National Library of Energy BETA

Sample records for bone fracture behavior

  1. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

  2. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking...

  3. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28 July 2010 00:00 Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking...

  4. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and...

  5. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high...

  6. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    E-Print Network [OSTI]

    Barth, Holly D.

    2010-01-01

    effects  of  gamma  irradiation  on  allograft  biology S.   Effects  of  gamma? irradiation  on  the  human bone  after  gamma  irradiation.   J.   Bone  Joint  Surg. ?

  7. Bone mineral density and fractures in older men with chronic obstructive pulmonary disease or asthma

    E-Print Network [OSTI]

    Dam, T.-T.; Harrison, S.; Fink, H. A.; Ramsdell, J.; Barrett-Connor, E.

    2010-01-01

    x ORIGINAL ARTICLE Bone mineral density and fractures inwas associated with lower bone mineral density (BMD) at theKeywords Bone loss . Bone mineral density . Elderly .

  8. Mixed-mode fracture of human cortical bone Elizabeth A. Zimmermann a,b

    E-Print Network [OSTI]

    Ritchie, Robert

    Mixed-mode fracture of human cortical bone Elizabeth A. Zimmermann a,b , Maximilien E. Launey Available online 1 July 2009 Keywords: Human cortical bone Mixed-mode fracture Fracture toughness Fracture mechanisms a b s t r a c t Although the mode I (tensile opening) fracture toughness has been the focus

  9. Thermal-hydrologic-mechanical behavior of single fractures in...

    Office of Scientific and Technical Information (OSTI)

    Thermal-hydrologic-mechanical behavior of single fractures in EGS reservoirs Citation Details In-Document Search Title: Thermal-hydrologic-mechanical behavior of single fractures...

  10. Fracture-permeability behavior of shale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore »the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO? sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  11. Fracture-permeability behavior of shale

    SciTech Connect (OSTI)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO? sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  12. Analysis and design of an adjustable bone plate for mandibular fracture fixation

    E-Print Network [OSTI]

    Cervantes, Thomas Michael

    2011-01-01

    This thesis presents the design, analysis and testing of a bone plate for mandibular fracture fixation. Conventional bone plates are commonly used to set fractures of the mandible in a surgical setting. If proper alignment ...

  13. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates

    E-Print Network [OSTI]

    Ritchie, Robert

    Fracture resistance of human cortical bone across multiple length-scales at physiological strain Accepted 22 March 2014 Available online 13 April 2014 Keywords: Bone Strain rate Fracture toughness Plasticity X-ray diffraction a b s t r a c t While most fracture-mechanics investigations on bone have been

  14. Fracture, aging and disease in bone

    E-Print Network [OSTI]

    Ager, J.W.; Balooch, G.; Ritchie, R.O.

    2006-01-01

    and R. O. Ritchie: Effect of aging on the toughness of humanof microstructure in the aging-related deterioration of thestudy of the effect of aging on human cortical bone J.

  15. Predicting hip fracture type with cortical bone mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) study

    E-Print Network [OSTI]

    Drummond, Tom

    Predicting hip fracture type with cortical bone mapping (CBM) in the Osteoporotic Fractures in Men, for the Osteoporotic Fractures in Men (MrOS) study CUED/F-INFENG/TR 695 January 2015 Cambridge University Engineering;1 Abstract Hip fracture risk is known to be related to material properties of the proximal femur, but prospec

  16. 3D Bone Microarchitecture Modeling and Fracture Risk Department of Computer

    E-Print Network [OSTI]

    Buffalo, State University of New York

    3D Bone Microarchitecture Modeling and Fracture Risk Prediction Hui Li Department of Computer will also rise. It calls for innovative research on understanding of osteoporo- sis and fracture mechanisms-of-the-art probabilistic approach to analyze bone fracture risk factors including demographic attributes and life styles

  17. A Novel Inverse Finite Element Analysis to Assess Bone Fracture Healing in Mice Receiving Bone Marrow Mesenchymal Stem Cell Transplantation

    E-Print Network [OSTI]

    Miga, Michael I.

    A Novel Inverse Finite Element Analysis to Assess Bone Fracture Healing in Mice Receiving Bone generation, and an iterative optimization (using finite element analysis) of the fracture callus material approach includes acquisition of microCT image volumes, biomechanical testing, finite element mesh

  18. Nonmonotonic fracture behavior of polymer nanocomposites

    E-Print Network [OSTI]

    Janaina G. de Castro; Rojman Zargar; Mehdi Habibi; Samet H. Varol; Sapun H. Parekh; Babak Hosseinkhani; Mokhtar Adda-Bedia; Daniel Bonn

    2015-06-02

    Polymer composite materials are widely used for their exceptional mechanical properties, notably their ability to resist large deformations. Here we examine the failure stress and strain of rubbers reinforced by varying amounts of nano-sized silica particles. We find that small amounts of silica increase the fracture stress and strain, but too much filler makes the material become brittle and consequently fracture happens at small deformations. We thus find that as a function of the amount of filler there is an optimum in the breaking resistance at intermediate filler concentrations. We use a modified Griffith theory to establish a direct relation between the material properties and the fracture behavior that agrees with the experiment.

  19. Fracture, aging, and disease in bone J.W. Ager III

    E-Print Network [OSTI]

    Ritchie, Robert

    Fracture, aging, and disease in bone J.W. Ager III Materials Sciences Division, Lawrence Berkeley-known increase with age in fracture risk of human bone is essential. This also represents a challenge from accompanying the process of aging using appropriate multiscale experimental methods and relating them

  20. Biomaterials 27 (2006) 20952113 Fracture length scales in human cortical bone

    E-Print Network [OSTI]

    Ritchie, Robert

    2006-01-01

    Biomaterials 27 (2006) 2095­2113 Fracture length scales in human cortical bone: The necessity of nonlinear fracture models Q.D. Yanga,Ã, Brian N. Coxa , Ravi K. Nallab , R.O. Ritchieb a Rockwell Scientific; accepted 26 September 2005 Available online 4 November 2005 Abstract Recently published data for fracture

  1. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone

    E-Print Network [OSTI]

    Ritchie, Robert

    The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical cortical bone Mixed-mode fracture Fracture toughness Crack-growth resistance curve a b s t r a c t The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading

  2. On the multiscale origins of fracture resistance in human bone and its biological degradation

    SciTech Connect (OSTI)

    Zimmermann, Elizabeth A.; Barth, Holly D.; Ritchie, Robert O.

    2012-03-09

    Akin to other mineralized tissues, human cortical bone can resist deformation and fracture due to the nature of its hierarchical structure, which spans the molecular to macroscopic length-scales. Deformation at the smallest scales, mainly through the composite action of the mineral and collagen, contributes to bone?s strength or intrinsic fracture resistance, while crack-tip shielding mechanisms active on the microstructural scale contribute to the extrinsic fracture resistance once cracking begins. The efficiency with which these structural features can resist fracture at both small and large length-scales becomes severely degraded with such factors as aging, irradiation and disease. Indeed aging and irradiation can cause changes to the cross-link profile at fibrillar length-scales as well as changes at the three orders of magnitude larger scale of the osteonal structures, both of which combine to inhibit the bone's overall resistance to the initiation and growth of cracks.

  3. COMBINING CLASSIFIERS FOR BONE FRACTURE DETECTION IN X-RAY IMAGES Vineta Lai Fun Lum, Wee Kheng Leow, Ying Chen,

    E-Print Network [OSTI]

    Leow, Wee Kheng

    COMBINING CLASSIFIERS FOR BONE FRACTURE DETECTION IN X-RAY IMAGES Vineta Lai Fun Lum, Wee Kheng combination methods ap- plied to the detection of bone fractures in x-ray images. Test results show, only about 12% of them contained fractured femurs. For radius images, about 30% of 145 consecu- tive

  4. Predicting hip fracture type with cortical bone mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) study

    E-Print Network [OSTI]

    Treece, Graham M.; Gee, Andrew H.; Tonkin, Carol; Ewing, Susan K.; Cawthon, Peggy M.; Black, Dennis M.; Poole, Kenneth E. S.; Osteoporotic Fractures in Men Study

    2015-03-18

    for hazard ratios were conducted in SAS version 9.1 (SAS Institute, Cary, NC, USA). In addition, we examined the ability of models involving different groups of variables to predict ten-year fracture incidence, by performing either binomial (any fracture... CD, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–1194. 3. Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, et al. European guidance for the diagnosis and management...

  5. MODE II FRACTURE BEHAVIOR OF BONDED VISCOELASTIC THERMAL COMPRESSED WOOD

    E-Print Network [OSTI]

    Nairn, John A.

    MODE II FRACTURE BEHAVIOR OF BONDED VISCOELASTIC THERMAL COMPRESSED WOOD Andreja Kutnar* Graduate Student Department of Wood Science and Technology Biotechnical Faculty University of Ljubljana 1000 Ljubljana, Slovenia Frederick A. Kamke Professor John A. Nairn Professor Department of Wood Science

  6. Fracture Mechanisms of Bone: A Comparative Study between Antler and Bovine Femur , F.A. Sheppard2

    E-Print Network [OSTI]

    McKittrick, Joanna

    Fracture Mechanisms of Bone: A Comparative Study between Antler and Bovine Femur P.Y. Chen1 , F, University of California, San Diego, La Jolla, CA 92093-0411, U.S.A. ABSTRACT In this study, fracture conditions to study the effects of fiber orientation and hydration. Fracture toughness results

  7. Volumetric femoral BMD, bone geometry, and serum sclerostin levels differ between type 2 diabetic postmenopausal women with and without fragility fractures

    E-Print Network [OSTI]

    2015-01-01

    in women and men. J Bone Miner Res 26:373–379 46. Durosierwith diabetes. J Bone Miner Res 27:301–308 8. Patsch JM,fragility fractures. J Bone Miner Res 28: 9. Patsch JM, Li

  8. Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks 

    E-Print Network [OSTI]

    Ogbechie, Joachim Nwabunwanne

    2012-02-14

    Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

  9. Nonmonotonic fracture behavior of polymer nanocomposites J. G. de Castro,1

    E-Print Network [OSTI]

    Adda-Bedia, Mokhtar

    Nonmonotonic fracture behavior of polymer nanocomposites J. G. de Castro,1 R. Zargar,1,a) M. Habibi-sized silica particles. We find that small amounts of silica increase the fracture stress and strain, but too much filler makes the material become brittle and consequently fracture happens at small deformations

  10. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dose. The graphs show that there is a severe and progressive degradation in mechanical properties, specifically in the bending stressstrain properties, with increase in x-ray...

  11. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing theActivation by Cytochrome P450 |

  12. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing theActivation by Cytochrome P450 |Irradiation

  13. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing theActivation by Cytochrome P450

  14. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing theActivation by Cytochrome P450Irradiation

  15. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing theActivation by Cytochrome

  16. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibitingInteractivePGAS andUniversity IonIron is the Key

  17. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibitingInteractivePGAS andUniversity IonIron is the

  18. A new technique for imaging Mineralized Fibrils on Bovine Trabecular Bone Fracture Surfaces by Atomic Force Microscopy

    E-Print Network [OSTI]

    Hansma, Paul

    A new technique for imaging Mineralized Fibrils on Bovine Trabecular Bone Fracture Surfaces coated with extrafibrillar mineral particles. The mineral particles are distinctly different in different collagen fibrils. If the observed particles can be verified to be native extrafibrillar mineral, this could

  19. FATIGUE AND FRACTURE BEHAVIOR OF HIGH TEMPERATURE MATERIALS

    E-Print Network [OSTI]

    Ritchie, Robert

    toughness (R- In an attempt to enhance the ductility and fracture toughness of curve) and fatigue, they are plagued by poor ductility and toughness candidate material which could be used at significantly higher of the silicidesis severelylimited by their low ductility and poor fracture relatively ductile Mo phase

  20. The high cycle fatigue and fracture behavior of aluminum alloy 7055

    SciTech Connect (OSTI)

    Srivatsan, T.S.; Anand, S.; Sriram, S.; Narendra, N. [Univ. of Akron, OH (United States). Dept. of Mechanical Engineering

    1997-12-31

    In this paper, the results of a recent study on the high-cycle fatigue and fracture behavior of aluminum alloy 7055 is presented and discussed. Specimens of the alloy, in the T7751 temper, were cyclically deformed over a range of stress amplitudes at both ambient and elevated temperatures. Increase in test temperature was found to have a detrimental influence on cyclic fatigue life of the specimens machined in the transverse orientation. Temperature was found to have little influence on fatigue life of the longitudinal specimens. No major change in macroscopic fracture mode was observed with direction of testing. Cyclic fracture, on a microscopic scale, revealed features reminiscent of both ductile and brittle mechanisms. The microscopic fracture behavior was a function of test temperature. The mechanisms governing cyclic fatigue response are discussed in light of the mutually interactive influences of microstructural effects, matrix deformation characteristics and test temperature.

  1. The effect of graphite nodules on fracture behavior of ductile iron 

    E-Print Network [OSTI]

    Tanner, Glenn Mark

    1986-01-01

    ~/~/ ~ /' " Robert C. Burghard (Member) Leonar Roy Cornwell (Member) N. D. Turner, ing Head Department of Mechanical Engineering May I9B6 ABSTRACT The Effect of Graphite Nodules on F'racture Behavior of Ductile Iron. (Nay 1986) Glenn Nark Tanner, B. S..., and strain-rate on the transition temperature and upper shelf ductile fracture energy. It was determined that the transition temperature of ductile iron could be accurately determined using fatigue precracked Charpy specimens and the upper shelf toughness...

  2. Fracture and Fatigue Behavior at Ambient and Elevated Temperatures of Alumina Bonded with Copper/Niobium/Copper Interlayers

    E-Print Network [OSTI]

    Ritchie, Robert

    Fracture and Fatigue Behavior at Ambient and Elevated Temperatures of Alumina Bonded with Copper and Engineering, University of California, Berkeley, California 94720 Interfacial fracture toughness and cyclic temperatures, and assessed in terms of interfacial chemistry and microstructure. The mean interfacial fracture

  3. Finite-Element Analysis of Biting Behavior and Bone Stress in the

    E-Print Network [OSTI]

    Dumont, Elizabeth R.

    about the biomechanical behavior of bones and muscles under controlled experimental condi- tions possess several types of complex teeth that occupy different functional regions of the mouth. In keeping

  4. Factors Affecting the Mechanical Behavior of Bone Subrata Saha, Ph.D.

    E-Print Network [OSTI]

    Gilbert, Robert P.

    Factors Affecting the Mechanical Behavior of Bone by Subrata Saha, Ph.D. Research Professor-mail: subrata.saha@downstate.edu ABSTRACT The load carrying capacity of our skeletal system depends

  5. Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites

    E-Print Network [OSTI]

    Ritchie, Robert

    Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites M. E of cracks, such as tensile ductil- ity, toughness, and fatigue resistance, can become severely compromised macroscopic ductility,3,4 such that the toughness is far lower than in comparable crystalline alloys

  6. Torsion Property and Cyclic Fatigue Fracture Behavior of Nickel-Titanium Endodontic Instruments

    E-Print Network [OSTI]

    Zheng, Yufeng

    -Titanium rotary instruments. In 1999, HaïKel[2] studied engine-driven rotary NiTi endodontic instruments and Engineering Science, Peking University, Beijing 100871, China 2 School of Materials Science and Engineering Abstract. The torsion property and rotary fatigue fracture behavior of Smart® K file and R reamer made

  7. Mechanistic aspects of the fracture toughness of elk antler bone M.E. Launey a

    E-Print Network [OSTI]

    Ritchie, Robert

    hydroxyapatite nanoparticles that form a tough, light- weight, adaptive and multi-functional material. Bone-curves a b s t r a c t Bone is an adaptive material that is designed for different functional requirements these functions, it is a dynamic organ that is constantly remodeling and changing shape to adapt to the forces

  8. Fracture behavior of circumferentially surface-cracked elbows. Technical report, October 1993--March 1996

    SciTech Connect (OSTI)

    Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M. [and others

    1996-12-01

    This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed.

  9. Mechanical Behavior of Small-Scale Channels in Acid-etched Fractures 

    E-Print Network [OSTI]

    Deng, Jiayao

    2011-02-22

    The conductivity of acid-etched fractures highly depends on spaces along the fracture created by uneven etching of the fracture walls remaining open after fracture closure. Formation heterogeneities such as variations of mineralogy and permeability...

  10. Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo12Si8.5B (at.%) intermetallic

    E-Print Network [OSTI]

    Ritchie, Robert

    , the structural use of molybdenum silicides is severely limited by their low ductility and poor fracture toughness at ambient temperatures. In an attempt to enhance the ductility and fracture toughness of these alloys, oneAmbient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo­12Si

  11. The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    Project objective: Develop Improved Methods For Maintaining Permeable Fracture Volumes In EGS Reservoirs.

  12. Effect of resin toughness on fracture behavior of graphite/epoxy composites 

    E-Print Network [OSTI]

    Cohen, Ronald Nelson

    1982-01-01

    . Schaper , Mob (Y. Weitsman, Member) ( L . S . F, etcher, Head of Department. ) ABSTRACT Effect of Resin Toughness on Fracture Behavio~ of Graphite/Epoxy Composites (Becember 1982) Ronald Nelson Cohen, B. S. , Purdue University Chairman of Advisory... with subsequent frac- tography on fractured surfaces. The critical energy release rate for delamination fracture and transverse fracture is less than the critical energy release rate for the neat material for a tough resin system. For a brittle resin system...

  13. Fracture behavior of ceramic laminates in bending-I. Modeling of crack propagation

    SciTech Connect (OSTI)

    Phillipps, A.J.; Clegg, W.J.; Clyne, T.W. . Dept. of Materials Science and Metallurgy)

    1993-03-01

    This paper concerns the fracture behavior of specimens made up of ceramic sheets, separated by thin interlayers, which act to deflect cracks and thus to prevent catastrophic failure of the specimen. The treatment is divided into two parts. In this paper, the behavior of this type of material during bending is quantitatively modeled. The model is based on through-thickness cracks propagating when a critical stress is reached and interfacial cracks then advancing a distance dictated by the available energy. The variation in laminae strengths is modeled using a Monte Carlo method to determine the strength of successive laminae for a given Weibull modulus. The model is used to predict load/displacement plots and to explore the effects of changes in loading geometry and specimen variables, including Young's modulus, lamina strength, loading span, interfacial toughness, as well as lamina and sample thickness. A distinction is drawn between the energy actually absorbed in causing complete failure of the specimen as measured from the area under the load/displacement curve, and the amount of energy necessary to cause the crack propagation which occurred. These differ if the energy available to drive the interfacial cracks is more than sufficient for them to reach the ends of the specimen or if energy is dissipated elsewhere in the system. A criterion is derived by which specimens can be designed so as to minimize the difference between these two quantities. The significance of this concept in optimizing the toughness of these laminated materials is briefly discussed.

  14. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    SciTech Connect (OSTI)

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit; Rink, Karl

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: • Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions. • Perform creep tests and characterize the mechanisms of creep fracture process. • Quantify how the microstructure degradation controls the creep strength of welded steel specimens. • Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds. • Develop a microstructure-based creep fracture model to estimate RPVs service life . • Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates. • Simulate damage evolution in creep specimens by FE analyses. • Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage. • Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength. • Develop a fracture model for the structural integrity of RPVs subjected to creep loads. • Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  15. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    SciTech Connect (OSTI)

    Beygi, Morteza H.A.; Kazemi, Mohammad Taghi; Nikbin, Iman M.; Vaseghi Amiri, Javad; Rabbanifar, Saeed; Rahmani, Ebrahim

    2014-12-15

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly. It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G{sub F}) and the value measured through SEM (G{sub f}) (G{sub F} = 3.11G{sub f})

  16. Hierarchical interconnections in the nano-composite material bone: Fibrillar cross-links resist fracture on several length scales

    E-Print Network [OSTI]

    Lipman, Everett A.

    to its biomedical significance, bone has been used as a model for many artificial bio-ceramic composites [10,11]. In many of these artificial composites, a combina- tion of a soft polymer matrix reinforcedHierarchical interconnections in the nano-composite material bone: Fibrillar cross-links resist

  17. Deformation and fracture behavior of composite structured Ti-Nb-Al-Co(-Ni) alloys

    SciTech Connect (OSTI)

    Okulov, I. V. Marr, T.; Schultz, L.; Eckert, J.; Kühn, U.; Freudenberger, J.; Oertel, C.-G.; Skrotzki, W.

    2014-02-17

    Tensile ductility of the Ti-based composites, which consist of a ?-Ti phase surrounded by ultrafine structured intermetallics, is tunable through the control of intermetallics. The two Ti-based alloys studied exhibit similar compressive yield strength (about 1000?MPa) and strain (about 35%–40%) but show a distinct difference in their tensile plasticity. The alloy Ti{sub 71.8}Nb{sub 14.1}Ni{sub 7.4}Al{sub 6.7} fractures at the yield stress while the alloy Ti{sub 71.8}Nb{sub 14.1}Co{sub 7.4}Al{sub 6.7} exhibits about 4.5% of tensile plastic deformation. To clarify the effect of microstructure on the deformation behavior of these alloys, tensile tests were carried out in the scanning electron microscope. It is shown that the distribution as well as the type of intermetallics affects the tensile ductility of the alloys.

  18. The effect of processing upon the fracture behavior of cast and forged low alloy steel wellhead components 

    E-Print Network [OSTI]

    Desadier, Christopher Earl

    1987-01-01

    . Carbon content is also usually . 03 to . 05% lower. Based upon the preceding literature review, the following conclusions may be drawn concerning conventional mechanical properties of forgings compared to castings: 1) Impact testing will most always... of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject: Mechanical Engineering EFFECT OF PROCESSING UPON THE FRACTURE BEHAVIOR OF CAST AND FORGED LOW ALLOY STEEL WELLHEAD COMPONENTS A Thesis by CHRISTOPHER EARL DESADIER Approved...

  19. Compressive behavior of trabecular bone in the proximal tibia using a cellular solid model 

    E-Print Network [OSTI]

    Prommin, Danu

    2005-11-01

    In this study, trabecular architecture is considered as a cellular solid structure, including both intact and damaged bone models. ??Intact?? bone models were constructed based on ideal versions of 25, 60 and 80-year-old ...

  20. The effect of sulfide type on the fracture behavior of HY180 steel

    SciTech Connect (OSTI)

    Maloney, James L.; Garrison, Warren M. . E-mail: wmg@andrew.cmu.edu

    2005-01-10

    In this paper are discussed the effects of sulfide type on the fracture toughness of HY180 steel. Manganese was added to one heat and the sulfides in this heat were MnS. Lanthanum additions but no manganese additions were made to the second heat and the sulfur was gettered in this heat as particles of La{sub 2}O{sub 2}S. Neither lanthanum nor manganese additions was made to the other two heats. These two heats were modified by small titanium additions. The sulfur in these two heats was gettered as particles of Ti{sub 2}CS. After the usual heat treatment for HY180 steel the fracture toughness of the heat in which the sulfur was gettered as MnS was 256MPam. The fracture toughness of the heat in which the sulfur was gettered as La{sub 2}O{sub 2}S was 344MPam. The fracture toughness of this heat was greater than the fracture toughness of the heat in which the sulfur is gettered as MnS because the particles of La{sub 2}O{sub 2}S are larger and more widely spaced than the particles of MnS. The fracture toughness of the two titanium modified heats were 478MPam and over 550MPam. Void generation studies indicate that void generation is more difficult at particles of Ti{sub 2}CS than at particles of MnS or La{sub 2}O{sub 2}S. The improved fracture toughness of the heats in which the sulfur is gettered as Ti{sub 2}CS is attributed to the particles of Ti{sub 2}CS having greater resistance to void generation than particles of MnS or La{sub 2}O{sub 2}S.

  1. Deformation and fracture behavior of Ni-Mo-Al (. gamma. /. gamma. -. cap alpha. ) in-situ composite

    SciTech Connect (OSTI)

    Siramamurthy, A.M.; Tewari, S.N.

    1984-10-01

    Tensile properties for directionally solidified (DS) eutectic alloy of a nominal composition Ni-33 Mo-5.7 Al (weight percent) have been investigated at room and elevated temperatures. The microstructure-mechanical property relationship has been studied for the as-DS and heat-treated conditions. Changes in yield strength, work hardening behavior, and fracture morphology are explained in terms of microstructural changes due to heat treatment. The yield drops are attributed to microdebonding due to segregation of impurities at the fiber-matrix interface and partly to strain aging.

  2. On the mechanistic origins of toughness in bone

    SciTech Connect (OSTI)

    Launey, Maximilien E.; Buehler, Markus J.; Ritchie, Robert O.

    2009-10-07

    One of the most intriguing protein materials found in Nature is bone, a material composed out of assemblies of tropocollagen molecules and tiny hydroxyapatite mineral crystals, forming an extremely tough, yet lightweight, adaptive and multi-functional material. Bone has evolved to provide structural support to organisms, and therefore, its mechanical properties are of great physiological relevance. In this article, we review the structure and properties of bone, focusing on mechanical deformation and fracture behavior from the perspective of the multi-dimensional hierarchical nature of its structure. In fact, bone derives its resistance to fracture with a multitude of deformation and toughening mechanisms at many of these size-scales, ranging from the nanoscale structure of its protein molecules to its macroscopic physiological scale.

  3. Effect of Phase Transformation on the Fracture Behavior of Shape Memory Alloys 

    E-Print Network [OSTI]

    Parrinello, Antonino

    2013-07-24

    . The aim of the present work is to study the effect of stress-induced as well as thermo-mechanically-induced phase transformation on several characteristics of the fracture response of SMAs. The SMA thermomechanical response is modeled through an existing...

  4. Quasi-static analysis of elastic behavior for some systems having higher fracture densities.

    E-Print Network [OSTI]

    Berryman, J.G.

    2010-01-01

    J. Microcracks, and the static and dynamic elastic constantsQuasi-static analysis of elastic behavior for some systemssemi-analytical estimates of quasi-static elastic moduli for

  5. Mesoscale Characterization of Coupled Hydromechanical Behavior of a Fractured Porous Slope in Response to Free Water-Surface Movement

    E-Print Network [OSTI]

    Guglielmi, Y.

    2008-01-01

    Mesoscale Characterization of Coupled Hydromechanicalinstrumented for mesoscale hydraulic and mechanicalwords: Fracture; Rock slope; Mesoscale; In situ poroelastic

  6. Automated simulation of areal bone mineral density assessment in the distal radius from high-resolution peripheral quantitative computed tomography

    E-Print Network [OSTI]

    Burghardt, A. J.; Kazakia, G. J.; Link, T. M.; Majumdar, S.

    2009-01-01

    of osteoporotic fractures. J Bone Miner Res 16:1108–1119 3.of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954 4.and calcaneus. J Bone Miner Res 14:1167–1174 7. Muller R,

  7. Modeling of Acid Fracturing in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Al Jawad, Murtada s

    2014-06-05

    The acid fracturing process is a thermal, hydraulic, mechanical, and geochemical (THMG)-coupled phenomena in which the behavior of these variables are interrelated. To model the flow behavior of an acid into a fracture, mass and momentum balance...

  8. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    E-Print Network [OSTI]

    Barth, Holly D.

    2010-01-01

    reductions in plastic properties such as ultimate strength irradiation  on  the  plastic  properties  such  as  the 

  9. Failure by fracture and fatigue in 'NANO' and 'BIO'materials

    SciTech Connect (OSTI)

    Ritchie, R.O.; Muhlstein, C.L.; Nalla, R.K.

    2003-12-19

    The behavior of nanostructured materials/small-volumestructures and biologi-cal/bio-implantable materials, so-called "nano"and "bio" materials, is currently much in vogue in materials science. Oneaspect of this field, which to date has received only limited attention,is their fracture and fatigue properties. In this paper, we examine twotopics in this area, namely the premature fatigue failure ofsilicon-based micron-scale structures for microelectromechanical systems(MEMS), and the fracture properties of mineralized tissue, specificallyhuman bone.

  10. A microstructural study of the extension-to-shear fracture transition in Carrara Marble 

    E-Print Network [OSTI]

    Rodriguez, Erika

    2005-11-01

    Triaxial extension experiments on Carrara Marble demonstrate that there is a continuous transition from extension to shear fracture on the basis of mechanical behavior, macroscopic fracture orientation and fracture morphology where hybrid fractures...

  11. Automatic Fracture Reduction Thomas Albrecht and Thomas Vetter

    E-Print Network [OSTI]

    Vetter, Thomas

    Automatic Fracture Reduction Thomas Albrecht and Thomas Vetter University of Basel Abstract. We segmented from CT scans. The result of this virtual fracture reduction is intended to be used an operation plan. We propose to achieve automatic fracture reduction by fitting the bone fragments

  12. An analysis of a biodegradable intramedullary fracture fixation system 

    E-Print Network [OSTI]

    Smith, William Keith

    1991-01-01

    AN ANALYSIS OF A BIODEGRADABLE INTRAMEDULLARY FRACTURE FIXATION SYSTEM A Thesis by WILLIAM KEITH SMITH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... remodeling of existing Haversion systems; cutting cones resorb and deposit bone simultaneously as they cross the fracture gap, Secondary bone union occurs in three stages: inflammation, repair, and remodeling. Secondary bone union is characterized...

  13. The Influence of fold and fracture development on reservoir behavior of the Lisburne Group of northern Alaska

    SciTech Connect (OSTI)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen: Michael T. Whalen; Paul Atkinson; Joseph Brinton; Thang Bui; Margarete Jadamec; Alexandre Karpov; John Lorenz; Michelle M. McGee; T.M. Parris; Ryan Shackleton

    2004-07-01

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is folded and thrust faulted where it is exposed throughout the Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. Symmetrical detachment folds characterize the Lisburne in the northeastern Brooks Range. In contrast, Lisburne in the main axis of the Brooks Range is deformed into imbricate thrust sheets with asymmetrical hangingwall anticlines and footwall synclines. The Continental Divide thrust front separates these different structural styles in the Lisburne and also marks the southern boundary of the northeastern Brooks Range. Field studies were conducted for this project during 1999 to 2001 in various locations in the northeastern Brooks Range and in the vicinity of Porcupine Lake, immediately south of the Continental Divide thrust front. Results are summarized below for the four main subject areas of the study.

  14. Investigation of fracture mechanical behavior of nodular cast iron and welded joints with parent-material-like weld metal

    SciTech Connect (OSTI)

    Baer, W.; Pusch, G.

    1995-12-31

    The focus of the investigations was the determination of fracture mechanical characteristics and crack resistance curves of the J-Integral and CTOD concept by application of the partial unloading compliance technique and D.C. potential drop technique (four point bend) under static load. The results show a close correlation between crack initiation values as well as crack resistance curves and graphite morphology parameters determined by means of quantitative microstructural analysis where the influence of the matrix (distance of graphite particles) dominates the crack resistance and fracture performance of ferritic nodular cast iron under consideration of the notch effect of graphite particles. SEM in-situ tensile tests showed that due to a beneficial shielding effect of the strength overmatching parent-material-like weld metal (mis-match ratio M = 1.21), cracks positioned directly in the plane of the fusion line did not deviate into the weld metal in spite of its lower toughness compared to that of the parent material. They also showed an unsymmetrical formation of damage in front of the crack tip.

  15. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    SciTech Connect (OSTI)

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.

  16. On the dynamic behavior of mineralized tissues

    E-Print Network [OSTI]

    Kulin, Robb Michael

    2010-01-01

    Static and Dynamic Loading. Engineering Fracture Mechanics,static fracture behavior (mode I, mode II and mode III fracture tests), including experiments on the fracture mechanicsstatic and dynamic fracture. 4.2.2 Introduction Improving our understanding of the fracture mechanics

  17. Effects of toughness anisotropy and combined tension, torsion, and bending loads on fracture behavior of ferritic nuclear pipe

    SciTech Connect (OSTI)

    Mohan, R.; Marshall, C.; Ghadiali, N.; Wilkowski, G. [Battelle, Columbus, OH (United States)

    1997-04-01

    This paper summarizes work on angled through-wall-crack initiation and combined loading effects on ferritic nuclear pipe performed as part of the Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks In Piping an Piping Welds{close_quotes}. The reader is referred to Reference 1 for details of the experiments and analyses conducted as part of this program. The major impetus for this work stemmed from the observation that initially circumferentially oriented cracks in carbon steel pipes exhibited a high tendency to grow at a different angle when the cracked pipes were subjected to bending or bending plus pressure loads. This failure mode was little understood, and the effect of angled crack grown from an initially circumferential crack raised questions about how cracks in a piping system subjected to combined loading with torsional stresses would behave. There were three major efforts undertaken in this study. The first involved a literature review to assess the causes of toughness anisotropy in ferritic pipes and to develop strength and toughness data as a function of angle from the circumferential plane. The second effort was an attempt to develop a screening criterion based on toughness anisotropy and to compare this screening criterion with experimental pipe fracture data. The third and more significant effort involved finite element analyses to examine why cracks grow at an angle and what is the effect of combined loads with torsional stresses on a circumferentially cracked pipe. These three efforts are summarized.

  18. Simulation of naturally fractured reservoirs

    SciTech Connect (OSTI)

    Saidi, A.M.

    1983-11-01

    A three-dimensional, three-phase reservoir simulator was developed to study the behavior of fully or partially fractured reservoirs. It is also demonstrated, that when a fractured reservoir is subject to a relatively large rate of pressure drop and/or it composed of relatively large blocks, the pseudo steady-state pressure concept gives large errors as compared with transient fromulation. In addition, when gravity drainage and imbibitum processes, which is the most important mechanism in the fractured reservoirs, are represented by a ''lumped parameter'' even larger errors can be produced in exchange flow between matrix and fractures. For these reasons, the matrix blocks are gridded and the transfer between matrix and fractures are calculated using pressure and diffusion transient concept. In this way the gravity drainage is also calculated accurately. As the matrix-fracture exchange flow depends on the location of each matrix grid relative to the GOC and/or WOC in fracture, the exchange flow equation are derived and given for each possible case. The differential equation describing the flow of water, oil, and gas within the matrix and fracture system, each of which may contain six unknowns, are presented. The two sets of equations are solved implicitly for pressure water, and gas stauration in both matrix and fractures. The first twenty two years of the history of Haft Kel field was successfully matched with this model and the results are included.

  19. Bone Tissue Engineering Using Colloidal Gels and Native Extracellular Matrix Biomaterials

    E-Print Network [OSTI]

    Dennis, Stephen Connor

    2015-05-31

    scaffolding technology for the regeneration of bone tissue in non-load bearing critical-sized defects. This represents the first attempt to form colloids exclusively from biomaterials found in the microenvironment of healing bone fractures including hyaluronic...

  20. Geomechanical Development of Fractured Reservoirs During Gas Production 

    E-Print Network [OSTI]

    Huang, Jian

    2013-04-05

    Within fractured reservoirs, such as tight gas reservoir, coupled processes between matrix deformation and fluid flow are very important for predicting reservoir behavior, pore pressure evolution and fracture closure. To study the coupling between...

  1. JOURNAL OF BONE AND MINERAL RESEARCH Volume 24, Number 11, 2009

    E-Print Network [OSTI]

    Burgoyne, Chris

    JOURNAL OF BONE AND MINERAL RESEARCH Volume 24, Number 11, 2009 Published online on May 4, 2009; doi: 10.1359/JBMR.090504 Ó 2009 American Society for Bone and Mineral Research Femoral Neck Trabecular fracture cases have sufficient trabecular bone for anabolic therapies to build on. J Bone Miner Res 2009;24:1808

  2. On the fracture of human dentin: Is it stress-or strain-controlled?

    E-Print Network [OSTI]

    Ritchie, Robert

    On the fracture of human dentin: Is it stress- or strain-controlled? R. K. Nalla,1 J. H. Kinney,2 R information in archival literature that can be usefully used to model such fracture. In fact, although the fracture event in dentin, akin to other mineralized tissues like bone, is widely believed to be locally

  3. Hairline Fracture Detection using MRF and Gibbs Sampling A. S. Chowdhury1

    E-Print Network [OSTI]

    Bhandarkar, Suchendra "Suchi" M.

    Hairline Fracture Detection using MRF and Gibbs Sampling A. S. Chowdhury1 , A. Bhattacharya2 , S. M of hairline fractures, representing points or ar- eas of discontinuity in the bone, is a clinically handle unknown local degradation in the image. A novel two-phase scheme for hairline mandibular fracture

  4. Computing Neck-Shaft Angle of Femur for X-Ray Fracture Detection

    E-Print Network [OSTI]

    Leow, Wee Kheng

    Computing Neck-Shaft Angle of Femur for X-Ray Fracture Detection Tai Peng Tian1 , Ying Chen1 , Wee and 13% of men suffer from osteoporotic fractures of the bone, particularly the older people. Doctors in the hospitals need to manually inspect a large number of x-ray im- ages to identify the fracture cases

  5. Three dimensional geologic modeling of a fractured reservoir, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T.; Grover, G.A. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-11-01

    A geological assessment of a large carbonate reservoir in Saudi Arabia shows that it is a Type 2 fractured reservoir in which fractures provide the essential permeability. Intercrystalline microporosity, found within the basinally deposited mudstones and wackestones, is the dominant porosity type. Near-vertical, east-west-oriented extension fractures are preferentially localized in low-to-moderate porosities associated with stylolites. Porosity/fracture density relationships, combined with the results of structural curvature mapping, yielded a 3-dimensional model of fracture density. Fracture permeability and fracture porosity distributions were generated by integrating fracture density modeling results with average fracture aperture information derived from well test data. Dramatic differences exist between matrix- and fracture-related porosity, permeability models that help explain observed production behavior within the field. These models are being used by reservoir and simulation engineers for daily reservoir management, history matching, and long-term development drilling planning.

  6. Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures 

    E-Print Network [OSTI]

    Xue, Wenxu

    2011-02-22

    Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, as fractures can have complex growth patterns when propagating in systems of natural fractures in the reservoir. Fracture propagation near a natural fracture (NF...

  7. Effect of aging on the toughness of human cortical bone: evaluation by R-curves

    E-Print Network [OSTI]

    Ritchie, Robert

    Effect of aging on the toughness of human cortical bone: evaluation by R-curves R.K. Nallaa,b , J online 27 October 2004 Abstract Age-related deterioration of the fracture properties of bone, coupled, and hence, an understanding of how its fracture properties degrade with age is essential. The present study

  8. On equivalence of thinning fluids used for hydraulic fracturing

    E-Print Network [OSTI]

    Linkov, Alexander

    2012-01-01

    The paper aims to answer the question: if and how non-Newtonian fluids may be compared in their mechanical action when used for hydraulic fracturing? By employing the modified formulation of the PKN problem we obtain its simple analytical solutions in the cases of perfectly plastic and Newtonian fluids. Since the results for shear thinning fluids are intermediate between those for these cases, the obtained equation for the fracture length suggests a criterion of the equivalence of various shear thinning fluids for the problem of hydraulic fractures. We assume fluids equivalent in their hydrofracturing action, when at a reference time they produce fractures of the same length. The equation for the fracture length translates the equivalence in terms of the hydraulic fracture length and treatment time into the equivalence in terms of the properties of a fracturing fluid (behavior and consistency indices). Analysis shows that the influence of the consistency and behavior indices on the fracture length, particle v...

  9. Bone loss during energy restriction: mechanistic role of leptin 

    E-Print Network [OSTI]

    Baek, Kyunghwa

    2009-05-15

    Mechanical unloading and food restriction (FR) are leading causes of bone loss, which increase the risk of fracture later in life. Leptin, a 16kDa cytokine like hormone principally produced by white adipocytes, may be involved in bone metabolism...

  10. Fracture response of externally flawed aluminum cylindrical shells under internal gaseous detonation loading

    E-Print Network [OSTI]

    Barr, Al

    Fracture response of externally flawed aluminum cylindrical shells under internal gaseous. Experiments were performed to observe the fracture behavior of thin- wall and initially-flawed aluminum tubes to different fracture events are analyzed. Keywords: tube fracture, detonation, crack branching, crack curving

  11. Low temperature fracture evaluation of plasticized sulfur paving mixtures 

    E-Print Network [OSTI]

    Mahboub, Kamyar

    1985-01-01

    . Characterize the fracture behavior of sulphlex binders by using the elastic-plastic critical energy release rate, J C. 2. Approximate the fracture toughness of the material, KIC, by the KO parameter and establish a correlation between KO and JIC parameters... concentrations leading to failure of a structural component. The first analysis of fracture behavior of britt! e materials containing sharp flaws was developed by Griffith (16). He considered a very large plate with a sharp crack of length 2a passing...

  12. Fracture Properties From Seismic Scattering

    E-Print Network [OSTI]

    Burns, Daniel R.

    2007-01-01

    Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

  13. Discrete Fracture Reservoir Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discrete Fracture Reservoir Simulation Shale Gas Flow Simulation Shale Gas Flow Simulation FRACGENNFFLOW, fractured reservoir modeling software developed by NETL's Geological and...

  14. Modeling Acid Transport and Non-Uniform Etching in a Stochastic Domain in Acid Fracturing 

    E-Print Network [OSTI]

    Mou, Jianye

    2010-10-12

    Success of acid fracturing depends on uneven etching along the fracture surfaces caused by heterogeneities such as variations in local mineralogy and variations in leakoff behavior. The heterogeneities tend to create channeling characteristics...

  15. Fracture characterization of clays and clay-like materials using flattened Brazilian Test

    E-Print Network [OSTI]

    Agaiby, Shehab Sherif Wissa

    2013-01-01

    Fracture mechanics has been used for many years to study the mechanical behavior of brittle and quasi-brittle materials like concrete, rock, wood, and ceramics. To date, the application of fracture mechanics to soils has ...

  16. Effects of microstructure and water on the electrical potentials in bone induced by ultrasound irradiation

    SciTech Connect (OSTI)

    Tsuneda, H.; Matsukawa, S.; Takayanagi, S.; Matsukawa, M.; Mizuno, K.; Yanagitani, T.

    2015-02-16

    The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurements and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.

  17. The development of in situ fracture toughness evaluation techniques in hydrogen environment

    SciTech Connect (OSTI)

    Wang, Jy-An John; Ren, Fei; Tan, Ting; Liu, Ken C

    2014-01-01

    Fracture behavior and fracture toughness are of great interest regarding reliability of hydrogen pipelines and storage tanks, however, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen, in addition to the inherited specimen size effect. Thus it is desired to develop novel in situ fracture toughness evaluation techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, a torsional fixture was developed to utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The in situ testing results indicated that the exposure to H2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.

  18. Geomechanics of hydraulic fracturing microseismicity

    E-Print Network [OSTI]

    Ze'ev, Reches

    Geomechanics of hydraulic fracturing microseismicity: Part 1. Shear, hybrid, and tensile events of hydraulic- fracturing-induced microseismicity. Microseismic events are commonly used to discern stimulation patterns and hydraulic fracture evolution; however, techniques beyond fracture mapping are required

  19. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect (OSTI)

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studied, and some of the new results are presented in this report. These samples are being scanned in order to quantify the distribution of apertures and the nature of the asperities. Low resolution images of fluids in a sample with a shear fracture were performed and they provide the confidence that flow patterns and saturations could be determined in the future. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective is to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering.

  20. High velocity impact fracture

    E-Print Network [OSTI]

    Teng, Xiaoqing

    2005-01-01

    An in-depth understanding of dynamic ductile fracture is one of the most important steps to improve the survivability of critical structures such as the lost Twin Towers. In the present thesis, the macroscopic fracture ...

  1. A Numerical Investigation of Fault Slip Triggered by Hydraulic Fracturing

    E-Print Network [OSTI]

    through hydraulic fracturing, enhanced geothermal systems, or carbon dioxide (CO2) sequestration offers a means to understand the complex hydromechanical behavior of shale gas and oil reservoir systems the discontinuum-based distinct-element program UDEC assuming a fracture flow system. The conceptual reservoir

  2. The Political History of Hydraulic Fracturing’s Expansion Across the West

    E-Print Network [OSTI]

    Forbis, Robert E.

    2014-01-01

    Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.

  3. The Political History of Hydraulic Fracturing’s Expansion Across the West

    E-Print Network [OSTI]

    Forbis, Robert E.

    2014-01-01

    History of Hydraulic Fracturing’s Expansion Across The WestHistory of Hydraulic Fracturing’s Expansion Across the Westuse of the hydraulic fracturing development process. First,

  4. Composites structures for bone tissue reconstruction

    SciTech Connect (OSTI)

    Neto, W.; Santos, João; Avérous, L.; Schlatter, G.; Bretas, Rosario

    2015-05-22

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  5. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    E-Print Network [OSTI]

    Liu, X.Y

    2010-01-01

    on fracture networks at Yucca Mountain Xiaoyan Liu 1 ,systems, such as at Yucca Mountain, water flow rate andflow field behavior at the Yucca Mountain waste repository

  6. Fractures in heterogeneous two-dimensional systems Antonio Politi1,2,

    E-Print Network [OSTI]

    Politi, Antonio

    Fractures in heterogeneous two-dimensional systems Antonio Politi1,2, * and Maria Zei2,3,4, 1 disorder is used as a testing ground for fracture behavior in heterogeneous materials in strain and different breaking thresholds. We study the strain range where the fracture progressively develops from

  7. A New Methodology to Investigate Fracture Toughness of Freestanding Thin Solid Films

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    A New Methodology to Investigate Fracture Toughness of Freestanding Thin Solid Films H. D. Espinosa the fracture toughness of MEMS materials. The specimens were notched using a focused ion beam (FIB) milling method to produce pre-existing cracks with a tip radius as small as 50 nm. The fracture behavior

  8. Size and Temperature Effects on the Fracture Mechanisms of Silicon Nanowires: Molecular Dynamics

    E-Print Network [OSTI]

    Cai, Wei

    Size and Temperature Effects on the Fracture Mechanisms of Silicon Nanowires: Molecular Dynamics. The fracture behavior of the NWs depends both on temperature and NW diameter. For NWs of di- ameter larger than 4 nm, cleavage fracture on the transverse (1 1 0) plane are predominantly observed at temperatures

  9. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, Jeffrey R.; Glaser, Steven D.

    2008-01-01

    potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

  10. Thermal Degradation Behavior of Siloxane Elastomer Impregnated...

    Office of Scientific and Technical Information (OSTI)

    fracture toughness, and fatigue behavior. Implications for energy-related technologies - hydrogen storage, fusion and fission energy, catalysis, electrochemical energy storage,...

  11. Optimizing parameters for predicting the geochemical behavior...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems Optimizing parameters for predicting the geochemical...

  12. Simulation of Hydraulic Fractures and their Interactions with Natural Fractures 

    E-Print Network [OSTI]

    Sesetty, Varahanaresh

    2012-10-19

    Modeling the stimulated reservoir volume during hydraulic fracturing is important to geothermal and petroleum reservoir stimulation. The interaction between a hydraulic fracture and pre-existing natural fractures exerts significant control...

  13. Fracture characterization from attenuation of Stoneley waves across a fracture

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    2012-01-01

    Fractures contribute significantly to the permeability of a formation. It is important to understand the fracture distribution and fluid transmissivity. Though traditional well logs can image fractures intersecting the ...

  14. Poroelastic response of orthotropic fractured porous media

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-12-01

    An algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton's second coe#14;fficient and satisfies 0 {<=} #20; B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further goal of the discussion is to determine how many of the poroelastic constants need to be known by other means in order to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio a{sub f} ~ 0.1 and the pore fluid is liquid water, then for several cases considered Skempton's B ~ 0:9, so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ~ 0.1, in these examples. The results do however depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann's equations for homogeneous -- but anisotropic -- poroelasticity. Relationships to Skempton's analysis of saturated soils are also noted. The paper concludes with a discussion of alternative methods of analyzing and quantifying fluid-substitution behavior in poroelastic systems, especially for those systems having heterogeneous constitution.

  15. Geothermal Ultrasonic Fracture Imager

    Broader source: Energy.gov [DOE]

    Development of a downhole wireline tool to characterize fractures in EGS wells in temperatures up to 300°C and depths up to 10; 000 m.

  16. Digital electronic bone growth stimulator

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-01-01

    The present invention relates to the electrical treatment of biological tissue. In particular, the present invention discloses a device that produces discrete electrical pulse trains for treating osteoporosis and accelerating bone growth. According to its major aspects and broadly stated, the present invention consists of an electrical circuit configuration capable of generating Bassett-type waveforms shown with alternative signals provide for the treatment of either fractured bones or osteoporosis. The signal generator comprises a quartz clock, an oscillator circuit, a binary divider chain, and a plurality of simple, digital logic gates. Signals are delivered efficiently, with little or no distortion, and uniformly distributed throughout the area of injury. Perferably, power is furnished by widely available and inexpensive radio batteries, needing replacement only once in several days. The present invention can be affixed to a medical cast without a great increase in either weight or bulk. Also, the disclosed stimulator can be used to treat osteoporosis or to strengthen a healing bone after the cast has been removed by attaching the device to the patient`s skin or clothing.

  17. Geomechanics of hydraulic fracturing microseismicity

    E-Print Network [OSTI]

    Ze'ev, Reches

    Geomechanics of hydraulic fracturing microseismicity: Part 2. Stress state determination Seth Busetti and Ze'ev Reches ABSTRACT We investigate the hydraulic fracturing process by analysis, stress shadowing adjacent to large parent hydraulic fractures, and crack tip stress perturbations. Data

  18. Fracture Toughness Prediction for MWCNT Reinforced Ceramics

    SciTech Connect (OSTI)

    Henager, Charles H.; Nguyen, Ba Nghiep

    2013-09-01

    This report describes the development of a micromechanics model to predict fracture toughness of multiwall carbon nanotube (MWCNT) reinforced ceramic composites to guide future experimental work for this project. The modeling work described in this report includes (i) prediction of elastic properties, (ii) development of a mechanistic damage model accounting for matrix cracking to predict the composite nonlinear stress/strain response to tensile loading to failure, and (iii) application of this damage model in a modified boundary layer (MBL) analysis using ABAQUS to predict fracture toughness and crack resistance behavior (R-curves) for ceramic materials containing MWCNTs at various volume fractions.

  19. Modelling and simulation of acrylic bone cement injection and curing within the framework of vertebroplasty

    E-Print Network [OSTI]

    Landgraf, Ralf; Kolmeder, Sebastian; Lion, Alexander; Lebsack, Helena; Kober, Cornelia

    2013-01-01

    The minimal invasive procedure of vertebroplasty is a surgical technique to treat compression fractures of vertebral bodies. During the treatment liquid bone cement gets injected into the affected vertebral body and therein cures to a solid. In order to investigate the treatment and the impact of injected bone cement on the vertebra, an integrated modelling and simulation framework has been developed. The framework includes (i) the generation of computer models based on microCT images of human cancellous bone, (ii) CFD simulations of bone cement injection into the trabecular structure of a vertebral body as well as (iii) non-linear FEM simulations of the bone cement curing. Thereby, microstructural models of trabecular bone structures are employed. Furthermore, a detailed description of the material behaviour of acrylic bone cements is provided. More precisely, a non-linear fluid flow model is chosen for the representation of the bone cement behaviour during injection and a non-linear viscoelastic material mo...

  20. Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length 

    E-Print Network [OSTI]

    Lolon, Elyezer P.

    2006-04-12

    Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may...

  1. Fracture mechanics: 26. volume

    SciTech Connect (OSTI)

    Reuter, W.G.; Underwood, J.H.; Newman, J.C. Jr.

    1995-12-31

    The original objective of these symposia was to promote technical interchange between researchers from the US and worldwide in the field of fracture. This objective was recently expanded to promote technical interchange between researchers in the field of fatigue and fracture. The symposium began with the Swedlow Memorial Lecture entitled ``Patterns and Perspectives in Applied Fracture Mechanics.`` The remaining 42 papers are divided into the following topical sections: Constraint crack initiation; Constraint crack growth; Weldments; Engineered materials; Subcritical crack growth; Dynamic loading; and Applications. Papers within the scope of the Energy Data Base have been processed separately.

  2. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    E-Print Network [OSTI]

    Ritchie, Robert

    each hier- archical structural level contributes to its strength, ductility and toughness-ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen August 2011 Keywords: Human cortical bone Deformation Toughness X-ray diffraction Tomography Collagen a b

  3. Fracture of Thermosetting Polymers: Experiments and Modeling 

    E-Print Network [OSTI]

    Benzerga, Amine; Burgess, Brad

    2011-08-04

    of a resin known as epoxy E862, which is a polymer resin currently explored by NASA researchers, and then model this behavior using FEM. In the early 1990's, successful computational methodologies for modeling fracture of metal-matrix composites... of Aerospace Engineering Aircraft are becoming extremely complex in the modern age. Fueled by the advent of new technology, a modern plane?s makeup and structure are changing considerably. Recently the idea to utilize a greater amount of composite...

  4. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, J R; Glaser, Steven D

    2007-01-01

    potential measurements during hydraulic fracturing of BunterSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

  5. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, Jeffrey R.; Glaser, Steven D.

    2008-01-01

    during hydraulic fracturing of Bunter sandstones, Proc. NearMonitoring during hydraulic fracturing using the TG-2 well,processes in hydraulic fracturing, Quarterly Report for The

  6. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, J R; Glaser, Steven D

    2007-01-01

    during hydraulic fracturing of Bunter sandstones, Proc. NearSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

  7. Osteocytes and Bone Diseases 

    E-Print Network [OSTI]

    Ren, Yinshi

    2015-05-06

    For many centuries, the osteoblast is considered to be responsible for bone formation. It is also believed that an imbalance of osteoblasts (weak) and osteoclasts (strong) is the main cause for bone diseases such as ...

  8. Sacrificial bonds and hidden length in biomaterials -- a kinetic, constitutive description of strength and toughness in bone

    E-Print Network [OSTI]

    Lieou, Charles K C; Carlson, Jean M

    2013-01-01

    Sacrificial bonds and hidden length in structural molecules account for the greatly increased fracture toughness of biological materials compared to synthetic materials without such structural features, by providing a molecular-scale mechanism for energy dissipation. One example is in the polymeric glue connection between collagen fibrils in animal bone. In this paper, we propose a simple kinetic model that describes the breakage of sacrificial bonds and the release of hidden length, based on Bell's theory. We postulate a master equation governing the rates of bond breakage and formation. This enables us to predict the mechanical behavior of a quasi-one-dimensional ensemble of polymers at different stretching rates. We find that both the rupture peak heights and maximum stretching distance increase with the stretching rate. In addition, our theory naturally permits the possibility of self-healing in such biological structures.

  9. Sacrificial bonds and hidden length in biomaterials -- a kinetic, constitutive description of strength and toughness in bone

    E-Print Network [OSTI]

    Charles K. C. Lieou; Ahmed E. Elbanna; Jean M. Carlson

    2013-01-25

    Sacrificial bonds and hidden length in structural molecules account for the greatly increased fracture toughness of biological materials compared to synthetic materials without such structural features, by providing a molecular-scale mechanism for energy dissipation. One example is in the polymeric glue connection between collagen fibrils in animal bone. In this paper, we propose a simple kinetic model that describes the breakage of sacrificial bonds and the release of hidden length, based on Bell's theory. We postulate a master equation governing the rates of bond breakage and formation. This enables us to predict the mechanical behavior of a quasi-one-dimensional ensemble of polymers at different stretching rates. We find that both the rupture peak heights and maximum stretching distance increase with the stretching rate. In addition, our theory naturally permits the possibility of self-healing in such biological structures.

  10. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  11. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. (Saudi Aramco, Dhahran (Saudi Arabia))

    1996-01-01

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  12. Acid Fracture and Fracture Conductivity Study of Field Rock Samples 

    E-Print Network [OSTI]

    Underwood, Jarrod

    2013-11-15

    Acid fracturing is a well stimulation strategy designed to increase the productivity of a producing well. The parameters of acid fracturing and the effects of acid interaction on specific rock samples can be studied experimentally. Acid injection...

  13. Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis 

    E-Print Network [OSTI]

    Ahmed, Ibraheem 1987-

    2012-11-30

    Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much...

  14. Fracture Conductivity of the Eagle Ford Shale 

    E-Print Network [OSTI]

    Guzek, James J

    2014-07-25

    Hydraulic fracturing is a well completions technique that induces a network of flow channels in a reservoir. These channels are characterized by fracture conductivity, a measure of how easily a liquid or gas flows through the fracture. Fracture...

  15. Reservoir fracture characterizations from seismic scattered waves

    E-Print Network [OSTI]

    Fang, Xinding

    2012-01-01

    The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

  16. Correlating toughness and roughness in ductile fracture

    E-Print Network [OSTI]

    Laurent Ponson; Ankit Srivastava; Shmulik Osovski; Elisabeth Bouchaud; Viggo Tvergaard; Alan Needleman

    2013-07-16

    Three dimensional calculations of ductile crack growth under mode I plane strain, small scale yielding conditions are carried out using an elastic-viscoplastic constitutive relation for a progres- sively cavitating plastic solid with two populations of void nucleating second phase particles. Full field solutions are obtained for three dimensional material microstructures characterized by ran- dom distributions of void nucleating particles. Crack growth resistance curves and fracture surface roughness statistics are calculated using standard procedures. The range of void nucleating particle volume fractions considered give rise to values of toughness, JIC, that vary by a factor of four. For all volume fractions considered, the computed fracture surfaces are self-affine over a size range of about two orders of magnitude with a roughness exponent of 0.54 $\\pm$ 0.03. For small void nucleating particle volume fractions, the mean large particle spacing serves as a single dominant length scale. In this regime, the correlation length of the fracture surface corresponding to the cut-off of the self-affine behavior is found to be linearly related to JIC thus quantitatively correlating toughness and fracture surface roughness.

  17. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2002-10-08

    During this reporting period, research was continued on characterizing and modeling the behavior of naturally fractured reservoir systems. This report proposed a model to relate the seismic response to production data to determine crack spacing and aperture, provided details of tests of proposed models to obtain fracture properties from conventional well logs with actual field data, and verification of the naturally fractured reservoir simulator developed in this project.

  18. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    SciTech Connect (OSTI)

    Liu, X.Y; Zhang, C.Y.; Liu, Q.S.; Birkholzer, J.T.

    2009-05-01

    In many underground nuclear waste repository systems, such as at Yucca Mountain, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of the MPS method is to record multiple-point statistics concerning the connectivity patterns of a fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at the Yucca Mountain waste repository system. First, the MPS method is used to create a fracture network with an original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in the surrounding waste emplacement drifts. Our study shows that connectivity or patterns of fracture networks can be grasped and reconstructed by MPS methods. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify model uncertainty even in complicated coupled THM simulations. It indicates that MPS can potentially characterize and reconstruct natural fracture networks in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

  19. Microearthquake Technology for EGS Fracture Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization;...

  20. Fracture prediction in metal sheets

    E-Print Network [OSTI]

    Lee, Young-Woong

    2005-01-01

    One of the most important failure modes of thin-walled structures is fracture. Fracture is predominantly tensile in nature and, in most part, is operated by the physical mechanisms of void nucleation, growth, and linkage. ...

  1. Fluid Flow Modeling in Fractures

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2004-01-01

    In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

  2. Fractured Petroleum Reservoirs

    SciTech Connect (OSTI)

    Firoozabadi, Dr. Abbas

    2000-01-18

    In this report the results of experiments of water injection in fractured porous media comprising a number of water-wet matrix blocks are reported for the first time. The blocks experience an advancing fracture-water level (FWL). Immersion-type experiments are performed for comparison; the dominant recovery mechanism changed from co-current to counter-current imbibition when the boundary conditions changed from advancing FWL to immersion-type. Single block experiments of co-current and counter-current imbibition was performed and co-current imbibition leads to more efficient recovery was found.

  3. Seismic waves in rocks with fluids and fractures

    SciTech Connect (OSTI)

    Berryman, J.G.

    2007-05-14

    Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracture parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.

  4. Analysis of compressive fracture in rock using statistical techniques

    SciTech Connect (OSTI)

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  5. Fracture Mechanics and Failure Analysis

    E-Print Network [OSTI]

    New South Wales, University of

    concepts: Griffith criterion, K=Ya, K=KIC, ductile and brittle fracture, cyclic fatigue, environmentally, yield criteria. 4 Elastic-Plastic Analysis 5 Fracture toughness testing 6 Crack Growth Resistance - RMATS4004 Fracture Mechanics and Failure Analysis Course Outline Session 1, 2015 School of Materials

  6. Multiporosity Flow in Fractured Low-Permeability Rocks

    E-Print Network [OSTI]

    Kuhlman, Kristopher L; Heath, Jason E

    2015-01-01

    A multiporosity extension of classical double and triple porosity fractured rock flow models for slightly compressible fluids is presented. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo-steady-state and transient interporosity flow double porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semi-analytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform to illustrate its behavior. The multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice ...

  7. Infiltration into Fractured Bedrock

    SciTech Connect (OSTI)

    Salve, Rohit; Ghezzehei, Teamrat A.; Jones, Robert

    2007-09-01

    One potential consequence of global climate change and rapid changes in land use is an increased risk of flooding. Proper understanding of floodwater infiltration thus becomes a crucial component of our preparedness to meet the environmental challenges of projected climate change. In this paper, we present the results of a long-term infiltration experiment performed on fractured ash flow tuff. Water was released from a 3 x 4 m{sup 2} infiltration plot (divided into 12 square subplots) with a head of {approx}0.04 m, over a period of {approx}800 days. This experiment revealed peculiar infiltration patterns not amenable to current infiltration models, which were originally developed for infiltration into soils over a short duration. In particular, we observed that in part of the infiltration plot, the infiltration rate abruptly increased a few weeks into the infiltration tests. We suggest that these anomalies result from increases in fracture permeability during infiltration, which may be caused by swelling of clay fillings and/or erosion of infill debris. Interaction of the infiltration water with subsurface natural cavities (lithophysal cavities) could also contribute to such anomalies. This paper provides a conceptual model that partly describes the observed infiltration patterns in fractured rock and highlights some of the pitfalls associated with direct extension of soil infiltration models to fractured rock over a long period.

  8. An Experimental Study of Deformation and Fracture of a Nanostructured Metallic Material 

    E-Print Network [OSTI]

    Abdel Al, Nisrin Rizek

    2011-02-22

    , the mechanical behavior of a nanostructured, nearly pure material is investigated in order to link processing conditions, microstructure, and fracture locus in stress space. With focus laid on BCC materials which can undergo a ductile-to-brittle transition...

  9. LABORATORY INVESTIGATIONS ON THE HYDRAULIC AND THERMOMECHANICAL PROPERTIES OF FRACTURED CRYSTALLINE ROCKS

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01

    PROPERTIES OF FRACTURED CRYSTALLINE ROCKS P. A. W i t h e ring of the behavior of crystalline rocks under the influencein Mined Caverns in Crystalline Rock^ ) of LBL. STRESS-FLOW

  10. Transient pressure analysis for partially-penetrating wells in naturally-fractured reservoirs 

    E-Print Network [OSTI]

    Bui, Thang Dinh

    1998-01-01

    -penetrating wells. An analytical solution has been developed that describes transient pressure behavior of the partially-penetrating wells in naturally-fractured reservoirs. The solution is obtained by combining the pseudo steady state model for naturally...

  11. Numerical Modeling of Fractured Shale-Gas and Tight-Gas Reservoirs Using Unstructured Grids 

    E-Print Network [OSTI]

    Olorode, Olufemi Morounfopefoluwa

    2012-02-14

    Various models featuring horizontal wells with multiple induced fractures have been proposed to characterize flow behavior over time in tight gas and shale gas systems. Currently, there is little consensus regarding the effects of non...

  12. Fracture mechanics analysis on the resistance of welded details under variable amplitude long life loading 

    E-Print Network [OSTI]

    Zhou, Minjian

    1993-01-01

    Fracture mechanics approach has been used to analyze the behavior of fatigue resistance of welded details existing in highway steel bridges under variable amplitude long life loading which means most of the stress ranges will be below constant...

  13. Joint flow-seismic inversion for characterizing fractured reservoirs: theoretical approach and numerical modeling

    E-Print Network [OSTI]

    Kang, Peter K.

    2013-01-01

    Traditionally, seismic interpretation is performed without any account of the flow behavior. Here, we present a methodology to characterize fractured geologic media by integrating flow and seismic data. The key element of ...

  14. Prediction of plane strain fracture of AHSS sheets with post-initiation softening

    E-Print Network [OSTI]

    Li, Yaning

    In this investigation, the three-parameter Modified Mohr–Coulomb (MMC) fracture model and the determination of the material parameters are briefly described. The formulation of the post-initiation behavior is proposed by ...

  15. INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT, MONTICELLO, SOUTH CAROLINA

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2014-01-01

    OF A HYDRAULIC FRACTURING EXPERIMENT, MONTICELLO, SOUTHOF A HYDRAULIC FRACTURING EXPERIMENT, MONTICELLO, SOUTHdata from a hydraulic fracturing experiment have been

  16. Fracture and Healing of Rock Salt Related to Salt Caverns

    SciTech Connect (OSTI)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-03-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in cavern sealing and operation. The MDCF model is used in three simulations of field experiments in which indirect measures were obtained of the generation of damage. The results of the simulations help to verify the model and suggest that the model captures the correct fracture behavior of rock salt. The model is used in this work to estimate the generation and location of damage around a cylindrical storage cavern. The results are interesting because stress conditions around the cylindrical cavern do not lead to large amounts of damage. Moreover, the damage is such that general failure can not readily occur, nor does the extent of the damage suggest possible increased permeation when the surrounding salt is impermeable.

  17. Hydrogen-Assisted Fracture: Materials Testing and Variables Governing...

    Office of Environmental Management (EM)

    Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture SNL has 40+ years...

  18. Phase Field Fracture Mechanics.

    SciTech Connect (OSTI)

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  19. Fracture testing of Edwards limestone: a statistical treatment 

    E-Print Network [OSTI]

    Redding, David Earl

    1993-01-01

    . This study addresses the behavior of Edwards limestone when subjected to rubber fracture testing. The understanding of a material's behavior under tensile stress loading is limited to a few but highly significant applications. Petroleum reservoir problems.... Next, the effectiveness of assigning statistical distributions to represent an empirical distribution function is The citations on the following pages follow the style of the international Journal of Rock Mechanics and Mining Sciences & Geomechanics...

  20. Procedure for estimating fracture energy from fracture surface roughness

    DOE Patents [OSTI]

    Williford, Ralph E. (Kennewick, WA)

    1989-01-01

    The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

  1. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    SciTech Connect (OSTI)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

  2. Biodegradable synthetic bone composites

    DOE Patents [OSTI]

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  3. Brittle Fracture Ductile to Brittle transition

    E-Print Network [OSTI]

    Subramaniam, Anandh

    FRACTURE Brittle Fracture Ductile to Brittle transition Fracture Mechanics T.L. Anderson CRC sulphur in steel Residual stress Continuity of the structure Microcracks #12;Fracture Brittle Ductile Factors affecting fracture Strain rate State of stress Temperature #12;Behaviour described Terms Used

  4. FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

  5. Fracture-Induced Anisotropic Attenuation

    E-Print Network [OSTI]

    2012-03-23

    (the lossless elastic limit) times one unit of time. The SH wave energy velocity is ..... Technology. Hood JA (1991) A simple method for decomposing fracture- ...

  6. Seismic anisotropy of fractured rock

    E-Print Network [OSTI]

    M. Schoenberg, C. M. Sayers

    2000-02-18

    anisotropic media: Pure Appl. Geophys., 58, 53-112. Henyey ... simulated fractured medium: Geophysics, 58, 964-977. Hudson ... ASCE, 106, 1039-1051. 1992 ...

  7. Effect of cryo-induced microcracks on microindentation of hydrated cortical bone tissue

    E-Print Network [OSTI]

    Qin, Qinghua

    tissue was plastic deformation, not brittle fracture. © 2009 Elsevier Inc. All rights reserved. Keywords 1. Introduction Bone contains approximately 60% ceramic nanoparticles of inorganic carbonated hydroxyapatite, 10% water and about 30% polymer matrix of organic and mineralized collagen fibers by weight [1

  8. Patient-Specific FE Analyses of Metatarsal Bones with1 Inhomogeneous Isotropic Material Properties2

    E-Print Network [OSTI]

    Yosibash, Zohar

    research and clinical practice, especially when associated with the9 correction of Hallux Valgus. Verified to Hallux14 Valgus correction are then drilled in the bones, which are then reloaded until15 fracture on the mechanical response so to optimize the outcome of the Hallux Valgus27 correction.28 This study further

  9. Aquifer behavior with reinjection 

    E-Print Network [OSTI]

    Bonet, Euclides Jose

    1967-01-01

    AQUIFER BEHAVIOR WITH REINJECTION A Thesis By EUCLIDES JOSE BONET Submitted to the Graduate College of the Texas ARUM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, f967 Major Subject... Petroleum Engineering AQUIFER BEHAVIOR WITH REINJECTION A Thesis By E UC LI DES JOSE BONE T Approved as to style and content by: (Chairman of Committee) (Member) (Member) May, 1967 ACKNOWLEDGMENT Thanks are due to Petroleo Brasilerio S...

  10. Interferometric hydrofracture microseism localization using neighboring fracture

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2011-05-19

    Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir productivity. Microseismic event localization is used to locate created fractures. ...

  11. Fracture compliance estimation using borehole tube waves

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

  12. On the fracture toughness of advanced materials

    E-Print Network [OSTI]

    Launey, Maximilien E.

    2009-01-01

    higher intrinsic toughness For ductile fracture, conversely,of fracture resistance and toughness. In ductile materialsductile, i.e. , microvoid coalescence, fracture, which is locally strain-controlled and generally results in much higher toughness.

  13. Interferometric hydrofracture microseism localization using neighboring fracture

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir productivity. Microseismic event localization is used to locate created fractures. ...

  14. Discrete Fracture Reservoir Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory | National NuclearDiscoveringDiscrete Fracture Reservoir

  15. Wave Propagation in Fractured Poroelastic Media

    E-Print Network [OSTI]

    robiel

    instance, tectonic stresses and natural or artificial hydraulic fracturing caused ... Seismic wave propagation through fractures and cracks is an important subject ...

  16. Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations

    SciTech Connect (OSTI)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

    2013-10-01

    In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.

  17. Modeling the Fracture of Ice Sheets on Parallel Computers

    SciTech Connect (OSTI)

    Waisman, Haim; Tuminaro, Ray

    2013-10-10

    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  18. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    SciTech Connect (OSTI)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States)] [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany)] [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany)] [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany)] [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  19. TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES...

    Open Energy Info (EERE)

    DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  20. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, Jeffrey R.; Glaser, Steven D.

    2008-01-01

    assumption that fluid flow is laminar; an assumption thatspecimens, fluid flow prior to fracturing remains laminar

  1. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, J R; Glaser, Steven D

    2007-01-01

    assumption that fluid flow is laminar; an assumption thatspecimens, fluid flow prior to fracturing remains laminar

  2. The FRAC Act: The Fracturing Responsibility and

    E-Print Network [OSTI]

    Smerdon, Jason E.

    ;4 Hydraulic fracturing, commonly referred to as hydrofracking or fracking, is a technology used to stimulate

  3. Fingering to fracturing transition in a transient gel

    E-Print Network [OSTI]

    Guillaume Foyart; Laurence Ramos; Serge Mora; Christian Ligoure

    2013-06-21

    Fracture processes are ubiquitous in soft materials, even in complex fluids, subjected to stresses. To investigate these processes in a simple geometry, we use a model self-assembled transient gel and study the instability patterns obtained in a radial Hele-Shaw cell when a low viscosity oil pushes the more viscous transient gel. Thanks to an analysis of the morphology of the patterns, we find a discontinuous transition between the standard Saffman-Taylor fingering instability and a fracturing instability as the oil injection rate increases. Our data suggest that the flow properties of the gel ahead of the finger tip controls the transition towards fracturing. By analyzing the displacement field of the gel in the vicinity of the fingers and cracks, we show that in the fingering regime, the oil gently pushes the gel, whereas in the fracturing regime, the crack tears apart the gel, resulting in a strong drop of the gel velocity ahead of the crack tip as compared to the tip velocity. We find a unique behavior for the whole displacement field of a gel around a crack, which is drastically different from that around a finger, and reveals the solid-like behavior of the gel at short time. Our experiments and analysis provide quantitative yet simple tools to unambiguously discriminate a finger from a crack in a visco-elastic material.

  4. Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and

    E-Print Network [OSTI]

    Ritchie, Robert

    Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and Upper Shelf fracture stress and stress modified fracture strain models are utilized to describe the variation of lower and upper shelf fracture toughness with temperature and strain rate for two alloy steels used

  5. Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems 

    E-Print Network [OSTI]

    Freeman, Craig M.

    2010-07-14

    Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small...

  6. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for optimizing the recovery from naturally fractured reservoir systems. The next logical extension of this work is to apply the proposed methods to an actual field case study to provide information for verification and modification of the techniques and simulator. This report provides the details of the proposed techniques and summarizes the activities undertaken during the course of this project. Technology transfer activities were highlighted by a two-day technical conference held in Oklahoma City in June 2002. This conference attracted over 90 participants and included the presentation of seventeen technical papers from researchers throughout the United States.

  7. FRACTURE STIMULATION IN ENHANCED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY (Principal Advisor) #12;#12;v Abstract Enhanced Geothermal Systems (EGS) are geothermal reservoirs formed

  8. Fracture of aluminum naval structures

    E-Print Network [OSTI]

    Galanis, Konstantinos, 1970-

    2007-01-01

    Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

  9. Sensitivity analysis of fracture scattering

    E-Print Network [OSTI]

    Fang, Xinding, S.M. Massachusetts Institute of Technology

    2010-01-01

    We use a 2-D finite difference method to numerically calculate the seismic response of a single finite fracture in a homogeneous media. In our experiments, we use a point explosive source and ignore the free surface effect, ...

  10. Stimuli-Responsive/Rheoreversible Hydraulic Fracturing Fluids as a Greener Alternative to Support Geothermal and Fossil Energy Production

    SciTech Connect (OSTI)

    Jung, Hun Bok; Carroll, KC; Kabilan, Senthil; Heldebrant, David J.; Hoyt, David W.; Zhong, Lirong; Varga, Tamas; Stephens, Sean A.; Adams, Lexor; Bonneville, Alain; Kuprat, Andrew P.; Fernandez, Carlos A.

    2015-01-01

    Cost-effective yet safe creation of high-permeability reservoirs within deep bedrock is the primary challenge for the viability of enhanced geothermal systems (EGS) and unconventional oil/gas recovery. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To enable EGS feasibility and lessen environmental impact of reservoir stimulation, an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing (at significantly lower effective stress than standard fracturing fluids) due to in situ volume expansion and gel formation is investigated herein. The chemical mechanism, stability, phase-change behavior, and rheology for a novel polyallylamine (PAA)-CO2 fracturing fluid was characterized at EGS temperatures and pressures. Hydrogel is formed upon reaction with CO2 and this process is reversible (via CO2 depressurization or solubilizing with a mild acid) allowing removal from the formation and recycling, decreasing environmental impact. Rock obtained from the Coso geothermal field was fractured in laboratory experiments under various EGS temperatures and pressures with comparison to standard fracturing fluids, and the fractures were characterized with imaging, permeability measurement, and flow modeling. This novel fracturing fluid and process may vastly reduce water usage and the environmental impact of fracturing practices and effectively make EGS production and unconventional oil/gas exploitation cost-effective and cleaner.

  11. Invest in Your Bones Bone Mineral Calcium and Vitamin D

    E-Print Network [OSTI]

    Invest in Your Bones Bone Mineral Calcium and Vitamin D Leaflet 4 One common misconception is that calcium is only needed for growing children. In reality, both calcium and vitamin D are needed to maintain of calcium from your bones. Vitamin D promotes the absorption of calcium in the gut, which is necessary

  12. Capillary fracture of soft gels

    E-Print Network [OSTI]

    Joshua B. Bostwick; Karen E. Daniels

    2013-10-16

    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact-line in a starburst pattern. In this paper, we characterize i) the initiation process in which the number of arms in the starburst is controlled by the ratio of surface tension contrast to the gel's elastic modulus and ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law $L\\propto t^{3/4}$. We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid/solid wetting forces. The elastic solution shows that both the location and magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material, and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids finding that the latter better explains the observed exponent.

  13. Evaluating GPR polarization effects for imaging fracture channeling and estimating fracture properties

    E-Print Network [OSTI]

    Perll, Chris

    2013-12-31

    . To understand how the polarization of radar waves affects imaging of channelized flow in a horizontal fracture, i) a series of numerical forward models was created with varying fracture aperture, channel orientation, and varying fracture water electrical...

  14. Estimation of fracture compliance from tubewaves generated at a fracture intersecting a borehole

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    2011-01-01

    Understanding fracture compliance is important for characterizing fracture networks and for inferring fluid flow in the subsurface. In an attempt to estimate fracture compliance in the field, we developed a new model to ...

  15. Comparison of Discrete Fracture and Effective Media Representation of Fractures on Azimuthal AVO

    E-Print Network [OSTI]

    Zhang, Yang

    2005-01-01

    In fractured reservoir development, azimuthal AVO (AVOaz) properties of reflected PP waves from reservoir tops are often used to infer fracture properties. The fracture parameter inversion is based on either an effective ...

  16. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    SciTech Connect (OSTI)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  17. Fracture Processes Observed with A Cryogenic Detector

    E-Print Network [OSTI]

    J. Astrom; P. C. F. Di Stefano; F. Proebst; L. Stodolsky; J. Timonen; C. Bucci; S. Cooper; C. Cozzini; F. v. Feilitzsch; H. Kraus; J. Marchese; O. Meier; U. Nagel; Y. Ramachers; W. Seidel; M. Sisti; S. Uchaikin; L. Zerle

    2006-03-21

    In the early stages of running of the CRESST dark matter search using sapphire detectors at very low temperature, an unexpectedly high rate of signal pulses appeared. Their origin was finally traced to fracture events in the sapphire due to the very tight clamping of the detectors. During extensive runs the energy and time of each event was recorded, providing large data sets for such phenomena. We believe this is the first time the energy release in fracture has been directly and accurately measured on a microscopic event-by-event basis. The energy threshold corresponds to the breaking of only a few hundred covalent bonds, a sensitivity some orders of magnitude greater than that of previous technique. We report some features of the data, including energy distributions, waiting time distributions, autocorrelations and the Hurst exponent. The energy distribution appear to follow a power law, $dN/dE\\propto E^{-\\beta}$, similar to the power law for earthquake magnitudes, and after appropriate translation, with a similar exponent. In the time domain,the waiting time $w$ or gap distribution between events has a power law behavior at small $w$ and an exponential fall-off at large $w,$ and can be fit $\\propto w^{-\\alpha}e^{-w/w_0}$. The autocorrelation function shows time correlations lasting for substantial parts of an hour. An asymmetry is found around large events, with higher count rates after, as opposed to before,the large event .

  18. Fracture induced anisotropy in viscoelastic UNLP, 11 Octubre de 2012

    E-Print Network [OSTI]

    Santos, Juan

    of earthquakes, and hydrocarbon and geothermal reservoirs are mainly composed of fractured rocks. Fracture: horizontal and vertical coordinates, respectively. When a dense set of parallel fractures is present

  19. INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT, MONTICELLO, SOUTH CAROLINA

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2014-01-01

    Letters INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,12091 INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,transient data from a hydraulic fracturing experiment have

  20. Uncertainty in the maximum principal stress estimated from hydraulic fracturing Measurements due to the presence of the induced fracture

    E-Print Network [OSTI]

    Rutqvist, Jonny; Tsang, Chin-fu; Stephansson, Ove

    2000-01-01

    reopening during hydraulic fracturing stress determinations.Laboratory study of hydraulic fracturing pressure data?Howevaluation of hydraulic fracturing stress measurement

  1. Fracture characterization and estimation of fracture porosity of naturally fractured reservoirs with no matrix porosity using stochastic fractal models 

    E-Print Network [OSTI]

    Kim, Tae Hyung

    2009-05-15

    Determining fracture characteristics at the laboratory scale is a major challenge. It is known that fracture characteristics are scale dependent; as such, the minimum sample size should be deduced in order to scale to reservoir dimensions. The main...

  2. Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test 

    E-Print Network [OSTI]

    Correa Castro, Juan

    2011-08-08

    concentrations under reservoirs conditions. The result of this study provides the basis to optimize the fracturing fluids and the polymer loading at different reservoir conditions, which may result in a clean and conductive fracture. Success in improving...

  3. Method for directional hydraulic fracturing

    DOE Patents [OSTI]

    Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  4. GMINC - A MESH GENERATOR FOR FLOW SIMULATIONS IN FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    the Production of Superheated Steam from Fractured, Vapor-THE PRODUCTION OF SUPERHEATED STEAM FROM FRACTURED, VAPOR-

  5. Harmonic experiments to model fracture induced anisotropy

    E-Print Network [OSTI]

    Santos, Juan

    of earthquakes, and hydrocarbon and geothermal reservoirs are mainly composed of fractured rocks. Harmonic and vertical coordinates, respectively. When a dense set of parallel fractures is present, the medium behaves

  6. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, Jeffrey R.; Glaser, Steven D.

    2008-01-01

    during hydraulic fracturing Moore and Glaser, in press JGR,press JGR, B – 2006JB004373 where m is the average hydraulichydraulic fracturing with water. Moore and Glaser, in press

  7. Lisburne Formation fracture characterization and flow modeling 

    E-Print Network [OSTI]

    Karpov, Alexandre Valerievich

    2001-01-01

    Evaluation of fractured reservoirs for fluid flow and optimal well placement is often very complicated. In general, fractures enhance permeability and increase access to matrix surface, but their random aspects create difficulties for analysis...

  8. Acoustic Character Of Hydraulic Fractures In Granite

    E-Print Network [OSTI]

    Paillet, Frederick I.

    1983-01-01

    Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

  9. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    E-Print Network [OSTI]

    Lu, Zhiming

    Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks Mingjie Chen Keywords: Hydraulic fracturing Fractal dimension Surrogate model Optimization Global sensitivity a b s t r a c t Hydraulic fracturing has been used widely to stimulate production of oil, natural gas

  10. FEM Analysis ofFEM Analysis of Deformation and Fracture ofDeformation and Fracture of

    E-Print Network [OSTI]

    Grujicic, Mica

    FEM Analysis ofFEM Analysis of Deformation and Fracture ofDeformation and Fracture of Deformation and Fracture in Polycrystalline -TiAl + 2-Ti3Al Single Crystals #12;Use of -TiAl + 2-Ti3Al Alloys-Temperature Ductility ·Low Ambient-Temperature Fracture Toughness (KIC

  11. Statistical fracture modeling: crack path and fracture criteria with application to homogeneous and

    E-Print Network [OSTI]

    Ritchie, Robert

    Statistical fracture modeling: crack path and fracture criteria with application to homogeneous; accepted 23 January 2002 Abstract Analysis has been performed on fracture initiation near a crack in a brittle material with strength described by Weibull statistics. This nonlocal fracture model allows

  12. A Membrane Deflection Fracture Experiment to Investigate Fracture Toughness of Freestanding MEMS Materials

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    A Membrane Deflection Fracture Experiment to Investigate Fracture Toughness of Freestanding MEMS Materials H.D. Espinosa* and B. Peng ABSTRACT This paper presents a novel Membrane Deflection Fracture Experiment (MDFE) to investigate the fracture toughness of MEMS and other advanced materials in thin film

  13. Reservoir fracture mapping using microearthquakes: Austin chalk, Giddings field, TX and 76 field, Clinton Co., KY

    SciTech Connect (OSTI)

    Phillips, W.S.; Rutledge, J.T.; Gardner, T.L.; Fairbanks, T.D.; Miller, M.E.; Schuessler, B.K.

    1996-11-01

    Patterns of microearthquakes detected downhole defined fracture orientation and extent in the Austin chalk, Giddings field, TX and the 76 field, Clinton Co., KY. We collected over 480 and 770 microearthquakes during hydraulic stimulation at two sites in the Austin chalk, and over 3200 during primary production in Clinton Co. Data were of high enough quality that 20%, 31% and 53% of the events could be located, respectively. Reflected waves constrained microearthquakes to the stimulated depths at the base of the Austin chalk. In plan view, microearthquakes defined elongate fracture zones extending from the stimulation wells parallel to the regional fracture trend. However, widths of the stimulated zones differed by a factor of five between the two Austin chalk sites, indicating a large difference in the population of ancillary fractures. Post-stimulation production was much higher from the wider zone. At Clinton Co., microearthquakes defined low-angle, reverse-fault fracture zones above and below a producing zone. Associations with depleted production intervals indicated the mapped fractures had been previously drained. Drilling showed that the fractures currently contain brine. The seismic behavior was consistent with poroelastic models that predicted slight increases in compressive stress above and below the drained volume.

  14. Regulation of Hydraulic Fracturing in California

    E-Print Network [OSTI]

    Kammen, Daniel M.

    APRIL 2013 Regulation of Hydraulic Fracturing in California: A WAsteWAteR And WAteR QuAlity Pe | Regulation of Hydraulic Fracturing in California Wheeler Institute for Water Law & Policy Center for Law #12;Regulation of Hydraulic Fracturing in California | 3Berkeley law | wheeler InstItute for water law

  15. Hydraulic Fracture: multiscale processes and moving

    E-Print Network [OSTI]

    Peirce, Anthony

    Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Mitchell (UBC) · Ed Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Scaling Fluid Proppant #12;6 An actual hydraulic fracture #12;7 HF experiment (Jeffrey et al CSIRO) #12;8 1D

  16. Identifying Best Practices in Hydraulic Fracturing Using

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Identifying Best Practices in Hydraulic Fracturing Using Virtual Intelligence Techniques SPE 72385 Results & Discussion Conclusion #12;SPE 72385 OBJECTIVE To identify Best Practices in Hydraulic Fracturing, are fractured upon completion to provide economic amounts of gas. #12;SPE 72385 BACKGROUND A dataset

  17. Hydraulic Fracture: multiscale processes and moving

    E-Print Network [OSTI]

    Peirce, Anthony

    Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Mathematical models of hydraulic fracture · Scaling and special solutions for 1-2D models · Numerical modeling for 2-3D problems

  18. FRACTURE TOUGHNESS OF WOOD AND WOOD COMPOSITES

    E-Print Network [OSTI]

    Nairn, John A.

    FRACTURE TOUGHNESS OF WOOD AND WOOD COMPOSITES DURING CRACK PROPAGATION Noah Matsumoto Structural, USA * Corresponding author: John.Nairn@oregonstate.edu SWST member #12;Fracture Toughness of Wood and Wood Composites During Crack Propagation ABSTRACT The mode I fracture toughness as a function of crack

  19. Models for MetaVCeramic Interface Fracture

    E-Print Network [OSTI]

    Suo, Zhigang

    ChaDter 12 Models for MetaVCeramic Interface Fracture ZHIGANG SUO C. FONG SHIH Metal shortcomingthat haslimited their wide- spread use-their tendency to fracture easily. In many systems, the low on interface fracture are reviewed in this chapter. With few exceptions, attention is limited to continuum

  20. FRACTURE IN DISORDERED BRITTLE MEDIA A Dissertation

    E-Print Network [OSTI]

    Sethna, James P.

    FRACTURE IN DISORDERED BRITTLE MEDIA A Dissertation Presented to the Faculty of the Graduate School by Ashivni Shekhawat May 2013 #12;c 2013 Ashivni Shekhawat ALL RIGHTS RESERVED #12;FRACTURE IN DISORDERED- lem of brittle fracture in disordered media. Chapters 2 and 4 are concerned with various aspects

  1. Presented by Statistical Physics of Fracture

    E-Print Network [OSTI]

    Presented by Statistical Physics of Fracture: Recent Advances through High-Performance Computing) ­ Phys. Rev. E 71 (2005a, 2005b, 2005c); 73 (2006a, 2006b) ­ Adv. Phys. (2006); Int. J. Fracture (2006); Int. J. Fracture (2008a, 2008b) ­ J. Phys. D (2009); J. Chem. Phys. (2009); Phys. Rev. B (2009

  2. Image-Guided Fracture David Mould

    E-Print Network [OSTI]

    Mould, David

    Image-Guided Fracture David Mould Department of Computer Science University of Saskatchewan Abstract We present an image filter that transforms an input line drawing into an image of a fractured of an uncracked texture. Key words: Non-photorealistic rendering, fracture, tex- ture synthesis 1 Introduction Non

  3. Sensitivity analysis of fracture scattering

    E-Print Network [OSTI]

    Fang, Xinding

    We use 2D and 3D finite-difference modeling to numerically calculate the seismic response of a single finite fracture with a linear-slip boundary in a homogeneous elastic medium. We use a point explosive source and ignore ...

  4. Laboratory investigation of crushed salt consolidation and fracture healing

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  5. Elongational rheology and cohesive fracture of photo-oxidated LDPE

    SciTech Connect (OSTI)

    Rolón-Garrido, Víctor H. Wagner, Manfred H.

    2014-01-15

    It was found recently that low-density polyethylene (LDPE) samples with different degrees of photo-oxidation represent an interesting system to study the transition from ductile to cohesive fracture and the aspects of the cohesive rupture in elongational flow. Sheets of LDPE were subjected to photo-oxidation in the presence of air using a xenon lamp to irradiate the samples for times between 1 day and 6 weeks. Characterisation methods included Fourier transform infrared spectroscopy, solvent extraction method, and rheology in shear and uniaxial extensional flows. Linear viscoelasticity was increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by the carbonyl index, acid and aldehydes groups, and gel fraction. The molecular stress function model was used to quantify the experimental data, and the nonlinear model parameter ? was found to be correlated with the gel content. The uniaxial data showed that the transition from ductile to cohesive fracture was shifted to lower elongational rates, the higher the gel content was. From 2 weeks photo-oxidation onwards, cohesive rupture occurred at every strain rate investigated. The true strain and true stress at cohesive fracture as well as the energy density applied to the sample up to fracture were analyzed. At low gel content, rupture was mainly determined by the melt fraction while at high gel content, rupture occurred predominantly in the gel structure. The strain at break was found to be independent of strain rate, contrary to the stress at break and the energy density. Thus, the true strain and not the stress at break or the energy density was found to be the relevant physical quantity to describe cohesive fracture behavior of photo-oxidated LDPE. The equilibrium modulus of the gel structures was correlated with the true strain at rupture. The stiffer the gel structure, the lower was the deformation tolerated before the sample breaks.

  6. Geomechanical Simulation of Fluid-Driven Fractures

    SciTech Connect (OSTI)

    Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.

    2012-11-30

    The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.

  7. RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    2002-04-12

    Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.

  8. Interaction between Injection Points during Hydraulic Fracturing

    E-Print Network [OSTI]

    Hals, Kjetil M D

    2012-01-01

    We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

  9. Permeability Calculation in a Fracture Network - 12197

    SciTech Connect (OSTI)

    Lee, Cheo Kyung; Kim, Hyo Won [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, Sung Paal [Korea Atomic Energy Research Institute, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01

    Laminar flow of a viscous fluid in the pore space of a saturated fractured rock medium is considered to calculate the effective permeability of the medium. The effective permeability is determined from the flow field which is calculated numerically by using the finite element method. The computation of permeability components is carried out with a few different discretizations for a number of fracture arrangements. Various features such as flow field in the fracture channels, the convergence of permeability, and the variation of permeability among different fracture networks are discussed. The longitudinal permeability in general appears greater than the transverse ones. The former shows minor variations with fracture arrangement whereas the latter appears to be more sensitive to the arrangement. From the calculations of the permeability in a rock medium with a fracture network (two parallel fractures aligned in the direction of 45-deg counterclockwise from the horizontal and two connecting fractures(narrowing, parallel and widening) the following conclusions are drawn. 1. The permeability of fractured medium not only depends on the primary orientation of the main fractures but also is noticeably influenced by the connecting fractures in the medium. 2. The transverse permeability (the permeability in the direction normal to the direction of the externally imposed macro-scale pressure gradient) is only a fraction of the longitudinal one, but is sensitive to the arrangement of the connecting fractures. 3. It is important to figure out the pattern of the fractures that connect (or cross) the main fractures for reliable calculation of the transverse permeability. (authors)

  10. THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2013-01-01

    improving production by hydraulic fracturing 8 the focus otfor fractures. (d) Hydraulic Fracturing: The model has been

  11. Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report

    SciTech Connect (OSTI)

    Detwiler, Russell

    2014-04-30

    Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-­?related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictive models and monitoring techniques. The project involved three major components: (1) study of two-­?phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-­?2013) and partially supported a post-­?doctoral scholar (Dr. Jean Elkhoury; 2010-­?2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-­?2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-­?water or water-­?CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high-­? resolution mechanistic model that couples elastic deformation of contacts and aperture-­?dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.

  12. Laboratory Study to Identify the Impact of Fracture Design Parameters over the Final Fracture Conductivity Using the Dynamic Fracture Conductivity Test Procedure 

    E-Print Network [OSTI]

    Pieve La Rosa, Andres Eduardo

    2011-08-08

    such as closure stress, and temperature and fracture fluid parameters such as proppant loading over the final conductivity of a hydraulic fracture treatment. With the purpose of estimating the relation between fracture conductivity and the design parameters, two...

  13. Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture

    E-Print Network [OSTI]

    Nelson, J.T.

    2009-01-01

    responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

  14. Lacunarity analysis of fracture networks: Evidence for scale-dependent clustering Ankur Roy a

    E-Print Network [OSTI]

    Perfect, Ed

    Road, BARC-EAST, Beltsville, MD 20705, USA d Korea Atomic Energy Research Institute, Radioactive Waste and Planetary Sciences, University of Tennessee, Knoxville, TN 37996-1410, USA b School of Earth and Environment. Introduction Fractures control or influence important behaviors in geological systems such as fluid storage

  15. DOI: 10.1002/adma.200601916 Understanding the Deformation and Fracture of Nitinol

    E-Print Network [OSTI]

    Ritchie, Robert

    DOI: 10.1002/adma.200601916 Understanding the Deformation and Fracture of Nitinol Endovascular behavior, is essential for their prolonged safe use in human arteries. Nitinol, a nearly equiatomic alloy).[3] As such, deformation mechanisms of Nitinol are more complex than the conventional modes of plastic defor

  16. Recommendations for the shallow-crack fracture toughness testing task within the HSST (Heavy-Section Steel Technology) Program

    SciTech Connect (OSTI)

    Theiss, T.J. (Oak Ridge National Lab., TN (USA))

    1990-09-01

    Recommendations for Heavy-Section Steel Technology Program's investigation into the influence of crack depth on the fracture toughness of a steel prototypic of those in a reactor pressure vessel are included in this report. The motivation for this investigation lies in the fact that probabilistic fracture mechanics evaluations show that shallow flaws play a dominant role in the likelihood of vessel failure, and shallow-flaw specimens have exhibited an elevated toughness compared with conventional deep-notch fracture toughness specimens. Accordingly, the actual margin of safety of vessels may be greater than that predicted using existing deep-notch fracture-toughness results. The primary goal of the shallow-crack project is to investigate the influence of crack depth on fracture toughness under conditions prototypic of a reactor vessel. A limited data base of fracture toughness values will be assembled using a beam specimen of prototypic reactor vessel material and with a depth of 100 mm (4 in.). This will permit comparison of fracture-toughness data from deep-cracked and shallow-crack specimens, and this will be done for several test temperatures. Fracture-toughness data will be expressed in terms of the stress-intensity factor and crack-tip-opening displacement. Results of this investigation are expected to improve the understanding of shallow-flaw behavior in pressure vessels, thereby providing more realistic information for application to the pressurized-thermal shock issues. 33 refs., 17 figs.

  17. The plane strain shear fracture of the advanced high strength steels

    SciTech Connect (OSTI)

    Sun, Li

    2013-12-16

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.

  18. Fractured rock aquifer tests in the Western Siberian Basin, Ozyorsk, Russia

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.

    1997-10-01

    A series of multi-zone pumping tests was conducted in a contaminated fractured rock aquifer in the Western Siberian Basin, Ozyorsk, Russia. The tests were conducted adjacent to the Mishelyak River floodplain in fractured Paleozoic porphyrites, tufts, tuff breccia, and lava typical of the Ural mountain complex. Geophysical logs, borehole photography, core samples, and results from previous borehole contamination studies were used to identify the zones to be tested. A network of three uncased wells was tested using a system of inflatable packers, pressure transducers and data loggers. Seven zones were isolated and monitored in two of the uncased wells. A straddle packer assembly was used to isolate individual zones within the pumping well. Eight constant rate pumping tests were conducted. Results of the testing indicate that shallow groundwater migrates primarily in two intervals that are separated by an interval with low lateral conductivity. The water bearing intervals have moderate to high specific capacities (1.3 and 30 L/min/m). Several processes are responsible for fracturing present in the lower interval. The network of compound fractures produced a complex array of fracture intersections yielding a fractured media with hydraulic behavior similar to porous media. Models used for the analysis of pumping tests in porous media provide a good estimation of the hydraulic response of the lower interval to pumping. Future work will include more complex analysis of the data to determine hydraulic conductivity ellipses.

  19. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    SciTech Connect (OSTI)

    Laubach, S.E.; Marrett, R.; Rossen, W.; Olson, J.; Lake, L.; Ortega, O.; Gu, Y.; Reed, R.

    1999-01-01

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specific goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.

  20. Impact fracture behavior of model system modified polypropylene 

    E-Print Network [OSTI]

    Estrada, Albert Jesse

    2000-01-01

    include rubber particle cavitation, crazing, and shear yielding. A further increase in impact strength, with an additional increase in stiffness upon addition of talc is also found. The additional filler particle-matrix debonding dilatational mechanism...

  1. Unusual lithiation and fracture behavior of silicon mesoscale...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Journal of Power Sources, vol. 248, February 15, 2014, October 3, 2013, pp. 447-456 Research Org:...

  2. FATIGUE AND FRACTURE BEHAVIOR OF HIGH TEMPERATURE MATERIALS

    E-Print Network [OSTI]

    Ritchie, Robert

    . It is the objective of the present paper to examine the subcritical crack-growth characteristics of Ti3SiC2 GPa) to elastic modulus (-320 GPa) more typical of a ductile material. Background Processed-6), including grain bending, grain buckling, and characterized by Gilbert et al. (7) in both fine- (3-10 Pm

  3. Acoustic Behavior of Flow From Fracture To Wellbore 

    E-Print Network [OSTI]

    Chen, Kyle

    2015-04-23

    Acoustic sensing technology has a long history of being implemented in the oil and gas industry; from the early days of measuring seismic activity to determine oil and gas reserve to the present day technology such as fiber optic Distributed...

  4. Thermal-hydrologic-mechanical behavior of single fractures in EGS

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and Pion decays Citation DetailsSciTech(Technical Report)

  5. Thermal-hydrologic-mechanical behavior of single fractures in EGS

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and Pion decays Citation DetailsSciTech(Technical

  6. Unusual lithiation and fracture behavior of silicon mesoscale pillars:

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and(Conference)Connecteffectcriticalsuperconductivityroles of

  7. Unusual lithiation and fracture behavior of silicon mesoscale pillars:

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and(Conference)Connecteffectcriticalsuperconductivityroles

  8. Apparatus and method for monitoring underground fracturing

    DOE Patents [OSTI]

    Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.; Wilmer, R.H.

    1999-08-10

    An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.

  9. Apparatus and method for monitoring underground fracturing

    DOE Patents [OSTI]

    Warpinski, Norman R. (Albuquerque, NM); Steinfort, Terry D. (Tijeras, NM); Branagan, Paul T. (Las Vegas, NV); Wilmer, Roy H. (Las Vegas, NV)

    1999-08-10

    An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture.

  10. Solution of hydraulic fracture problem accounting for lag

    E-Print Network [OSTI]

    Linkov, Alexander M

    2014-01-01

    The paper presents a method for solving hydraulic fracture problems accounting for the lag. The method consists in matching the outer (basic) solution neglecting the lag, with the inner (auxiliary) solution of the derived 1D integral equation with conditions, accounting for the lag and asymptotic behavior of the opening and the net-pressure. The method refers to practically important cases, when the influence of the local perturbation, caused by the lag, becomes insignificant at a distance, where the leading plane-state asymptotics near the fracture front is still applicable. The universal asymptotics are used for finding the matching constants of the basic (outer) solution and for formulation of matching condition for the solution of inner (auxiliary) problem. The method is illustrated by the solution of the Spence and Sharp plane-strain problem for a fracture propagating symmetrically from the inlet, where a Newtonian fluid is pumped at a constant rate. It is stated that the method developed for deep fractu...

  11. Are Carotid Stent Fractures Clinically Significant?

    SciTech Connect (OSTI)

    Garcia-Toca, Manuel; Rodriguez, Heron E.; Naughton, Peter A. [Northwestern University Feinberg School of Medicine, Division of Vascular Surgery (United States); Keeling, Aiofee [Northwestern University Feinberg School of Medicine, Department of Radiology (United States); Phade, Sachin V.; Morasch, Mark D.; Kibbe, Melina R.; Eskandari, Mark K., E-mail: meskanda@nmh.org [Northwestern University Feinberg School of Medicine, Division of Vascular Surgery (United States)

    2012-04-15

    Purpose: Late stent fatigue is a known complication after carotid artery stenting (CAS) for cervical carotid occlusive disease. The purpose of this study was to determine the prevalence and clinical significance of carotid stent fractures. Materials and Methods: A single-center retrospective review of 253 carotid bifurcation lesions treated with CAS and mechanical embolic protection from April 2001 to December 2009 was performed. Stent integrity was analyzed by two independent observers using multiplanar cervical plain radiographs with fractures classified into the following types: type I = single strut fracture; type II = multiple strut fractures; type III = transverse fracture; and type IV = transverse fracture with dislocation. Mean follow-up was 32 months. Results: Follow-up imaging was completed on 106 self-expanding nitinol stents (26 closed-cell and 80 open-cell stents). Eight fractures (7.5%) were detected (type I n = 1, type II n = 6, and type III n = 1). Seven fractures were found in open-cell stents (Precise n = 3, ViVEXX n = 2, and Acculink n = 2), and 1 fracture was found in a closed-cell stent (Xact n = 1) (p = 0.67). Only a previous history of external beam neck irradiation was associated with fractures (p = 0.048). No associated clinical sequelae were observed among the patients with fractures, and only 1 patient had an associated significant restenosis ({>=}80%) requiring reintervention. Conclusions: Late stent fatigue after CAS is an uncommon event and rarely clinically relevant. Although cell design does not appear to influence the occurrence of fractures, lesion characteristics may be associated risk factors.

  12. Effects of fracturing fluid recovery upon well performance and ultimate recovery of hydraulically fractured gas wells 

    E-Print Network [OSTI]

    Berthelot, Jan Marie

    1990-01-01

    EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS A Thesis IAN MARIE BERTHELOT Submitted to the Office of Graduate Studies of Texas AdtM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject: Petroleum Engineering EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS by JAN MARIE BERTIIELOT Appmved...

  13. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-01

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  14. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  15. Hydraulic Fracturing Poster | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Educational poster graphically displaying the key components of hydraulic fracturing. Teachers: If you would like hard copies of this poster sent to you, please contact the FE...

  16. A compendium of fracture flow models, 1994

    SciTech Connect (OSTI)

    Diodato, D.M.

    1994-11-01

    The report is designed to be used as a decision-making aid for individuals who need to simulate fluid flow in fractured porous media. Fracture flow codes of varying capability in the public and private domain were identified in a survey of government, academia, and industry. The selection and use of an appropriate code requires conceptualization of the geology, physics, and chemistry (for transport) of the fracture flow problem to be solved. Conceptual models that have been invoked to describe fluid flow in fractured porous media include explicit discrete fracture, dual continuum (porosity and/or permeability), discrete fracture network, multiple interacting continua, multipermeability/multiporosity, and single equivalent continuum. The explicit discrete-fracture model is a ``near-field`` representation, the single equivalent continuum model is a ``far-field`` representation, and the dual-continuum model is intermediate to those end members. Of these, the dual-continuum model is the most widely employed. The concept of multiple interacting continua has been applied in a limited number of examples. Multipermeability/multiporosity provides a unified conceptual model. The ability to accurately describe fracture flow phenomena will continue to improve as a result of advances in fracture flow research and computing technology. This improvement will result in enhanced capability to protect the public environment, safety, and health.

  17. Regional Analysis And Characterization Of Fractured Aquifers...

    Open Energy Info (EERE)

    Regional Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  18. Microseismic Tracer Particles for Hydraulic Fracturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The trend toward production of hydrocarbons from unconventional reservoirs (tight gas, shale oilgas) has caused a large increase in the use of hydraulic fracture stimulation of...

  19. Structural Settings Of Hydrothermal Outflow- Fracture Permeability...

    Open Energy Info (EERE)

    long-lived hydrothermal flow despite potential clogging of fractures due to mineral precipitation. As fault systems evolve, propagation, interaction, and linkage of fault segments...

  20. To mechanics of deformation, flow, and fracture

    E-Print Network [OSTI]

    S. L. Arsenjev

    2008-09-23

    It is stated in the main in essence new approach to mechanics of the stressed state of the solid body from statistically isotropic material and the homogeneous liquid dynamics. The approach essence is in the detected property of the core-shell spontaneous structurization of internal energy of the solid and liquid bodies in its natural state and under action of external forces. The method elements of construction of physically adequate model of the stressed state of the solid and liquid bodies, reproduced exactly its behavior on the stages of elastic and plastic deformation, flow and fracture, are stated. It is adduced a number of the examples of the stressed state construction of the simple form bodies under action of its tension, compression, torsion and at its contact interaction. For the first time it is adduced structure of the principal - normal - stresses in cylindrical bar under action of the torsion moment. The detected property and the developed method is one of necessary bases for construction of physically adequate mathematical model of the stressed state of the body and fluid in contrast to traditional approach.

  1. Evidence for a Serum Factor That Initiates the Re-calcification of Demineralized Bone*S

    E-Print Network [OSTI]

    Price, Paul A.

    Evidence for a Serum Factor That Initiates the Re-calcification of Demineralized Bone*S Received to demineralization, and the re-calcified bone is palpably hard. Re-calcified bone mineral is com- parable- induced re-calcification of demineralized bone suggest that the serum calcification factor identified

  2. Efficient Double-Beam Characterization for Fractured Reservoir

    E-Print Network [OSTI]

    Zheng, Yingcai

    We proposed an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. Based on the diffraction theory, the scattered wave ...

  3. Characterization of dipping fractures in transversely isotropic background

    E-Print Network [OSTI]

    Tsvankin, Ilya

    Characterization of dipping fractures in transversely isotropic background Vladimir Grechka incidence becomes dependent on fracture infill (saturation). A complete medium-characterization procedure for the vertical and NMO velocities. Keywords.--fracture characterization, azimuthal anisotropy, multicomponent

  4. Incorporating Rigorous Height Determination into Unified Fracture Design 

    E-Print Network [OSTI]

    Pitakbunkate, Termpan

    2010-10-12

    Hydraulic fracturing plays an important role in increasing production rate in tight reservoirs. The performance of the reservoir after fracturing can be observed from the productivity index. This parameter is dependent on the fracture geometry...

  5. A PKN Hydraulic Fracture Model Study and Formation Permeability Determination 

    E-Print Network [OSTI]

    Xiang, Jing

    2012-02-14

    Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional...

  6. FINITE FRACTURE MECHANICS OF MATRIX MICROCRACKING IN COMPOSITES

    E-Print Network [OSTI]

    Nairn, John A.

    FINITE FRACTURE MECHANICS OF MATRIX MICROCRACKING IN COMPOSITES JOHN A. NAIRN INTRODUCTION damage following complex loading conditions. This chapter describes a fracture mechanics approach to the microcracking problem. A complicating feature of composite fracture mechanics analysis is that laminates often

  7. Seismic characterization of fractured reservoirs using 3D double beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    2012-01-01

    We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

  8. Ductile fracture modeling : theory, experimental investigation and numerical verification

    E-Print Network [OSTI]

    Xue, Liang, 1973-

    2007-01-01

    The fracture initiation in ductile materials is governed by the damaging process along the plastic loading path. A new damage plasticity model for ductile fracture is proposed. Experimental results show that fracture ...

  9. Brittle and ductile fracture of semiconductor nanowires --molecular dynamics simulations

    E-Print Network [OSTI]

    Cai, Wei

    Brittle and ductile fracture of semiconductor nanowires -- molecular dynamics simulations Keonwook November 9, 2006 Abstract Fracture of silicon and germanium nanowires in tension at room temperature potentials predict brittle fracture initiated by crack nucleation from the surface, most potentials predict

  10. Stochastic multiscale models for fracture analysis of functionally graded materials

    E-Print Network [OSTI]

    Rahman, Sharif

    Stochastic multiscale models for fracture analysis of functionally graded materials Arindam three multiscale models, including sequential, invasive, and concurrent models, for fracture analysis methods for fracture reliability analysis. The par- ticle volume fractions, defined by a generic

  11. UNIVERSITY OF CALGARY Modeling Fracture Formation on Growing Surfaces

    E-Print Network [OSTI]

    Prusinkiewicz, Przemyslaw

    UNIVERSITY OF CALGARY Modeling Fracture Formation on Growing Surfaces by Pavol Federl A THESIS Fracture Formation on Growing Surfaces" submitted by Pavol Federl in partial fulfillment This thesis describes a framework for modeling fracture formation on differentially growing, bi- layered

  12. The measurement of cross-linked fracture fluid viscosity using a pipe viscometer 

    E-Print Network [OSTI]

    Vermaelen, John Douglas

    1985-01-01

    THE MEASUREMENT OF CROSS-LINKED FRACTURE FLUID VISCOSITY USING A PIPE VISCOMETER A Thesis by JOHN DOUGLAS VERMAELEN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degr ee..., B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Stephen A. Holditch Due to the increased importance of hydraulic fracture ing as a means of well stimulation, there is a need for a better understanding of the viscous behavior of a...

  13. Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures

    SciTech Connect (OSTI)

    Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; André Niemeijer; Hideaki Yasuhara

    2009-03-30

    This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

  14. Numerical Modeling of Fracture Permeability Change in Naturally Fractured Reservoirs Using a Fully Coupled Displacement Discontinuity Method. 

    E-Print Network [OSTI]

    Tao, Qingfeng

    2010-07-14

    Fractures are the main flow channels in naturally fractured reservoirs. Therefore the fracture permeability is a critical parameter to production optimization and reservoir management. Fluid pressure reduction caused by production induces...

  15. Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine

    E-Print Network [OSTI]

    Rutqvist, J.

    2011-01-01

    injection and hydraulic fracturing stress measurements inlevel measured with hydraulic fracturing (reproduced from

  16. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    E-Print Network [OSTI]

    Cotte, F.P.

    2012-01-01

    exchange process. Hydraulic fracturing, or hydrofracking, ismore detail below. Hydraulic fracturing, or hydrofracking,

  17. Bone Mineral Density, Bone Turnover, and Systemic Inflammation in Non-cirrhotics with Chronic Hepatitis C

    E-Print Network [OSTI]

    Lai, JC; Shoback, DM; Zipperstein, J; Lizaola, B; Tseng, S; Terrault, NA

    2015-01-01

    Mun˜oz-Torres M, et al. Bone mineral density, serum insulin-et al. Osteoporosis and bone mineral metabolism disorders in1069-9. 11. George J. Bone mineral density and disorders of

  18. Detecting Fractures Using Technology at High Temperatures and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting...

  19. Images of Fracture Sustainability Test on Stripa Granite

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Kneafsey

    2014-05-11

    Images of the Stripa Granite core before and after the fracture sustainability test. Photos of fracture faces of Stripa Granite core.

  20. Predicting fracture in micron-scale polycrystalline silicon MEMS...

    Office of Scientific and Technical Information (OSTI)

    Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Citation Details In-Document Search Title: Predicting fracture in micron-scale polycrystalline silicon...

  1. Final Report Multiazimuth Seismic Diffraction Imaging for Fracture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...67 Figure 2.6 Fracture path and required pressure for critical growth, SH0.1...69 Figure 2.7 Fracture path and required...

  2. Images of Fracture Sustainability Test on Stripa Granite

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Kneafsey

    Images of the Stripa Granite core before and after the fracture sustainability test. Photos of fracture faces of Stripa Granite core.

  3. Integration of well test analysis into naturally fractured reservoir simulation 

    E-Print Network [OSTI]

    Perez Garcia, Laura Elena

    2006-04-12

    Naturally fractured reservoirs (NFR) represent an important percentage of the worldwide hydrocarbon reserves and production. Reservoir simulation is a fundamental technique in characterizing this type of reservoir. Fracture ...

  4. Fractured rock stress-permeability relationships from in situ...

    Office of Scientific and Technical Information (OSTI)

    Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings Citation Details In-Document Search Title: Fractured...

  5. Joint inversion of electrical and seismic data for Fracture char...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....

  6. Elastic properties of saturated porous rocks with aligned fractures

    E-Print Network [OSTI]

    2003-12-02

    Elastic properties of fluid saturated porous media with aligned fractures can be studied using the ...... that are in hydraulic equilibrium with the fractures, the.

  7. Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing

    E-Print Network [OSTI]

    Guo, Dongning

    Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing Seminar Series fracturing of horizontal wells is priceless Sidney Green, London Shale Gas Summit, 2010 #12;Vertical Well

  8. Tracer Methods for Characterizing Fracture Creation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture...

  9. Detection and Characterization of Natural and Induced Fractures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems Detection and Characterization of Natural and Induced Fractures for the...

  10. Three-dimensional Modeling of Fracture Clusters in Geeothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geeothermal Reservoirs Three-dimensional Modeling of Fracture Clusters in Geeothermal Reservoirs Three-dimensional Modeling of Fracture Clusters in Geeothermal Reservoirs...

  11. METHOD DEVELOPMENT FOR DETERMINING THE HYDRAULIC CONDUCTIVITY OF FRACTURED POROUS MEDIA

    SciTech Connect (OSTI)

    Dixon, K.

    2013-09-30

    Plausible, but unvalidated, theoretical model constructs for unsaturated hydraulic conductivity of fractured porous media are currently used in Performance Assessment (PA) modeling for cracked saltstone and concrete (Flach 2011). The Nuclear Regulatory Commission (NRC) has expressed concern about the lack of model support for these assumed Moisture Characteristic Curves (MCC) data, as noted in Requests for Additional Information (RAIs) PA-8 and SP-4 (Savannah River Remediation, LLC, 2011). The objective of this task was to advance PA model support by developing an experimental method for determining the hydraulic conductivity of fractured cementitious materials under unsaturated conditions, and to demonstrate the technique on fractured saltstone samples. The task was requested through Task Technical Request (TTR) HLW-SSF-TTR-2012-0016 and conducted in accordance with Task Technical & Quality Assurance Plan (TTQAP) SRNL-TR-2012-00090. Preliminary method development previously conducted by Kohn et al. (2012) identified transient outflow extraction as the most promising method for characterizing the unsaturated properties of fractured porous media. While the research conducted by Kohn et al. (2012) focused on fractured media analogs such as stacked glass slides, the current task focused directly on fractured saltstone. For this task, four sample types with differing fracture geometries were considered: 1) intact saltstone, 2) intact saltstone with a single saw cut, smooth surface fracture, 3) micro-fractured saltstone (induced by oven drying), and 4) micro-fractured saltstone with a single, fully-penetrating, rough-surface fracture. Each sample type was tested initially for saturated hydraulic conductivity following method ASTM D 5084 using a flexible wall permeameter. Samples were subsequently tested using the transient outflow extraction method to determine cumulative outflow as a function of time and applied pressure. Of the four sample types tested, two yielded datasets suitable for analysis (sample types 3 and 4). The intact saltstone sample (sample type 1) did not yield any measureable outflow over the pressure range of the outflow test (0-1000 cm H{sub 2}O). This was expected because the estimated air entry pressure for intact saltstone is on the order of 100,000 cm H{sub 2}O (Dixon et al., 2009). The intact saltstone sample with a single saw cut smooth surface fracture (sample type 2) did not produce useable data because the fracture completely drained at less than 10 cm H{sub 2}O applied pressure. The cumulative outflow data from sample types 3 and 4 were analyzed using an inverse solution of the Richard’s equation for water flow in variably saturated porous media. This technique was implemented using the computer code Hydrus-1D (Šim?nek et al., 2008) and the resulting output included the van Genuchten-Mualem water retention and relative permeability parameters and predicted saturated hydraulic conductivity (Van Genuchten, 1980; Van Genuchten et al., 1991). Estimations of relative permeability and saturated conductivity are possible because the transient response of the sample to pressure changes is recorded during the multi-step outflow extraction test. Characteristic curves were developed for sample types 3 and 4 based on the results of the transient outflow method and compared to that of intact saltstone previously reported by Dixon et al. (2009). The overall results of this study indicate that the outflow extraction method is suitable for measuring the hydraulic properties of micro-fractured porous media. The resulting cumulative outflow data can be analyzed using the computer code Hydrus-1D to generate the van Genuchten curve fitting parameters that adequately describe fracture drainage. The resulting characteristic curves are consistent with blended characteristic curves that combine the behaviors of low pressure drainage associated with fracture flow with high pressure drainage from the bulk saltstone matrix.

  12. Fracture of solid state laser slabs

    SciTech Connect (OSTI)

    Marion, J.E.

    1986-07-01

    Fracture due to thermal stress limits the power output potential of modern, high average power slab lasers. Here the criteria for slab fracture and the nature of the surface flaws which constitute the strength-controlling defects are reviewed. Specific fracture data for gadolinium scandium gallium garnet and LHG-5 phosphate glass with different surface finishes are evaluated in the context of assigning appropriate slab operating parameters using Wiebull statistics. These examples illustrate both the danger of design using brittle components without adequate fracture testing, and the inadequacy of design methods which use a fixed safety factor, for this class of materials. Further consideration reveals that operation of slab lasers in contact with an aqueous coolant may lead to strength degradation with time. Finally, the evolution of the failure process in which a characteristic midplane crack forms is outlined, and the pertinent parameters for avoiding slab fracture are identified.

  13. Hydraulic fracturing slurry transport in horizontal pipes

    SciTech Connect (OSTI)

    Shah, S.N.; Lord, D.L. (Halliburton Services (US))

    1990-09-01

    Horizontal-well activity has increased throughout the industry in the past few years. To design a successful hydraulic fracturing treatment for horizontal wells, accurate information on the transport properties of slurry in horizontal pipe is required. Limited information exists that can be used to estimate critical deposition and resuspension velocities when proppants are transported in horizontal wells with non-Newtonian fracturing gels. This paper presents a study of transport properties of various hydraulic fracturing slurries in horizontal pipes. Flow data are gathered in three transparent horizontal pipes with different diameters. Linear and crosslinked fracturing gels were studied, and the effects of variables--e.g., pipe size; polymer-gelling-agent concentration; fluid rheological properties; crosslinking effects; proppant size, density, and concentrations; fluid density; and slurry pump rate--on critical deposition and resuspension velocities were investigated. Also, equations to estimate the critical deposition and resuspension velocities of fracturing gels are provided.

  14. Biomimetic hydroxyapatite as a new consolidating agent for archaeological bone

    E-Print Network [OSTI]

    North, Alexis

    2014-01-01

    R.E.M.  2002.  “Bone  Diagenesis:  An  Overview  of  2000.  “Patterns  of  Diagenesis  in  Bone  I:  The  element  Studies  of  Diagenesis  in  Prehistoric  Bone. ”  

  15. On the Use of a Driven Wedge Test to Acquire Dynamic Fracture Energies of Bonded Beam Specimens

    SciTech Connect (OSTI)

    Dillard, David A. [Virginia Polytechnic Institute and State University (Virginia Tech); Pohilt, David [Engineering Science and Mechanics Department, Virginia Tech, Blacksburg, VA, USA; Jacob, George Chennakattu [ORNL; Starbuck, Michael [Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, USA; Rakesh, Kapania [Aerospace and Ocean Engineering Department, Virginia Tech, Blacksburg, VA, USA

    2011-01-01

    A driven wedge test is used to characterize the mode I fracture resistance of adhesively bonded composite beam specimens over a range of crosshead rates up to 1 m/s. The shorter moment arms (between wedge contact and crack tip) significantly reduce inertial effects and stored energy in the debonded adherends, when compared with conventional means of testing double cantilever beam (DCB) specimens. This permitted collecting an order of magnitude more crack initiation events per specimen than could be obtained with end-loaded DCB specimens bonded with an epoxy exhibiting significant stick-slip behavior. The localized contact of the wedge with the adherends limits the amount of both elastic and kinetic energy, significantly reduces crack advance during slip events, and facilitates higher resolution imaging of the fracture zone with high speed imaging. The method appears to work well under both quasi-static and high rate loading, consistently providing substantially more discrete fracture events for specimens exhibiting pronounced stick-slip failures. Deflections associated with beam transverse shear and root rotation for the shorter beams were not negligible, so simple beam theory was inadequate for obtaining qualitative fracture energies. Finite element analysis of the specimens, however, showed that fracture energies were in good agreement with values obtained from traditional DCB tests. The method holds promise for use in dynamic testing and for characterizing bonded or laminated materials exhibiting significant stick slip behavior, reducing the number of specimens required to characterize a sufficient number of fracture events.

  16. Self-potential observations during hydraulic fracturing

    SciTech Connect (OSTI)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  17. Optimizing Fracture Treatments in a Mississippian "Chat" Reservoir, South-Central Kansas

    SciTech Connect (OSTI)

    K. David Newell; Saibal Bhattacharya; Alan Byrnes; W. Lynn Watney; Willard Guy

    2005-10-01

    This project is a collaboration of Woolsey Petroleum Corporation (a small independent operator) and the Kansas Geological Survey. The project will investigate geologic and engineering factors critical for designing hydraulic fracture treatments in Mississippian ''chat'' reservoirs. Mississippian reservoirs, including the chat, account for 159 million m3 (1 billion barrels) of the cumulative oil produced in Kansas. Mississippian reservoirs presently represent {approx}40% of the state's 5.6*106m3 (35 million barrels) annual production. Although geographically widespread, the ''chat'' is a heterogeneous reservoir composed of chert, cherty dolomite, and argillaceous limestone. Fractured chert with micro-moldic porosity is the best reservoir in this 18- to 30-m-thick (60- to 100-ft) unit. The chat will be cored in an infill well in the Medicine Lodge North field (417,638 m3 [2,626,858 bbls] oil; 217,811,000 m3 [7,692,010 mcf] gas cumulative production; discovered 1954). The core and modern wireline logs will provide geological and petrophysical data for designing a fracture treatment. Optimum hydraulic fracturing design is poorly defined in the chat, with poor correlation of treatment size to production increase. To establish new geologic and petrophysical guidelines for these treatments, data from core petrophysics, wireline logs, and oil-field maps will be input to a fracture-treatment simulation program. Parameters will be established for optimal size of the treatment and geologic characteristics of the predicted fracturing. The fracturing will be performed and subsequent wellsite tests will ascertain the results for comparison to predictions. A reservoir simulation program will then predict the rate and volumetric increase in production. Comparison of the predicted increase in production with that of reality, and the hypothetical fracturing behavior of the reservoir with that of its actual behavior, will serve as tests of the geologic and petrophysical characterization of the oil field. After this feedback, a second well will be cored and logged, and procedure will be repeated to test characteristics determined to be critical for designing cost-effective fracture treatments. Most oil and gas production in Kansas, and that of the Midcontinent oil industry, is dominated by small companies. The overwhelming majority of these independent operators employ less than 20 people. These companies have limited scientific and engineering expertise and they are increasingly needing guidelines and technical examples that will help them to not be wasteful of their limited financial resources and petroleum reserves. To aid these operators, the technology transfer capabilities of the Kansas Geological Survey will disseminate the results of this study to the local, regional, and national oil industry. Internet access, seminars, presentations, and publications by Woolsey Petroleum Company and Kansas Geological Survey geologists and engineers are anticipated.

  18. The relationship between constraint and ductile fracture initiation as defined by micromechanical analyses

    SciTech Connect (OSTI)

    Panontin, T.L.; Sheppard, S.D.

    1995-12-31

    The overall objective of this study is to provide a proven methodology to allow the transfer of ductile fracture initiation properties measured in standard laboratory specimens to large, complex, flawed structures. A significant part of this work involved specifically addressing the effects of constrain on transferability under large scale yielding conditions. The approach taken was to quantify constrain effects through micromechanical fracture models coupled with finite element generated crack tip stress-strain fields to identify the local condition corresponding to fracture initiation. Detailed finite element models predicted the influence of specimen geometry, loading mode, and material flow properties on the crack tip fields. The ability of two local, ductile fracture models (the Rice and Tracey void growth model (VGM) and the stress-modified, critical strain (SMCS) criterion of Mackenzie et al. and Hancock and Cowling) to predict fracture initiation were investigated. Predictions were made using experimentally verified, two- and three-dimensional, finite strain, large deformation, finite element analyses. Two, high toughness pressure vessel steels were investigated: A516 Gr70, a ferritic, carbon-manganese mild steel demonstrating high hardening behavior, and HY-80, a martensitic, high strength low alloy (HSLA) steel possessing medium hardening ability. Experimental verification of the ductile fracture initiation predictions was performed in a variety of crack geometries possessing a range of a/w ratios from 0.15 to 0.70 and experiencing a range of load conditions from three point bending to nearly pure tension. The predicted constrain dependence of global ductile fracture parameters in the two materials is shown.

  19. Development of experimental verification techniques for non-linear deformation and fracture.

    SciTech Connect (OSTI)

    Moody, Neville Reid; Bahr, David F. (Washington State University, Pullman, WA)

    2003-12-01

    This project covers three distinct features of thin film fracture and deformation in which the current experimental technique of nanoindentation demonstrates limitations. The first feature is film fracture, which can be generated either by nanoindentation or bulge testing thin films. Examples of both tests will be shown, in particular oxide films on metallic or semiconductor substrates. Nanoindentations were made into oxide films on aluminum and titanium substrates for two cases; one where the metal was a bulk (effectively single crystal) material and the other where the metal was a 1 pm thick film grown on a silica or silicon substrate. In both cases indentation was used to produce discontinuous loading curves, which indicate film fracture after plastic deformation of the metal. The oxides on bulk metals fractures occurred at reproducible loads, and the tensile stress in the films at fracture were approximately 10 and 15 GPa for the aluminum and titanium oxides respectively. Similarly, bulge tests of piezoelectric oxide films have been carried out and demonstrate film fracture at stresses of only 100's of MPa, suggesting the importance of defects and film thickness in evaluating film strength. The second feature of concern is film adhesion. Several qualitative and quantitative tests exist today that measure the adhesion properties of thin films. A relatively new technique that uses stressed overlayers to measure adhesion has been proposed and extensively studied. Delamination of thin films manifests itself in the form of either telephone cord or straight buckles. The buckles are used to calculate the interfacial fracture toughness of the film-substrate system. Nanoindentation can be utilized if more energy is needed to initiate buckling of the film system. Finally, deformation in metallic systems can lead to non-linear deformation due to 'bursts' of dislocation activity during nanoindentation. An experimental study to examine the structure of dislocations around indentations has been carried out to demonstrate the effectiveness in evaluating cross slip and dislocation behavior around nanoindentation impressions in bulk engineering alloys.

  20. Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems

    SciTech Connect (OSTI)

    Liou, T.S.

    1999-12-01

    Field evidence suggests that water flow in unsaturated fracture systems may occur along fast preferential flow paths. However, conventional macroscale continuum approaches generally predict the downward migration of water as a spatially uniform wetting front subjected to strong inhibition into the partially saturated rock matrix. One possible cause of this discrepancy may be the spatially random geometry of the fracture surfaces, and hence, the irregular fracture aperture. Therefore, a numerical model was developed in this study to investigate the effects of geometric features of natural rock fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal, partially saturated conditions. The fractures were conceptualized as 2-D heterogeneous porous media that are characterized by their spatially correlated permeability fields. A statistical simulator, which uses a simulated annealing (SA) algorithm, was employed to generate synthetic permeability fields. Hypothesized geometric features that are expected to be relevant for seepage behavior, such as spatially correlated asperity contacts, were considered in the SA algorithm. Most importantly, a new perturbation mechanism for SA was developed in order to consider specifically the spatial correlation near conditioning asperity contacts. Numerical simulations of fluid flow and solute transport were then performed in these synthetic fractures by the flow simulator TOUGH2, assuming that the effects of matrix permeability, gas phase pressure, capillary/permeability hysteresis, and molecular diffusion can be neglected. Results of flow simulation showed that liquid seepage in partially saturated fractures is characterized by localized preferential flow, along with bypassing, funneling, and localized ponding. Seepage pattern is dominated by the fraction of asperity contracts, and their shape, size, and spatial correlation. However, the correlation structure of permeability field is less important than the spatial correlation of asperity contacts. A faster breakthrough was observed in fractures subjected to higher normal stress, accompanied with a nonlinearly decreasing trend of the effective permeability. Interestingly, seepage dispersion is generally higher in fractures with intermediate fraction of asperity contacts; but it is lower for small or large fractions of asperity contacts. However, it may become higher if the ponding becomes significant. Transport simulations indicate that tracers bypass dead-end pores and travel along flow paths that have less flow resistance. Accordingly, tracer breakthrough curves generally show more spreading than breakthrough curves for water. Further analyses suggest that the log-normal time model generally fails to fit the breakthrough curves for water, but it is a good approximation for breakthrough curves for the tracer.

  1. Fracture-resistant lanthanide scintillators

    DOE Patents [OSTI]

    Doty, F. Patrick (Livermore, CA)

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  2. Final Report - Advanced Conceptual Models for Unsaturated and Two-Phase Flow in Fractured Rock

    SciTech Connect (OSTI)

    Nicholl, Michael J.

    2006-07-10

    The Department of Energy Environmental Management Program is faced with two major issues involving two-phase flow in fractured rock; specifically, transport of dissolved contaminants in the Vadose Zone, and the fate of Dense Nonaqueous Phase Liquids (DNAPLs) below the water table. Conceptual models currently used to address these problems do not correctly include the influence of the fractures, thus leading to erroneous predictions. Recent work has shown that it is crucial to understand the topology, or ''structure'' of the fluid phases (air/water or water/DNAPL) within the subsurface. It has also been shown that even under steady boundary conditions, the influence of fractures can lead to complex and dynamic phase structure that controls system behavior, with or without the presence of a porous rock matrix. Complicated phase structures within the fracture network can facilitate rapid transport, and lead to a sparsely populated and widespread distribution of concentrated contaminants; these qualities are highly difficult to describe with current conceptual models. The focus of our work is to improve predictive modeling through the development of advanced conceptual models for two-phase flow in fractured rock.

  3. Research paper Thermalmechanical modeling of cooling history and fracture development

    E-Print Network [OSTI]

    Kattenhorn, Simon

    from cooling fracture patterns in field examples on the eastern Snake River Plain, Idaho, and highlight

  4. Use of Tracers to Characterize Fractures in Engineered Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface areas adjacent to a single geothermal well using tracers and injection/backflow techniques; design, fabricate and test a downhole instrument for measuring fracture flow following a hydraulic stimulation experiment.

  5. Calibration of hydraulic and tracer tests in fractured media

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Calibration of hydraulic and tracer tests in fractured media represented by a DFN Model L. D. Donado, X. Sanchez-Vila, E. Ruiz* & F. J. Elorza** * Enviros Spain S.L. ** UPM #12;Fractured Media Water flows through fractures (matrix basically impervious ­ though relevant to transport) Fractures at all

  6. Reply to Davies: Hydraulic fracturing remains a possible mechanism for

    E-Print Network [OSTI]

    Jackson, Robert B.

    LETTER Reply to Davies: Hydraulic fracturing remains a possible mechanism for observed methane mechanisms were leaky gas well casings and the possibility that hydraulic fracturing might generate new- knowledged the possibility of hydraulic fracturing playing a role. Is it possible that hydraulic fracturing

  7. Statistical RKR Modeling of Mixed-Mode Fracture

    E-Print Network [OSTI]

    Ritchie, Robert

    Statistical RKR Modeling of Mixed-Mode Fracture in a Brittle Functionally Graded Material by T. L-calibration for fracture mechanics sample with modulus gradient ·Calculate effect of gradient slope on ·predicted fracture fK x II ijII I ijI ij 2 )( 2 )( )exp( #12;·The RKR fracture model correlates the onset

  8. International Journal of Fracture volume 5, number 2, 167181 (2009)

    E-Print Network [OSTI]

    Nairn, John A.

    2009-01-01

    International Journal of Fracture volume 5, number 2, 167­181 (2009) Analytical and Numerical March 2009 Abstract At the onset of fracture in materials with process zones, the fracture resis- tance with bridging zones. The simulation method includes pure fracture mechanics and pure cohesive zone models

  9. Estimating the fracture density of small-scale vertical fractures when large-scale vertical fractures are present

    E-Print Network [OSTI]

    Liu, Yuwei

    2013-01-01

    When fractures are vertical, aligned and their dimensions are small relative to the seismic wavelength, the medium can be considered to be an equivalent Horizontal Transverse Isotropic (HTI) medium. However, geophysical ...

  10. Positive modulator of bone morphogenic protein-2

    DOE Patents [OSTI]

    Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY); Takahashi, Kazuyuki (Germantown, MD)

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  11. A Fracture-Mechanics-Based Approach to Fracture Control in Biomedical Devices Manufactured From Superelastic Nitinol Tube

    E-Print Network [OSTI]

    Ritchie, Robert

    A Fracture-Mechanics-Based Approach to Fracture Control in Biomedical Devices Manufactured From: 10.1002/jbm.b.30840 Abstract: Several key fracture-mechanics parameters associated with the onset of subcritical and critical cracking, specifically the fracture toughness, crack-resistance curve, and fatigue

  12. Using the fracture energies for the two films a first estimate of fracture toughness, K, can be found.

    E-Print Network [OSTI]

    Collins, Gary S.

    · Using the fracture energies for the two films a first estimate of fracture toughness, K, can be found. · Assumptions are made to estimate the crack area based on the fracture mode seen in the SEM. · The total crack length is assumed to be 3 times the contact radius, , at the fracture depth. · To find

  13. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    SciTech Connect (OSTI)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  14. The Political History of Hydraulic Fracturing’s Expansion Across the West

    E-Print Network [OSTI]

    Forbis, Robert E.

    2014-01-01

    lic fracturing, or “fracking,” where chemically treatedreduced by the advent of fracking and directional drilling.That began to be developed, fracking is fundamental to that,

  15. Fractured: Experts examine the contentious issue of hydraulic fracturing water use 

    E-Print Network [OSTI]

    Wythe, Kathy

    2013-01-01

    Story by Kathy Wythe FRACTURED Experts examine the contentious issue of hydraulic fracturing water use In a state where oil and gas are king, and water is? in words commonly a?ributed to Mark Twain? ?for ?ghting over,? an unconventional method... that uses water to extract oil and gas from Texas? underground ?elds is causing passionate debate. ?is method?hydraulic fracturing?uses water and other ?uids under pressure to fracture or crack shale rock, releasing oil and gas from the rock. Combined...

  16. NFFLOW: A reservoir simulator incorporating explicit fractures (SPE 153890)

    SciTech Connect (OSTI)

    Boyle, E.J.; Sams, W.N.

    2012-01-01

    NFFLOW is a research code that quickly and inexpensively simulates flow in moderately fractured reservoirs. It explicitly recognizes fractures separately from rock matrix. In NFFLOW fracture flow is proportional to the pressure gradient along the fracture, and flow in the rock matrix is determined by Darcy’s Law. The two flow mechanisms are coupled through the pressure gradient between a fracture and its adjacent rock matrix. Presented is a promising change to NFFLOW that allows for flow across a rock matrix block.

  17. Multiphase flow in fractured porous media

    SciTech Connect (OSTI)

    Firoozabadi, A.

    1995-02-01

    The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.

  18. Anomalous transport through porous and fractured media

    E-Print Network [OSTI]

    Kang, Peter Kyungchul

    2014-01-01

    Anomalous transport, understood as the nonlinear scaling with time of the mean square displacement of transported particles, is observed in many physical processes, including contaminant transport through porous and fractured ...

  19. Fracture of surface cracks loaded in bending

    SciTech Connect (OSTI)

    Chao, Y.J.; Reuter, W.G.

    1997-12-31

    Theoretical background of the constraint effect in brittle fracture of solids is reviewed. Fracture test data from D6-aC, a high strength steel, using three-point-bend (SE(B)) specimens and surface cracked plate (SC(B)) specimens under bending are presented. It is shown that the SE(B) data has an elevated fracture toughness for increasing a/W, i.e., a crack geometry with a larger T/K corresponds to a higher K{sub c} which is consistent with the theoretical prediction. The fundamental fracture properties, i.e., the critical strain and the critical distance, determined from the SE(B) test data are then applied to the interpretation and prediction of the SC(B) test data. Reasonable agreement is achieved for the crack growth initiation site and the load.

  20. Freeze fracturing of elastic porous media

    E-Print Network [OSTI]

    Vlahou, Ioanna

    2012-06-12

    is the growth of ice lenses in saturated cohesive soils. I present results for typical soil parameters and find good agreement between our theory and experimental observations of growth rates and minimum undercoolings required for fracturing....

  1. Universal asymptotic umbrella for hydraulic fracture modeling

    E-Print Network [OSTI]

    Linkov, Aleksandr M

    2014-01-01

    The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

  2. Geomechanical review of hydraulic fracturing technology

    E-Print Network [OSTI]

    Arop, Julius Bankong

    2013-01-01

    Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been documented in literature on the subject. The ...

  3. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    SciTech Connect (OSTI)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  4. Accounting for Remaining Injected Fracturing Fluid 

    E-Print Network [OSTI]

    Zhang, Yannan

    2013-12-06

    wells: liquid film movement along the walls of the pipe, and liquid droplets associated with the high velocity gas. The critical condition to transport liquids from gas wells is the high enough gas velocity to transport the largest drops... critical value, the critical-gas velocity changes with the concentration. Kuru et al. (2013) suggested that non-recovered water can also accumulate in the fractures. The height of hydraulic fractures in horizontal wells is usually from tens to hundreds...

  5. Dynamic Fracture Toughness of Polymer Composites 

    E-Print Network [OSTI]

    Harmeet Kaur

    2012-02-14

    to fully charac- terize material properties before using them for applications in critical industries, like that of defense or transport. In this project, the focus is on determining dy- namic fracture toughness property of ber reinforced polymer... : : : : 33 III Wave speeds and traveling times making a particular angle to laminate ber direction : : : : : : : : : : : : : : : : : : : : : : : : : 37 IV Mode-I quasi-static fracture toughness values (KIC) : : : : : : : : : : 45 V Mode-II quasi...

  6. A two parameter fracture criterion for high strength low carbon steel

    SciTech Connect (OSTI)

    Betegon, C. [Univ. of Oviedo, Gijon (Spain). Escuela Tecnica de Ingenieros Industriales] [Univ. of Oviedo, Gijon (Spain). Escuela Tecnica de Ingenieros Industriales; Belzunce, F.J.; Rodriguez, C. [Inst. Tecnologico de Materiales, Asturias (Spain)] [Inst. Tecnologico de Materiales, Asturias (Spain)

    1996-03-01

    The critical J integral and crack tip opening displacement, CTOD, at cleavage instability of a low carbon high strength steel were obtained from three point bending specimens with different crack to width ratios (0.04 < a/W < 0.48). The geometry dependence of the elastoplastic toughness parameters has been correlated with the T stress. The obtained results have been explained by means of a local cleavage fracture criterion applied to the brittle to ductile transition behavior of the steel.

  7. Pressure Responses of a Vertically Hydraulic Fractured Well in a Reservoir with Fractal Structure

    E-Print Network [OSTI]

    Razminia, Kambiz; Torres, Delfim F M

    2015-01-01

    We obtain an analytical solution for the pressure-transient behavior of a vertically hydraulic fractured well in a heterogeneous reservoir. The heterogeneity of the reservoir is modeled by using the concept of fractal geometry. Such reservoirs are called fractal reservoirs. According to the theory of fractional calculus, a temporal fractional derivative is applied to incorporate the memory properties of the fractal reservoir. The effect of different parameters on the computed wellbore pressure is fully investigated by various synthetic examples.

  8. Failing softly: A fracture theory of highly-deformable materials

    E-Print Network [OSTI]

    Tamar Goldman Boué; Roi Harpaz; Jay Fineberg; Eran Bouchbinder

    2015-03-24

    Highly-deformable materials, from synthetic hydrogels to biological tissues, are becoming increasingly important from both fundamental and practical perspectives. Their mechanical behaviors, in particular the dynamics of crack propagation during failure, are not yet fully understood. Here we propose a theoretical framework for the dynamic fracture of highly-deformable materials, in which the effects of a dynamic crack are treated with respect to the nonlinearly deformed (pre-stressed/strained), non-cracked, state of the material. Within this framework, we derive analytic and semi-analytic solutions for the near-tip deformation fields and energy release rates of dynamic cracks propagating in incompressible neo-Hookean solids under biaxial and uniaxial loading. We show that moderately large pre-stressing has a marked effect on the stress fields surrounding a crack's tip. We verify these predictions by performing extensive experiments on the fracture of soft brittle elastomers over a range of loading levels and propagation velocities, showing that the newly developed framework offers significantly better approximations to the measurements than standard approaches at moderately large levels of external loadings and high propagation velocities. This framework should be relevant to the failure analysis of soft and tough, yet brittle, materials.

  9. Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy

    SciTech Connect (OSTI)

    Dilley, Lorie M.; Norman, David; Owens, Lara

    2008-06-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

  10. HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN

    E-Print Network [OSTI]

    Doe, T.

    2010-01-01

    u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSthe calculated stress. n HYDRAULIC FRACTURING EQUIPMENT AND

  11. HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN

    E-Print Network [OSTI]

    Doe, T.

    2010-01-01

    u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSstress. n HYDRAULIC FRACTURING EQUIPMENT AND PROCEDURES The

  12. Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure

    E-Print Network [OSTI]

    Liu, Weiqun; Li, Yushou; Wang, Bo

    2010-01-01

    Permeability of Fractured Sandstone/Coal Samples Smeulders,8 Gas Permeability of Fractured Sandstone/Coal Samples underthe fractured samples of sandstone and coal and obtain their

  13. JOURNAL OF BONE AND MINERAL RESEARCH Volume 7, Number 12, 1992

    E-Print Network [OSTI]

    Chuong, Cheng-Ming

    JOURNAL OF BONE AND MINERAL RESEARCH Volume 7, Number 12, 1992 Mary Ann Liebert, Inc., Publishers behavior and molecular ex- pression before it finally becomes a mineralizing osteocyte. The progression, extracellular maturation, and mineralization -are identified. (3.4) Many molecules functioning as growth fac

  14. Sex Differences in Long Bone Fatigue Using a Rat Model Luisa D. Moreno,1

    E-Print Network [OSTI]

    Waldman, Stephen D.

    response to fatigue, we also determined the creep that occurred during the fatigue test. From the creep progress (Fig. 1). Caler and Carter32 studied cortical bone creep behavior during fatigue testing. When adaptation. From these results, we hypothesized that creep was the underlying mechanism that accounted

  15. HYDROGEN EFFECTS ON FRACTURE TOUGHNESS OF TYPE 316L STAINLESS STEEL FROM 175 K TO 425 K

    SciTech Connect (OSTI)

    Morgan, M; Glenn Chapman, G

    2009-05-04

    The effects of hydrogen on the fracture-toughness properties of Type 316L stainless steel from 175 K to 425 K were measured. Fracture-toughness samples were fabricated from Type 316L stainless steel forgings and hydrogen-charged with hydrogen at 34 MPa and 623 K for two weeks prior to testing. The effect of hydrogen on the J-Integral vs. crack extension behavior was measured at various temperatures by fracturing non-charged and hydrogen-charged samples in an environmental chamber. Hydrogen-charged steels had lower toughness values than non-charged ones, but still retained good toughness properties. The fracture-toughness values of hydrogen-charged samples tested near ambient temperature were about 70% of non-charged values. For hydrogen-charged samples tested at 225 K and 425 K, the fracture-toughness values were 50% of the non-charged values. In all cases, fracture occurred by microvoid nucleation and coalescence, although the hydrogen-charged samples had smaller and more closely spaced microvoids. The results suggest that hydrogen effects on toughness are greater at 225 K than they are at ambient temperature because of strain-induced martensite formation. At 425 K, the hydrogen effects on toughness are greater than they are at ambient temperature because of the higher mobility of hydrogen.

  16. Fractures in complex fluids: the case of transient networks

    E-Print Network [OSTI]

    Christian Ligoure; Serge Mora

    2013-01-15

    We present a comprehensive review of the current state of fracture phenomena in transient networks, a wide class of viscoelastic fluids. We will first define what is a fracture in a complex fluid, and recall the main structural and rheological properties of transient networks. Secondly, we review experimental reports on fractures of transient networks in several configurations: shear-induced fractures, fractures in Hele-Shaw cells and fracture in extensional geometries (filament stretching rheometry and pendant drop experiments), including fracture propagation. The tentative extension of the concepts of brittleness and ductility to the fracture mechanisms in transient networks is also discussed. Finally, the different and apparently contradictory theoretical approaches developed to interpret fracture nucleation will be addressed and confronted to experimental results. Rationalized criteria to discriminate the relevance of these different models will be proposed.

  17. Three-dimensional Modeling of Acid Transport and Etching in a Fracture 

    E-Print Network [OSTI]

    Oeth, Cassandra V

    2013-11-25

    Acid fracture stimulation generates higher well production but requires engineering design for treatment optimization. To quantify the cost and benefit of a particular acid fracture treatment an engineer must predict the resulting fracture’s...

  18. Austin chalk fracture mapping using frequency data derived from seismic data 

    E-Print Network [OSTI]

    Najmuddin, Ilyas Juzer

    2004-09-30

    , is difficult on seismic sections. Fracturing changes the rock properties and therefore the attributes of the seismic data reflecting off the fractured interface, and data passing through the fractured layers. Fractures have a scattering effect on seismic energy...

  19. Investigation of the influence of stress shadows on horizontal hydraulic fractures from adjacent lateral wells

    E-Print Network [OSTI]

    Investigation of the influence of stress shadows on horizontal hydraulic fractures from adjacent: Unconventional hydraulic fracturing Stress shadow Adjacent lateral wells Simulfrac and zipperfrac Numerical the simultaneous or near simultaneous hydraulic fracturing of adjacent lateral wells to maximize the fracture

  20. A robust method for fracture orientation and density detection from seismic scattered energy

    E-Print Network [OSTI]

    Fang, Xinding

    2011-01-01

    The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

  1. Hydrothermal coupling in a rough fracture

    E-Print Network [OSTI]

    Neuville, A; Schmittbuhl, J; Neuville, Am\\'{e}lie; Toussaint, Renaud; Schmittbuhl, Jean

    2006-01-01

    Heat exchange during laminar flow is studied at the fracture scale on the basis of the Stokes equation. We used a synthetic aperture model (a self-affine model) that has been shown to be a realistic geometrical description of the fracture morphology. We developed a numerical modelling using a finite difference scheme of the hydrodynamic flow and its coupling with an advection/conduction description of the fluid heat. As a first step, temperature within the surrounding rock is supposed to be constant. Influence of the fracture roughness on the heat flux through the wall, is estimated and a thermalization length is shown to emerge. Implications for the Soultz-sous-For\\^{e}ts geothermal project are discussed.

  2. A cubic matrix-fracture geometry model for radial tracer flow in naturally fractured reservoirs

    SciTech Connect (OSTI)

    Jetzabeth Ramirez-Sabag; Fernando Samaniego V.

    1992-01-01

    This study presents a general solution for the radial flow of tracers in naturally fractured reservoirs, with cubic blocks matrix-fracture geometry. Continuous and finite step injection of chemical and radioactive tracers are considered. The reservoir is treated as being composed of two regions: a mobile where dispersion and convection take place and a stagnant where only diffusion and adsorption are allowed. Radioactive decay is considered in both regions. The model of this study is thoroughly compared under proper simplified conditions to those previously presented in the literature. The coupled matrix to fracture solution in the Laplace space is numerically inverted by means of the Crump algorithm. A detailed validation of the model with respect to solutions previously presented and/or simplified physical conditions solutions (i.e., homogeneous case) or limit solutions (i.e., naturally fractured nearly homogeneous) was carried out. The influence of the three of the main dimensionless parameters that enter into the solution was carefully investigated. A comparison of results for three different naturally fractured systems, vertical fractures (linear flow), horizontal fractures (radial flow) and the cubic geometry model of this study, is presented.

  3. Dose-Effect Relationships for Femoral Fractures After Multimodality Limb-Sparing Therapy of Soft-Tissue Sarcomas of the Proximal Lower Extremity

    SciTech Connect (OSTI)

    Pak, Daniel; Vineberg, Karen A. [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Griffith, Kent A. [Biostatistics Unit, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI (United States); Sabolch, Aaron [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Chugh, Rashmi [Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI (United States); Ben-Josef, Edgar [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Biermann, Janet Sybil [Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI (United States); Feng, Mary, E-mail: maryfeng@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States)

    2012-07-15

    Purpose: We investigated the clinical and dosimetric predictors for radiation-associated femoral fractures in patients with proximal lower extremity soft tissue sarcomas (STS). Methods and Materials: We examined 131 patients with proximal lower extremity STS who received limb-sparing surgery and external-beam radiation therapy between 1985 and 2006. Five (4%) patients sustained pathologic femoral fractures. Dosimetric analysis was limited to 4 fracture patients with full three-dimensional dose information, who were compared with 59 nonfracture patients. The mean doses and volumes of bone (V{sub d}) receiving specified doses ({>=}30 Gy, 45 Gy, 60 Gy) at the femoral body, femoral neck, intertrochanteric region, and subtrochanteric region were compared. Clinical predictive factors were also evaluated. Results: Of 4 fracture patients in our dosimetric series, there were three femoral neck fractures with a mean dose of 57.6 {+-} 8.9 Gy, V30 of 14.5 {+-} 2.3 cc, V45 of 11.8 {+-} 1.1 cc, and V60 of 7.2 {+-} 2.2 cc at the femoral neck compared with 22.9 {+-} 20.8 Gy, 4.8 {+-} 5.6 cc, 2.5 {+-} 3.9 cc, and 0.8 {+-} 2.7 cc, respectively, for nonfracture patients (p < 0.03 for all). The femoral neck fracture rate was higher than at the subtrochanteric region despite lower mean doses at these subregions. All fracture sites received mean doses greater than 40 Gy. Also, with our policy of prophylactic femoral intramedullary nailing for high-risk patients, there was no significant difference in fracture rates between patients with and without periosteal excision. There were no significant differences in age, sex, tumor size, timing of radiation therapy, and use of chemotherapy between fracture and nonfracture patients. Conclusions: These dose-volume toxicity relationships provide RT optimization goals to guide future efforts for reducing pathologic fracture rates. Prophylactic femoral intramedullary nailing may also reduce fracture risk for susceptible patients.

  4. Simulation on Discrete Fracture Network Using Flexible Voronoi Gridding 

    E-Print Network [OSTI]

    Syihab, Zuher

    2011-02-22

    Fractured reservoirs are generally simulated using Warren and Root26 dual-porosity (DP) approach. The main assumption of this approach is that the geometry of fractures are uniformly distributed and interconnected in ...

  5. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project will provide the first ever formal evaluation of fracture and fracture flow evolution in an EGS reservoir following a hydraulic stimulation.

  6. Effectiveness of microseismic monitoring for optimizing hydraulic fracturing in California

    E-Print Network [OSTI]

    Alampi, Ann M

    2014-01-01

    Hydraulic fracturing has fundamentally changed the oil and gas industry in the past 10 years. Bakersfield, California provides a unique case study because steam injection, a type of hydraulic fracturing, has been used there ...

  7. Numerical Modeling of Hydraulic Fracturing in Oil Sands

    E-Print Network [OSTI]

    2008-11-16

    Hydraulic fracturing is a widely used and e cient technique for enhancing oil extraction from heavy oil sands ..... phenomenon are the main issues involved in hydraulic fracturing. ..... energy ux due to conduction and convection: Lei = @T. @xi.

  8. The Role of Acidizing in Proppant Fracturing in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Densirimongkol, Jurairat

    2010-10-12

    Today, optimizing well stimulation techniques to obtain maximum return of investment is still a challenge. Hydraulic fracturing is a typical application to improve ultimate recovery from oil and gas reservoirs. Proppant fracturing has become one...

  9. Selection of fracture fluid for stimulating tight gas reservoirs 

    E-Print Network [OSTI]

    Malpani, Rajgopal Vijaykumar

    2007-04-25

    Essentially all producing wells drilled in tight gas sands and shales are stimulated using hydraulic fracture treatments. The development of optimal fracturing procedures, therefore, has a large impact on the long-term economic viability...

  10. Acid Fracturing Feasibility Study for Heterogeneous Carbonate Formation 

    E-Print Network [OSTI]

    Suleimenova, Assiya

    2015-03-03

    Acid fracturing is a stimulation technique that is commonly used by the industry to increase productivity or injectivity of wells in carbonate reservoirs. To determine a feasibility of acid fracturing treatment for a heterogeneous formation...

  11. Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation 

    E-Print Network [OSTI]

    Nino Penaloza, Andrea

    2013-05-01

    Acid fracture conductivity and the effect of key variables in the etching process during acid fracturing can be assessed at the laboratory scale. This is accomplished by using an experimental apparatus that simulates acid injection fluxes comparable...

  12. Fracture characterization from seismic measurements in a borehole

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    2015-01-01

    Fracture characterization is important for optimal recovery of hydrocarbons. In this thesis, we develop techniques to characterize natural and hydraulic fractures using seismic measurements in a borehole. We first develop ...

  13. How can we use one fracture to locate another?

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2011-01-01

    Hydraulic fracturing is an important tool that helps extract fluids from the subsurface. It is critical in applications ranging from enhanced oil recovery to geothermal energy pro-duction. As the goal of fracturing is to ...

  14. Numerical modeling of hydraulic fracture initiation and development

    E-Print Network [OSTI]

    2007-05-25

    Calculation scheme for modeling a hydraulic fracturing process: horizontal section of a ...... Jr., “Overview of current hydraulic fracturing design and treatment technology. .... A. A. Dobroskok, A. Ghassemi, and A. M. Linkov, “Extended structural ...

  15. Hydraulic Fracture Monitoring: A Jonah Field Case Study

    E-Print Network [OSTI]

    Seher, T.

    2011-01-01

    Hydraulic fracturing involves the injection of a fluid to fracture oil and gas reservoirs, and thus increase their permeability. The process creates numerous microseismic events, which can be used to monitor subsurface ...

  16. Fracture Characterization from Scattered Energy: A Case Study

    E-Print Network [OSTI]

    Grandi, Samantha K.

    2006-01-01

    We use 3D surface seismic data to determine the presence and the preferred orientation of fracture corridors in a field. The Scattering Index method is proving to be a robust tool for detecting and mapping fracture corridors. ...

  17. Streamline-based production data integration in naturally fractured reservoirs 

    E-Print Network [OSTI]

    Al Harbi, Mishal H.

    2005-08-29

    dualporosity streamline model for fracture flow simulation by treating the fracture and matrix as separate continua that are connected through a transfer function. Next, we analytically compute the sensitivities that define the relationship between...

  18. Analysis of Scattered Signal to Estimate Reservoir Fracture Parameters

    E-Print Network [OSTI]

    Grandi, Samantha K.

    We detect fracture corridors and determine their orientation and average spacing based on an analysis of seismic coda in the frequency-wave number (f-k ) domain. Fracture corridors have dimensions similar to seismic ...

  19. A Bayesian framework for fracture characterization from surface seismic data

    E-Print Network [OSTI]

    Zamanian, S. Ahmad

    2012-01-01

    We describe a methodology for quantitatively characterizing the fractured nature of a hydrocarbon or geothermal reservoir from surface seismic data under a Bayesian inference framework. Fractures provide pathways for fluid ...

  20. Seismic characterization of fractured reservoirs by focusing Gaussian beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    Naturally fractured reservoirs occur worldwide, and they account for the bulk of global oil production. The most important impact of fractures is their influence on fluid flow. To maximize oil production, the characterization ...

  1. Finite Difference Modeling of Seismic Responses to Intersecting Fracture Sets

    E-Print Network [OSTI]

    Chi, Shihong

    2006-01-01

    Fractured reservoir characterization is becoming increasingly important for the petroleum industry. Currentmethods for this task are developed based on effectivemedia theory, which assumes the cracks or fractures in a ...

  2. Effects of subsurface fracture interactions on surface deformation

    E-Print Network [OSTI]

    Jerry, Ruel (Ruel Valentine)

    2013-01-01

    Although the surface deformation resulting from the opening of a single fracture in a layered elastic half-space resembles the observed deformation at the InSalah site, it seems unlikely that only a single fracture is ...

  3. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  4. Compartmentalization analysis using discrete fracture network models

    SciTech Connect (OSTI)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  5. Use of Tracers to Characterize Fractures in Engineered Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fabricate and test a downhole instrument for measuring fracture flow following a hydraulic stimulation experiment. reservoirrosetracerscharacterizefractures.pdf More...

  6. Estimation of fracture parameters from reflection seismic data - Part I ...

    E-Print Network [OSTI]

    A. Bakulin, V. Grechka, I. Tsvankin

    2000-11-02

    rocks requires accounting for the hydraulic interaction between cracks and pores. INTRODUCTION. Seismic detection of subsurface fractures has important ap-.

  7. Experimental and Analytical Research on Fracture Processes in ROck

    SciTech Connect (OSTI)

    Herbert H.. Einstein; Jay Miller; Bruno Silva

    2009-02-27

    Experimental studies on fracture propagation and coalescence were conducted which together with previous tests by this group on gypsum and marble, provide information on fracturing. Specifically, different fracture geometries wsere tested, which together with the different material properties will provide the basis for analytical/numerical modeling. INitial steps on the models were made as were initial investigations on the effect of pressurized water on fracture coalescence.

  8. Dynamic fracturing: eld and experimental observations Amir Sagy*, Ze'ev Reches, Itzhak Roman

    E-Print Network [OSTI]

    Ze'ev, Reches

    Dynamic fracturing: ®eld and experimental observations Amir Sagy*, Ze'ev Reches, Itzhak Roman three styles of fracturing: planar fractures, known from previous tests; branching fractures and clustering fractures, observed here for the ®rst time in layered composites. Based on fracture morphology, we

  9. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure....

  10. Composite bone substitutes prepared by two methods

    E-Print Network [OSTI]

    Lee, Hoe Yun; Lee, Hoe Yun

    2012-01-01

    Composites via Freeze Casting for Bone Tissue Engineering,”A.P. Tomsia, “Freeze casting of hydroxyapatite scaffolds forcamphene- based freeze casting,” Materials Letters 61(11-

  11. Methodologies and new user interfaces to optimize hydraulic fracturing design and evaluate fracturing performance for gas wells 

    E-Print Network [OSTI]

    Wang, Wenxin

    2006-04-12

    This thesis presents and develops efficient and effective methodologies for optimal hydraulic fracture design and fracture performance evaluation. These methods incorporate algorithms that simultaneously optimize all of the treatment parameters...

  12. Modeling Turbulent Hydraulic Fracture Near a Free Surface

    E-Print Network [OSTI]

    Modeling Turbulent Hydraulic Fracture Near a Free Surface Victor C. Tsai Seismological Laboratory consider a hydraulic fracture problem in which the crack grows parallel to a free surface, subject to fully components. ^· Non-dimensionalized ·. 1 Introduction Hydraulic fracture has been studied for many years

  13. The Transport of Nuclear Contamination in Fractured Porous Media

    E-Print Network [OSTI]

    Douglas Jr., Jim

    The Transport of Nuclear Contamination in Fractured Porous Media Jim Douglas, Jr. #3; Anna M and dispersion of nuclear contamination through a granitic medium having densely spaced fractures, Rochester, MI 48309-4485 1 #12; Nuclear Contamination in Fractured Porous Media 2 2 The Single Porosity

  14. Estimating Major and Minor Natural Fracture Patterns in Gas

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

  15. Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations 

    E-Print Network [OSTI]

    Zhang, Junjing

    2014-07-10

    Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

  16. Modeling Turbulent Hydraulic Fracture Near a Free Surface

    E-Print Network [OSTI]

    Modeling Turbulent Hydraulic Fracture Near a Free Surface Victor C. Tsai Seismological Laboratory consider a hydraulic fracture problem in which the crack grows parallel to a free surface, subject to fully components. wall Wall shear stress. ^· Non-dimensionalized ·. 1 Introduction Hydraulic fracture has been

  17. HYDRAULIC STIMULATION OF NATURAL FRACTURES AS REVEALED BY INDUCED MICROEARTHQUAKES,

    E-Print Network [OSTI]

    -1- HYDRAULIC STIMULATION OF NATURAL FRACTURES AS REVEALED BY INDUCED MICROEARTHQUAKES, CARTHAGE, December, 2001 Manuscript # 01066 LAUR# 01-1204 #12;Hydraulic Stimulation of Natural Fractures -2- ABSTRACT We have produced a high-resolution microseismic image of a hydraulic fracture stimulation

  18. Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions

    E-Print Network [OSTI]

    Peirce, Anthony

    Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions SANUM Conference (UMN) Eduard Siebrits (SLB) #12;2 Outline · Examples of hydraulic fractures · Governing equations well stimulation Fracturing Fluid Proppant #12;5 Quarries #12;6 Magma flow Tarkastad #12;7 Model EQ 1

  19. Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions

    E-Print Network [OSTI]

    Peirce, Anthony

    Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions CSIRO CSS TCP Detournay (UMN) Eduard Siebrits (SLB) #12;2 Outline · Examples of hydraulic fractures · Governing equations well stimulation Fracturing Fluid Proppant #12;5 Quarries #12;6 Magma flow Tarkastad #12;7 Model EQ 1

  20. Poroelastic modeling of seismic boundary conditions across a fracture

    E-Print Network [OSTI]

    2007-07-20

    Permeability of a fracture can affect how the fracture interacts with seismic waves. To examine this effect ... seismic wave scattering off nonplanar e.g., curved and intersecting fractures. ..... values, this can result in a significant error in evaluating the average fluid pressure .... As seen from the plot, the transition be- tween the ...

  1. 6. Fracture mechanics lead author: J, R. Rice

    E-Print Network [OSTI]

    6. Fracture mechanics lead author: J, R. Rice Division of Applied Sciences, Harvard University. F. Shih, and the ASME/AMD Technical Committee on Fracture Mechanics, pro- vided by A. S. Argon, S. N, W. D. Stuart, and R. Thomson. 6.0 ABSTRACT Fracture mechanics is an active research field

  2. THE EFFECT OF SURFACE TENSION IN MODELING INTERFACIAL FRACTURE

    E-Print Network [OSTI]

    THE EFFECT OF SURFACE TENSION IN MODELING INTERFACIAL FRACTURE By Tsvetanka Sendova and Jay R Fracture Tsvetanka Sendova and Jay R. Walton Institute for Mathematics and Its Applications, University@math.tamu.edu Abstract. In this article the problem of an interface fracture between two isotropic linear elas- tic

  3. Fibre Based Modeling of Wood Dynamics and Fracture

    E-Print Network [OSTI]

    Bridson, Robert

    Fibre Based Modeling of Wood Dynamics and Fracture by Sean Meiji Sutherland B.Sc., The University for the simulation of the dynamics and fracturing char- acteristics of wood, specifically its anisotropic behaviour bundles of fibres. Additionally, we describe the conditions under which fracture occurs in the material

  4. Fracture aperture reconstruction and determination of hydrological properties: a

    E-Print Network [OSTI]

    Toussaint, Renaud

    Fracture aperture reconstruction and determination of hydrological properties: a case study for fracture aperture reconstruction. The rst one is a correlation technique that estimates the normal aper techniques are applied to discontinuities extracted from a core drilled down to 20 m in a fractured marl

  5. In vitro fracture toughness of human dentin V. Imbeni,1

    E-Print Network [OSTI]

    Ritchie, Robert

    In vitro fracture toughness of human dentin V. Imbeni,1 R. K. Nalla,1 C. Bosi,1 J. H. Kinney,2 R. O August 2002 Abstract: The in vitro fracture toughness of human dentin has been reported measured crit- ical stress intensity, Kc, for the onset of unstable fracture along an orientation

  6. Fracture Toughness of MDF and other Materials with Fiber Bridging

    E-Print Network [OSTI]

    Nairn, John A.

    Fracture Toughness of MDF and other Materials with Fiber Bridging Noah Matsumoto and John A. Nairn* ABSTRACT We measured the fracture toughness of MDF panels with two different densities by using crack propagation experiments and energy-based fracture mechanics. The two challenges were to identify the energy

  7. Introduction Fracture at small length scales is a concern

    E-Print Network [OSTI]

    Suo, Zhigang

    Introduction Fracture at small length scales is a concern in many advanced technologies. Micro. These constrained geometries localize cracking so that fracture may not compromise the structural integrity functions. For example, lo- calized fracture of a dielectric film adjacent to a conducting line

  8. Fracture surface energy of the Punchbowl fault, San Andreas system

    E-Print Network [OSTI]

    Chester, Frederick M.

    Fracture surface energy of the Punchbowl fault, San Andreas system Judith S. Chester1 , Frederick M. Chester1 & Andreas K. Kronenberg1 Fracture energy is a form of latent heat required to create weakening1­3 . Fracture energy has been estimated from seismological and experimental rock deformation data4

  9. Fracture patterns in thin films and multilayers Alex A. Volinsky

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Fracture patterns in thin films and multilayers Alex A. Volinsky University of South Florida, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress is the key for causing thin film fracture, either in tension, or compression, it is the influence

  10. Meshfree Simulations of Spall Fracture By Bo Ren ,

    E-Print Network [OSTI]

    Li, Shaofan

    Meshfree Simulations of Spall Fracture By Bo Ren , , Shaofan Li, , Jing Qian , Xiaowei Zeng Shock wave induced spall fracture is a complex multiscale phenomenon, and it is a challenge to build a constitutive and computational model that can capture the essential features of the spall fracture

  11. Molecular dynamics study of fracture accompanied by chemical reaction

    E-Print Network [OSTI]

    Krivtsov, Anton M.

    Molecular dynamics study of fracture accompanied by chemical reaction Anton M. Krivtsov akrivtsov@bk.ru Abstract A molecular dynamics model for fracture accompanied by chemical reac- tion is suggested. Crack of the initial and new specimen surfaces during the fracture process is taken into account. It is pos- tulated

  12. Influence of defects distribution and specimen size on fracture initiation

    E-Print Network [OSTI]

    Krivtsov, Anton M.

    Influence of defects distribution and specimen size on fracture initiation Anton M. Krivtsov akrivtsov@bk.ru Abstract An analytical model for the scale dependence of the fracture initiation is suggested. The model is based on the idea that fracture is a stochastic process, for the bigger specimens

  13. Short communication Fractal in fracture of bulk metallic glass

    E-Print Network [OSTI]

    Gao, Jianbo

    Short communication Fractal in fracture of bulk metallic glass M.Q. Jiang a,b , J.X. Meng a , J. Bulk metallic glass B. Dynamic fracture C. Nanoscale periodic corrugation C. Fractal a b s t r a c t We investigate the nanoscale periodic corrugation (NPC) structures on the dynamic fracture surface of a typical

  14. A dimensional decomposition method for stochastic fracture mechanics

    E-Print Network [OSTI]

    Rahman, Sharif

    A dimensional decomposition method for stochastic fracture mechanics Sharif Rahman * Department required by the proposed method can be viewed as performing deterministic fracture analyses at selected, no derivatives of fracture response are required by the new method developed. Results of three numerical exam

  15. A Cohesive Approach to Thin-Shell Fracture and Fragmentation

    E-Print Network [OSTI]

    Cirak, Fehmi

    A Cohesive Approach to Thin-Shell Fracture and Fragmentation Fehmi Cirak1 , Michael Ortiz2 and Anna 20133 Milano, Italy Abstract We develop a finite-element method for the simulation of dynamic fracture and the fracture along the element edges is modeled with a cohesive law. In order to follow the prop- agation

  16. RESIDUAL STRESS EFFECTS IN FRACTURE OF COMPOSITES AND ADHESIVES

    E-Print Network [OSTI]

    Nairn, John A.

    RESIDUAL STRESS EFFECTS IN FRACTURE OF COMPOSITES AND ADHESIVES JOHN A. NAIRN ABSTRACT Because by including residual stresses in fracture mechanics models of failure. This chapter gives general results examples of including residual stresses in fracture mechanics interpretation of experimental results

  17. A unified enrichment scheme for fracture Safdar Abbas

    E-Print Network [OSTI]

    A unified enrichment scheme for fracture problems Safdar Abbas Thomas-Peter Fries AICES, RWTH XFEM in fracture mechanics Numerical examples (cohesionless cracks) Numerical examples (cohesive cracks) Conclusions Future outlook 2 #12;Motivation Outline Motivation XFEM in fracture mechanics Numerical examples

  18. Finite Element Model of Fracture Formation on Growing Surfaces

    E-Print Network [OSTI]

    Prusinkiewicz, Przemyslaw

    Finite Element Model of Fracture Formation on Growing Surfaces Pavol Federl and Przemyslaw-mail: federl|pwp@cpsc.ucalgary.ca Abstract We present a model of fracture formation on surfaces of bilayered materials. The model makes it possible to synthesize patterns of fractures induced by growth or shrinkage

  19. Analyzing and Simulating Fracture Patterns of Theran Wall Paintings

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    10 Analyzing and Simulating Fracture Patterns of Theran Wall Paintings HIJUNG SHIN, Princeton and Akrotiri Excavation TIM WEYRICH, University College London In this article, we analyze the fracture that suggests a hierarchical fracture pattern where fragments break into two pieces recursively along cracks

  20. Gaseous Detonation-Driven Fracture of Tubes Tong Wa Chao

    E-Print Network [OSTI]

    Barr, Al

    Gaseous Detonation-Driven Fracture of Tubes Thesis by Tong Wa Chao In Partial Fulfillment An experimental investigation of fracture response of aluminum 6061-T6 tubes under internal gaseous detonation of this particular traveling load and tube geometry produced fracture data not available before in the open

  1. Fracture toughness of Alloy 690 and EN52 weld in air and water

    SciTech Connect (OSTI)

    Brown, C.M.; Mills, W.J.

    1999-06-01

    The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.

  2. Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures

    SciTech Connect (OSTI)

    Min, K.-B.; Rutqvist, J.; Elsworth, D.

    2009-02-01

    A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

  3. PPARs in Bone: The Role in Bone Cell Differentiation and Regulation of Energy Metabolism

    E-Print Network [OSTI]

    Toledo, University of

    PPARs in Bone: The Role in Bone Cell Differentiation and Regulation of Energy Metabolism Beata of bone homeostasis and energy metabolism. Peroxisome proliferator-activated receptors (PPARs) represent a family of proteins that control energy turnover in adipose, liver, and muscle tissue. These proteins also

  4. Proceedings of the Joint IAEA/CSNI Specialists` Meeting on Fracture Mechanics Verification by Large-Scale Testing held at Pollard Auditorium, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Pugh, C.E.; Bass, B.R.; Keeney, J.A.

    1993-10-01

    This report contains 40 papers that were presented at the Joint IAEA/CSNI Specialists` Meeting Fracture Mechanics Verification by Large-Scale Testing held at the Pollard Auditorium, Oak Ridge, Tennessee, during the week of October 26--29, 1992. The papers are printed in the order of their presentation in each session and describe recent large-scale fracture (brittle and/or ductile) experiments, analyses of these experiments, and comparisons between predictions and experimental results. The goal of the meeting was to allow international experts to examine the fracture behavior of various materials and structures under conditions relevant to nuclear reactor components and operating environments. The emphasis was on the ability of various fracture models and analysis methods to predict the wide range of experimental data now available. The individual papers have been cataloged separately.

  5. Time-resolved measurement of photon emission during fast crack propagation in three-point bending fracture of silica glass and soda lime glass

    SciTech Connect (OSTI)

    Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp; Sato, Yoshitaka; Yasuda, Kouichi [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S7-13 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)] [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S7-13 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-03-10

    Simultaneous time-resolved measurements of photon emission (PE) and fast crack propagation upon bending fracture were conducted in silica glass and soda lime glass. Observation of fracture surfaces revealed that macroscopic crack propagation behavior was similar between the silica glass and soda lime glass when fracture loads for these specimens were comparable and cracks propagated without branching. However, a large difference in the PE characteristics was found between the two glasses. In silica glass, PE (645–655?nm) was observed during the entire crack propagation process, whereas intense PE (430–490?nm and 500–600?nm) was observed during the initial stages of propagation. In contrast, only weak PE was detected in soda lime glass. These results show that there is a large difference in the atomic processes involved in fast crack propagation between these glasses, and that PE can be used to study brittle fracture on the atomic scale.

  6. Deformation Behavior of Multilayer Aluminum Oxide/Molybdenum Composite

    E-Print Network [OSTI]

    Collins, Gary S.

    on the silicon wafer. The formula calculates the fracture toughness (Kc) of bulk brittle materials by measuring2O3 should be able to be made tougher by the addition of a more ductile material. In this experiment, molybdenum (Mo) was chosen as this ductile material. The deformation behavior of the multilayer coating

  7. A Global Model for Fracture Falloff Analysis 

    E-Print Network [OSTI]

    Marongiu-Porcu, Matteo

    2014-10-29

    and estimate of the induced fracture geometry) as well as reservoir permeability and formation pressure, provided that enough time is allowed for the falloff to reach pseudo-radial flow regime. Both oil and gas reservoirs can be effectively studied. Another...

  8. Gas condensate damage in hydraulically fractured wells 

    E-Print Network [OSTI]

    Adeyeye, Adedeji Ayoola

    2004-09-30

    This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production...

  9. Interference Fracturing: Non-Uniform Distributions of Perforation Clusters that Promote Simultaneous Growth of Multiple Hydraulic Fractures

    E-Print Network [OSTI]

    Peirce, Anthony

    of Bunger et al. (In Press) is consistent with past observations of multiple hydraulic fracture growth from Simultaneous Growth of Multiple Hydraulic Fractures A.P. Peirce, University of British Columbia and A.P. Bunger in horizontal well stimulation is the generation of hydraulic fractures (HFs) from all perforation clusters

  10. Interference Fracturing: Non-Uniform Distributions of Perforation Clusters that Promote Simultaneous Growth of Multiple Hydraulic Fractures

    E-Print Network [OSTI]

    Peirce, Anthony

    Simultaneous Growth of Multiple Hydraulic Fractures A.P. Peirce, University of British Columbia and A.P. Bunger hurdles in horizontal well stimulation is the generation of hydraulic fractures (HFs) from all perforation shadowing" that refers to suppression of some hydraulic fractures by the compressive stresses exerted

  11. Investigation of the influence of natural fractures and in situ stress on hydraulic fracture propagation using a

    E-Print Network [OSTI]

    ARTICLE Investigation of the influence of natural fractures and in situ stress on hydraulic: Hydraulic fracturing is the primary means for enhancing rock mass permeability and improving well productiv- ity in tight reservoir rocks. Significant advances have been made in hydraulic fracturing theory

  12. Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass

    SciTech Connect (OSTI)

    Gilbert, C.J.; Schroeder, V.; Ritchie, R.O. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1999-07-01

    The fracture and fatigue properties of a newly developed bulk metallic glass alloy, Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} (at. pct), have been examined. Experimental measurements using conventional fatigue precracked compact-tension C(T) specimens ({approximately}7-mm thick) indicated that the fully amorphous alloy has a plane-strain fracture toughness comparable to polycrystalline aluminum alloys. However, significant variability was observed and possible sources are identified. The fracture surfaces exhibited a vein morphology typical of metallic glasses, and, in some cases, evidence for local melting was observed. Attempts were made to rationalize the fracture toughness in terms of a previously developed micromechanical model based on the Taylor instability, as well as on the observation of extensive crack branching and deflection. Upon partial or complete crystallization, however, the alloy was severely embrittled, with toughnesses dropping to {approximately}1 MPa {radical}m. Commensurate with this drop in toughness was a marginal increase in hardness and a reduction in ductility (as measured via depth-sensing indentation experiments). Under cyclic loading, crack-propagation behavior in the amorphous structure was similar to that observed in polycrystalline steel and aluminum alloys. Moreover, the crack-advance mechanism was associated with alternating blunting and resharpening of the crack tip. This was evidenced by striations on fatigue fracture surfaces. Conversely, the (unnotched) stress/life (S/N) properties were markedly different. Crack initiation and subsequent growth occurred quite readily, due to the lack of microstructural barriers that would normally provide local crack-arrest points. This resulted in a low fatigue limit of {approximately}4 pct of ultimate tensile strength.

  13. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    SciTech Connect (OSTI)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  14. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sebastiani, Marco; Johanns, K.; Herbert, Erik G.; Bemporad, Edoardo; Carassiti, Fabio; Pharr, George Mathews

    2015-01-01

    The fracture toughness of thin ceramic films is an important material property that plays a role in determining the in-service mechanical performance and adhesion of this important class of engineering materials. Unfortunately, measurement of thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these issues based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in themore »upper portion of the pillar is almost fully relaxed, and when indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used for analysis and development of a simple relationship between the critical load at failure, pillar radius, and fracture toughness for a given material. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. In addition, the residual stress can be measured at the same time with toughness, by comparison of the indentation results obtained on the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings created by physical vapor deposition, namely titanium nitride (TiN), chromium nitride (CrN) and a CrAlN-Si?N? nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.« less

  15. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    SciTech Connect (OSTI)

    Sebastiani, Marco; Johanns, K.; Herbert, Erik G.; Bemporad, Edoardo; Carassiti, Fabio; Pharr, George Mathews

    2015-01-01

    The fracture toughness of thin ceramic films is an important material property that plays a role in determining the in-service mechanical performance and adhesion of this important class of engineering materials. Unfortunately, measurement of thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these issues based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the upper portion of the pillar is almost fully relaxed, and when indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used for analysis and development of a simple relationship between the critical load at failure, pillar radius, and fracture toughness for a given material. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. In addition, the residual stress can be measured at the same time with toughness, by comparison of the indentation results obtained on the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings created by physical vapor deposition, namely titanium nitride (TiN), chromium nitride (CrN) and a CrAlN-Si?N? nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.

  16. Bench-mark solution for a penny-shaped hydraulic fracture driven by a thinning fluid

    E-Print Network [OSTI]

    Linkov, Aleksandr

    2015-01-01

    The paper presents a solution for axisymmetric propagation of a penny-shaped crack driven by a thinning fluid. The solution to the accuracy of four significant digits, at least, is obtained on the basis of the modified formulation of hydraulic fracture problem by employing the particle velocity, rather than conventionally used flux. This serves to properly organize iterations in the opening after reducing the problem to the self-similar form. Numerical results obtained show relatively small dependence of self-similar quantities (fracture radius, propagation speed, opening, particle velocity, pressure, flux) on the behavior index of a thinning fluid. The results provide bench marks for the accuracy control of truly 3D simulators and they serve for assigning an apparent viscosity when simulating the action of a thinning fluid by replacing it with an equivalent Newtonian fluid.

  17. Microtopography for Ductile Fracture Process Characterization - Part 2: Application for CTOA Analysis

    SciTech Connect (OSTI)

    Lloyd, Wilson Randolph; F. A. McClintock

    2003-02-01

    The crack tip opening angle (CTOA) is seeing increased use to characterize fracture in so-called "low constraint" geometries, such as thin sheet aerospace structures and thin-walled pipes. With this increase in application comes a need to more fully understand and measure actual CTOA behavior. CTOA is a measure of the material response during ductile fracture, a "crack tip response function". In some range of crack extension following growth initiation, a constant value of CTOA is often assumed. However, many questions concerning the use of CTOA as a material response-characterizing parameter remain. For example, when is CTOA truly constant? What three-dimensional effects may be involved (even in thin sheet material)? What are the effects of crack tunneling on general CTOA behavior? How do laboratory specimen measurements of CTOA compare to actual structural behavior? Measurements of CTOA on the outer surface of test specimens reveal little about threedimensional effects in the specimen interior, and the actual measurements themselves are frequently difficult. The Idaho National Engineering and Environmental Laboratory (INEEL) use their microtopography system to collect data from the actual fracture surfaces following a test. Analyses of these data provide full three-dimensional CTOA distributions, at any amount of crack extension. The analysis is accomplished using only a single specimen and is performed entirely after the completion of a test. The resultant CTOA distributions allow development of full and effective understanding of CTOA behaviors. This paper presents underlying principles, various sources of measurement error and their corrections, and experimental and analytical verification of CTOA analysis with the microtopography method.

  18. Coupled Analysis of Change in Fracture Permeability during the Cooling Phase of the Yucca Mountain Drift Scale Test

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Rutqvist, J.; Freifeld, B.; Tsang, Y.W.; Min, K.B.; Elsworth, D.

    2008-06-01

    This paper presents results from a coupled thermal, hydrological and mechanical analysis of thermally-induced permeability changes during heating and cooling of fractured volcanic rock at the Drift Scale Test at Yucca Mountain, Nevada. The analysis extends the previous analysis of the four-year heating phase to include newly available data from the subsequent four year cooling phase. The new analysis of the cooling phase shows that the measured changes in fracture permeability follows that of a thermo-hydro-elastic model on average, but at several locations the measured permeability indicates (inelastic) irreversible behavior. At the end of the cooling phase, the air-permeability had decreased at some locations (to as low as 0.2 of initial), whereas it had increased at other locations (to as high as 1.8 of initial). Our analysis shows that such irreversible changes in fracture permeability are consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). These data are important for bounding model predictions of potential thermally-induced changes in rock-mass permeability at a future repository at Yucca Mountain.

  19. Histologic Comparison of Regenerate Bone Produced from Dentate Versus Edentulous Transport Discs in Bone Transport Distraction Osteogenesis 

    E-Print Network [OSTI]

    Sevilla Gaitan, Carlos

    2013-12-10

    Purpose: The purpose of this research was to quantify the number of blood vessels and nerves and mineral apposition rate (MAR) in native bone and compare it to the regenerate bone produced by bone transport distraction osteogenesis (BTDO...

  20. Investigation into mechanical properties of bone and its main constituents

    E-Print Network [OSTI]

    Evdokimenko, Ekaterina

    2012-01-01

    Kinetic studies of bone demineralization at different HClKinetic studies of the demineralization and deproteinationJ. McKittrick, “Bone demineralization and deproteination

  1. Elastic anisotropy of bone Biomechanics, BME 315

    E-Print Network [OSTI]

    Lakes, Roderic

    17 22 Glong 3.6 5.3 0.58 0.30 Etransv 11.5 15 Gtr 3.3 6.3 0.31 0.11 Etransv 11.5 12 Gtr 3.3 7.0 0 moduli of bone, in Mechanical Properties of Bone, Joint ASME-ASCE Applied Mechanics, Fluids Engineering

  2. Characterization and significance of a stylolitic fracture system determined from horizontal core and borehole imaging data, Hanifa Reservoir, Abqaiq Field (SA)

    SciTech Connect (OSTI)

    Luthy, S.T.; Grover, G. [Saudi Aramco, Dhahran (Saudi Arabia); Wiltse, E. [Schlumberger, Al-Khobar (Saudi Arabia)

    1995-08-01

    The Hanifa reservoir at Abqaiq Field, eastern Saudi Arabia, consists of microporous (up to 30% porosity) lime mudstones with low matrix permeability (< 10 md). SEM imagery reveals a crystal framework texture of micro-rhombic calcite crystals with 2-5 {mu}m-sized intercrystalline pore spaces. Fluid transmissibility was preliminarily identified as via fractures as indicated by no stratigraphic predictability to fluid flow, high flow over thin stratigraphic intervals, little relationship between high flow and high porosity intervals, large disparity between core Kh and well-test Kh, and observation offractures in cores and borehole imaging logs front horizontal Hanifa wells. Integration of descriptions from over 4000 fractures observed in borehole images together with descriptions of over 500 fractures identified from vertica1 and horizontal cores has resulted in further characterization of the fracture system. The fractures are open to partially-open, with an east-to northeast orientation, and they cluster in low porosity zones which are characterized by intense stylolitization. These sub-parallel, nearly vertical, discontinuous fractures terminate at stylolites, or pinchout locally into tight carbonate matrix, and contain appreciable amounts of dead oil and calcite cement. In zones of particularly intense stylolitization, fracturing may be locally pervasive, giving the rock a brecciated appearance. Together, the stylolites and stylolite-related fractures form the primary permeability system ofthe Hanifa reservoir. This fracture system architecture is critical to understanding the production characteristics of the reservoir, which include anomalously high fluid flow in low porosity zones or transition zones between high and low porosity, radial flow behavior from well tests, smaller than expected differences in well productivity between vertical and horizontal wells, and limited injection water breakthrough.

  3. Natural Fracture Characterization by Source Mechanism Estimation and Semi-Stochastic Generation of Discrete Fracture Networks Using Microseismic and Core Data 

    E-Print Network [OSTI]

    Sotelo Gamboa, Edith

    2014-11-12

    The overall goal of this study is to generate discrete fracture networks using microseismic and core data from a natural fractured reservoir that has been hydraulically stimulated. To improve fracture characterization, a ...

  4. Molecular basis of fracture in polystyrene films

    SciTech Connect (OSTI)

    Sambasivam, M.; Klein, A.; Thomas, T.N.; Mohammadi, N.; Sperling, L.H. [Lehigh Univ., Bethlehem, PA (United States)

    1993-12-31

    To understand the molecular mechanisms involved in the fracture of polystyrene films, a custom built dental burr grinding instrument was used. Films were made from latexes, compression molded polystyrene, and by photopolymerization. Latexes were prepared by direct miniemulsification of polystyrene using sodium lauryl sulfate as surfactant and cetyl and stearyl alcohols as co-surfactants. Grinding of various films was carried out at room temperature. GPC was used to determine the molecular weight before and after grinding. From the molecular weight reduction, the number of chain scissions per unit volume was determined. The energy required for the grinding process was also measured. The results are consistent with a model of exciting 300{+-}150 bonds (per chain fracture) to the breaking point. The most probable deformation mode, consuming maximum energy is envisaged as the scissor-like opening of the 109{degrees} -C-C-C bond angle.

  5. Correlating toughness and roughness in ductile fracture

    E-Print Network [OSTI]

    Ponson, Laurent; Osovski, Shmulik; Bouchaud, Elisabeth; Tvergaard, Viggo; Needleman, Alan

    2013-01-01

    Three dimensional calculations of ductile crack growth under mode I plane strain, small scale yielding conditions are carried out using an elastic-viscoplastic constitutive relation for a progres- sively cavitating plastic solid with two populations of void nucleating second phase particles. Full field solutions are obtained for three dimensional material microstructures characterized by ran- dom distributions of void nucleating particles. Crack growth resistance curves and fracture surface roughness statistics are calculated using standard procedures. The range of void nucleating particle volume fractions considered give rise to values of toughness, JIC, that vary by a factor of four. For all volume fractions considered, the computed fracture surfaces are self-affine over a size range of about two orders of magnitude with a roughness exponent of 0.54 $\\pm$ 0.03. For small void nucleating particle volume fractions, the mean large particle spacing serves as a single dominant length scale. In this regime, the c...

  6. Fracture simulation for zirconia toughened alumina microstructure

    E-Print Network [OSTI]

    Kim, Kyungmok; Forest, Bernard

    2013-01-01

    Purpose - The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures. Design/methodology/approach - A two-dimensional finite element model is developed with an actual $Al{_2}O{_3}$ - 10 vol% $ZrO{_2}$ microstructure. A bilinear, time-independent cohesive zone law is implemented for describing fracture behaviour of grain boundaries. Simulation conditions are similar to those found at contact between a head and a cup of hip prosthesis. Residual stresses arisen from the mismatch of thermal coefficient between grains are determined. Then, effects of a micro-void and contact stress magnitude are investigated with models containing residual stresses. For the purpose of simulating fatigue behaviour, cyclic loadings are applied to the models. Findings - Results show that crack density is gradually increased with increasing magnitude of contact stress or number of fatigue cycles. It is also identified that a micro-void brings about...

  7. Laboratory testing of cement grouting of fractures in welded tuff

    SciTech Connect (OSTI)

    Sharpe, C.J.; Daemen, J.J.

    1991-03-01

    Fractures in the rock mass surrounding a repository and its shafts, access drifts, emplacement rooms and holes, and exploratory or in-situ testing holes, may provide preferential flowpaths for the flow of groundwater or air, potentially containing radionuclides. Such cracks may have to be sealed. The likelihood that extensive or at least local grouting will be required as part of repository sealing has been noted in numerous publications addressing high level waste repository closing. The objective of this work is to determine the effectiveness of fracture sealing (grouting) in welded tuff. Experimental work includes measurement of intact and fracture permeability under various normal stresses and injection pressures. Grout is injected into the fractures. The effectiveness of grouting is evaluated in terms of grout penetration and permeability reduction, compared prior to and after grouting. Analysis of the results include the effect of normal stress, injection pressure, fracture roughness, grout rheology, grout bonding, and the radial extent of grout penetration. Laboratory experiments have been performed on seventeen tuff cylinders with three types of fractures: (1) tension induced cracks, (2) natural fractures, and (3) sawcuts. Prior to grouting, the hydraulic conductivity of the intact rock and of the fractures is measured under a range of normal stresses. The surface topography of the fracture is mapped, and the results are used to determine aperture distributions across the fractures. 72 refs., 76 figs., 25 tabs.

  8. FRACTURE FAILURE CRITERIA OF SOFC PEN STRUCTURE

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2007-04-30

    Thermal stresses and warpage of the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature and mismatch of the coefficients of thermal expansion (CTE) of various layers in the PEN structures of solid oxide fuel cells (SOFC) during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. The porous nature of anode and cathode in the PEN structures determines presence of the initial flaws and crack on the interfaces of anode/electrolyte/cathode and in the interior of the materials. The sintering/assembling induced stresses may cause the fracture failure of PEN structure. Therefore, fracture failure criteria for SOFC PEN structures is developed in order to ensure the structural integrity of the cell and stack of SOFC. In this paper, the fracture criteria based on the relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

  9. Investigation into mechanical properties of bone and its main constituents

    E-Print Network [OSTI]

    Evdokimenko, Ekaterina

    2012-01-01

    treatment of intrabony periodontal defects: 6 year resultsbones, to repair periodontal defects, bone removal from

  10. Curvilinear gullies, lobate deposits and fractures, and their implications for the geologic evolution and hydration of Vesta

    E-Print Network [OSTI]

    Scully, Jennifer Eva

    2015-01-01

    and impact- induced fracturing, it has remained largelyof impact-induced fracturing in the northern hemisphere andand impact-induced fracturing throughout its history.

  11. Micromechanisms of ductile fracturing of DH-36 steel plates under impulsive loads and influence of polyurea reinforcing

    E-Print Network [OSTI]

    Amini, M. R.; Nemat-Nasser, S.

    2010-01-01

    Micromechanisms of ductile fracturing of DH-36 steel platesMicromechanisms of ductile fracturing of DH-36 steel platesundergoes controllable fracturing, generally initiated near

  12. FRACTURE MECHANISM OF A BAINITE STEEL IN PRECRACKED AND NOTCHED SPECIMENS

    E-Print Network [OSTI]

    Qin, Qinghua

    . KEYWORDS Fracture toughness, cleavage fracture, crack depth, ductile crack growth, bainite steel, fracture specimens fractured at lower-shelf region without any ductile crack growth. The critical crack tip opening there was an apparent improvement in fracture toughness (KIC) measured using precracked specimens but a decrease

  13. Author's personal copy Calibration procedures for a computational model of ductile fracture

    E-Print Network [OSTI]

    Hutchinson, John W.

    Author's personal copy Calibration procedures for a computational model of ductile fracture Z. Xue fracture Computational fracture Shear fracture Damage parameters a b s t r a c t A recent extension of the cup-cone fracture mode in the neck of a round tensile bar. Ductility of a notched round bar provides

  14. Material Point Method Simulations of Transverse Fracture in Wood with Realistic Morphologies

    E-Print Network [OSTI]

    Nairn, John A.

    Material Point Method Simulations of Transverse Fracture in Wood with Realistic Morphologies By J Material point method Numerical modeling RT fracture TR fracture; Transverse fracture Summary A new used to simulate transverse fracture in solid wood. The simulations were run on the scale of growth

  15. Mode I Fracture Toughness Prediction for Multiwalled-Carbon-Nanotube Reinforced Ceramics

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Henager, Charles H.

    2015-08-27

    This article develops a multiscale model to predict fracture toughness of multiwalled-carbon-nanotube (MWCNT) reinforced ceramics. The model bridges different scales from the scale of a MWCNT to that of a composite domain containing a macroscopic crack. From the nano, micro to meso scales, Eshelby-Mori-Tanaka models combined with a continuum damage mechanics approach are explored to predict the elastic damage behavior of the composite as a function of MWCNT volume fraction. MWCNTs are assumed to be randomly dispersed in a ceramic matrix subject to cracking under loading. A damage variable is used to describe matrix cracking that causes reduction of the elastic modulus of the matrix. This damage model is introduced in a modified boundary layer modeling approach to capture damage initiation and development at a tip of a pre-existing crack. Damage and fracture are captured only in a process window containing the crack tip under plane strain Mode I loading. The model is validated against the published experimental fracture toughness data for a MWCNT 3 mol% yttria stabilized zirconia composite system. In addition, crack resistance curves as a function of MWCNT content are predicted and fitted by a power law as observed in the experiments on zirconia.

  16. Elastic moduli of untreated, demineralized and deproteinized cortical bone: Validation of a theoretical model of bone as an interpenetrating composite material

    E-Print Network [OSTI]

    McKittrick, Joanna

    Elastic moduli of untreated, demineralized and deproteinized cortical bone: Validation online 15 November 2011 Keywords: Cortical bone Elastic moduli Multi-scale modeling Demineralization include completely demineralized and deproteinized bones as well as untreated bone samples. Porosity

  17. Mandible versus Long Bone Marrow Cells

    E-Print Network [OSTI]

    Chaichanasakul, Thawinee

    2012-01-01

    3-3 microCT analysis of gelatin sponge seeded with long boneFigure 3-4 H&E staining of gelatin sponge seeded with longprocess (Djagny et al. 2001). Gelatin- based sponge prepared

  18. Composite gelatin delivery system for bone regeneration

    E-Print Network [OSTI]

    Hager, Elizabeth A. (Elizabeth Ann)

    2005-01-01

    In this thesis, the chemical/mechanical properties and biocompatibility of gelatin were investigated to produce a gelatin scaffold for the release of bone morphogenetic proteins (BMPs) from composite particles. This delivery ...

  19. Nanoscale Surface Topography to Guide Bone Growth

    E-Print Network [OSTI]

    Nanoscale Surface Topography to Guide Bone Growth P R O J E C T L E A D E R : Jirun Sun (American T S Designed and fabricated devices with nanoscale surface topography. Controlled cell alignment by varying

  20. Microdamage accumulation in bovine trabecular bone

    E-Print Network [OSTI]

    Moore, Tara L. Arthur (Tara Lee Arthur), 1972-

    2001-01-01

    When bone is loaded beyond its failure point, it develops damage in the form of microcracks. Normally, microcracks are repaired by the remodeling process, limiting the number of in vivo microcracks. However, if the rate ...

  1. Mechanical bone strength in the proximal tibia 

    E-Print Network [OSTI]

    Prommin, Danu

    2000-01-01

    Six bone slices from one canine tibia were tested by compressive load to determine the ultimate strength as a function of distance from the knee. Both the ultimate compressive strength and overall modulus of elasticity of ...

  2. Tracer Methods for Characterizing Fracture Creation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis...

  3. A Simple, Fast Method of Estimating Fractured Reservoir Geometry...

    Open Energy Info (EERE)

    Fractured Reservoir Geometry from Tracer Tests Abstract A simple method of estimating flow geometry and pore geometry from conservative tracer tests in single phase geothermal...

  4. Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...

    Open Energy Info (EERE)

    Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of Tracer-Determined Residence Time Distributions Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  5. Imaging, Characterizing, and Modeling of Fracture Networks and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoirs Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Project objectives: Improve image resolution for microseismicimaging and...

  6. Elastic properties of saturated porous rocks with aligned fractures

    E-Print Network [OSTI]

    2003-12-02

    of fluid properties on seismic characteristics. ... C. C. A . The host rock is permeated by a set of parallel fractures which are ..... Similar behaviour is ..... Page 14 ...

  7. Shale Gas Application in Hydraulic Fracturing Market is likely...

    Open Energy Info (EERE)

    on unconventional reservoirs such as coal bed methane, tight gas, tight oil, shale gas, and shale oil. Over the period of time, hydraulic fracturing technique has found...

  8. Seismic velocity and Q anisotropy in fractured poroelastic media

    E-Print Network [OSTI]

    A poroelastic medium with embedded aligned fractures exhibits significant attenuation and dispersion effects due to this mechanism, which can properly be

  9. Seismic velocity and Q anisotropy in fractured poroelastic media

    E-Print Network [OSTI]

    Juan E. Santos

    2014-05-29

    medium with embedded aligned fractures exhibits significant attenuation and dispersion effects due to this mechanism, which can properly be represented at the ...

  10. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01

    and Pruess, K. , Analysis of injection testing of geothermalreservoirs: Geothermal Resoures Council, Vol. 4. , (into a fractured geothermal reservoir: Transactions, Vol. 4,

  11. Evaluation of subsurface fracture geometry using fluid pressure...

    Open Energy Info (EERE)

    Evaluation of subsurface fracture geometry using fluid pressure response to solid earth tidal strain Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  12. Integrated 3D Acid Fracturing Model for Carbonate Reservoir Stimulation 

    E-Print Network [OSTI]

    Wu, Xi

    2014-06-23

    and illustrates the application of the approach with examples. The results from this study show that the new model can successfully design and optimize acid fracturing treatments....

  13. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in...

  14. Determination Of The Orientation Of Open Fractures From Hydrophone VSP

    E-Print Network [OSTI]

    Lee, Jung Mo

    1995-01-01

    Open fractures are of interest in many areas such as ground water contamination, hazardous waste disposal, oil and gas recovery, and geothermal energy extraction. In

  15. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  16. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    SciTech Connect (OSTI)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

  17. Studies of Transport Properties of Fractures: Final Report

    SciTech Connect (OSTI)

    Stephen R. Brown

    2006-06-30

    We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

  18. Fracture Network and Fluid Flow Imaging for EGS Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from...

  19. Characterizing Fractures in Geysers Geothermal Field by Micro...

    Open Energy Info (EERE)

    rocks in order to better understand the fracturing system. - Utilize soft computing to process and analyze the passive seismic data. Awardees (Company Institution) University...

  20. Seepage into drifts in unsaturated fractured rock at Yucca Mountain

    E-Print Network [OSTI]

    Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

    1998-01-01

    Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

  1. Scale-Dependent Fracture-Matrix Interactions and Their Impact...

    Office of Scientific and Technical Information (OSTI)

    Scale-Dependent Fracture-Matrix Interactions and Their Impact on Radionuclide Transport: Development of efficient particle-tracking methods Citation Details In-Document Search...

  2. Fracture Evolution Following a Hydraulic Stimulation within an...

    Broader source: Energy.gov (indexed) [DOE]

    Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir presentation at the April 2013 peer review meeting held in Denver, Colorado. flowevolutionpeer2013.pd...

  3. Microseismicity, stress, and fracture in the Coso geothermal...

    Open Energy Info (EERE)

    Microseismicity, stress, and fracture in the Coso geothermal field, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Microseismicity,...

  4. Using supercritical carbon dioxide as a fracturing fluid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and develop models to compare different working models of hydraulic fracturing for shale gas and oil production. Laboratory researchers have published a paper in Applied...

  5. Characterizing Fractures in the Geysers Geothermal Field by Micro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic...

  6. Characterization of subsurface fracture patterns in the Coso...

    Open Energy Info (EERE)

    of subsurface fracture patterns in the Coso geothermal reservoir by analyzing shear-wave splitting of microearthquake seismorgrams Jump to: navigation, search OpenEI Reference...

  7. Characterization Of Fracture Patterns In The Geysers Geothermal...

    Open Energy Info (EERE)

    Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  8. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Survey DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with...

  9. Identification of MHF Fracture Planes and Flow Paths- a Correlation...

    Open Energy Info (EERE)

    creation of flow paths through the rock between two wellbores. To date, circulation systems have only been created by drilling one wellbore, hydraulically fracturing the well...

  10. Tracer Methods for Characterizing Fracture Stimulation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing...

  11. Three-dimensional Modeling of Fracture Clusters in Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods...

  12. Fracture Characterization in Enhanced Geothermal Systems by Wellbore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced...

  13. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Open Energy Info (EERE)

    Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Geothermal Project Jump to: navigation, search Last modified on July 22, 2011....

  14. Finite-element harmonic experiments to model fractured induced ...

    E-Print Network [OSTI]

    santos

    Mar 10, 2014 ... Fractured hydrocarbon reservoirs have been the subject of interest in explo- ... since these factors control hydrocarbon production [2]. This is ...

  15. Effects of constraint on upper shelf fracture toughness

    SciTech Connect (OSTI)

    Joyce, J.A.; Link, R.E.

    1995-12-31

    The upper shelf fracture toughness and tearing resistance of two structural steels, HY-100 and ASTM A533, Gr. B, were determined over a wide range of applied constraint. The constraint conditions were varied by changes in specimen geometry and loading mode. Bend specimens with shallow and deep cracks, compact specimens, and single and double edge notched tension specimens were used in this study. A rotation correction was developed for the single edge notch tension specimen which greatly improved the behavior of the J-R curves determined using this specimen. The experimental results were used to investigate the applicability of the Q and T stress parameters to the correlation of upper shelf initiation toughness, J{sub Ic}, and tearing resistance, T{sub mat}. The J-Q and J-T stress loci, and corresponding plots of material tearing resistance plotted against Q and T, were developed and compared with the expectations of the O`Dowd and Shih and the Betegon and Hancock analyses. The principle conclusions of this work are that J{sub Ic} does not appear to be dependent on T stress or Q while the material tearing resistance, T{sub mat}, is dependent on T stress and Q, with the tearing modulus increasing as constraint decreases.

  16. AN INTEGRATED APPROACH TO CHARACTERIZING BYPASSED OIL IN HETEROGENEOUS AND FRACTURED RESERVOIRS USING PARTITIONING TRACERS

    SciTech Connect (OSTI)

    Akhil Datta-Gupta

    2004-08-01

    We explore the use of efficient streamline-based simulation approaches for modeling and analysis partitioning interwell tracer tests in heterogeneous and fractured hydrocarbon reservoirs. The streamline approach is generalized to model water injection in naturally fractured reservoirs through the use of a dual media approach. The fractures and matrix are treated as separate continua that are connected through a transfer function, as in conventional finite difference simulators for modeling fractured systems. A detailed comparison with a commercial finite difference simulator shows very good agreement. Furthermore, an examination of the scaling behavior of the computation time indicates that the streamline approach is likely to result in significant savings for large-scale field applications. We also propose a novel approach to history matching finite-difference models that combines the advantage of the streamline models with the versatility of finite-difference simulation. In our approach, we utilize the streamline-derived sensitivities to facilitate history matching during finite-difference simulation. The use of finite-difference model allows us to account for detailed process physics and compressibility effects. The approach is very fast and avoids much of the subjective judgments and time-consuming trial-and-errors associated with manual history matching. We demonstrate the power and utility of our approach using a synthetic example and two field examples. Finally, we discuss several alternative ways of using partitioning interwell tracer tests (PITTs) in oil fields for the calculation of oil saturation, swept pore volume and sweep efficiency, and assess the accuracy of such tests under a variety of reservoir conditions.

  17. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.; Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A.; Glagolev, A.V.; Vasil`kova, N.A.

    1996-10-30

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site.

  18. Variational fracture mechanics The fracture pattern in stressed bodies is defined through the minimization of a two-field pseudo-spatial-

    E-Print Network [OSTI]

    Segatti, Antonio

    Variational fracture mechanics The fracture pattern in stressed bodies is defined through-deviatoric and masonry-like fractures. Remarkably, this latter formulation rigorously avoid material overlapping., Francfort, G. A. and J. J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys

  19. Seismic scattering attributes to estimate reservoir fracture density : a numerical modeling study

    E-Print Network [OSTI]

    Pearce, Frederick D. (Frederick Douglas), 1978-

    2003-01-01

    We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir containing evenly-spaced, discrete, vertical fracture zones. The fracture zones are represented using a ...

  20. Analyzing Aqueous Solution Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives 

    E-Print Network [OSTI]

    Plamin, Sammazo Jean-bertrand

    2013-09-29

    Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil reservoirs are “gelled fracturing” and “slick-water fracturing”. Both methods utilize up to several million gallons of water-based fluid per well in a...

  1. Analizing Aqueous Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives 

    E-Print Network [OSTI]

    Qureshi, Maha

    2013-09-29

    Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil reservoirs are “gelled fracturing” and “slick-water fracturing”. Both methods utilize up to several million gallons of water-based fluid per well in a...

  2. Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture

    E-Print Network [OSTI]

    Nelson, J.T.

    2009-01-01

    Motion for a New Model of Hydraulic Fracture With an Induced1987. Hydrodynamics of a Vertical Hydraulic Fracture, Earthand Fluid Flow in the Hydraulic Fracture Pmess, (PhD.

  3. Effects of non-Darcy flow on pressure buildup analysis of hydraulically fractured gas reservoirs 

    E-Print Network [OSTI]

    Alvarez Vera, Cesar

    2001-01-01

    Conventional well-testing techniques are commonly used to evaluate pressure transient tests of hydraulically fractured wells to estimate values such as formation permeability, fracture length, and fracture conductivity. When non-Darcy flow occurs...

  4. The Influence of Vertical Location on Hydraulic Fracture Conductivity in the Fayetteville Shale 

    E-Print Network [OSTI]

    Briggs, Kathryn

    2014-05-05

    Hydraulic fracturing is the primary stimulation method within low permeability reservoirs, in particular shale reservoirs. Hydraulic fracturing provides a means for making shale reservoirs commercially viable by inducing and propping fracture...

  5. Imaging Hydraulic Fractures: Source Location Uncertainty Analysis At The UPRC Carthage Test Site

    E-Print Network [OSTI]

    Li, Yingping

    1996-01-01

    Hydraulic fracturing is a useful tool for enhancing gas and oil production. High-resolution seismic imaging of the fracture geometry and fracture growth process is the key in determining optimal spacing and location of ...

  6. Hydraulic Fracture Optimization with a Pseudo-3D Model in Multi-layered Lithology 

    E-Print Network [OSTI]

    Yang, Mei

    2011-10-21

    Hydraulic Fracturing is a technique to accelerate production and enhance ultimate recovery of oil and gas while fracture geometry is an important aspect in hydraulic fracturing design and optimization. Systematic design procedures are available...

  7. On the fracture toughness of ferroelectric ceramics with electric field applied parallel to the crack front

    E-Print Network [OSTI]

    On the fracture toughness of ferroelectric ceramics with electric field applied parallel crack growth. The effects of electric field on the fracture toughness of both initially unpoled and poled materials are investigated. Results for the predicted fracture toughness, remanent strain

  8. Fractured Processes: Adaptive, Fine-Grained Process Abstractions Thanumalayan Sankaranarayana Pillai

    E-Print Network [OSTI]

    Swift, Michael

    Fractured Processes: Adaptive, Fine-Grained Process Abstractions Thanumalayan Sankaranarayana. Arpaci-Dusseau University of Wisconsin-Madison Abstract. We introduce Fracture, a novel framework that transforms and modernizes the basic process ab- straction. By "fracturing" an application into logical

  9. Theoretical and Numerical Simulation of Non-Newtonian Fluid Flow in Propped Fractures 

    E-Print Network [OSTI]

    Ouyang, Liangchen

    2013-12-10

    The flow of non-Newtonian fluids in porous media is important in many applications, such as polymer processing, heavy oil flow, and gel cleanup in propped fractures. Residual polymer gel in propped fractures results in low fracture conductivity...

  10. A Materials Science Driven Pattern Generation Solution to Fracturing Computer Generated Glass for Films and Games 

    E-Print Network [OSTI]

    Monroe, David Charles

    2014-08-11

    fracture patterns used for breaking objects apart based on input values, materials science literature, and fracture mechanics. After determining all of the fracture pattern variables such as the number of radial and concentric cracks, the artist is able...

  11. Stochastic multiscale fracture analysis of three-dimensional functionally graded composites

    E-Print Network [OSTI]

    Rahman, Sharif

    Stochastic multiscale fracture analysis of three-dimensional functionally graded composites Sharif: Probabilistic fracture mechanics Polynomial dimensional decomposition Random microstructure Reliability a b for stochastic multiscale fracture analysis of three-dimensional, particle-matrix, functionally graded materials

  12. Seismic Scattering Attributes to Estimate Reservoir Fracture Density: A Numerical Modeling Study

    E-Print Network [OSTI]

    Pearce, Frederick Douglas

    We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir containing evenly-spaced, discrete, vertical fracture zones. The fracture zones are represented using a ...

  13. Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs

    SciTech Connect (OSTI)

    Guo, Genliang; George, S.A.; Lindsey, R.P.

    1997-08-01

    Thirty-six sets of surface lineaments and fractures mapped from satellite images and/or aerial photos from parts of the Mid-continent and Colorado Plateau regions were collected, digitized, and statistically analyzed in order to obtain the probability distribution functions of natural fractures for characterizing naturally fractured reservoirs. The orientations and lengths of the surface linear features were calculated using the digitized coordinates of the two end points of each individual linear feature. The spacing data of the surface linear features within an individual set were, obtained using a new analytical sampling technique. Statistical analyses were then performed to find the best-fit probability distribution functions for the orientation, length, and spacing of each data set. Twenty-five hypothesized probability distribution functions were used to fit each data set. A chi-square goodness-of-fit test was used to rank the significance of each fit. A distribution which provides the lowest chi-square goodness-of-fit value was considered the best-fit distribution. The orientations of surface linear features were best-fitted by triangular, normal, or logistic distributions; the lengths were best-fitted by PearsonVI, PearsonV, lognormal2, or extreme-value distributions; and the spacing data were best-fitted by lognormal2, PearsonVI, or lognormal distributions. These probability functions can be used to stochastically characterize naturally fractured reservoirs.

  14. Evaluation of acid fracturing based on the "acid fracture number" concept 

    E-Print Network [OSTI]

    Alghamdi, Abdulwahab

    2006-08-16

    Acid fracturing is one of the preferred methods to stimulate wells in carbonate reservoirs. It consists of injecting an acid solution at high enough pressure to break down the formation and to propagate a two-wing crack away from the wellbore...

  15. Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test 

    E-Print Network [OSTI]

    Marpaung, Fivman

    2009-05-15

    The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant...

  16. Hydraulic Fracturing | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoringUtilities Comm Jump to: navigation,Fracturing

  17. Analytical modeling of a fracture-injection/falloff sequence and the development of a refracture-candidate diagnostic test 

    E-Print Network [OSTI]

    Craig, David Paul

    2006-08-16

    falloff data. To remove the current limitations, new analytical fractureinjection/ falloff models are developed that account for fracture propagation, fracture closure, and after fracture closure diffusion. A fracture-injection/falloff differs from a...

  18. Minimizing damage to a propped fracture by correct selection of proppant and controlled flowback procedures 

    E-Print Network [OSTI]

    Robinson, Bradley Mason

    1986-01-01

    of vertically fractured wells prior to stabilized flow . Areas of possible damage after a fracture treatment . . 13 The effects of damage on productivity index ratio, J/Jo 15 Fracture conductivity for different proppants - steel plate data 18 Fracture... . In general, one must consider the effects of the formation on the proppant due to fracture closure pressure, as well as the effects of the fracturing fluid and proppant on the reservoir. The strength of a proppant will determine its ability to withstand...

  19. Proppant Fracture Conductivity with High Proppant Loading and High Closure Stress 

    E-Print Network [OSTI]

    Rivers, Matthew Charles

    2011-08-08

    conditions. Proppant performance and fracture fluids, which carry the proppant into the fracture, and their subsequent clean-up during production, were studied. High strength proppant is ideal for deep fracture stimulations and in this study different... proppant loadings at different stresses were tested to see the impact of crushing and fracture width reduction on fracture conductivity. The preliminary test results indicated that oil at reservoir conditions improves clean-up of fracture fluid left...

  20. In situ stress, fracture, and fluid flow analysis in Well 38C...

    Open Energy Info (EERE)

    wellbore image data, natural fracture characterization, and wellbore failure analysis. A hydraulic fracturing stress test at 3,703 feet TVD was used to constrain a normal faulting...