Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Major Business Expansion Bond Program (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Expansion Bond Program (Maine) Expansion Bond Program (Maine) Major Business Expansion Bond Program (Maine) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Bond Program Provider Finance Authority of Maine The Major Business Expansion Bond Program provides long-term, credit-enhanced financing up to $25,000,000 at taxable bond rates for businesses creating or retaining at least 50 jobs; up to $10,000,000 is available for businesses which expand their manufacturing services. The bond proceeds may be used to acquire real estate, machinery, equipment, or rehabilitate or expand an existing facility. The interest rate is determined by market forces at the time of the bond sale

2

Bond Programs | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Bond Programs Jump to: navigation, search Bonds allow governments (and corporations) to raise money by borrowing. A few states and local governments have established bond programs to support energy efficiency and renewable energy for government-owned facilities. After a government has raised an authorized sum of money through the sale of bonds, the money collected is used to improve energy efficiency or to install renewable energy systems on government facilities. The bonding authority is usually reimbursed using the energy savings resulting from these projects. [1]

3

Efficiency Maine Residential Appliance Program (Maine) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Appliance Program (Maine) Appliance Program (Maine) Efficiency Maine Residential Appliance Program (Maine) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Water Heating Program Info Funding Source Efficiency Maine Start Date 10/01/2012 Expiration Date 06/30/2014 State Maine Program Type State Rebate Program Rebate Amount Ductless Heat Pumps: $500 Heat pump water heaters: $300 Provider Efficiency Maine Efficiency Maine offers rebates for the purchase of Energy Star certified water heaters, and ductless heat pumps. Purchases must be made between September 1, 2013 and June 30, 2014. See the program web site for the mail-in rebate forms and to locate a participating retailer. In addition, in partnership with Maine Libraries, Efficiency Maine has made

4

Do Main Chain Hydrogen Bonds Create Dominant Electron Transfer Pathways?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Main Chain Hydrogen Bonds Create Dominant Electron Transfer Pathways? An Main Chain Hydrogen Bonds Create Dominant Electron Transfer Pathways? An Investigation in Designed Proteins Yongjian Zheng, Martin A. Case, James F. Wishart, and George L. McLendon J. Phys. Chem. B, 107, 7288-7292 (2003). [Find paper at ACS Publications] Abstract: We have investigated the contribution of main chain hydrogen bond (H-bond) pathways to the tunneling matrix elements which control electron transfer (ET) rates across an alpha-helical protein matrix. The paradigm system for these investigations is a metal ion-assembled parallel three-helix bundle protein that contains a ruthenium(II) tris(bipyridyl) electron donor and a ruthenium(III) pentammine electron acceptor separated by a direct metal to metal distance of ca. 19 Å, requiring tunneling through 15 Å of

5

Efficiency Maine Business Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Maine Business Program Efficiency Maine Business Program Efficiency Maine Business Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $50,000 Program Info State Maine Program Type State Rebate Program Rebate Amount Retrofits: up to 35% of total project cost New construction/Major renovations/Failed equipment replacement: 75% of incremental cost Custom: $0.14/kWh Provider Efficiency Maine The Efficiency Maine Business Program provides cash incentives and free, independent technical advice to help non-residential electric customers

6

State Bond Program | Open Energy Information  

Open Energy Info (EERE)

Bonds allow governments (and corporations) to raise money by borrowing. A Bonds allow governments (and corporations) to raise money by borrowing. A few states and local governments have established bond programs to support energy efficiency and renewable energy for government-owned facilities. After a government has raised an authorized sum of money through the sale of bonds, the money collected is used to improve energy efficiency or to install renewable energy systems on government facilities. The bonding authority is usually reimbursed using the energy savings resulting from these projects. [1] State Bond Program Incentives CSV (rows 1 - 7) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Energy Efficiency & Renewable Energy Bond Program (New Mexico) State Bond Program New Mexico Schools

7

Maine | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

8

Resource Program (pbl/main)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RegDialogue Implementation Regional Dialogue (Post-2006) Subscription Contracts IOUPublic Settlement Slice of the System Billing Procedures Resource Program Firstgov BPA Resource...

9

Economic Recovery Loan Program (Maine)  

Broader source: Energy.gov [DOE]

The Economic Recovery Loan Program provides subordinate financing to help businesses remain viable and improve productivity. Eligibility criteria are based on ability to repay, and the loan is...

10

Better Buildings Neighborhood Program: Maine - SEP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- SEP to - SEP to someone by E-mail Share Better Buildings Neighborhood Program: Maine - SEP on Facebook Tweet about Better Buildings Neighborhood Program: Maine - SEP on Twitter Bookmark Better Buildings Neighborhood Program: Maine - SEP on Google Bookmark Better Buildings Neighborhood Program: Maine - SEP on Delicious Rank Better Buildings Neighborhood Program: Maine - SEP on Digg Find More places to share Better Buildings Neighborhood Program: Maine - SEP on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Maine - SEP Maine Makes Multifamily Units Energy-Efficient and Cost-Effective

11

Wastewater Discharge Program (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the

12

Energy Incentive Programs, Maine | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine Maine Energy Incentive Programs, Maine October 29, 2013 - 11:29am Addthis Updated December 2012 What public purpose-funded energy efficiency programs are available in my state? Maine's restructuring law provides for energy efficiency programs through a statewide charge of up to 1.5 mills per kWh. These costs are included in the rates of the local electric distribution utilities. Almost $25 million was spent in 2011 on electric and gas energy efficiency programs. These funds were augmented, starting in 2009, by Maine's portion of proceeds from the northeastern states' Regional Greenhouse Gas Initiative (RGGI). Efficiency Maine , a state-chartered corporation under direction from the Efficiency Maine Trust, administers efficiency programs for businesses and

13

Industrial Revenue Bond Program (District of Columbia)  

Broader source: Energy.gov [DOE]

The District provides below market bond financing to lower the costs of borrowing for qualified capital construction and renovation projects. The program is available to non-profits, institutions,...

14

Main Street Loan Program (North Dakota)  

Broader source: Energy.gov [DOE]

The Main Street Loan Program loans of up to $24,999 through the Certified Development Corporation (CDC) in participation with local lenders or economic development organizations for small...

15

Bond and Loan Program (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bond and Loan Program (Arkansas) Bond and Loan Program (Arkansas) Bond and Loan Program (Arkansas) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Arkansas Program Type Bond Program Loan Program Provider Department of Finance and Administration The Bond and Loan programs of Arkansas are four programs designed to

16

Focus Series: MaineResidential Direct Install Program  

Broader source: Energy.gov [DOE]

Better Buildings Neighborhood Program Focus Series: MaineResidential Direct Install Program: Residential Air Sealing Program Drives Maine Home Energy Savings Through the Roof.

17

Single-Issue Industrial Revenue Bond Program (Missouri) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Single-Issue Industrial Revenue Bond Program (Missouri) Single-Issue Industrial Revenue Bond Program (Missouri) Single-Issue Industrial Revenue Bond Program (Missouri) < Back Eligibility Commercial Construction Industrial Retail Supplier Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Missouri Program Type Bond Program Provider Missouri Development Finance Board The Missouri Development Finance Board administers a Single-Issue Tax-Exempt Industrial Revenue Bond Program as well as a Taxable Industrial Revenue Bond Program. The Tax-Exempt Program finances (i) the acquisition, construction and equipping of qualified manufacturing production facilities and/or equipment, and (ii) refinances outstanding tax-exempt bonds. It

18

Pooled Bond Program (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pooled Bond Program (South Dakota) Pooled Bond Program (South Dakota) Pooled Bond Program (South Dakota) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Bond Program Provider South Dakota Governor's Office of Economic Development The Pooled Bond Program offered by the Economic Development Finance Authority is designed for capital intensive projects, providing small businesses access to larger capital markets for tax-exempt or taxable bond issuances. Bond proceeds can be used to finance 80 percent of new construction, and 75 percent of new equipment costs, with no greater than 25 percent of the bond proceeds being used for ancillary activities such as

19

Economic Development Bond Program (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bond Program (Iowa) Bond Program (Iowa) Economic Development Bond Program (Iowa) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source Iowa Finance Authority State Iowa Program Type Bond Program Provider Iowa Finance Authority Through its Economic Development Bond Program, the Iowa Finance Authority (IFA) issues tax-exempt bonds on behalf of private entities or organizations for eligible purposes. The responsibility for repayment of the bonds rests with the applicant. Neither IFA nor the State of Iowa has

20

Efficiency Maine Multifamily Efficiency Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Maine Multifamily Efficiency Program Efficiency Maine Multifamily Efficiency Program Efficiency Maine Multifamily Efficiency Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Maine Program Type State Rebate Program Rebate Amount Upon approval of Energy Reduction Plan: $100 prescriptive path per apartment unit; $200 modeling path per apartment unit Upon approval of installations: $1400 all paths or 50% of installed cost (whichever is less) Efficiency Maine's Multifamily Efficiency Program offers incentives to multifamily residency building owners for improving energy efficiency. Residencies must have 5 to 20 apartment units to qualify for this rebate.

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Programs (Maine) Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Programs (Maine) < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info State Maine Program Type Utility Rebate Program Rebate Amount Furnaces; $1000 Condensing Boilers: $1500 - $4500 Non-Condensing Boilers: $750-$3,000 Steam Boiler: $800 or $1/MBtuh Infrared Unit Heaters: $500 Natural Gas Warm-Air Unit Heaters: $600 Custom/ECM: Contact Unitil Cooking Equipment: $600-$2000 Provider Rebate Program Efficiency Maine offers natural gas efficiency rebates to Unitil customers.

22

Renewable Energy Project Bond Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Bond Program Project Bond Program Renewable Energy Project Bond Program < Back Eligibility Commercial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State Idaho Program Type State Bond Program Provider Idaho Energy Resources Authority Legislation enacted in Idaho in April 2005 ([http://legislature.idaho.gov/legislation/2005/S1192.html Senate Bill 1192]) allows independent (non-utility) developers of renewable energy projects in the state to request financing from the Idaho Energy Resources Authority, a state bonding authority created in March 2005 by the Environment, Energy and Technology Energy Resources Authority Act (House Bill 106). The authority was created to finance the construction of

23

Focus Series ? Maine Residential Direct Install Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and making the process easy. Think about how to help your program be self-sustaining in the long term. The fact that we had thousands of homeowners getting involved...

24

Pine Tree Development Zones Program (Maine)  

Broader source: Energy.gov [DOE]

The Pine Tree Development Zones program offers eligible businesses the chance to reduce, and sometimes eliminate, state taxes for up to ten years. There is a statutory requirement of hiring a...

25

Efficiency Maine Residential Lighting Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting Program Lighting Program Efficiency Maine Residential Lighting Program < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Maine's System Benefit Charge, Regional Greenhouse Gas Initiative, Forward Capacity Market and Maine Power Reliability Program State Maine Program Type State Rebate Program Rebate Amount Typically $1.25/bulb Efficiency Maine's Residential Lighting Program works directly with retailers and manufacturers to encourage residential customers to purchase energy-efficient lighting. Rebate amounts average $1.25/bulb and are available at the point of sale at participating retailers. Participating retailers will deduct the rebate amount at the cash register. (See the program web site for a list of participating retailers and additional

26

Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) |  

Broader source: Energy.gov (indexed) [DOE]

Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Commercial Heating & Cooling Heating & Cooling Solar Water Heating Maximum Rebate $15,000 Program Info Funding Source American Recovery and Reinvestment Act (ARRA) Start Date 07/27/2011 State Maine Program Type Local Loan Program Rebate Amount Up to $15,000 Provider The Goggin Company Homeowners in the towns of Eliot, Kittery, North Berwick, South Berwick, Ogunquit, and York (located in Southern York County) may be eligible a loan of up to $15,000 to make energy efficiency improvements in their homes.

27

Maine: Energy Efficiency Program Helps Generate Town's Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

28

Natural Gas Utility Conservation Programs (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Natural Gas Utility Conservation Programs (Maine) Natural Gas Utility Conservation Programs (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Public Utilities Commission This Chapter describes how natural gas utilities serving more than 5,000 residential customers must implement natural gas energy conservation programs. The regulations describe

29

Maine Sea Grant Undergraduate Scholarship in Marine Sciences The Maine Sea Grant College Program at the University of Maine is pleased to  

E-Print Network [OSTI]

Maine Sea Grant Undergraduate Scholarship in Marine Sciences The Maine Sea Grant College Program at the University of Maine is pleased to announce the second annual Maine Sea Grant Undergraduate Scholarship in Marine Sciences. In the spring semester of each academic year, Maine Sea Grant awards one scholarship

Thomas, Andrew

30

Maine Public Service Company- Residential and Small Commercial Heat Pump Program (Maine)  

Broader source: Energy.gov [DOE]

The Public Service Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to cover...

31

Automated Design Methodology for Mechatronic Systems Using Bond Graphs and Genetic Programming  

E-Print Network [OSTI]

, allow free composition, and are efficient for classification and analysis of models, allowing rapidAutomated Design Methodology for Mechatronic Systems Using Bond Graphs and Genetic Programming University, zhangbai@egr.msu.edu Abstract This paper suggests an automated design methodology

Fernandez, Thomas

32

Assessing the economic revitalization impact of urban design improvements: the Texas Main Street Program  

E-Print Network [OSTI]

, the number of sales tax permits, the retail sales volume, and the commercial property values were compared for the same time period among three categories of cities: those active in the Main Street Program, those formerly active but now inactive, and those...

Ozdil, Taner Recep

2007-09-17T23:59:59.000Z

33

CLINICAL PSYCHOLOGY Program of Study The doctoral training program in clinical psychology at the University of Maine prepares students for the  

E-Print Network [OSTI]

CLINICAL PSYCHOLOGY Program of Study The doctoral training program in clinical psychology at the University of Maine prepares students for the doctorate (Ph.D.) in psychology and for careers combining research and clinical practice. The program is fully accredited by the American Psychological Association

Thomas, Andrew

34

DE 8714FF Rev. 17 (8-13) (INTERNET) Page 1 of 1 CU EDD FIDELITY BONDING PROGRAM  

E-Print Network [OSTI]

DE 8714FF Rev. 17 (8-13) (INTERNET) Page 1 of 1 CU EDD FIDELITY BONDING PROGRAM The Employment coverage because of an arrest record or imprisonment; history of drug or alcohol abuse; poor credit history the EDD's Internet site at www.edd.ca.gov. P.O. Box 826880 · Sacramento CA 94280-0001 The EDD is an equal

35

Maine Rivers Policy (Maine)  

Broader source: Energy.gov [DOE]

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as outstanding...

36

Qualified Energy Conservation Bonds  

Broader source: Energy.gov [DOE]

Provides an in-depth description of qualified energy conservation bonds, including process and mechanics, case studies, utilization trends, barriers, and regulatory and legal issues. Author: Energy Programs Consortium

37

Maine/Incentives | Open Energy Information  

Open Energy Info (EERE)

Maine/Incentives Maine/Incentives < Maine Jump to: navigation, search Contents 1 Financial Incentive Programs for Maine 2 Rules, Regulations and Policies for Maine Download All Financial Incentives and Policies for Maine CSV (rows 1 - 91) Financial Incentive Programs for Maine Download Financial Incentives for Maine CSV (rows 1 - 25) Incentive Incentive Type Active Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump Program (Maine) Utility Rebate Program Yes Community Based Renewable Energy Production Incentive (Pilot Program) (Maine) Performance-Based Incentive Yes Efficiency Maine - Home Appliance Rebate Program (Maine) State Rebate Program No Efficiency Maine - Home Energy Savings Program (Maine) State Rebate Program No Efficiency Maine - Replacement Heating Equipment Program (Maine) State Rebate Program No

38

Qualified Energy Conservation Bond State-by-State Summary Tables  

Broader source: Energy.gov [DOE]

Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

39

Toward an Automated Design Method for Multi-Domain Dynamic Systems Using Bond Graphs and Genetic Programming  

E-Print Network [OSTI]

of models, permitting rapid determination of various types of acceptability or feasibility of candidate1 Toward an Automated Design Method for Multi-Domain Dynamic Systems Using Bond Graphs and Genetic Abstract This paper describes a unified and automated design method for synthesizing designs for multi

Hu, Jianjun

40

Atoms in Valence Bond. Method, implementation and application.  

E-Print Network [OSTI]

??The Atoms in Valence Bond (AiVB) approach is presented. The main goal was to develop a new and innovative approach, within the existing Valence Bond (more)

Zielinski, M.L.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Bonding Tools  

Broader source: Energy.gov [DOE]

Bonds are one of the most common forms of financing used by state and local governments, because they are a low-cost source of capital available to most entities. State and local officials may consider using bonds for a variety of clean energy purposes, including...

42

Maine-- SEP Summary of Reported Data  

Broader source: Energy.gov [DOE]

The summary of reported data for Maine -- SEP, a partner in the Better Buildings Neighborhood Program.

43

Private Activity Bond Allocation (Missouri) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bond Allocation (Missouri) Bond Allocation (Missouri) Private Activity Bond Allocation (Missouri) < Back Eligibility Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate Total Program Cap 2012: $571,015,360 Program Info State Missouri Program Type Bond Program Provider Missouri Department of Economic Development The Private Activity Bond Allocation Program provides low-interest financing through tax-exempt bonds for certain types of projects, including electric and gas utility projects. Eligible applicants include certain state agencies, cities, counties and industrial development authorities

44

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Energy Savers [EERE]

(DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

45

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum (DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

46

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

47

Examination Report on "The Department of Energy's American Recovery and Reinvestment Act of 2009 Energy Efficiency and Conservation Block Grant Program - Efficiency Maine Trust", OAS-RA-13-04  

Broader source: Energy.gov (indexed) [DOE]

The Department of Energy's The Department of Energy's American Recovery and Reinvestment Act Energy Efficiency and Conservation Block Grant Program - Efficiency Maine Trust OAS-RA-13-04 November 2012 Department of Energy Washington, DC 20585 November 8, 2012 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ENERGY EFFICIENCY AND RENEWABLE ENERGY FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Examination Report on "The Department of Energy's American Recovery and Reinvestment Act of 2009 Energy Efficiency and Conservation Block Grant Program - Efficiency Maine Trust" INTRODUCTION AND OBJECTIVE The attached report presents the results of an examination of the Efficiency Maine Trust's (Trust)

48

Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

49

Thread bonds in molecules  

E-Print Network [OSTI]

Unusual chemical bonds are proposed. Each bond is almost covalent but is characterized by the thread of a small radius $\\sim 0.6\\times 10^{-11}$cm, between two nuclei in a molecule. The main electron density is concentrated outside the thread as in a covalent bond. The thread is formed by the electron wave function which has a tendency to be singular on it. The singularity along the thread is cut off by electron "vibrations" due to the interaction with zero point electromagnetic oscillations. The electron energy has its typical value of (1-10)eV. Due to the small tread radius the uncertainty of the electron momentum inside the thread is large resulting in a large electron kinetic energy $\\sim 1 MeV$. This energy is compensated by formation of a potential well due to the reduction of the energy of electromagnetic zero point oscillations. This is similar to formation of a negative van der Waals potential. Thread bonds are stable and cannot be created or destructed in chemical or optical processes.

Ivlev, B

2015-01-01T23:59:59.000Z

50

Method for vacuum fusion bonding  

DOE Patents [OSTI]

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2001-01-01T23:59:59.000Z

51

Fusion bonding and alignment fixture  

DOE Patents [OSTI]

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2000-01-01T23:59:59.000Z

52

Maine.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maine Maine www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

53

Maine -- SEP Data Dashboard | Department of Energy  

Energy Savers [EERE]

Data Dashboard Maine -- SEP Data Dashboard The data dashboard for Maine -- SEP, a partner in the Better Buildings Neighborhood Program. bbnpbban0004439pmcdashboardy13-q3.xls...

54

Efficiency Maine Data Dashboard | Department of Energy  

Energy Savers [EERE]

Data Dashboard Efficiency Maine Data Dashboard The data dashboard for Efficiency Maine, a partner in the Better Buildings Neighborhood Program. bbnpbban0003560pmcdashboardy13...

55

MOLECULAR BOND MOLECULAR BOND THE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the nearby Columbia River. Even more pressing scenarios are playing out in contaminated uranium mining sites near waterways. The oxidation state of uranium is the main factor...

56

Tax-Exempt Industrial Revenue Bonds (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Revenue Bonds (Kansas) Industrial Revenue Bonds (Kansas) Tax-Exempt Industrial Revenue Bonds (Kansas) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Bond Program Provider Revenue Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial, natural resources, recreational development or manufacturing purposes. The board of county commissioners of any county or the governing body of any city may approve an exemption of property funded by industrial revenue bonds (IRB's). Some

57

Industrial Revenue Bond Issuance Cost Assistance (Wisconsin) | Department  

Broader source: Energy.gov (indexed) [DOE]

Revenue Bond Issuance Cost Assistance (Wisconsin) Revenue Bond Issuance Cost Assistance (Wisconsin) Industrial Revenue Bond Issuance Cost Assistance (Wisconsin) < Back Eligibility Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Bond Program Provider Wisconsin Economic Development Corporation Industrial Revenue Bonds (IRB) are tax-exempt bonds that can be used to stimulate capital investment and job creation by providing private borrowers with access to financing at interest rates that are lower than conventional bank loans. The IRB process involves five separate entities - the borrower, lender, bond attorney, issuer, and WEDC. WEDC allocates the bonding authority or the volume cap for the program under Wis. Stat. §

58

Efficiency Maine Trust | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Maine Trust Efficiency Maine Trust Efficiency Maine Trust < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Public Benefits Fund Maine's public benefits fund for energy efficiency was authorized originally in 1997 by the state's electric-industry restructuring legislation. Under the initial arrangement, the administration of certain efficiency programs was divided among the State Planning Office (SPO), the state's electric utilities and the Maine Public Utilities Commission (PUC). However, general dissatisfaction by the Maine Legislature (and many other stakeholders) with the administration of the fund prompted revisions in

59

?- and ?-Bond Strengths in Main Group 3?5 Compounds  

Science Journals Connector (OSTI)

Daniel J. Grant and David A. Dixon * ... 30-32 All of the calculations were done on a massively parallel HP Linux cluster with 1970 Itanium-2 processors in the Molecular Sciences Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory or on the 144 processor Cray XD-1 computer system at the Alabama Supercomputer Center. ... By combining our computed ?D0 (total atomization energies) values with the known heats of formation at 0 K for the elements ?Hf0(N) = 112.53 ...

Daniel J. Grant; David A. Dixon

2006-11-03T23:59:59.000Z

60

Tax-Exempt Bond Financing (Delaware) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bond Financing (Delaware) Bond Financing (Delaware) Tax-Exempt Bond Financing (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Systems Integrator Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Bond Program Provider Delaware Economic Development Office The Delaware Economic Development Authority provides tax-exempt bond financing for financial assistance to new or expanding businesses, governmental units and certain organizations that are exempt from federal

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Local Government Revenue Bonds (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Government Revenue Bonds (Montana) Government Revenue Bonds (Montana) Local Government Revenue Bonds (Montana) < Back Eligibility Utility Commercial Investor-Owned Utility Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Bond Program Provider Any interested county or municipality. Limited obligation local government bonds ("special revenue bonds") may be issued for qualified electric energy generation facilities, including those powered by renewables. These bonds generally are secured by the project itself. The taxing power or general credit of the government may not be used to secure the bonds. Local governments may not operate any project

62

Maine -- SEP Summary of Reported Data | Department of Energy  

Energy Savers [EERE]

Summary of Reported Data Maine -- SEP Summary of Reported Data The summary of reported data for Maine -- SEP, a partner in the Better Buildings Neighborhood Program. Maine -- SEP...

63

Efficiency Maine Summary of Reported Data | Department of Energy  

Energy Savers [EERE]

Summary of Reported Data Efficiency Maine Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Efficiency Maine. Efficiency Maine...

64

Qualified Energy Conservation Bonds (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Qualified Energy Conservation Bonds (Ohio) Qualified Energy Conservation Bonds (Ohio) Qualified Energy Conservation Bonds (Ohio) < Back Eligibility Agricultural Institutional Local Government Municipal/Public Utility Rural Electric Cooperative Schools Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Ohio Program Type Bond Program Provider Ohio Air Quality Development Authority The Ohio Air Quality Development Authority (OAQDA) administers the Qualified Energy Conservation Bonds (QECB) program in Ohio. QECBs have been used by local governments and public universities to finance the installation of energy conserving equipment in publicly owned buildings. Under a QECB financing package, OAQDA authorizes Air Quality Development Bonds for issuance as a Series A federally tax-exempt bond and a Series B

65

Maine PACE Loans | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine PACE Loans Maine PACE Loans Maine PACE Loans < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Other Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Buying & Making Electricity Wind Program Info Funding Source American Recovery and Reinvestment Act (ARRA) Start Date 04/04/2011 State Maine Program Type PACE Financing Provider Efficiency Maine Note: Maine's PACE program is accepting applications from homeowners in participating municipalities. Applications are submitted online. Property-Assessed Clean Energy (PACE) financing allows property owners to

66

The Ohio Enterprise Bond Fund (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bond Fund (Ohio) Bond Fund (Ohio) The Ohio Enterprise Bond Fund (Ohio) < Back Eligibility Commercial State/Provincial Govt Industrial Local Government Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate $10 million Program Info Funding Source Ohio Treasurer of State Start Date 1988 State Ohio Program Type Bond Program The Ohio Enterprise Bond Fund (OEBF) was created in 1988 to promote economic development, create and retain quality jobs and assist governmental operations. The program enables non-profit and for-profit borrowers to access the national capital markets through bonds issued through OEBF. The program is administered by the Ohio Department of Development and financing is provided by the Ohio Treasurer of State.

67

EFFICIENCY MAINE DIRECT INSTALLS INCREASE UPGRADE PACE  

Broader source: Energy.gov [DOE]

Although Maine has one of the United States highest homeownership rates, more than one-third of the states residents qualify for low-income programs. In addition, Maine residents in all types of...

68

Forestry Policies (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine) Maine) Forestry Policies (Maine) < Back Eligibility Commercial Agricultural Program Info State Maine Program Type Environmental Regulations Provider Maine Forest Service Maine has diverse forest lands which support a diverse and strong forest products industry. The vast majority of forest lands in the state are privately owned. The Maine Forest Service completed its State Forest Assessment and Strategy in 2010, a plan that includes the goal of enhanced benefit from the production of renewable energy using wood and wood wastes. The combination of markets including a growing biomass energy industry and increased wood heating have created significant demand for wood material in Maine. The Maine Forest Service together with the University of Maine issued its "Woody Biomass Retention Guidelines" in 2010. This document

69

AdhesiveBonding.qrk  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adhesive Bonding Adhesive Bonding Manufacturing Technologies Understanding and controlling the factors that affect adhesion is vital for ensuring consistent successful bonding operations. The Manufacturing Science and Technology Center's research into adhesion is focused on achieving a good initial bond and then understanding the mechanisms leading to eventual bond failure. The department is working to understand crack propagation at the interface and has developed a variety of mechanical testing techniques to evalu- ate this failure mode. The factors affecting wetting and formation of the bond (e.g., contamination, surface roughness) are being explored to further our knowledge. In addition to research into adhesion, we bond and join components for our cus- tomers. Researchers have formulated new

70

Private Activity Revenue Bonds (Maryland)  

Broader source: Energy.gov [DOE]

Private Activity Revenue Bonds are available in the form of both taxable bonds and tax-exempt bonds. Both types of bonds provide access to long-term capital markets for fixed asset financing....

71

Climate Action Plan (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine) Maine) Climate Action Plan (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Climate Policies Provider Department of Environmental Protection In June 2003, the Maine State Legislature passed a bill charging the Department of Environmental Protection (DEP) with developing an action plan

72

Spotlight on Maine: Transition to a Sustainable Level of Incentives...  

Energy Savers [EERE]

Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions Focus Series: Maine-Residential Direct Install Program...

73

Better Buildings: Financing and Incentives: Spotlight on Maine...  

Broader source: Energy.gov (indexed) [DOE]

of Incentives Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions Focus Series: Maine-Residential Direct Install Program...

74

Energy Incentive Programs, Maine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

high-efficiency gas-fired space and water heating equipment. What load managementdemand response options are available to me? The Independent System Operator New England Inc....

75

The Fermilab main injector neutrino program  

SciTech Connect (OSTI)

The NuMI Facility at Fermilab provides an extremely intense beam of neutrinos making it an ideal place for the study of neutrino oscillations as well as high statistics (anti)neutrino-nucleon/nucleus scattering experiments. The MINOS neutrino oscillation {nu}{mu} disappearance experiment is currently taking data and has published first results. The NO{nu}A {nu}e appearance experiment is planning to begin taking data at the start of the next decade. For the study of neutrino scattering, the MINER{nu}A experiment at Fermilab is a collaboration of elementary-particle and nuclear physicists planning to use a fully active fine-grained solid scintillator detector. The overall goals of the experiment are to measure absolute exclusive cross-sections, nuclear effects in {nu} - A interactions, a systematic study of the resonance-DIS transition region and the high-xBj - low Q2 DIS region.

Morfin, Jorge G.; /Fermilab

2007-01-01T23:59:59.000Z

76

Trending: Metal Oxo Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

77

Qualified Energy Conservation Bonds  

Broader source: Energy.gov [DOE]

A Qualified Energy Conservation Bond (QECB) is a bond that enables qualified state, tribal, and local government issuers to borrow money at attractive rates to fund energy conservation projects (it is important to note that QECBs are not grants). A QECB is among the lowest-cost public financing tools because the U.S. Department of the Treasury subsidizes the issuer's borrowing costs.

78

Trending: Metal Oxo Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

79

Trending: Metal Oxo Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

80

Trending: Metal Oxo Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Trending: Metal Oxo Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

82

Small Generator Aggregation (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Generator Aggregation (Maine) Generator Aggregation (Maine) Small Generator Aggregation (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Green Power Purchasing Provider Public Utilities Commission This section establishes requirements for electricity providers to purchase

83

Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Maine. Preliminary background report  

SciTech Connect (OSTI)

The Maine Supreme Court holds that the regulation of the operations of public utilities is an exercise of the police powers of the state. The legislature has delegated such regulatory authority to the Maine Public Utilities Commission (PUC). The statutes provide no role for local government in the regulation of public utilities. The PUC consists of three full time members, appointed by the Governor subject to review by the Joint Standing Committee on Public Utilities and to confirmation by the Legislature. They each serve seven year terms. One member is designated by the Governor as chairman. The Commission appoints a secretary, assistant secretary, director of transportation, and, with the approval of the Attorney General, a general counsel. A member of the PUC cannot have any official or professional connection or relation with or hold any stock or securities in any public utility. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

1980-01-01T23:59:59.000Z

84

Determinants of bond market development in Asia  

Science Journals Connector (OSTI)

One of the major reasons behind the Asian financial crisis in 1997 was the excessive dependence of the Asian economies on commercial banks for domestic financing. The region failed to diversify its sources of corporate financing as it relied mainly on banks since its other types of financing, namely bond markets, were still underdeveloped and their sizes were quite small. On the other hand, the 2008 global financial crisis and the ongoing European debt crisis have led to constraints in acquiring local currency and foreign currency liquidity in the corporate sector in Asia as foreign banks withdrew investments from Asia. Furthermore, Asia needs large long term capital (US$ 750 billion per year for 20102020) for developing infrastructure connectivity within and across its economies. Local and regional capital can be channeled for long-term infrastructure projects and other productive investment through bond markets. Having a well-developed local currency bond markets can enhance the resilience of domestic financial sector to external shocks and it can facilitate better intermediation of savings into productive investments in Asia. To enhance corporate bond financing, it is important to examine factors that affect the effective development of bond markets in Asia. The study attempts to identify the determinants of bond market development in Asian economies through examining the relationship of bond issuance with selected key financial and economic factors. It also intends to provide policy recommendations for the further development of the Asian bond market. Major determinants for bond market development in Asia include the size of an economy, the stage of economic development, the openness of an economy, the exchange rate variability, the size of the banking system, and interest rate variability.

Biswa Nath Bhattacharyay

2013-01-01T23:59:59.000Z

85

Categorical Exclusion Determinations: Maine | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine Maine Categorical Exclusion Determinations: Maine Location Categorical Exclusion Determinations issued for actions in Maine. DOCUMENTS AVAILABLE FOR DOWNLOAD February 4, 2013 CX-010231: Categorical Exclusion Determination Hywind Maine CX(s) Applied: A9, B3.1, B3.6 Date: 02/04/2013 Location(s): Maine Offices(s): Golden Field Office January 17, 2013 CX-009915: Categorical Exclusion Determination The University of Maine's "New England Aqua Ventus I" Program CX(s) Applied: A9, B3.6 Date: 01/17/2013 Location(s): Maine Offices(s): Golden Field Office November 5, 2012 CX-009425: Categorical Exclusion Determination Partial Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.3, B3.16, B5.18 Date: 11/05/2012 Location(s): Maine

86

Clean Renewable Energy Bonds (CREBs) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Renewable Energy Bonds (CREBs) Clean Renewable Energy Bonds (CREBs) Clean Renewable Energy Bonds (CREBs) < Back Eligibility Local Government Municipal Utility Rural Electric Cooperative Schools State Government Tribal Government Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info Start Date 09/01/2010 (New CREBs Electric Cooperatives Solicitation) Expiration Date 11/01/2010 Program Type Federal Loan Program Rebate Amount Varies Provider U.S. Internal Revenue Service '''''Note: The IRS is not currently accepting applications for New CREB bond volume. The deadline for New CREB applications from electric cooperatives under IRS Announcement 2010-54 expired November 1, 2010. Bond volume for other eligible sectors (government entities and public power providers) was fully allocated in October 2009.

87

Wafer-Level Thermocompression Bonds  

E-Print Network [OSTI]

Thermocompression bonding of gold is a promising technique for achieving low temperature, wafer-level bonding without the application of an electric field or complicated pre-bond cleaning procedure. The presence of a ductile ...

Tsau, Christine H.

88

Reliability of Bonded Interfaces  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

89

Characterization of anodic bonding  

E-Print Network [OSTI]

Anodic bonding is a common process used in MicroElectroMechanical Systems (MEMS) device fabrication and packaging. Polycrystalline chemical vapor deposited (CVD) silicon carbide (SiC) is emerging as a new MEMS device and ...

Tudryn, Carissa Debra, 1978-

2004-01-01T23:59:59.000Z

90

The New Chemical Bond  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

off when the first convincing experimental evidence of the phi bond showed up for the thorium sandwich complex, as revealed by its elaborate, never-before-seen symmetry. The...

91

Water's Hydrogen Bond Strength  

E-Print Network [OSTI]

Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

Martin Chaplin

2007-06-10T23:59:59.000Z

92

Economic Significance, Survey of Applications, and Six Bonding Functions  

Science Journals Connector (OSTI)

The following remarks will review the uses of phenolic resins and their distribution throughout the various areas of application, making reference to the six bonding functions that phenolic resins mainly ass...

Dr. Arno Gardziella; Dr. Louis A. Pilato; Dr. Andre Knop

2000-01-01T23:59:59.000Z

93

EECBG Program Notice 09-002A | Department of Energy  

Energy Savers [EERE]

A EECBG Program Notice 09-002A Guidance for energy efficiency and conservation block grant grantees on qualified energy conservation bonds and new clean renewable energy bonds....

94

Programming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provided on the Cray systems at NERSC. The Programming Environment is managed by a meta-module named similar to "PrgEnv-gnu4.6". The "gnu" indicates that it is providing the GNU...

95

MAIN APPLICATIONS Spot welding  

E-Print Network [OSTI]

IRB 6400 MAIN APPLICATIONS Spot welding Press tending Material handling Machine tending Palletizing with high material strength. The arms are mechanically balanced and equipped with double bearings. Advanced DATA, IRB 6400 INDUSTRIAL ROBOT WORKING RANGE AND LOAD DIAGRAM IRB 6400PE IRB 6400R IRB 6400S PR10036EN

De Luca, Alessandro

96

Wind Energy Act (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Act (Maine) Wind Energy Act (Maine) Wind Energy Act (Maine) < Back Eligibility Developer Utility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Access Policy Siting and Permitting The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the regulatory process for

97

Main Page - NWChem  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Log in / create account Log in / create account Search Go Search Navigation Main page Science Benchmarks Download Code Documentation News Community Developers SEARCH TOOLBOX LANGUAGES Forum Menu Page Discussion View source History modified on 17 May 2013 at 21:51 *** 6,254,554 views Main Page From NWChem Jump to: navigation, search NWChem: Delivering High-Performance Computational Chemistry caption NWChem aims to provide its users with computational chemistry tools that are scalable both in their ability to treat large scientific computational chemistry problems efficiently, and in their use of available parallel computing resources from high-performance parallel supercomputers to conventional workstation clusters. NWChem software can handle Biomolecules, nanostructures, and solid-state From quantum to classical, and all combinations

98

Making it Easier to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs)  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on How to to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs)

99

Maine coast winds  

SciTech Connect (OSTI)

The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

Avery, Richard

2000-01-28T23:59:59.000Z

100

Qualified Energy Conservation Bond (QECB) Update: New  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2012 8, 2012 Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service Qualified Energy Conservation Bonds (QECBs) are federally-subsidized bonds that enable state, tribal, and local government issuers to borrow money to fund a range of energy conservation projects at very attractive borrowing rates over long contract terms. In June 2012, the U.S. Department of the Treasury (Treasury) and the Internal Revenue Service (IRS) published a notice to clarify what constitutes a qualified project for potential issuers of the approximately $2.5 billion of remaining QECB issuance capacity. The guidance addresses two qualified uses of QECB proceeds-how issuers should measure energy use reductions in publicly-owned buildings and what constitutes a green community program.

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Stocks, bonds and the  

Science Journals Connector (OSTI)

In this paper, we investigate the relative performance of stocks and bonds for various investment horizons on the French market. We use a new matched block bootstrap approach to take account of estimation risk. Furthermore, in the light of non-normality of returns, we use two different risk approaches as inputs in portfolio optimization: the traditional variance, and a downside risk measure, the semi-variance. Our results suggest that an investor should avoid bonds in the long run due to the time diversification effect.

Gilles Sanfilippo

2003-01-01T23:59:59.000Z

102

Business Incentive Loans and Bonds (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Business Incentive Loans and Bonds (Georgia) Business Incentive Loans and Bonds (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate Unlimited but generally should not exceed 20% of the asset needs of the company's Gerogia location. Program Info State Georgia Program Type Bond Program Loan Program Provider Georgia Department of Community Affairs The Strategic Industries Loan Fund (SILF) is a program offered by the

103

Photochemical tissue bonding  

DOE Patents [OSTI]

Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

Redmond, Robert W. (Brookline, MA); Kochevar, Irene E. (Charlestown, MA)

2012-01-10T23:59:59.000Z

104

Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals  

SciTech Connect (OSTI)

Atomic scale properties of calcium silicate hydrate (CSH), the main binding phase of hardened Portland cement, are not well understood. Over a century of intense research has identified almost 50 different crystalline CSH minerals which are mainly categorized by their Ca/Si ratio. The electronic structure and interatomic bonding in four major CSH crystalline phases with structures close to those found in hardened cement are investigated via ab initio methods. Our result reveals the critical role of hydrogen bonding and importance of specifying precise locations for water molecules. Quantitative analysis of contributions from different bond types to the overall cohesion shows that while the Si-O covalent bonds dominate, the hydrogen bonding and Ca-O bonding are also very significant. Calculated results reveal the correlation between bond topology and interlayer cohesion. The overall bond order density (BOD) is found to be a more critical measure than the Ca/Si ratio in classifying different CSH crystals.

Dharmawardhana, C.C. [Department of Physics and Astronomy, University of MissouriKansas City, Kansas City, MO 64110 (United States)] [Department of Physics and Astronomy, University of MissouriKansas City, Kansas City, MO 64110 (United States); Misra, A. [Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States)] [Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States); Aryal, S.; Rulis, P. [Department of Physics and Astronomy, University of MissouriKansas City, Kansas City, MO 64110 (United States)] [Department of Physics and Astronomy, University of MissouriKansas City, Kansas City, MO 64110 (United States); Ching, W.Y., E-mail: ccdxz8@mail.umkc.edu [Department of Physics and Astronomy, University of MissouriKansas City, Kansas City, MO 64110 (United States)

2013-10-15T23:59:59.000Z

105

Gas Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Utilities (Maine) Gas Utilities (Maine) Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Siting and Permitting Provider Public Utilities Commission Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one customer when any portion

106

Main Title 32pt  

Broader source: Energy.gov (indexed) [DOE]

Joint Energy Storage Joint Energy Storage Initiative November 2, 2010 Georgianne Huff Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Cooperation on ESS projects in New York * Demonstrate electric energy storage for increasing reliability and for electric energy management to be: - technically viable - cost-effective - broadly applicable Start: FY2005 DOE/NYSERDA MOU DOE/Sandia Activities * Assist in project selection process * Data Acquisition System Management - - EnerNex * Data and Economic Analysis - - Distributed Utilities Associates

107

Main Title 32pt  

Broader source: Energy.gov (indexed) [DOE]

Electroactive Ionic Liquids: Electroactive Ionic Liquids: A New Approach to Flow Batteries 2. Gallium Nitride Substrates for Power Electronics: Electrochemical Solution Growth Karen Waldrip, PhD Advanced Power Sources R&D Sandia National Labs, Albuquerque, NM knwaldr@sandia.gov Sandia National Laboratories' Programs Electroactive Ionic Liquids: A New Approach To Flow Batteries Date Travis Anderson David Ingersoll Chad Staiger Karen Waldrip Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Flow Batteries *No cross contamination *Flexible layout *High cycle life *Large, tunable capacity *Low maintenance vanadium redox couples are

108

Main Title 32pt  

Broader source: Energy.gov (indexed) [DOE]

Peer Peer Review November 2 - 4, 2010 Washington, DC Presented by: Tom Hund, and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) Historical Sandia Battery Testing Introduction (2002 - 2010) ESMA Supercapacitors Maxwell Supercaps NessCap Supercaps East Penn lead-acid/carbon (ALABC) Sandia Battery Testing Introduction FY-10 Testing: * The large format (1,000 Ah) Furukawa and East Penn Ultrabattery

109

Main Title 32pt  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of the Kauai Island Utility Co- Evaluation of the Kauai Island Utility Co- operative System for Energy Storage Potential ESS Program Review Washington, DC November 2, 2006 Abbas Akhil & Aaron Murray Sandia National Laboratories Albuquerque, NM Principal Investigators Mike Yamane Kauai Island Utility Co-op Lihue, HI Slide 2 KAUAI ISLAND UTILITY COOPERATIVE ELECTRIC POWER SYSTEM ISLAND OF KAUAI KAPAA SWITCHYARD LYDGATE SUBSTATION SUBSTATION LIHUE PRINCEVILLE SUBSTATION KOLOA SWITCHYARD WAINIHA HYDRO LAWAI SUBSTATION SWITCHYARD KAUMAKANI SUBSTATION KEKAHA SWITCHYARD MANA SUBSTATION MT. WAIALEALE HANALEI BAY NAWILIWILI HARBOR P a c i f i c O c e a n P a c i f i c O c e a n NORTH KILAUEA ANAHOLA BAY KEALIA WAILUA HANAMAULU BAY POIPU WAIMEA filename : kau_int-0503.dwg date: 4/2/96 WAIAWA HYDRO OLOKELE HYDRO LIHUE LOWER HYDRO LIHUE UPPER HYDRO

110

Maine, Summary of Reported Data From July 1, 2010 - September...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Maine State Energy Program Summary o f Reported D ata F rom July 1 , 2010 - September 3 0, 2013 Better B uildings Neighborhood Program Report Produced By: U.S. Department of Energy...

111

Albert Bond | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bond - Project Officer, Golden Field Office Albert Bond is a Project Officer at the Golden Field Office. Most Recent New Choctaw Nation Recycling Center Posts Quick Results March 8...

112

Cabron Sequestration Main Menu  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ON ON THE CURRENT TECHNOLOGY BASE TO PROVIDE VIABLE OPTIONS TO REDUCE CARBON INTENSITY M A Y 3 - 6 , 2 0 0 4 | H I L T O N A L E X A N D R I A M A R K C E N T E R | A L E X A N D R I A , V A T H I R D A N N UA L C O N F E R E N C E O N C a r b o n C a p t u r e & S e q u e s t r a t i o n Scott M. Klara, Chairman U.S. Dept. of Energy, National Energy Technology Lab. Ken Andrasko U. S. EPA Off. Off. Atmos. Programs Robert Beck National Coal Council Jacqueline F. Bird Ohio Coal Development Office Joel Brown USDA Natural Resource Conservation Svc. Mark Davies Kennecott Energy Heleen de Coninck Intergov't. Panel on Climate Change Jerry W. Elwood USDOE Office of Science Etop Esen ConocoPhillips Robin L. Graham USDOE, Oak Ridge National Laboratory David Hawkins Natural Resources Defense Council Gardiner Hill BP Group Jerry Hill Southern States Energy Board William G. Hohenstein U.S. Dept.

113

Opportunities in Bond Financing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opportunities in Bond Financing Opportunities in Bond Financing James Dack Vice President Alternative Energy Finance Group Stern Brothers & Co. Seattle, WA 98101 Biogas and Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado June 11-13, 2012 2 INTRODUCTION * Stern Brothers, founded in 1917 and headquartered in St. Louis, is an investment banking firm that is focused on project financing (taxable and tax-exempt) for renewable energy, real estate, higher education and healthcare. * Stern's Alternative Energy Finance Group structures and places tax- exempt and taxable debt, and provides financial advisory services for renewable energy projects in the U.S. * Waste-to-energy, second generation biofuels, biochemicals, biomass, solar, wind, landfill gas-to-energy, cogen, CHP, hydro,

114

Residuals, Sludge, and Composting (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage, food waste, and wood

115

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

116

Program  

Office of Scientific and Technical Information (OSTI)

Extremophiles 2004 Extremophiles 2004 5th International Conference on Extremophiles SEPTEMBER 19 -23, 2004 CAMBRIDGE, MARYLAND Extremophiles 2004 5th International Conference on Extremophiles © 2004, American Society for Microbiology 1752 N Street, N.W. Washington, DC 20036-2904 Phone: 202-737-3600 World Wide Web: www.asm.org All Rights Reserved Printed in the United States of America ISBN: 1-55581 324-0 TABLE OF CONTENTS General Information Scientific Program Abstracts for Oral Sessions Abstracts for Poster Sessions Index 4 10 18 42 144 4 ASM Conferences EXECUTIVE COMMITTEE Frank Robb, Chair University of Maryland Biotechnology Institute Michael W. Adams University of Georgia Koki Horikoshi Japan Agency for Marine-Earth Science and Technology Robert M. Kelly North Carolina State University Jennifer Littlechild

117

March 29, 2008 Operating Systems: Main Memory 1 Main Memory  

E-Print Network [OSTI]

March 29, 2008 Operating Systems: Main Memory 1 Main Memory Chapter 8 #12;March 29, 2008 Operating Systems: Main Memory 2 Chapter Outline Background Contiguous Memory Allocation Paging Structure of the Page Table Segmentation #12;March 29, 2008 Operating Systems: Main Memory 3 Objectives To provide

Adam, Salah

118

New Bond Helps Toledo, Ohio, Expand Financing Pool  

Broader source: Energy.gov [DOE]

The BetterBuildings Northwest Ohio (BBNWO) Program, in conjunction with the Toledo Ohio Advanced Energy Improvement Corporationa pioneering Energy Special Improvement District in Ohio that allows energy efficiency improvements to be funded and paid for through property special assessmentshas received a second bond from the Toledo-Lucas County Port Authority. This bond is in the amount of $6,435,000.

119

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

120

Omnibus Energy Bill of 2013 (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Omnibus Energy Bill of 2013 (Maine) Omnibus Energy Bill of 2013 (Maine) Omnibus Energy Bill of 2013 (Maine) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Water Wind Program Info State Maine Program Type Climate Policies Generating Facility Rate-Making Green Power Purchasing Interconnection Line Extension Analysis Loan Program Public Benefits Fund Renewables Portfolio Standards and Goals

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Synthesis of Main-Chain Polyoxometalate-Containing Hybrid Polymers and Their Applications in Photovoltaic Cells  

Science Journals Connector (OSTI)

Hexamolybdate clusters have been embedded through covalent bonds into the main chain of poly(phenylene acetylene)s. These hybrid polymers were synthesized by palladium-catalyzed coupling reactions of a diiodo functionalized cluster with a diethynylbenzene ...

Meng Lu; Baohan Xie; Jeonghee Kang; Fang-Chung Chen; Yang Yang; Zhonghua Peng

2004-12-29T23:59:59.000Z

122

Natural Resources Protection Act (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Protection Act (Maine) Protection Act (Maine) Natural Resources Protection Act (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection Maine's Department of Environmental Protection requires permits for most

123

Efficiency Maine Trust - Renewable Resource Fund | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Maine Trust - Renewable Resource Fund Efficiency Maine Trust - Renewable Resource Fund Efficiency Maine Trust - Renewable Resource Fund < Back Eligibility Institutional Nonprofit Residential Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Maine Program Type Public Benefits Fund Maine's public benefits fund for renewable energy was established as part of the state's electric-industry restructuring legislation, enacted in May 1997. The law directed the Maine Public Utilities Commission (PUC) to develop a voluntary program allowing customers to contribute to a fund that supports renewable-energy projects. This fund was originally known as the Renewable Resource Fund (now it is part of Efficiency Maine Trust).

124

Tax credits, exempt bonds hit  

Science Journals Connector (OSTI)

Tax credits, exempt bonds hit ... A tax credit permits a taxpayer to deduct a certain amount from his final tax bill. ...

1967-03-06T23:59:59.000Z

125

Wind Program News  

Broader source: Energy.gov (indexed) [DOE]

eerewindwind-program-news en EERE Leadership Celebrates Offshore Wind in Maine http:energy.goveerearticleseere-leadership-celebrates-offshore-wind-maine

126

IRS Announces New Tribal Economic Development Bond Allocation Guidance |  

Broader source: Energy.gov (indexed) [DOE]

IRS Announces New Tribal Economic Development Bond Allocation IRS Announces New Tribal Economic Development Bond Allocation Guidance IRS Announces New Tribal Economic Development Bond Allocation Guidance July 18, 2012 - 3:46pm Addthis To promote economic growth in tribal communities, Treasury and the Internal Revenue Service (IRS) published new guidance on July 18, 2012, allocating Tribal Economic Development Bonds (TEDBs). The TEDB program was established under the American Reinvestment and Recovery Act, and provides Tribes with the authority to issue tax-exempt debt for a wider range of activities to spur job creation and promote economic growth in Indian country. Providing Tribes with the ability to issue tax-exempt debt for a broader scope of activities similar to that available to states and local governments lowers

127

Air Permits, Licenses, Certifications (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Air Permits, Licenses, Certifications (Maine) Air Permits, Licenses, Certifications (Maine) Air Permits, Licenses, Certifications (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection This program regulates and limits air emissions from a variety of sources within Maine through a statewide permitting program. Separate regulations exist for limiting emissions of nitrogen oxides (NOx), sulfur dioxide

128

Quantum Confinement in Hydrogen Bond  

E-Print Network [OSTI]

In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and non-confinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from Supersymmetric Quantum Mechanics (SQM) formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy.

Santos, Carlos da Silva dos; Ricotta, Regina Maria

2015-01-01T23:59:59.000Z

129

Main Coast Winds - Final Scientific Report  

SciTech Connect (OSTI)

The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

Jason Huckaby; Harley Lee

2006-03-15T23:59:59.000Z

130

Power Contracts (pbl/main)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Dialogue Implementation Regional Dialogue (Post-2006) Subscription Contracts IOUPublic Settlement Slice of the System Billing Procedures Resource Program Firstgov Power...

131

Mandatory Shoreland Zoning Act (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mandatory Shoreland Zoning Act (Maine) Mandatory Shoreland Zoning Act (Maine) Mandatory Shoreland Zoning Act (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Mandatory Shoreline Zoning Act functions as a directive for

132

Site Location of Development Act (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Location of Development Act (Maine) Location of Development Act (Maine) Site Location of Development Act (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Site Location of Development Act regulates the locations chosen for

133

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

134

Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO Title Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO Publication Type Policy Brief Authors Zimring, Mark Secondary Title Clean Energy Program Policy Brief Publisher LBNL Place Published Berkeley Year of Publication 2011 Pagination 7 Date Published 06/2011 Abstract Qualified Energy Conservation Bonds (QECBs) are federally-subsidized debt instruments that enable state, tribal, and local government issuers to borrow money to fund a range of qualified energy conservation projects. QECBs offer issuers very attractive borrowing rates and long terms, and can fund low-interest energy efficiency loans for home and commercial property owners. Saint Louis County, MO recently issued over $10 million of QECBs to finance the Saint Louis County SAVES residential energy efficiency loan program. The county's experience negotiating QECB regulations and restrictions can inform future issuers.

135

Microsoft Word - maine.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

136

Microsoft Word - maine.doc  

Gasoline and Diesel Fuel Update (EIA)

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

137

Main Injector power distribution system  

SciTech Connect (OSTI)

The paper describes a new power distribution system for Fermilab's Main Injector. The system provides 13.8 kV power to Main Injector accelerator (accelerator and conventional loads) and is capable of providing power to the rest of the laboratory (backfeed system). Design criteria, and features including simulation results are given.

Cezary Jach and Daniel Wolff

2002-06-03T23:59:59.000Z

138

New Clean Renewable Energy Bonds | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Clean Renewable Energy Bonds New Clean Renewable Energy Bonds New clean renewable energy bonds (CREBs) are tax credit bonds, the proceeds of which are used for capital...

139

Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable...  

Energy Savers [EERE]

Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New CREBs) Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New...

140

Covalent Bonding in Actinide Sandwich Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide...

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Magnetic Testing of Bonded Magnets  

Science Journals Connector (OSTI)

Many techniques exist to characterize the magnetic properties of bonded magnets. We will review the common and not so common techniques in use, with emphasis on the advantages and disadvantages of each one, an...

S. R. Trout

2003-01-01T23:59:59.000Z

142

Maine - SEP | Department of Energy  

Energy Savers [EERE]

by Building on Past Success Maine's aging multifamily housing stock can be expensive to heat and costly to maintain. It is not unusual to find buildings with little or no...

143

Recovery Act State Memos Maine  

Broader source: Energy.gov (indexed) [DOE]

Maine Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

144

Categorical Exclusion Determinations: Maine | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 2, 2010 March 2, 2010 CX-001043: Categorical Exclusion Determination Verso Paper Corporation Waste Energy Recovery (Jay) CX(s) Applied: B1.24, B5.1 Date: 03/02/2010 Location(s): Jay, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 2, 2010 CX-001042: Categorical Exclusion Determination Verso Paper Corporation Waste Energy Recovery (Bucksport) CX(s) Applied: B1.24, B5.1 Date: 03/02/2010 Location(s): Bucksport, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 21, 2010 CX-002154: Categorical Exclusion Determination Recovery Act: DeepCwind Consortium National Research Program: Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.1, B3.3, B3.6, A9

145

Small Power Production and Cogeneration (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Small Power Production and Cogeneration (Maine) Small Power Production and Cogeneration (Maine) Small Power Production and Cogeneration (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Generating Facility Rate-Making Provider Maine Public Utilities Commission Maine's Small Power Production and Cogeneration statute says that any small

146

South Columbia Street (Main Hospital)  

E-Print Network [OSTI]

W est N ew Mason Farm R oad di M anning Drive Drive Deck Cardinal Hospital NC Neuro- Infirmary NC 2 East Wing Patient Support Wing Parking Dogwood Deck UNC HOSPITALS Children's NC Memorial NC Women's cal South Columbia Street wood Dri Pit D rive Drive West ve (Main Hospital) Old Tarrson Brauer Dental

Whitton, Mary C.

147

South Columbia Street (Main Hospital)  

E-Print Network [OSTI]

W est N ew Mason Farm R oad di M anning Drive Drive Deck Cardinal Hospital NC Neuro- Infirmary NC 2 Wing Patient Support Wing Parking Dogwood Deck UNC HOSPITALS Children's NC Memorial NC Women's cal South Columbia Street wood Dri Pit D rive Drive West ve (Main Hospital) Old Brauer Tarrson Koury Oral

Doyle, Martin

148

South Columbia Street (Main Hospital)  

E-Print Network [OSTI]

W est New Mason Farm Road M anning Drive Drive Deck Cardinal Hospital NC Neuro- Infirmary NC 2nd Wing Patient Support Wing Parking Dogwood Deck UNC HOSPITALS Children's NC Memorial NC Women's cal South Columbia Street wood Dri P Drive Drive West ve (Main Hospital) Old Tarrson Brauer Dental Research

Whitton, Mary C.

149

Library Site Finder MAIN LIBRARY  

E-Print Network [OSTI]

Library Site Finder MAIN LIBRARY Burlington Street Tel: 0161 275 3751 THE ALAN GILBERT LEARNING COMMONS Oxford Road Tel: 0161 306 4306 ART & ARCHAEOLOGY LIBRARY Mansfield Cooper Building Tel: 0161 275 3657 BRADDICK LIBRARY School of Physics & Astronomy Brunswick Street Tel: 0161 275 4078 EDDIE DAVIES

Sidorov, Nikita

150

Expedited Permitting of Grid-Scale Wind Energy Development (Maine) |  

Broader source: Energy.gov (indexed) [DOE]

Expedited Permitting of Grid-Scale Wind Energy Development (Maine) Expedited Permitting of Grid-Scale Wind Energy Development (Maine) Expedited Permitting of Grid-Scale Wind Energy Development (Maine) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Maine's Expedited Permitting of Grid-Scale Wind Energy Development statue provides an expedited permitting pathway for proposed wind developments in

151

Qualifying RPS State Export Markets (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine) Maine) Qualifying RPS State Export Markets (Maine) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Maine as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

152

Non-bonded ultrasonic transducer  

DOE Patents [OSTI]

A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

Eoff, J.M.

1984-07-06T23:59:59.000Z

153

Long Range Bond-Bond Correlations in Dense Polymer Solutions  

Science Journals Connector (OSTI)

The scaling of the bond-bond correlation function P1(s) along linear polymer chains is investigated with respect to the curvilinear distance s along the flexible chain and the monomer density ? via Monte Carlo and molecular dynamics simulations. Surprisingly, the correlations in dense three-dimensional solutions are found to decay with a power law P1(s)?s-? with ?=3/2 and the exponential behavior commonly assumed is clearly ruled out for long chains. In semidilute solutions, the density dependent scaling of P1(s)?g-?0(s/g)-? with ?0=2-2?=0.824 (?=0.588 being Flory's exponent) is set by the number of monomers g(?) in an excluded volume blob. Our computational findings compare well with simple scaling arguments and perturbation calculation. The power-law behavior is due to self-interactions of chains caused by the chain connectivity and the incompressibility of the melt.

J. P. Wittmer; H. Meyer; J. Baschnagel; A. Johner; S. Obukhov; L. Mattioni; M. Mller; A. N. Semenov

2004-09-29T23:59:59.000Z

154

Quantum Confinement in Hydrogen Bond of DNA and RNA  

E-Print Network [OSTI]

The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.

Santos, da Silva dos; Ricotta, Regina Maria

2015-01-01T23:59:59.000Z

155

The Market for Borrowing Corporate Bonds  

E-Print Network [OSTI]

This paper describes the market for borrowing corporate bonds using a comprehensive data set from a major lender. The cost of borrowing corporate bonds is comparable to the cost of borrowing stock, between 10 and 20 basis ...

Asquith, Paul

156

Energy Secretary Hails University of Maine's Wind Research | Department of  

Broader source: Energy.gov (indexed) [DOE]

Hails University of Maine's Wind Research Hails University of Maine's Wind Research Energy Secretary Hails University of Maine's Wind Research June 16, 2010 - 10:51am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Energy Secretary Steven Chu praised the University of Maine on Monday, calling the school's offshore wind technology program "truly impressive." Secretary Chu visited the university's Orono campus to learn more about its 10-year plan to design and deploy deepwater wind technology, an effort that could pave the way for the first floating commercial wind farm in the United States. "It's part of the leadership Maine has shown in going toward a sustainable economy," Chu told the university's newspaper. Invited by Maine Sen. Susan Collins, Chu was given a tour of the

157

Study of bump bonding technology  

SciTech Connect (OSTI)

Pixel detectors proposed for the new generation of hadron collider experiments will use bump-bonding technology based on either indium or Pb/Sn solder to connect the front-end readout chips to the silicon pixel sensors. We have previously reported large-scale tests of the yield using both indium and Pb/Sn solder bump [1]. The conclusion is that both seem to be viable for pixel detectors. We have also carried out studies of various effects (e.g. storage over long period, effect of heating and cooling, and radiation) on both types of bump bonds using daisy-chained parts on a small scale [2], [3]. Overall, these tests showed little changes in the integrity of the bump connections. Nevertheless, questions still remain on the long-term reliability of the bumps due to thermal cycle effects, attachment to a substrate with a different coefficient of thermal expansion (CTE), and radiation.

Selcuk Cihangir et al.

2003-10-17T23:59:59.000Z

158

Bonded, walk-off compensated optical elements  

DOE Patents [OSTI]

A bonded, walk-off compensated crystal, for use with optical equipment, and methods of making optical components including same.

Ebbers, Christopher A. (Livermore, CA)

2003-04-08T23:59:59.000Z

159

Small Enterprise Growth Fund (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Small Enterprise Growth Fund (Maine) Small Enterprise Growth Fund (Maine) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Equity Investment Provider Small Enterprise Growth Fund The Small Enterprise Growth Fund is a professionally-managed venture capital fund that invests in Maine companies which demonstrate high potential for growth and public benefit. The fund has received $13 million in capital contributions from the state and operates as a revolving fund. Companies in nearly any industry are eligible for funding, including seed and early stage companies. On average, $100,000 to $300,000 is invested per

160

Pollution Control: Storm Water Management (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pollution Control: Storm Water Management (Maine) Pollution Control: Storm Water Management (Maine) Pollution Control: Storm Water Management (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection A person may not construct, or cause to be constructed, a project that

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sale of Water Resource Land (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) < Back Eligibility Municipal/Public Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting This rule requires an eight month advance notice period whenever a consumer-owned water utility intends to transfer water resource land, defined as any land or real property owned by a water utility for the purposes of providing a source of supply, storing water or protecting sources of supply or water storage, including reservoirs, lakes, ponds, rivers or streams, wetlands and watershed areas. The rule also provides an assignable right of first refusal to the municipality or municipalities

162

Pollution Control: Erosion and Sedimentation Control (Maine) | Department  

Broader source: Energy.gov (indexed) [DOE]

Erosion and Sedimentation Control (Maine) Erosion and Sedimentation Control (Maine) Pollution Control: Erosion and Sedimentation Control (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Proection A person who conducts, or causes to be conducted, an activity that involves

163

EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine  

Broader source: Energy.gov (indexed) [DOE]

EA-1792: University of Maine's Deepwater Offshore Floating Wind EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine Summary This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE's Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and

164

Metallic bonding in magnesium microclusters  

Science Journals Connector (OSTI)

We investigate the size evolution of bonding in magnesium clusters Mgn, with n?20. Computations are performed in the density-functional scheme with two prescriptions for the exchange-correlation energy: the local-density approximation (LDA), and an improved scheme including gradient corrections (GC). The LDA results show that Mg10 clusters already have acquired several of the characteristic features of metallic aggregates. GC significantly decrease the cohesive energies, and predict a slower convergence with n to the bulk, without changing, however, the qualitative picture given by LDA.

P. Delaly; P. Ballone; J. Buttet

1992-02-15T23:59:59.000Z

165

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

166

Bond strength and stress measurements in thermal barrier coatings  

SciTech Connect (OSTI)

Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. This program evaluates the bond strength of yttria stabilized zirconia coatings with MCrAlY and Pt-Al bond coats utilizing diffraction and fluorescence methods.

Gell, M.; Jordan, E.

1995-12-31T23:59:59.000Z

167

Public Bonding Options | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

While the revenue stream need not be directly related to the financed project, capital lease revenue bonds entail a third party guaranteeing an energy savings revenue stream,...

168

Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most...

169

Nuclear reactor multiphysics via bond graph formalism  

E-Print Network [OSTI]

This work proposes a simple and effective approach to modeling nuclear reactor multiphysics problems using bond graphs. Conventional multiphysics simulation paradigms normally use operator splitting, which treats the ...

Sosnovsky, Eugeny

2014-01-01T23:59:59.000Z

170

Alternative Fuels Data Center: Maine Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maine Information to Maine Information to someone by E-mail Share Alternative Fuels Data Center: Maine Information on Facebook Tweet about Alternative Fuels Data Center: Maine Information on Twitter Bookmark Alternative Fuels Data Center: Maine Information on Google Bookmark Alternative Fuels Data Center: Maine Information on Delicious Rank Alternative Fuels Data Center: Maine Information on Digg Find More places to share Alternative Fuels Data Center: Maine Information on AddThis.com... Maine Information This state page compiles information related to alternative fuels and advanced vehicles in Maine and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

171

Maine biofuels project saves livelihood of town | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine biofuels project saves livelihood of town Maine biofuels project saves livelihood of town Maine biofuels project saves livelihood of town January 7, 2010 - 2:21pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Since 1860, the mill in Old Town, Maine, has been an economic mainstay of this small town. Over time, it's been a sawmill, a soda mill, a hardwood pulp mill and a paper mill. Through all these incarnations, it has grown and evolved, and it's provided for the workers of Old Town. The 8,000 residents have always looked to the mill as a source of pride - and income. When the mill faltered and closed in 2006, the town's future looked grim. But opportunities in the clean energy economy have given the employees of the mill a new life. "It was a typical mill town depending on a single company for its tax

172

Maine Company Growing with Weatherization Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine Company Growing with Weatherization Work Maine Company Growing with Weatherization Work Maine Company Growing with Weatherization Work January 5, 2010 - 2:15pm Addthis BIOSAFE Environmental Services Inc. touts itself as a leader in lead and asbestos removal and has worked for more than a decade making homes hazard-free. So it came as a surprise to Mark Coleman, president and founder of BIOSAFE, when in 2003 he received an interesting proposal from Maine's regional community action programs. "They realized we had talent in . . . lead abatement and home repair and approached us about expanding into weatherization," he said. Mark welcomed the chance to collaborate with the community action groups to grow the business and offer employment to out-of-work individuals, he says. "We saw an opportunity to create job growth through federal funding and

173

RERTR program  

SciTech Connect (OSTI)

The Reduced Enrichment Research and Test Reactor (RERTR) Program was established in 1978 at the Argonne National Laboratory by the U.S. Department of Energy (DOE), which continues to fund the program and to manage it in coordination with the U.S. Department of State, the Arms Control and Disarmament Agency, and the U.S. Nuclear Regulatory Commission (NRC). The primary objective of the program is to develop the technology needed to use low-enrichment uranium (LEU) instead of high-enrichment uranium (HEU) in research and test reactors, without significant penalties in experiment performance, economics, or safety. Eliminating the continuing need of HEU supplies for research and test reactors has long been an integral part of U.S. nonproliferation policy. This paper reviews the main accomplishments of the program through the years.

Travelli, A. [Argonne National Lab., IL (United States)

1997-12-01T23:59:59.000Z

174

Periodic Hartree-Fock study of a weakly bonded layer structure: Brucite Mg(OH)2  

Science Journals Connector (OSTI)

The layered mineral brucite Mg(OH)2 is investigated theoretically using an ab initio all-electron linear combination of atomic orbitals Hartree-Fock (HF) approximation. At the HF level, the interlayer interaction is weak and the interlayer distance is larger than the experimental one. Bonding is discussed on the basis of density of states and charge-density maps. No hydrogen bond is characterized. A posteriori correction of the energy for the correlation error is performed by use of the functional approach. The three semilocal functional formulas used yield similar results. This brings in extra interlayer bonding interaction, and yields a calculated geometry in agreement with experiments. The analysis of the interlayer bondings shows that it is mainly of dispersion type, and that the used functionals account for dispersion, in particular at short interatomic distances.

Philippe DArco; Mauro Caus; Carla Roetti; Bernard Silvi

1993-02-15T23:59:59.000Z

175

Bond Strength of Grade 100 Reinforcing Steel  

E-Print Network [OSTI]

The bond strength of Grade 100 ASTM A 1035 reinforcing steel manufactured by MMFX Technologies Corp. is evaluated with respect to bond strength equations found in ACI 318-05 and ACI 408R-03. Test specimens are fullscale beam-splice specimens tested...

Miller, Shelby

2007-12-14T23:59:59.000Z

176

Mitigation Action Implementation Network (MAIN) Feed | Open Energy  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Feed Mitigation Action Implementation Network (MAIN) Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ)

177

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

SciTech Connect (OSTI)

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

Hagen Schempf

2004-09-30T23:59:59.000Z

178

Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers  

Science Journals Connector (OSTI)

Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness however this relationship has not been quantified. This article explicitly correlates the bond quality which is quantified by the apparent bonding energy and the surface morphology via the bearing ratio which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE HF:NH 4 F =1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished monitor wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ?1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

N. Miki; S. M. Spearing

2003-01-01T23:59:59.000Z

179

Solving the Mystery of the Billion-Dollar Bond, Double Bond | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solving the Mystery of the Billion-Dollar Bond, Double Bond Solving the Mystery of the Billion-Dollar Bond, Double Bond Solving the Mystery of the Billion-Dollar Bond, Double Bond October 26, 2011 - 4:56pm Addthis John Shanklin, biochemist at Brookhaven National Laboratory, and Ed Whittle, research assistant in Shanklin's lab, with a fatty acid molecule model and plant seeds and casings in the foreground. | Courtesy of Brookhaven National Laboratory John Shanklin, biochemist at Brookhaven National Laboratory, and Ed Whittle, research assistant in Shanklin's lab, with a fatty acid molecule model and plant seeds and casings in the foreground. | Courtesy of Brookhaven National Laboratory Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Understanding how proteins exert precise control over double bond

180

Maine's Weatherization Milestones | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine's Weatherization Milestones Maine's Weatherization Milestones Maine's Weatherization Milestones August 24, 2010 - 5:44pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Thanks to $41.9 million in funding from the Recovery Act, the state of Maine expects to weatherize more than 4,400 homes Maine's state motto - "dirigo," Latin for "I lead," - is very fitting, especially when it comes to weatherization. With the help of nearly $41.9 million in funding from the Recovery Act, the state expects to weatherize more than 4,400 homes - creating jobs, reducing carbon emissions, and saving money for Maine's low-income families. Cathy Zoi, DOE's Assistant Secretary for Energy Efficiency and Renewable Energy and Maine's Governor John Baldacci spoke on a conference call last

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Central Maine Power Co | Open Energy Information  

Open Energy Info (EERE)

Central Maine Power Co Central Maine Power Co (Redirected from Central Maine Power Company) Jump to: navigation, search Name Central Maine Power Co Place Augusta, Maine Service Territory Maine Website www.cmpco.com/ Green Button Reference Page www.whitehouse.gov/sites/ Green Button Committed Yes Utility Id 3266 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Maine Power Company Smart Grid Project was awarded $95,858,307

182

Maine's Weatherization Milestones | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine's Weatherization Milestones Maine's Weatherization Milestones Maine's Weatherization Milestones August 24, 2010 - 5:44pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Thanks to $41.9 million in funding from the Recovery Act, the state of Maine expects to weatherize more than 4,400 homes Maine's state motto - "dirigo," Latin for "I lead," - is very fitting, especially when it comes to weatherization. With the help of nearly $41.9 million in funding from the Recovery Act, the state expects to weatherize more than 4,400 homes - creating jobs, reducing carbon emissions, and saving money for Maine's low-income families. Cathy Zoi, DOE's Assistant Secretary for Energy Efficiency and Renewable Energy and Maine's Governor John Baldacci spoke on a conference call last

183

Process Of Bonding Copper And Tungsten  

DOE Patents [OSTI]

Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO); Davis, John W. (Ballwin, MO)

2000-07-18T23:59:59.000Z

184

Thermal Performance and Reliability of Bonded Interfaces  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

185

Thermal Performance and Reliability of Bonded Interfaces  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

186

STANFORD, KIRK ALAN. Strengthening of Steel Structures with High Modulus Carbon Fiber Reinforced Polymers (CFRP) Materials: Bond and Development Length Study.  

E-Print Network [OSTI]

ABSTRACT STANFORD, KIRK ALAN. Strengthening of Steel Structures with High Modulus Carbon Fiber. The current research program proposed the use of a new high modulus carbon fiber reinforced polymer (CFRP-up of carbon fiber sheets and the adhesives for bonding of pre-cured laminate strips. The bond behavior of FRP

187

Municipal Bond - Power Purchase Agreement Model Continues to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Municipal Bond - Power Purchase Agreement Model Continues to Provide Low-Cost Solar Energy Municipal Bond - Power Purchase Agreement Model Continues to Provide Low-Cost Solar...

188

Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with...

189

Atomistic modeling of amorphous silicon carbide using a bond...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

modeling of amorphous silicon carbide using a bond-order potential. Atomistic modeling of amorphous silicon carbide using a bond-order potential. Abstract: Molecular dynamics...

190

Bond Energies in Models of the Schrock Metathesis Catalyst. ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energies in Models of the Schrock Metathesis Catalyst. Bond Energies in Models of the Schrock Metathesis Catalyst. Abstract: Heats of formation, adiabatic and diabatic bond...

191

Energetics of Hydrogen Bond Network Rearrangements in Liquid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Wednesday, 25 May 2005 00:00 The unique...

192

Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues....

193

IRS Announces New Tribal Economic Development Bond Allocation...  

Broader source: Energy.gov (indexed) [DOE]

IRS Announces New Tribal Economic Development Bond Allocation Guidance IRS Announces New Tribal Economic Development Bond Allocation Guidance July 18, 2012 - 3:46pm Addthis To...

194

Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acidic Polymers for Chemical Vapor Sensing. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. Abstract: A review with 171 references. Hydrogen-bond acidic polymers for...

195

Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory . Covalency in Metal-Oxygen Multiple Bonds Evaluated Using...

196

University of Maine | Open Energy Information  

Open Energy Info (EERE)

Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: University of Maine1 This article is a stub. You can help OpenEI by...

197

International political risk and government bond pricing  

Science Journals Connector (OSTI)

Abstract This paper investigates the impact of international political risk on government bond yields in 34 debtor countries using a comprehensive database of 109 international political crises from 1988 through 2007. After employing the total number of international political crises as a proxy for political risk and controlling for country-specific economic conditions, we establish a positive and significant link between international political risk and government bond yields. This is consistent with global bond investors demanding higher returns at times of high political uncertainty. In addition, we show that international political risk has a reduced adverse effect on bond prices when the debtor country has a stable political system and strong investor protection.

Tao Huang; Fei Wu; Jing Yu; Bohui Zhang

2014-01-01T23:59:59.000Z

198

Modeling and numerical analysis of the bond behavior of masonry elements strengthened with SRP/SRG  

Science Journals Connector (OSTI)

Abstract Steel Reinforced Polymers (SRPs) and Steel Reinforced Grout (SRG) strengthening systems have been recently introduced as an alternative solution to the traditional systems based on the use of fiber reinforced polymers materials (FRPs). Few studies on SRP/SRG are available in the current literature and all have shown the potentialities of SRP/SRG in improving structural performances of masonry and concrete elements and, at the same time, their difference with respect to \\{FRPs\\} particularly in terms of bond behavior. Aim of the present paper is to propose a simple approach devoted to study the bond behavior of masonry structures strengthened with SRP/SRG systems. The approach, based on experimental evidences and theoretical considerations mainly consists of deriving approximate bond stress-slip laws for the strengthening/support interface layer, able to reproduce the local bond stresses transferring mechanism. Finite Element (FE) analyses are then developed with reference to the experimental tests available in the current literature by adopting the bond stress-slip laws obtained through the proposed approach. The deduced results show the reliability of the proposed approach in simulating the bond behavior of masonry elements strengthened with SRP/SRG and the possibility to investigate further peculiarities characterizing this kind of strengthening systems.

Ernesto Grande; Maura Imbimbo; Elio Sacco

2013-01-01T23:59:59.000Z

199

Lightning Flashes and High Tension Mains  

Science Journals Connector (OSTI)

... there were many violent thunderstorms and much damage was done to overhead electric mains and substations connected with them. the damage done to main stations was also severe. On July ... In some places transformers or switchgear were damaged and three fires broke, out, destroying substation roofs or walls. Since thunderstorms are less frequent in Great Britain than in South ...

1939-08-05T23:59:59.000Z

200

Central Maine Power Co | Open Energy Information  

Open Energy Info (EERE)

Central Maine Power Co Central Maine Power Co Place Augusta, Maine Service Territory Maine Website www.cmpco.com/ Green Button Reference Page www.whitehouse.gov/sites/ Green Button Committed Yes Utility Id 3266 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Maine Power Company Smart Grid Project was awarded $95,858,307 Recovery Act Funding with a total project value of $191,716,614. Utility Rate Schedules

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Clean Cities: Maine Clean Communities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maine Clean Communities Coalition Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Maine Clean Communities coalition Contact Information Steven Linnell 207-774-9891 slinnell@gpcog.org Coalition Website Clean Cities Coordinator Steven Linnell Photo of Steven Linnell Steven Linnell has been the coordinator of the statewide Maine Clean Communities coalition since its designation in 1997. The coalition's greatest achievement so far has been helping the Greater Portland METRO build the first fast-fill compressed natural gas (CNG) fueling infrastructure in the state, which currently serves 13 CNG transit buses and four CNG school buses. The coalition has also played a role in shaping

202

Sorghum Program BIOENERGY PROGRAM  

E-Print Network [OSTI]

Sorghum Program BIOENERGY PROGRAM Sorghums are important nongrain lignocellulosic feedstocks Biomass Switch Grass Forage Sorghum Bioenergy Sorghum Biomass per acre per year that can be converted (DT

203

Frosty Conditions Catalyze Weatherization Solutions: Maine Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Maine demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

204

Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.253783,"lon":-69.4454689,"alt":0,"address":"Maine","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Maine Mountain Power | Open Energy Information  

Open Energy Info (EERE)

Maine Mountain Power Maine Mountain Power Place Yarmouth, Maine Zip 4096 Sector Wind energy Product Wind farm development company focused on projects in Maine. It is a subsidiary of Endless Energy Corporation. Coordinates 41.663318°, -70.198987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663318,"lon":-70.198987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Perfluorohalogenoorgano Compounds of Main Group 5 Elements  

Science Journals Connector (OSTI)

The compounds of the Main Group 5 elements phosphorus, arsenic, antimony, and bismuth, are covered to the end of 1973 in Perfluorhalogenorgano-Verbindungen der Hauptgruppenelemente, Part 3, 1975 (cited here ...

Alois Haas; Michael R. Chr. Gerstenberger

1983-01-01T23:59:59.000Z

207

Direct Energy Services (Maine) | Open Energy Information  

Open Energy Info (EERE)

Maine) Maine) Jump to: navigation, search Name Direct Energy Services Place Maine Utility Id 54820 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.1070/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Direct_Energy_Services_(Maine)&oldid=412516" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

208

EERE Leadership Celebrates Offshore Wind in Maine  

Office of Energy Efficiency and Renewable Energy (EERE)

The University of Maine utilized $12 million in funding from EERE to deploy the VolturnUS, a one-eighth scale prototype of a commercial scale offshore floating turbine. This is the first step toward developing an offshore wind industry in Maine. The University is setting a great example for the rest of the country for just how far we can go when we dedicate ourselves to clean energy innovation.

209

Hydrogen Bond Networks: Structure and Evolution after Hydrogen Bond Breaking John B. Asbury, Tobias Steinel, and M. D. Fayer*  

E-Print Network [OSTI]

Hydrogen Bond Networks: Structure and Evolution after Hydrogen Bond Breaking John B. Asbury, TobiasVed: September 1, 2003; In Final Form: December 18, 2003 The nature of hydrogen bonding networks following hydrogen bond breaking is investigated using vibrational echo correlation spectroscopy of the hydroxyl

Fayer, Michael D.

210

Switchyard in the Main Injector era conceptual design report  

SciTech Connect (OSTI)

This report presents elements of a design of the Switchyard and of the present fixed target beamlines in the era of the Main Injector (MI). It presumes that 800 GeV Tevatron beam will be transported to this area in the MI era, and permits it to share cycles with 120 GeV Main Injector beam if this option is desired. Geographically, the region discussed extends from the vicinity of AO to downstream points beyond which beam properties will be determined by the requirements of specific experiments. New neutrino lines not utilizing the present Switchyard (NuMI, BooNE) are not addressed. Similarly Main Injector beams upstream of AO are described fully in MI documentation and are unaffected by what is presented here. The timing both of the preparation of this report and of its recommendations for proceeding with construction relate to a desire to do required work in Transfer Hall and Enclosure B during the Main Injector construction shutdown (September 1997 - September 1998). As these areas are off-limits during any Tevatron operation, it is necessary for the fixed target program that work be completed here during this extended down period. The design presented here enables the operation of all beamlines in the manner specified in the current Laboratory plans for future fixed- target physics.

Brown, C.; Kobilarcik, T.; Lucas, P.; Malensek, A.; Murphy, C.T.; Yang, M.-J.

1997-08-01T23:59:59.000Z

211

Coastal Maine Botanical Gardens Bosarge Family Education Center  

High Performance Buildings Database

Boothbay, ME The Bosarge Family Education Center offers the Gardens a unique opportunity to educate, influence and inspire the public regarding environmental sustainable living practices. The building is a new ~8000 SF Education Center adjacent to the existing Visitors Center in Boothbay ME, owned by Coastal Maine Botanical Gardens (CMBG). This project provides an important addition to CMBG's environmental programming and expands the Gardens' public image. It houses administrative office space as well as flexible and adaptable classroom space that can also be used for various events and gatherings.

212

Bonded ultrasonic transducer and method for making  

DOE Patents [OSTI]

An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements. 12 figs.

Dixon, R.D.; Roe, L.H.; Migliori, A.

1995-11-14T23:59:59.000Z

213

Epoxy bond and stop etch fabrication method  

DOE Patents [OSTI]

A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

Simmons, Jerry A. (Sandia Park, NM); Weckwerth, Mark V. (Pleasanton, CA); Baca, Wes E. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

214

Bonded ultrasonic transducer and method for making  

DOE Patents [OSTI]

An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements.

Dixon, Raymond D. (Los Alamos, NM); Roe, Lawrence H. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1995-01-01T23:59:59.000Z

215

Process Of Bonding Copper And Tungsten  

DOE Patents [OSTI]

Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO)

1999-11-23T23:59:59.000Z

216

Adhesive bonding using variable frequency microwave energy  

DOE Patents [OSTI]

Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Paulauskas, Felix L. (Oak Ridge, TN); Fathi, Zakaryae (Cary, NC); Wei, Jianghua (Raleigh, NC)

1998-01-01T23:59:59.000Z

217

Adhesive bonding using variable frequency microwave energy  

DOE Patents [OSTI]

Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

1998-09-08T23:59:59.000Z

218

Adhesive bonding using variable frequency microwave energy  

DOE Patents [OSTI]

Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

1998-08-25T23:59:59.000Z

219

Maine/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources < Maine Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

220

Bond Underwriter Costs: Texas School Districts and the Hidden Cost of Issuing Bonds  

E-Print Network [OSTI]

dramatically across Texas school districts, both in total and as a percentage of the total amount borrowed. As an example, in 2008 Alto ISD issued $6.3 million in bonds and Glen Rose ISD borrowed $6.2 million. The underwriter for Glen Rose earned $38...,936 in fees; the underwriter on the Alto deal earned $193,712, nearly five times that amount. On a per bond basis, Glen Rose paid .628%, while Alto paid more than 3%. An examination of bond issues across the state demonstrates similar variations...

Stasny, Mary Knetsar

2011-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Categorical Exclusion Determinations: Maine | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 9, 2010 September 9, 2010 CX-003770: Categorical Exclusion Determination Maine-County-York CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 09/09/2010 Location(s): York County, Maine Office(s): Energy Efficiency and Renewable Energy September 9, 2010 CX-003713: Categorical Exclusion Determination Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: A9, B3.1, B3.3, B3.6 Date: 09/09/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 23, 2010 CX-003544: Categorical Exclusion Determination Environmental Impact Protocols for Tidal Power CX(s) Applied: A9, B3.1, B3.3, B3.6 Date: 08/23/2010 Location(s): Cobscook Bay, Maine Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

222

Case Study: Near Zero Maine Home II  

Office of Energy Efficiency and Renewable Energy (EERE)

It cant be done. Those words were enough to motivate Tom Fullam ofVassalboro, Maine, to build his first high-performance house. The home achieveda HERS score of 38 and earned him a 2011 silver...

223

Library Locations Locations other than Main Library  

E-Print Network [OSTI]

Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 University of California, Santa Barbara Library www.library.ucsb.edu Updated 3-2014 A - B.......................................6 Central M - N..................................................Arts Library (Music Building) P

224

Dynamic force spectroscopy on multiple bonds: experiments and model  

E-Print Network [OSTI]

We probe the dynamic strength of multiple biotin-streptavidin adhesion bonds under linear loading using the biomembrane force probe setup for dynamic force spectroscopy. Measured rupture force histograms are compared to results from a master equation model for the stochastic dynamics of bond rupture under load. This allows us to extract the distribution of the number of initially closed bonds. We also extract the molecular parameters of the adhesion bonds, in good agreement with earlier results from single bond experiments. Our analysis shows that the peaks in the measured histograms are not simple multiples of the single bond values, but follow from a superposition procedure which generates different peak positions.

T. Erdmann; S. Pierrat; P. Nassoy; U. S. Schwarz

2007-12-18T23:59:59.000Z

225

HEET Program Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Studies Material Studies (Supported by DOE-NETL) Ceramic Insulation Top Coat provides: thermal insulation Superalloy Substrate (Carries the load) TBC System Cooling Air Gas Path C o o l i n g H o l e Metallic Bond Coat provides: - oxidation/corrosion protection - surface for ceramic to adhere to Contents * Introduction * NETL Programs * Materials Development Issues * Required important research tasks * TBC Architecture * Industry Views * TBC Monitoring * TBC Performance Introduction Improved gas turbines demand materials that operate in high hostile environment. Thermal barrier coatings (TBCs) provide solution for meeting such a demand. The TBCs have the most complex structure with a minimum of four layers made of different materials with specific properties and functions. They are the substrate, the bond-

226

Regulation of Tidal and Wave Energy Projects (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tidal and Wave Energy Projects (Maine) Tidal and Wave Energy Projects (Maine) Regulation of Tidal and Wave Energy Projects (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements

227

Montana Beginning Farm/Ranch Loan Program (Montana)  

Broader source: Energy.gov [DOE]

Loans subsidized by tax-exempt bonds issued by the Montana Agricultural Loan Authority may be used for the production of energy using an alternative renewable energy source. The program is run...

228

Abbot, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Abbot, Maine: Energy Resources Abbot, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1976844°, -69.458819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1976844,"lon":-69.458819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Standish, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Standish, Maine: Energy Resources Standish, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7359114°, -70.5519993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7359114,"lon":-70.5519993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Warren, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Warren, Maine: Energy Resources Warren, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1203577°, -69.2400452° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1203577,"lon":-69.2400452,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Eddington, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eddington, Maine: Energy Resources Eddington, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8261817°, -68.6933667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8261817,"lon":-68.6933667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Harpswell, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harpswell, Maine: Energy Resources Harpswell, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7560618°, -69.9645482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7560618,"lon":-69.9645482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Stetson, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Stetson, Maine: Energy Resources Stetson, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8917325°, -69.1428215° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8917325,"lon":-69.1428215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Twombly, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Twombly, Maine: Energy Resources Twombly, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2748647°, -68.237681° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2748647,"lon":-68.237681,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Corinth, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Corinth, Maine: Energy Resources Corinth, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0002251°, -69.0340404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0002251,"lon":-69.0340404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Kenduskeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kenduskeag, Maine: Energy Resources Kenduskeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9195128°, -68.9317049° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9195128,"lon":-68.9317049,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Kingman, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kingman, Maine: Energy Resources Kingman, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5495057°, -68.1994627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5495057,"lon":-68.1994627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Maxfield, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maxfield, Maine: Energy Resources Maxfield, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3076853°, -68.7532578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3076853,"lon":-68.7532578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Mattawamkeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mattawamkeag, Maine: Energy Resources Mattawamkeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5136701°, -68.3544669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5136701,"lon":-68.3544669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

Casco, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Casco, Maine: Energy Resources Casco, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0067388°, -70.5228358° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0067388,"lon":-70.5228358,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Criehaven, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Criehaven, Maine: Energy Resources Criehaven, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8339726°, -68.889201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8339726,"lon":-68.889201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Charleston, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Charleston, Maine: Energy Resources Charleston, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0850615°, -69.0405949° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0850615,"lon":-69.0405949,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Brownville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brownville, Maine: Energy Resources Brownville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3069957°, -69.0333737° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3069957,"lon":-69.0333737,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Parkman, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Parkman, Maine: Energy Resources Parkman, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1336651°, -69.4331038° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1336651,"lon":-69.4331038,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Drew, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Drew, Maine: Energy Resources Drew, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6013167°, -68.0942848° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6013167,"lon":-68.0942848,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

University of Maine Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Maine Address 208 Boardman Hall Place Orono, Maine Zip 04469 Sector Hydro Phone number (207) 581-2129 Website http://gradcatalog.umaine.edu/ Coordinates 44.9024546°, -68.6638413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9024546,"lon":-68.6638413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Scarborough, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Scarborough, Maine: Energy Resources Scarborough, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.597774°, -70.331846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.597774,"lon":-70.331846,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Maine Maritime Academy | Open Energy Information  

Open Energy Info (EERE)

Academy Academy Jump to: navigation, search Name Maine Maritime Academy Address Engineering Department Pleasant Street Place Castine Zip 4420 Sector Marine and Hydrokinetic Phone number 207-326-2365 Website http://http://www.mainemaritim Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Castine Harbor Badaduce Narrows Tidal Energy Device Evaluation Center TIDEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Maine_Maritime_Academy&oldid=678366" Categories: Clean Energy Organizations Companies Organizations Stubs

249

Pownal, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pownal, Maine: Energy Resources Pownal, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9087662°, -70.1821738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9087662,"lon":-70.1821738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Hermon, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hermon, Maine: Energy Resources Hermon, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.81007°, -68.9133724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.81007,"lon":-68.9133724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Holden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Holden, Maine: Energy Resources Holden, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7528499°, -68.6789218° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7528499,"lon":-68.6789218,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Dixmont, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dixmont, Maine: Energy Resources Dixmont, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.6803471°, -69.1628221° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6803471,"lon":-69.1628221,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Lowell, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lowell, Maine: Energy Resources Lowell, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1878373°, -68.4677999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1878373,"lon":-68.4677999,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

WIPP SEIS-II - Main Menu  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Start Here Start Here Volume III Comment Response Document Summary Supplement Volume I Volume I Chapters Supplement Volume II Volume II Appendices MAIN MENU To view a particular volume of the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement, click on the corresponding box. NOTE Volume III, the Comment Response Document, contains links to original comments and to DOE responses. Tips for using those links are contained in a note represented by the following icon: When you see this icon, double-click on it to read the tips. To return to this menu at any time, click on the first bookmark called "Main Menu" in every volume. To return to the "Start Here" file, which contains instructions for navigating through Acrobat Reader, click here

255

Gray, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gray, Maine: Energy Resources Gray, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.885632°, -70.3317195° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.885632,"lon":-70.3317195,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Castine, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Castine, Maine: Energy Resources Castine, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3878547°, -68.7997522° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3878547,"lon":-68.7997522,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Greenbush, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Greenbush, Maine: Energy Resources Greenbush, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0803409°, -68.6508635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0803409,"lon":-68.6508635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Lubec, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lubec, Maine: Energy Resources Lubec, Maine: Energy Resources (Redirected from Lubec, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8606355°, -66.9841453° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8606355,"lon":-66.9841453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Vinalhaven, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vinalhaven, Maine: Energy Resources Vinalhaven, Maine: Energy Resources (Redirected from Vinalhaven, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0481374°, -68.8316985° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0481374,"lon":-68.8316985,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Edinburg, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edinburg, Maine: Energy Resources Edinburg, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1650821°, -68.6751748° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1650821,"lon":-68.6751748,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Winn, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Winn, Maine: Energy Resources Winn, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4856144°, -68.372245° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.4856144,"lon":-68.372245,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Lagrange, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lagrange, Maine: Energy Resources Lagrange, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1667248°, -68.844479° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1667248,"lon":-68.844479,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Maine Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

264

Eastern Maine Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Coop Coop Jump to: navigation, search Name Eastern Maine Electric Coop Place Maine Utility Id 5609 Utility Location Yes Ownership C NERC Location NPCC NERC NPCC Yes ISO Other Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Industrial Service Industrial Large Commercial Commercial Residential Residential Seasonal Residential Residential Average Rates Residential: $0.0909/kWh Commercial: $0.0771/kWh Industrial: $0.0620/kWh

265

Sebago, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sebago, Maine: Energy Resources Sebago, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8917267°, -70.6709435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8917267,"lon":-70.6709435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Bradley, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bradley, Maine: Energy Resources Bradley, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9209017°, -68.6280864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9209017,"lon":-68.6280864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Naples, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Naples, Maine: Energy Resources Naples, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.971739°, -70.6092258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.971739,"lon":-70.6092258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Camden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2098011°, -69.0647593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2098011,"lon":-69.0647593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Stacyville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Stacyville, Maine: Energy Resources Stacyville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.8636618°, -68.5053088° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.8636618,"lon":-68.5053088,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Kingsbury, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kingsbury, Maine: Energy Resources Kingsbury, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1194988°, -69.6492194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1194988,"lon":-69.6492194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Prentiss, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Prentiss, Maine: Energy Resources Prentiss, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4917309°, -68.081681° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.4917309,"lon":-68.081681,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Brewer, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brewer, Maine: Energy Resources Brewer, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7967378°, -68.7614246° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7967378,"lon":-68.7614246,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Lee, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3600615°, -68.2864076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3600615,"lon":-68.2864076,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Hampden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hampden, Maine: Energy Resources Hampden, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7445159°, -68.836982° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7445159,"lon":-68.836982,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Guilford, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Guilford, Maine: Energy Resources Guilford, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1689426°, -69.3844921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1689426,"lon":-69.3844921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Maine Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Maine Tow Tank Overseeing Organization University of Maine Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 2.4 Depth(m) 1.2 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Simulated beach is framed with PVC/mesh. Has a 4:9 slope. Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition

277

Newport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Newport, Maine: Energy Resources Newport, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8353424°, -69.2739365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8353424,"lon":-69.2739365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Maine Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

279

Orono, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8831249°, -68.671977° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8831249,"lon":-68.671977,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Patten, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Patten, Maine: Energy Resources Patten, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.9964392°, -68.4461424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.9964392,"lon":-68.4461424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Levant, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Levant, Maine: Energy Resources Levant, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8692358°, -68.9347611° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8692358,"lon":-68.9347611,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Woolwich, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woolwich, Maine: Energy Resources Woolwich, Maine: Energy Resources (Redirected from Woolwich, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9186904°, -69.8011576° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9186904,"lon":-69.8011576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Sangerville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sangerville, Maine: Energy Resources Sangerville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1647763°, -69.356436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1647763,"lon":-69.356436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Orrington, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orrington, Maine: Energy Resources Orrington, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7311829°, -68.8264258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7311829,"lon":-68.8264258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Passadumkeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Passadumkeag, Maine: Energy Resources Passadumkeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1853362°, -68.6166937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1853362,"lon":-68.6166937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Bridgton, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bridgton, Maine: Energy Resources Bridgton, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0547926°, -70.7128399° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0547926,"lon":-70.7128399,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Milford, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.946179°, -68.6439202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.946179,"lon":-68.6439202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Sebec, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sebec, Maine: Energy Resources Sebec, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2714408°, -69.1167087° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2714408,"lon":-69.1167087,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Corinna, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Corinna, Maine: Energy Resources Corinna, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.921174°, -69.2617131° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.921174,"lon":-69.2617131,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Veazie, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Veazie, Maine: Energy Resources Veazie, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8386814°, -68.7053114° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8386814,"lon":-68.7053114,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Westbrook, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6770252°, -70.3711617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6770252,"lon":-70.3711617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Eastport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eastport, Maine: Energy Resources Eastport, Maine: Energy Resources (Redirected from Eastport, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9061906°, -66.9899785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9061906,"lon":-66.9899785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Newburgh, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Newburgh, Maine: Energy Resources Newburgh, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7249508°, -69.0157987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7249508,"lon":-69.0157987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Gorham, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gorham, Maine: Energy Resources Gorham, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6795245°, -70.4442186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6795245,"lon":-70.4442186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Brunswick, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brunswick, Maine: Energy Resources Brunswick, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9145244°, -69.9653278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9145244,"lon":-69.9653278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Howland, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Howland, Maine: Energy Resources Howland, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2386668°, -68.6636391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2386668,"lon":-68.6636391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Glenburn, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glenburn, Maine: Energy Resources Glenburn, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9168455°, -68.8536313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9168455,"lon":-68.8536313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Seboeis, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Seboeis, Maine: Energy Resources Seboeis, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3631091°, -68.7111424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3631091,"lon":-68.7111424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Rockport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rockport, Maine: Energy Resources Rockport, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1845236°, -69.0761491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1845236,"lon":-69.0761491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Milo, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Milo, Maine: Energy Resources Milo, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2536633°, -68.9858713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2536633,"lon":-68.9858713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Maine Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Volumes Delivered to Consumers

302

Optimizing PT Arun LNG main heat exchanger  

SciTech Connect (OSTI)

The capacity of a LNG liquefaction unit has been increased by upgrading the refrigeration system, without making changes to the main heat exchanger (MHE). It is interesting, that after all modifications were completed, a higher refrigerant circulation alone could not increase LNG production. However, by optimizing the refrigerant component ratio, the UA of the MHE increased and LNG production improved. This technical evaluation will provide recommendations and show how the evaluation of the internal temperature profile helped optimize the MHE operating conditions.

Irawan, B. [PT Arun NGL Co., Sumatra (Indonesia)

1995-12-01T23:59:59.000Z

303

The Advanced Photon Source main control room  

SciTech Connect (OSTI)

The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

Pasky, S.

1998-07-01T23:59:59.000Z

304

Maine Geological Survey Borehole Temperature Profiles  

SciTech Connect (OSTI)

This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

Marvinney, Robert

2013-11-06T23:59:59.000Z

305

Three Main Subsystems: I. Centerpiece (Linear Actuation)  

E-Print Network [OSTI]

Systems Two Main Subsystems: I. Solar Panels Four 100 W high efficiency solar panels were installed symmetrically atop the canopy. The panels were wired in parallel to a deep cycle solar battery. In full sunlight- Monocrystalline-Solar-Panel-4-Pack-GS-S-250- Fab5x4/202960000?N=8p9Z5yc1v Left Bottom: Wind Blue Power LLC. (2014

Provancher, William

306

Imaging Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies on TiO2(110). Imaging Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies on TiO2(110). Abstract: Since oxygen atom...

307

Ge-Au eutectic bonding of Ge {100} single crystals  

Science Journals Connector (OSTI)

We present preliminary results on the eutectic bonding between two {100} Ge single crystal surfaces using thin films of ... Au sample show epitaxial growth of Ge. In sections of the bond, lattice continuity...

W. B. Knowlton; K. M. Itoh; J. W. Beeman; J. H. Emes

1993-11-01T23:59:59.000Z

308

Article coated with flash bonded superhydrophobic particles  

DOE Patents [OSTI]

A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

Simpson, John T (Clinton, TN) [Clinton, TN; Blue, Craig A (Knoxville, TN) [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

2010-07-13T23:59:59.000Z

309

Definition: Cement Bond Log | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Cement Bond Log Jump to: navigation, search Dictionary.png Cement Bond Log A representation of the integrity of the cement job, especially whether the cement is adhering solidly to the outside of the casing. The log is typically obtained from one of a variety of sonic-type tools. The newer versions, called cement evaluation logs, along with their processing software, can give detailed, 360-degree representations of the integrity of the cement job, whereas older versions may display a single line representing the integrated integrity around the casing.[1] Related Terms Acoustic Logs References ↑ Schlumberger Oilfield Glossary Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

310

Maine Cooperative Fish and Wildlife Research Unit and Department of Wildlife Ecology, University of Maine  

E-Print Network [OSTI]

Maine Cooperative Fish and Wildlife Research Unit and Department of Wildlife Ecology, University Fisheries and Wildlife United States Geological Survey United States Fish and Wildlife Service Wildlife of this report in any way is withheld pending specific authorization from the Leader, Maine Cooperative Fish

Thomas, Andrew

311

PP-43 Maine Electric Power Company, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3 Maine Electric Power Company, Inc. PP-43 Maine Electric Power Company, Inc. Presidential Permit authorizing Maine Electric Power Company, Inc. to construct, operate, and maintain...

312

EA-1792: University of Maine's Deepwater Offshore Floating Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind...

313

A New Hydrogen Bond in Coal  

Science Journals Connector (OSTI)

During our study on hydrogen bond in coal by diffuse reflectance IR, we found that a weak peak at 2514 cm-1 always occurred for some coals. ... Infrared absorption spectra of coals and coal extracts ... The FTIR spectra during the heat-up of eight coals (seven Argonne premium coals and an Australian brown coal), an ion-exchange resin, and a lignin were measured every 20 C from room temp. ...

Dongtao Li; Wen Li; Baoqing Li

2003-04-30T23:59:59.000Z

314

Effects of Bond Stretching on Polymer Statistics  

Science Journals Connector (OSTI)

Effects of Bond Stretching on Polymer Statistics ... When a system becomes strained, longer chain end-to-end separations become more probable and the assumptions that go into the Gaussian chain model are no longer valid. ... The associated probability distribution attaches too much weight to the probabilities at larger end-to-end separations, and a statistical analysis based on this distribution would unrealistically overemphasize the contributions of these longer chains. ...

Gary G. Hoffman

1999-08-10T23:59:59.000Z

315

Bonding on the corrugator; The energy aspects  

SciTech Connect (OSTI)

This paper discusses what new features are needed on the corrugator of the future. The author analyzes trends in the industry of the last 15-20 years. The trends point to more automation and more process and quality control, but new designs will react to new market needs such as just-in-time production and product flexibility. In this paper, the author focuses on the bonding process.

Bradatsch, E. (BHS-Werk Weiherhammer, D-8481 Weiherhammer (DE))

1990-01-01T23:59:59.000Z

316

Shearing-Patch Sampling Applied to the Lyman-Cloud/Intercloud Medium J. W. Wadsley and J. R. Bond  

E-Print Network [OSTI]

Shearing-Patch Sampling Applied to the Lyman- Cloud/Intercloud Medium J. W. Wadsley and J. R. Bond of modest sample patches constrained to have bulk physical properties which characterize the main statistical variations from sample to sample. Statistical quantities computed for each simulated patch

Bond, Dick

317

Federal Energy Management Program: Energy Incentive Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Incentive Programs Incentive Programs Most states offer energy incentive programs to help offset energy costs. FEMP's Energy Incentive Program helps Federal agencies take advantage of these incentives by providing information about the funding-program opportunities available in each state. Find Funding Click on a state or choose a one from the menu to see a summary of available energy incentives. Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Oklahoma Ohio Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming

318

Cement Bond Log | Open Energy Information  

Open Energy Info (EERE)

Cement Bond Log Cement Bond Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Cement Bond Log Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Acoustic Logs Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 0.8585 centUSD 8.5e-4 kUSD 8.5e-7 MUSD 8.5e-10 TUSD / foot Median Estimate (USD): 1.25125 centUSD 0.00125 kUSD 1.25e-6 MUSD 1.25e-9 TUSD / foot High-End Estimate (USD): 3.00300 centUSD 0.003 kUSD 3.0e-6 MUSD 3.0e-9 TUSD / foot Time Required Low-End Estimate: 0.35 days9.582478e-4 years 8.4 hours 0.05 weeks 0.0115 months / job

319

Vacuum fusion bonding of glass plates  

DOE Patents [OSTI]

An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

2001-01-01T23:59:59.000Z

320

Vacuum fusion bonding of glass plates  

DOE Patents [OSTI]

An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang*  

E-Print Network [OSTI]

Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang* Department of Biochemistry, University of Zurich, Zurich, Switzerland Abstract Ligand binding involves breakage of hydrogen bonds with water molecules and formation of new hydrogen bonds between protein and ligand. In this work, the change

Caflisch, Amedeo

322

Analysis of C H...O hydrogen bonds  

E-Print Network [OSTI]

1 Analysis of C H...O hydrogen bonds in high resolution protein crystal structures from the PDB 1.4 Identification of C-H...O hydrogen bonds............................................. 1.4.1 The definition of a C-H...O hydrogen bond.................................... 1.4.2 Fixing the hydrogen and measuring the parameters

Babu, M. Madan

323

Oil prices and government bond risk premiums Herv Alexandre*  

E-Print Network [OSTI]

Oil prices and government bond risk premiums By Hervé Alexandre*º Antonin de Benoist * Abstract : This article analyses the impact of oil price on bond risk premiums issued by emerging economies. No empirical study has yet focussed on the effects of the oil price on government bond risk premiums. We develop

Boyer, Edmond

324

State of the LHC Main Magnets  

E-Print Network [OSTI]

The main features of the dipole magnet design have been frozen in 1996 and important steps for the preparation of their series production are being taken in the current year. To finilize the technical specifications of the superconducting cables and other components, a number of detail variants are being validated with the construction and test of short and long magnets. Thus, beside a number of 1 m long models, four 10 m long models of the main dipoles and two 14.2 m prototypes are being assembled in industry and at CERN. The fabrication of a further set of 3 full length dipoles is also starting in industry to verify the reproducibility of production performance. The lifetime and fatigue test of the String Test Facility, consisting of three dipoles and one quadrupole and simulating the basic periodic cell of the LHC, has been successfully concluded. The String was repetitively cycled between the injection field of 0.6 T and the operational field of 8.4 T, 24 hours per day, and has accumulated more than 2100 ...

Perin, R

1998-01-01T23:59:59.000Z

325

Community Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Programs Friends of Berkeley Lab Navigate Section Community Richmond Bay Campus Planning Tours Community Programs Friends of Berkeley Lab Community Education Programs...

326

Hydrogen Bond Breaking and Reformation in Alcohol Oligomers Following Vibrational Relaxation of a Non-Hydrogen-Bond Donating Hydroxyl Stretch  

E-Print Network [OSTI]

Hydrogen Bond Breaking and Reformation in Alcohol Oligomers Following Vibrational Relaxation of a Non-Hydrogen-Bond Donating Hydroxyl Stretch K. J. Gaffney, I. R. Piletic, and M. D. Fayer* Department measured with ultrafast infrared pump-probe experiments. Non-hydrogen-bond donating OD stretches (2690 cm-1

Fayer, Michael D.

327

Cost of Gas Adjustment for Gas Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Generation Disclosure Provider Public Utilities Commission This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports required to be filed with

328

An Act to Reform Land Use Planning in the Unorganized Territory (Maine) |  

Broader source: Energy.gov (indexed) [DOE]

An Act to Reform Land Use Planning in the Unorganized Territory An Act to Reform Land Use Planning in the Unorganized Territory (Maine) An Act to Reform Land Use Planning in the Unorganized Territory (Maine) < Back Eligibility Agricultural Commercial Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Conservation An Act to Reform Land Use Planning in the Unorganized Territory alters the makeup and responsibilities of Maine's Land Use Regulation Commission (LURC). It took effect on August 29, 2012 and changed the Commission's name to the Land Use Planning Commission. Under the Act, permitting review for significant projects, such as

329

Spent Fuel and High-Level Waste Requirements (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission All proposed nuclear power generation facilities must be certified by the Public Utilities Commission under this statute prior to construction and

330

DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine  

Broader source: Energy.gov [DOE]

Case study describing a single-story, 1,200-sq. ft. home in Maine with double shell walls, triple-pane windows, ductless heat pump, solar hot water, HERS 35 eithout PV, HERS 11 with PV

331

Building America Zero Energy Ready Home Case Study: Near Zero Maine Home II, Vassalboro, Maine  

Broader source: Energy.gov [DOE]

Case study describing a single-story, 1,200-sq. ft. home in Maine with double shell walls, triple-pane windows, ductless heat pump, solar hot water, HERS 35 eithout PV, HERS 11 with PV

332

SOAJ Search : Main View : Deep Federated Search  

Office of Scientific and Technical Information (OSTI)

SOAJ Search SOAJ Search Search Powered By Deep Web Technologies New Search Preferences Powered by Deep Web Technologies HOME ABOUT ADVANCED SEARCH CONTACT US HELP Science Open Access Journals (SOAJ) Science Open Access Journals Main View This view is used for searching all possible sources. Additional Information Keyword: Title: Additional Information Author: Fields to Match: All Any Field(s) Additional Information Date Range: Beginning Date Range Pick Year 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 toEnding Date Range Pick Year 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 DWT Logo Search Clear All Help Simple Search Select All

333

Maine Public Service Co | Open Energy Information  

Open Energy Info (EERE)

Public Service Co Public Service Co Place Maine Utility Id 11522 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Produce Storage Rate (F) Commercial Backup and Maintenance Service-Primary (B) Commercial Backup and Maintenance Service-Secondary (B) Commercial Backup and Maintenance Service-Sub-Transmission(B) Commercial Backup and Maintenance Service-Transmission(B) Commercial General service (C) Commercial Large Power service - Primary-Time of use (E-P-T) Industrial

334

Dual-bonded catalyst layer structure cathode for PEMFC  

Science Journals Connector (OSTI)

Novel electrode structure based on dual-bonded catalyst layer structure is reported to elevate proton exchange membrane fuel cell (PEMFC) cathode performance. Differing from conventional cathode with simplex PTFE or ionomer as binder material in catalyst layer (CL), dual-bonded CL combines those two types of binders, respectively, in a composite structure. In order to develop a cathode possessing the superior merits of both mass transport and proton transfer, a PTFE-rich CL and an ionomer-rich CL were fabricated on gas diffusion layer in proper order. Polarization characteristic of cathodes with dual-bonded CL, conventional PTFE-bonded CL and ionomer-bonded CL were evaluated at ambient pressure in oxygen/air. Better performance of cathode was achieved with dual-bonded, compared with conventional structures. Electric yield rate of dual-bonded cathode was about 50%, whilst that of conventional cathodes was about 40%.

Xuewei Zhang; Pengfei Shi

2006-01-01T23:59:59.000Z

335

Method for bonding a transmission line to a downhole tool  

DOE Patents [OSTI]

An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

2007-11-06T23:59:59.000Z

336

Ultrasonic evaluation of beryllium-copper diffusion bonds  

SciTech Connect (OSTI)

A study was performed to compare the effectiveness of several advanced ultrasonic techniques when used to determine the strength of diffusion bonded beryllium-copper, which heretofore have each been applied to only a few material systems. The use of integrated backscatter calculations, frequency domain reflection coefficients, and time-of-flight variance was compared in their ability to characterize the bond strength in a series of beryllium-copper diffusion bond samples having a wide variation in bond quality. Correlation of integrated backscatter calculations and time-of-flight variance with bond strength was good. Some correlation of the slope of the frequency based reflection coefficient was shown for medium and high strength bonds, while its Y-intercept showed moderate correlation for all bond strengths.

Jamieson, E.E.

2000-06-08T23:59:59.000Z

337

Thermal Performance and Reliability of Bonded Interfaces  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

338

Student Internship Programs Program Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Student Internship Programs Program Description The objective of the Laboratory's student internship programs is to provide students with opportunities for meaningful hands- on...

339

Bond energy effects on strength, cooperativity and robustness of molecular structures  

Science Journals Connector (OSTI)

...robustness at smaller bond energy lower strength at smaller bond energy bond spacing L 0 higher...biology of the cell. New York, NY: Taylor Francis...Cracks and fracture. New York, NY: Academic Press. Bond energy effects on strength...

2011-01-01T23:59:59.000Z

340

Bond selective chemistry beyond the adiabatic approximation  

SciTech Connect (OSTI)

One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

Butler, L.J. [Univ. of Chicago, IL (United States)

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Repairable chip bonding/interconnect process  

DOE Patents [OSTI]

A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

Bernhardt, Anthony F. (Berkeley, CA); Contolini, Robert J. (Livermore, CA); Malba, Vincent (Livermore, CA); Riddle, Robert A. (Tracy, CA)

1997-01-01T23:59:59.000Z

342

Invertible Program Restructurings for Continuing Modular Maintenance  

E-Print Network [OSTI]

Invertible Program Restructurings for Continuing Modular Maintenance Julien Cohen ASCOLA team (EMN in main- tenance with invertible program transformations. We illustrate this on the typical Expression problems with our approach. Keywords-modular maintenance; restructuring; invertible pro- gram

Paris-Sud XI, Université de

343

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

SciTech Connect (OSTI)

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

Hagen Schempf, Ph.D.

2003-02-27T23:59:59.000Z

344

Gas Main Sensor and Communications Network System  

SciTech Connect (OSTI)

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

Hagen Schempf

2006-05-31T23:59:59.000Z

345

Tax Increment Financing (TIF) Guarantee Program (Pennsylvania) | Department  

Broader source: Energy.gov (indexed) [DOE]

TIF) Guarantee Program (Pennsylvania) TIF) Guarantee Program (Pennsylvania) Tax Increment Financing (TIF) Guarantee Program (Pennsylvania) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source Commonwealth Financing Authority (CFA) State Pennsylvania Program Type Loan Program Provider Department of Community and Economic Development The Tax Increment Financing (TIF) Guarantee Program provides credit enhancement to improve market access and lower capital costs through loan guarantees to bond issuers to assist in the development and revitalization

346

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Broader source: Energy.gov (indexed) [DOE]

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

347

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Broader source: Energy.gov (indexed) [DOE]

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

348

A Surprising Path for Proton Transfer Without Hydrogen Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Surprising Path for Proton Transfer Without Hydrogen Bonds Print A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond results from the attractive dipolar interaction of a chemical group containing a hydrogen atom with a group containing an electronegative atom, such as nitrogen, oxygen, or fluorine, in the same or a different molecule. Conventional wisdom has it that proton transfer from one molecule to another can only happen via hydrogen bonds. Recently, a team of Berkeley Lab and University of Southern California researchers, using the ALS, discovered to their surprise that in some cases, protons can find ways to transfer even when hydrogen bonds are blocked. Sometimes You Have to

349

Ultrasonic NDT of titanium diffusion bonding with guided waves  

SciTech Connect (OSTI)

An ultrasonic guided wave technique is developed for the NDT of diffusion bonded titanium-to-titanium structures. A three-layer model based on the normal beam experimental results has been proposed. Dispersion curves and wave structure are analyzed to direct the experimental study. Two features related to Lamb waves propagating in diffusion bonded titanium plates, the spectral peak to peak ratios and the wave mode frequency shift, are extracted from the guided wave experimental results for both 2 mm (0.08 in.) and 4 mm (0.16 in.) diffusion bond panels. It is found for some specific modes and frequencies that these two features are sensitive to the diffusion bonding states and, therefore, could be used to distinguish good bond panels from poor bond ones.

Rose, J.L.; Zhu, W. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Engineering Science and Mechanics; Zaidi, M. [Boeing Co., Long Beach, CA (United States)

1998-04-01T23:59:59.000Z

350

A Surprising Path for Proton Transfer Without Hydrogen Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Surprising Path for Proton Transfer Without Hydrogen Bonds Print A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond results from the attractive dipolar interaction of a chemical group containing a hydrogen atom with a group containing an electronegative atom, such as nitrogen, oxygen, or fluorine, in the same or a different molecule. Conventional wisdom has it that proton transfer from one molecule to another can only happen via hydrogen bonds. Recently, a team of Berkeley Lab and University of Southern California researchers, using the ALS, discovered to their surprise that in some cases, protons can find ways to transfer even when hydrogen bonds are blocked. Sometimes You Have to

351

WHY STUDY FOREST OPERATIONS, BIOPRODUCTS AND BIOENERGY AT THE UNIVERSITY OF MAINE?  

E-Print Network [OSTI]

WHY STUDY FOREST OPERATIONS, BIOPRODUCTS AND BIOENERGY AT THE UNIVERSITY OF MAINE? e efficient-developed cluster of industrial forests and processing facilities for the production of bioproducts and bioenergy for research and field experience. UMaine's Forest Operations, Bioproducts and Bioenergy Program has been

Thomas, Andrew

352

Bond formation at the Ni/ZrO2 interface  

Science Journals Connector (OSTI)

We report on the formation of strong chemical bonds at the Ni(100)/cubic-ZrO2(100) polar interfaces. Ab initio density functional theory calculations demonstrate that both Zr/Ni and O/Ni junctions are energetically stable, and predict that two different interactions determine the interface adhesion. Our results reveal that O-Ni ionic bonds are formed by Ni electron donation, while the Zr-Ni bonds show a mixed character with ionic and electron hybridization contributions.

J. I. Beltrn; S. Gallego; J. Cerd; J. S. Moya; M. C. Muoz

2003-08-07T23:59:59.000Z

353

Torsion Testing of Diffusion Bonded LIGA Formed Nickel  

SciTech Connect (OSTI)

A test technique has been devised which is suitable for the testing of the bond strength of batch diffusion bonded LIGA or DXRL defined structures. The method uses a torsion tester constructed with the aid of LIGA fabrication and distributed torsion specimens which also make use of the high aspect ratio nature of DXRL based processing. Measurements reveal achieved bond strengths of 130MPa between electroplated nickel with a bond temperature of 450 C at 7 ksi pressure which is a sufficiently low temperature to avoid mechanical strength degradation.

Buchheit, T.E.; Christenson, T.R.; Schmale, D.T.

1999-01-27T23:59:59.000Z

354

Shear strength of composite bonded to laser-pretreated dentin  

SciTech Connect (OSTI)

As research progresses, laser energy moves closer to acceptable usefulness. Laser application to prepare dentin creates a more retentive surface for composite bonding.

Cooper, L.F.; Myers, M.L.; Nelson, D.G.; Mowery, A.S.

1988-07-01T23:59:59.000Z

355

Intramolecular hydrogen bonding as a synthetic tool to induce...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis Authors: Megiatto, J. D., Patterson, D., Sherman, B. D.,...

356

Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN. Citation: Shokri A, Y Wang, GA...

357

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This presentation does not contain any proprietary,...

358

Brazil's Biofuels Scenario: What are the Main Drivers Which will...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape Investments in the Long Term? Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape...

359

Better Buildings: Workforce, Spotlight on Maine: Contractor Sales...  

Broader source: Energy.gov (indexed) [DOE]

Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy...

360

Digital Bond Fact Sheet.cdr  

Broader source: Energy.gov (indexed) [DOE]

cost-shared effort between industry and cost-shared effort between industry and Cyber Security Audit and Attack Detection Toolkit Cyber Security Audit and Attack Detection Toolkit Bandolier Audit Files for optimizing security configurations and the Portaledge event detection capability for energy control systems Bandolier Audit Files for optimizing security configurations and the Portaledge event detection capability for energy control systems Cyber Security for Energy Delivery Systems Electricity Delivery & Energy Reliability Project Lead: Digital Bond Partners: OSIsoft Tenable Network Security PacifiCorp Tennessee Valley Authority Other Participating Vendors: ABB AREVA Emerson Matrikon SNC Telvent Bandolier and Portaledge The Concept Bandolier-The Approach By building configuration audit and attack detection capabilities into tools already

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Wafer bonded epitaxial templates for silicon heterostructures  

DOE Patents [OSTI]

A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

Atwater, Jr., Harry A. (So. Pasadena, CA); Zahler, James M. (Pasadena, CA); Morral, Anna Fontcubera I (Paris, FR)

2008-03-11T23:59:59.000Z

362

Integrated optical MEMS using through-wafer vias and bump-bonding.  

SciTech Connect (OSTI)

This LDRD began as a three year program to integrate through-wafer vias, micro-mirrors and control electronics with high-voltage capability to yield a 64 by 64 array of individually controllable micro-mirrors on 125 or 250 micron pitch with piston, tip and tilt movement. The effort was a mix of R&D and application. Care was taken to create SUMMiT{trademark} (Sandia's ultraplanar, multilevel MEMS technology) compatible via and mirror processes, and the ultimate goal was to mate this MEMS fabrication product to a complementary metal-oxide semiconductor (CMOS) electronics substrate. Significant progress was made on the via and mirror fabrication and design, the attach process development as well as the electronics high voltage (30 volt) and control designs. After approximately 22 months, the program was ready to proceed with fabrication and integration of the electronics, final mirror array, and through wafer vias to create a high resolution OMEMS array with individual mirror electronic control. At this point, however, mission alignment and budget constraints reduced the last year program funding and redirected the program to help support the through-silicon via work in the Hyper-Temporal Sensors (HTS) Grand Challenge (GC) LDRD. Several months of investigation and discussion with the HTS team resulted in a revised plan for the remaining 10 months of the program. We planned to build a capability in finer-pitched via fabrication on thinned substrates along with metallization schemes and bonding techniques for very large arrays of high density interconnects (up to 2000 x 2000 vias). Through this program, Sandia was able to build capability in several different conductive through wafer via processes using internal and external resources, MEMS mirror design and fabrication, various bonding techniques for arrayed substrates, and arrayed electronics control design with high voltage capability.

McCormick, Frederick Bossert; Frederick, Scott K.

2008-01-01T23:59:59.000Z

363

Method of bonding single crystal quartz by field-assisted bonding  

DOE Patents [OSTI]

The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.

Curlee, Richard M. (Tijeras, NM); Tuthill, Clinton D. (Edgewood, NM); Watkins, Randall D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

364

Program Manager  

Broader source: Energy.gov [DOE]

A successful candidate in this position will participate in a wide spectrum of program and project management activities involving systems engineering and integration support for Defense Programs...

365

Program Managers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Managers Program Managers Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy...

366

Retiree Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Library Services Retiree Program Retiree Program The Research Library offers a 1 year library card to retired LANL employees that allows usage of Library materials. This service...

367

Educational Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Educational Programs Educational Programs A collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering...

368

Sun Mon Tue Wed Thu Fri Sat 2 Main  

E-Print Network [OSTI]

Sun Mon Tue Wed Thu Fri Sat 1 Main CLOSED Brody CLOSED 2 Main Closed #12;Sun Mon Tue Wed Thu Fri Sat 1 Main 10 am 5 pm Brody 10 am 12:30 pm 2 3 4 2013 #12;Sun Mon Tue Wed Thu Fri Sat 1 Main 10 am 5 pm Brody 10 am 12:30 pm 2

369

The main support mechanisms to finance renewable energy development  

Science Journals Connector (OSTI)

Abstract Considering that the major part of greenhouse gases is carbon dioxide, there is a global concern aimed at reducing carbon emissions. In addition, major consumer countries are looking for alternative sources of energy to avoid the impact of higher fossil fuel prices and political instability in the major energy supplying countries. In this regard, different policies could be applied to reduce carbon emissions, such as enhancing renewable energy deployment and encouraging technological innovation and the creation of green jobs. This study compares three main support mechanisms employed by governments to finance renewable energy development programs: feed-in-tariffs, tax incentives, and tradable green certificates. Considering that many of the promising technologies to deploy renewable energy require investment in small-scale energy production systems, these mechanisms could be used to enhance renewable energy development at the desired scale. Employing a carbon emission tax or emission trading mechanism could be considered ideal policies to mitigate emissions at the lowest cost. The comparison of feed-in-tariffs and renewable portfolio standard policies showed that the former is good when a policy to develop renewable energy sources with a low level of risk for investors is considered. However, the latter is an appropriate policy when a market view policy is applied by the government. Finally, considering technological progress and the cost reduction for power generation by renewable energy sources, we suggest that support mechanism policies should be reconsidered from the financial point of view.

Shahrouz Abolhosseini; Almas Heshmati

2014-01-01T23:59:59.000Z

370

Alternative Fuels Data Center: Maine Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maine Laws and Maine Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Maine. Your Clean Cities coordinator at

371

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

372

Maine's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Maine's 1st congressional district: Energy Resources Maine's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Maine. Contents 1 US Recovery Act Smart Grid Projects in Maine's 1st congressional district 2 Registered Energy Companies in Maine's 1st congressional district 3 Registered Financial Organizations in Maine's 1st congressional district 4 Utility Companies in Maine's 1st congressional district US Recovery Act Smart Grid Projects in Maine's 1st congressional district Central Maine Power Company Smart Grid Project Registered Energy Companies in Maine's 1st congressional district Ascendant Energy Company Inc Criterium Engineers International WoodFuels LLC

373

Alternative Fuels Data Center: Maine Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maine Points of Maine Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Maine Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Maine Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Maine Points of Contact on Google Bookmark Alternative Fuels Data Center: Maine Points of Contact on Delicious Rank Alternative Fuels Data Center: Maine Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Maine Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Points of Contact The following people or agencies can help you find more information about Maine's clean transportation laws, incentives, and funding opportunities.

374

Environmental Programs Environmental Programs Committee  

E-Print Network [OSTI]

(Architecture) The Environmental Programs Committee coordinates courses and curricula on environmental topics. Wiesner (Civil and Environmental Engineering) Gordon G. Wittenberg (Architecture) #12;162 Environmental Programs Environmental Programs Committee Walter Whitfield Isle, Chair (English

Richards-Kortum, Rebecca

375

SRS - Programs - Nonproliferation Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3/2012 3/2012 SEARCH GO spacer SRS Home Nonproliferation Programs In the crucial field of nuclear nonproliferation, SRS employee contributions helped to advance all three of the planned plutonium disposition facilities at the Savannah River Site: the Pit Disassembly and Conversion Facility (PDCF); Waste Solidification Building (WSB); and the Mixed Oxide (MOX) Fuel Fabrication Facility. A $345 million project, the WSB will process liquid waste from the MOX facility. After material is processed at the WSB, transuranic waste will be packaged and sent to the Waste Isolation Pilot Plant in New Mexico, and low-level waste will be packaged and sent to onsite or commercial off-site low-level waste disposal facilities. The mixed oxide fuel fabrication facility will be a major component in the United States' program to dispose of excess weapons grade plutonium.

376

Metal-on-Metal Bonding and Rebonding Revisited  

Science Journals Connector (OSTI)

Density-functional calculations for a wide variety of metals show that, contrary to rebonding theory, ad-dimers do not have notably longer surface bonds than adatoms, do not reside farther above the surface, and do not meet the rebonding arguments for augmented mobility. Rebonding contributes to destabilize ad-dimers, but does not explain inherently weak ad-dimer bonds.

Alexander Bogicevic

1999-06-28T23:59:59.000Z

377

Financing Public Sector Projects with Clean Renewable Energy Bonds (CREBs); Fact Sheet Series on Financing Renewable Energy Projects, National Renewable Energy Laboratory (NREL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

renewable energy bonds (CREBs) present a low-cost renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance renewable energy projects. The federal government lowers the cost of debt by providing a tax credit to the bondholders in lieu of interest payments from the issuer. Because CREBs are theoretically interest free, they may be more attractive than traditional tax-exempt municipal bonds. In February 2009, Congress appropriated a total of $2.4 billion for the "New CREBs" program. No more than one-third of the budget may be allocated to each of the eligible entities: (1) governmental bodies, (2) electric cooperatives, and (3) public power providers. Applications for this round of "New CREBs" were due to the Internal Revenue Service (IRS) on August 4,

378

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

379

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

380

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Measuring Electrostatic Fields in Both Hydrogen-Bonding and Non-Hydrogen-Bonding Environments Using Carbonyl Vibrational Probes  

E-Print Network [OSTI]

of the probe's difference dipole, which is determined by measuring the vibrational Stark effect and definesMeasuring Electrostatic Fields in Both Hydrogen-Bonding and Non- Hydrogen-Bonding Environments Using Carbonyl Vibrational Probes Stephen D. Fried, Sayan Bagchi, and Steven G. Boxer* Department

Boxer, Steven G.

382

The RERTR program.  

SciTech Connect (OSTI)

The Reduced Enrichment Research and Test Reactor (RERTR) Program was established in 1978 at the Argonne National Laboratory (ANL) by the Department of Energy (DOE), which continues to fund the program and to manage it in coordination with the Department of State (DOS), the Arms Control and Disarmament Agency (ACDA), and the Nuclear Regulatory Commission (NRC). The primary objective of the program is to develop the technology needed to use Low-Enrichment Uranium (LEU) instead of High-Enrichment Uranium (HEU) in research and test reactors, without significant penalties in experiment performance, economics, or safety. Eliminating the continuing need of HEU supplies for research and test reactors has long been an integral part of US nonproliferation policy. This paper reviews the main accomplishments of the program through the years.

Travelli, A.

1997-11-14T23:59:59.000Z

383

Wheat Improvement Programs WHEAT PROGRAM  

E-Print Network [OSTI]

. Royalty revenues, which assist funding of programs and attracting/retaining top scientists, have increased

384

A Proof of Concept: Grizzly, the LWRS Program Materials Aging and Degradation Pathway Main Simulation Tool  

SciTech Connect (OSTI)

Nuclear power currently provides a significant fraction of the United States non-carbon emitting power generation. In future years, nuclear power must continue to generate a significant portion of the nations electricity to meet the growing electricity demand, clean energy goals, and ensure energy independence. New reactors will be an essential part of the expansion of nuclear power. However, given limits on new builds imposed by economics and industrial capacity, the extended service of the existing fleet will also be required.

Ben Spencer; Jeremey Busby; Richard Martineau; Brian Wirth

2012-10-01T23:59:59.000Z

385

Understanding the main drivers of value creation in an open innovation program  

Science Journals Connector (OSTI)

Innovation has been identified as the single most relevant element in fuelling corporations competitive advantage and ultimate value creation. Corporations no longer rely on a single, linear structure of inno...

Rubn Herskovits; Mercedes Grijalbo

2013-12-01T23:59:59.000Z

386

The Texas Main Street Program: a development force integrating historic preservation and tourism  

E-Print Network [OSTI]

investigated firstly the importance of architectural heritage as a tourist attraction. The study also assessed both positive and negative impacts of heritage tourism in small cities. The results showed that the three cities benefited by significant increases...

Ranwala, Don Sujeewa Devapriya

2012-06-07T23:59:59.000Z

387

Multiservice Optical Network:Main Concepts and First Achievements of the ROM Program  

Science Journals Connector (OSTI)

With the tremendous introduction of internet protocol (IP) applications,the quality-of-service (QoS) becomes more and more an emergent issue. Concrete solutions can be adopted...

Gravey, P; Gosselin, phane; Guillemont, C; Chiaroni, Dominique; Sauze, Nicolas Le; Jourdan, Amaury; Dotaro, Emmanuel; Barth, Dominique; Bertom, Pascal; Laforest, Christian; Vial, S; Atmaca, Tulin; buterne, rard; Biaze, H El; Laalaoua, R; Gangloff, Eric; Kotuliak, I

2001-01-01T23:59:59.000Z

388

Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Exemptions The list below contains summaries of all Maine laws and incentives related

389

Alternative Fuels Data Center: Maine Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for EVs The list below contains summaries of all Maine laws and incentives related to EVs. State Incentives

390

Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Biodiesel The list below contains summaries of all Maine laws and incentives related

391

Maine Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine Recovery Act State Memo Maine Recovery Act State Memo Maine Recovery Act State Memo Maine has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maine are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind. Through these investments, Maine's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Maine to play an important role in the new energy economy of the future. Maine Recovery Act State Memo More Documents & Publications Slide 1 District of Columbia Recovery Act State Memo

392

The Estimation of the Marine Main Diesel Engine Energy Balance  

Science Journals Connector (OSTI)

The basis of impact of energy device (marine main diesel engine) on its environment in terms of energy ... . Types of energy and exergy characterizing the marine main diesel engine are presented. The description ...

Z. Matuszak; G. Nicewicz

2014-01-01T23:59:59.000Z

393

Widget:MainPageHelper | Open Energy Information  

Open Energy Info (EERE)

Widget Edit History Facebook icon Twitter icon Widget:MainPageHelper Jump to: navigation, search This widget contains helper assets intended only for the MainPage (frontpage)....

394

Alternative Fuels Data Center: Maine Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Other The list below contains summaries of all Maine laws and incentives related

395

Alternative Fuels Data Center: Maine Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives Listed below are the summaries of all current Maine laws, incentives, regulations, funding opportunities, and other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. You

396

Alternative Fuels Data Center: Maine Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Grants The list below contains summaries of all Maine laws and incentives related

397

Alternative Fuels Data Center: Maine Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Other The list below contains summaries of all Maine laws and incentives related

398

Alternative Fuels Data Center: Maine Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for NEVs The list below contains summaries of all Maine laws and incentives related to NEVs.

399

Alternative Fuels Data Center: Maine Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Other The list below contains summaries of all Maine laws and incentives related

400

Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Ethanol The list below contains summaries of all Maine laws and incentives related

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Study of stability of beam in the Fermilab main injector  

SciTech Connect (OSTI)

The Fermilab Main Injector is a new 150 GeV proton synchrotron, designed to replace the Main Ring and improve the high energy physics potential of Fermilab. The status of the Fermilab accelerator complex upgrade will be discussed. Study of the stability of the beam in the Main injector will be discussed. Detuning and corrector scheme to improve the dynamic aperture of the Main Injector will be presented. Tune modulation caused by octupolar detuning will be discussed.

Mishra, C.S.; Harfoush, F.

1993-04-01T23:59:59.000Z

402

Uniform System of Accounts for Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

This rule establishes a uniform system of accounts and annual report filing requirements for natural gas utilities operating in Maine.

403

E-Print Network 3.0 - adhesively bonded lap Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The lap-shear strengths of adhesively bonded polystyrene (PS), high-density polyethylene (HDPE... bonded in a lap-shear geometry. The bonded area of adhesion was nominally...

404

Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes  

E-Print Network [OSTI]

Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional, USA (Received 24 February 2003; published 3 December 2003) Hydrogen bond dynamics are explicated hydrogen bonded network are measured with ultrashort (

Fayer, Michael D.

405

Educational Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Programs Programs Argonne National Laboratory Educational Programs Search Argonne ... Search Argonne Home > Educational Programs > Welcome Type of Appointments Postdoctoral Newsletters Postdoctoral Office Activities Postdoctoral Programs Alumni Postdoctoral Society of Argonne Newcomers Assistance Office Postdoctoral Resources Postdoctoral Mentoring Program Contact Us Schedule of Career Development Seminars Organized by the Postdoctoral Office for 2011 Here is a schedule of all of our Career Development Seminars and Workshops! Normally, the events happen at lunchtime and food is provided. The topics of these events include: Journal Clubs Career Development Networking We welcome all of our Postdocs and colleagues to and join us! Wednesday January 19 Postdoc Journal Club and pizza lunch. Magnetic Domain-Wall Racetrack Memory

406

Design and Synthesis of Chemically and Electronically Tunable Nanoporous Organic Polymers for Use in Hydrogen Storage Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hani M. El-Kaderi (Primary Contact), Mohammad G. Rabbani, Thomas E. Reich, Karl T. Jackson, Refaie M. Kassab Virginia Commonwealth University Department of Chemistry 1001 West Main St Richmond, VA 23284-2006 Phone: (804) 828-7505 Email: helkaderi@vcu.edu DOE Program Officer: Michael Sennett Phone: (301) 903-6051 Email: Michael.Sennett@science.doe.go Objectives Design and synthesis of new classes of low density * nanoporous organic polymers that are linked by strong covalent bonds and composed of chemically and electronically tunable building blocks. Use gas sorption experiments to investigate porosity and * determine hydrogen storage at variable temperature and

407

Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal  

SciTech Connect (OSTI)

We report quantifying the strengths of different types of hydrogen bonds in hydrogen bond networks (HBNs) via measurement of the adiabatic electron detachment energy of the conjugate base of a small covalent polyol model compound (i.e., (HOCH2CH2CH(OH)CH2)2CHOH) in the gas phase and the pKa of the corresponding acid in DMSO. The latter result reveals that the hydrogen bonds to the charged center and those that are one solvation shell further away (i.e., primary and secondary) provide 5.3 and 2.5 pKa units of stabilization per hydrogen bond in DMSO. Computations indicate that these energies increase to 8.4 and 3.9 pKa units in benzene and that the total stabilizations are 16 (DMSO) and 25 (benzene) pKa units. Calculations on a larger linear heptaol (i.e., (HOCH2CH2CH(OH)CH2CH(OH)CH2)2CHOH) reveal that the terminal hydroxyl groups each contribute 0.6 pKa units of stabilization in DMSO and 1.1 pKa units in benzene. All of these results taken together indicate that the presence of a charged center can provide a powerful energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN.

Shokri, Alireza; Wang, Yanping; O'Doherty, George A.; Wang, Xue B.; Kass, Steven R.

2013-11-27T23:59:59.000Z

408

Semi-flexible hydrogen-bonded and non-hydrogen bonded lattice polymers  

E-Print Network [OSTI]

We investigate the addition of stiffness to the lattice model of hydrogen-bonded polymers in two and three dimensions. We find that, in contrast to polymers that interact via a homogeneous short-range interaction, the collapse transition is unchanged by any amount of stiffness: this supports the physical argument that hydrogen bonding already introduces an effective stiffness. Contrary to possible physical arguments, favouring bends in the polymer does not return the model's behaviour to that comparable to the semi-flexible homogeneous interaction model, where the canonical $\\theta$-point occurs for a range of parameter values. In fact, for sufficiently large bending energies the crystal phase disappears altogether, and no phase transition of any type occurs. We also compare the order-disorder transition from the globule phase to crystalline phase in the semi-flexible homogeneous interaction model to that for the fully-flexible hybrid model with both hydrogen and non-hydrogen like interactions. We show that these phase transitions are of the same type and are a novel polymer critical phenomena in two dimensions. That is, it is confirmed that in two dimensions this transition is second-order, unlike in three dimensions where it is known to be first order. We also estimate the crossover exponent and show that there is a divergent specific heat, finding $\\phi=0.7(1)$ or equivalently $\\alpha=0.6(2)$. This is therefore different from the $\\theta$ transition, for which $\\alpha=-1/3$.

J Krawczyk; AL Owczarek; T Prellberg

2008-07-06T23:59:59.000Z

409

Stability of beam in the Fermilab Main Injector  

SciTech Connect (OSTI)

The Fermilab Main Injector is a new 150 GeV protron synchrotron, designed to remove the limitations of the Main Ring in the delivery of high intensity protron and antiproton beams to the Tevatron. Extensive studies have been made to understand the performance of the Main Injector. In this paper, we present a study of the Main Injector lattice, which includes magnetic and misalignment errors. These calculations shows the Main Injector`s dynamical aperture is larger than its design value of 40{pi} mm mradian at injection.

Mishra, C.S.; Harfoush, F.A.

1993-08-01T23:59:59.000Z

410

E-Print Network 3.0 - adhesive bond strength Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The lap-shear strengths of adhesively bonded polystyrene (PS), high-density polyethylene (HDPE... 12;strength of the substrate, or the adhesive strength of the bond 9....

411

E-Print Network 3.0 - affects durably bonding Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

adhesive layers are less affected, creep behavior of adhesively bonded joints... ABSTRACT SMITH, GLEN. Bond Characteristics and Qualifications of Adhesives for ... Source:...

412

E-Print Network 3.0 - alteredintramolecular hydrogen-bonding...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alteredintramolecular hydrogen-bonding pattern Search Powered by Explorit Topic List Advanced Search Sample search results for: alteredintramolecular hydrogen-bonding pattern Page:...

413

E-Print Network 3.0 - amide bonds stabilize Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amide-Amide and Amide-Water Hydrogen Bonds Summary: Bonds: Implicationsfor Protein Folding and Stability Eric S.Eberhardt and Ronald T. Rained Department... folds, many of...

414

Alternative Fuels Data Center: Maine Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Driving / Idling

415

Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Vehicle Owner/Driver

416

Laser surface roughening of PTFE for increased bonding strength  

Science Journals Connector (OSTI)

Treatment of pure Teflon (PTFE) with UV laser pulses (193nm) produces area-selective rough surfaces. These irradiated areas are bondable with ordinary adhesives. The stability of the bonds is about one order ...

M. Rauh; J. Ihlemann; A. Koch

2007-08-01T23:59:59.000Z

417

Ultrafast structural fluctuations and rearrangements of water's hydrogen bonded network  

E-Print Network [OSTI]

Aqueous chemistry is strongly influenced by water's ability to form an extended network of hydrogen bonds. It is the fluctuations and rearrangements of this network that stabilize reaction products and drive the transport ...

Loparo, Joseph J. (Joseph John)

2007-01-01T23:59:59.000Z

418

Bond resonance energy and verification of the isolated pentagon rule  

SciTech Connect (OSTI)

The isolated pentagon rule (IPR) states that fullerenes with isolated pentagons are kinetically much more stable than their fused pentagon counterparts. This rule can be verified in terms of a graph-theoretically defined bond resonance energy. In general, a {pi} bond shared by two pentagons has a large negative bond resonance energy, thus contributing significantly to the increase in kinetic instability or chemical reactivity of the molecule. The existence of such highly antiaromatic local structures sharply distinguishes IPR-violating fullerenes from isolated-pentagon isomers. {pi}bonds shared by two pentagons are shared by many antiaromatic conjugated circuits but not by relatively small aromatic conjugated circuits. 39 refs., 3 figs., 5 tabs.

Aihara, Jun Ichi [Shizuoka Univ. (Japan)

1995-04-12T23:59:59.000Z

419

Surface Modification by Atmospheric Pressure Plasma for Improved Bonding  

E-Print Network [OSTI]

prepared using (a) the IPA wipe (control), (b) sanding, (c)of aluminum alloy 2024: a) IPA wiped, b) sanded with 180bond primer with a) the IPA wipe (control), b) sanding, c)

Williams, Thomas Scott

2013-01-01T23:59:59.000Z

420

Low-Cost Financing with Clean Renewable Energy Bonds  

Broader source: Energy.gov [DOE]

Contains information from the TAP Webcast on June 24, 2009 on clean renewable energy bonds from Claire Kreycik on feed-in tariffs, an economic resource for developing renewable energy.

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nature of Bridging Bonds in Lithium and Potassium Acetate Dimers  

Science Journals Connector (OSTI)

The structures of lithium and potassium acetates were studied by the RHF/6-31G*...3COOLi)2 and (CH3COOK)2 are electrostatic in nature. The bridging lithium bond is intermediate between hydrogen and ionic, ... of ...

I. A. Panteleev; S. G. Semenov; D. N. Glebovskii

422

Mpemba paradox: Hydrogen bond memory and water-skin supersolidity  

E-Print Network [OSTI]

Numerical reproduction of measurements, experimental evidence for skin super-solidity and hydrogen-bond memory clarified that Mpemba paradox integrates the heat emission-conduction-dissipation dynamics in the source-path-drain cycle system.

Chang Q Sun

2015-01-05T23:59:59.000Z

423

Conservation of bond lengths in strained Ge-Si layers  

Science Journals Connector (OSTI)

The combined techniques of x-ray-absorption fine structure and x-ray diffraction have been used to study the strain and bond distortions in epitaxial Ge-Si on Si(001). In a 31% Ge, 340- pseudomorphic Ge-Si film, the Ge-Ge and Ge-Si first-neighbor bond lengths have been found to be 2.440.02 and 2.380.02 , respectively. The lattice parameter perpendicular to the Ge-Si/Si(001) interface has been found to be a?=5.5520.002 , in agreement with the predictions of macroscopic elastic theory. These results show that the bond-length strain in the epitaxial layer appears in the second and higher coordination shells, rather than in the nearest-neighbor bond lengths, which remain the same as in unstrained Ge-Si. A microscopic model is presented that accounts for these findings.

J. C. Woicik; C. E. Bouldin; M. I. Bell; J. O. Cross; D. J. Tweet; B. D. Swanson; T. M. Zhang; L. B. Sorensen; C. A. King; J. L. Hoyt; P. Pianetta; J. F. Gibbons

1991-01-15T23:59:59.000Z

424

Low-Cost Direct Bonded Aluminum (DBA) Substrates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Managed by UT-Battelle for the Department of Energy Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This...

425

Low-Cost Direct Bonded Aluminum (DBA) Substrates  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, M. L. Santella, and G. Muralidharan Oak Ridge National Laboratory (ORNL) This presentation does not...

426

Application of Social Impact Bonds in Built Infrastructure Sustainability Projects  

E-Print Network [OSTI]

This study examines a first look at the implementation of Social Impact Bonds (SIB) for sustainability projects by comparing two cases. The cases are described using System Dynamic (SD) modeling to portray the feedback structures and characteristics...

White, Robert Joseph

2014-05-01T23:59:59.000Z

427

MODE II FRACTURE BEHAVIOR OF BONDED VISCOELASTIC THERMAL COMPRESSED WOOD  

E-Print Network [OSTI]

MODE II FRACTURE BEHAVIOR OF BONDED VISCOELASTIC THERMAL COMPRESSED WOOD Andreja Kutnar* Graduate Student Department of Wood Science and Technology Biotechnical Faculty University of Ljubljana 1000 Ljubljana, Slovenia Frederick A. Kamke Professor John A. Nairn Professor Department of Wood Science

Nairn, John A.

428

international programs  

National Nuclear Security Administration (NNSA)

9%2A en International Programs http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorisminternationalprograms

429

21 January 2005: 13:00 Inhomogeneity as main source... -Robert Hack 1 Inhomogeneity as main source of  

E-Print Network [OSTI]

21 January 2005: 13:00 Inhomogeneity as main source... - Robert Hack 1 Inhomogeneity as main source of problems in engineering geology Robert Hack 21 January 2005 #12;21 January 2005: 13:00 Inhomogeneity as main source... - Robert Hack 2 What is inhomogeneity (or non- homogeneity) : Inhomogeneity

Hack, Robert

430

Bonded Bracket Assmebly for Frameless Solar Panels  

SciTech Connect (OSTI)

In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $1 per watt for photovoltaic systems would be equivalent to 6???¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $.50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics: Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules Topic 2: Roof and Ground Mount Innovations Topic 3: Transformational Photovoltaic System Designs Topic 4: Development of New Wind Load Codes for PV Systems The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included: 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations. 2) The development of a composite pultruded rail to replace traditional racking materials. 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs. 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

Murray, Todd

2013-01-30T23:59:59.000Z

431

Bond Distortions in Armchair Type Single Wall Carbon Nanotubes  

E-Print Network [OSTI]

The energy band gap structure and stability of (3,3) and (10,10) nanotubes have been comparatively investigated in the frameworks of the traditional form of the Su-Schrieffer-Heeger (SSH) model and a toy model including the contributions of bonds of different types to the SSH Hamiltonian differently. Both models give the same energy band gap structure but bond length distortions in different characters for the nanotubes.

N. Sunel; E. Rizaoglu; K. Harigaya; O. Ozsoy

2005-03-03T23:59:59.000Z

432

Method of making sintered ductile intermetallic-bonded ceramic composites  

DOE Patents [OSTI]

A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

Plucknett, K.; Tiegs, T.N.; Becher, P.F.

1999-05-18T23:59:59.000Z

433

BN Bonded BN fiber article and method of manufacture  

DOE Patents [OSTI]

A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.

Hamilton, Robert S. (Youngstown, NY)

1981-08-18T23:59:59.000Z

434

Time-Resolved Study of Bonding in Liquid Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Time-Resolved Study of Bonding Time-Resolved Study of Bonding in Liquid Carbon Time-Resolved Study of Bonding in Liquid Carbon Print Wednesday, 28 September 2005 00:00 We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the precious gemstone in diamond rings. While considerable attention has been focused on solid forms of carbon, the properties of liquid carbon are much more difficult to measure accurately. The very strong bonding between carbon atoms that gives diamonds their hardness also makes carbon very difficult to melt, requiring temperatures above 5000 K at pressures above 100 bar. Maintaining such conditions in a laboratory is a challenge that has hampered efforts to fully understand the chemical bonding properties of this biologically, industrially, and environmentally important element. At the ALS, researchers have found a way to rapidly heat a carbon sample and contain the resulting liquid long enough to perform picosecond time-resolved x-ray absorption spectroscopy. The technique provides a way to measure the bonding properties of liquid carbon at near-solid densities that can then be compared with results from molecular dynamics simulations.

435

Transient liquid phase bonding of structural intermetallic compounds  

Science Journals Connector (OSTI)

The intermetallic compound NiAl is a candidate material for high-temperature structural applications, for example in the hot-zone of aero gas turbine engines. However, if this material is to find significant structural applications, methodologies for primary fabrication of complex components and post-service repair will be required. In particular, joining technologies suitable for bonding NiAl to nickel-base alloys are required. This paper examines transient liquid phase (TLP) bonding as a method of joining NiAl to nickel-base alloys. The focus of the paper is microstructural development at the bond-line and in the adjacent (nickel-base and NiAl) substrates. Two different interlayer materials are considered in this paper, namely: Ni 4.5 wt.% Si 3.2 wt.%B (designated by the American Welding Society as 'BNi-3') and commercially pure copper. Bonds between binary, nominally-stoichiometric NiAl and both commercially pure nickel and Martin Marietta 247 are examined using edge-on transmission electron microscopy. The paper considers the character of the isothermal solidification process, the formation of second-phases at the bond-line and in the adjacent substrates and the extent to which NiAl-Ni-base alloy TLP bonds obey the assumptions implicit in standard models of the TLP process.

W.F. Gale; Y. Guan; S.V. Orel

1998-01-01T23:59:59.000Z

436

Theory of bonding of transition metals to nontransition metals  

Science Journals Connector (OSTI)

We present a theory of the chemical bond in compounds consisting of both transition metals and nontransition metals. Chemical trends in the bonding properties are established by directly comparing the total energies of a large number of such compounds with the total energies of their constituents. These chemical trends are analyzed in terms of the s-, p-, and d-like state densities of the compounds and the constituents. Rather different types of bonding are shown to result when the atomic s and p levels of the nontransition metal lie above, below, and near the energy of the transition-metal d level. The heat of compound formation is shown to result from a competition between two simple physical effects: (1) the weakening of the transition-metal bonds by the lattice dilatation required for the accommodation of the nontransition metal, and (2) the increased bonding which results from the occupation of the bonding members of the hybrid states formed from the interaction between the transition-metal d states and the s-p states on the nontransition metal. Our theoretical values for the heats of formation of these compounds are generally similar to those given by Miedema's empirical formula. Distinctive aspects of the variation of the heat of formation with the number of valence electrons reveal, however, that the microscopic picture on which the empirical formula is based is quite different from that given by our self-consistent energy-band theory.

C. D. Gelatt; Jr.; A. R. Williams; V. L. Moruzzi

1983-02-15T23:59:59.000Z

437

Better Buildings Neighborhood Program: Related Federal Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Related Federal Programs to someone by E-mail Share Better Buildings Neighborhood Program: Related Federal Programs on Facebook Tweet about Better Buildings Neighborhood Program: Related Federal Programs on Twitter Bookmark Better Buildings Neighborhood Program: Related Federal Programs on Google Bookmark Better Buildings Neighborhood Program: Related Federal Programs on Delicious Rank Better Buildings Neighborhood Program: Related Federal Programs on Digg Find More places to share Better Buildings Neighborhood Program: Related Federal Programs on AddThis.com... Our History Related Federal Programs Why Energy Efficiency Upgrades Contacts Related Federal Programs Related Links

438

Weatherization and Intergovernmental Program: Program Guidance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Guidance Program Guidance Site Map Printable Version Share this resource Send a link to Weatherization and Intergovernmental Program: Program Guidance to someone by E-mail Share Weatherization and Intergovernmental Program: Program Guidance on Facebook Tweet about Weatherization and Intergovernmental Program: Program Guidance on Twitter Bookmark Weatherization and Intergovernmental Program: Program Guidance on Google Bookmark Weatherization and Intergovernmental Program: Program Guidance on Delicious Rank Weatherization and Intergovernmental Program: Program Guidance on Digg Find More places to share Weatherization and Intergovernmental Program: Program Guidance on AddThis.com... Closeout Guidance Recovery Act Monitoring & Reporting National Environmental Policy Act

439

Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

440

Alternative Fuels Data Center: Maine Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Maine Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

442

Alternative Fuels Data Center: Maine Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section... Federal State

443

Hess Retail Natural Gas and Elec. Acctg. (Maine) | Open Energy...  

Open Energy Info (EERE)

for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleHessRetailNaturalGasandElec.Acctg.(Maine)&oldid786283" Categories: EIA Utility Companies and...

444

Price of Maine Natural Gas Exports (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Exports (Dollars per Thousand Cubic Feet) (Dollars per Thousand Cubic Feet) Price of Maine Natural Gas Exports (Dollars per Thousand Cubic Feet) (Dollars per Thousand...

445

,"Maine Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

446

Efficient Main Memory Deduplication Through Cross Layer Integration.  

E-Print Network [OSTI]

??Limited main memory size is the primary bottleneck for consolidating VMs. Memory scanners reduce the memory footprint of VMs by eliminating duplicate memory pages. Our (more)

Miller, Konrad

2014-01-01T23:59:59.000Z

447

Energy Incentive Programs, Delaware | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delaware Delaware Energy Incentive Programs, Delaware October 29, 2013 - 11:29am Addthis Updated August 2013 What public-purpose-funded energy efficiency programs are available in my state? Delaware's 1999 restructuring legislation mandated the creation of a systems benefit charge to fund low-income, energy efficiency, and renewable energy programs. Also, in the late 2000s, the state created the Delaware Sustainable Energy Utility, a non-profit corporation initially funded from bond issues, proceeds from the Regional Greenhouse Gas Initiative (RGGI), and federal government stimulus monies. The SEU's business and institutional programs have not been sustained, but the state's systems benefit charge continues to fund renewable energy programs for customers of the three largest utilities (see section below).

448

EFFICIENCY MAINE DIRECT INSTALLS INCREASE UPGRADE PACE | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

insurance coverage concordant with program terms and conditions; and submit a signed Registered Vendor Agreement form. Homeowners could use the "Advisor locator" tool on...

449

Current status of the RERTR Program  

SciTech Connect (OSTI)

The main purpose of this paper is to review the progress which has been accomplished by the RERTR Program during the past year, the present status of the program, the activities which are now in progress, and the program plans for the coming years. The changes that have taken place in the overall program plan are, in themselves, not very significant. Some activities were found to be somewhat more difficult than expected and required a longer time to complete; others were found to be less difficult than expected and caused opposite readjustments of the program plan. These effects tend to balance each other when the program is considered as a whole.

Travelli, A.

1980-01-01T23:59:59.000Z

450

Weatherization and Intergovernmental Program: Tribal Energy Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Site Map Printable Version Share this resource Send a link to Weatherization and Intergovernmental Program: Tribal Energy Program to someone by E-mail Share Weatherization and Intergovernmental Program: Tribal Energy Program on Facebook Tweet about Weatherization and Intergovernmental Program: Tribal Energy Program on Twitter Bookmark Weatherization and Intergovernmental Program: Tribal Energy Program on Google Bookmark Weatherization and Intergovernmental Program: Tribal Energy Program on Delicious Rank Weatherization and Intergovernmental Program: Tribal Energy Program on Digg Find More places to share Weatherization and Intergovernmental Program: Tribal Energy Program on AddThis.com... Plans, Implementation, & Results Weatherization Assistance Program

451

Letter from the Wind Program Director: Fourth Quarter 2013 |...  

Energy Savers [EERE]

A program-funded project at the University of Maine became the first grid connected offshore wind turbine in the United States. The program also launched its newest initiative,...

452

PROPOSED MODIFICATION TO THE ACI 318-02 CODE EQUATION ON BOND STRENGTH FOR MMFX STEEL  

E-Print Network [OSTI]

ST-263-1 PROPOSED MODIFICATION TO THE ACI 318-02 CODE EQUATION ON BOND STRENGTH FOR MMFX STEEL R the bond characteristics of Micro-composite Multi-structural Formable reinforcing steel rebars of the current equation of the ACI 318-02 Code on bond to predict the bond capacity of the MMFX steel rebars

453

A new hydrogen-bonding potential for the design of proteinRNA interactions predicts specific  

E-Print Network [OSTI]

A new hydrogen-bonding potential for the design of protein­RNA interactions predicts specific-dependent hydrogen-bonding potential based on the statistical analysis of hydrogen-bonding geometries of hydrogen-bonding atom pairs at protein­ nucleic acid interfaces. A scoring function based on the hydrogen

Baker, David

454

Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical Exchange Spectroscopy  

E-Print Network [OSTI]

Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical ExchangeVed: January 12, 2010 Hydrogen-bonded complexes between phenol and phenylacetylene are studied using ultrafast hydrogen bonding acceptor sites (phenyl or acetylene) that compete for hydrogen bond donors in solution

Fayer, Michael D.

455

The C OH O hydrogen bond: A determinant of stability and specificity  

E-Print Network [OSTI]

recovered by hydro- gen bond formation, so hydrogen bonds provide a small or even unfavorable net energy hydro- gen bond has been unclear and its interaction energy has been believed to be small. Recently that apparent carbon hydro- gen bonds cluster frequently at glycine-, serine-, and threonine-rich packing

Senes, Alessandro

456

Main Campus Emissions In 2007, Yale purchased the  

E-Print Network [OSTI]

Main Campus Emissions In 2007, Yale purchased the Bayer Pharmaceutical campus to expand the University's science and medical research. The 2005 baseline represents emissions when Bayer was operating,899 4,623 31,280 39,260 MAIN CAMPUS EMISSIONS WEST CAMPUS EMISSIONS 2014 2005 2014 2005 University Fleet

457

Vibration diagnosis of main journal bearings for diesel engines  

Science Journals Connector (OSTI)

A comprehensive summary of the vibration diagnosis techniques used to detect the wear of the main journal bearings in a diesel engine is presented. The load of the main journal bearing, the minimum thickness of the oil film, the oil film pressure and the locus of the crankshaft centre have been calculated based on the measured thermal parameters. Simulated wear experiments for the main journal bearing have been carried out in laboratory conditions. The strain and vibration on the main journal pedestals in the vertical direction were measured under various working conditions. The strain signals on the main journal bearing pedestal are related to the oil film forces, damped by the lubricant oil. The excitation sources and the vibration characteristics of the main journal bearing pedestal system were analysed by measuring the vibration signals. The relationships between the feature parameters of the vibration signals and the wear conditions of the main journal bearing have been obtained. It is promising, therefore, to develop and apply the vibration diagnosis technique further to detect the wear conditions of the main journal bearings online.

Yonghua Yu; Jianguo Yang

2005-01-01T23:59:59.000Z

458

Bicyclic graphs with exactly two main signless Laplacian eigenvalues  

E-Print Network [OSTI]

A signless Laplacian eigenvalue of a graph $G$ is called a main signless Laplacian eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. In this paper, all connected bicyclic graphs with exactly two main eigenvalues are determined.

Huang, He

2012-01-01T23:59:59.000Z

459

SECO Programs  

E-Print Network [OSTI]

maximum of $50,000 per grant ? Funded on a reimbursement basis Renewable Energy Technology Grants ? Fort Worth ISD ? South Sills High School ? 5KW Wind Turbine Alternative Fuel Grants ? Grant program to convert city/county and ISD vehicle... fleets to alternative fuels and hybrid- electric vehicles ? Competitive equipment grant program ? Maximum grant per vehicle - $5,000 ? Maximum total grant per applicant - $50,000 ? Funded on a reimbursement basis The LoanSTAR Revolving Loan Program...

Trevino, E.

2011-01-01T23:59:59.000Z

460

Program Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation: Background and Methods Evaluation: Background and Methods Definition of evaluation: the process of determining the worth or merit of something; if "something" is a program, then it's "program evaluation." Other types of evaluation include: product evaluation (most widely practiced, e.g., Consumer Reports); personnel evaluation; research evaluation; policy studies; art, movie, play, and book reviews. Program evaluation is NOT the same as research although they share many characteristics--Both: Start with questions Use similar methods Provide similar information Program evaluation focuses on decisions. Research focuses on answering questions about phenomena to discover new knowledge and test theories/hypotheses. Research is aimed at truth. Evaluation is aimed at

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Program Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Description Program Description SAGE, the Summer of Applied Geophysical Experience, is a unique educational program designed to introduce students in geophysics and related fields to "hands on" geophysical exploration and research. The program emphasizes both teaching of field methods and research related to basic science and a variety of applied problems. SAGE is hosted by the National Security Education Center and the Earth and Environmental Sciences Division of the Los Alamos National Laboratory. * teaches modern geophysical exploration techniques: seismic reflection and refraction, gravity and magnetics, electromagnetics (including magnetotellurics), and electrical resistivity * involves extensive hands-on field experience * integrates geophysical methods to solve real

462

Counterintelligence Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes Counterintelligence Program requirements and responsibilities for the Department of Energy, including the National Nuclear Security Administration. Cancels: DOE 5670.3.

2004-12-10T23:59:59.000Z

463

Program Planning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In practice, organization is fluid, highly matrixed; scientists work in multiple areas - Ad hoc Task Forces form to address specific problems or issues * Experimental Program...

464

Counterintelligence Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the policies, procedures, and specific responsibilities for the Department of Energy (DOE) Counterintelligence (CI) Program. This directive does not cancel any other directive.

1992-09-04T23:59:59.000Z

465

Programming Stage  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter addresses plans for the acquisition and installation of operating environment hardware and software and design of a training program.

1997-05-21T23:59:59.000Z

466

tentative program  

E-Print Network [OSTI]

Sep 28, 2014 ... with Jon Brown, Gabriel Nagy, Aidan Sims, and Dana Williams. David Fisher Groups acting on Manifolds: Around the Zimmer Program.

2014-09-19T23:59:59.000Z

467

LWRS Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What's New Archive Light Water Reactor Sustainability Program Accomplishments Report: 2013 An accomplishments report highlighting progress in the development of the scientific...

468

Central Maine Power Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Maine Power Company Smart Grid Project Maine Power Company Smart Grid Project Jump to: navigation, search Project Lead Central Maine Power Company Country United States Headquarters Location Augusta, Maine Recovery Act Funding $95858307 Total Project Value $191716614 Coverage Area Coverage Map: Central Maine Power Company Smart Grid Project Coordinates 44.3106241°, -69.7794897° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

469

Time-Resolved Study of Bonding in Liquid Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Time-Resolved Study of Bonding in Liquid Carbon Print Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the precious gemstone in diamond rings. While considerable attention has been focused on solid forms of carbon, the properties of liquid carbon are much more difficult to measure accurately. The very strong bonding between carbon atoms that gives diamonds their hardness also makes carbon very difficult to melt, requiring temperatures above 5000 K at pressures above 100 bar. Maintaining such conditions in a laboratory is a challenge that has hampered efforts to fully understand the chemical bonding properties of this biologically, industrially, and environmentally important element. At the ALS, researchers have found a way to rapidly heat a carbon sample and contain the resulting liquid long enough to perform picosecond time-resolved x-ray absorption spectroscopy. The technique provides a way to measure the bonding properties of liquid carbon at near-solid densities that can then be compared with results from molecular dynamics simulations.

470

Time-Resolved Study of Bonding in Liquid Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Time-Resolved Study of Bonding in Liquid Carbon Print Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the precious gemstone in diamond rings. While considerable attention has been focused on solid forms of carbon, the properties of liquid carbon are much more difficult to measure accurately. The very strong bonding between carbon atoms that gives diamonds their hardness also makes carbon very difficult to melt, requiring temperatures above 5000 K at pressures above 100 bar. Maintaining such conditions in a laboratory is a challenge that has hampered efforts to fully understand the chemical bonding properties of this biologically, industrially, and environmentally important element. At the ALS, researchers have found a way to rapidly heat a carbon sample and contain the resulting liquid long enough to perform picosecond time-resolved x-ray absorption spectroscopy. The technique provides a way to measure the bonding properties of liquid carbon at near-solid densities that can then be compared with results from molecular dynamics simulations.

471

Time-Resolved Study of Bonding in Liquid Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Time-Resolved Study of Bonding in Liquid Carbon Print Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the precious gemstone in diamond rings. While considerable attention has been focused on solid forms of carbon, the properties of liquid carbon are much more difficult to measure accurately. The very strong bonding between carbon atoms that gives diamonds their hardness also makes carbon very difficult to melt, requiring temperatures above 5000 K at pressures above 100 bar. Maintaining such conditions in a laboratory is a challenge that has hampered efforts to fully understand the chemical bonding properties of this biologically, industrially, and environmentally important element. At the ALS, researchers have found a way to rapidly heat a carbon sample and contain the resulting liquid long enough to perform picosecond time-resolved x-ray absorption spectroscopy. The technique provides a way to measure the bonding properties of liquid carbon at near-solid densities that can then be compared with results from molecular dynamics simulations.

472

From an insulating to a superfluid pair-bond liquid  

Science Journals Connector (OSTI)

We study an exchange coupled system of itinerant electrons and localized fermion pairs resulting in a resonant pairing formation. This system inherently contains resonating fermion pairs on bonds that lead to a superconducting phase, provided that long-range phase coherence between their constituents can be established. The prerequisite is that the resonating fermion pairs can become itinerant. This is rendered possible through the emergence of two kinds of bond fermions: individual and composite fermions made of one individual electron attached to a bound pair on a bond. If the strength of the exchange coupling exceeds a certain value, then the superconducting ground state undergoes a quantum phase transition into an insulating pair-bond liquid state. The gap of the superfluid phase thereby goes over continuously into a charge gap of the insulator. The changeover from the superconducting to the insulating phase is accompanied by a corresponding qualitative modification of the dispersion of the two kinds of fermionic excitations. Using a bond operator formalism, we derive the phase diagram of such a scenario together with the elementary excitations characterizing the various phases as a function of the exchange coupling and the temperature.

M. Cuoco and J. Ranninger

2006-09-20T23:59:59.000Z

473

New Insights into Hydrogen Bonding and Stacking Interactions in Cellulose  

SciTech Connect (OSTI)

In this quantum chemical study, we explore hydrogen bonding (H-bonding) and stacking interactions in different crystalline cellulose allomorphs, namely cellulose I and cellulose IIII. We consider a model system representing a cellulose crystalline core, made from six cellobiose units arranged in three layers with two chains per layer. We calculate the contributions of intrasheet and intersheet interactions to the structure and stability in both cellulose I and cellulose IIII crystalline cores. Reference structures for this study were generated from molecular dynamics simulations of water-solvated cellulose I and IIII fibrils. A systematic analysis of various conformations describing different mutual orientations of cellobiose units is performed using the hybrid density functional theory (DFT) with the M06-2X with 6-31+G (d, p) basis sets. We dissect the nature of the forces that stabilize the cellulose I and cellulose IIII crystalline cores and quantify the relative strength of H-bonding and stacking interactions. Our calculations demonstrate that individual H-bonding interactions are stronger in cellulose I than in cellulose IIII. We also observe a significant contribution from cooperative stacking interactions to the stabilization of cellulose I . In addition, the theory of atoms-in-molecules (AIM) has been employed to characterize and quantify these intermolecular interactions. AIM analyses highlight the role of nonconventional CH O H-bonding in the cellulose assemblies. Finally, we calculate molecular electrostatic potential maps for the cellulose allomorphs that capture the differences in chemical reactivity of the systems considered in our study.

Langan, Paul [ORNL

2011-01-01T23:59:59.000Z

474

Analytic bond-order potential for the gallium arsenide system  

Science Journals Connector (OSTI)

An analytic, bond-order potential (BOP) is proposed and parametrized for the gallium arsenide system. The potential addresses primary (?) and secondary (?) bonding and the valence-dependent character of heteroatomic bonding, and it can be combined with an electron counting potential to address the distribution of electrons on the GaAs surface. The potential was derived from a tight-binding description of covalent bonding by retaining the first two levels of an expanded Greens function for the ? and ? bond-order terms. Predictions using the potential were compared with independent estimates for the structures and binding energy of small clusters (dimers, trimers, and tetramers) and for various bulk lattices with coordinations varying from 4 to 12. The structure and energies of simple point defects and melting transitions were also investigated. The relative stabilities of the (001) surface reconstructions of GaAs were well predicted, especially under high-arsenic-overpressure conditions. The structural and binding energy trends of this GaAs BOP generally match experimental observations and ab initio calculations.

D. A. Murdick; X. W. Zhou; H. N. G. Wadley; D. Nguyen-Manh; R. Drautz; D. G. Pettifor

2006-01-20T23:59:59.000Z

475

Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development  

SciTech Connect (OSTI)

Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2010-11-23T23:59:59.000Z

476

Clean Energy Investment Program (Florida) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Investment Program (Florida) Clean Energy Investment Program (Florida) Clean Energy Investment Program (Florida) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info Funding Source US Department of Energy - ARRA State Florida Program Type Bond Program Provider Florida Opportunity Fund The Florida Opportunity Fund's Clean Energy Investment Program is a direct investment program created to promote the adoption of energy efficient and renewable energy (EE/RE) products and technologies in Florida. The Fund will increase the availability of capital in Florida through both loan and equity investment instruments, and is designed to help Florida businesses and promote the adoption of commercialized clean energy technology. Fund

477

Fitzgerald Wtr Lgt & Bond Comm | Open Energy Information  

Open Energy Info (EERE)

Fitzgerald Wtr Lgt & Bond Comm Fitzgerald Wtr Lgt & Bond Comm Jump to: navigation, search Name Fitzgerald Wtr Lgt & Bond Comm Place Georgia Utility Id 6380 Utility Location Yes Ownership M NERC Location SERC NERC RFC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Residential City Residential Residential Rural Residential Average Rates Residential: $0.1000/kWh Commercial: $0.1140/kWh Industrial: $0.0817/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

478

Students' Interdisciplinary Reasoning about "High-Energy Bonds" and ATP  

E-Print Network [OSTI]

Students' sometimes contradictory ideas about ATP (adenosine triphosphate) and the nature of chemical bonds have been studied in the biology and chemistry education literatures, but these topics are rarely part of the introductory physics curriculum. We present qualitative data from an introductory physics course for undergraduate biology majors that seeks to build greater interdisciplinary coherence and therefore includes these topics. In these data, students grapple with the apparent contradiction between the energy released when the phosphate bond in ATP is broken and the idea that an energy input is required to break a bond. We see that students' perceptions of how each scientific discipline bounds the system of interest can influence how they justify their reasoning about a topic that crosses disciplines. This has consequences for a vision of interdisciplinary education that respects disciplinary perspectives while bringing them into interaction in ways that demonstrate consistency amongst the perspectiv...

Dreyfus, Benjamin W; Sawtelle, Vashti; Svoboda, Julia; Turpen, Chandra; Redish, Edward F

2012-01-01T23:59:59.000Z

479

Metal-bonded, carbon fiber-reinforced composites  

DOE Patents [OSTI]

Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.

Sastri, Suri A. (Lexington, MA); Pemsler, J. Paul (Lexington, MA); Cooke, Richard A. (Framingham, MA); Litchfield, John K. (Bedford, MA); Smith, Mark B. (Ipswich, MA)

1996-01-01T23:59:59.000Z

480

Metal-bonded, carbon fiber-reinforced composites  

DOE Patents [OSTI]

Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.

Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.

1996-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "bond program maine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Reduction of Thermal Conductivity in Wafer-Bonded Silicon  

SciTech Connect (OSTI)

Blocks of silicon up to 3-mm thick have been formed by directly bonding stacks of thin wafer chips. These stacks showed significant reductions in the thermal conductivity in the bonding direction. In each sample, the wafer chips were obtained by polishing a commercial wafer to as thin as 36 {micro}m, followed by dicing. Stacks whose starting wafers were patterned with shallow dots showed greater reductions in thermal conductivity. Diluted-HF treatment of wafer chips prior to bonding led to the largest reduction of the effective thermal conductivity, by approximately a factor of 50. Theoretical modeling based on restricted conduction through the contacting dots and some conduction across the planar nanometer air gaps yielded fair agreement for samples fabricated without the HF treatment.

ZL Liau; LR Danielson; PM Fourspring; L Hu; G Chen; GW Turner

2006-11-27T23:59:59.000Z

482

Bond Amendment, Security Clearances - January 1, 2008 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Bond Amendment, Security Clearances - January 1, 2008 Bond Amendment, Security Clearances - January 1, 2008 Bond Amendment, Security Clearances - January 1, 2008 January 1, 2008 In General.-Title III of the Intelligence Reform and Terrorism Prevention Act of 2004 (50 U.S.C. 435b) is amended by adding at the end the following new section: "SEC. 3002. SECURITY CLEARANCES; LIMITATIONS SEC. 1072. SECURITY CLEARANCES; LIMITATIONS. (a) In General.-Title III of the Intelligence Reform and Terrorism Prevention Act of 2004 (50 U.S.C. 435b) is amended by adding at the end the following new section: "SEC. 3002. SECURITY CLEARANCES; LIMITATIONS. "(a) Definitions.-In this section: "(1) Controlled substance.-The term `controlled substance' has the meaning given that term in section 102 of the Controlled Substances Act (21 U.S.C.

483

Water molecules insert into N-HCl-M hydrogen bonds while M-ClX-C halogen bonds remain intact in dihydrates of halopyridinium hexachloroplatinates  

Science Journals Connector (OSTI)

Crystals of the dihydrates of three halopyridinium hexachloroplatinate salts form networks that are propagated via N-HO and O-HCl-Pt hydrogen bonds and Pt-ClX-C halogen bonds. The water molecules can be considered to have been inserted into N-HCl-Pt hydrogen bonds anticipated in the anyhdrous form of such salts.

Zordan, F.

2004-09-15T23:59:59.000Z

484

Hydrogen Bonds in Crystals. X. The Isotope Effect and Thermal Expansion of Non-Co-Operative Hydrogen Bonds in Furoic Acid  

Science Journals Connector (OSTI)

24 April 1956 research-article Hydrogen Bonds in Crystals. X. The Isotope Effect...Thermal Expansion of Non-Co-Operative Hydrogen Bonds in Furoic Acid J. McC. Pollock...Ubbelohde Ida Woodward Thermal effects in the hydrogen bonds in crystalline furoic acid have...

1956-01-01T23:59:59.000Z

485

Intramolecular Hydrogen Bonding in Disubstituted Ethanes. A Comparison of NH,,,O-and OH,,,O-Hydrogen Bonding through Conformational Analysis of 4-Amino-4-oxobutanoate  

E-Print Network [OSTI]

Intramolecular Hydrogen Bonding in Disubstituted Ethanes. A Comparison of NH,,,O- and OH,,,O- Hydrogen Bonding through Conformational Analysis of 4-Amino-4-oxobutanoate (succinamate) and Monohydrogen 1 of amide NH,,,O- and carboxyl OH,,,O- hydrogen bonds were investigated via conformational analysis

Goddard III, William A.

486

The role of hydrogen bonds in protein folding and protein association  

SciTech Connect (OSTI)

The contribution of a pair of functional groups that can form either intermolecular or intramolecular hydrogen bonds to the total standard free energy of the process of protein folding or protein association is examined. It is found that this contribution can be quite large, either positive or negative, depending on the particular process and on the solvent density. This is in contrast to the common belief that the hydrogen-bond energies tend to be compensated in these processes. For the binding process, in which the two functional groups are completely removed from the aqueous environment, the contribution of such a pair of functional groups to {Delta}G can be as high as +6.4 kcal/mol. This is the main reason why hydrophobic rather than hydrophilic surfaces tend to attach to each other. In contrast, when the two functional groups are only partially removed from the aqueous environment, as in the case of the formation of {alpha}-helix, their contribution to {Delta}G can be negative and of the order of about 1 kcal/mol.

Ben-Naim, A. (National Inst. of Health, Bethesda, MD (USA))

1991-02-07T23:59:59.000Z

487

High- and low-temperature bonding techniques for microstructures  

SciTech Connect (OSTI)

The ability to bond together two or more silicon wafers greatly expands the variety and complexity of silicon microstructures that can be designed and fabricated. At LLNL, microstructures have been used for many years as hardware in scientific experiments. The activity has recently been expanded into other areas to include microinstruments for biomedical applications and for chemical analysis. Both high temperature (1100{degrees}C) bonding techniques have been used, depending on the application. This paper discusses these applications with emphasis on the most extensive which is the fabrication of microchannel coolers for diode arrays.

Ciarlo, D.R.

1993-06-22T23:59:59.000Z

488

Program of the ISMSC 2009 in Maastricht, Netherlands http://www.ismsc-2009.org/program_symposium_ismsc_2009/program_ismsc_2009.htm[4/24/2009 3:06:54 PM  

E-Print Network [OSTI]

Program of the ISMSC 2009 in Maastricht, Netherlands http://www.ismsc-2009.org/program_symposium_ismsc_2009/program_ismsc_2009.htm[4/24/2009 3:06:54 PM] Main Page Symposium Program Venue & Travel programme 12:30 - 14:00 Lunch #12;Program of the ISMSC 2009 in Maastricht, Netherlands http://www.ismsc-2009

Yaghi, Omar M.

489

Maine Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Maine Regions Maine Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Maine Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Maine Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

490

Maine Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Maine Regions Maine Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Maine Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Maine Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

491

Mitigation Action Implementation Network (MAIN) | Open Energy Information  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Mitigation Action Implementation Network (MAIN) Year founded 2011 Website http://www.ccap.org/index.php? References MAIN[1] LinkedIn Connections "CCAP is working in collaboration with the World Bank Institute (WBI) and INCAE Business School to support the design and implementation of Nationally Appropriate Mitigation Actions (NAMAs) and Low-Carbon Development (LCD) strategies in developing countries through regionally based dialogues, web-based exchanges, and practitioner networks. Recent UNFCCC negotiations have made it clear that climate protection will depend on actions on the ground in both developing and developed countries. In recent years, developing countries have shown a significant commitment to

492

Maine Natural Gas LNG Storage Additions (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Additions (Million Cubic Feet) Maine Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0...

493

Maine Natural Gas LNG Storage Withdrawals (Million Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Withdrawals (Million Cubic Feet) Maine Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's...

494

Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

495

Lean implementation across value stream in main rotor blade area  

E-Print Network [OSTI]

The primary goal for this project was to help expand the existing capability of Sikorsky's main rotor blade business from raw material (titanium) through final assembly. The project helped to facilitate the ongoing lean ...

Phoenix, Casey J. (Casey John)

2007-01-01T23:59:59.000Z

496

Maine Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0...

497

Maine Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

498

Main Sequence Masses and Radii from Gravitational Redshifts  

E-Print Network [OSTI]

Modern instrumentation makes it possible to measure the mass to radius ratio for main sequence stars in open clusters from gravitational redshifts. For stars where independent information is available for either the mass or the radius, this application of general relativity directly determines the other quantity. Applicable examples are: 1) measuring the radii of solar metallicity main sequence stars for which the mass - luminosity relation is well known, 2) measuring the radii for stars where model atmospheres can be used to determine the surface gravity (the mass to radius squared ratio), 3) refining the mass - radius relation for main sequence stars, and 4) measuring the change in radius as stars evolve off the main sequence and up the giant branch.

Ted von Hippel

1995-12-02T23:59:59.000Z

499

PP-62 Central Maine Power Company | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Company to construct, operate, and maintain transmission facilities at the U.S. -Ca nada Border. PP-62 Central Maine Power Company More Documents & Publications PP-29-1...

500

An internal seal for repairing natural gas mains  

E-Print Network [OSTI]

Joint leakage from low pressure natural gas distribution mains (typical value: 0.25 ft[superscript 3] at 6 inwg gas pressure) is a persistent source of maintenance problems for utitlites. External encapsulation is the usual ...

Cooper, Samuel A.

1984-01-01T23:59:59.000Z