration of this spectrograph arises from the fact that thorium lines are absent in the spectrum of the presumed ThAr hollow-cathode lamp now under operation; numerous unknown strong lines, which have been identified as titanium lines, are present in the spectrum. We estimate the temperature of the lamp's gas which permits us to calculate the intensities of the lines and to select a large number of relevant Ti I and Ti II lines. The resulting titanium line list for the Lick hollow-cathode lamp is presented. The wavelength calibration using this line list was made with an accuracy of about 0.006 Å.

  12. Design and modeling of small scale multiple fracturing experiments

    SciTech Connect (OSTI)

    Cuderman, J F

    1981-12-01

    Recent experiments at the Nevada Test Site (NTS) have demonstrated the existence of three distinct fracture regimes. Depending on the pressure rise time in a borehole, one can obtain hydraulic, multiple, or explosive fracturing behavior. The use of propellants rather than explosives in tamped boreholes permits tailoring of the pressure risetime over a wide range since propellants having a wide range of burn rates are available. This technique of using the combustion gases from a full bore propellant charge to produce controlled borehole pressurization is termed High Energy Gas Fracturing (HEGF). Several series of HEGF, in 0.15 m and 0.2 m diameter boreholes at 12 m depths, have been completed in a tunnel complex at NTS where mineback permitted direct observation of fracturing obtained. Because such large experiments are costly and time consuming, smaller scale experiments are desirable, provided results from small experiments can be used to predict fracture behavior in larger boreholes. In order to design small scale gas fracture experiments, the available data from previous HEGF experiments were carefully reviewed, analytical elastic wave modeling was initiated, and semi-empirical modeling was conducted which combined predictions for statically pressurized boreholes with experimental data. The results of these efforts include (1) the definition of what constitutes small scale experiments for emplacement in a tunnel complex at the Nevada Test Site, (2) prediction of average crack radius, in ash fall tuff, as a function of borehole size and energy input per unit length, (3) definition of multiple-hydraulic and multiple-explosive fracture boundaries as a function of boreholes size and surface wave velocity, (4) semi-empirical criteria for estimating stress and acceleration, and (5) a proposal that multiple fracture orientations may be governed by in situ stresses.

  13. Bulk and mechanical properties of the Paintbrush tuff recovered from borehole USW NRG-7/7A: Data report. Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Martin, R.J.; Boyd, P.J.; Noel, J.S.; Price, R.H.

    1995-05-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves prediction of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from the USW NRG-717A borehole drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. USW NRG-7/7A was drilled to a depth of 1,513.4 feet through five thermal/mechanical units of Paintbrush tuff and terminating in the tuffaceous beds of the Calico IEUS. The thermal/mechanical stratigraphy was defined by Orfiz et al. to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy is presented. The tuff samples in this study have a wide range of welding characteristics, and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties.

  14. Calibrating feedwater flow nozzles in-situ

    SciTech Connect (OSTI)

    Caudill, M.; Diaz-Tous, I.; Murphy, S.; Leggett, M.; Crandall, C.

    1996-05-01

    This paper presents a new method for in-situ calibration of feedwater flow nozzles wherein feedwater flow is determined indirectly by performing a high accuracy heat balance around the highest-pressure feedwater heater. It is often difficult to reliably measure feedwater flow. Over the life of a power plant, the feedwater nozzle can accumulate deposits, erode, or suffer other damage that can render the original nozzle calibration inaccurate. Recalibration of installed feedwater flow nozzles is expensive and time consuming. Traditionally, the nozzle is cut out of the piping and sent to a laboratory for recalibration, which can be an especially difficult, expensive, and time-consuming task when involving high pressure feedwater lines. ENCOR-AMERICA, INC. has developed an accurate and cost-effective method of calibrating feedwater nozzles in-situ as previously reported at the 1994 EPRI Heat Rate Improvement Conference. In this method, feedwater flow and differential pressure across the nozzle are measured concurrently. The feedwater flow is determined indirectly by performing a heat balance around the highest-pressure feedwater heater. Extraction steam to the feedwater heater is measured by use of a high accuracy turbine flowmeter. The meters used have been calibrated at an independent laboratory with a primary or secondary device traceable to the NIST. In this paper, a new variation on the above method is reported. The new approach measures the heater drains and vent flows instead of the extraction steam flow. Test theory and instrumentation will be discussed. Results of in-situ feedwater nozzle calibration tests performed at two units owned by Tri-State Generation and Transmission Association will be presented.

  15. Barometric pumping with a twist: VOC containment and remediation without boreholes

    SciTech Connect (OSTI)

    Lowry, W.; Dunn, S.D.; Walsh, R.

    1995-10-01

    A large national cost is incurred in remediating near-surface contamination such as surface spills, leaking buried pipelines, and underground storage tank sites. Many of these sites can be contained and remediated using enhanced natural venting, capitalizing on barometric pumping. Barometric pumping is the cyclic movement experienced by soil gas due to oscillations in atmospheric pressure. Daily variations of 5 millibars are typical, while changes of 25 to 50 millibars can occur due to major weather front passage. The fluctuations can cause bulk vertical movement in soil gas ranging from centimeters to meters, depending on the amplitude of the pressure oscillation, soil gas permeability, and depth to an impermeable boundary such as the water table. Since the bulk gas movement is cyclic, under natural conditions no net advective vertical movement occurs over time. Science and Engineering Associates, Inc., is developing an engineered system to capitalize on the oscillatory flow for soil contaminant remediation and containment. By design, the system allows normal upward movement of soil gas but restricts the downward movement during barometric highs. The earth`s surface is modified with a sealant and vent valve such that the soil gas flow is literally {open_quotes}ratcheted{close_quotes} to cause a net upward flow over time. A key feature of the design is that it does not require boreholes, resulting in a very low cost remediation effort and reduced personnel exposure risk. In the current phase (Phase I) the system`s performance is being evaluated. Static and transient analysis results are presented which illustrate the relative magnitude of this advective movement compared to downward contaminant diffusion rates. Calculations also indicate the depth of influence for various surface and soil configurations. The system design will be presented, as well as a cost assessment compared to conventional techniques.

  16. Demonstration of emulator-based Bayesian calibration of safety analysis codes: Theory and formulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yurko, Joseph P.; Buongiorno, Jacopo; Youngblood, Robert

    2015-05-28

    System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator) construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here withmore » Markov Chain Monte Carlo (MCMC) sampling feasible. This study uses Gaussian Process (GP) based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP) model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.« less

  17. Demonstration of emulator-based Bayesian calibration of safety analysis codes: Theory and formulation

    SciTech Connect (OSTI)

    Yurko, Joseph P.; Buongiorno, Jacopo; Youngblood, Robert

    2015-05-28

    System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator) construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here with Markov Chain Monte Carlo (MCMC) sampling feasible. This study uses Gaussian Process (GP) based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP) model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.

  18. Definition of energy-calibrated spectra for national reachback

    SciTech Connect (OSTI)

    Kunz, Christopher L.; Hertz, Kristin L.

    2014-01-01

    Accurate energy calibration is critical for the timeliness and accuracy of analysis results of spectra submitted to National Reachback, particularly for the detection of threat items. Many spectra submitted for analysis include either a calibration spectrum using 137Cs or no calibration spectrum at all. The single line provided by 137Cs is insufficient to adequately calibrate nonlinear spectra. A calibration source that provides several lines that are well-spaced, from the low energy cutoff to the full energy range of the detector, is needed for a satisfactory energy calibration. This paper defines the requirements of an energy calibration for the purposes of National Reachback, outlines a method to validate whether a given spectrum meets that definition, discusses general source considerations, and provides a specific operating procedure for calibrating the GR-135.

  19. Calibration method for video and radiation imagers

    DOE Patents [OSTI]

    Cunningham, Mark F.; Fabris, Lorenzo; Gee, Timothy F.; Goddard, Jr., James S.; Karnowski, Thomas P.; Ziock, Klaus-peter

    2011-07-05

    The relationship between the high energy radiation imager pixel (HERIP) coordinate and real-world x-coordinate is determined by a least square fit between the HERIP x-coordinate and the measured real-world x-coordinates of calibration markers that emit high energy radiation imager and reflect visible light. Upon calibration, a high energy radiation imager pixel position may be determined based on a real-world coordinate of a moving vehicle. Further, a scale parameter for said high energy radiation imager may be determined based on the real-world coordinate. The scale parameter depends on the y-coordinate of the moving vehicle as provided by a visible light camera. The high energy radiation imager may be employed to detect radiation from moving vehicles in multiple lanes, which correspondingly have different distances to the high energy radiation imager.

  20. Calibration of optical particle-size analyzer

    DOE Patents [OSTI]

    Pechin, William H.; Thacker, Louis H.; Turner, Lloyd J.

    1979-01-01

    This invention relates to a system for the calibration of an optical particle-size analyzer of the light-intercepting type for spherical particles, wherein a rotary wheel or disc is provided with radially-extending wires of differing diameters, each wire corresponding to a particular equivalent spherical particle diameter. These wires are passed at an appropriate frequency between the light source and the light detector of the analyzer. The reduction of light as received at the detector is a measure of the size of the wire, and the electronic signal may then be adjusted to provide the desired signal for corresponding spherical particles. This calibrator may be operated at any time without interrupting other processing.

  1. Appendix D: Facility Process Data and Appendix E: Equipment Calibration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Sheets | Department of Energy D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Docket No. EO-05-01: Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets

  2. Evaluation of Improved Pyrgeometer Calibration Method

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Pyrgeometer Calibration Method I. Reda, P. A. Gotseff, T. L. Stoffel, and C. Webb National Renewable Energy Laboratory Golden, Colorado Abstract Broadband longwave (atmospheric) irradiance measurements are important for determining the earth's total energy balance. The Atmospheric Radiation Measurement (ARM) Program has deployed more than 50 pyrgeometers for measuring the upwelling and downwelling longwave irradiance as part of Solar Infrared Station (SIRS), SKYRAD, and GNDRAD

  3. Calibration of the GLAST Burst Monitor Detectors

    SciTech Connect (OSTI)

    von Kienlin, Andreas; Bissaldi, Elisabetta; Lichti, Giselher G.; Steinle, Helmut; Krumrey, Michael; Gerlach, Martin; Fishman, Gerald J.; Meegan, Charles; Bhat, Narayana; Briggs, Michael S.; Diehl, Roland; Connaughton, Valerie; Greiner, Jochen; Kippen, R.Marc; Kouveliotou, Chryssa; Paciesas, William; Preece, Robert; Wilson-Hodge, Colleen

    2011-11-29

    The GLAST Burst Monitor (GBM) will augment the capabilities of GLAST for the detection of cosmic gamma-ray bursts by extending the energy range (20 MeV to > 300 GeV) of the Large Area Telescope (LAT) towards lower energies by 2 BGO-detectors (150 keV to 30 MeV) and 12 NaI(Tl) detectors (10 keV to 1 MeV). The physical detector response of the GBM instrument for GRBs is determined with the help of Monte Carlo simulations, which are supported and verified by on-ground calibration measurements, performed extensively with the individual detectors at the MPE in 2005. All flight and spare detectors were irradiated with calibrated radioactive sources in the laboratory (from 14 keV to 4.43 MeV). The energy/channel-relations, the dependences of energy resolution and effective areas on the energy and the angular responses were measured. Due to the low number of emission lines of radioactive sources below 100 keV, calibration measurements in the energy range from 10 keV to 60 keV were performed with the X-ray radiometry working group of the Physikalisch-Technische Bundesanstalt (PTB) at the BESSY synchrotron radiation facility, Berlin.

  4. Characterization of low-melting electrolytes for potential geothermal borehole power supplies: The LiBr-KBr-LiF eutectic

    SciTech Connect (OSTI)

    Guidotti, R.A.; Reinhardt, F.W.

    1998-05-01

    The suitability of modified thermal-battery technology for use as a potential power source for geothermal borehole applications is under investigation. As a first step, the discharge processes that take place in LiSi/LiBr-KBr-LiF/FeS{sub 2} thermal cells were studied at temperatures of 350 C and 400 C using pelletized cells with immobilized electrolyte. Incorporation of a reference electrode allowed the relative contribution of each electrode to the overall cell polarization to be determined. The results of single-cell tests are presented, along with preliminary data for cells based on a lower-melting CsBr-LiBr-KBr eutectic salt.

  5. Test surfaces useful for calibration of surface profilometers

    DOE Patents [OSTI]

    Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

    2013-12-31

    The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

  6. Model Analysis ToolKit

    Energy Science and Technology Software Center (OSTI)

    2015-05-15

    MATK provides basic functionality to facilitate model analysis within the Python computational environment. Model analysis setup within MATK includes: - define parameters - define observations - define model (python function) - define samplesets (sets of parameter combinations) Currently supported functionality includes: - forward model runs - Latin-Hypercube sampling of parameters - multi-dimensional parameter studies - parallel execution of parameter samples - model calibration using internal Levenberg-Marquardt algorithm - model calibration using lmfit package - modelmore » calibration using levmar package - Markov Chain Monte Carlo using pymc package MATK facilitates model analysis using: - scipy - calibration (scipy.optimize) - rpy2 - Python interface to R« less

  7. THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL

    SciTech Connect (OSTI)

    G.J. Saulnier Jr; W. Statham

    2006-03-10

    The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. the Pena Blanca Natural Analogue Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following characteristics as compared to the Yucca Mountain repository site. (1) Analogous source: UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geologic setting: fractured, welded, and altered rhyolitic ash flow tuffs overlying carbonate rocks; (3) Analogous climate: Semiarid to arid; (4) Analogous geochemistry: Oxidizing conditions; and (5) Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table. The Nopal I deposit is approximately 8 {+-} 0.5 million years old and has been exposed to oxidizing conditions during the last 3.2 to 3.4 million years. The Pena Blanca Natural Analogue Model considers that the uranium oxide and uranium silicates in the ore deposit were originally analogous to uranium-oxide spent nuclear fuel. The Pena Blanca site has been characterized using field and laboratory investigations of its fault and fracture distribution, mineralogy, fracture fillings, seepage into the mine adits, regional hydrology, and mineralization that shows the extent of radionuclide migration. Three boreholes were drilled at the Nopal I mine site in 2003 and these boreholes have provided samples for lithologic characterization, water-level measurements, and water samples for laboratory

  8. Calibration of an amorphous-silicon flat panel portal imager for exit-beam dosimetry

    SciTech Connect (OSTI)

    Chen, Josephine; Chuang, Cynthia F.; Morin, Olivier; Aubin, Michele; Pouliot, Jean

    2006-03-15

    Amorphous-silicon flat panel detectors are currently used to acquire digital portal images with excellent image quality for patient alignment before external beam radiation therapy. As a first step towards interpreting portal images acquired during treatment in terms of the actual dose delivered to the patient, a calibration method is developed to convert flat panel portal images to the equivalent water dose deposited in the detector plane and at a depth of 1.5 cm. The method is based on empirical convolution models of dose deposition in the flat panel detector and in water. A series of calibration experiments comparing the response of the flat panel imager and ion chamber measurements of dose in water determines the model parameters. Kernels derived from field size measurements account for the differences in the production and detection of scattered radiation in the two systems. The dissimilar response as a function of beam energy spectrum is characterized from measurements performed at various off-axis positions and for increasing attenuator thickness in the beam. The flat panel pixel inhomogeneity is corrected by comparing a large open field image with profiles measured in water. To verify the accuracy of the calibration method, calibrated flat panel profiles were compared with measured dose profiles for fields delivered through solid water slabs, a solid water phantom containing an air cavity, and an anthropomorphic head phantom. Open rectangular fields of various sizes and locations as well as a multileaf collimator-shaped field were delivered. For all but the smallest field centered about the central axis, the calibrated flat panel profiles matched the measured dose profiles with little or no systematic deviation and approximately 3% (two standard deviations) accuracy for the in-field region. The calibrated flat panel profiles for fields located off the central axis showed a small -1.7% systematic deviation from the measured profiles for the in-field region

  9. SU-E-T-377: Inaccurate Positioning Might Introduce Significant MapCheck Calibration Error in Flatten Filter Free Beams

    SciTech Connect (OSTI)

    Wang, S; Chao, C; Chang, J

    2014-06-01

    Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as a detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect

  10. Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole).

  11. Calibration of a Thomson scattering diagnostic for fluctuation measurements

    SciTech Connect (OSTI)

    Stephens, H. D.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Holly, D. J.; O'Connell, R.; Reusch, J. A.

    2008-10-15

    Detailed calibrations of the Madison Symmetric Torus polychromator Thomson scattering system have been made suitable for electron temperature fluctuation measurements. All calibrations have taken place focusing on accuracy, ease of use and repeatability, and in situ measurements wherever possible. Novel calibration processes have been made possible with an insertable integrating sphere (ISIS), using an avalanche photodiode (APD) as a reference detector and optical parametric oscillator (OPO). Discussed are a novel in situ spatial calibration with the use of the ISIS, the use of an APD as a reference detector to streamline the APD calibration process, a standard dc spectral calibration, and in situ pulsed spectral calibration made possible with a combination of an OPO as a light source, the ISIS, and an APD used as a reference detector. In addition a relative quantum efficiency curve for the APDs is obtained to aid in uncertainty analysis.

  12. Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

    SciTech Connect (OSTI)

    Paulsson, Bjorn N.P.

    2015-02-28

    To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.

  13. Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands. Part 4. Analysis of borehole gravity surveys and other geologic and bathymetric studies in vicinity of Oak and Koa craters

    SciTech Connect (OSTI)

    Henry, T.W.; Wardlaw, B.R.

    1987-01-01

    The Pacific Enewetak Atoll Crater Exploration (PEACE) Program was established to resolve a number of questions for the Department of Defense (DOD) about the geologic and material-properties parameters of two craters (KOA and OAK), formed by near-surface bursts of high-yield thermonuclear devices on the northern margin of Enewetak Atoll, Marshall Islands, in 1958. The multidisciplinary studies conducted by the USGS in collaboration with other organizations during 1984 through 1987 were part of a much larger research initiative by the DNA to better understand the dynamic properties of strategic-scale nuclear bursts and the relevance of the Pacific Proving Grounds (PPG) craters to issues of strategic basing and targeting of nuclear weapons. Major topics include: Borehole gravity; Palentologic evidence for mixing; Electron paramagnetic resonance studies; Bathymetric studies of OAK crater; Constraints on densification and piping for OAK; and Additional studies of geologic crater models.

  14. PV Cell and Module Calibrations at NREL

    SciTech Connect (OSTI)

    Emery, Keith

    2012-10-22

    NREL has equipment to measure any conceivable cell or module technology. The lack of standards for low concentration modules complicates matters. Spectrally adjustable simulators are critical for more than three junctions. NREL's 10-channel fiber optic simulator has shown that the light can be set for each junction within 1% of what it would be under the reference spectrum for up to a five-junction cell. Uncertainty in module simulators dominated by spatial nonuniformity for calibration labs. Manufacturers can mitigate this error by using matched reference modules instead of cells.

  15. The JANA Calibrations and Conditions Database API

    SciTech Connect (OSTI)

    David Lawrence

    2010-07-01

    Calibrations and conditions databases can be accessed from within the JANA Event Processing framework through the API defined in its JCalibration base class. The API is designed to support everything from databases, to web services to flat files for the backend. A Web Service backend using the gSOAP toolkit has been implemented which is particularly interesting since it addresses many modern cybersecurity issues including support for SSL. The API allows constants to be retrieved through a single line of C++ code with most of the context, including the transport mechanism, being implied by the run currently being analyzed and the environment relieving developers from implementing such details.

  16. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  17. X-ray calibration of Kodak Direct Exposure film

    SciTech Connect (OSTI)

    Brown, D.B.; Burkhalter, P.G.; Rockett, P.D.; Bird, C.R.; Hailey, C.J.; Sullivan, D.

    1985-08-15

    Kodak Direct Exposure film (DEF) has replaced Kodak No-Screen film for use in x-ray diffraction analysis and in autoradiography. DEF is a double-emulsion film which has been found to have improved radio-graphic characteristics over No-Screen. A set of H-D curves has been generated for DEF at five photon energies: 0.930, 1.49, 1.74, 4.51/4.93, and 6.93 keV. The KMSF x-ray calibration facility was utilized to study the absolute sensitivity of this film over its full dynamic range. Physical examination of the film was followed by theoretical modeling, which adequately reproduced the measured curves.

  18. Cosmic reionization on computers. I. Design and calibration of simulations

    SciTech Connect (OSTI)

    Gnedin, Nickolay Y.

    2014-09-20

    Cosmic Reionization On Computers is a long-term program of numerical simulations of cosmic reionization. Its goal is to model fully self-consistently (albeit not necessarily from the first principles) all relevant physics, from radiative transfer to gas dynamics and star formation, in simulation volumes of up to 100 comoving Mpc, and with spatial resolution approaching 100 pc in physical units. In this method paper, we describe our numerical method, the design of simulations, and the calibration of numerical parameters. Using several sets (ensembles) of simulations in 20 h {sup –1} Mpc and 40 h {sup –1} Mpc boxes with spatial resolution reaching 125 pc at z = 6, we are able to match the observed galaxy UV luminosity functions at all redshifts between 6 and 10, as well as obtain reasonable agreement with the observational measurements of the Gunn-Peterson optical depth at z < 6.

  19. THE ABSOLUTE CALIBRATION OF THE EUV IMAGING SPECTROMETER ON HINODE

    SciTech Connect (OSTI)

    Warren, Harry P.; Ugarte-Urra, Ignacio; Landi, Enrico

    2014-07-01

    We investigate the absolute calibration of the EUV Imaging Spectrometer (EIS) on Hinode by comparing EIS full-disk mosaics with irradiance observations from the EUV Variability Experiment on the Solar Dynamics Observatory. We also use extended observations of the quiet corona above the limb combined with a simple differential emission measure model to establish new effective area curves that incorporate information from the most recent atomic physics calculations. We find that changes to the EIS instrument sensitivity are a complex function of both time and wavelength. We find that the sensitivity is decaying exponentially with time and that the decay constants vary with wavelength. The EIS short wavelength channel shows significantly longer decay times than the long wavelength channel.

  20. Calibrating Accelerometers Using an Electromagnetic Launcher

    SciTech Connect (OSTI)

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  1. Two Analyte Calibration From The Transient Response Of Potentiometric Sensors Employed With The SIA Technique

    SciTech Connect (OSTI)

    Cartas, Raul; Mimendia, Aitor; Valle, Manel del; Legin, Andrey

    2009-05-23

    Calibration models for multi-analyte electronic tongues have been commonly built using a set of sensors, at least one per analyte under study. Complex signals recorded with these systems are formed by the sensors' responses to the analytes of interest plus interferents, from which a multivariate response model is then developed. This work describes a data treatment method for the simultaneous quantification of two species in solution employing the signal from a single sensor. The approach used here takes advantage of the complex information recorded with one electrode's transient after insertion of sample for building the calibration models for both analytes. The departure information from the electrode was firstly processed by discrete wavelet for transforming the signals to extract useful information and reduce its length, and then by artificial neural networks for fitting a model. Two different potentiometric sensors were used as study case for simultaneously corroborating the effectiveness of the approach.

  2. The Modular Borehole Monitoring Program. A research program to optimize well-based monitoring for geologic carbon sequestration

    SciTech Connect (OSTI)

    Freifeld, Barry; Daley, Tom; Cook, Paul; Trautz, Robert; Dodds, Kevin

    2014-12-31

    Understanding the impacts caused by injection of large volumes of CO2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Borehole Monitoring (MBM) Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned

  3. The Modular Borehole Monitoring Program. A research program to optimize well-based monitoring for geologic carbon sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Freifeld, Barry; Daley, Tom; Cook, Paul; Trautz, Robert; Dodds, Kevin

    2014-12-31

    Understanding the impacts caused by injection of large volumes of CO2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Borehole Monitoring (MBM)more » Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned within the initial MBM

  4. Calibration and Collaboration: Important Tools to Design high-Performance Affordable Buildings

    SciTech Connect (OSTI)

    Jiang, Wei; Liu, Bing; Snell, John; Helmes, Dan

    2008-03-31

    When new technologies are installed in a building, it is difficult to know how various systems will interact and if the building will perform as well as expected. A widely used technique to verify and quantify the actual energy savings from the energy-efficient features in high-performance buildings is to use the calibrated energy simulation approach. Maverick Gardens Mid-Rise A is a six-story apartment building located in East Boston, Massachusetts. The building was designed and constructed to meet the ENERGY STAR Homes Program rating and the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) certification. During the design phase, DOE-2.1E energy models for both budget building design and proposed building design were developed by the design team to demonstrate energy savings potential from various energy efficient technologies installed in this high-performance building. When comparing the energy use predicted by the proposed design energy model with utility bills, the design team observed that this building’s actual energy consumption was about one-third of what was estimated from the proposed design model, and therefore requested help from the authors through the U.S. Department of Energy’s Rebuild America Program to calibrate the proposed design energy model. This paper describes the energy simulation calibration approach using short-term metering data and utility bills. Details of the analysis, calibration results and the actual building energy performance are presented. This study also discusses lessons learned during the simulation calibration process and demonstrates the importance of collaboration among design professionals throughout the design, building, and commissioning process, as a way to ensure that high-performing building goals are met.

  5. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    SciTech Connect (OSTI)

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; Chowdhary, Kenny; Debusschere, Bert; Swiler, Laura P.; Eldred, Michael S.

    2015-01-01

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  6. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; Chowdhary, Kenny; Debusschere, Bert; Swiler, Laura P.; Eldred, Michael S.

    2015-01-01

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  7. Method and apparatus for calibrating a particle emissions monitor

    DOE Patents [OSTI]

    Flower, W.L.; Renzi, R.F.

    1998-07-07

    The invention discloses a method and apparatus for calibrating particulate emissions monitors, in particular, sampling probes, and in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream. 6 figs.

  8. Method and apparatus for calibrating a particle emissions monitor

    DOE Patents [OSTI]

    Flower, William L.; Renzi, Ronald F.

    1998-07-07

    The instant invention discloses method and apparatus for calibrating particulate emissions monitors, in particular, and sampling probes, in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream.

  9. Method for in-situ calibration of electrophoretic analysis systems

    DOE Patents [OSTI]

    Liu, Changsheng; Zhao, Hequan

    2005-05-08

    An electrophoretic system having a plurality of separation lanes is provided with an automatic calibration feature in which each lane is separately calibrated. For each lane, the calibration coefficients map a spectrum of received channel intensities onto values reflective of the relative likelihood of each of a plurality of dyes being present. Individual peaks, reflective of the influence of a single dye, are isolated from among the various sets of detected light intensity spectra, and these can be used to both detect the number of dye components present, and also to establish exemplary vectors for the calibration coefficients which may then be clustered and further processed to arrive at a calibration matrix for the system. The system of the present invention thus permits one to use different dye sets to tag DNA nucleotides in samples which migrate in separate lanes, and also allows for in-situ calibration with new, previously unused dye sets.

  10. Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility

    SciTech Connect (OSTI)

    Radev, R

    2009-09-04

    In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

  11. Role of Geological and Geophysical Data in Modeling a Southwestern...

    Open Energy Info (EERE)

    actual computer time necessary for model calibration was minimal. The conceptually straightforward approach for parameter estimation utilizing existing hydrological, geophysical,...

  12. The detection and characterization of natural fractures using P-wave reflection data, multicomponent VSP, borehole image logs and the in-situ stress field determination

    SciTech Connect (OSTI)

    Hoekstra, P.

    1995-04-01

    The objectives of this project are to detect and characterize fractures in a naturally fractured tight gas reservoir, using surface seismic methods, borehole imaging logs, and in-situ stress field data. Further, the project aims to evaluate the various seismic methods as to their effectiveness in characterizing the fractures, and to formulate the optimum employment of the seismic methods as regards fracture characterization.

  13. Working with SRNL - Our Facilities - Health Physics Instrument Calibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory 4 SEARCH SRNL GO Main Campus ACTL Aiken County Technology Laboratory Applied Research Center: * HTRL Hydrogen Technology Research Laboratory * EMRL Energy Materials Research Laboratory F/H Lab Health Physics Instrument Calibration Laboratory Analytical Laboratories SRNL Home Instrument Calibration Laboratory Working with SRNL Our Facilities - Health Physics Instrument Calibration Laboratory Radiation detection and the creation of new technology is vital to the security of public

  14. Creep properties of the Paintbrush tuff recovered from borehole USW NRG-7/7A: Data report

    SciTech Connect (OSTI)

    Martin, R.J.; Noel, J.S.; Boyd, P.J.

    1997-09-01

    Experimental results are presented for seven creep experiments on welded specimens of the Paintbrush tuff recovered from borehole USW NRG-7/7A at Yucca Mountain, Nevada. The measurements were performed at differential stresses of 40, 70, 100, and 130 MPa. The confining pressure and temperature for each of the experiments was 10 MPa and 225 {degrees}C respectively. All of the specimens were tested drained, in a room dry condition. All of the experiments were terminated prior to failure. The duration of the experiments range from 2.6 x 10{sup 6} seconds to 5.9 x 10{sup 6} seconds. Creep strain is observed for those specimens tested at a stress difference. The strain rate is not constant. A primary creep stage is observed. Secondary creep does not exhibit a constant strain rate, but decreases with increasing time.

  15. Monitoring of the Airport Calibration Pads at Walker Field, Grand...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) UMTRCA Sites Fact Sheet Long-Term ...

  16. CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS...

    Office of Scientific and Technical Information (OSTI)

    CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS FOR THE HUBBLE CONSTANT ... Country of Publication: United States Language: English Subject: 79 ASTROPHYSICS, ...

  17. An absolute calibration method of an ethyl alcohol biosensor...

    Office of Scientific and Technical Information (OSTI)

    biosensor based on wavelength-modulated differential photothermal radiometry Citation Details In-Document Search Title: An absolute calibration method of an ethyl alcohol biosensor ...

  18. Towards Developing a Calibrated EGS Exploration Methodology Using...

    Open Energy Info (EERE)

    Towards Developing a Calibrated EGS Exploration Methodology Using the Dixie Valley Geothermal System, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  19. QAS 2.4 Instrument Calibration 5/26/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the implementation of the contractor's program to routinely calibrate instruments, alarms, and sensors.  The Facility Representative observes...

  20. STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE...

    Office of Scientific and Technical Information (OSTI)

    REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS Citation Details In-Document Search Title: STELLAR LOCUS REGRESSION: ...

  1. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect (OSTI)

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  2. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    P. Tucci

    2001-12-20

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

  3. Pressure instrument calibration reaps SPC benefits

    SciTech Connect (OSTI)

    Kegel, T.M.

    1995-12-01

    Calibration laboratories are faced with the need to become accredited or registered to one or more quality standards. One requirement common to all of these standards is the need to have in place a measurement assurance program. What is a measurement assurance program? Brian Belanger, in Measurement Assurance Programs: Part 1, describes it as a {open_quotes}quality assurance program for a measurement process that quantifies the total uncertainty of the measurements (both random and systematic components of error) with respect to national or designated standards and demonstrates that the total uncertainty is sufficiently small to meet the user`s requirements.{close_quotes} Rolf Schumacher is more specific in Measurement Assurance in Your Own Laboratory. He states, {open_quotes}Measurement assurance is the application of broad quality control principles to measurements of calibrations.{close_quotes} Here, the focus is on one important part of any measurement assurance program: implementation of statistical process control (SPC). Paraphrasing Juran`s Quality Control Handbook, a process is in statistical control if the only observed variations are those that can be attributed to random causes. Conversely, a process that exhibits variations due to assignable causes is not in a state of statistical control. Finally, Carrol Croarkin states, {open_quotes}In the measurement assurance context the measurement algorithm including instrumentation, reference standards and operator interactions is the process that is to be controlled, and its direct product is the measurement per se. The measurements are assumed to be valid if the measurement algorithm is operating in a state of control.{close_quotes} Implicit in this statement is the important fact that an out-of-control process cannot produce valid measurements. 7 figs.

  4. ADVANCES IN THE RXTE PROPORTIONAL COUNTER ARRAY CALIBRATION: NEARING THE STATISTICAL LIMIT

    SciTech Connect (OSTI)

    Shaposhnikov, Nikolai; Jahoda, Keith; Markwardt, Craig; Swank, Jean; Strohmayer, Tod

    2012-10-01

    During its 16 years of service, the Rossi X-Ray Timing Explorer (RXTE) mission has provided an extensive archive of data, which will serve as a primary source of high cadence observations of variable X-ray sources for fast timing studies. It is, therefore, very important to have the most reliable calibration of RXTE instruments. The Proportional Counter Array (PCA) is the primary instrument on board RXTE which provides data in 3-50 keV energy range with submillisecond time resolution in up to 256 energy channels. In 2009, the RXTE team revised the response residual minimization method used to derive the parameters of the PCA physical model. The procedure is based on the residual minimization between the model spectrum for Crab Nebula emission and a calibration data set consisting of a number of spectra from the Crab and the on-board Am{sub 241} calibration source, uniformly covering the whole RXTE mission operation period. The new method led to a much more effective model convergence and allowed for better understanding of the PCA energy-to-channel relationship. It greatly improved the response matrix performance. We describe the new version of the RXTE/PCA response generator PCARMF v11.7 (HEASOFT Release 6.7) along with the corresponding energy-to-channel conversion table (version e05v04) and their difference from the previous releases of PCA calibration. The new PCA response adequately represents the spectrum of the calibration sources and successfully predicts the energy of the narrow iron emission line in Cas-A throughout the RXTE mission.

  5. Spectral calibration in the mid-infrared: Challenges and solutions

    SciTech Connect (OSTI)

    Sloan, G. C. [Cornell University, Center for Radiophysics and Space Research, Ithaca, NY 14853-6801 (United States); Herter, T. L.; Houck, J. R. [Cornell University, Astronomy Department, Ithaca, NY 14853-6801 (United States); Charmandaris, V. [Department of Physics and ITCP, University of Crete, GR-71003, Heraklion (Greece); Sheth, K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Burgdorf, M., E-mail: sloan@isc.astro.cornell.edu [HE Space Operations, Flughafenallee 24, D-28199 Bremen (Germany)

    2015-01-01

    We present spectra obtained with the Infrared Spectrograph on the Spitzer Space Telescope of 33 K giants and 20 A dwarfs to assess their suitability as spectrophotometric standard stars. The K giants confirm previous findings that the strength of the SiO absorption band at 8 ?m increases for both later optical spectral classes and redder (B–V){sub 0} colors, but with considerable scatter. For K giants, the synthetic spectra underpredict the strengths of the molecular bands from SiO and OH. For these reasons, the assumed true spectra for K giants should be based on the assumption that molecular band strengths in the infrared can be predicted accurately from neither optical spectral class or color nor synthetric spectra. The OH bands in K giants grow stronger with cooler stellar temperatures, and they are stronger than predicted by synthetic spectra. As a group, A dwarfs are better behaved and more predictable than the K giants, but they are more likely to show red excesses from debris disks. No suitable A dwarfs were located in parts of the sky continuously observable from Spitzer, and with previous means of estimating the true spectra of K giants ruled out, it was necessary to use models of A dwarfs to calibrate spectra of K giants from observed spectral ratios of the two groups and then use the calibrated K giants as standards for the full database of infrared spectra from Spitzer. We also describe a lingering artifact that affects the spectra of faint blue sources at 24 ?m.

  6. Hierarchical calibration of computer models (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    A paper copy of this document is also available for sale to the public from the National Technical Information Service, Springfield, VA at www.ntis.gov. Authors: Gattiker, James R ...

  7. Hierarchical calibration of computer models (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: ISBA 2008 ; July 22, 2008 ; Hamilton Island, Australia Research Org: Los Alamos ...

  8. Feedstock Quality Factor Calibration and Data Model Development

    SciTech Connect (OSTI)

    Richard D. Boardman; Tyler L. Westover; Garold L. Gresham

    2010-05-01

    The goal of the feedstock assembly operation is to deliver uniform, quality-assured feedstock materials that will enhance downstream system performance by avoiding problems in the conversion equipment. In order to achieve this goal, there is a need for rapid screening tools and methodologies for assessing the thermochemical quality characteristics of biomass feedstock through the assembly process. Laser-induced breakdown spectroscopy (LIBS) has been identified as potential technique that could allow rapid elemental analyses of the inorganic content of biomass feedstocks; and consequently, would complement the carbohydrate data provided by near-infrared spectrometry (NIRS). These constituents, including Si, K, Ca, Na, S, P, Cl, Mg, Fe and Al, create a number of downstream problems in thermochemical processes. In particular, they reduce the energy content of the feedstock, influence reaction pathways, contribute to fouling and corrosion within systems, poison catalysts, and impact waste streams.

  9. Calibrating hourly rainfall-runoff models with daily forcings...

    Office of Scientific and Technical Information (OSTI)

    Cite: Chicago Format Close Bibtex Cite: Bibtex Format Close Export Metadata EndNote Excel CSV XML Save Share this Record Send to Email Send to Email Email address:...

  10. A SCR Model Calibration Approach with Spatially Resolved Measurements...

    Office of Scientific and Technical Information (OSTI)

    Issue: 1 Research Org: Oak Ridge National Laboratory (ORNL); Fuels, Engines and Emissions Research Center; National Transportation Research Center (NTRC) Sponsoring Org: EE...

  11. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    SciTech Connect (OSTI)

    Heiser .

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  12. Simultaneous multi-headed imager geometry calibration method

    DOE Patents [OSTI]

    Tran, Vi-Hoa; Meikle, Steven Richard; Smith, Mark Frederick

    2008-02-19

    A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.

  13. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    SciTech Connect (OSTI)

    Dooraghi, Michael

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  14. Numerical simulation of drift response in rock salt resulting from the emplacement of RH-TRU (Remote Handled TRansUranic) waste in an array of horizontal long boreholes in a separate panel at the WIPP (Waste Isolation Pilot Plant)

    SciTech Connect (OSTI)

    Argueello, J.G.; Beraun, R.

    1987-01-01

    A series of thermal/structural analyses were performed to assess the feasibility of the Horizontal Long Borehole Concept for the emplacement of Remote Handled Transuranic waste at the Waste Isolation Pilot Plant. Results from the study indicate a strong sensitivity to power output per canister and to borehole spacing. This suggests that the feasibility of implementing the concept at the site will be highly dependent on the maximum power output per canister and on the spacing at which the boreholes containing these canisters might be placed. 8 refs., 6 figs.

  15. Used to Calibrate Thermistors on In Situ Permeable Flow Sensors

    Energy Science and Technology Software Center (OSTI)

    1996-12-01

    The software package is comprised of three programs which together are used to calibrate thermistors in an In Situ Permable Flow Sensor. TBATH controls a temperature controlled bath/circulator. The code monitors the temperature of a set of previously calibrated thermistors located in a tank through which the fluid from the bath is circulated. After the temperature has reached and maintained thermal equilibrium for a specified period of time, the bath/circulator is instructed by the programmore » to change the temperature set point to the next specified temperature. An arbitrary number of temperature calibration points can be specified allowing thermistors to be calibrated on a continuous basis without human intervention. CALIB is used to merge two data files that are collected during a temperature calibration run. During calibration of the thermistors on an In Situ Permeable Flow Sensor, the known temperatures in the temperaure controlled tank are recorded in one computer file in one format while the electrical resistance of the thermistors being calibrated is collected in a different file with a different format. This software reads in the two files and writes out a third file with all of the data in it that is required to calculate the calibration coefficients of the thermistors on the probe. POLYFIT is used to calculate the calibration coefficients which permit the temperature of a thermistor to ba calculated from its electrical resistance. During calibration of a thermistor, the electrical resistance of the thermistor is measured at four or more known temperatures and the data sent to this software. The program calculates the coefficients of a fourth order polynomial relating the inverse of the absolute temperature to the natural log of the electrical resistance. Once these coefficients are known, the polynomial can be evaluated with any measured electrical resistance to calculate the equivalent temperature.« less

  16. Polarization imaging apparatus with auto-calibration

    DOE Patents [OSTI]

    Zou, Yingyin Kevin; Zhao, Hongzhi; Chen, Qiushui

    2013-08-20

    A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set, a first variable phase retarder (VPR) with its optical axis aligned 22.5.degree., a second variable phase retarder with its optical axis aligned 45.degree., a linear polarizer, a imaging sensor for sensing the intensity images of the sample, a controller and a computer. Two variable phase retarders were controlled independently by a computer through a controller unit which generates a sequential of voltages to control the phase retardations of the first and second variable phase retarders. A auto-calibration procedure was incorporated into the polarization imaging apparatus to correct the misalignment of first and second VPRs, as well as the half-wave voltage of the VPRs. A set of four intensity images, I.sub.0, I.sub.1, I.sub.2 and I.sub.3 of the sample were captured by imaging sensor when the phase retardations of VPRs were set at (0,0), (.pi.,0), (.pi.,.pi.) and (.pi./2,.pi.), respectively. Then four Stokes components of a Stokes image, S.sub.0, S.sub.1, S.sub.2 and S.sub.3 were calculated using the four intensity images.

  17. GEOPHYSICS AND SITE CHARACTERIZATION AT THE HANFORD SITE THE SUCCESSFUL USE OF ELECTRICAL RESISTIVITY TO POSITION BOREHOLES TO DEFINE DEEP VADOSE ZONE CONTAMINATION - 11509

    SciTech Connect (OSTI)

    GANDER MJ; LEARY KD; LEVITT MT; MILLER CW

    2011-01-14

    Historic boreholes confirmed the presence of nitrate and radionuclide contaminants at various intervals throughout a more than 60 m (200 ft) thick vadose zone, and a 2010 electrical resistivity survey mapped the known contamination and indicated areas of similar contaminants, both laterally and at depth; therefore, electrical resistivity mapping can be used to more accurately locate characterization boreholes. At the Hanford Nuclear Reservation in eastern Washington, production of uranium and plutonium resulted in the planned release of large quantities of contaminated wastewater to unlined excavations (cribs). From 1952 until 1960, the 216-U-8 Crib received approximately 379,000,000 L (100,000,000 gal) of wastewater containing 25,500 kg (56,218 lb) uranium; 1,029,000 kg (1,013 tons) of nitrate; 2.7 Ci of technetium-99; and other fission products including strontium-90 and cesium-137. The 216-U-8 Crib reportedly holds the largest inventory of waste uranium of any crib on the Hanford Site. Electrical resistivity is a geophysical technique capable of identifying contrasting physical properties; specifically, electrically conductive material, relative to resistive native soil, can be mapped in the subsurface. At the 216-U-8 Crib, high nitrate concentrations (from the release of nitric acid [HNO{sub 3}] and associated uranium and other fission products) were detected in 1994 and 2004 boreholes at various depths, such as at the base of the Crib at 9 m (30 ft) below ground surface (bgs) and sporadically to depths in excess of 60 m (200 ft) bgs. These contaminant concentrations were directly correlative with the presence of observed low electrical resistivity responses delineated during the summer 2010 geophysical survey. Based on this correlation and the recently completed mapping of the electrically conductive material, additional boreholes are planned for early 2011 to identify nitrate and radionuclide contamination: (a) throughout the entire vertical length of the

  18. A general procedure for thermomechanical calibration of nano/micro-mechanical resonators

    SciTech Connect (OSTI)

    Hauer, B.D., E-mail: bhauer@ualberta.ca; Doolin, C.; Beach, K.S.D., E-mail: kbeach@ualberta.ca; Davis, J.P., E-mail: jdavis@ualberta.ca

    2013-12-15

    We describe a general procedure to calibrate the detection of a nano/micro-mechanical resonator’s displacement as it undergoes thermal Brownian motion. A brief introduction to the equations of motion for such a resonator is presented, followed by a detailed derivation of the corresponding power spectral density (PSD) function, which is identical in all situations aside from a system-dependent effective mass value. The effective masses for a number of different resonator geometries are determined using both finite element method (FEM) modeling and analytical calculations. -- Highlights: •Model micro- and nanomechanical resonators displaced by their own thermal motion. •Review the theoretical framework for describing thermomechanical systems. •Present a recipe for measurement calibration on devices of arbitrary shape. •Point out and correct inconsistencies in the existing literature. •Provide an authoritative guide and reference for practitioners in this area.

  19. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    SciTech Connect (OSTI)

    Tarifeńo-Saldivia, Ariel E-mail: atarisal@gmail.com; Pavez, Cristian; Soto, Leopoldo; Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Santiago; Departamento de Ciencias Fisicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Republica 220, Santiago ; Mayer, Roberto E.

    2014-01-15

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods.

  20. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    SciTech Connect (OSTI)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  1. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    K. Rehfeldt

    2004-10-08

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized

  2. Absolute calibration of a charge-coupled device camera with twin beams

    SciTech Connect (OSTI)

    Meda, A.; Ruo-Berchera, I. Degiovanni, I. P.; Brida, G.; Rastello, M. L.; Genovese, M.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  3. CALIBRATION OF PHOTOELASTIC MODULATORS IN THE VACUUM UV.

    SciTech Connect (OSTI)

    OAKBERG, T.C.; TRUNK, J.; SUTHERLAND, J.C.

    2000-02-15

    Measurements of circular dichroism (CD) in the UV and vacuum UV have used photoelastic modulators (PEMs) for high sensitivity (to about 10{sup -6}). While a simple technique for wavelength calibration of the PEMs has been used with good results, several features of these calibration curves have not been understood. The authors have calibrated a calcium fluoride PEM and a lithium fluoride PEM using the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory as a light source. These experiments showed calibration graphs that are linear bit do not pass through the graph origin. A second ''multiple pass'' experiment with laser light of a single wavelength, performed on the calcium fluoride PEM, demonstrates the linearity of the PEM electronics. This implies that the calibration behavior results from intrinsic physical properties of the PEM optical element material. An algorithm for generating calibration curves for calcium fluoride and lithium fluoride PEMs has been developed. The calibration curves for circular dichroism measurement for the two PEMs investigated in this study are given as examples.

  4. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a

  5. Electromagnetic coupling into two standard calibration shields on the Sandia cable tester

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Basilio, Lorena I.; Langston, William L.; Chen, Kenneth C.; Hudson, Howard Gerald; Morris, M. E.; Stronach, S. L.; Johnson, W. A.; Derr, W.

    2014-02-01

    This report presents analytic transmission line models for calculating the shielding effectiveness of two common calibration standard cables. The two cables have different canonical aperture types, which produce the same low frequency coupling but different responses at resonance. The dominant damping mechanism is produced by the current probe loads at the ends of the cables, which are characterized through adaptor measurements. The model predictions for the cables are compared with experimental measurements and good agreement between the results is demonstrated. This setup constitutes a nice repeatable geometry that nevertheless exhibits some of the challenges involved in modeling non-radio frequency geometries.

  6. CloudSat as a Global Radar Calibrator

    SciTech Connect (OSTI)

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  7. Automatic Energy Calibration of Gamma-Ray Spectrometers

    Energy Science and Technology Software Center (OSTI)

    2011-09-19

    The software provides automatic method for calibrating the energy scale of high-purity germanium (HPGe) and scintillation gamma-ray spectrometers, using natural background radiation as the source of calibration gamma rays. In field gamma-ray spectroscopy, radioactive check sources may not be available; temperature changes can shift detector electronic gain and scintillator light output; and a user’s experience and training may not include gamma-ray energy calibration. Hence, an automated method of calibrating the spectrometer using natural background wouldmore » simplify its operation, especially by technician-level users, and by enhancing spectroscopic data quality, it would reduce false detections. Following a typically one-minute count of background gamma-rays, the measured spectrum is searched for gamma-ray peaks, producing a list of peak centroids, in channels1. Next, the ratio algorithm attempts to match the peak centroids found in the search to a user-supplied list of calibration gamma-ray energies. Finally, if three or more calibration energies have been matched to peaks, the energy equation parameters are determined by a least-squares fit2, and the spectrum has been energy-calibrated. The ratio algorithm rests on the repeatable but irregular spacing of the background gammaray energies—together they form a unique set of ratios, when normalized to the highest energy calibration gamma ray; so too, the corresponding peak centroids in the spectrum. The algorithm matches energy ratios to peak centroid ratios, to determine which peak matches a given calibration energy.« less

  8. Larger foraminifer biostratigraphy of PEACE boreholes, Enewetak Atoll, Western Pacific Ocean. Geologic and geophysical investigations of Enewetak Atoll, Republic of the Marshall Islands. Professional paper

    SciTech Connect (OSTI)

    Gibson, T.G.; Margerum, R.

    1991-01-01

    Larger foraminiferal assemblages, including Lepidocyclina orientalis, Miogypsina thecideaeformis, Miogypsinoides dehaartii, etc., and a smaller foraminifer, Austrotrillina striata, are used to correlate upper Oligocene and lower Miocene strata in the Pacific Atoll Exploration Program (PEACE) boreholes at Enewetak Atoll, Republic of the Marshall Islands, western Pacific Ocean, with the Te and Tf zones of the previously established Tertiary Far East Letter Zonation. Correlation using these two benthic groups is critical because calcareous nannofossils and planktic foraminifers are absent in the lower Miocene strata. Biostratigraphic data from these boreholes delineate a thick (greater than 700 feet) sequence of upper Oligocene and lower Miocene strata corresponding to lower and upper Te zone. These strata document a major period of carbonate accumulation at Enewetak during the Late Oligocene and early Miocene (26 to 18 million years ago).

  9. Characterization of Vadose Zone Sediment: Borehole 41-09-39 in the S-SX Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 5.15. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 41-09-39 installed adjacent to tank SX-109.

  10. Log analysis of six boreholes in conjunction with geologic characterization above and on top of the Weeks Island Salt Dome

    SciTech Connect (OSTI)

    Sattler, A.R.

    1996-06-01

    Six boreholes were drilled during the geologic characterization and diagnostics of the Weeks Island sinkhole that is over the two-tiered salt mine which was converted for oil storage by the U.S. Strategic Petroleum Reserve. These holes were drilled to provide for geologic characterization of the Weeks Island Salt Dome and its overburden in the immediate vicinity of the sinkhole (mainly through logs and core); to establish a crosswell configuration for seismic tomography; to establish locations for hydrocarbon detection and tracer injection; and to provide direct observations of sinkhole geometry and material properties. Specific objectives of the logging program were to: (1) identify the top of and the physical state of the salt dome; (2) identify the water table; (3) obtain a relative salinity profile in the aquifer within the alluvium, which ranges from the water table directly to the top of the Weeks Island salt dome; and (4) identify a reflecting horizon seen on seismic profiles over this salt dome. Natural gamma, neutron, density, sonic, resistivity and caliper logs were run.

  11. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013 (Dataset...

    Office of Scientific and Technical Information (OSTI)

    to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. ...

  12. Report for Batch Leach Analyses on Sediments at 100-HR-3 Operable Unit, Boreholes C7620, C7621, C7622, C7623, C7626, C7627, C7628, C7629, C7630, and C7866. Revision 1.

    SciTech Connect (OSTI)

    Lindberg, Michael J.

    2012-04-25

    This is a revision to a previously released report. This revision contains additional analytical results for the sample with HEIS number B2H4X7. Between November 4, 2010 and October 26, 2011 sediment samples were received from 100-HR-3 Operable Unit for geochemical studies. The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL. Samples were received with a chain of custody (COC) and were analyzed according to the sample identification numbers supplied by the client. All Samples were refrigerated upon receipt until prepared for analysis. All samples were received with custody seals intact unless noted in the Case Narrative. Holding time is defined as the time from sample preparation to the time of analyses. The prescribed holding times were met for all analytes unless noted in the Case Narrative. All reported analytical results meet the requirements of the CAW or client specified SOW unless noted in the case narrative. Due to the requirements of the statement of work and sampling events in the field, the 28 day and the 48 hr requirements cannot be met. The statement of work requires samples to be selected at the completion of the borehole. It is not always possible to complete a borehole and have the samples shipped to the laboratory within the hold time requirements. Duplicate

  13. Calibration of accelerometers on the 5000 g centrifuge

    SciTech Connect (OSTI)

    Rebarchik, F.N.

    1992-05-01

    This memorandum is a synopsis of the description and operation of the equipment used and the events occurring during the calibration of an accelerometer on the 5000 g centrifuge.

  14. Calibration of accelerometers on the 1000 g centrifuge

    SciTech Connect (OSTI)

    Rebarchik, F.N.

    1991-04-01

    This memorandum is a synopsis of the description and operation of the equipment used, and the events occurring during the calibration of an accelerometer on the 1000 G centrifuge. 2 refs., 1 tab.

  15. Gas characterization system operation, maintenance, and calibration plan

    SciTech Connect (OSTI)

    Tate, D.D.

    1996-03-04

    This document details the responsibilities and requirements for operation, maintenance, and calibration of the Gas Characterization Systems (GCS) analytical instrumentation. It further, defines the division of responsibility between the Characterization Monitoring Development organization and Tank Farms Operations.

  16. Research Division flammable gas system calibration procedure and stability studies

    SciTech Connect (OSTI)

    Semenchenko, A.; Hojvat, C.

    1993-03-01

    The number of detectors which shifted from initial 50% LEL calibration by more than 5% over 90 days period is small enough in order to increase the time interval between calibrations at least to 120 days, but with any further increase in time between the calibrations probability of SC100 failure greatly increases. In order to keep the number of detectors with abnormal sensitivity low, we would recommend 120 days to be the maximum allowable interval for our present environmental conditions. Information is also presentd on the calibration of the SC100 Combustible Gas Sensor and the DC110 controller. The sensorand controlled form part of the flammable gas detecting systems installed at Fermilab.

  17. High-frequency calibration of inductive voltage dividers

    SciTech Connect (OSTI)

    Robinson, I.A.; Bryant, S.

    1994-12-31

    We have constructed a semi-automated system for calibrating Inductive Voltage Dividers (IVDs) in the frequency range 5-300 kHz, with a target measurement uncertain of lppm at 300 kHz.

  18. Method and apparatus for calibrating a linear variable differential transformer

    DOE Patents [OSTI]

    Pokrywka, Robert J.

    2005-01-18

    A calibration apparatus for calibrating a linear variable differential transformer (LVDT) having an armature positioned in au LVDT armature orifice, and the armature able to move along an axis of movement. The calibration apparatus includes a heating mechanism with an internal chamber, a temperature measuring mechanism for measuring the temperature of the LVDT, a fixture mechanism with an internal chamber for at least partially accepting the LVDT and for securing the LVDT within the heating mechanism internal chamber, a moving mechanism for moving the armature, a position measurement mechanism for measuring the position of the armature, and an output voltage measurement mechanism. A method for calibrating an LVDT, including the steps of: powering the LVDT; heating the LVDT to a desired temperature; measuring the position of the armature with respect to the armature orifice; and measuring the output voltage of the LVDT.

  19. SSC and G-2 calorimeter and optical calibration. Progress report, September 15, 1992--September 14, 1993

    SciTech Connect (OSTI)

    Winn, D.R.

    1993-11-01

    This report discusses: Task A: G-2 Photomultiplier & Calibration Systems (BNL E821) and Task B: Optical Calorimeter R&D & Calibration for High Rates & Colliders.

  20. Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GDP) Decommissioning | Department of Energy Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP) Decommissioning Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP) Decommissioning The decommissioning of Gaseous Diffusion Plant facilities requires accurate, non-destructive assay (NDA) of residual enriched uranium in facility components for safeguards and nuclear criticality safety purposes. Current practices used to perform NDA

  1. MFRSR Head Refurbishment, Data Logger Upgrade and Calibration Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MFRSR Head Refurbishment, Data Logger Upgrade and Calibration Improvements Gary Hodges, CIRES/NOAA and John Schmelzer, PNL gary.hodges@noaa.gov, john.schmelzer@pnl.gov 17th Annual ARM Science Team Meeting 26-30 March 2006 Monterey, CA Head Refurbishment The Process Includes: * New filter detectors * Relocate internal thermistors * New connectors * Gain resistors moved to head * Improved insulation The Finished Heads: * Are lamp calibrated * Have filter profiles measured * Cosine characterized *

  2. Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 1 Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 2 Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185 USA Hy D. Tran, PhD, PE Phone: (505)844-5417 Fax: (505)844-4372 hdtran@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product.

  3. Broadband Outdoor Radiometer Calibration Process for the Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program (Technical Report) | SciTech Connect Technical Report: Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program Citation Details In-Document Search Title: Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related

  4. Dynamic State Estimation and Parameter Calibration of DFIG based on Ensemble Kalman Filter

    SciTech Connect (OSTI)

    Fan, Rui; Huang, Zhenyu; Wang, Shaobu; Diao, Ruisheng; Meng, Da

    2015-07-30

    With the growing interest in the application of wind energy, doubly fed induction generator (DFIG) plays an essential role in the industry nowadays. To deal with the increasing stochastic variations introduced by intermittent wind resource and responsive loads, dynamic state estimation (DSE) are introduced in any power system associated with DFIGs. However, sometimes this dynamic analysis canould not work because the parameters of DFIGs are not accurate enough. To solve the problem, an ensemble Kalman filter (EnKF) method is proposed for the state estimation and parameter calibration tasks. In this paper, a DFIG is modeled and implemented with the EnKF method. Sensitivity analysis is demonstrated regarding the measurement noise, initial state errors and parameter errors. The results indicate this EnKF method has a robust performance on the state estimation and parameter calibration of DFIGs.

  5. Calibration and Forward Uncertainty Propagation for Large-eddy Simulations of Engineering Flows

    SciTech Connect (OSTI)

    Templeton, Jeremy Alan; Blaylock, Myra L.; Domino, Stefan P.; Hewson, John C.; Kumar, Pritvi Raj; Ling, Julia; Najm, Habib N.; Ruiz, Anthony; Safta, Cosmin; Sargsyan, Khachik; Stewart, Alessia; Wagner, Gregory

    2015-09-01

    The objective of this work is to investigate the efficacy of using calibration strategies from Uncertainty Quantification (UQ) to determine model coefficients for LES. As the target methods are for engineering LES, uncertainty from numerical aspects of the model must also be quantified. 15 The ultimate goal of this research thread is to generate a cost versus accuracy curve for LES such that the cost could be minimized given an accuracy prescribed by an engineering need. Realization of this goal would enable LES to serve as a predictive simulation tool within the engineering design process.

  6. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a

  7. Laboratory assessment of the use of borehole pressure transients to measure the permeability of fractured rock masses

    SciTech Connect (OSTI)

    Forster, C.B.; Gale, J.E.

    1980-09-01

    A laboratory program is described that was designed (1) to evaluate the degree of correlation between permeability values determined from steady-state and transient tests on the same samples and (2) to determine the effects of packer compliance on pressure pulse tests performed on low permeability rocks. The basic theory of pressure pulse testing is reviewed and modifications are proposed that may account for packer compliance effects. The laboratory set-up simulates a full-scale field situation using standard field packers in a 76 mm steel pipe. Cylindrical samples 5 cm in diameter and 11 cm long can be subjected to hydrostatic confining pressure up to 34 MPa and pore pressures up to 10 MPa. Using this equipment, transient pressure pulse tests and stead-state flow tests have been performed on (1) two samples of Berea sandstone having conductivities of 6.1 x 10/sup -5/ cm/sec and 2.4 x 10/sup -4/ cm/sec. and (2) one sample of Stripa granite containing a single fracture parallel to the core axis. Flow through the fracture varied from 1.0 to 0.05 cm/sup 3//min when the confining pressure varied from about 3 MPa to 14 MPa for pressure differentials of 0.14 MPa. Transient tests on the porous media samples consistently gave lower permeability values than steady-state tests on the same samples. All samples showed distinct compliance effects that increased with decreasing permeability. The laboratory results demonstrated that transient tests are very sensitive to minor leaks in the test assembly and to temperature variations as slight as +- 0.05/sup 0/C in the cavity fluid. Thus pressure-pulse borehole equipment must be carefully checked in full-scale test assemblies and must incorporate temperature measuring devices that can detect changes of +- 0.01/sup 0/C.

  8. Log analysis of six boreholes in conjunction with geologic characterization above and on top of the Weeks Island salt dome

    SciTech Connect (OSTI)

    Sattler, A.R.

    1996-04-01

    Six boreholes were drilled during the geologic characterization and diagnostics of the Weeks Island sinkhole that is over the two-tiered salt mine which was converted for oil storage by the US Strategic Petroleum Reserve. These holes were drilled to provide for geologic characterization of the Weeks Island Salt Dome and its overburden in the immediate vicinity of the sinkhole (mainly through logs and core); to establish a crosswell configuration for seismic tomography; to establish locations for hydrocarbon detection and tracer injection; and to Provide direct observations of sinkhole geometry and material properties. Specific objectives of the logging program were to: (1) identify the top of and the physical state of the salt dome; (2) identify the water table; (3) obtain a relative salinity profile in the aquifer within the alluvium, which ranges from the water table directly to the top of the Weeks Island salt dome; and (4) identify a reflecting horizon seen on seismic profiles over this salt dome. Natural gamma, neutron, density, sonic, resistivity and caliper logs were run. Neutron and density logs were run from inside the well casing because of the extremely unstable condition of the deltaic alluvium overburden above the salt dome. The logging program provided important information about the salt dome and the overburden in that (1) the top of the salt dome was identified at {approximately}189 ft bgl (103 ft msl), and the top of the dome contains relatively few fractures; (2) the water table is approximately 1 ft msl, (3) this aquifer appears to become steadily more saline with depth; and (4) the water saturation of much of the alluvium over the salt dome is shown to be influenced by the prevalent heavy rainfall. This logging program, a part of the sinkhole diagnostics, provides unique information about this salt dome and the overburden.

  9. Assessing the Predictive Capability of the LIFEIV Nuclear Fuel Performance Code using Sequential Calibration

    SciTech Connect (OSTI)

    Stull, Christopher J.; Williams, Brian J.; Unal, Cetin

    2012-07-05

    This report considers the problem of calibrating a numerical model to data from an experimental campaign (or series of experimental tests). The issue is that when an experimental campaign is proposed, only the input parameters associated with each experiment are known (i.e. outputs are not known because the experiments have yet to be conducted). Faced with such a situation, it would be beneficial from the standpoint of resource management to carefully consider the sequence in which the experiments are conducted. In this way, the resources available for experimental tests may be allocated in a way that best 'informs' the calibration of the numerical model. To address this concern, the authors propose decomposing the input design space of the experimental campaign into its principal components. Subsequently, the utility (to be explained) of each experimental test to the principal components of the input design space is used to formulate the sequence in which the experimental tests will be used for model calibration purposes. The results reported herein build on those presented and discussed in [1,2] wherein Verification & Validation and Uncertainty Quantification (VU) capabilities were applied to the nuclear fuel performance code LIFEIV. In addition to the raw results from the sequential calibration studies derived from the above, a description of the data within the context of the Predictive Maturity Index (PMI) will also be provided. The PMI [3,4] is a metric initiated and developed at Los Alamos National Laboratory to quantitatively describe the ability of a numerical model to make predictions in the absence of experimental data, where it is noted that 'predictions in the absence of experimental data' is not synonymous with extrapolation. This simply reflects the fact that resources do not exist such that each and every execution of the numerical model can be compared against experimental data. If such resources existed, the justification for numerical models

  10. Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (June 1994)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (June 1994)

  11. Design, manufacture, and calibration of infrared radiometric blackbody sources

    SciTech Connect (OSTI)

    Byrd, D.A.; Michaud, F.D.; Bender, S.C.

    1996-04-01

    A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 {mu}m. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 {mu}m, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following.

  12. Precision Spectrophotometric Calibration System for Dark Energy Instruments

    SciTech Connect (OSTI)

    Schubnell, Michael S.

    2015-06-30

    For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that a complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.

  13. Online Sensor Calibration Assessment in Nuclear Power Systems

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-06-01

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

  14. The KamLAND Full-Volume Calibration System

    SciTech Connect (OSTI)

    KamLAND Collaboration; Berger, B. E.; Busenitz, J.; Classen, T.; Decowski, M. P.; Dwyer, D. A.; Elor, G.; Frank, A.; Freedman, S. J.; Fujikawa, B. K.; Galloway, M.; Gray, F.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Kadel, R.; Keefer, G.; Lendvai, C.; McKee, D.; O'Donnell, T.; Piepke, A.; Steiner, H. M.; Syversrud, D.; Wallig, J.; Winslow, L. A.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Owada, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Tamae, K.; Yoshida, S.; Kozlov, A.; Murayama, H.; Grant, C.; Leonard, D. S.; Luk, K.-B.; Jillings, C.; Mauger, C.; McKeown, R. D.; Zhang, C.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Piquemal, F.; Ricol, J.-S.

    2009-03-05

    We have successfully built and operated a source deployment system for the KamLAND detector. This system was used to position radioactive sources throughout the delicate 1-kton liquid scintillator volume, while meeting stringent material cleanliness, material compatibility, and safety requirements. The calibration data obtained with this device were used to fully characterize detector position and energy reconstruction biases. As a result, the uncertainty in the size of the detector fiducial volume was reduced by a factor of two. Prior to calibration with this system, the fiducial volume was the largest source of systematic uncertainty in measuring the number of antineutrinos detected by KamLAND. This paper describes the design, operation and performance of this unique calibration system.

  15. Absolute charge calibration of scintillating screens for relativistic electron detection

    SciTech Connect (OSTI)

    Buck, A.; Popp, A.; Schmid, K.; Karsch, S.; Krausz, F.; Zeil, K.; Jochmann, A.; Kraft, S. D.; Sauerbrey, R.; Cowan, T.; Schramm, U.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Pawelke, J.

    2010-03-15

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm{sup 2}. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm{sup 2} was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  16. Calibration techniques for a fast duo-spectrometer

    SciTech Connect (OSTI)

    Chapman, J.T.; Den Hartog, D.J.

    1996-06-01

    The authors have completed the upgrade and calibration of the Ion Dynamics Spectrometer (IDS), a high-speed Doppler duo-spectrometer which measures ion flow and temperature in the MST Reversed-field Pinch. This paper describes an in situ calibration of the diagnostic`s phase and frequency response. A single clock was employed to generate both a digital test signal and a digitizer trigger thus avoiding frequency drift and providing a highly resolved measurement over the system bandwidth. Additionally, they review the measurement of the spectrometer instrument function and absolute intensity response. This calibration and subsequent performance demonstrate the IDS to be one of the fastest, highest throughput diagnostics of its kind. Typical measurements are presented.

  17. Calorimetric calibration of pyroelectric gamma-radiation detectors

    SciTech Connect (OSTI)

    Strakovskaya, R.Y.; Sras', A.G.

    1985-07-01

    A method has been devised for calibrating a pyroelectric dosimeter, which is based on comparing the readings obtained with it in a gamma-ray beam with the readings of an integral calorimeter under stationary conditions, with the latter previously calibrated from Joule heat. The calorimeter used was in the form of a closed shell, whose overall thermo-emf was independent of the spatial distribution of the heat sources in it, the value being proportional to the integral heat flux through the shell. Measurements were made not only with a quasiisotropic radiation field but also in directed fields. The overall error in calibrating the pyroelectric detectors by this method was less than or equal to plus or minus 10%.

  18. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOE Patents [OSTI]

    Sopori, Bhushan L.; Allen, Larry C.; Marshall, Craig; Murphy, Robert C.; Marshall, Todd

    1998-01-01

    A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

  19. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOE Patents [OSTI]

    Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

    1998-05-26

    A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

  20. Flight Calibration and Operations of the Swift X-ray Telescope (XRT)

    SciTech Connect (OSTI)

    Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Wells, A.A.; Osborne, J.P.; Mukerjee, K.; Chincarini, G.; Tagliaferri, G.; Campana, S.

    2004-09-28

    We present the current on-orbit calibration and operational plans for the Swift XRT. The XRT is a largely autonomous instrument and requires very little manual commanding for normal operations. A detailed calibration plan is being developed to verify the instrumental performance on-orbit, including effective area, point spread function, vignetting, spectroscopic performance, and timing accuracy. Operational plans include regular calibration measurements using on-board calibration sources as well as periodic calibration observations using celestial targets.

  1. Coincidence corrected efficiency calibration of Compton-suppressed HPGe detectors

    SciTech Connect (OSTI)

    Aucott, T.

    2015-04-20

    The authors present a reliable method to calibrate the full-energy efficiency and the coincidence correction factors using a commonly-available mixed source gamma standard. This is accomplished by measuring the peak areas from both summing and non-summing decay schemes and simultaneously fitting both the full-energy efficiency, as well as the total efficiency, as functions of energy. By using known decay schemes, these functions can then be used to provide correction factors for other nuclides not included in the calibration standard.

  2. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    SciTech Connect (OSTI)

    Cartier, J.; Casoli, P.; Chappert, F.

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  3. Results of experimental tests and calibrations of the surface neutron moisture measurement probe

    SciTech Connect (OSTI)

    Watson, W.T.; Bussell, J.H., Westinghouse Hanford

    1996-08-13

    The surface neutron moisture probe has been tested both to demonstrate that is is able to operate in the expected in-tank temperature and gamma-ray fields and to provide detector responses to known moisture concentration materials. The probe will properly function in a simultaneous high temperature (80 degrees C) and high gamma radiation field (210 rad/hr)environment. Comparisons between computer model predicted and experimentally measured detector responses to changes in moisture provide a basis for the probe calibration to in-tank moisture concentrations.

  4. Calibrating and training of neutron based NSA techniques with less SNM standards

    SciTech Connect (OSTI)

    Geist, William H; Swinhoe, Martyn T; Bracken, David S; Freeman, Corey R; Newell, Matthew R

    2010-01-01

    Accessing special nuclear material (SNM) standards for the calibration of and training on nondestructive assay (NDA) instruments has become increasingly difficult in light of enhanced safeguards and security regulations. Limited or nonexistent access to SNM has affected neutron based NDA techniques more than gamma ray techniques because the effects of multiplication require a range of masses to accurately measure the detector response. Neutron based NDA techniques can also be greatly affected by the matrix and impurity characteristics of the item. The safeguards community has been developing techniques for calibrating instrumentation and training personnel with dwindling numbers of SNM standards. Monte Carlo methods have become increasingly important for design and calibration of instrumentation. Monte Carlo techniques have the ability to accurately predict the detector response for passive techniques. The Monte Carlo results are usually benchmarked to neutron source measurements such as californium. For active techniques, the modeling becomes more difficult because of the interaction of the interrogation source with the detector and nuclear material; and the results cannot be simply benchmarked with neutron sources. A Monte Carlo calculated calibration curve for a training course in Indonesia of material test reactor (MTR) fuel elements assayed with an active well coincidence counter (AWCC) will be presented as an example. Performing training activities with reduced amounts of nuclear material makes it difficult to demonstrate how the multiplication and matrix properties of the item affects the detector response and limits the knowledge that can be obtained with hands-on training. A neutron pulse simulator (NPS) has been developed that can produce a pulse stream representative of a real pulse stream output from a detector measuring SNM. The NPS has been used by the International Atomic Energy Agency (IAEA) for detector testing and training applications at the

  5. Detonation shock dynamics calibration for pBX 9502 with temperature, density, and material lot variations

    SciTech Connect (OSTI)

    Hill, Larry G; Aslam, Tariq D

    2010-01-01

    We present a methodology for scaling the detonation shock dynamics D{sub n}[{kappa}] calibration function to accommodate variations in the HE starting material. We apply our model to the insensitive TATB-based explosive PBX 9502, for which we have enough front curvature rate stick data to characterize three material attributes: initial temperature T{sub 0}, nominal density {rho}{sub 0}, and manufacturing lot (representing different microstructures). A useful feature of the model is that it returns an absolute estimate for the reaction zone thickness, {delta}. Lacking demonstrated material metrics(s), we express microstructural variation indirectly, in terms of its effect on {delta}. This results in a D{sub n}[{kappa}] function that depends on T{sub 0}, {rho}{sub 0}, and {delta}. After examining the separate effects of each parameter on D{sub n}[{kappa}], we compute an arc geometry as a validation problem. We compare the calculation to a PBX 9502 arc experiment that was pressed from one of the calibrated HE lots. The agreement between the model and experiment is excellent. We compute worst, nominal, and best-performing material parameter combinations to show how much difference accrues throughout the arc.

  6. Calibration of a Hopkinson Bar with a Transfer Standard

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bateman, Vesta I.; Leisher, William B.; Brown, Fred A.; Davie, Neil T.

    1993-01-01

    A program requirement for field test temperatures that are beyond the test accelerometer operational limits of −30° F and +150° F required the calibration of accelerometers at high shock levels and at the temperature extremes of −50° F and +160° F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Because there is no National Institute of Standards and Technology traceable calibration capability at shock levels of 5,000–15,000 g for the temperature extremes of −50° F and +160° F, a method for calibrating and certifying the Hopkinson barmore » with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The National Institute of Standards and Technology traceable accuracy for the standard accelerometer in shock is ±5%. The Hopkinson bar has been certified with an uncertainty of 6%.« less

  7. In-situ calibration of feedwater flow nozzles

    SciTech Connect (OSTI)

    Murphy, S.; Mateos, M.; Crandall, C.

    1995-06-01

    Feedwater flow is often the most difficult power-plant parameter to measure reliably. Over the life of a power plant, the feedwater nozzle can accumulate deposits, erode, or suffer other damage that can render the original nozzle calibration inaccurate. Recalibration of installed feedwater flow nozzles is expensive and time consuming. Traditionally, the nozzle is cut out of the thick wall feedwater piping and send to a laboratory for recalibration--an especially difficult, expensive, and time-consuming task in high-pressure lines. ENCOR-AMERICA, Inc. has developed an accurate and cost-effective method of in-situ calibration of feedwater nozzles by measuring (concurrently) feedwater flow and differential pressure across the nozzle at various flow rates. During the tests, feedwater flow is determined indirectly. Extraction steam to the highest pressure feedwater heater is measured by use of a high-accuracy turbine flowmeter. This meter is calibrated in an independent laboratory with a primary or secondary device traceable to the National Institute of Standards and Technology (NIST). The feedwater flow is then calculated by performing a heat balance around the feedwater heater. This paper discusses test theory and instrumentation. Also presented are test results of an in-situ feedwater nozzle calibration test performed at Montana Power Company`s Colstrip Unit 2 Power Plant.

  8. AN H-BAND SPECTROSCOPIC METALLICITY CALIBRATION FOR M DWARFS

    SciTech Connect (OSTI)

    Terrien, Ryan C.; Mahadevan, Suvrath; Bender, Chad F.; Deshpande, Rohit; Ramsey, Lawrence W.; Bochanski, John J., E-mail: rct151@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-03-10

    We present an empirical near-infrared (NIR) spectroscopic method for estimating M dwarf metallicities, based on features in the H band, as well as an implementation of a similar published method in the K band. We obtained R {approx} 2000 NIR spectra of a sample of M dwarfs using the NASA IRTF-SpeX spectrograph, including 22 M dwarf metallicity calibration targets that have FGK companions with known metallicities. The H-band and K-band calibrations provide equivalent fits to the metallicities of these binaries, with an accuracy of {+-}0.12 dex. We derive the first empirically calibrated spectroscopic metallicity estimate for the giant planet-hosting M dwarf GJ 317, confirming its supersolar metallicity. Combining this result with observations of eight other M dwarf planet hosts, we find that M dwarfs with giant planets are preferentially metal-rich compared to those that host less massive planets. Our H-band calibration relies on strongly metallicity-dependent features in the H band, which will be useful in compositional studies using mid- to high-resolution NIR M dwarf spectra, such as those produced by multiplexed surveys like SDSS-III APOGEE. These results will also be immediately useful for ongoing spectroscopic surveys of M dwarfs.

  9. Calibration of a Hopkinson bar with a transfer standard

    SciTech Connect (OSTI)

    Bateman, V.I.; Leisher, W.B.; Brown, F.A.; Davie, N.T.

    1991-01-01

    During the past year, program field test temperatures, that are beyond the test accelerometer operational limits of {minus}30{degrees}F and +150{degrees}F, required the calibration of accelerometers at high shock levels and at the temperature extremes of {minus}50{degrees}F and +160{degrees}F. The purposes of these calibrations were to insure the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000g--15,000g for the temperature extremes of {minus}50{degrees}F and +160{degrees}F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST accuracy for the standard accelerometer in shock is {plus minus}5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%. 12 refs., 5 figs.

  10. TDR calibration for the alternative landfill cover demonstration (ALCD)

    SciTech Connect (OSTI)

    Lopez, J.; Dwyer, S.F.; Swanson, J.N.

    1997-09-01

    The Alternative Landfill Cover Demonstration is a large scale field test that compares the performance of various landfill cover designs in dry environments. An important component of the comparison is the change in the moisture content of the soils throughout the different cover test plots. Time Domain Reflectometry (TDR) is the primary method for the measurement of the volumetric moisture content. Each of the covers is composed of layers of varying types and densities of soils. The probes are therefore calibrated to calculate the volumetric moisture content in each of the different soils in order to gain the optimum performance of the TDR system. The demonstration plots are constructed in two phases; a different probe is used in each phase. The probe that is used in Phase 1 is calibrated for the following soils: compacted native soil, uncompacted native soil, compacted native soil mixed with 6% sodium bentonite by weight, and sand. The probe that is used in Phase 2 is calibrated for the following soils: compacted native soil, uncompacted native soil, and sand. In addition, the probes are calibrated for the varying cable lengths of the TDR probes. The resulting empirically derived equations allow for the calculation of in-situ volumetric moisture content of all of the varying soils throughout the cover test plots in the demonstration.

  11. Neutron calibration sources in the Daya Bay experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  12. Characterization of Vadose Zone Sediment: Borehole 299-E33-46 Near B 110 in the B BX-BY Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; mccain, r. G.; Lindenmeier, Clark W.; Orr, Robert D.; Legore, Virginia L.; Clayton, Ray E.; Lindberg, Michael J.; Kutynakov, I. V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11

    This report was revised in September 2008 to remove acid-ectractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in December 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the B-BX-BY Waste Management Area. This report is the third in a series of three reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a borehole installed approximately 4.5 m (15 ft) northeast of tank B- 110 (borehole 299-E33-46).

  13. Characterization of the LiSi/CsBr-LiBr-KBr/FeS(2) System for Potential Use as a Geothermal Borehole Power Source

    SciTech Connect (OSTI)

    GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.

    1999-10-18

    We are continuing to study the suitability of modified thermal-battery technology as a potential power source for geothermal borehole applications. Previous work focused on the LiSi/FeS{sub 2} couple over a temperature range of 350 C to 400 C with the LiBr-KBr-LiF eutectic, which melts at 324.5 C. In this work, the discharge processes that take place in LiSi/CsBr-LiBr-KBr eutectic/FeS{sub 2} thermal cells were studied at temperatures between 250 C and 400 C using pelletized cells with immobilized electrolyte. The CsBr-LiBr-KBr eutectic was selected because of its lower melting point (228.5 C). Incorporation of a quasi-reference electrode allowed the determination of the relative contribution of each electrode to the overall cell polarization. The results of single-cell tests and limited battery tests are presented, along with preliminary data for battery stacks tested in a simulated geothermal borehole environment.

  14. The Role of Mathematical Methods in Efficiency Calibration and Uncertainty Estimation in Gamma Based Non-Destructive Assay - 12311

    SciTech Connect (OSTI)

    Venkataraman, R.; Nakazawa, D.

    2012-07-01

    Mathematical methods are being increasingly employed in the efficiency calibration of gamma based systems for non-destructive assay (NDA) of radioactive waste and for the estimation of the Total Measurement Uncertainty (TMU). Recently, ASTM (American Society for Testing and Materials) released a standard guide for use of modeling passive gamma measurements. This is a testimony to the common use and increasing acceptance of mathematical techniques in the calibration and characterization of NDA systems. Mathematical methods offer flexibility and cost savings in terms of rapidly incorporating calibrations for multiple container types, geometries, and matrix types in a new waste assay system or a system that may already be operational. Mathematical methods are also useful in modeling heterogeneous matrices and non-uniform activity distributions. In compliance with good practice, if a computational method is used in waste assay (or in any other radiological application), it must be validated or benchmarked using representative measurements. In this paper, applications involving mathematical methods in gamma based NDA systems are discussed with several examples. The application examples are from NDA systems that were recently calibrated and performance tested. Measurement based verification results are presented. Mathematical methods play an important role in the efficiency calibration of gamma based NDA systems. This is especially true when the measurement program involves a wide variety of complex item geometries and matrix combinations for which the development of physical standards may be impractical. Mathematical methods offer a cost effective means to perform TMU campaigns. Good practice demands that all mathematical estimates be benchmarked and validated using representative sets of measurements. (authors)

  15. Precipitation Estimate Using NEXRAD Ground-Based Radar Images: Validation, Calibration and Spatial Analysis

    SciTech Connect (OSTI)

    Zhang, Xuesong

    2012-12-17

    Precipitation is an important input variable for hydrologic and ecological modeling and analysis. Next Generation Radar (NEXRAD) can provide precipitation products that cover most of the continental United States with a high resolution display of approximately 4 × 4 km2. Two major issues concerning the applications of NEXRAD data are (1) lack of a NEXRAD geo-processing and geo-referencing program and (2) bias correction of NEXRAD estimates. In this chapter, a geographic information system (GIS) based software that can automatically support processing of NEXRAD data for hydrologic and ecological models is presented. Some geostatistical approaches to calibrating NEXRAD data using rain gauge data are introduced, and two case studies on evaluating accuracy of NEXRAD Multisensor Precipitation Estimator (MPE) and calibrating MPE with rain-gauge data are presented. The first case study examines the performance of MPE in mountainous region versus south plains and cold season versus warm season, as well as the effect of sub-grid variability and temporal scale on NEXRAD performance. From the results of the first case study, performance of MPE was found to be influenced by complex terrain, frozen precipitation, sub-grid variability, and temporal scale. Overall, the assessment of MPE indicates the importance of removing bias of the MPE precipitation product before its application, especially in the complex mountainous region. The second case study examines the performance of three MPE calibration methods using rain gauge observations in the Little River Experimental Watershed in Georgia. The comparison results show that no one method can perform better than the others in terms of all evaluation coefficients and for all time steps. For practical estimation of precipitation distribution, implementation of multiple methods to predict spatial precipitation is suggested.

  16. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    SciTech Connect (OSTI)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E.

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  17. The NIF X-ray Spectrometer (NXS) calibration campaign at Omega...

    Office of Scientific and Technical Information (OSTI)

    The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Citation Details In-Document Search Title: The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Authors: ...

  18. Calibration of Spherically Bent Crystals used in X-Ray Spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    Calibration of Spherically Bent Crystals used in X-Ray Spectroscopy. Citation Details In-Document Search Title: Calibration of Spherically Bent Crystals used in X-Ray Spectroscopy. ...

  19. The NIF X-ray Spectrometer (NXS) calibration campaign at Omega...

    Office of Scientific and Technical Information (OSTI)

    The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Citation Details In-Document Search Title: The NIF X-ray Spectrometer (NXS) calibration campaign at Omega You are ...

  20. Modeling cadmium fate at Superfund site: Impact of bioturbation...

    Office of Scientific and Technical Information (OSTI)

    Journal Volume: 119:3 Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES; ... CALIBRATION; ESTUARIES; MATHEMATICAL MODELS; REMEDIAL ...