National Library of Energy BETA

Sample records for bond comm ga

  1. Lattice-Mismatched GaAs/InGaAs Two-Junction Solar Cells by Direct Wafer Bonding

    SciTech Connect (OSTI)

    Tanabe, K.; Aiken, D. J.; Wanlass, M. W.; Morral, A. F.; Atwater, H. A.

    2006-01-01

    Direct bonded interconnect between subcells of a lattice-mismatched III-V compound multijunction cell would enable dislocation-free active regions by confining the defect network needed for lattice mismatch accommodation to tunnel junction interfaces, while metamorphic growth inevitably results in less design flexibility and lower material quality than is desirable. The first direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs two-junction solar cell, is reported and demonstrates viability of direct wafer bonding for solar cell applications. The tandem cell open-circuit voltage was approximately the sum of the subcell open-circuit voltages. This achievement shows direct bonding enables us to construct lattice-mismatched III-V multijunction solar cells and is extensible to an ultrahigh efficiency InGaP/GaAs/InGaAsP/InGaAs four-junction cell by bonding a GaAs-based lattice-matched InGaP/GaAs subcell and an InP-based lattice-matched InGaAsP/InGaAs subcell. The interfacial resistance experimentally obtained for bonded GaAs/InP smaller than 0.10 Ohm-cm{sup 2} would result in a negligible decrease in overall cell efficiency of {approx}0.02%, under 1-sun illumination.

  2. Scanning tunneling microscopy study of the interfacial bonding structures of Ga2O and In2O/In0.53Ga0.47As(0 0 1)

    E-Print Network [OSTI]

    Kummel, Andrew C.

    trap density [3]. Fermi level pinning can be caused by strong perturbations to the electronic structure with the electronic structure of Ga2O on In0.53Ga0.47As(0 0 1) were explored. Scanning tunneling microscopy (STMScanning tunneling microscopy study of the interfacial bonding structures of Ga2O and In2O/In0.53Ga

  3. Novel ethylenediamine-gallium phosphate containing 6-fold coordinated gallium atoms with unusual four equatorial Ga–N bonds

    SciTech Connect (OSTI)

    Torre-Fernández, Laura [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); Espina, Aránzazu; Khainakov, Sergei A.; Amghouz, Zakariae [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); García, José R. [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); García-Granda, Santiago, E-mail: sgg@uniovi.es [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain)

    2014-07-01

    A novel ethylenediamine-gallium phosphate, formulated as Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, was synthesized under hydrothermal conditions. The crystal structure, including hydrogen positions, was determined using single-crystal X-ray diffraction data (monoclinic, a=9.4886(3) Ĺ, b=6.0374(2) Ĺ, c=10.2874(3) Ĺ, and ?=104.226(3)°, space group Pc) and the bulk was characterized by chemical (Ga–P–C–H–N) and thermal analysis (TG–MS and DSC), including activation energy data of its thermo-oxidative degradation, powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (SS-NMR) measurements, and transmission electron microscopy (TEM, SAED/NBD, and STEM BF-EDX). The crystal structure is built up of infinite zig-zag chains running along the c-axis, formed by vertex-shared (PO{sub 4}) and (GaO{sub 2}N{sub 4}) polyhedra. The new compound is characterized by unusual four equatorial Ga–N bonds coming from two nonequivalent ethylenediamine molecules and exhibits strong blue emission at 430 nm (?{sub ex}=350 nm) in the solid state at room temperature. - Graphical abstract: Single crystals of a new ethylenediamine-gallium phosphate, Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, were obtained and the structural features presented. This structure is one of the scarce examples of GaPO with Ga–N bonds reported. - Highlights: • A novel ethylenediamine-gallium phosphate was hydrothermally synthesized. • The new compound is characterized by unusual four equatorial Ga–N bonds. • Void-volume analysis shows cages and channels with sizes ideally suited to accommodate small molecules. • The new compound exhibits strong blue emission.

  4. Interfacial structure, bonding and composition of InAs and GaSb thin films determined using coherent Bragg rod analysis.

    SciTech Connect (OSTI)

    Cionca, C.; Walko, D. A.; Yacoby, Y.; Dorin, C.; Millunchick, J. M.; Clarke, R.; X-Ray Science Division; Univ. of Michigan; Hebrew Univ.

    2007-01-01

    We have used Bragg rod x-ray diffraction combined with a direct method of phase retrieval to extract atomic resolution electron-density maps of a complementary series of heteroepitaxial III-V semiconductor samples. From the three-dimensional electron-density maps we derive the monolayer spacings, the chemical compositions, and the characteristics of the bonding for all atomic planes in the film and across the film-substrate interface. InAs films grown on GaSb(001) under two different As conditions (using dimer or tetramer forms) both showed conformal roughness and mixed GaAs/InSb interfacial bonding character. The As tetramer conditions favored InSb bonding at the interface while, in the case of the dimer, the percentages corresponding to GaAs and InSb bonding were equal within the experimental error. The GaSb film grown on InAs(001) displayed significant In and As interdiffusion and had a relatively large fraction of GaAs-like bonds at the interface.

  5. Direct wafer bonding technology for large-scale InGaAs-on-insulator transistors

    SciTech Connect (OSTI)

    Kim, SangHyeon E-mail: sh-kim@kist.re.kr; Ikku, Yuki; Takenaka, Mitsuru; Takagi, Shinichi; Yokoyama, Masafumi; Nakane, Ryosho; Li, Jian; Kao, Yung-Chung

    2014-07-28

    Heterogeneous integration of III-V devices on Si wafers have been explored for realizing high device performance as well as merging electrical and photonic applications on the Si platform. Existing methodologies have unavoidable drawbacks such as inferior device quality or high cost in comparison with the current Si-based technology. In this paper, we present InGaAs-on-insulator (-OI) fabrication from an InGaAs layer grown on a Si donor wafer with a III-V buffer layer instead of growth on a InP donor wafer. This technology allows us to yield large wafer size scalability of III-V-OI layers up to the Si wafer size of 300?mm with a high film quality and low cost. The high film quality has been confirmed by Raman and photoluminescence spectra. In addition, the fabricated InGaAs-OI transistors exhibit the high electron mobility of 1700?cm{sup 2}/V s and uniform distribution of the leakage current, indicating high layer quality with low defect density.

  6. Fitzgerald Wtr Lgt & Bond Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpA JumpGmbHFerrisFillmoreChoiceGeneration

  7. BioComms Training: Strategic Communications and Message Development

    Broader source: Energy.gov [DOE]

    Strategic Communications and Message Development: Presentation to EERE BioComms Group by Kearns & West.

  8. Aberration-corrected transmission electron microscopy analyses of GaAs/Si interfaces in wafer-bonded multi-junction solar cells

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    -bonded multi-junction solar cells Dietrich Häussler a , Lothar Houben b , Stephanie Essig c , Mert Kurttepeli online 20 July 2013 Keywords: Multi-junction solar cell Wafer bonding Interfaces Aberration corrected and composition fluctuations near interfaces in wafer-bonded multi-junction solar cells. Multi-junction solar

  9. Wyandotte Municipal Serv Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch, New York: Energy ResourcesServ Comm

  10. Fairmont Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||New Jersey:Public Utilities Comm Jump

  11. Easton Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetek EuropeEPG|Elec Pwr AssnUtilities Comm

  12. Florence Utility Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex Fuels Energy Jump to:Flora Home Kyoung'sComm

  13. Fort Valley Utility Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex Fuels EnergyToolFort BlissUtility Comm Jump

  14. Greenwood Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydro ElectricGreenLtdUtilities Comm Jump to:

  15. Hutchinson Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoringUtilities Comm Jump to: navigation, search

  16. Tuntutuliak Comm Services Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) Jump to:Tucson Electric Power CoCleanTuntutuliak Comm

  17. Department: Communication Sciences Course No.: COMM 261W

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Department: Communication Sciences Course No.: COMM 261W Credits: 3 Title: Computer Mediated Communication Contact: Ross Buck WQ: W only Catalog Copy: COMM XXXXW. Computer Mediated Communication Either for credit. How computer media increasingly influence communication processes and how computer media

  18. Department: Communication Sciences Course No: COMM 200Q

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Department: Communication Sciences Course No: COMM 200Q Title: Research Methods in Communication Credits: 3 Contact: Ross Buck Catalog Copy: -200Q. Research Methods in Communication (Formerly offered to communication. Q Criteria: This course focuses on the application of quantitative research methods

  19. Colorado River Comm of Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClio Power LtdCountyNations CompanyRiver Comm

  20. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, V.A.

    1991-04-23

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  1. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, Victor A. (Naperville, IL)

    1991-01-01

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, An and alloys thereof.

  2. The Dependence of Electrical Properties on Miscut Orientation in Direct Bonded III-V Solar Cell Layers

    E-Print Network [OSTI]

    Seal, Mark K.

    2015-01-01

    GaInAs concentrator solar cells with 44.7% efficiency",wafer-bonded tandem solar cells”, 38 th IEEE Photovoltaicfor Wafer-Bonded Tandem Solar Cells”, ECS Trans. 50 99 (

  3. 1100 CommScope Place Hickory, NC 28603

    E-Print Network [OSTI]

    Lü, James Jian-Qiang

    EXPANDED POLYETHYLENE NOMINAL DIAMETER OVER DIELECTRIC: 0.180" (4.57 mm) SHIELD: 1 ST SHIELD: ALUMINUM Conductor Dielectric Aluminum Braided Shield PVC Jacket Bonded Aluminum Foil Shield Additional Aluminum Foil Shield CENTER CONDUCTOR: 18 AWG COPPER-CLAD STEEL NOMINAL DIAMETER: 0.040" (1.02 mm) DIELECTRIC: GAS

  4. Investing in Bonds 

    E-Print Network [OSTI]

    Johnson, Jason; Polk, Wade

    2002-08-12

    bonds Corporate bonds are generally the riskiest of all fixed-income securities because companies? even large, stable ones?are much more susceptible than govern- ments to economic problems, mis- management and competition. However, corporate bonds can...

  5. Four-Junction Solar Cell with 40% Target Efficiency Fabricated by Wafer Bonding and Layer Transfer: Final Technical Report, 1 January 2005 - 31 December 2007

    SciTech Connect (OSTI)

    Atwater, H. A.

    2008-11-01

    We realized high-quality InGaP/GaAs 2-junction top cells on Ge/Si, InGaAs/InP bottom cells, direct-bond series interconnection of tandem cells, and modeling of bonded 3- and 4-junction device performance.

  6. Graphic Comm Central http://teched.vt.edu:16080/gcc/[6/29/09 8:58:26 AM

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    , Virginia Tech #12;Graphic Comm Central http://teched.vt.edu:16080/gcc/index.html[6/29/09 8:58:59 AM Director: Mark Sanders, Virginia Tech #12;Graphic Comm Central http://teched.vt.edu:16080/gcc/HTML/AboutGCC.html Sanders, Virginia Tech #12;Graphic Comm Central http://teched.vt.edu/GCC/HTML/Search/Search.html[6/29/09 8

  7. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of...

  8. Essays on corporate bonds

    E-Print Network [OSTI]

    Bao, Jack (Jack C.)

    2009-01-01

    This thesis consists of three empirical essays on corporate bonds, examining the role of both credit risk and liquidity. In the first chapter, I test the ability of structural models of default to price corporate bonds in ...

  9. Bonding thermoplastic polymers

    DOE Patents [OSTI]

    Wallow, Thomas I. (Fremont, CA); Hunter, Marion C. (Livermore, CA); Krafcik, Karen Lee (Livermore, CA); Morales, Alfredo M. (Livermore, CA); Simmons, Blake A. (San Francisco, CA); Domeier, Linda A. (Danville, CA)

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  10. Roadmap: Communication Studies Public Communication Bachelor of Arts [CI-BA-COMM-PCMM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Communication Studies ­ Public Communication ­ Bachelor of Arts [CI-BA-COMM-PCMM] College: 23-May-12/LNHD This roadmap is a recommended semester-by-semester plan of study for this major 2 #12;Roadmap: Communication Studies ­ Public Communication ­ Bachelor of Arts [CI

  11. Al.SEP Array E -Comm~nd Decoder Failure Modes, Effects 8;

    E-Print Network [OSTI]

    Rathbun, Julie A.

    in the Control Logic Section by locking to the 1 KHz uplink clock generated at the ground station. The phase lock\\ Al.SEP Array E - Comm~nd Decoder Failure Modes, Effects 8; ATM 949 ! Criticality Analysis PAGI OF 27 DATE 6-1-71 This ATM dotuments the Failure Modes, Effects and Criticality Analysis 'on the Bendix

  12. Lug A Mug Marketing Campaign One Less Cup Page 1 of 54 COMM 468-202

    E-Print Network [OSTI]

    Lug A Mug Marketing Campaign ­ One Less Cup Page 1 of 54 COMM 468-202 Marketing Applications Lug A Mug Marketing Campaign Jasmine Teh Randy Pan Sami Dong Stephanie Gozali Steven Eng Willson Wong Yulichia Ong #12;Lug A Mug Marketing Campaign ­ One Less Cup Page 2 of 54 EXECUTIVE SUMMARY 5 PART I : AMS

  13. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell

    SciTech Connect (OSTI)

    Venkatasubramanian, R. )

    1993-01-01

    This report describes work to develop inverted-grown Al[sub 0.34]Ga[sub 0.66]As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al[sub 0.34]Ga[sub 0.66]As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The cycled'' organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

  14. Bonded semiconductor substrate

    DOE Patents [OSTI]

    Atwater, Jr.; Harry A. (South Pasadena, CA), Zahler; James M. (Pasadena, CA)

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  15. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Chaplin, Martin

    2007-01-01

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperature...

  16. Elastic properties of Pu metal and Pu-Ga alloys

    SciTech Connect (OSTI)

    Soderlind, P; Landa, A; Klepeis, J E; Suzuki, Y; Migliori, A

    2010-01-05

    We present elastic properties, theoretical and experimental, of Pu metal and Pu-Ga ({delta}) alloys together with ab initio equilibrium equation-of-state for these systems. For the theoretical treatment we employ density-functional theory in conjunction with spin-orbit coupling and orbital polarization for the metal and coherent-potential approximation for the alloys. Pu and Pu-Ga alloys are also investigated experimentally using resonant ultrasound spectroscopy. We show that orbital correlations become more important proceeding from {alpha} {yields} {beta} {yields} {gamma} plutonium, thus suggesting increasing f-electron correlation (localization). For the {delta}-Pu-Ga alloys we find a softening with larger Ga content, i.e., atomic volume, bulk modulus, and elastic constants, suggest a weakened chemical bonding with addition of Ga. Our measurements confirm qualitatively the theory but uncertainties remain when comparing the model with experiments.

  17. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  18. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  19. Qualified Energy Conservation Bonds

    Broader source: Energy.gov [DOE]

    Provides an in-depth description of qualified energy conservation bonds, including process and mechanics, case studies, utilization trends, barriers, and regulatory and legal issues. Author: Energy Programs Consortium

  20. Characterization of anodic bonding

    E-Print Network [OSTI]

    Tudryn, Carissa Debra, 1978-

    2004-01-01

    Anodic bonding is a common process used in MicroElectroMechanical Systems (MEMS) device fabrication and packaging. Polycrystalline chemical vapor deposited (CVD) silicon carbide (SiC) is emerging as a new MEMS device and ...

  1. Bonding aerogels with polyurethanes

    SciTech Connect (OSTI)

    Matthews, F.M.; Hoffman, D.M.

    1989-11-01

    Aerogels, porous silica glasses with ultra-fine cell size (30nm), are made by a solution gelation (sol-gel) process. The resulting gel is critical point dried to densities from 0.15--0.60 g/cc. This material is machinable, homogeneous, transparent, coatable and bondable. To bond aerogel an adhesive should have long cure time, no attack on the aerogel structure, and high strength. Several epoxies and urethanes were examined to determine if they satisfied these conditions. Bond strengths above 13 psi were found with double bubble and DP-110 epoxies and XI-208/ODA-1000 and Castall U-2630 urethanes. Hardman Kalex Tough Stuff'' A-85 hardness urethane gave 18 psi bond strength. Hardman A-85, Tuff-Stuff'' was selected for further evaluation because it produced bond strengths comparable to the adherend cohesive strength. 5 refs., 2 figs.

  2. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Martin Chaplin

    2007-06-10

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

  3. COMM REF

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. 'explainsBurrell,C: LIRECORD4

  4. Growth and characterization of liquid phase epitaxial GaP layers 

    E-Print Network [OSTI]

    Kao, Yung-Chung

    1982-01-01

    Z HSVHd aInbIq BO NOIIVZIHBIDVBVHD GNV KIMO'80 GROWTH AND CHARACTERIZATION OF LIQUID PHASE EPITAXIAL GaP LAYERS A Thesis by YUNG-CHUNG KAO Approved as to style and content by: 04 (Chairman of Comm' tee) (Member) ~a m. December 1982 ABSTRACT... GROWTH AND CHARACTERIZATION OF LIQUID PHASE EPITAXIAL Gap LAYERS. (December 1982) Yung-Chung Kao, B. S. , National Tsing-Hua University Chairman of Advisory Committee: Dr. Ohannes Eknoyan Gallium Phosphide, a compound semiconductor with wide energy...

  5. Qualifying Energy Conservation Bonds 

    E-Print Network [OSTI]

    Briggs, J.

    2013-01-01

    Bonds (QECB’s) CATEE Conference December 18, 2013 ESL-KT-13-12-39 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 • Originally authorized by the Energy Improvement & Extension Act of 2008 • American Recovery... ) of the interest cost associated with the transaction • Typical effective interest rates anywhere from 0%-2% depending on credit strength • Bond issuance or private placement is acceptable 2 What are QECB’s ESL-KT-13-12-39 CATEE 2013: Clean Air Through Energy...

  6. Photochemical tissue bonding

    DOE Patents [OSTI]

    Redmond, Robert W. (Brookline, MA); Kochevar, Irene E. (Charlestown, MA)

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  7. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell. Final subcontract report, 1 January 1991--31 August 1992

    SciTech Connect (OSTI)

    Venkatasubramanian, R.

    1993-01-01

    This report describes work to develop inverted-grown Al{sub 0.34}Ga{sub 0.66}As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al{sub 0.34}Ga{sub 0.66}As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The ``cycled`` organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al{sub 0.34}Ga{sub 0.66}As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

  8. COMM 498 -Field Investigation in Operations Management By now, you've taken plenty of courses dealing with the theory behind the

    E-Print Network [OSTI]

    Saskatchewan, University of

    1 COMM 498 - Field Investigation in Operations Management By now, you've taken plenty of courses analytical concepts? Welcome to Comm 498: Field Investigation in Operations Management! This course provides processes? How do actual organizations apply operations management in the study, analysis and improvement

  9. SepTeMBeR 2011 | Vol. 54 | no. 9 | CommUniCations of the aCm 69 Constraint-satisfaction problems arise in diverse

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    SepTeMBeR 2011 | Vol. 54 | no. 9 | CommUniCations of the aCm 69 Constraint-satisfaction problems techniques. #12;70 CommUniCations of the aCm | SepTeMBeR 2011 | Vol. 54 | no. 9 contributed articles

  10. CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 CMPT 116CHEM 250# MATH 223 EE 201 GE 213 Grp. A elective*CHE 223 Hum/SocSci Jr. MATH 224 English 11x CHE 220CHE 210 CHE

  11. CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    CHEM 114 GE 124 MATH 110 COMM 102GE 110 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 CMPT 116CHEM 250# MATH 223 EE 201 GE 213 Grp. A elective*CHE 223 HSS@# MATH 224 English 11x CHE 220CHE 210 CHE 323 CHE

  12. CHEM 114 GE 124 MATH 110 GE 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    CHEM 114 GE 124 MATH 110 GE 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 ME 227 GE 213# MATH 223 EE 201ME 214 CMPT 116 ME 215 GE 226 MATH 224 Hum/SocSci@# ME 251 ME 229 ME 318 ME 335 ME 313

  13. CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    2005-2006 CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 GEOL 245 MATH 223 CE 328 CE 212 CE 225 CE 295GE 213# MATH 224 GEOL 224 GEOE 218 GEOL 258 BusSci/HSS# GEOE 315 GEOE

  14. CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120

    E-Print Network [OSTI]

    Saskatchewan, University of

    2006-07 CHEM 114 GE 124 MATH 110 COMM 102 CHEM 115# GE 125 MATH 124 PHYS 155 GE 120 GEOL 245 MATH 223 CE 328 CE 212 CE 225 CE 295GE 213# MATH 224 GEOL 224 GEOE 218 GEOL 258 Hum/SocSci Jr. GEOE 315

  15. Pauling bond strength, bond length and electron density distribution

    SciTech Connect (OSTI)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2014-01-18

    A power law regression equation, = 1.46(/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, , between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(?(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43(/r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ?(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, ?, power law expression ? = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M-O bonded interactions for a relatively wide range of M atoms of the periodic table. The power law equation determined for the oxide crystals at ambient conditions is similar to the power law expression = r[1.46/]5.26 determined for the perovskites at pressures as high as 80 GPa, indicating that the intrinsic connection between R(M-O) and ?(rc) that holds at ambient conditions also holds, to a first approximation, at high pressures.

  16. Local Structures and Interface Morphology of InGaAsN Thin Films Grown on GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Chen, J.G.; Geisz, J.F.; Huang, S.; Hulbert, S.L.; Jones, E.D.; Kao, Y.H.; Kurtz, S.; Kurtz, S.R.; Olson, J.M.; Soo, Y.L.

    1999-02-23

    The compound semiconductor system InGaAsN exhibits many intriguing properties which are particularly useful for the development of innovative high efficiency thin film solar cells and long wavelength lasers. The bandgap in these semiconductors can be varied by controlling the content of N and In and the thin films can yet be lattice-matched to GaAs. In the present work, x-ray absorption fine structure (XAFS) and grazing incidence x-ray scattering (GIXS) techniques have been employed to probe the local environment surrounding both N and In atoms as well as the interface morphology of InGaAsN thin films epitaxially grown on GaAs. The soft x-ray XAFS results around nitrogen K-edge reveal that N is in the sp{sup 3} hybridized bonding configuration in InGaAsN and GaAsN, suggesting that N impurities most likely substitute for As sites in these two compounds. The results of In K-edge XAFS suggest a possible trend of a slightly larger coordination number of As nearest neighbors around In atoms in InGaAsN samples with a narrower bandgap whereas the In-As interatomic distance remains practically the same as in InAs within the experimental uncertainties. These results combined suggest that N-substitution of the As sites plays an important role of bandgap-narrowing while in the meantime counteracting the compressive strain caused by In-doping. Grazing incidence x-ray scattering (GIXS) experiments verify that InGaAsN thin films can indeed form very smooth interfaces with GaAs yielding an average interfacial roughness of 5-20{angstrom}.

  17. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  18. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSSTrending: Metal Oxo Bonds

  19. AlGaN/GaN-based power semiconductor switches

    E-Print Network [OSTI]

    Lu, Bin, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    AlGaN/GaN-based high-electron-mobility transistors (HEMTs) have great potential for their use as high efficiency and high speed power semiconductor switches, thanks to their high breakdown electric field, mobility and ...

  20. Influence of post-deposition annealing on interfacial properties between GaN and ZrO{sub 2} grown by atomic layer deposition

    SciTech Connect (OSTI)

    Ye, Gang; Wang, Hong, E-mail: ewanghong@ntu.edu.sg; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong [Novitas, Nanoelectronics Center of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Geok Ng, Serene Lay; Ji, Rong [Data Storage Institute, Agency for Science Technology and Research (A-STAR), 5 Engineering Drive 1, 117608 (Singapore); Liu, Zhi Hong [Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 (Singapore)

    2014-10-13

    Influence of post-deposition annealing on interfacial properties related to the formation/annihilation of interfacial GaO{sub x} layer of ZrO{sub 2} grown by atomic layer deposition (ALD) on GaN is studied. ZrO{sub 2} films were annealed in N{sub 2} atmospheres in temperature range of 300?°C to 700?°C and analyzed by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that Ga-O bond to Ga-N bond area ratio decreases in the samples annealed at temperatures lower than 500?°C, which could be attributed to the thinning of GaO{sub x} layer associated with low surface defect states due to “clean up” effect of ALD-ZrO{sub 2} on GaN. However, further increase in annealing temperature results in deterioration of interface quality, which is evidenced by increase in Ga-O bond to Ga-N bond area ratio and the reduction of Ga-N binding energy.

  1. Better Bonded Ethernet Load Balancing

    SciTech Connect (OSTI)

    Gabler, Jason

    2006-09-29

    When a High Performance Storage System's mover shuttles large amounts of data to storage over a single Ethernet device that single channel can rapidly become saturated. Using Linux Ethernet channel bonding to address this and similar situations was not, until now, a viable solution. The various modes in which channel bonding could be configured always offered some benefit but only under strict conditions or at a system resource cost that was greater than the benefit gained by using channel bonding. Newer bonding modes designed by various networking hardware companies, helpful in such networking scenarios, were already present in their own switches. However, Linux-based systems were unable to take advantage of those new modes as they had not yet been implemented in the Linux kernel bonding driver. So, except for basic fault tolerance, Linux channel bonding could not positively combine separate Ethernet devices to provide the necessary bandwidth.

  2. Quantum Confinement in Hydrogen Bond

    E-Print Network [OSTI]

    Carlos da Silva dos Santos; Elso Drigo Filho; Regina Maria Ricotta

    2015-02-09

    In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and non-confinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from Supersymmetric Quantum Mechanics (SQM) formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy.

  3. Pascal, Blaise (1623-1662).. Expriences nouvelles touchant le vuide ,faites dans des tuyaux, syringues, soufflets et siphons de plusieurs longueurs et figures, avec diverses liqueurs, comme vif-argent, eau, vin, huyle, air, etc. avec un discours sur le me

    E-Print Network [OSTI]

    Aubin, David

    , syringues, soufflets et siphons de plusieurs longueurs et figures, avec diverses liqueurs, comme vif

  4. Physical Nature of Hydrogen Bond

    E-Print Network [OSTI]

    Zhyganiuk, I V

    2015-01-01

    The physical nature and the correct definition of hydrogen bond (H-bond) are considered.\\,\\,The influence of H-bonds on the thermodynamic, kinetic, and spectroscopic properties of water is analyzed.\\,\\,The conventional model of H-bonds as sharply directed and saturated bridges between water molecules is incompatible with the behavior of the specific volume, evaporation heat, and self-diffusion and kinematic shear viscosity coefficients of water. On the other hand, it is shown that the variation of the dipole moment of a water molecule and the frequency shift of valence vibrations of a hydroxyl group can be totally explained in the framework of the electrostatic model of H-bond.\\,\\,At the same time, the temperature dependences of the heat capacity of water in the liquid and vapor states clearly testify to the existence of weak H-bonds.\\,\\,The analysis of a water dimer shows that the contribution of weak H-bonds to its ground state energy is approximately 4--5 times lower in comparison with the energy of electr...

  5. Understanding oxygen adsorption on 9.375 at. % Ga-stabilized ?-Pu (111) surface: A DFT study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.

    2015-08-30

    Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature ?-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized ?-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore »chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less

  6. Fusion bonding and alignment fixture

    DOE Patents [OSTI]

    Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  7. Method for vacuum fusion bonding

    DOE Patents [OSTI]

    Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  8. Method of bonding

    DOE Patents [OSTI]

    Saller, deceased, Henry A. (late of Columbus, OH); Hodge, Edwin S. (Columbus, OH); Paprocki, Stanley J. (Columbus, OH); Dayton, Russell W. (Columbus, OH)

    1987-12-01

    1. A method of making a fuel-containing structure for nuclear reactors, comprising providing an assembly comprising a plurality of fuel units; each fuel unit consisting of a core plate containing thermal-neutron-fissionable material, sheets of cladding metal on its bottom and top surfaces, said cladding sheets being of greater width and length than said core plates whereby recesses are formed at the ends and sides of said core plate, and end pieces and first side pieces of cladding metal of the same thickness as the core plate positioned in said recesses, the assembly further comprising a plurality of second side pieces of cladding metal engaging the cladding sheets so as to space the fuel units from one another, and a plurality of filler plates of an acid-dissolvable nonresilient material whose melting point is above 2000.degree. F., each filler plate being arranged between a pair of said second side pieces and the cladding plates of two adjacent fuel units, the filler plates having the same thickness as the second side pieces; the method further comprising enclosing the entire assembly in an envelope; evacuating the interior of the entire assembly through said envelope; applying inert gas under a pressure of about 10,000 psi to the outside of said envelope while at the same time heating the assembly to a temperature above the flow point of the cladding metal but below the melting point of any material of the assembly, whereby the envelope is pressed against the assembly and integral bonds are formed between plates, sheets, first side pieces, and end pieces and between the sheets and the second side pieces; slowly cooling the assembly to room temperature; removing the envelope; and dissolving the filler plates without attacking the cladding metal.

  9. Low Temperature Material Bonding Techniq Ue

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-08-06

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  10. Hydrogen Bond Shaping of Membrane Protein Structure

    E-Print Network [OSTI]

    Cao, Zheng

    2013-01-01

    2 1.3. HYDROGEN BOND STRENGTHAND EQUILIBRIUM HYDROGEN / DEUTERIUM FRACTIONATION4 1.4. MEASUING HYDROGEN BOND STRENGTH IN A MEMBRANE PROTEIN

  11. Sandia Energy - Diffusion Bonding Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bond surface is poor or only the region near this corner. Diffusion 7-8-9 "Diffusion Welding and Brazing," in Welding Handbook, 7th ed., American Welding Society, 1980, p 311-335...

  12. Activation of small alkanes in Ga-exchanged zeolites: A quantum chemical study of ethane dehydrogenation

    SciTech Connect (OSTI)

    Frash, M.V.; Santen, R.A. van

    2000-03-23

    Quantum chemical calculations on the mechanism of ethane dehydrogenation catalyzed by Ga-exchanged zeolites have been undertaken. Two forms of gallium, adsorbed dihydride gallium ion GaH{sub 2}+Z{sup {minus}} and adsorbed gallyl ion [Ga=O]{sup +}Z{sup {minus}}, were considered. It was found that GaH{sub 2}{sup +}Z{sup {minus}} is the likely active catalyst. On the contrary, [Ga=O]{sup +}Z{sup {minus}} cannot be a working catalyst in nonoxidative conditions, because regeneration of this form is very difficult. Activation of ethane by GaH{sub 2}{sup +}Z{sup {minus}} occurs via an alkyl mechanism and the gallium atom acts as an acceptor of the ethyl group. The carbenium activation of ethane, with gallium abstracting a hydride ion, is much (ca. 51 kcal/mol) more difficult. The catalytic cycle for the alkyl activation consists of three elementary steps: (1) rupture of the ethane C-H bond; (2) formation of dihydrogen from the Bronsted proton and hydrogen bound to Ga; and (3) formation of ethene from the ethyl group bound to Ga. The best estimates (MP2/6--311++G(2df,p)//B3LYP/6--31G*) for the activation energies of these three steps are 36.9, ca. 0, and 57.9 kcal/mol, respectively.

  13. Towards large size substrates for III-V co-integration made by direct wafer bonding on Si

    SciTech Connect (OSTI)

    Daix, N., E-mail: dai@zurich.ibm.com; Uccelli, E.; Czornomaz, L.; Caimi, D.; Rossel, C.; Sousa, M.; Siegwart, H.; Marchiori, C.; Fompeyrine, J. [IBM Research - Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Hartmann, J. M. [CEA, LETI 17, rue des Martyrs, F-38054 Grenoble (France); Shiu, K.-T.; Cheng, C.-W.; Krishnan, M.; Lofaro, M.; Kobayashi, M.; Sadana, D. [IBM T. J. Watson Research Center, 1101 Kitchawan Rd., Route 134 Yorktown Heights, New York 10598 (United States)

    2014-08-01

    We report the first demonstration of 200 mm InGaAs-on-insulator (InGaAs-o-I) fabricated by the direct wafer bonding technique with a donor wafer made of III-V heteroepitaxial structure grown on 200 mm silicon wafer. The measured threading dislocation density of the In{sub 0.53}Ga{sub 0.47}As (InGaAs) active layer is equal to 3.5 × 10{sup 9} cm{sup ?2}, and it does not degrade after the bonding and the layer transfer steps. The surface roughness of the InGaAs layer can be improved by chemical-mechanical-polishing step, reaching values as low as 0.4 nm root-mean-square. The electron Hall mobility in 450 nm thick InGaAs-o-I layer reaches values of up to 6000 cm{sup 2}/Vs, and working pseudo-MOS transistors are demonstrated with an extracted electron mobility in the range of 2000–3000 cm{sup 2}/Vs. Finally, the fabrication of an InGaAs-o-I substrate with the active layer as thin as 90 nm is achieved with a Buried Oxide of 50 nm. These results open the way to very large scale production of III-V-o-I advanced substrates for future CMOS technology nodes.

  14. Transient liquid phase ceramic bonding

    DOE Patents [OSTI]

    Glaeser, Andreas M. (Berkeley, CA)

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  15. The Effect of Offcut Angle on Electrical Conductivity of Direct Wafer-Bonded n-GaAs/n-GaAs Structures for Wafer-Bonded Tandem Solar Cells

    E-Print Network [OSTI]

    Yeung, King Wah Sunny

    2012-01-01

    photovoltaic applications, as multijunction solar devices currently achieving world record power conversion efficiencies typically consist of a multiple cell

  16. The Effect of Offcut Angle on Electrical Conductivity of Direct Wafer-Bonded n-GaAs/n-GaAs Structures for Wafer-Bonded Tandem Solar Cells

    E-Print Network [OSTI]

    Yeung, King Wah Sunny

    2012-01-01

    electron tunneling model revealed an increase in the potential barrier to conduction, due to the presence of charge trap

  17. The Effect of Offcut Angle on Electrical Conductivity of Direct Wafer-Bonded n-GaAs/n-GaAs Structures for Wafer-Bonded Tandem Solar Cells

    E-Print Network [OSTI]

    Yeung, King Wah Sunny

    2012-01-01

    Efficient Inverted Triple- Junction Solar Cell with TwoCurrent-Matched Triple-Junction Solar Cell Reaching 41.1%

  18. The Effect of Offcut Angle on Electrical Conductivity of Direct Wafer-Bonded n-GaAs/n-GaAs Structures for Wafer-Bonded Tandem Solar Cells

    E-Print Network [OSTI]

    Yeung, King Wah Sunny

    2012-01-01

    manufacturing of multijunction III-V solar cells by directMultijunction semiconductor heterostructures are the basis for the design of high efficiency solar cellscell efficiency is currently held by Solar Junction at 43.5% 1 for their multijunction

  19. Bond percolation on multiplex networks

    E-Print Network [OSTI]

    Hackett, A; Gómez, S; Arenas, A; Gleeson, J P

    2015-01-01

    We present an analytical approach for bond percolation on multiplex networks and use it to determine the expected size of the giant connected component and the value of the critical bond occupation probability in these networks. We advocate the relevance of these tools to the modeling of multilayer robustness and contribute to the debate on whether any benefit is to be yielded from studying a full multiplex structure as opposed to its monoplex projection, especially in the seemingly irrelevant case of a bond occupation probability that does not depend on the layer. Although we find that in many cases the predictions of our theory for multiplex networks coincide with previously derived results for monoplex networks, we also uncover the remarkable result that for a certain class of multiplex networks, well described by our theory, new critical phenomena occur as multiple percolation phase transitions are present. We provide an instance of this phenomenon in a multipex network constructed from London rail and Eu...

  20. Bond Underwriter Costs: Texas School Districts and the Hidden Cost of Issuing Bonds 

    E-Print Network [OSTI]

    Stasny, Mary Knetsar

    2011-02-22

    The purpose of this study was to investigate possible relationships between school district characteristics and bond underwriter costs for Texas independent school districts. Bond data for all school districts issuing bonds in the five-year period...

  1. Polarization-engineered GaN/InGaN/GaN tunnel diodes

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram; Nath, Digbijoy N.; Akyol, Fatih; Park, Pil Sung; Esposto, Michele; Rajan, Siddharth [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

    2010-11-15

    We report on the design and demonstration of polarization-engineered GaN/InGaN/GaN tunnel junction diodes with high current density and low tunneling turn-on voltage. Wentzel-Kramers-Brillouin calculations were used to model and design tunnel junctions with narrow band gap InGaN-based barrier layers. N-polar p-GaN/In{sub 0.33}Ga{sub 0.67}N/n-GaN heterostructure tunnel diodes were grown using molecular beam epitaxy. Efficient interband tunneling was achieved close to zero bias with a high current density of 118 A/cm{sup 2} at a reverse bias of 1 V, reaching a maximum current density up to 9.2 kA/cm{sup 2}. These results represent the highest current density reported in III-nitride tunnel junctions and demonstrate the potential of III-nitride tunnel devices for a broad range of optoelectronic and electronic applications.

  2. Non-bonded ultrasonic transducer

    DOE Patents [OSTI]

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  3. Enhanced rigid-bond restraints

    SciTech Connect (OSTI)

    Thorn, Andrea; Dittrich, Birger; Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen (Germany)

    2012-07-01

    An extension is proposed to the rigid-bond description of atomic thermal motion in crystals. The rigid-bond model [Hirshfeld (1976 ?). Acta Cryst. A32, 239–244] states that the mean-square displacements of two atoms are equal in the direction of the bond joining them. This criterion is widely used for verification (as intended by Hirshfeld) and also as a restraint in structure refinement as suggested by Rollett [Crystallographic Computing (1970 ?), edited by F. R. Ahmed et al., pp. 167–181. Copenhagen: Munksgaard]. By reformulating this condition, so that the relative motion of the two atoms is required to be perpendicular to the bond, the number of restraints that can be applied per anisotropic atom is increased from about one to about three. Application of this condition to 1,3-distances in addition to the 1,2-distances means that on average just over six restraints can be applied to the six anisotropic displacement parameters of each atom. This concept is tested against very high resolution data of a small peptide and employed as a restraint for protein refinement at more modest resolution (e.g. 1.7 Ĺ)

  4. Bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  5. Studies of vibrational properties in Ga stabilized delta-Pu by extended X-ray absorption fine structure

    SciTech Connect (OSTI)

    Allen, P.G.; Henderson, A.L.; Sylwester, E.R.; Turchi, P.E.A.; Shen, T.H.; Gallegos, G.F.; Booth, C.H.

    2002-02-14

    Temperature dependent extended x-ray absorption fine structure (EXAFS) spectra were measured for a 3.3 at. % Ga stabilized Pu alloy over the range T= 20 - 300 K. EXAFS data were acquired at both the Ga K-edge and the Pu L{sub III} edge. Curve-fits were performed to the first shell interactions to obtain pair-distance distribution widths, {sigma}, as a function of temperature. The temperature dependence of {sigma}(T) was accurately modeled using a correlated-Debye model for the lattice vibrational properties, suggesting Debye-like behavior in this material. Using this formalism, we obtain pair-specific correlated-Debye temperatures, {Theta}{sub cD}, of 110.7 {+-} 1.7 K and 202.6 {+-} 3.7 K, for the Pu-Pu and Ga-Pu pairs, respectively. The result for the Pu-{Theta}{sub cD} value compares well with previous vibrational studies on {delta}-Pu. In addition, our results represent the first unambiguous determination of Ga-specific vibrational properties in Pu-Ga alloys, i.e, {Theta}{sub cD} for the Ga-Pu pair. Because the Debye temperature can be related to a measure of the lattice stiffness, these results indicate the Ga-Pu bonds are significantly stronger than the Pu-Pu bonds. This effect has important implications for lattice stabilization mechanisms in these alloys.

  6. Lattice-registered growth of GaSb on Si (211) with molecular beam epitaxy

    SciTech Connect (OSTI)

    Hosseini Vajargah, S.; Botton, G. A.; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.

    2012-11-01

    A GaSb film was grown on a Si(211) substrate using molecular beam epitaxy indicating full lattice relaxation as well as full lattice registration and dislocation-free growth in the plane perpendicular to the [01 - 1]-direction. Heteroepitaxy of GaSb on a Si(211) substrate is dominated by numerous first order and multiple higher order micro-twins. The atomic-resolved structural study of GaSb films by high-angle annular dark-field scanning transmission electron microscopy reveals that slight tilt, along with twinning, favors the lattice registry to Si(211) substrates. Preferential bonding of impinging Ga and Sb atoms at the interface due to two distinctive bonding sites on the Si(211) surface enables growth that is sublattice-ordered and free of anti-phase boundaries. The role of the substrate orientation on the strain distribution of GaSb epilayers is further elucidated by investigating the local change in the lattice parameter using the geometric phase analysis method and hence effectiveness of the lattice tilting in reducing the interfacial strain was confirmed further.

  7. GaInNAs laser gain

    SciTech Connect (OSTI)

    CHOW,WENG W.; JONES,ERIC D.; MODINE,NORMAND A.; KURTZ,STEVEN R.; ALLERMAN,ANDREW A.

    2000-05-23

    The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.

  8. Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    ABSTRACT: InGaN/GaN light-emitting diodes (LEDs) with p-(AlGaN/GaN/AlGaN) quantum well structured electron. The proposed QWEBL LED structure, in which a p-GaN QW layer is inserted in the p-AlGaN electron blocking layer the radiative recombination rates across the active region. Consequently, the light output power was enhanced

  9. Hydrogen Bond Shaping of Membrane Protein Structure

    E-Print Network [OSTI]

    Cao, Zheng

    2013-01-01

    Energy of Amide Hydrogen Bond Formation in Vacuum, in Water, andEnergy of Amide Hydrogen Bond Formation in Vacuum, in Water, andto water is dependent on the zero-point energies, i.e. the

  10. The Market for Borrowing Corporate Bonds

    E-Print Network [OSTI]

    Asquith, Paul

    This paper describes the market for borrowing corporate bonds using a comprehensive data set from a major lender. The cost of borrowing corporate bonds is comparable to the cost of borrowing stock, between 10 and 20 basis ...

  11. Red emitting photonic devices using InGaP/InGaAlP material system

    E-Print Network [OSTI]

    Kangude, Yamini

    2005-01-01

    In this thesis, two red emitting photonic devices are presented using the InGaP/InGaAlP material system. InGaP/InGaAlP material system provides large flexibility in the band gap energy while being lattice matched to GaAs ...

  12. Structural and optical properties of (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin film alloys

    SciTech Connect (OSTI)

    Boyle, J. H.; Shafarman, W. N.; Birkmire, R. W.; McCandless, B. E.

    2014-06-14

    The structural and optical properties of pentenary alloy (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin films were characterized over the entire compositional range at a fixed (Cu?+?Ag)/(In?+?Ga) ratio. Films deposited at 550?°C on bare and molybdenum coated soda-lime glass by elemental co-evaporation in a single-stage process with constant incident fluxes exhibit single phase chalcopyrite structure, corresponding to 122 spacegroup (I-42d) over the entire compositional space. Unit cell refinement of the diffraction patterns show that increasing Ag substitution for Cu, the refined a{sub o} lattice constant, (Ag,Cu)-Se bond length, and anion displacement increase in accordance with the theoretical model proposed by Jaffe, Wei, and Zunger. However, the refined c{sub o} lattice constant and (In,Ga)-Se bond length deviated from theoretical expectations for films with mid-range Ag and Ga compositions and are attributed to influences from crystallographic bond chain ordering or cation electronegativity. The optical band gap, derived from transmission and reflection measurements, widened with increasing Ag and Ga content, due to influences from anion displacement and cation electronegativity, as expected from theoretical considerations for pseudo-binary chalcopyrite compounds.

  13. APPLIED PHYSICS REVIEWSFOCUSED REVIEW Adhesive wafer bonding

    E-Print Network [OSTI]

    Lü, James Jian-Qiang

    APPLIED PHYSICS REVIEWS­FOCUSED REVIEW Adhesive wafer bonding F. Niklausa Microsystem Technology 9 February 2006 Wafer bonding with intermediate polymer adhesives is an important fabrication-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive

  14. Clean Energy and Bond Finance Initiative

    Broader source: Energy.gov [DOE]

    Provides information on Clean Energy and Bond Finance Initiative (CE+BFI). CE+BFI brings together public infrastructure finance agencies, clean energy public fund managers and institutional investors across the country to explore how to raise capital at scale for clean energy development through bond financing. Author: Clean Energy and Bond Finance Initiative

  15. Bonding, antibonding and tunable optical forces in asymmetric membranes

    E-Print Network [OSTI]

    Hui, Pui-Chuen

    We demonstrate that tunable attractive (bonding) and repulsive (anti-bonding) forces can arise in highly asymmetric structures coupled to external radiation, a consequence of the bonding/anti-bonding level repulsion of ...

  16. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect (OSTI)

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  17. Interface Evolution of Au-Au Thermocompression Bonding and Nanotwins

    E-Print Network [OSTI]

    Beekley, Brett

    2015-01-01

    bonds. Journal of Microelectromechanical Systems, 2004. 13(bonds. Journal of Microelectromechanical Systems, 2002. 11(packaging. Journal of Microelectromechanical Systems, 2000.

  18. GaAs MOEMS Technology

    SciTech Connect (OSTI)

    SPAHN, OLGA B.; GROSSETETE, GRANT D.; CICH, MICHAEL J.; TIGGES, CHRIS P.; RENO, JOHN L.; PEAKE, GREGORY M.; KLEM, JOHN F.; LEAN, JEN; FULLER, CHARLES T.; BURKHART, JEFF; BAUER, THOMAS; SULLIVAN, CHARLES T.

    2003-03-01

    Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vital step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.

  19. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    SciTech Connect (OSTI)

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel; Que, Christopher T.; Yamamoto, Kohji; Tani, Masahiko

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  20. Bond Programs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois:Energy Authority JumpBond Programs Jump to:

  1. Bonding Tools | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLC |Energycurrently provides technicalBonds are one of

  2. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with

    E-Print Network [OSTI]

    Yu, Edward T.

    Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light, Austin, TX 78758, USA * ety@ece.utexas.edu Abstract: Simulations of thin film (~2.5 µm thick) InGaAs/GaAs. Roberts, G. Hill, and C. Calder, "Progress in quantum well solar cells," Thin Solid Films 511­512, 76

  3. GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response

    E-Print Network [OSTI]

    Jalali. Bahram

    into existing multijunction cells either as a means to increase the current or efficiency by using low band gapGaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response R. B infrared spectral response of GaAs-based solar cells that incorporate type II GaSb quantum dots QDs formed

  4. Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most...

  5. Nuclear reactor multiphysics via bond graph formalism

    E-Print Network [OSTI]

    Sosnovsky, Eugeny

    2014-01-01

    This work proposes a simple and effective approach to modeling nuclear reactor multiphysics problems using bond graphs. Conventional multiphysics simulation paradigms normally use operator splitting, which treats the ...

  6. Bond Strength Measurements from an Australian Standard Bond Wrench in Comparison to the Unbalanced ASTM C 1072 Bond Wrench to the Balanced and Unbalanced Wrenches 

    E-Print Network [OSTI]

    Suresh, Sri Vishnu Chaitanya Guptha

    2014-08-14

    in 1980s in the Australian laboratories. Former TAMU students had built a lightweight Indian unbalanced and balanced bond wrench. An Australian bond wrench was manufactured in 2011 and subsequently in 2012 an ASTM C 1072 Bond Wrench was developed...

  7. Valence Bond States: Link models

    E-Print Network [OSTI]

    E. Rico; R. Hübener; S. Montangero; N. Moran; B. Pirvu; J. Vala; H. J. Briegel

    2009-08-07

    An isotropic anti-ferromagnetic quantum state on a square lattice is characterized by symmetry arguments only. By construction, this quantum state is the result of an underlying valence bond structure without breaking any symmetry in the lattice or spin spaces. A detailed analysis of the correlations of the quantum state is given (using a mapping to a 2D classical statistical model and methods in field theory like mapping to the non-linear sigma model or bosonization techniques) as well as the results of numerical treatments (regarding exact diagonalization and variational methods). Finally, the physical relevance of the model is motivated. A comparison of the model to known anti-ferromagnetic Mott-Hubbard insulators is given by means of the two-point equal-time correlation function obtained i) numerically from the suggested state and ii) experimentally from neutron scattering on cuprates in the anti-ferromagnetic insulator phase.

  8. New GaInP/GaAs/GaInAs, Triple-Bandgap, Tandem Solar Cell for High-Efficiency Terrestrial Concentrator Systems

    SciTech Connect (OSTI)

    Kurtz, S.; Wanlass, M.; Kramer, C.; Young, M.; Geisz, J.; Ward, S.; Duda, A.; Moriarty, T.; Carapella, J.; Ahrenkiel, P.; Emery. K.; Jones, K.; Romero, M.; Kibbler, A.; Olson, J.; Friedman, D.; McMahon, W.; Ptak, A.

    2005-11-01

    GaInP/GaAs/GaInAs three-junction cells are grown in an inverted configuration on GaAs, allowing high quality growth of the lattice matched GaInP and GaAs layers before a grade is used for the 1-eV GaInAs layer. Using this approach an efficiency of 37.9% was demonstrated.

  9. Photo-induced water oxidation at the aqueous GaN (101?0) interface: Deprotonation kinetics of the first proton-coupled electron-transfer step

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ertem, Mehmed Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yale Univ., New Haven, CT (United States); Kharche, Neerav [Brookhaven National Lab. (BNL), Upton, NY (United States); Batista, Victor S. [Yale Univ., New Haven, CT (United States); Hybertsen, Mark S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tully, John C. [Yale Univ., New Haven, CT (United States); Muckerman, James T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-04-03

    Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys (e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (101?0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigation of free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of –Ga-OH to –Ga-O?? requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface –NH sites is thermodynamically more favorable than –OH sites. However, proton transfer from –OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101?0)–water interface. We find that the deprotonation of surface –OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.

  10. Experimental Observation of Bonding Electrons in Proteins*

    E-Print Network [OSTI]

    Experimental Observation of Bonding Electrons in Proteins* (Received for publication, April 15 enables bonding details of electron distributions in proteins to be revealed experimentally for the first time. We move one step closer to imaging directly the fine details of the electronic structure on which

  11. Identification of products containing {single_bond}COOH, {single_bond}OH, and {single_bond}C{double_bond}O in atmospheric oxidation of hydrocarbons

    SciTech Connect (OSTI)

    Yu, J.; Flagan, R.C.; Seinfeld, J.H.

    1998-08-15

    Atmospheric oxidation of hydrocarbons by hydroxyl radicals and ozone leads to products containing {single_bond}COOH, {single_bond}OH, and {single_bond}C{double_bond}O functional groups. The high polarity of such compounds precludes direct GC-MS analysis. In addition, many such compounds often exist in a single sample at trace levels. An analytical method has been developed to identify compounds containing one or more functional groups of carbonyl, carboxy, and hydroxy in atmospheric samples. In the method, {single_bond}C{double_bond}O groups are derivatized using O-(2,3,4,5,6-pentafluorobenzyl) hydroxy amine(PFBHA), and {single_bond}COOH and {single_bond}OH groups are derivatized using a silylation reagent N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA). The derivatives are easily resolved by a GC column. The chemical ionization mass spectra of these derivatives exhibit several pseudomolecular ions, allowing unambiguous determination of molecular weights. Functional group identification is accomplished by monitoring the ions in the electron ionization mass spectra that are characteristic of each functional group derivative: m/z 181 for carbonyl and m/z 73 and 75 for carboxyl and hydroxy groups. The method is used to identify products in laboratory studies of ozone oxidation of {alpha}-pinene and {Delta}{sup 3}-carene.

  12. 1 mil gold bond wire study.

    SciTech Connect (OSTI)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  13. InGaAsN/GaAs heterojunction for multi-junction solar cells

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Klem, John F. (Albuquerque, NM); Jones, Eric D. (Edgewood, NM)

    2001-01-01

    An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 0GaAs layer, with the InGaAsN and GaAs layers being lattice-matched to the substrate. The InGaAsN/GaAs p-n heterojunction can be epitaxially grown by either molecular beam epitaxy (MBE) or metalorganic chemical vapor deposition (MOCVD). The InGaAsN/GaAs p-n heterojunction provides a high open-circuit voltage of up to 0.62 volts and an internal quantum efficiency of >70%.

  14. Band Structure of Strain-Balanced GaAsBi/GaAsN Super-lattices on GaAs

    SciTech Connect (OSTI)

    Hwang, J.; Phillips, J. D.

    2011-05-31

    GaAs alloys with dilute content of Bi and N provide a large reduction in band-gap energy with increasing alloy composition. GaAsBi/GaAsN heterojunctions have a type-II band alignment, where superlattices based on these materials offer a wide range for designing effective band-gap energy by varying superlattice period and alloy composition. The miniband structure and effective band gap for strain-balanced GaAsBi/GaAsN superlattices with effective lattice match to GaAs are calculated for alloy compositions up to 5% Bi and N using the k·p method. The effective band gap for these superlattices is found to vary between 0.89 and 1.32 eV for period thickness ranging from 10 to 100 Ĺ. The joint density of states and optical absorption of a 40/40 Ĺ GaAs0.96Bi0.04/GaAs0.98N0.02 superlattice are reported demonstrating a ground-state transition at 1.005 eV and first excited transition at 1.074 eV. The joint density of states is similar in magnitude to GaAs, while the optical absorption is approximately one order of magnitude lower due to the spatially indirect optical transition in the type-II structure. The GaAsBi/GaAsN system may provide a new material system with lattice match to GaAs in a spectral range of high importance for optoelectronic devices including solar cells, photodetectors, and light emitters.

  15. Magnetism and transport properties of epitaxial Fe-Ga thin films on GaAs(001)

    SciTech Connect (OSTI)

    Duong Anh Tuan; Shin, Yooleemi; Cho, Sunglae; Dang Duc Dung; Vo Thanh Son

    2012-04-01

    Epitaxial Fe-Ga thin films in disordered bcc {alpha}-Fe crystal structure (A2) have been grown on GaAs(001) by molecular beam epitaxy. The saturated magnetization (M{sub S}) decreased from 1371 to 1105 kA/m with increasing Ga concentration from 10.5 to 24.3 % at room temperature. The lattice parameter increased with the increase in Ga content because of the larger atomic radius of Ga atom than that of Fe. The increase in carrier density with Ga content caused in lower resistivity.

  16. Graphene induced remote surface scattering in graphene/AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Liu, Xiwen; Li, Dan; Wang, Bobo; Liu, Bin; Chen, Famin; Jin, Guangri; Lu, Yanwu, E-mail: ywlu@bjtu.edu.cn [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)

    2014-10-20

    The mobilities of single-layer graphene combined with AlGaN/GaN heterostructures on two-dimensional electron gases in graphene/AlGaN/GaN double heterojunction are calculated. The impact of electron density in single-layer graphene is also studied. Remote surface roughness (RSR) and remote interfacial charge (RIC) scatterings are introduced into this heterostructure. The mobilities limited by RSR and RIC are an order of magnitude higher than that of interface roughness and misfit dislocation. This study contributes to designing structures for generation of higher electron mobility in graphene/AlGaN/GaN double heterojunction.

  17. Low Barrier Hydrogen Bonds in Acyclic Tertiary Diamines

    E-Print Network [OSTI]

    Khodagholian, Sevana

    2010-01-01

    9. S. Yaghmaei, In Search of a Low Barrier Hydrogen Bond inP.A. Frey, and J.A. Gerlt, “The Low Barrier Hydrogen Bond inConsiderations Show That Low-Barrier Hydrogen Bonds do not

  18. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond...

  19. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Wednesday, 25 July 2012 00:00 Hydrogen bonds are...

  20. EPARTMENT OF COMM NATIONALOCEA

    E-Print Network [OSTI]

    activity, providing real-time images of the sun's explosive atmosphere, enabling more timely warnings manages the complex distribution of more than 16 billion bytes of environmental data from the eight.gov (continued from previous page) movement, coral reef bleaching, volcanic ash and sea surface temperature. NOAA

  1. EPARTMENT OF COMM NATIONALOCEA

    E-Print Network [OSTI]

    provide adult audiences with training on estuarine issues of concern in their local communities,Washington 26. St.Louis River,Wisconsin * 27. Old Woman Creek,Ohio 28. Kachemak Bay,Alaska 29. Jobos Bay

  2. EPARTMENT OF COMM NATIONALOCEA

    E-Print Network [OSTI]

    their young, coral reefs flourish, and shipwrecks tell stories of our maritime history. The mission of NOAA. It protects a treasure trove of thriving coral reefs and some of the world's most exotic species -- a quarter Coral reef. Many whale species, including humpbacks (above), are found in national marine sanctuaries

  3. EPARTMENT OF COMM NATIONALOCEA

    E-Print Network [OSTI]

    the management of wild fish stocks. Extension: While research is a crucial component of Sea Grant, transferring environmental sciences into the classroom--and to bring students out of the classroom and into the natural

  4. EPARTMENT OF COMM NATIONALOCEA

    E-Print Network [OSTI]

    . This list includes 20 marine mammals, eight sea turtles, 33 fish species and four invertebrates or plants for the conservation of endangered and threatened fish, wildlife and plants throughout all or a significant portion. There are approximately 1,927 species listed under the ESA. Of these species, approximately 1,353 are found in part

  5. EPARTMENT OF COMM NATIONALOCEA

    E-Print Network [OSTI]

    , D.C., sponsored by the governments of Canada, Norway, Iceland, and the United States. Recognizing diseases, and Alzheimer's. Studies have linked seafood consumption with lower heart rates, lower outweigh perceived risks, and just two six-ounce seafood meals per week can cut the risk of coronary death

  6. EPARTMENT OF COMM NATIONALOCEA

    E-Print Network [OSTI]

    reosurces. · Participating in free trade negotiations · Conducting workshops on living marine resource and international fisheries management organizations and other multilateral fisheries, wildlife protection, trade support for U.S. fisheries trade, conservation and management initiatives. U.S. commitment to combat

  7. EPARTMENT OF COMM NATIONALOCEA

    E-Print Network [OSTI]

    processes (physical, geochemical, ecological) · Build predictive models for use in weather, climate, solar ecosystem health. NOAA Research also develops innovative technologies and observing systems to include. The private sector uses NOAA data to make business decisions and also employs technology developed

  8. Process Of Bonding Copper And Tungsten

    DOE Patents [OSTI]

    Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO); Davis, John W. (Ballwin, MO)

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  9. AlGaAsSb/GaSb Distributed Bragg Reflectors Grown by Organometallic Vapor Phase Epitaxy

    SciTech Connect (OSTI)

    C.A. Wang; C.J. Vineis; D.R. Calawa

    2002-02-13

    The first AlGaAsSb/GaSb quarter-wave distributed Bragg reflectors grown by metallic vapor phase epitaxy are reported. The peak reflectance is 96% for a 10-period structure.

  10. Impact of electrochemical process on the degradation mechanisms of AlGaN/GaN HEMTs

    E-Print Network [OSTI]

    Gao, Feng, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) constitute a new generation of transistors with excellent electrical characteristics and great potential to replace silicon technology in the future, especially in high ...

  11. Atomically Bonded Transparent Superhydrophobic Coatings

    SciTech Connect (OSTI)

    Aytug, Tolga

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  12. New Bond Helps Toledo, Ohio, Expand Financing Pool | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Bond Helps Toledo, Ohio, Expand Financing Pool New Bond Helps Toledo, Ohio, Expand Financing Pool The logo for Better Buildings Northwest Ohio, Toleco Lucas County Port...

  13. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    E-Print Network [OSTI]

    Williams, Thomas Scott

    2013-01-01

    of hydrogen- bonded hydroxyl groups. Acknowledgements Thisonto the exposed surface hydroxyl groups. The rate offraction of hydrogen-bonded hydroxyl groups increased from

  14. Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conservation bond and new clean renewable energy bonds, including characteristics, mechanics, allocated volume, and other information. Author: U.S. Department of Energy...

  15. Using Qualified Energy Conservation Bonds for Public Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonds for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Using Qualified Energy Conservation Bonds for Public Building Upgrades: Reducing...

  16. Review of Direct Metal Bonding for Microelectronic Interconnections

    E-Print Network [OSTI]

    Zhang, G.G.

    Microelectronic interconnections require advanced joining techniques. Direct metal bonding methods, which include thercomsonic and thermocompression bonding, offer remarkable advantages over soldering and adhesives joining. ...

  17. GaN nanowires show more 3D piezoelectricity than bulk GaN

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    director cds murder nudity soundtrack BBC movie releases footage worth documentary film Blu-rays Blu-ray Ga

  18. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  19. Spontaneous emission in GaN/InGaN photonic crystal nanopillars

    E-Print Network [OSTI]

    Boyer, Edmond

    . Sigalas, "InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466, and H. Benisty, "Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution

  20. Switchable piezoelectric transduction in AlGaN/GaN MEMS resonators

    E-Print Network [OSTI]

    Weinstein, Dana

    This work presents a new switching mechanism in piezoelectric transduction of AlGaN/GaN bulk acoustic resonators. A piezoelectric transducer is formed in the AlGaN, between a top Schottky electrode and a 2D electron gas ...

  1. REITs: Stocks, Bonds, or Real Estate?

    E-Print Network [OSTI]

    Rosen, Kenneth T.

    1995-01-01

    Berkeley FISHER CENTER FOR REAL ESTATE AND URBAN ECONOMICS244 RElTs: Stocks, Bonds or Real Estate? By KENNETH T. ROSENBUSINESS FISHER CENTER FOR REAL ESTATE AND URBAN ECONOMICS

  2. Mechanics aspects of water thermocompression bonding

    E-Print Network [OSTI]

    Stamoulis, Konstantinos, 1970-

    2005-01-01

    Wafer-level, thermocompression bonding is a promising technique for microelectromechanical systems (MEMS) packaging. The process is a form of solid-state joining and requires the simultaneous application of temperature and ...

  3. Ultrafast Infrared Studies of Bond Activation in

    E-Print Network [OSTI]

    Harris, Charles B.

    a few. Predominate in the field are UV-pump visible-probe techniques, a fact which derives largely from industry. Si-H bond activation by certain transition-metal-containing com- pounds was discovered by Jetz

  4. Corporate bond repurchases and earnings management

    E-Print Network [OSTI]

    Lemayian, Zawadi Rehema

    2013-01-01

    This paper investigates whether earnings management incentives are associated with gains/losses recognized when firms repurchase bonds. The research question is motivated by the inclusion of these gains/losses in firms' ...

  5. Investigation of optoelectronic properties of cubic perovskite LaGaO{sub 3}

    SciTech Connect (OSTI)

    Babu, K. Ephraim Murali, N. Babu, K. Vijaya Shibeshi, Paulos Taddesse Veeraiah, V.

    2014-10-15

    The structural, electronic, bonding and optical properties of cubic perovskite LaGaO{sub 3} have been calculated using the full-potential linearized augmented plane wave (FP-LAPW) method in the density functional theory (DFT) as embodied in WIEN2k code. The modified Becke-Johnson (mBJ) potential is applied for the calculation of electronic and optical properties. The calculated lattice constant is in good agreement with the experimental result. The predicted band structure shows an indirect (M-X) band gap of 4.22 eV. The bonding in the material is of mixed covalent and ionic nature. Optical properties like dielectric function, refractive index, reflectivity, conductivity and absorption coefficient are presented.

  6. Stability of S and Se induced reconstructions on GaP(001)(2×1) surface

    SciTech Connect (OSTI)

    Li , D. F.; Guo, Zhi C.; Xiao, Hai Yan; Zu, Xiaotao T.; Gao, Fei

    2010-10-15

    The structural and electronic properties of S- and Se- passivated GaP(001)(2×1) surfaces were studied using first-principles simulations. Our calculations showed that the most stable structure consists of a single chalcogen atom (S or Se) in the first crystal layer, which is bonded to two Ga atoms of the second layer, and the third P layer replaced by chalcogen atoms, similar to the passivation of GaAs(001)(2×1) surface by chalcogen atoms. The structural parameters were determined and the surface band characters and the local density of states were also analyzed. The results showed that the preferable structure has no surface states in the bulk band gap, but the energy band gaps of the S- and Se-adsorbed GaP(001) surfaces are 1.83eV and 1.63eV, respectively. The passivation effects for the S- and Se-adsorbed surfaces are similar to each other.

  7. Scientific Achievement Networks of highly photoresponsive crystalline GaSe

    E-Print Network [OSTI]

    Geohegan, David B.

    Scientific Achievement Networks of highly photoresponsive crystalline GaSe nanosheets a crystalline GaSe target was adjusted to directly grow networks of interconnected triangular GaSe crystalline nanosheets of ~ 200 nm size (inset shows atomic

  8. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  9. Hydrogen Bonding DOI: 10.1002/anie.200501349

    E-Print Network [OSTI]

    Simons, Jack

    Hydrogen Bonding DOI: 10.1002/anie.200501349 Observation of Weak C�H···O Hydrogen Bonding to Unactivated Alkanes** Xue-Bin Wang, Hin-Koon Woo, Boggavarapu Kiran, and Lai-Sheng Wang* The hydrogen bond carbon can also behave as a proton donor to form C�H···O-type hydrogen bonds has been the subject

  10. Managing Value-at-Risk for a bond using bond put options

    E-Print Network [OSTI]

    Vanmaele, Michčle

    Managing Value-at-Risk for a bond using bond put options Griselda Deelstra1 , Ahmed Ezzine1 , Dries. Furthermore, at a suffi- ciently low confidence level the VaR measure explicitly focuses risk managersR-based risk management. The starting point of our analysis is the classical hedging example, where

  11. Hydrogen Bond Networks: Structure and Evolution after Hydrogen Bond Breaking John B. Asbury, Tobias Steinel, and M. D. Fayer*

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Networks: Structure and Evolution after Hydrogen Bond Breaking John B. Asbury, TobiasVed: September 1, 2003; In Final Form: December 18, 2003 The nature of hydrogen bonding networks following hydrogen bond breaking is investigated using vibrational echo correlation spectroscopy of the hydroxyl

  12. Development of metallization for GaAs and AlGaAs concentrator solar cells

    SciTech Connect (OSTI)

    Tobin, S.P.

    1987-04-01

    A three-layer metallization system was developed for high temperature stability on GaAs and AlGaAs solar cells. The layers are a Pt ohmic contact metal that forms thermally stable compounds with GaAs, a TiN diffusion barrier, and a gold conductor. The solar cell structure was also designed for contact stability, with the key component being a heavily doped GaAs cap layer. Reactively sputtered TiN was found to act as an excellent barrier when deposited under the proper conditions. The conditions were carefully optimized for low resistivity and low stress in the films. A low but nonzero substrate bias during sputtering was found to be important. Solar cells with sputtered metallizations of Pt/TiN/Ti/Pt/Au were found to be thermally stable up to 500/sup 0/C for 15 minutes in vacuum. At 600/sup 0/C there was catastrophic degradation of the cells due to dissociation of uncapped GaAs surfaces. Below this temperature the metallization performed as designed. The Pt and GaAs layers reacted to form a stable PtGa compound layer that gave low contact resistance. There was no penetration of Au or GaAs through the barrier layer. These results are a very encouraging first step leading to stable, reliable GaAs and AlGaAs concentrator cells.

  13. Epoxy bond and stop etch fabrication method

    DOE Patents [OSTI]

    Simmons, Jerry A. (Sandia Park, NM); Weckwerth, Mark V. (Pleasanton, CA); Baca, Wes E. (Albuquerque, NM)

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  14. Bonded ultrasonic transducer and method for making

    DOE Patents [OSTI]

    Dixon, R.D.; Roe, L.H.; Migliori, A.

    1995-11-14

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements. 12 figs.

  15. Process Of Bonding Copper And Tungsten

    DOE Patents [OSTI]

    Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO)

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  16. Bonded ultrasonic transducer and method for making

    DOE Patents [OSTI]

    Dixon, Raymond D. (Los Alamos, NM); Roe, Lawrence H. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1995-01-01

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements.

  17. Structural and optical properties of InGaN–GaN nanowire heterostructures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Ho?fling, S.; Worschech, L.; Gru?tzmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, ?-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  18. Phosphate-bonded calcium aluminate cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  19. Phosphate-bonded calcium aluminate cements

    DOE Patents [OSTI]

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  20. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  1. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  2. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Paulauskas, Felix L. (Oak Ridge, TN); Fathi, Zakaryae (Cary, NC); Wei, Jianghua (Raleigh, NC)

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  3. Ohmic contacts to n-GaSb 

    E-Print Network [OSTI]

    Yang, Zhengchong

    1997-01-01

    In recent years, the Ill-V semiconductor GaSb and its ternary alloys containing antimony have exhibited interesting electrical and optical properties for device applications which include negative resistance tunnel devices, lasers, detectors and FET...

  4. GaTe semiconductor for radiation detection

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Burger, Arnold (Nashville, TN); Mandal, Krishna C. (Ashland, MA)

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  5. Fluorinated diamond bonded in fluorocarbon resin

    DOE Patents [OSTI]

    Taylor, Gene W. (Los Alamos, NM)

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  6. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu; Akyol, Fatih [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Rajan, Siddharth, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-10-06

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450?nm) light emitting diode. A voltage drop of 5.3?V at 100?mA, forward resistance of 2 × 10{sup ?2} ? cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5?×?10{sup ?4} ? cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. The depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.

  7. Journal of Crystal Growth 298 (2007) 272275 Dislocation analysis in homoepitaxial GaInN/GaN light emitting

    E-Print Network [OSTI]

    Wetzel, Christian M.

    2007-01-01

    of GaInN/GaN-based light emitting diodes (LED) on quasi-bulk GaN with an atomically flat polished were much improved. The optical output power of the light emitting diode increased by more than one. Cathodoluminescence; A1. Threading dislocation density; A2. Homoepitaxial growth; B1. GaInN; B3. Light emitting diode

  8. Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys and Alexander A. Balandin

    E-Print Network [OSTI]

    Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys Weili Liua and Alexander A. Balandin have investigated theoretically the thermoelectric effects in wurtzite GaN crystals and AlxGa1-xN-based alloys may have some potential as thermoelectric materials at high temperature. It was found

  9. Various Carbon to Carbon Bond Lengths Inter-related via the Golden Ratio, and their Linear Dependence on Bond Energies

    E-Print Network [OSTI]

    Raji Heyrovska

    2008-09-11

    This work presents the relations between the carbon to carbon bond lengths in the single, double and triple bonds and in graphite, butadiene and benzene. The Golden ratio, which was shown to divide the Bohr radius into two parts pertaining to the charged particles, the electron and proton, and to divide inter-atomic distances into their cationic and anionic radii, also plays a role in the carbon-carbon bonds and in the ionic/polar character of those in graphite, butadiene and benzene. Further, the bond energies of the various CC bonds are shown to vary linearly with the bond lengths.

  10. Ultra-high frequency photoconductivity decay in GaAs/Ge/GaAs double heterostructure grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Hudait, M. K.; Zhu, Y. [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Johnston, S. W. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)] [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Maurya, D.; Priya, S. [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Umbel, R. [Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2013-03-04

    GaAs/Ge/GaAs double heterostructures (DHs) were grown in-situ using two separate molecular beam epitaxy chambers. High-resolution x-ray rocking curve demonstrates a high-quality GaAs/Ge/GaAs heterostructure by observing Pendelloesung oscillations. The kinetics of the carrier recombination in Ge/GaAs DHs were investigated using photoconductivity decay measurements by the incidence excitation from the front and back side of 15 nm GaAs/100 nm Ge/0.5 {mu}m GaAs/(100)GaAs substrate structure. High-minority carrier lifetimes of 1.06-1.17 {mu}s were measured when excited from the front or from the back of the Ge epitaxial layer, suggests equivalent interface quality of GaAs/Ge and Ge/GaAs. Wavelength-dependent minority carrier recombination properties are explained by the wavelength-dependent absorption coefficient of Ge.

  11. Photo-induced water oxidation at the aqueous GaN (101Ż0) interface: Deprotonation kinetics of the first proton-coupled electron-transfer step

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ertem, Mehmed Z.; Kharche, Neerav; Batista, Victor S.; Hybertsen, Mark S.; Tully, John C.; Muckerman, James T.

    2015-03-12

    Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys (e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (101Ż0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigation ofmore »free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of –Ga-OH to –Ga-O?? requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface –NH sites is thermodynamically more favorable than –OH sites. However, proton transfer from –OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101Ż0)–water interface. We find that the deprotonation of surface –OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.« less

  12. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Resolved Study of Bonding in Liquid Carbon Time-Resolved Study of Bonding in Liquid Carbon Print Wednesday, 28 September 2005 00:00 We are accustomed to observing carbon in...

  13. FUNDAMENTALS OF WETTING AND BONDING BETWEEN CERAMICS AND METALS

    E-Print Network [OSTI]

    Pask, J.A.

    2010-01-01

    WETTING AND BONDING BETWEEN CERAMICS AND METALS Jo s eph A.OF WETTING AND BONDING BETWEEN CERAMICS AND METALS Joseph A.and glass-to-metal or ceramic-to-metal seals. Both physical

  14. FITCH RATES ENERGY NORTHWEST, WA'S ELECTRIC REV RFDG BONDS 'AA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FITCH RATES ENERGY NORTHWEST, WA'S ELECTRIC REV RFDG BONDS 'AA'; OUTLOOK STABLE Fitch Ratings-Austin-22 September 2015: Fitch Ratings assigns its 'AA' rating to the following bonds...

  15. Atomic-resolution study of polarity reversal in GaSb grown on Si by scanning transmission electron microscopy

    SciTech Connect (OSTI)

    Hosseini Vajargah, S.; Woo, S. Y.; Botton, G. A.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Preston, J. S.

    2012-11-01

    The atomic-resolved reversal of the polarity across an antiphase boundary (APB) was observed in GaSb films grown on Si by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The investigation of the interface structure at the origin of the APB reveals that coalescence of two domains with Ga-prelayer and Sb-prelayer causes the sublattice reversal. The local strain and lattice rotation distributions of the APB, attributed to the discordant bonding length at the APB with the surrounding GaSb lattice, were further studied using the geometric phase analysis technique. The crystallographic characteristics of the APBs and their interaction with other planar defects were observed with HAADF-STEM. The quantitative agreement between experimental and simulated images confirms the observed polarities in the acquired HAADF-STEM data. The self-annihilation mechanism of the APBs is addressed based on the rotation induced by anti-site bonds and APBs' faceting.

  16. Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100)

    SciTech Connect (OSTI)

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Wetzel, Christian, E-mail: wetzel@ieee.org [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Future Chips Constellation, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Lee, S. C.; Brueck, S. R. J. [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States)] [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States); Jiang, Y.-B. [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-12-02

    GaInN/GaN light-emitting diodes free of piezoelectric polarization were prepared on standard electronic-grade Si(100) substrates. Micro-stripes of GaN and GaInN/GaN quantum wells in the cubic crystal structure were grown on intersecting (111) planes of microscale V-grooved Si in metal-organic vapor phase epitaxy, covering over 50% of the wafer surface area. Crystal phases were identified in electron back-scattering diffraction. A cross-sectional analysis reveals a cubic structure virtually free of line defects. Electroluminescence over 20 to 100??A is found fixed at 487?nm (peak), 516?nm (dominant). Such structures therefore should allow higher efficiency, wavelength-stable light emitters throughout the visible spectrum.

  17. A hole accelerator for InGaN/GaN light-emitting diodes

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ji, Yun; Wang, Liancheng; Zhu, Binbin; Zhang, Yiping; Lu, Shunpeng; Zhang, Xueliang; Hasanov, Namig; Sun, Xiao Wei, E-mail: EXWSUN@ntu.edu.sg, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Demir, Hilmi Volkan, E-mail: EXWSUN@ntu.edu.sg, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey)

    2014-10-13

    The quantum efficiency of InGaN/GaN light-emitting diodes (LEDs) has been significantly limited by the insufficient hole injection, and this is caused by the inefficient p-type doping and the low hole mobility. The low hole mobility makes the holes less energetic, which hinders the hole injection into the multiple quantum wells (MQWs) especially when a p-type AlGaN electron blocking layer (EBL) is adopted. In this work, we report a hole accelerator to accelerate the holes so that the holes can obtain adequate kinetic energy, travel across the p-type EBL, and then enter the MQWs more efficiently and smoothly. In addition to the numerical study, the effectiveness of the hole accelerator is experimentally shown through achieving improved optical output power and reduced efficiency droop for the proposed InGaN/GaN LED.

  18. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    SciTech Connect (OSTI)

    Bietti, Sergio, E-mail: sergio.bietti@mater.unimib.it; Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano [L–NESS and Dipartimento di Scienza dei Materiali, Universitŕ di Milano Bicocca, Via Cozzi 55, I–20125 Milano (Italy); Fedorov, Alexey [L–NESS and CNR–IFN, via Anzani 42, I-22100 Como (Italy)

    2014-09-21

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E{sub A}=1.31±0.15 eV, a diffusivity prefactor of D?=0.53(×2.1±1) cm˛ s?ą that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  19. Optimization of ion-atomic beam source for deposition of GaN ultrathin films

    SciTech Connect (OSTI)

    Mach, Jind?ich, E-mail: mach@fme.vutbr.cz; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš [Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); CEITEC BUT, Brno University of Technology, Technická 10, 61669 Brno (Czech Republic); Šamo?il, Tomáš [Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic)

    2014-08-15

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20–200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ?15 mm by one order of magnitude (j ? 1000 nA/cm{sup 2}). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300?°C) than in conventional metalorganic chemical vapor deposition technologies (?1000?°C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  20. Nanoscale metals and semiconductors for the storage of solar energy in chemical bonds

    E-Print Network [OSTI]

    Manthiram, Karthish

    2015-01-01

    for the storage of solar energy in chemical bonds Byfor the storage of solar energy in chemical bonds Copyrightfor the storage of solar energy in chemical bonds By

  1. A Corpuscular Picture of Electrons in Chemical Bond

    E-Print Network [OSTI]

    Ando, Koji

    2015-01-01

    We introduce a theory of chemical bond with a corpuscular picture of electrons. It employs a minimal set of localized electron wave packets with 'floating and breathing' degrees of freedom and the spin-coupling of non-orthogonal valence-bond theory. It accurately describes chemical bonds in ground and excited states of spin singlet and triplet, in a distinct manner from conventional theories, indicating potential for establishing a dynamical theory of electrons in chemical bonds.

  2. Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang*

    E-Print Network [OSTI]

    Caflisch, Amedeo

    Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang* Department of Biochemistry, University of Zurich, Zurich, Switzerland Abstract Ligand binding involves breakage of hydrogen bonds with water molecules and formation of new hydrogen bonds between protein and ligand. In this work, the change

  3. Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and

    E-Print Network [OSTI]

    Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties of hydrogen bonds mediated by oxygen-containing functional groups and water molecules. A quantitative analysis of the formation of hydrogen bond networks further shows that they play a central role in *Address correspondence

  4. Hydrogen bonds in liquid water are broken only fleetingly

    E-Print Network [OSTI]

    Geissler, Phillip

    Hydrogen bonds in liquid water are broken only fleetingly J. D. Eaves* , J. J. Loparo* , C. J that the local structure of liquid water has tetrahedral arrangements of molecules ordered by hydrogen bonds, the mechanism by which water molecules switch hydrogen-bonded partners remains unclear. In this mechanism

  5. Hydrogen bonding in benzonitrilewater complexes Eugene S. Kryachkoa)

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    Hydrogen bonding in benzonitrile­water complexes Eugene S. Kryachkoa) and Minh Tho Nguyenb January 2001; accepted 23 March 2001 The hydrogen bonding between benzonitrile and one and two water,p and aug-cc-pVDZ basis sets. The strength of such hydrogen bonding is analyzed in terms of a magnitude

  6. Analysis of C H...O hydrogen bonds

    E-Print Network [OSTI]

    Babu, M. Madan

    1 Analysis of C H...O hydrogen bonds in high resolution protein crystal structures from the PDB 1.4 Identification of C-H...O hydrogen bonds............................................. 1.4.1 The definition of a C-H...O hydrogen bond.................................... 1.4.2 Fixing the hydrogen and measuring the parameters

  7. Oil prices and government bond risk premiums Herv Alexandre*

    E-Print Network [OSTI]

    Boyer, Edmond

    Oil prices and government bond risk premiums By Hervé Alexandre*º Antonin de Benoist * Abstract : This article analyses the impact of oil price on bond risk premiums issued by emerging economies. No empirical study has yet focussed on the effects of the oil price on government bond risk premiums. We develop

  8. Article coated with flash bonded superhydrophobic particles

    DOE Patents [OSTI]

    Simpson, John T (Clinton, TN) [Clinton, TN; Blue, Craig A (Knoxville, TN) [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  9. Public Bonding Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 | DepartmentFunds for Renewables andBonding

  10. Microchannel cooling of face down bonded chips

    DOE Patents [OSTI]

    Bernhardt, A.F.

    1993-06-08

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multi chip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  11. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  12. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  13. GaN: Defect and Device Issues

    SciTech Connect (OSTI)

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  14. Influence of pressure on photoluminescence and electroluminescence in GaN/InGaN/AlGaN quantum wells

    E-Print Network [OSTI]

    Weinstein, Benard.A.

    recently that the temperature shifts of the photo- and electroluminescence EL peak energies in Nichia greenV/GPa for the green and blue diodes, respectively. The observed pressure coefficients are much lower than those characteristic of the energy gap in GaN ( 40 meV/GPa) or the energy gap in InN ( 33 meV/GPa). This kind

  15. Hydrogen Bond Breaking and Reformation in Alcohol Oligomers Following Vibrational Relaxation of a Non-Hydrogen-Bond Donating Hydroxyl Stretch

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Breaking and Reformation in Alcohol Oligomers Following Vibrational Relaxation of a Non-Hydrogen-Bond Donating Hydroxyl Stretch K. J. Gaffney, I. R. Piletic, and M. D. Fayer* Department measured with ultrafast infrared pump-probe experiments. Non-hydrogen-bond donating OD stretches (2690 cm-1

  16. InGaAs/GaAs quantum dot interdiffiusion induced by cap layer overgrowth

    SciTech Connect (OSTI)

    Jasinski, J.; Babinski, A.; Czeczott, M.; Bozek, R.

    2000-06-28

    The effect of thermal treatment during and after growth of InGaAs/GaAs quantum dot (QD) structures was studied. Transmission electron microscopy and atomic force microscopy confirmed the presence of interacting QDs, as was expected from analysis of temperature dependence of QD photoluminescence (PL) peak. The results indicate that the effect of post-growth annealing can be similar to the effect of elevated temperature of capping layer growth. Both, these thermal treatments can lead to a similar In and Ga interdiffiusion resulting in a similar blue-shift of QD PL peak.

  17. Optical spectroscopy of quantum confined states in GaAs/AlGaAs quantum well tubes

    SciTech Connect (OSTI)

    Shi, Teng; Fickenscher, Melodie; Smith, Leigh; Jackson, Howard; Yarrison-Rice, Jan; Gao, Qiang; Tan, Hoe; Jagadish, Chennupati; Etheridge, Joanne; Wong, Bryan M.

    2013-12-04

    We have investigated the quantum confinement of electronic states in GaAs/Al{sub x}Ga{sub 1?x}As nanowire heterostructures which contain radial GaAs quantum wells of either 4nm or 8nm. Photoluminescence and photoluminescence excitation spectroscopy are performed on single nanowires. We observed emission and excitation of electron and hole confined states. Numerical calculations of the quantum confined states using the detailed structural information on the quantum well tubes show excellent agreement with these optical results.

  18. Method for bonding a transmission line to a downhole tool

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2007-11-06

    An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

  19. Structural and optical properties of InGaN–GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Ho?fling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore »to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, ?-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less

  20. Low temperature thermoelastic and structural properties of LaGaO{sub 3} perovskite in the Pbnm phase

    SciTech Connect (OSTI)

    Knight, Kevin S.

    2012-10-15

    The thermoelastic and structural properties of LaGaO{sub 3} perovskite have been studied using high resolution neutron diffractometry at 158 temperatures between 11 K and 548 K. Data collected in 2 K intervals between 410 K and 430 K show no evidence for an intermediate phase between the low temperature phase in space group Pbnm and the high temperature phase in space group F3{sup Macron }2/n. From a simultaneous fit of the unit cell volume and the isochoric heat capacity, the phonon density of states in the Pbnm phase is shown to be approximated by a two-term Debye model, with characteristic temperatures 294(1) K and 831(1) K. Vibrational Debye temperatures, determined from fitting the temperature variation of the atomic displacement parameters, show the cations to be more associated with the lower characteristic temperature, whilst that for the anions, is closer to the higher characteristic temperature. Structural parameters are presented as the amplitudes of the seven symmetry-adapted basis-vectors of the aristotype phase, and a structural basis for the temperature-dependence of the bond lengths is outlined. The phase transition in both temperature and pressure arises when a non-bonded La-O distance approaches the La coordination sphere. - Graphical abstract: The weight fraction of the rhombohedral phase of LaGaO{sub 3} from the onset of the phase transition at 408 K to its completion at 430 K. Highlights: Black-Right-Pointing-Pointer Thermoelastic properties of LaGaO{sub 3} analyzed as a two-term Debye model. Black-Right-Pointing-Pointer Crystal structure and bonding analyzed in terms of symmetry-adapted basis-vectors. Black-Right-Pointing-Pointer Consistency between calorimetric and crystallographic measurements.

  1. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    SciTech Connect (OSTI)

    Yang, Weiquan; Becker, Jacob; Liu, Shi; Kuo, Ying-Shen; Li, Jing-Jing; Zhang, Yong-Hang; Landini, Barbara; Campman, Ken

    2014-05-28

    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In{sub 0.49}Ga{sub 0.51}P/GaAs/In{sub 0.49}Ga{sub 0.51}P double-heterostructure PN junction with an ultra-thin 300?nm thick GaAs absorber, combined with a 5??m thick Al{sub 0.52}In{sub 0.48}P layer with a textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF{sub 2}/ZnS anti-reflective coating demonstrated open-circuit voltages (V{sub oc}) up to 1.00?V, short-circuit current densities (J{sub sc}) up to 24.5?mA/cm{sup 2}, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated J{sub sc} and conversion efficiency of these devices are expected to reach 26.6?mA/cm{sup 2} and 20.7%, respectively.

  2. IEEE Energy2030 Atlanta, GA USA

    E-Print Network [OSTI]

    Gross, George

    of an aggregation of battery vehicles for the provision of frequency regulation ­ requiring very fast response timesIEEE Energy2030 Atlanta, GA USA 17-18 November, 2008 Design of a Conceptual Framework for the V2G in common is the batteries, which provide good storage capacity that can be effectively integrated

  3. 495 Tech Way NW Atlanta, GA 30318

    E-Print Network [OSTI]

    Li, Mo

    495 Tech Way NW Atlanta, GA 30318 404.385.0384 comments@energy.gatech.edu Copyright 2014 · Georgia concerns, low-cost, clean, secure energy solutions will be necessary to address our global energy needs and sustain our way of life. Georgia Tech Energy Innovations The Strategic Energy Institute's scientists

  4. Defect studies in low-temperature-grown GaAs

    SciTech Connect (OSTI)

    Bliss, D.E.

    1992-11-01

    High content of excess As is incorporated in GaAs grown by low-temperature molecular-beam-epitaxy (LTMBE). The excess As exists primarily as As antisite defects AsGa and a lesser extent of gallium vacancies V[sub Ga]. The neutral AsGa-related defects were measured by infrared absorption at 1[mu]m. Gallium vacancies, V[sub Ga], was investigated by slow positron annihilation. Dependence of defect contents on doping was studied by Si and Be dopants. No free carriers are generated by n-type or p-type doping up to 10[sup 19] cm[sup [minus]3] Si or Be. Raman data indicate Be occupies Ga substitutional sites but Si atom is not substitutional. Si induces more As[sub Ga] in the layer. As As[sub Ga] increases, photoquenchable As[sub Ga] decreases. Fraction of photoquenchable defects correlates to defects within 3 nearest neighbor separations disrupting the metastability. Annealing reduces neutral As[sub Ga] content around 500C, similar to irradiation damaged and plastically deformed Ga[sub As], as opposed to bulk grown GaAs in which As[sub Ga]-related defects are stable up to 1100C. The lower temperature defect removal is due to V[sub Ga] enhanced diffusion of As[sub Ga] to As precipitates. The supersaturated V[sub GA] and also decreases during annealing. Annealing kinetics for As[sub Ga]-related defects gives 2.0 [plus minus] 0.3 eV and 1.5 [plus minus] 0.3 eV migration enthalpies for the As[sub Ga] and V[sub Ga]. This represents the difference between Ga and As atoms hopping into the vacancy. The non-photoquenchable As[sub Ga]-related defects anneal with an activation energy of 1.1 [plus minus] 0.3eV. Be acceptors can be activated by 800C annealing. Temperature difference between defect annealing and Be activation formation of As[sub Ga]-Be[sub Ga] pairs. Si donors can only be partially activated.

  5. Electron mobility enhancement in AlN/GaN/AlN heterostructures with InGaN nanogrooves

    E-Print Network [OSTI]

    it was discovered by Davydov et al.1 and con- firmed by independent studies2,3 that its band gap is small, EG InN =0 The conduction band offset at GaN/AlN interface was estimated as EQW=0.7 EG AlN -EG GaN =1918 meV. The nanoN/GaN/AlN QW. The depth of the nanogroove is calculated as E0=0.8 EG GaN -EG InxGa1-xN . The band gap of InxGa1

  6. Development and Industrialization of InGaN/GaN LEDs on Patterned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    epitaxial growth of indium gallium nitride (InGaN) layers capable of producing high-efficiency LEDs when combined with chip-on-board packaging techniques. The proposed...

  7. High-field quasi-ballistic transport in AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Danilchenko, B. A.; Tripachko, N. A.; Belyaev, A. E.; Vitusevich, S. A. Hardtdegen, H.; Lüth, H.

    2014-02-17

    Mechanisms of electron transport formation in 2D conducting channels of AlGaN/GaN heterostructures in extremely high electric fields at 4.2?K have been studied. Devices with a narrow constriction for the current flow demonstrate high-speed electron transport with an electron velocity of 6.8?×?10{sup 7}?cm/s. Such a velocity is more than two times higher than values reported for conventional semiconductors and about 15% smaller than the limit value predicted for GaN. Superior velocity is attained in the channel with considerable carrier reduction. The effect is related to a carrier runaway phenomenon. The results are in good agreement with theoretical predictions for GaN-based materials.

  8. 2DEG electrodes for piezoelectric transduction of AlGaN/GaN MEMS resonators

    E-Print Network [OSTI]

    Weinstein, Dana

    A 2D electron gas (2DEG) interdigitated transducer (IDT) in Gallium Nitride (GaN) resonators is introduced and demonstrated. This metal-free transduction does not suffer from the loss mechanisms associated with more commonly ...

  9. Emission and Excitation Spectra of ZnO:Ga and ZnO:Ga,N Ceramics

    E-Print Network [OSTI]

    P. A. Rodnyi; I. V. Khodyuk; E. I. Gorokhova; S. B. Mikhrin; P. Dorenbos

    2010-09-07

    The spectral characteristics of ZnO:Ga and ZnO:Ga,N ceramics prepared by uniaxial hot pressing have been investigated. At room temperature, the edge (exciton) band at 3.12 eV dominates in the luminescence spectra of ZnO:Ga, while a wide luminescence band at 2.37 eV, which is likely to be due to zinc vacancies, is observed in the spectra of ZnO:Ga,N. Upon heating, the edge band maximum shifts to lower energies and the bandwidth increases. The extrapolated position of the edge-band maximum at zero temperature, Em(0) = 3.367 +/- 0.005 eV, is in agreement with the data for thin zinc oxide films. The luminescence excitation spectra in the range from 3 to 6.5 eV are reported and the mechanism of energy transfer to excitons and luminescence centers is considered.

  10. Composition profiling of GaAs/AlGaAs quantum dots grown by droplet epitaxy

    SciTech Connect (OSTI)

    Bocquel, J.; Koenraad, P. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Giddings, A. D.; Prosa, T. J.; Larson, D. J. [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, Wisconsin 53711 (United States); Mano, T. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-10-13

    Droplet epitaxy (DE) is a growth method which can create III-V quantum dots (QDs) whose optoelectronic properties can be accurately controlled through the crystallisation conditions. In this work, GaAs/AlGaAs DE-QDs have been analyzed with the complimentary techniques of cross-sectional scanning tunneling microscopy and atom probe tomography. Structural details and a quantitative chemical analysis of QDs of different sizes are obtained. Most QDs were found to be pure GaAs, while a small proportion exhibited high intermixing caused by a local etching process. Large QDs with a high aspect ratio were observed to have an Al-rich crown above the GaAs QD. This structure is attributed to differences in mobility of the cations during the capping phase of the DE growth.

  11. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect (OSTI)

    Butler, L.J. [Univ. of Chicago, IL (United States)

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  12. On strongly GA-convex functions and stochastic processes

    SciTech Connect (OSTI)

    Bekar, Nurgül Okur; Akdemir, Hande Günay; ??can, ?mdat

    2014-08-20

    In this study, we introduce strongly GA-convex functions and stochastic processes. We provide related well-known Kuhn type results and Hermite-Hadamard type inequality for strongly GA-convex functions and stochastic processes.

  13. Energy absorption in Ni-Mn-Ga/ polymer composites

    E-Print Network [OSTI]

    Feuchtwanger, Jorge

    2006-01-01

    In recent years Ni-Mn-Ga has attracted considerable attention as a new kind of actuator material. Off-stoichiometric single crystals of Ni2MnGa can regularly exhibit 6% strain in tetragonal martensites and orthorhombic ...

  14. InGaAs/GaAs (110) quantum dot formation via step meandering

    SciTech Connect (OSTI)

    Diez-Merino, Laura; Tejedor, Paloma

    2011-07-01

    InGaAs (110) semiconductor quantum dots (QDs) offer very promising prospects as a material base for a new generation of high-speed spintronic devices, such as single electron transistors for quantum computing. However, the spontaneous formation of InGaAs QDs is prevented by two-dimensional (2D) layer-by-layer growth on singular GaAs (110) substrates. In this work we have studied, by using atomic force microscopy and photoluminescence spectroscopy (PL), the growth of InGaAs/GaAs QDs on GaAs (110) stepped substrates by molecular beam epitaxy (MBE), and the modification of the adatom incorporation kinetics to surface steps in the presence of chemisorbed atomic hydrogen. The as-grown QDs exhibit lateral dimensions below 100 nm and emission peaks in the 1.35-1.37 eV range. It has been found that a step meandering instability derived from the preferential attachment of In adatoms to [110]-step edges relative to [11n]-type steps plays a key role in the destabilization of 2D growth that leads to 3D mound formation on both conventional and H-terminated vicinal substrates. In the latter case, the driving force for 3D growth via step meandering is enhanced by H-induced upward mass transport in addition to the lower energy cost associated with island formation on H-terminated substrates, which results in a high density array of InGaAs/GaAs dots selectively nucleated on the terrace apices with reduced lateral dimensions and improved PL efficiency relative to those of conventional MBE-grown samples.

  15. Sheet resistance under Ohmic contacts to AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Haj?asz, M., E-mail: m.hajlasz@m2i.nl [Materials innovation institute (M2i), Mekelweg 2, 2628 CD, Delft (Netherlands); MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands); Donkers, J. J. T. M.; Sque, S. J.; Heil, S. B. S. [NXP Semiconductors Research, High Tech Campus 46, 5656 AE, Eindhoven (Netherlands); Gravesteijn, D. J. [NXP Semiconductors Research, High Tech Campus 46, 5656 AE, Eindhoven (Netherlands); MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands); Rietveld, F. J. R. [NXP Semiconductors, Gerstweg 2, 6534 AE, Nijmegen (Netherlands); Schmitz, J. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands)

    2014-06-16

    For the determination of specific contact resistance in semiconductor devices, it is usually assumed that the sheet resistance under the contact is identical to that between the contacts. This generally does not hold for contacts to AlGaN/GaN structures, where an effective doping under the contact is thought to come from reactions between the contact metals and the AlGaN/GaN. As a consequence, conventional extraction of the specific contact resistance and transfer length leads to erroneous results. In this Letter, the sheet resistance under gold-free Ti/Al-based Ohmic contacts to AlGaN/GaN heterostructures on Si substrates has been investigated by means of electrical measurements, transmission electron microscopy, and technology computer-aided design simulations. It was found to be significantly lower than that outside of the contact area; temperature-dependent electrical characterization showed that it exhibits semiconductor-like behavior. The increase in conduction is attributed to n-type activity of nitrogen vacancies in the AlGaN. They are thought to form during rapid thermal annealing of the metal stack when Ti extracts nitrogen from the underlying semiconductor. The high n-type doping in the region between the metal and the 2-dimensional electron gas pulls the conduction band towards the Fermi level and enhances horizontal electron transport in the AlGaN. Using this improved understanding of the properties of the material underneath the contact, accurate values of transfer length and specific contact resistance have been extracted.

  16. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation

    SciTech Connect (OSTI)

    Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav; Luque, Antonio

    2014-09-26

    AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (? = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

  17. Guided Neuronal Growth on Arrays of Biofunctionalized GaAs/InGaAs Semiconductor Microtubes

    E-Print Network [OSTI]

    Cornelius S. Bausch; Aune Koitmäe; Eric Stava; Amanda Price; Pedro J. Resto; Yu Huang; David Sonnenberg; Yuliya Stark; Christian Heyn; Justin C. Williams; Erik W. Dent; Robert H. Blick

    2013-05-06

    We demonstrate embedded growth of cortical mouse neurons in dense arrays of semiconductor microtubes. The microtubes, fabricated from a strained GaAs/InGaAs heterostructure, guide axon growth through them and enable electrical and optical probing of propagating action potentials. The coaxial nature of the microtubes -- similar to myelin -- is expected to enhance the signal transduction along the axon. We present a technique of suppressing arsenic toxicity and prove the success of this technique by overgrowing neuronal mouse cells.

  18. Repairable chip bonding/interconnect process

    DOE Patents [OSTI]

    Bernhardt, Anthony F. (Berkeley, CA); Contolini, Robert J. (Livermore, CA); Malba, Vincent (Livermore, CA); Riddle, Robert A. (Tracy, CA)

    1997-01-01

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  19. Repairable chip bonding/interconnect process

    DOE Patents [OSTI]

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  20. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one

  1. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was

  2. Bonded Compliant Seal (BCS) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|BilayerBiomimetic DyeBlue Gene/Q Download52015 |Bonded

  3. State Bond Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage EditStamford,Energy CenterStateState Bond

  4. Cement Bond Log | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo Energy JumpCeiling Fan JumpCement Bond Log

  5. Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure

    SciTech Connect (OSTI)

    Chowdhury, S; Mishra, UK

    2013-10-01

    Power conversion losses are endemic in all areas of electricity consumption, including motion control, lighting, air conditioning, and information technology. Si, the workhorse of the industry, has reached its material limits. Increasingly, the lateral AlGaN/GaN HEMT based on gallium nitride (GaN-on-Si) is becoming the device of choice for medium power electronics as it enables high-power conversion efficiency and reduced form factor at attractive pricing for wide market penetration. The reduced form factor enabled by high-efficiency operation at high frequency further enables significant system price reduction because of savings in bulky extensive passive elements and heat sink costs. The high-power market, however, still remains unaddressed by lateral GaN devices. The current and voltage demand for high power conversion application makes the chip area in a lateral topology so large that it becomes more difficult to manufacture. Vertical GaN devices would play a big role alongside of silicon carbide (SiC) to address the high power conversion needs. In this paper, the development, performance, and status of lateral and vertical GaN devices are discussed.

  6. GaNPAs Solar Cells Lattice-Matched To GaP: Preprint

    SciTech Connect (OSTI)

    Geisz, J. F.; Friedman, D. J.; Kurtz, S.

    2002-05-01

    This conference paper describes the III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We propose the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct band-gaps in the range of 1.5 to 2.0 eV. We demonstrate the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and discuss the prospects for the development of monolithic high-efficiency multijunction solar cells based on silicon substrates.

  7. Accurate characterization and improvement of GaAs microstrip attenuation 

    E-Print Network [OSTI]

    Carroll, James Mason

    1992-01-01

    Convergence. III. E. 6 Final Model. III. F Simulation Results for 100 um GaAs. . III. F. 1 On-GaAs Microstrip. III. I', 2 Suspended Microstrip Line . . . . 50 . . . . 51 . . . . 54 . . . . 56 . . . . 56 . . . 56 . . . . 64 64 . . . , 64 III. F. 3... Comparison Between On-GaAs and Suspcndcd Microstrip . . . 68 III. F. 4 Microstrip Inductance III. G EM Parameters in CAD Simulations . . III. H Simulation Results for 150 um GaAs. III. I Conclusions and Recommendations. IV RESEARCH ACCOMPLISHMENTS...

  8. Advanced technologies for improving high frequency performance of AlGaN/GaN high electron mobility transistors

    E-Print Network [OSTI]

    Chung, Jinwook W. (Jinwook Will)

    2008-01-01

    In this thesis, we have used a combination of physical analysis, numerical simulation and experimental work to identify and overcome some of the main challenges in AlGaN/GaN high electron mobility transistors (HEMTs) for ...

  9. Chemically bonded phospho-silicate ceramics

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Jeong, Seung Y. (Westmont, IL); Lohan, Dirk (Chicago, IL); Elizabeth, Anne (Chicago, IL)

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  10. A New Combustion Synthesis Method for GaN:Eu3+ and Ga2O3 :Eu3+

    E-Print Network [OSTI]

    McKittrick, Joanna

    A New Combustion Synthesis Method for GaN:Eu3+ and Ga2O3 :Eu3+ Luminescent Powders G. A. Hirata1 between the precursors. The preparation of Eu-doped Ga2O3 powders was achieved using a new combustion)3 and Ga(NO3)3 as the precursors and hydrazine as (non-carbonaceous) fuel. A spontaneous combustion

  11. Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers

    E-Print Network [OSTI]

    Jalali. Bahram

    Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico optical, electrical, and spectral response characteristics of three-stack InAs/GaAs quantum dot solar

  12. Properties of (Ga,Mn)As codoped with Li

    SciTech Connect (OSTI)

    Miyakozawa, Shohei; Chen, Lin; Matsukura, Fumihiro; Ohno, Hideo

    2014-06-02

    We grow Li codoped (Ga,Mn)As layers with nominal Mn composition up to 0.15 by molecular beam epitaxy. The layers before and after annealing are characterized by x-ray diffraction, transport, magnetization, and ferromagnetic resonance measurements. The codoping with Li reduces the lattice constant and electrical resistivity of (Ga,Mn)As after annealing. We find that (Ga,Mn)As:Li takes similar Curie temperature to that of (Ga,Mn)As, but with pronounced magnetic moments and in-plane magnetic anisotropy, indicating that the Li codoping has nontrivial effects on the magnetic properties of (Ga,Mn)As.

  13. 56 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 1, JANUARY 2012 Metamorphic GaAsP and InGaP Solar Cells on GaAs

    E-Print Network [OSTI]

    Haller, Gary L.

    solar cells are triple-junction concentrator devices, with each junction efficiently col- lecting subcell in a multijunction de- vice. GaAs0.66 P0.34 single-junction solar cells with Eg = 1.83 eV were56 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 1, JANUARY 2012 Metamorphic GaAsP and InGaP Solar

  14. Municipal Bond - Power Purchase Agreement Model Continues to...

    Broader source: Energy.gov (indexed) [DOE]

    power purchase agreement model to provide low-cost solar energy. Author: National Renewable Energy Laboratory Municipal Bond - Power Purchase Agreement Model Continues to Provide...

  15. Qualified Energy Conservation Bond (QECB) Update: New Guidance...

    Office of Environmental Management (EM)

    clarification of what constitutes a qualified project for potential issuers of qualified energy conservation bond capacity. Author: Lawrence Berkeley National Laboratory Qualified...

  16. Energetics of Hydrogen Bond Network Rearrangements in Liquid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly...

  17. Qualified Energy Conservation Bonds (ŤQECBs?) & New Clean Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conservation Bonds (QECBs) may be issued by state, local and tribal governments to finance qualified energy conservation projects. A minimum of 70% of a state's allocation must...

  18. Douglas County School District (Nevada) Bonds Case Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonds Case Study Douglas County School District faced a challenging combination of aging equipment and buildings (most over 37 years old), rising energy costs, and limited...

  19. Reactive codoping of GaAlInP compound semiconductors

    DOE Patents [OSTI]

    Hanna, Mark Cooper (Boulder, CO); Reedy, Robert (Golden, CO)

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  20. Three-junction solar cells comprised of a thin-film GaInP/GaAs tandem cell mechanically stacked on a Si cell

    SciTech Connect (OSTI)

    Yazawa, Y.; Tamura, K.; Watahiki, S.; Kitatani, T.; Ohtsuka, H.; Warabisako, T.

    1997-12-31

    Three-junction tandem solar cells were fabricated by mechanical stacking of a thin-film GaInP/GaAs monolithic tandem cell and a Si cell. The epitaxial lift-off (ELO) technique was used for the thinning of GaInP/GaAs tandem cells. Both spectral responses of the GaInP top cell and the GaAs middle cell in the thin-film GaInP/GaAs monolithic tandem cell were conserved. The Si cell performance has been improved by reducing the absorption loss in the GaAs substrate.

  1. Chemical beam epitaxy growth of AlGaAs/GaAs tunnel junctions using trimethyl aluminium for multijunction solar cells

    SciTech Connect (OSTI)

    Paquette, B.; DeVita, M.; Turala, A.; Kolhatkar, G.; Boucherif, A.; Jaouad, A.; Aimez, V.; Arčs, R.; Wilkins, M.; Wheeldon, J. F.; Walker, A. W.; Hinzer, K.; Fafard, S.

    2013-09-27

    AlGaAs/GaAs tunnel junctions for use in high concentration multijunction solar cells were designed and grown by chemical beam epitaxy (CBE) using trimethyl aluminium (TMA) as the p-dopant source for the AlGaAs active layer. Controlled hole concentration up to 4?10{sup 20} cm{sup ?3} was achieved through variation in growth parameters. Fabricated tunnel junctions have a peak tunneling current up to 6140 A/cm{sup 2}. These are suitable for high concentration use and outperform GaAs/GaAs tunnel junctions.

  2. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) Four-Junction Solar Cell

    SciTech Connect (OSTI)

    Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

    2006-01-01

    We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga{sub 0.5}In{sub 0.5} P/GaAs/Ga{sub 0.75}In{sub 0.25}As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga{sub 0.75}In{sub 0.25}As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap Ga{sub x}In{sub 1-x}As fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the Ga{sub x}In{sub 1-x}As fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

  3. Electron tunneling spectroscopy study of electrically active traps in AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Yang, Jie Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth

    2013-11-25

    We investigate the energy levels of electron traps in AlGaN/GaN high electron mobility transistors by the use of electron tunneling spectroscopy. Detailed analysis of a typical spectrum, obtained in a wide gate bias range and with both bias polarities, suggests the existence of electron traps both in the bulk of AlGaN and at the AlGaN/GaN interface. The energy levels of the electron traps have been determined to lie within a 0.5?eV band below the conduction band minimum of AlGaN, and there is strong evidence suggesting that these traps contribute to Frenkel-Poole conduction through the AlGaN barrier.

  4. A InGaN/GaN quantum dot green ({lambda}=524 nm) laser

    SciTech Connect (OSTI)

    Zhang Meng; Banerjee, Animesh; Lee, Chi-Sen; Hinckley, John M.; Bhattacharya, Pallab

    2011-05-30

    The characteristics of self-organized InGaN/GaN quantum dot lasers are reported. The laser heterostructures were grown on c-plane GaN substrates by plasma-assisted molecular beam epitaxy and the laser facets were formed by focused ion beam etching with gallium. Emission above threshold is characterized by a peak at 524 nm (green) and linewidth of 0.7 nm. The lowest measured threshold current density is 1.2 kA/cm{sup 2} at 278 K. The slope and wall plug efficiencies are 0.74 W/A and {approx}1.1%, respectively, at 1.3 kA/cm{sup 2}. The value of T{sub 0}=233 K in the temperature range of 260-300 K.

  5. Photocapacitance study of type-II GaSb/GaAs quantum ring solar cells

    SciTech Connect (OSTI)

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-01-07

    In this study, the density of states associated with the localization of holes in GaSb/GaAs quantum rings are determined by the energy selective charging of the quantum ring distribution. The authors show, using conventional photocapacitance measurements, that the excess charge accumulated within the type-II nanostructures increases with increasing excitation energies for photon energies above 0.9?eV. Optical excitation between the localized hole states and the conduction band is therefore not limited to the ?(k?=?0) point, with pseudo-monochromatic light charging all states lying within the photon energy selected. The energy distribution of the quantum ring states could consequently be accurately related from the excitation dependence of the integrated photocapacitance. The resulting band of localized hole states is shown to be well described by a narrow distribution centered 407?meV above the GaAs valence band maximum.

  6. Efficiency enhancement of InGaN/GaN solar cells with nanostructures

    SciTech Connect (OSTI)

    Bai, J.; Yang, C. C.; Athanasiou, M.; Wang, T.

    2014-02-03

    We demonstrate InGaN/GaN multi-quantum-well solar cells with nanostructures operating at a wavelength of 520?nm. Nanostructures with a periodic nanorod or nanohole array are fabricated by means of modified nanosphere lithography. Under 1 sun air-mass 1.5 global spectrum illumination, a fill factor of 50 and an open circuit voltage of 1.9?V are achieved in spite of very high indium content in InGaN alloys usually causing degradation of crystal quality. Both the nanorod array and the nanohole array significantly improve the performance of solar cells, while a larger enhancement is observed for the nanohole array, where the conversion efficiency is enhanced by 51%.

  7. Graphene in ohmic contact for both n-GaN and p-GaN

    SciTech Connect (OSTI)

    Zhong, Haijian; Liu, Zhenghui; Shi, Lin; Xu, Gengzhao; Fan, Yingmin; Huang, Zengli [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Wang, Jianfeng; Ren, Guoqiang; Xu, Ke, E-mail: kxu2006@sinano.ac.cn [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123 (China)

    2014-05-26

    The wrinkles of single layer graphene contacted with either n-GaN or p-GaN were found both forming ohmic contacts investigated by conductive atomic force microscopy. The local I–V results show that some of the graphene wrinkles act as high-conductive channels and exhibiting ohmic behaviors compared with the flat regions with Schottky characteristics. We have studied the effects of the graphene wrinkles using density-functional-theory calculations. It is found that the standing and folded wrinkles with zigzag or armchair directions have a tendency to decrease or increase the local work function, respectively, pushing the local Fermi level towards n- or p-type GaN and thus improving the transport properties. These results can benefit recent topical researches and applications for graphene as electrode material integrated in various semiconductor devices.

  8. Method of bonding single crystal quartz by field-assisted bonding

    DOE Patents [OSTI]

    Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.

    1991-04-23

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.

  9. Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots

    SciTech Connect (OSTI)

    Braun, T.; Schneider, C.; Maier, S.; Forchel, A.; Höfling, S.; Kamp, M.; Igusa, R.; Iwamoto, S.; Arakawa, Y.

    2014-09-15

    In this letter we study the influence of temperature and excitation power on the emission linewidth from site-controlled InGaAs/GaAs quantum dots grown on nanoholes defined by electron beam lithography and wet chemical etching. We identify thermal electron activation as well as direct exciton loss as the dominant intensity quenching channels. Additionally, we carefully analyze the effects of optical and acoustic phonons as well as close-by defects on the emission linewidth by means of temperature and power dependent micro-photoluminescence on single quantum dots with large pitches.

  10. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    SciTech Connect (OSTI)

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Sofferman, D. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Adelphi University, Garden City, New York 11530-0701 (United States); Beskin, I. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2013-08-12

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport.

  11. Flip chip electrical interconnection by selective electroplating and bonding

    E-Print Network [OSTI]

    Lin, Liwei

    Flip chip electrical interconnection by selective electroplating and bonding L.-W. Pan, P. Yuen, L resistance of the electroplating bond is 12 W. This process has potential applications in replacing-step approach for high-density electrical in- terconnection by using flip chip selective electroplating

  12. Proton Transfer and Hydrogen Bonding in Chemical and Biological

    E-Print Network [OSTI]

    Amrhein, Valentin

    Proton Transfer and Hydrogen Bonding in Chemical and Biological Systems: A Force Field Approach and support. i #12;ii #12;Abstract Proton transfer and hydrogen bonds are fundamental for the function be regarded as incipient proton transfer reactions, so theoretically they can be de- scribed in unitary way

  13. Quantum Finance Hamiltonian for Coupon Bond European and Barrier Options

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    Quantum Finance Hamiltonian for Coupon Bond European and Barrier Options Belal E. Baaquie RMI are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward-2963 Fax: (65) 6777-6126 Email: phybeb@nus.edu.sg #12;Quantum Finance Hamiltonian for Coupon Bond European

  14. Material Properties of Chemically Bonded Phosphate Ceramic/Wood Interfaces

    E-Print Network [OSTI]

    Collins, Gary S.

    Material Properties of Chemically Bonded Phosphate Ceramic/Wood Interfaces M.J. Benjamin, K Chemically bonded phosphate ceramics (CBPCs) are man made inorganic solids that lie in between hydraulic cements and ceramics . Normally, ceramics are sintered at temperatures ranging from 700-2000C

  15. GaN based nanorods for solid state lighting

    SciTech Connect (OSTI)

    Li Shunfeng; Waag, Andreas [Institute of Semiconductor Technology, Braunschweig University of Technology, 38106 Braunschweig (Germany)

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  16. Electrically conductive resinous bond and method of manufacture

    DOE Patents [OSTI]

    Snowden, Jr., Thomas M. (P.O. Box 4231, Clearwater, FL 33518); Wells, Barbara J. (865 N. Village Dr., Apt. 101B, St. Petersburg, FL 33702)

    1987-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  17. Electrically conductive resinous bond and method of manufacture

    DOE Patents [OSTI]

    Snowden, T.M. Jr.; Wells, B.J.

    1985-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  18. Development Day Kroc Center - Augusta, GA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeeting |DesignCommunities Reviewed June 2011magnetic

  19. GaInP/GaAs dual junction solar cells on Ge/Si epitaxial templates Melissa J. Archer,1,a

    E-Print Network [OSTI]

    Atwater, Harry

    GaInP/GaAs dual junction solar cells on Ge/Si epitaxial templates Melissa J. Archer,1,a Daniel C, crack-free GaInP/GaAs double junction solar cells were grown by metal organic chemical vapor deposition with the world record efficiency is a metamorphic triple junction GaInP/GaAs/Ge cell.6 Alternatively, wafer

  20. Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    -emitting diodes (LEDs) are considered the new generation lighting sources due to their advantages in power Society of America OCIS codes: 230.3670, 230.5590, 160.6000. Nitride-based high-power light devoted to the development of high-brightness GaN-based LEDs [3­5]. Lateral hole spreading is one

  1. High-Efficiency GaInP/GaAs Tandem Solar Cells

    SciTech Connect (OSTI)

    Bertness, K. A.; Friedman, D. J.; Kurtz, S. R.; Kibbler, A. E.; Cramer, C.; Olson, J. M.

    1996-09-01

    GaInP/GaAs tandem solar cells have achieved efficiencies between 25.7-30.2%, depending on illumination conditions. The efficiencies are the highest confirmed two-terminal values measured for any solar cell within each standard illumination category. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance.

  2. High-efficiency GaInP/GaAs tandem solar cells

    SciTech Connect (OSTI)

    Bertness, K.A.; Friedman, D.J.; Kurtz, S.R.; Kibbler, A.E.; Kramer, C.; Olson, J.M.

    1994-12-01

    GaInP/GaAs tandem solar cells have achieved new record efficiencies, specifically 25.7% under air-mass 0 (AM0) illumination, 29.5% under AM 1.5 global (AM1.5G) illumination, and 30.2% at 140-180x concentration under AM 1.5 direct (AM1.5D) illumination. These values are the highest two-terminal efficiencies achieved by any solar cell under these illumination conditions. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance. 31 refs.

  3. TJ Solar Cell (GaInP/GaAs/Ge Ultrahigh-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Friedman, Daniel

    2002-04-17

    This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

  4. Multijunction GaInP/GaInAs/Ge solar cells with Bragg reflectors

    SciTech Connect (OSTI)

    Emelyanov, V. M. Kalyuzhniy, N. A.; Mintairov, S. A.; Shvarts, M. Z.; Lantratov, V. M.

    2010-12-15

    Effect of subcell parameters on the efficiency of GaInP/Ga(In)As/Ge tandem solar cells irradiated with 1-MeV electrons at fluences of up to 3 x 10{sup 15} cm{sup -2} has been theoretically studied. The optimal thicknesses of GaInP and GaInAs subcells, which provide the best photocurrent matching at various irradiation doses in solar cells with and without built-in Bragg reflectors, were determined. The dependences of the photoconverter efficiency on the fluence of 1-MeV electrons and on the time of residence in the geostationary orbit were calculated for structures optimized to the beginning and end of their service lives. It is shown that the optimization of the subcell heterostructures for a rated irradiation dose and the introduction of Bragg reflectors into the structure provide a 5% overall increase in efficiency for solar cells operating in the orbit compared with unoptimized cells having no Bragg reflector.

  5. Localized corrosion of GaAs surfaces and formation of porous GaAs

    SciTech Connect (OSTI)

    Schmuki, P.; Vitus, C.M.; Isaacs, H.S.; Fraser, J.; Graham, M.J.

    1995-12-01

    The present work deals with pitting corrosion of p- and n-type GaAs (100). Pit growth can be electrochemically initiated on both conduction types in chloride-containing solutions and leads after extended periods of time to the formation of a porous GaAs structure. In the case of p-type material, localized corrosion is only observed if a passivating film is present on the surface, otherwise -- e.g. in acidic solutions -- the material suffers from a uniform attack (electropolishing) which is independent of the anion present. In contrast, pitting corrosion of n-type material can be triggered independent of the presence of an oxide film. This is explained in terms of the different current limiting factor for the differently doped materials (oxide film in the case of the p- and a space charge layer in the case of the n-GaAs). The porous structure was characterized by SEM, EDX and AES, and consists mainly of GaAs. From scratch experiments it is clear that the pit initiation process is strongly influenced by surface defects. For n-type material, AFM investigations show that light induced roughening of the order of several hundred nm occurs under non-passivating conditions. This nm- scale roughening however does not affect the pitting process.

  6. Theoretical Electron Density Distributions for Fe-and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities,

    E-Print Network [OSTI]

    Downs, Robert T.

    between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions G. V; In Final Form: December 6, 2006 Bond critical point and local energy density properties together with netTheoretical Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection

  7. Surface energy calculations from Zinc blende (111)/(-1-1-1) to Wurtzite (0001)/(000-1):a study of ZnO and GaN

    E-Print Network [OSTI]

    Zhang, Jingzhao; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    2015-01-01

    The accurate absolute surface energies of (0001)/(000-1) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating dangling bond energy of asymmetrically bonded surface atoms. In this study, we used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches. And the surface energies of (0001)/(000-1) surfaces of wurtzite ZnO and GaN we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group I and group VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces, and the result we...

  8. Demonstration of a semipolar (10(1)over-bar(3)over-bar) InGaN/GaN green light emitting diode

    E-Print Network [OSTI]

    2005-01-01

    InGaN / GaN green light emitting diode R. Sharma, a? P. M.green ??525 nm? light emitting diode ?LED?. The fabricated

  9. Inverse spin Hall effect in Pt/(Ga,Mn)As

    SciTech Connect (OSTI)

    Nakayama, H.; Chen, L.; Chang, H. W.; Ohno, H.; Matsukura, F.

    2015-06-01

    We investigate dc voltages under ferromagnetic resonance in a Pt/(Ga,Mn)As bilayer structure. A part of the observed dc voltage is shown to originate from the inverse spin Hall effect. The sign of the inverse spin Hall voltage is the same as that in Py/Pt bilayer structure, even though the stacking order of ferromagnetic and nonmagnetic layers is opposite to each other. The spin mixing conductance at the Pt/(Ga,Mn)As interface is determined to be of the order of 10{sup 19?}m{sup ?2}, which is about ten times greater than that of (Ga,Mn)As/p-GaAs.

  10. Deep level defects in n-type GaAsBi and GaAs grown at low temperatures

    SciTech Connect (OSTI)

    Mooney, P. M.; Watkins, K. P.; Jiang, Zenan; Basile, A. F.; Lewis, R. B.; Bahrami-Yekta, V.; Masnadi-Shirazi, M.; Beaton, D. A.; Tiedje, T.

    2013-04-07

    Deep level defects in n-type GaAs{sub 1-x}Bi{sub x} having 0 < x < 0.012 and GaAs grown by molecular beam epitaxy (MBE) at substrate temperatures between 300 and 400 Degree-Sign C have been investigated by Deep Level Capacitance Spectroscopy. Incorporating Bi suppresses the formation of an electron trap with activation energy 0.40 eV, thus reducing the total trap concentration in dilute GaAsBi layers by more than a factor of 20 compared to GaAs grown under the same conditions. We find that the dominant traps in dilute GaAsBi layers are defect complexes involving As{sub Ga}, as expected for MBE growth at these temperatures.

  11. High efficiency InGaN/GaN light emitting diodes with asymmetric triangular multiple quantum wells

    SciTech Connect (OSTI)

    Chang, Chiao-Yun; Li, Hen; Lu, Tien-Chang, E-mail: timtclu@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 300 (China)

    2014-03-03

    In this study, we demonstrated high efficiency InGaN/GaN light emitting diodes (LEDs) with asymmetric triangular multiple quantum wells (MQWs). Asymmetric triangular MQWs not only contribute to uniform carrier distribution in InGaN/GaN MQWs but also yield a low Auger recombination rate. In addition, asymmetric triangular MQWs with gallium face-oriented inclination band profiles can be immune from the polarization charge originating from typical c-plane InGaN/GaN quantum well structures. In the experiment, LEDs incorporated with asymmetric triangular MQWs with gallium face-oriented inclination band profiles exhibited a 60.0% external quantum efficiency at 20?mA and a 27.0% efficiency droop at 100?mA (corresponding to a current density of 69?A/cm{sup 2}), which accounted for an 11.7% efficiency improvement and a 31.1% droop reduction compared with symmetric square quantum well structure LEDs.

  12. Deep level centers and their role in photoconductivity transients of InGaAs/GaAs quantum dot chains

    SciTech Connect (OSTI)

    Kondratenko, S. V. Vakulenko, O. V.; Mazur, Yu. I. Dorogan, V. G.; Marega, E.; Benamara, M.; Ware, M. E.; Salamo, G. J.

    2014-11-21

    The in-plane photoconductivity and photoluminescence are investigated in quantum dot-chain InGaAs/GaAs heterostructures. Different photoconductivity transients resulting from spectrally selecting photoexcitation of InGaAs QDs, GaAs spacers, or EL2 centers were observed. Persistent photoconductivity was observed at 80?K after excitation of electron-hole pairs due to interband transitions in both the InGaAs QDs and the GaAs matrix. Giant optically induced quenching of in-plane conductivity driven by recharging of EL2 centers is observed in the spectral range from 0.83?eV to 1.0?eV. Conductivity loss under photoexcitation is discussed in terms of carrier localization by analogy with carrier distribution in disordered media.

  13. Au impact on GaAs epitaxial growth on GaAs (111){sub B} substrates in molecular beam epitaxy

    SciTech Connect (OSTI)

    Liao, Zhi-Ming; Chen, Zhi-Gang; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Lu, Zhen-Yu; Chen, Ping-Ping; Lu, Wei; Zou, Jin; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072

    2013-02-11

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {l_brace}111{r_brace}{sub B} substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {l_brace}113{r_brace}{sub B} faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  14. Vacuum pull down method for an enhanced bonding process

    DOE Patents [OSTI]

    Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    1999-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  15. Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional, USA (Received 24 February 2003; published 3 December 2003) Hydrogen bond dynamics are explicated hydrogen bonded network are measured with ultrashort (

  16. Wire bond vibration of forward pixel tracking detector of CMS

    SciTech Connect (OSTI)

    Atac, M.; /Fermilab; Gobbi, B.; /Northwestern U.; Kwan, S.; Pischalnikov, Y.; /Fermilab; Spencer, E.; /Northwestern U.; Sellberg, G.; Pavlicek, V.; /Fermilab

    2006-10-01

    Wire bonds of the Forward Pixel (FPix) tracking detectors are oriented in the direction that maximizes Lorentz Forces relative to the 4 Tesla field of the Compact Muon Solenoid (CMS) Detector's magnet. The CMS Experiment is under construction at the Large Hadron Collider at CERN, Geneva, Switzerland. We were concerned about Lorentz Force oscillating the wires at their fundamental frequencies and possibly fracturing or breaking them at their heels, as happened with the CDF wire bonds. This paper reports a study to understand what conditions break such bonds.

  17. DC characteristics of OMVPE-grown N-p-n InGaP/InGaAsN DHBTs

    SciTech Connect (OSTI)

    Li, N.Y.; Chang, P.C.; Baca, A.G.; Xie, X.M.; Sharps, P.R.; Hou, H.Q.

    2000-01-04

    The authors demonstrate, for the first time, a functional N-p-n heterojunction bipolar transistor using a novel material, InGaAsN, with a bandgap energy of 1.2eV as the p-type base layer. A 300{angstrom}-thick In{sub x}Ga{sub 1-x}As graded layer was introduced to reduce the conduction band offset at the p-type InGaAsN base and n-type GaAs collector junction. For an emitter size of 500 {mu}m{sup 2}, a peak current gain of 5.3 has been achieved.

  18. The Effect of the Thermal Boundary Resistance on Self-Heating of AlGaN/GaN HFETs

    E-Print Network [OSTI]

    sound velocity in GaN. The cut off wave vector is given by where NA is the Avogadro number, is the mass

  19. Reliability of AlGaN/GaN high electron mobility transistors on low dislocation density bulk GaN substrate: Implications of surface step edges

    SciTech Connect (OSTI)

    Killat, N., E-mail: Nicole.Killat@bristol.ac.uk, E-mail: Martin.Kuball@bristol.ac.uk; Montes Bajo, M.; Kuball, M., E-mail: Nicole.Killat@bristol.ac.uk, E-mail: Martin.Kuball@bristol.ac.uk [Center for Device Thermography and Reliability (CDTR), H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Paskova, T. [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States) [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States); Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695 (United States); Evans, K. R. [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States)] [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States); Leach, J. [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States) [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States); Electrical and Computer Engineering Department, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Li, X.; Özgür, Ü.; Morkoç, H. [Electrical and Computer Engineering Department, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)] [Electrical and Computer Engineering Department, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Chabak, K. D.; Crespo, A.; Gillespie, J. K.; Fitch, R.; Kossler, M.; Walker, D. E.; Trejo, M.; Via, G. D.; Blevins, J. D. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)] [Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)

    2013-11-04

    To enable gaining insight into degradation mechanisms of AlGaN/GaN high electron mobility transistors, devices grown on a low-dislocation-density bulk-GaN substrate were studied. Gate leakage current and electroluminescence (EL) monitoring revealed a progressive appearance of EL spots during off-state stress which signify the generation of gate current leakage paths. Atomic force microscopy evidenced the formation of semiconductor surface pits at the failure location, which corresponds to the interaction region of the gate contact edge and the edges of surface steps.

  20. Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal

    SciTech Connect (OSTI)

    Shokri, Alireza; Wang, Yanping; O'Doherty, George A.; Wang, Xue B.; Kass, Steven R.

    2013-11-27

    We report quantifying the strengths of different types of hydrogen bonds in hydrogen bond networks (HBNs) via measurement of the adiabatic electron detachment energy of the conjugate base of a small covalent polyol model compound (i.e., (HOCH2CH2CH(OH)CH2)2CHOH) in the gas phase and the pKa of the corresponding acid in DMSO. The latter result reveals that the hydrogen bonds to the charged center and those that are one solvation shell further away (i.e., primary and secondary) provide 5.3 and 2.5 pKa units of stabilization per hydrogen bond in DMSO. Computations indicate that these energies increase to 8.4 and 3.9 pKa units in benzene and that the total stabilizations are 16 (DMSO) and 25 (benzene) pKa units. Calculations on a larger linear heptaol (i.e., (HOCH2CH2CH(OH)CH2CH(OH)CH2)2CHOH) reveal that the terminal hydroxyl groups each contribute 0.6 pKa units of stabilization in DMSO and 1.1 pKa units in benzene. All of these results taken together indicate that the presence of a charged center can provide a powerful energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN.

  1. Low temperature transient liquid phase bonding of copper

    E-Print Network [OSTI]

    Williams, Joel C. (Joel Carlton)

    2005-01-01

    This thesis describes a Pb-free solder alternative that is capable of fluxless bonding. The main advantage of this process is that it offers the benefits of low fabrication temperature (125?C) while producing a joint capable ...

  2. Multilayer roll bonded aluminium foil: processing, microstructure and flow stress

    SciTech Connect (OSTI)

    Barlow, C.Y.; Nielsen, P.; Hansen, N

    2004-08-02

    Bulk aluminium has been produced by warm-rolling followed by cold-rolling of commercial purity (99% purity) aluminium foil. The bonding appeared perfect from observation with the naked eye, light and transmission electron microscopy. By comparison with bulk aluminium of similar purity (AA1200) rolled to a similar strain (90%RA), the roll-bonded metal showed a much higher density of high-angle grain boundaries, similar strength and improved thermal stability. This study has implications for a number of applications in relation to the processing of aluminium. Roll bonding is of interest as a method for grain size refinement; oxide-containing materials have increased strength, enhanced work-hardening behaviour, and exhibit alterations in recrystallisation behaviour. The behaviour of the hard oxide film is of interest in aluminium processing, and has been investigated by characterising the size and distribution of oxide particles in the roll-bonded samples.

  3. MODE II FRACTURE BEHAVIOR OF BONDED VISCOELASTIC THERMAL COMPRESSED WOOD

    E-Print Network [OSTI]

    Nairn, John A.

    MODE II FRACTURE BEHAVIOR OF BONDED VISCOELASTIC THERMAL COMPRESSED WOOD Andreja Kutnar* Graduate Student Department of Wood Science and Technology Biotechnical Faculty University of Ljubljana 1000 Ljubljana, Slovenia Frederick A. Kamke Professor John A. Nairn Professor Department of Wood Science

  4. Mpemba paradox: Hydrogen bond memory and water-skin supersolidity

    E-Print Network [OSTI]

    Chang Q Sun

    2015-01-05

    Numerical reproduction of measurements, experimental evidence for skin super-solidity and hydrogen-bond memory clarified that Mpemba paradox integrates the heat emission-conduction-dissipation dynamics in the source-path-drain cycle system.

  5. Spectroscopic investigations of hydrogen bond dynamics in liquid water

    E-Print Network [OSTI]

    Fecko, Christopher J., 1975-

    2004-01-01

    Many of the remarkable physical and chemical properties of liquid water are due to the strong influence hydrogen bonds have on its microscopic dynamics. However, because of the fast timescales involved, there are relatively ...

  6. Application of Social Impact Bonds in Built Infrastructure Sustainability Projects 

    E-Print Network [OSTI]

    White, Robert Joseph

    2014-05-01

    This study examines a first look at the implementation of Social Impact Bonds (SIB) for sustainability projects by comparing two cases. The cases are described using System Dynamic (SD) modeling to portray the feedback structures and characteristics...

  7. Bond graph models of electromechanical systems. The AC generator case

    E-Print Network [OSTI]

    Batlle, Carles

    Bond graph models of electromechanical systems. The AC generator case Carles Batlle Department. After reviewing electromechanical energy conversion and torque gener- ation, the core element present in any electromechanical system is introduced, and the corresponding electrical and mechanical ports

  8. Reply to comment on "Quantum Confinement in Hydrogen Bond"

    E-Print Network [OSTI]

    Santos, Carlos da Silva dos; Ricotta, Regina Maria

    2015-01-01

    We reply to the comments on our paper "Quantum Confinement in Hydrogen Bond" (Int. J. Quantum Chem. 115 (2015) 765 DOI: 10.1002/qua.24894) made by Matthias Heger and Martin A. Suhm.

  9. Influence of receptor flexibility on intramolecular H-bonding interactions

    E-Print Network [OSTI]

    Sun, Hongmei; Guo, Kai; Gan, Haifeng; Li, Xin; Hunter, Christopher A.

    2015-01-01

    Atropisomers of a series of zinc tetraphenyl porphyrins were synthesized and used as supramolecular receptors. Rotation around the porphyrin-meso phenyl bonds is restricted by installing ortho-chlorine substituents on the phenyl groups. The chlorine...

  10. IRS Announces New Tribal Economic Development Bond Allocation Guidance

    Broader source: Energy.gov [DOE]

    Treasury and the IRS published new guidance today allocating Tribal Economic Development Bonds (TEDBs) for Tribes that have projects that are in the final stages of going to the market to receive financing.

  11. Low-Cost Financing with Clean Renewable Energy Bonds

    Broader source: Energy.gov [DOE]

    Contains information from the TAP Webcast on June 24, 2009 on clean renewable energy bonds from Claire Kreycik on feed-in tariffs, an economic resource for developing renewable energy.

  12. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the...

  13. The Geography of European Convertible Bonds: Why Firms Issue Convertibles?

    E-Print Network [OSTI]

    Saskatchewan, University of

    1 The Geography of European Convertible Bonds: Why Firms Issue Convertibles? Franck Bancel Usha R at the geography of CB issuance. The size and development of the CB market varies widely across countries and over

  14. Understanding mechanisms for C-H bond activation 

    E-Print Network [OSTI]

    Vastine, Benjamin Alan

    2009-05-15

    The results from density functional theory (DFT) studies into C–H bond activation, hydrogen transfer, and alkyne–to–vinylidene isomerization are presented in this work. The reaction mechanism for the reductive elimination ...

  15. Istanbul,Turkey & Atlanta, GA Istanbul,Turkey

    E-Print Network [OSTI]

    Frantz, Kyle J.

    Istanbul,Turkey & Atlanta, GA Istanbul,Turkey & Atlanta, GA 2012 Media, Journalism and Business for departure to Istanbul,Turkey Day 9 Depart for Istanbul; guided cultural visit upon arrival; group dinner Day business leaders; site visits to local universities Day 18 UPS and the value of logistics inTurkey Day 19

  16. Photoeffects in WO{sub 3}/GaAs electrode

    SciTech Connect (OSTI)

    Yoon, K.H.; Lee, J.W.; Cho, Y.S.; Kang, D.H.

    1996-12-01

    Photoeffects of a {ital p}-type GaAs coated with WO{sub 3} thin film have been investigated as a function of film thickness and photoresponse transients of the WO{sub 3}/GaAs electrode were studied. Also, these results were compared to those for a single {ital p}-type GaAs electrode. The photocurrent of the WO{sub 3}/GaAs electrode depended on the film thickness of the WO{sub 3}, showing an optimum photon efficiency for specimens of 800 A thickness. This is due to the existence of an effective interface state within the band gap which reduces trapping of carriers and facilitates carrier movement. For an 800-A-thick WO{sub 3} thin film deposited {ital p}-GaAs photoelectrode, the photogenerated electrons were found to move to an electrolyte at a higher positive onset potential compared with that of single {ital p}-type GaAs, which was confirmed as a result of transient behavior. {ital I}{endash}{ital V} and {ital C}{endash}{ital V} characteristics of the WO{sub 3}/GaAs electrode were also compared with those of a single {ital p}-type GaAs electrode. {copyright} {ital 1996 American Institute of Physics.}

  17. Room temperature spin transport in undoped (110) GaAs/AlGaAs quantum wells

    SciTech Connect (OSTI)

    Yokota, Nobuhide Aoshima, Yohei; Ikeda, Kazuhiro; Kawaguchi, Hitoshi

    2014-02-17

    We are reporting on our first observation of a micrometer-order electron spin transport in a (110) GaAs/AlGaAs multiple quantum well (QW) at room temperature using a space- and time-resolved Kerr rotation technique. A 37-?m transport was observed within an electron spin lifetime of 1.2?ns at room temperature when using an in-plane electric field of 1.75?kV/cm. The spatio-temporal profiles of electron spins were well reproduced by the spin drift-diffusion equations coupled with the Poisson equation, supporting the validity of the measurement. The results suggest that (110) QWs are useful as a spin transport layer for semiconductor spintronic devices operating at room temperature.

  18. Evaluation of the two-photon absorption characteristics of GaSb/GaAs quantum rings

    SciTech Connect (OSTI)

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-07-28

    The optical parameters describing the sub-bandgap response of GaSb/GaAs quantum rings solar cells have been obtained from photocurrent measurements using a modulated pseudo-monochromatic light source in combination with a second, continuous photo-filling source. By controlling the charge state of the quantum rings, the photoemission cross-sections describing the two-photon sub-bandgap transitions could be determined independently. Temperature dependent photo-response measurements also revealed that the barrier for thermal hole emission from the quantum rings is significantly below the quantum ring localisation energy. The temperature dependence of the sub-bandgap photo-response of the solar cell is also described in terms of the photo- and thermal-emission characteristics of the quantum rings.

  19. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    SciTech Connect (OSTI)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); You, Guanjun; Liu, Jie; Wang, Li; Xu, Jian, E-mail: jianxu@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage current and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.

  20. Large linear magnetoresistance in a GaAs/AlGaAs heterostructure

    SciTech Connect (OSTI)

    Aamir, Mohammed Ali, E-mail: aamir@physics.iisc.ernet.in; Goswami, Srijit, E-mail: aamir@physics.iisc.ernet.in; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Baenninger, Matthias; Farrer, Ian; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Tripathi, Vikram [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Pepper, Michael [Department of Electrical and Electronic Engineering, University College, London WC1E 7JE (United Kingdom)

    2013-12-04

    We report non-saturating linear magnetoresistance (MR) in a two-dimensional electron system (2DES) at a GaAs/AlGaAs heterointerface in the strongly insulating regime. We achieve this by driving the gate voltage below the pinch-off point of the device and operating it in the non-equilibrium regime with high source-drain bias. Remarkably, the magnitude of MR is as large as 500% per Tesla with respect to resistance at zero magnetic field, thus dwarfing most non-magnetic materials which exhibit this linearity. Its primary advantage over most other materials is that both linearity and the enormous magnitude are retained over a broad temperature range (0.3 K to 10 K), thus making it an attractive candidate for cryogenic sensor applications.

  1. Growth of GaN@InGaN Core-Shell and Au-GaN Hybrid Nanostructures for Energy Applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuykendall, Tevye; Aloni, Shaul; Jen-La Plante, Ilan; Mokari, Taleb

    2009-01-01

    We demonstrated a method to control the bandgap energy of GaN nanowires by forming GaN@InGaN core-shell hybrid structures using metal organic chemical vapor deposition (MOCVD). Furthermore, we show the growth of Au nanoparticles on the surface of GaN nanowires in solution at room temperature. The work shown here is a first step toward engineering properties that are crucial for the rational design and synthesis of a new class of photocatalytic materials. The hybrid structures were characterized by various techniques, including photoluminescence (PL), energy dispersive x-ray spectroscopy (EDS), transmission and scanning electron microscopy (TEM and SEM), and x-ray diffraction (XRD).

  2. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOE Patents [OSTI]

    Plucknett, K.; Tiegs, T.N.; Becher, P.F.

    1999-05-18

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

  3. Low interface defect density of atomic layer deposition BeO with self-cleaning reaction for InGaAs metal oxide semiconductor field effect transistors

    SciTech Connect (OSTI)

    Shin, H. S. [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of) [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of); SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); The University of Texas, Austin, Texas 78758 (United States); Yum, J. H. [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States) [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); The University of Texas, Austin, Texas 78758 (United States); Johnson, D. W. [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States) [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); Texas A and M University College Station, Texas 77843 (United States); Harris, H. R. [Texas A and M University College Station, Texas 77843 (United States)] [Texas A and M University College Station, Texas 77843 (United States); Hudnall, Todd W. [Texas State University, 601 University Drive, San Marcos, Texas 78666 (United States)] [Texas State University, 601 University Drive, San Marcos, Texas 78666 (United States); Oh, J. [Yonsei University, Incheon, 406-840 (Korea, Republic of)] [Yonsei University, Incheon, 406-840 (Korea, Republic of); Kirsch, P.; Wang, W.-E. [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States)] [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); Bielawski, C. W.; Banerjee, S. K.; Lee, J. C. [The University of Texas, Austin, Texas 78758 (United States)] [The University of Texas, Austin, Texas 78758 (United States); Lee, H. D. [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of)] [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2013-11-25

    In this paper, we discuss atomic configuration of atomic layer deposition (ALD) beryllium oxide (BeO) using the quantum chemistry to understand the theoretical origin. BeO has shorter bond length, higher reaction enthalpy, and larger bandgap energy compared with those of ALD aluminum oxide. It is shown that the excellent material properties of ALD BeO can reduce interface defect density due to the self-cleaning reaction and this contributes to the improvement of device performance of InGaAs MOSFETs. The low interface defect density and low leakage current of InGaAs MOSFET were demonstrated using X-ray photoelectron spectroscopy and the corresponding electrical results.

  4. Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature

    SciTech Connect (OSTI)

    Ahn, Byung Du [School of Electrical and Electronic Engineering, 50, Yonsei University, Seoul 120-749 (Korea, Republic of); Park, Jin-Seong [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, K. B., E-mail: kbchung@dongguk.edu [Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2014-10-20

    Device performance of InGaZnO (IGZO) thin film transistors (TFTs) are investigated as a function of hydrogen ion irradiation dose at room temperature. Field effect mobility is enhanced, and subthreshold gate swing is improved with the increase of hydrogen ion irradiation dose, and there is no thermal annealing. The electrical device performance is correlated with the electronic structure of IGZO films, such as chemical bonding states, features of the conduction band, and band edge states below the conduction band. The decrease of oxygen deficient bonding and the changes in electronic structure of the conduction band leads to the improvement of device performance in IGZO TFT with an increase of the hydrogen ion irradiation dose.

  5. GaInN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection

    SciTech Connect (OSTI)

    Meyaard, David S., E-mail: meyaad@rpi.edu; Lin, Guan-Bo; Ma, Ming; Fred Schubert, E. [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)] [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Cho, Jaehee [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Semiconductor Physics Research Center, School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Han, Sang-Heon; Kim, Min-Ho; Shim, HyunWook; Sun Kim, Young [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)] [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)

    2013-11-11

    A GaInN light-emitting diode (LED) structure is analyzed that employs a separate epitaxial growth for the p-type region, i.e., the AlGaN electron-blocking layer (EBL) and p-type GaN cladding layer, followed by wafer or chip bonding. Such LED structure has a polarization-inverted EBL and allows for uncompromised epitaxial-growth optimization of the p-type region, i.e., without the need to consider degradation of the quantum-well active region during p-type region growth. Simulations show that such an LED structure reduces electron leakage, reduces the efficiency droop, improves hole injection, and has the potential to extend high efficiencies into the green spectral region.

  6. Transport properties of InGaAs/GaAs Heterostructures with {delta}-doped quantum wells

    SciTech Connect (OSTI)

    Baidus, N. V.; Vainberg, V. V.; Zvonkov, B. N.; Pylypchuk, A. S. Poroshin, V. N.; Sarbey, O. G.

    2012-05-15

    The lateral transport of electrons in single- and double-well pseudomorphic GaAs/n-InGaAs/GaAs heterostructures with quantum wells 50-100 meV deep and impurity {delta}-layers in the wells, with concentrations in the range 10{sup 11} < N{sub s} < 10{sup 12} cm{sup -2}, has been investigated. Single-well structures with a doped well at the center exhibit a nonmonotonic temperature dependence of the Hall coefficient and an increase in low-temperature electron mobility with an increase in the impurity concentration. The results obtained indicate that the impurity-band electron states play an important role in the conductivity of these structures. Involvement of the impurity band also allows to explain adequately the characteristics of the conductivity of double-well structures; in contrast to single-well structures, band bending caused by asymmetric doping is of great importance. The numerical calculations of conductivity within the model under consideration confirm these suggestions.

  7. Germanium subcells for multijunction GaInP/GaInAs/Ge solar cells

    SciTech Connect (OSTI)

    Kalyuzhnyy, N. A.; Gudovskikh, A. S.; Evstropov, V. V.; Lantratov, V. M.; Mintairov, S. A.; Timoshina, N. Kh.; Shvarts, M. Z.; Andreev, V. M.

    2010-11-15

    Photovoltaic converters based on n-GaInP/n-p-Ge heterostructures grown by the OMVPE under different conditions of formation of the p-n junction are studied. The heterostructures are intended for use as narrow-gap subcells of the GaInP/GaInAs/Ge three-junction solar cells. It is shown that, in Ge p-tn junctions, along with the diffusion mechanism, the tunneling mechanism of the current flow exists; therefore, the two-diode electrical equivalent circuit of the Ge p-n junction is used. The diode parameters are determined for both mechanisms from the analysis of both dark and 'light' current-voltage dependences. It is shown that the elimination of the component of the tunneling current allows one to increase the efficiency of the Ge subcell by {approx}1% with conversion of nonconcentrated solar radiation. The influence of the tunneling current on the efficiency of the Ge-based devices can be in practice reduced to zero at photogenerated current density of {approx}1.5 A/cm{sup 2} due to the use of the concentrated solar radiation.

  8. InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    ) In conventional InGaN/GaN light-emitting diodes (LEDs), thin InGaN quantum wells are usually adopted to mitigate recombination scales with the third power of the carrier density. As a result, the efficiency droop of the Auger recombination severely limits the LED performance. Here, we proposed and showed wide InGaN quantum wells

  9. Current crowding in GaInN / GaN LEDs grown on insulating substrates X. Guo, E. F. Schubert and J. Jahns

    E-Print Network [OSTI]

    Jahns, Jürgen

    Current crowding in GaInN / GaN LEDs grown on insulating substrates X. Guo, E. F. Schubert and J. Jahns Current crowding in mesa-structure GaInN/GaN light-emitting diodes (LEDs) grown on insulating and a saturation of the optical output power at high injection currents. It is shown that the optical power

  10. Investigation of the effect of temperature during off-state degradation of AlGaN/GaN High Electron Mobility Transistors

    E-Print Network [OSTI]

    Florida, University of

    , creating both electron traps and increasing electron tunneling through the defect states [4Investigation of the effect of temperature during off-state degradation of AlGaN/GaN High Electron 2011 a b s t r a c t AlGaN/GaN High Electron Mobility Transistors were found to exhibit a negative

  11. Mesoscopic photovoltaic effect in GaAs/Ga1-xAlxAs Aharonov-Bohm rings L. Angers, A. Chepelianskii, R. Deblock, B. Reulet, and H. Bouchiat

    E-Print Network [OSTI]

    Shepelyansky, Dima

    Mesoscopic photovoltaic effect in GaAs/Ga1-xAlxAs Aharonov-Bohm rings L. Angers, A. Chepelianskii specific dc voltage. We have investigated this photovoltaic PV effect on GaAs/Ga1-xAlxAs Aharonov is generally done by measuring the dc induced signal sometimes called photovoltaic effect which has also given

  12. Determination of two-dimensional electron and hole gas carriers in AlGaN/GaN/AlN heterostructures grown by Metal

    E-Print Network [OSTI]

    Ozbay, Ekmel

    between GaN and a sapphire substrate, the dislocation scattering mechanism and the electron spillover

  13. Bonded Bracket Assmebly for Frameless Solar Panels

    SciTech Connect (OSTI)

    Murray, Todd

    2013-01-30

    In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $1 per watt for photovoltaic systems would be equivalent to 6���¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $.50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics: Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules Topic 2: Roof and Ground Mount Innovations Topic 3: Transformational Photovoltaic System Designs Topic 4: Development of New Wind Load Codes for PV Systems The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included: 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations. 2) The development of a composite pultruded rail to replace traditional racking materials. 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs. 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

  14. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation of Acetylene

    E-Print Network [OSTI]

    Braida, Benoit

    2009-01-01

    Quantum Chem. 2005, (19) Barnett, R. N. ; Sun, Z. ; Lester,In a systematic DMC study, Barnett et al. 19 explored thefor the C-H bond distance. Barnett et al. reported 1-CSF DMC

  15. Atomistic description of the electronic structure of InxGa1xAs alloys and InAsGaAs superlattices

    E-Print Network [OSTI]

    Kent, Paul

    quantum-wells15,20 (InxGa1 xAs)n /InP on InP and (InxGa1 xAs)n /GaAs on GaAs, and v GaAs-embedded InAs quantum dots.21­23 We wish to provide a uniform the- oretical description of the electronic structure-period dependence of the band offsets and interband transitions of InAs/GaAs systems on InP and GaAs substrates. DOI

  16. Improved hole distribution in InGaN/GaN light-emitting diodes with graded thickness quantum barriers

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    is 48.3%. Moreover, the light output power was enhanced from 770 mW for the ETQB LEDs to 870 m; accepted 3 June 2013; published online 19 June 2013) InGaN/GaN light-emitting diodes (LEDs) with graded , which is much smaller than that of the conventional equal-thickness quantum barriers (ETQB) LED, which

  17. Low-frequency noise in GaNAlGaN heterostructure field-effect transistors at cryogenic temperatures

    E-Print Network [OSTI]

    Pala, Nezih

    that the 1/f noise in GaN/AlGaN HFETs might be caused by electron tunneling from the channel to the traps was practically independent of the frequency of analysis. The model linking this maximum to the electron tunneling Department of Electrical, Computer, and Systems Engineering and Center for Integrated Electronics

  18. Development of GaAs/Si and GaAs/Si monolithic structures for future space solar cells

    SciTech Connect (OSTI)

    Spitzer, M.B.; Vernon, S.M.; Wolfson, R.G.; Tobin, S.P.

    1984-01-01

    The results of heteroepitaxial growth of GaAs and GaAlAs directly on Si are presented, and applications to new cell structures are suggested. The novel feature is the elimination of a Ge lattice transition region. This feature not only reduces the cost of substrate preparation, but also makes possible the fabrication of high efficiency monolithic cascade structures. All films to be discussed were grown by organometallic chemical vapor deposition at atmospheric pressure. This process yielded reproducible, large-area films of GaAs, grown directly on Si, that are tightly adherent and smooth, and are characterized by a defect density of 5 x 10(6) power/sq cm. Preliminary studies indicate that GaAlAs can also be grown in this way. A number of promising applications are suggested. Certainly these substrates are ideal for low-weight GaAs space solar ells. For very high efficiency, the absence of Ge makes the technology attractive for GaAlAs/Si monolithic cascades, in which the Si substrates would first be provided with a suitable p/n junction. An evaluation of a three bandgap cascade consisting of appropriately designed GaAlAs/GaAs/Si layers is also presented.

  19. Wavelength-resolved low-frequency noise of GaInN/GaN green light emitting diodes

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Wavelength-resolved low-frequency noise of GaInN/GaN green light emitting diodes S. L. Rumyantseva well light emitting diodes. The light intensity noise was measured as a function of wavelength within the light emitting diode spectral emission line. The spectral noise density is found to increase

  20. GaAs-based self-aligned laser incorporating InGaP opto-electronic confinement layer

    E-Print Network [OSTI]

    be well suited for exploitation of long wavelength quantum dot and dilute nitride technology, resulting in single lateral mode emission from an In0.17Ga0.83As double quantum well laser. Introduction: Lasers based on the GaAs materials system offer advan- tages over their InP counterparts, such as the use

  1. Improved performance of In,,Ga...As/GaAs quantum dot solar cells via light scattering by nanoparticles

    E-Print Network [OSTI]

    Yu, Edward T.

    of QDs in the context of our work is attractive for achieving long wavelength absorption in solar cells enhancement at all infrared wave- lengths in the device photocurrent spectrum. Epitaxial layer structuresImproved performance of In,,Ga...As/GaAs quantum dot solar cells via light scattering

  2. Output Harmonic Termination Techniques for AlGaN/GaN HEMT Power Amplifiers Using Active Integrated Antenna Approach

    E-Print Network [OSTI]

    Itoh, Tatsuo

    Output Harmonic Termination Techniques for AlGaN/GaN HEMT Power Amplifiers Using Active Integrated 1200, Los Angeles, CA 90045 Abstract -- In this paper, effects of output harmonic terminations on PAE termination, we observe a substantial increase in PAE and output power. Further, we demonstrate the high

  3. SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications

    E-Print Network [OSTI]

    Florida, University of

    for spacecraft and other long-term sensing applications. However, hydrogen is a dangerous gas for storage for monitoring leakage of hydrogen storage equipment and fuel tanks for spacecraft and hydrogen fuel cellSnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications

  4. Mn-doped Ga(As,P) and (Al,Ga)As ferromagnetic semiconductors: Electronic structure calculations 

    E-Print Network [OSTI]

    Masek, J.; Kudrnovsky, J.; Maca, F.; Sinova, Jairo; MacDonald, A. H.; Campion, R. P.; Gallagher, B. L.; Jungwirth, T.

    2007-01-01

    A remarkable progress towards functional ferromagnetic semiconductor materials for spintronics has been achieved in p-type (Ga,Mn)As. Robust hole-mediated ferromagnetism has, however, been observed also in other III-V hosts such as antimonides, Ga...

  5. DESIGN, GROWTH, FABRICATION AND CHARACTERIZATION OF HIGH-BAND GAP InGaN/GaN SOLAR CELLS

    E-Print Network [OSTI]

    Honsberg, Christiana

    photovoltaic efficiency of 39% at 236 suns is achieved by a triple-junction GaInP- GaInAs-Ge tandem solar cell [1]. While the achievable efficiency of triple-junction tandem solar cells is restricted to about 40% [2], modeling results show that a tandem solar cell of five junctions or greater, or an equivalent

  6. Progress toward technology transition of GaInP{sub 2}/GaAs/Ge multijunction solar cells

    SciTech Connect (OSTI)

    Keener, D.N.; Marvin, D.C.; Brinker, D.J.; Curtis, H.B.; Price, P.M.

    1997-12-31

    The objective of the joint WL/PL/NASA Multijunction Solar Cell Manufacturing Technology (ManTech) Program is to scale up high efficiency GaInP{sub 2}/GaAs/Ge multijunction solar cells to production size, quantity, and yield while limiting the production cost/Watt ($/W) to 15% over GaAs cells. Progress made by the program contractors, Spectrolab and TECSTAR, include, respectively, best cell efficiencies of 25.76% and 24.7% and establishment of 24.2% and 23.8% lot average efficiency baseline designs. The paper also presents side-by-side testing results collected by Phillips Laboratory and NASA Lewis on Phase 1 deliverable cells, which shows compliance with program objectives. Cell performance, pre- and post-radiation, and temperature coefficient results on initial production GaInP{sub 2}/GaAs/Ge solar cells will be presented.

  7. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    SciTech Connect (OSTI)

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.; Bylaska, Eric J.; Doud, Darrin

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predicting acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.

  8. The C OH O hydrogen bond: A determinant of stability and specificity

    E-Print Network [OSTI]

    Senes, Alessandro

    recovered by hydro- gen bond formation, so hydrogen bonds provide a small or even unfavorable net energy hydro- gen bond has been unclear and its interaction energy has been believed to be small. Recently that apparent carbon hydro- gen bonds cluster frequently at glycine-, serine-, and threonine-rich packing

  9. Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical Exchange Spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical ExchangeVed: January 12, 2010 Hydrogen-bonded complexes between phenol and phenylacetylene are studied using ultrafast hydrogen bonding acceptor sites (phenyl or acetylene) that compete for hydrogen bond donors in solution

  10. Hydrogen bonding between neon and hydrogen fluoride M. Losonczy and J. W. Moskowitz*

    E-Print Network [OSTI]

    Stillinger, Frank

    Hydrogen bonding between neon and hydrogen fluoride M. Losonczy and J. W. Moskowitz* Chemistry of hydrogen fluoride. The results exhibit formation of a linear hydrogen bond. Although this bond is weak (0.234 kcal!mole), its strength exceeds that found earlier for the neon-water hydrogen bond. I. INTRODUCTION

  11. A new hydrogen-bonding potential for the design of proteinRNA interactions predicts specific

    E-Print Network [OSTI]

    Baker, David

    A new hydrogen-bonding potential for the design of protein­RNA interactions predicts specific-dependent hydrogen-bonding potential based on the statistical analysis of hydrogen-bonding geometries of hydrogen-bonding atom pairs at protein­ nucleic acid interfaces. A scoring function based on the hydrogen

  12. Thermal Performance and Reliability of Bonded Interfaces for Power Electronics Packaging Applications (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2013-07-01

    This presentation discusses the thermal performance and reliability of bonded interfaces for power electronics packaging applications.

  13. Comparison of bond character in hydrocarbons and fullerenes D. W. Snoke

    E-Print Network [OSTI]

    Snoke, David

    Comparison of bond character in hydrocarbons and fullerenes D. W. Snoke Department of Physics a comparison of the bond polarizabilities for carbon-carbon bonds in hydrocarbons and fullerenes, using two and ethylene. We find that the polarizabilities for single bonds in fullerenes and hydrocarbons compare well

  14. Effect of hydrogen bond on coal extraction by in-situ vacuum FTIR

    SciTech Connect (OSTI)

    Li, J.; Feng, J.; Li, W.Y.; Chang, H.Z.; Xie, K.C. [Taiyuan University of Technol, Taiyuan (China)

    2009-07-01

    Coal chemical formation environment might result in different properties of hydrogen bonds in coal structure. The thermo stability, amount and types of hydrogen bond in six typical Chinese coal macerals were investigated by in situ vacuum Fourier transform infrared spectroscopy (FTIR). It was found that three types of hydrogen bond were involved in coal structure, which were OH-N, OH self associated, and OH tetrapolymer hydrogen bond. There was no correlation between the amount of three types of hydrogen bonds and extraction yield. The thermo stability of hydrogen bond in inertinite was stronger than that of vitrinite, especially the thermo stability of hydrogen bond in Pingshuo inertinite.

  15. Ferromagnetism in undoped One-dimensional GaN Nanowires

    SciTech Connect (OSTI)

    Jeganathan, K. E-mail: jagan@physics.bdu.ac.in; Purushothaman, V.; Debnath, R.; Arumugam, S.

    2014-05-15

    We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW) fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ?0.75 × emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 × 10{sup ?8} mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

  16. Characterization of Zns-GaP Naon-composites

    SciTech Connect (OSTI)

    Todd, V.

    1993-12-09

    It proved possible to produce consistent, high-quality nanocrystalline ZnS powders with grain sizes as small as 8 nm. These powders are nano-porous and are readily impregnated with GaP precursor, although inconsistently. Both crystal structure and small grain size of the ZnS can be maintained through the use of GaP. Heat treatment of the impregnated powders results in a ZnS-GaP composite structure where the grain sizes of the phases are on the order of 10--20 nm. Conventional powder processing should be able to produce optically dense ceramic compacts with improved mechanical properties and suitable IR transmission.

  17. Extremely scaled high-k/In?.??Ga?.??As gate stacks with low leakage and low interface trap densities

    SciTech Connect (OSTI)

    Chobpattana, Varistha; Mikheev, Evgeny; Zhang, Jack Y.; Mates, Thomas E.; Stemmer, Susanne

    2014-09-28

    Highly scaled gate dielectric stacks with low leakage and low interface trap densities are required for complementary metal-oxide-semiconductor technology with III-V semiconductor channels. Here, we show that a novel pre-deposition technique, consisting of alternating cycles of nitrogen plasma and tetrakis(dimethylamino)titanium, allows for HfO? and ZrO? gate stacks with extremely high accumulation capacitance densities of more than 5 ?F/cm? at 1 MHz, low leakage current, low frequency dispersion, and low midgap interface trap densities (10ą˛cm?˛eV?ąrange). Using x-ray photoelectron spectroscopy, we show that the interface contains TiO? and small quantities of In?O?, but no detectable Ga- or As-oxides, or As-As bonding. The results allow for insights into the microscopic mechanisms that control leakage and frequency dispersion in high-k/III-V gate stacks.

  18. Indium distribution at the interfaces of (Ga,In)(N,As)/GaAs quantum wells

    SciTech Connect (OSTI)

    Luna, E.; Ishikawa, F.; Batista, P. D.; Trampert, A. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, D-10117, Berlin (Germany)

    2008-04-07

    The indium distribution across (Ga,In)(N,As) quantum wells is determined by using transmission electron microscopy techniques. Inside the quantum well, the indium distribution is well described by Muraki's segregation model; however, it fails in reflecting the concentration at the interfaces. To describe them, we propose a sigmoidal law which defines the smooth variation of the indium concentration with the position and provides a systematic and quantitative characterization of the interfaces. The thermal stability of the interfaces and their interplay with segregation effects are discussed. A connection between the high thermal robustness of the interfaces and the inherent thermodynamic miscibility gap of the alloy is suggested.

  19. Intramolecular Hydrogen Bonding in Disubstituted Ethanes. A Comparison of NH,,,O-and OH,,,O-Hydrogen Bonding through Conformational Analysis of 4-Amino-4-oxobutanoate

    E-Print Network [OSTI]

    Goddard III, William A.

    Intramolecular Hydrogen Bonding in Disubstituted Ethanes. A Comparison of NH,,,O- and OH,,,O- Hydrogen Bonding through Conformational Analysis of 4-Amino-4-oxobutanoate (succinamate) and Monohydrogen 1 of amide NH,,,O- and carboxyl OH,,,O- hydrogen bonds were investigated via conformational analysis

  20. Structural and optical properties of GaAs-based heterostructures with Ge and Ge/InGaAs quantum wells

    SciTech Connect (OSTI)

    Aleshkin, V. Ya.; Dubinov, A. A., E-mail: sanya@ipm.sci-nnov.ru; Drozdov, M. N. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Zvonkov, B. N. [Nizhni Novgorod State University, Research Physical Technical Institute (Russian Federation); Kudryavtsev, K. E.; Tonkikh, A. A.; Yablonskiy, A. N. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Werner, P. [Max Planck Institute of Microstructure Physics (Germany)

    2013-05-15

    GaAs-based heterostructures with Ge and Ge/InGaAs quantum wells are grown by laser-assisted sputtering. Structural and optical studies of the heterostructures are carried out. A broad photoluminescence line is observed in the wavelength range from 1300 to 1650 nm. The line corresponds to indirect transitions in the momentum space of the Ge quantum wells and to transitions between the In{sub 0.28}Ga{sub 0.72}As and Ge layers, indirect in coordinate space, but direct in momentum space.

  1. Electrical spin injection using GaCrN in a GaN based spin light emitting diode

    SciTech Connect (OSTI)

    Banerjee, D.; Ganguly, S.; Saha, D.; Adari, R.; Sankaranarayan, S.; Kumar, A.; Aldhaheri, R. W.; Hussain, M. A.; Balamesh, A. S.

    2013-12-09

    We have demonstrated electrical spin-injection from GaCrN dilute magnetic semiconductor (DMS) in a GaN-based spin light emitting diode (spin-LED). The remanent in-plane magnetization of the thin-film semiconducting ferromagnet has been used for introducing the spin polarized electrons into the non-magnetic InGaN quantum well. The output circular polarization obtained from the spin-LED closely follows the normalized in-plane magnetization curve of the DMS. A saturation circular polarization of ?2.5% is obtained at 200?K.

  2. Effects of light illumination on electron velocity of AlGaN/GaN heterostructures under high electric field

    SciTech Connect (OSTI)

    Guo, Lei; Yang, Xuelin Cheng, Jianpeng; Sang, Ling; Xu, Fujun; Tang, Ning; Feng, Zhihong; Lv, Yuanjie; Wang, Xinqiang; Shen, B.; Ge, Weikun

    2014-12-15

    We have investigated the variation of electron velocity in AlGaN/GaN heterostructures depending on illuminating light intensity and wavelength. It is shown that the electron velocity at high electric field increases under above-band light illumination. This electron velocity enhancement is found to be related to the photo-generated cold holes which interact with hot electrons and thus accelerate the energy relaxation at high electric field. The results suggest an alternative way to improve the electron energy relaxation rate and hence the electron velocity in GaN based heterostructures.

  3. High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission

    SciTech Connect (OSTI)

    Wang, Huolei; Yu, Hongyan; Zhou, Xuliang; Kan, Qiang; Yuan, Lijun; Wang, Wei; Pan, Jiaoqing, E-mail: jqpan@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083 (China); Chen, Weixi [State Key Lab for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Ding, Ying, E-mail: Ying.Ding@glasgow.ac.uk [School of Engineering, University of Glasgow, Glasgow G12 8LT (United Kingdom)

    2014-10-06

    We report the demonstration of an InGaAs/GaAs quantum well (QW) broadband stimulated emission laser with a structure that integrated a GaAs tunnel junction with two QW active regions. The laser exhibits ultrabroad lasing spectral coverage of ?51?nm at a center wavelength of 1060?nm with a total emission power of 790 mW, corresponding to a high average spectral power density of 15.5 mW/nm, under pulsed current conditions. Compared to traditional lasers, this laser with an asymmetric separate-confinement heterostructure shows broader lasing bandwidth and higher spectral power density.

  4. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect (OSTI)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

  5. Linear and nonlinear optical properties of GaAs/Al{sub x}Ga{sub 1?x}As/GaAs/Al{sub y}Ga{sub 1?y}As multi-shell spherical quantum dot

    SciTech Connect (OSTI)

    Emre Kavruk, Ahmet E-mail: aekavruk@gmail.com; Koc, Fatih; Sahin, Mehmet E-mail: mehsahin@gmail.com

    2013-11-14

    In this work, the optical properties of GaAs/Al{sub x}Ga{sub 1?x}As/GaAs/Al{sub y}Ga{sub 1?y}As multi-shell quantum dot heterostructure have been studied as a function of Al doping concentrations for cases with and without a hydrogenic donor atom. It has been observed that the absorption coefficient strength and/or resonant absorption wavelength can be adjusted by changing the Al content of inner-barrier and/or outer-barrier regions. Besides, it has been shown that the donor atom has an important effect on the control of the electronic and optical properties of the structure. The results have been presented as a function of the Al contents of the inner-barrier x and outer-barrier y regions and probable physical reasons have been discussed.

  6. Electrical degradation mechanisms of RF power GaAs PHEMTs

    E-Print Network [OSTI]

    Villanueva, Anita A. (Anita Ariel), 1978-

    2007-01-01

    GaAs Pseudomorphic High-Electron Mobility Transistors (PHEMTs) are widely used in RF power applications. Since these devices typically operate at high power levels and under high voltage biasing, their electrical reliability ...

  7. Evaporation-based Ge/.sup.68 Ga Separation

    DOE Patents [OSTI]

    Mirzadeh, Saed (Albuquerque, NM); Whipple, Richard E. (Los Alamos, NM); Grant, Patrick M. (Los Alamos, NM); O'Brien, Jr., Harold A. (Los Alamos, NM)

    1981-01-01

    Micro concentrations of .sup.68 Ga in secular equilibrium with .sup.68 Ge in strong aqueous HCl solution may readily be separated in ionic form from the .sup.68 Ge for biomedical use by evaporating the solution to dryness and then leaching the .sup.68 Ga from the container walls with dilute aqueous solutions of HCl or NaCl. The chloro-germanide produced during the evaporation may be quantitatively recovered to be used again as a source of .sup.68 Ga. If the solution is distilled to remove any oxidizing agents which may be present as impurities, the separation factor may easily exceed 10.sup.5. The separation is easily completed and the .sup.68 Ga made available in ionic form in 30 minutes or less.

  8. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells

    SciTech Connect (OSTI)

    Badcock, T. J., E-mail: Thomas.badcock@crl.toshiba.co.uk; Dawson, P.; Davies, M. J. [School of Physics and Astronomy, Photon Science Institute, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Kappers, M. J.; Massabuau, F. C.-P.; Oehler, F.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-03-21

    We have studied the carrier recombination dynamics in an InGaN/GaN multiple quantum well structure as a function of emission energy and excitation density between temperatures of 10?K and 100?K. Under relatively low levels of excitation, the photoluminescence (PL) intensity and decay time of emission on the high energy side of the luminescence spectrum decrease strongly between 10?K and 50?K. In contrast, for emission detected on the low energy side of the spectrum, the PL intensity and decay time increase over the same temperature range. These results are consistent with a thermally activated carrier redistribution process in which the (temperature dependent) average timescale for carrier transfer into or out of a localised state depends on the energy of the given state. Thus, the transfer time out of shallow, weakly localised states is considerably shorter than the arrival time into more deeply localised states. This picture is consistent with carriers hopping between localisation sites in an uncorrelated disorder potential where the density of localised states decreases with increasing localisation depth, e.g., a exponential or Gaussian distribution resulting from random alloy disorder. Under significantly higher levels of excitation, the increased occupation fraction of the localised states results in a greater average separation distance between unoccupied localised states, causing a suppression of the spectral and dynamic signatures of the hopping transfer of carriers.

  9. COMPARISON OF AIR AND DEUTERIUM ON PINCH WELD BOND APPEARANCE

    SciTech Connect (OSTI)

    Korinko, P

    2005-10-11

    The effect that air and deuterium internal atmospheres have on the pinch weld bond quality was evaluated by conducting a scoping study using type 304L stainless steel LF-7 test stems that were fabricated for an associated study. Welds were made under cool, yet nominal conditions to exacerbate the influence of the atmosphere. The bond quality of the welds was directly related to the internal atmosphere with the air atmosphere welds being of lower quality than the deuterium atmosphere welds for nominally identical welding conditions.

  10. Green (In,Ga,Al)P-GaP light-emitting diodes grown on high-index GaAs surfaces

    SciTech Connect (OSTI)

    Ledentsov, N. N., E-mail: nikolay.ledentsov@v-i-systems.com; Shchukin, V. A. [VI Systems GmbH, Hardenbergstr. 7, Berlin D-10623 (Germany); Lyytikäinen, J.; Okhotnikov, O. [Optoelectronics Research Centre, Tampere University of Technology, Tampere FI-33720 (Finland); Shernyakov, Yu. M.; Payusov, A. S.; Gordeev, N. Yu.; Maximov, M. V. [A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Schlichting, S.; Nippert, F.; Hoffmann, A. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, Berlin D-10623 (Germany)

    2014-11-03

    We report on green (550–560?nm) electroluminescence (EL) from (Al{sub 0.5}Ga{sub 0.5}){sub 0.5}In{sub 0.5}P-(Al{sub 0.8}Ga{sub 0.2}){sub 0.5}In{sub 0.5}P double p-i-n heterostructures with monolayer-scale GaP insertions in the cladding layers and light-emitting diodes based thereupon. The structures are grown side-by-side on high-index and (100) GaAs substrates by molecular beam epitaxy. At moderate current densities (?500?A/cm{sup 2}), the EL intensity of the structures is comparable for all substrate orientations. Opposite to the (100)-grown strictures, the EL spectra of (211) and (311)-grown devices are shifted towards shorter wavelengths (?550?nm at room temperature). At high current densities (>1?kA/cm{sup 2}), a much higher EL intensity is achieved for the devices grown on high-index substrates. The integrated intensity of (311)-grown structures gradually saturates at current densities above 4?kA/cm{sup 2}, whereas no saturation is revealed for (211)-grown structures up to the current densities above 14?kA/cm{sup 2}. We attribute the effect to the surface orientation-dependent engineering of the GaP band structure, which prevents the escape of the nonequilibrium electrons into the indirect conduction band minima of the p-doped (Al{sub 0.8}Ga{sub 0.2}){sub 0.5}In{sub 0.5}P cladding layers.

  11. Influence of stress on optical transitions in GaN nanorods containing a single InGaN/GaN quantum disk

    SciTech Connect (OSTI)

    Zhuang, Y. D.; Shields, P. A.; Allsopp, D. W. E., E-mail: d.allsopp@bath.ac.uk [Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY (United Kingdom); Bruckbauer, J.; Edwards, P. R.; Martin, R. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2014-11-07

    Cathodoluminescence (CL) hyperspectral imaging has been performed on GaN nanorods containing a single InGaN quantum disk (SQD) with controlled variations in excitation conditions. Two different nanorod diameters (200 and 280?nm) have been considered. Systematic changes in the CL spectra from the SQD were observed as the accelerating voltage of the electron beam and its position of incidence are varied. It is shown that the dominant optical transition in the SQD varies across the nanorod as a result of interplay between the contributions of the deformation potential and the quantum-confined Stark effect to the transition energy as consequence of radial variation in the pseudomorphic strain.

  12. High intensity low temperature (HILT) performance of space concentrator GaInP/GaInAs/Ge MJ SCs

    SciTech Connect (OSTI)

    Shvarts, Maxim Z., E-mail: shvarts@scell.ioffe.ru; Kalyuzhnyy, Nikolay A.; Mintairov, Sergey A.; Soluyanov, Andrei A.; Timoshina, Nailya Kh. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021 (Russian Federation); Gudovskikh, Alexander S. [Saint-Petersburg Academic University - Nanotechnology Research and Education Centre RAS, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26

    In the work, the results of an investigation of GaInP/GaInAs/Ge MJ SCs intended for converting concentrated solar radiation, when operating at low temperatures (down to ?190 °C) are presented. A kink of the cell I-V characteristic has been observed in the region close to V{sub oc} starting from ?20°C at operation under concentrated sunlight. The causes for its occurrence have been analyzed and the reasons for formation of a built-in potential barrier for majority charge carriers at the n-GaInP/n-Ge isotype hetero-interface are discussed. The effect of charge carrier transport in n-GaInP/n-pGe heterostructures on MJ SC output characteristics at low temperatures has been studied including EL technique.

  13. The origin and reduction of switching noise in GaAs/AlGaAs lateral gated devices

    E-Print Network [OSTI]

    Davies, John H.

    to cryogenic temperature with all gates grounded to the substrate to protect against electrostatic effects in AlGaAs: electrons `freeze' into deep traps ­ DX centres ­ below about 150 K. The occupation of donors

  14. Design and fabrication of InGaN/GaN heterojunction bipolar transistors for microwave power amplifiers

    E-Print Network [OSTI]

    Keogh, David Martin

    2006-01-01

    assuming the material growth technology allows for all ofand a relatively immature growth technology, as well as theof the art for InGaN growth technology. Epitaxial growth of

  15. Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties

    SciTech Connect (OSTI)

    Sztein, Alexander, E-mail: asztein@umail.ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106 (United States); Bowers, John E.; DenBaars, Steven P.; Nakamura, Shuji [Materials Department, University of California, Santa Barbara, California 93106 (United States); Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States)

    2014-01-27

    A novel polarization field engineering based strategy to simultaneously achieve high electrical conductivity and low thermal conductivity in thermoelectric materials is demonstrated. Polarization based electric fields are used to confine electrons into two-dimensional electron gases in GaN/AlN/Al{sub 0.2}Ga{sub 0.8}N superlattices, resulting in improved electron mobilities as high as 1176 cm{sup 2}/Vs and in-plane thermal conductivity as low as 8.9?W/mK. The resulting room temperature ZT values reach 0.08, a factor of four higher than InGaN and twelve higher than GaN, demonstrating the potential benefits of this polarization based engineering strategy for improving the ZT and efficiencies of thermoelectric materials.

  16. Si-CMOS-Like Integration of AlGaN/GaN Dielectric-Gated High-Electron-Mobility Transistors 

    E-Print Network [OSTI]

    Johnson, Derek Wade

    2014-07-31

    production is projected to consume ~100,000 wafers per year by 2015 (Yole Development, “Power GaN – 2012 Edition”), this manufacturing breakthrough represents potential savings of ~$17 million per year....

  17. Characterization of the gate oxide of an AlGaN/GaN high electron mobility transistor

    E-Print Network [OSTI]

    Florida, University of

    2011; published online 21 March 2011 A subnanometer thick interfacial oxide layer present between used to characterize a Ni/AlGaN interfacial oxide layer with subnanometer thickness. The semiconducting

  18. The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa

    SciTech Connect (OSTI)

    Özduran, Mustafa; Turgut, Kemal; Arikan, Nihat; ?yigör, Ahmet; Candan, Abdullah

    2014-10-06

    We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso program package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.

  19. Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure

    SciTech Connect (OSTI)

    Khmissi, H.; Baira, M.; Bouzaieene, L.; Saidi, F.; Maaref, H. [Laboratoire de Micro-optoelectronique et Nanostructures, Universite de Monastir (Tunisia); Sfaxi, L. [Laboratoire de Micro-optoelectronique et Nanostructures, Universite de Monastir (Tunisia); Universite de Sousse Faculte des Sciences de Monastir, Avenue de l'Environnement 5019 Monastir (Tunisia); Bru-Chevallier, C. [Institut des Nanotechnologies de Lyon (INL), CNRS UMR-5270, INSA-LYON, 7, Avenue Jean Capelle, Bat. Blaise Pascal, 69621 Villeurbanne (France)

    2011-03-01

    Optical properties of InAs quantum dots (QDs) inserted in AlGaAs/GaAs modulation doped heterostructure are investigated. To study the effect of carrier transfer behavior on the luminescence of self-assembled quantum dots, a series of sample has been prepared using molecular beam epitaxy (Riber 32 system) in which we have varied the thickness separating the delta dopage and the InAs quantum dots layer. Photoluminescence spectra show the existence of two peaks that can be attributed to transition energies from the ground state (E{sub 1}-HH{sub 1}) and the first excited state (E{sub 2}-HH{sub 2}). Two antagonist effects have been observed, a blue shift of the emission energies result from electron transferred from the AlGaAs/GaAs heterojunction to the InAs quantum dots and a red shift caused by the quantum confined Stark effect due to the internal electric field existing In the AlGaAs/GaAs heterojunction.

  20. Effects of high-temperature AIN buffer on the microstructure of AlGaN/GaN HEMTs

    SciTech Connect (OSTI)

    Coerekci, S.; Oeztuerk, M. K.; Yu, Hongbo; Cakmak, M.; Oezcelik, S.; Oezbay, E.

    2013-06-15

    Effects on AlGaN/GaN high-electron-mobility transistor structure of a high-temperature AlN buffer on sapphire substrate have been studied by high-resolution x-ray diffraction and atomic force microscopy techniques. The buffer improves the microstructural quality of GaN epilayer and reduces approximately one order of magnitude the edge-type threading dislocation density. As expected, the buffer also leads an atomically flat surface with a low root-mean-square of 0.25 nm and a step termination density in the range of 10{sup 8} cm{sup -2}. Due to the high-temperature buffer layer, no change on the strain character of the GaN and AlGaN epitaxial layers has been observed. Both epilayers exhibit compressive strain in parallel to the growth direction and tensile strain in perpendicular to the growth direction. However, an high-temperature AlN buffer layer on sapphire substrate in the HEMT structure reduces the tensile stress in the AlGaN layer.

  1. Enantioselective nickel catalysis : exploiting activated C-H bonds

    E-Print Network [OSTI]

    Bencivenga, Nicholas Ernest

    2012-01-01

    A method for the nickel-catalyzed cross-coupling between benzoxazole and secondary halides was explored. This method was to make use of the activated C-H bond found in benzoxazole at the 2-position to generate the nucleophilic ...

  2. Water inertial reorientation: Hydrogen bond strength and the angular potential

    E-Print Network [OSTI]

    Fayer, Michael D.

    Water inertial reorientation: Hydrogen bond strength and the angular potential David E. Moilanen) The short-time orientational relaxation of water is studied by ultrafast infrared pump-probe spectroscopy with recent molecular dynamics simulations employing the simple point charge-extended water model at room

  3. FULL ARTICLE Bond-selective imaging of deep tissue

    E-Print Network [OSTI]

    Cheng, Ji-Xin

    FULL ARTICLE Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA 2 Department of Cellular 2011, accepted 12 November 2011 Published online 29 November 2011 Key words: optical window, deep

  4. Actuated Transitory Metal-Ligand Bond As Tunable Electromechanical Switch

    E-Print Network [OSTI]

    Ortega, Enrique

    a copper atom and coordinating organic molecules adsorbed on a metal surface acts as variable frequency of STM is the on-demand forma- tion and breaking of chemical bonds with atomic precision. Furthermore-vinyl)] benzoic acid (hereafter referred to as PVBA) with copper adatoms on the Cu (111) surface.26

  5. WHAT'S GRAPHENE? Mono or few layers of sp2 bonded

    E-Print Network [OSTI]

    Mellor-Crummey, John

    WHAT'S GRAPHENE? · Mono or few layers of sp2 bonded carbon atoms in a honeycomb lattice 105cm2/Vs at RT. 1 Due to its unique transport properties, graphene is suitable for implementation sampling (EOS) timeresolved spectroscopy to optically pump and THz probe exfoliated graphene ribbons (GR

  6. Process for protecting bonded components from plating shorts

    DOE Patents [OSTI]

    Tarte, Lisa A. (Livermore, CA); Bonde, Wayne L. (Pleasanton, CA); Carey, Paul G. (Mountain View, CA); Contolini, Robert J. (Pleasanton, CA); McCarthy, Anthony M. (Menlo Park, CA)

    2000-01-01

    A method which protects the region between a component and the substrate onto which the components is bonded using an electrically insulating fillet of photoresist. The fillet protects the regions from subsequent plating with metal and therefore shorting the plated conductors which run down the sides of the component and onto the substrate.

  7. July 18, 2012 Using Qualified Energy Conservation Bonds for Public

    E-Print Network [OSTI]

    energy use by 4.9 percent and saved approximately $4 million, primarily through reduced vehicle fuel use) as a tool that had potential to reduce the barriers to further energy savings in city- owned facilities.4July 18, 2012 Using Qualified Energy Conservation Bonds for Public Building Upgrades: Reducing

  8. A Pact with the Devil Mike Bond and George Danezis

    E-Print Network [OSTI]

    Danezis, George

    be damned." The Tragicall History of D. Faustus -- Christopher Marlowe Computer viruses and their payloads computer), through user education, to sophisticated anti-virus software, which today include full virtualA Pact with the Devil Mike Bond and George Danezis Computer Laboratory, University of Cambridge, 15

  9. Hydrogen Bonding Increases Packing Density in the Protein Interior

    E-Print Network [OSTI]

    Hydrogen Bonding Increases Packing Density in the Protein Interior David Schell,1,2 Jerry Tsai,1 J System Health Science Center, College Station, Texas 77843-1114 ABSTRACT The contribution of hydrogen to the stability, but experimental studies show that bury- ing polar groups, especially those that are hydrogen

  10. Method of preparation of bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan (Livermore, CA); Graff, Robert T. (Modesto, CA); Bettencourt, Kerry (Dublin, CA)

    2011-04-26

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  11. Chemical Shielding Tensors for a Silicon-Carbon Double Bond

    E-Print Network [OSTI]

    Apeloig, Yitzhak

    Chemical Shielding Tensors for a Silicon-Carbon Double Bond Jarrod J. Buffy, Robert West,*, Michael of NMR chemical shielding tensors (CST) have been important in aiding the understanding of the nature shielding tensors have been reported and interpreted for compounds containing SidSi,1 PdP,2 SndSn,3 Cd

  12. Bonded polyimide fuel cell package and method thereof

    SciTech Connect (OSTI)

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2005-11-01

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  13. Polyurethane spray coating of aluminum wire bonds to prevent corrosion and suppress resonant oscillations

    E-Print Network [OSTI]

    Izen, Joseph; The ATLAS collaboration; Kurth, Matthew Glenn

    2015-01-01

    Unencapsulated aluminum wedge wire bonds are common in particle-physics pixel and strip detectors. Industry-favored bulk encapsulation is eschewed due to the range of operating temperatures and radiation. Wire bond failures are a persistent, source of tracking detector failure Unencapsulated bonds are vulnerable to condensation-induced corrosion, particularly when halides are present. Oscillations from periodic Lorenz forces are documented as another source of wire bond failure. Spray application of polyurethane coatings, performance of polyurethane-coated wire bonds after climate chamber exposure, and resonant properties of PU-coated wire bonds and their resistance to periodic Lorenz forces will be described.

  14. p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Tiam Tan, Swee; Kyaw, Zabu; Liu, Wei; Ji, Yun; Ju, Zhengang; Zhang, Xueliang [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore) [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wei Sun, Xiao, E-mail: EXWSUN@ntu.edu.sg [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electronics and Electrical Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Volkan Demir, Hilmi, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey); Department of Physics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey)

    2013-12-23

    Here, GaN/Al{sub x}Ga{sub 1-x}N heterostructures with a graded AlN composition, completely lacking external p-doping, are designed and grown using metal-organic-chemical-vapour deposition (MOCVD) system to realize three-dimensional hole gas (3DHG). The existence of the 3DHG is confirmed by capacitance-voltage measurements. Based on this design, a p-doping-free InGaN/GaN light-emitting diode (LED) driven by the 3DHG is proposed and grown using MOCVD. The electroluminescence, which is attributed to the radiative recombination of injected electrons and holes in InGaN/GaN quantum wells, is observed from the fabricated p-doping-free devices. These results suggest that the 3DHG can be an alternative hole source for InGaN/GaN LEDs besides common Mg dopants.

  15. Lasing characteristics of GaSb/GaAs self-assembled quantum dots embedded in an InGaAs quantum well

    E-Print Network [OSTI]

    Jalali. Bahram

    Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico, New Mexico 87545 Received 26 February 2007; accepted 1 June 2007; published online 28 June 2007 intriguing optoelectronic device possibilities on GaAs substrates including lasers, detectors, or solar cells

  16. A 3-10 GHZLCR-matched Power Amplifier using Flip-Chip Mounted AlGaN/GaN HEMTs

    E-Print Network [OSTI]

    York, Robert A.

    amplifier using GaN- HEMTs-on-Sapphire. I INTRODUCTION GaN HEMTs have enormous potential for realizing high-power Traveling Wave Power Amplifier circuit (TWPA)[1][2] for realization of wideband power amplifiersWE4A-5 A 3-10 GHZLCR-matched Power Amplifier using Flip-Chip Mounted AlGaN/GaN HEMTs Jane J

  17. Intermixing of InGaAs/GaAs Quantum Well Using Multiple Cycles Annealing Cu-doped SiO2

    SciTech Connect (OSTI)

    Hongpinyo, V; Ding, Y H; Dimas, C E; Wang, Y; Ooi, B S; Qiu, W; Goddard, L L; Behymer, E M; Cole, G D; Bond, T C

    2008-06-11

    The authors investigate the effect of intermixing in InGaAs/GaAs quantum well structure using Cu-doped SiO{sub 2}. The incorporation of Cu into the silica film yields larger bandgap shift than typical impurity-free vacancy diffusion (IFVD) method at a lower activation temperature. We also observe enhancement of the photoluminescence (PL) signal from the intermixed InGaAs/GaAs quantum well structure after being cycle-annealed at 850 C.

  18. Metamorphic GaAsP buffers for growth of wide-bandgap InGaP solar cells J. Simon,1,a

    E-Print Network [OSTI]

    Haller, Gary L.

    . INTRODUCTION Triple-junction metamorphic solar cells have reached ef- ficiencies as high as 41.1% by combiningMetamorphic GaAsP buffers for growth of wide-bandgap InGaP solar cells J. Simon,1,a S. Tomasulo,1 P-yP solar cells. Tensile-strained GaAsxP1-x buffers grown on GaAs using unoptimized conditions

  19. FIRST DEMONSTRATION OF MONOLITHIC InP-BASED InAlAs/InGaAsP/InGaAs TRIPLE JUNCTION SOLAR CELLS

    E-Print Network [OSTI]

    Atwater, Harry

    FIRST DEMONSTRATION OF MONOLITHIC InP-BASED InAlAs/InGaAsP/InGaAs TRIPLE JUNCTION SOLAR CELLS RobynAlAs/InGaAsP/InGaAs triple junction solar cell grown on InP substrate. X-ray diffraction characterization shows high quality solar cell materials. Preliminary 1-sun AM1.5D testing of the triple junction solar cell shows promising

  20. Characterization of Cu(In,Ga)Se2 (CIGS) films with varying gallium ratios

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Claypoole, Jesse; Peace, Bernadette; Sun, Neville; Dwyer, Dan; Eisaman, Matthew D.; Haldar, Pradeep; Efstathiadis, Harry

    2015-09-05

    Cu(In1-x,Gax)Se2 (CIGS) absorber layers were deposited on molybdenum (Mo) coated soda-lime glass substrates with varying Ga content (described as Ga/(In+Ga) ratios) with respect to depth. As the responsible mechanisms for the limitation of the performance of the CIGS solar cells with high Ga contents are not well understood, the goal of this work was to investigate different properties of CIGS absorber films with Ga/(In+Ga) ratios varied between 0.29 and 0.41 (as determined by X-ray florescence spectroscopy (XRF)) in order to better understand the role that the Ga content has on film quality. The Ga grading in the CIGS layer hasmore »the effect causing a higher bandgap toward the surface and Mo contact while the band gap in the middle of the CIGS layer is lower. Also, a wider and larger Ga/(In+Ga) grading dip located deeper in the CIGS absorber layers tend to produce larger grains in the regions of the films that have lower Ga/(In+Ga) ratios. It was found that surface roughness decreases from 51.2 nm to 41.0 nm with increasing Ga/(In+Ga) ratios. However, the surface roughness generally decreases if the Ga grading occurs deeper in the absorber layer.« less

  1. Radiation damage of GaAs thin-film solar cells on Si substrates

    SciTech Connect (OSTI)

    Itoh, Y.; Yamaguchi, M.; Nishioka, T.; Yamamoto, A.

    1987-01-15

    1-MeV electron irradiation damages in GaAs thin-film solar cells on Si substrates are examined for the first time. Damage constant for minority-carrier diffusion length in GaAs heteroepitaxial films on Si substrates is found to be the same as that in GaAs homoepitaxial films on GaAs substrates. This agreement suggests that GaAs/Si has the same defect introduction rate with radiation as GaAs/GaAs. The degradation of GaAs solar cells on Si with electron irradiation is less than that of GaAs solar cells on GaAs, because in the present, GaAs films on Si substrates have lower minority-carrier diffusion length compared to GaAs films on GaAs and these films are insensitive to radiation. The p/sup +/-p/sup +/-n AlGaAs-GaAs heteroface solar cell with junction depth of about 0.3 ..mu..m is concluded to be useful for a high-efficiency and radiation-resistant solar cell fabricated on a Si substrate.

  2. Laser Gain and Threshold Properties in Compressive-Strained and Lattice-Matched GaInNAs/GaAs Quantum Wells

    SciTech Connect (OSTI)

    Chow, W.W.; Jones, E.D.; Modine, N.A.; Allerman, A.A.; Kurtz, S.R.

    1999-08-04

    The optical gain spectra for compressive-strained and lattice-matched GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of lasing threshold current density for different GAInNAs/GaAs laser structures.

  3. Metal contacts on ZnSe and GaN

    SciTech Connect (OSTI)

    Duxstad, K J [Univ. of California, Berkeley, CA (United States). Materials Science and Mineral Engineering

    1997-05-01

    Recently, considerable interest has been focused on the development of blue light emitting materials and devices. The focus has been on GaN and ZnSe, direct band gap semiconductors with bands gaps of 3.4 and 2.6 eV, respectively. To have efficient, reliable devices it is necessary to have thermally and electrically stable Ohmic contacts. This requires knowledge of the metal-semiconductor reaction behavior. To date few studies have investigated this behavior. Much information has accumulated over the years on the behavior of metals on Si and GaAs. This thesis provides new knowledge for the more ionic wide band gap semiconductors. The initial reaction temperatures, first phases formed, and phase stability of Pt, Pd, and Ni on both semiconductors were investigated. The reactions of these metals on ZnSe and GaN are discussed in detail and correlated with predicted behavior. In addition, comparisons are made between these highly ionic semiconductors and Si and GaAs. The trends observed here should also be applicable to other II-VI and III-Nitride semiconductor systems, while the information on phase formation and stability should be useful in the development of contacts for ZnSe and GaN devices.

  4. Contribution of alloy clustering to limiting the two-dimensional electron gas mobility in AlGaN/GaN and InAlN/GaN heterostructures: Theory and experiment

    SciTech Connect (OSTI)

    Ahmadi, Elaheh; Mishra, Umesh K. [Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States); Chalabi, Hamidreza [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Kaun, Stephen W.; Shivaraman, Ravi; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-10-07

    The influence of alloy clustering on fluctuations in the ground state energy of the two-dimensional electron gas (2DEG) in AlGaN/GaN and InAlN/GaN heterostructures is studied. We show that because of these fluctuations, alloy clustering degrades the mobility even when the 2DEG wavefunction does not penetrate the alloy barrier unlike alloy disorder scattering. A comparison between the results obtained for AlGaN/GaN and InAlN/GaN heterostructures shows that alloy clustering limits the 2DEG mobility to a greater degree in InAlN/GaN heterostructures. Our study also reveals that the inclusion of an AlN interlayer increases the limiting mobility from alloy clustering. Moreover, Atom probe tomography is used to demonstrate the random nature of the fluctuations in the alloy composition.

  5. Effect of Wafer Bow and Etch Patterns in Direct Wafer Bonding

    E-Print Network [OSTI]

    Spearing, S. Mark

    Direct wafer bonding has been identified as an en-abling technology for microelectromechanical systems (MEMS). As the complexity of devices increase and the bonding of multiple patterned wafers is required, there is a need ...

  6. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect (OSTI)

    Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

    2014-02-20

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  7. Non-Destructive Inspection of Adhesive Bonds in Metal-Metal Joints...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inspection of Adhesive Bonds in Metal-Metal Joints Non-Destructive Inspection of Adhesive Bonds in Metal-Metal Joints 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  8. Plasticity of hydrogen bond networks regulates mechanochemistry of cell adhesion complexes

    E-Print Network [OSTI]

    Chakrabarti, Shaon; Thirumalai, D

    2014-01-01

    Mechanical forces acting on cell adhesion receptor proteins regulate a range of cellular functions by formation and rupture of non-covalent interactions with ligands. Typically, force decreases the lifetimes of intact complexes (slip-bonds), making the discovery that these lifetimes can also be prolonged ("catch-bonds"), a surprise. We created a microscopic analytic theory by incorporating the structures of selectin and integrin receptors into a conceptual framework based on the theory of stochastic equations, which quantitatively explains a wide range of experimental data (including catch-bonds at low forces and slip-bonds at high forces). Catch-bonds arise due to force-induced remodeling of hydrogen bond networks, a finding that also accounts for unbinding in structurally unrelated integrin-fibronectin and actomyosin complexes. For the selectin family, remodeling of hydrogen bond networks drives an allosteric transition resulting in the formation of maximum number of hydrogen bonds determined only by the st...

  9. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes...

    Office of Scientific and Technical Information (OSTI)

    Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study Citation Details In-Document Search Title: Chemical Bonding In Amorphous Si...

  10. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-06-01

    This presentation reviews the status of the performance and reliability of bonded interfaces for high-temperature packaging.

  11. Nano-scale luminescence characterization of individual InGaN/GaN quantum wells stacked in a microcavity using scanning transmission electron microscope cathodoluminescence

    SciTech Connect (OSTI)

    Schmidt, Gordon Müller, Marcus; Veit, Peter; Bertram, Frank; Christen, Jürgen; Glauser, Marlene; Carlin, Jean-François; Cosendey, Gatien; Butté, Raphaël; Grandjean, Nicolas

    2014-07-21

    Using cathodoluminescence spectroscopy directly performed in a scanning transmission electron microscope at liquid helium temperatures, the optical and structural properties of a 62 InGaN/GaN multiple quantum well embedded in an AlInN/GaN based microcavity are investigated at the nanometer scale. We are able to spatially resolve a spectral redshift between the individual quantum wells towards the surface. Cathodoluminescence spectral linescans allow directly visualizing the critical layer thickness in the quantum well stack resulting in the onset of plastic relaxation of the strained InGaN/GaN system.

  12. Active region based on graded-gap InGaN/GaN superlattices for high-power 440- to 470-nm light-emitting diodes

    SciTech Connect (OSTI)

    Tsatsulnikov, A. F., E-mail: Andrew@beam.ioffe.ru; Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Usov, S. O.; Nikolaev, A. E.; Cherkashin, N. A.; Ber, B. Ya.; Kazantsev, D. Yu. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Mizerov, M. N. [Russian Academy of Sciences, Center for Microelectronics, Ioffe Physicotechnical Institute (Russian Federation); Park, Hee Seok [Samsung Electro-Mechanics Co. Ltd. (Korea, Republic of); Hytch, M.; Hue, F. [National Center for Scientific Research, Center for Material Elaboration and Structural Studies (France)

    2010-01-15

    The structural and optical properties of light-emitting diode structures with an active region based on ultrathin InGaN quantum wells limited by short-period InGaN/GaN superlattices from both sides have been investigated. The dependences of the external quantum efficiency on the active region design are analyzed. It is shown that the use of InGaN/GaN structures as limiting graded-gap short-period superlattices may significantly increase the quantum efficiency.

  13. Graphene/GaN diodes for ultraviolet and visible photodetectors

    SciTech Connect (OSTI)

    Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Shen, Bo; Liao, Zhi-Min, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn; Yu, Da-Peng, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-08-18

    The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ?mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

  14. Polycrystalline MBE-grown GaAs for solar cells

    SciTech Connect (OSTI)

    Friedman, D.J.; Kurtz, S.R.; Kibbler, A.E.; Al-Jassim, M.; Jones, K.; Keyes, B.; Matson, R.

    1997-02-01

    This paper will discuss initial studies of thin-film GaAs grown by molecular-beam epitaxy for use in developing a thin-film GaAs solar cell. Photocurrent and photoluminescence intensity are related to the material morphology as a function of growth conditions. Growth temperature and V/III ratio have a dramatic effect on the photocurrent. However, it seems likely that even after optimizing such growth parameters, it will be necessary to provide substrates that can provide templates to enhance grain size from the start of thin-film growth. {copyright} {ital 1997 American Institute of Physics.}

  15. Polycrystalline MBE-grown GaAs for solar cells

    SciTech Connect (OSTI)

    Friedman, D. J.; Kurtz, Sarah R.; Kibbler, A. E.; Al-Jassim, M.; Jones, K.; Keyes, B.; Matson, R.

    1997-02-15

    This paper will discuss initial studies of thin-film GaAs grown by molecular-beam epitaxy for use in developing a thin-film GaAs solar cell. Photocurrent and photoluminescence intensity are related to the material morphology as a function of growth conditions. Growth temperature and V/III ratio have a dramatic effect on the photocurrent. However, it seems likely that even after optimizing such growth parameters, it will be necessary to provide substrates that can provide templates to enhance grain size from the start of thin-film growth.

  16. Highly transparent ammonothermal bulk GaN substrates

    SciTech Connect (OSTI)

    Jiang, WK; Ehrentraut, D; Downey, BC; Kamber, DS; Pakalapati, RT; Do Yoo, H; D'Evelyn, MP

    2014-10-01

    A novel apparatus has been employed to grow ammonothermal (0001) gallium nitride (GaN) with diameters up to 2 in The crystals have been characterized by x-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), and optical spectroscopy. High crystallinity GaN with FWHM values about 20-50 arcsec and dislocation densities below 1 x 10(5) cm(-2) have been obtained. High optical transmission was achieved with an optical absorption coefficient below 1 cm(-1) at a wavelength of 450 nm. (C) 2014 Elsevier B.V. All rights reserved.

  17. A hole modulator for InGaN/GaN light-emitting diodes Zi-Hui Zhang, Zabu Kyaw, Wei Liu, Yun Ji, Liancheng Wang, Swee Tiam Tan, Xiao Wei Sun, and Hilmi Volkan

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    well on optical power of light-emitting diodes Appl. Phys. Lett. 96, 051113 (2010); 10-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which

  18. The Optimal Payment Reduction Ratios for a Catastrophe Bond Xiaoli Zhang

    E-Print Network [OSTI]

    Brennand, Tracy

    and the future bond payments are reduced. This projects first presents a general pricing formula for a CAT bond losses. Last, it shows how strike price, maturity, parameters of the catastrophe loss process List of Tables ix List of Figures x 1 Introduction 1 1.1 Introduction to catastrophe bond

  19. Bonding is carried out by building up Quartz Wax on the sample holder to

    E-Print Network [OSTI]

    Smith, Tanya M.

    Bonding is carried out by building up Quartz Wax on the sample holder to support and bond the tooth that the Quartz Wax should cover as much of the sample face as possible to ensure a strong bond. Application Note Tooth Wax layer Figure 1 Sample holder Tooth Thin Section #12;B. Cutting - SIngle Selection Figure 2

  20. PlasticPDMS bonding for high pressure hydrolytically stable active microfluidics

    E-Print Network [OSTI]

    Ram, Rajeev J.

    to plastics. Plastics can be manufactured using mass fabrication technologies such as injection molding with established plastic mass fabri- cation technologies. Bonding technologies Bonding between PDMS and plasticsPlastic­PDMS bonding for high pressure hydrolytically stable active microfluidics Kevin S. Lee

  1. The Hydrogen Bonding of Cytosinewith Guanine:Calorimetric and`H-NMR Analysis

    E-Print Network [OSTI]

    Williams, Loren

    The Hydrogen Bonding of Cytosinewith Guanine:Calorimetric and`H-NMR Analysis of the Molecular of hydrogen-bondformation between guanine (G) and cytusine (C) in o-dichloro- benzene and in chloroformat 25°C forming hydrogen bonds. Consequently, hydrogen-bond formation in our system is primarily between the bases

  2. Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch Relaxation

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch, 2002 Vibrational relaxation and hydrogen bond dynamics in methanol-d dissolved in CCl4 have been-d molecules both accepting and donating hydrogen bonds at 2500 cm-1 . Following vibrational relaxation

  3. Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation September 2003 Hydrogen bond population dynamics are extricated with exceptional detail using ultrafast ( 50 of methanol­OD oligomers in CCl4 . Hydrogen bond breaking makes it possible to acquire data for times much

  4. Hydrogen bond dynamics in membrane protein function Ana-Nicoleta Bondar a,

    E-Print Network [OSTI]

    White, Stephen

    Review Hydrogen bond dynamics in membrane protein function Ana-Nicoleta Bondar a, , Stephen H 30 November 2011 Available online 8 December 2011 Keywords: Membrane protein structure Hydrogen bond Membrane protein dynamics Lipid­protein interactions Changes in inter-helical hydrogen bonding

  5. Hydrogen bond dynamics in the active site of photoactive yellow protein

    E-Print Network [OSTI]

    Herschlag, Dan

    Hydrogen bond dynamics in the active site of photoactive yellow protein Paul A. Sigala, Mark A for review February 5, 2009) Hydrogen bonds play major roles in biological structure and function. Nonetheless, hydrogen-bonded protons are not typically observed by X-ray crystallography, and most structural

  6. Hydrogen bonding in solid ammonia from ab initio calculations A. D. Fortes,a)

    E-Print Network [OSTI]

    Vocadlo, Lidunka

    Hydrogen bonding in solid ammonia from ab initio calculations A. D. Fortes,a) J. P. Brodholt, I. G the tendency toward symmetrization of the hydrogen bonds at high pressures and find that, unlike pure ice that ammonia IV does not contain a bifurcated hydrogen bond, as has previously been suggested. © 2003 American

  7. Hydrogen bond dynamics in aqueous NaBr solutions Sungnam Park

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen bond dynamics in aqueous NaBr solutions Sungnam Park and M. D. Fayer§ Department. D. Fayer, August 19, 2007 (sent for review July 27, 2007) Hydrogen bond dynamics of water in Na pump­probe experiments. The hydrogen bond structural dynamics are observed by measuring spectral

  8. A CH O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices

    E-Print Network [OSTI]

    Babu, M. Madan

    A C­H· · ·O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices of Science Bangalore 560012, India The serendipitous observation of a C­H· · ·O hydrogen bond mediated­N hydrogen bond involving the side- chain of residue T 2 4 and the N­H group of residue T ţ 3. In as many

  9. Native Hydrogen Bonds in a Molten Globule: The Apoflavodoxin Thermal Intermediate

    E-Print Network [OSTI]

    Sancho, Javier

    Native Hydrogen Bonds in a Molten Globule: The Apoflavodoxin Thermal Intermediate MarőÂa P. IruÂn1 in surface- exposed hydrogen bonds connecting secondary-structure elements in the native protein. All hydrogen bonds analysed are formed in the molten globule intermediate, either with native strength

  10. Bond Price Volatility c2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75

    E-Print Network [OSTI]

    Lyuu, Yuh-Dauh

    Bond Price Volatility c2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75 #12;"Well Taiwan University Page 76 #12;Price Volatility · Volatility measures how bond prices respond to interest-coupon bonds here. c2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 77 #12;Price Volatility

  11. Bond Price Volatility c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 71

    E-Print Network [OSTI]

    Lyuu, Yuh-Dauh

    Bond Price Volatility c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 71 #12;"Well Taiwan University Page 72 #12;Price Volatility · Volatility measures how bond prices respond to interest-coupon bonds throughout. c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 73 #12;Price Volatility

  12. Bond Price Volatility c 2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 74

    E-Print Network [OSTI]

    Lyuu, Yuh-Dauh

    Bond Price Volatility c 2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 74 #12;"Well Taiwan University Page 75 #12;Price Volatility · Volatility measures how bond prices respond to interest-coupon bonds throughout. c 2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 76 #12;Price Volatility

  13. Stoichiometric Valence and Structural Valence--Two Different Sides of the Same Coin: "Bonding Power"

    E-Print Network [OSTI]

    Wang, Xiqu

    concept is one of the cornerstones of chemistry. Valence,[1] that is, the bonding power of atoms,[2 affects the structure and stability of compounds. Therefore, knowledge of atomic bonding power is not only is equivalent to three moles of hydrogen. The property of an atom to compensate the bonding power of an equiva

  14. Can the Bond Price Reaction to Earnings Announcements Predict Future Stock Returns?

    E-Print Network [OSTI]

    Tipple, Brett

    Can the Bond Price Reaction to Earnings Announcements Predict Future Stock Returns? Omri Even. #12;Abstract In this paper I show that the bond price reaction to earnings announcements has. By demonstrating that a firm's bond price reaction to an earnings announcement can predict future stock returns

  15. From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia

    E-Print Network [OSTI]

    Martin, Jan M.L.

    energies of this nonlinear hydrogen bond. We present a novel density functional, HCTH/407 , which leads to two equivalent ``hydrogen bonding contacts,'' is extremely close in energy on an overall flatFrom ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding

  16. Wafer bonded virtual substrate and method for forming the same

    DOE Patents [OSTI]

    Atwater, Jr., Harry A. (So. Pasadena, CA); Zahler, James M. (Pasadena, CA); Morral, Anna Fontcuberta i (Paris, FR)

    2007-07-03

    A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.

  17. Characterization of Fuel-Cladding Bond Strength Using Laser Shock

    SciTech Connect (OSTI)

    James A. Smith; David L. Cottle; Barry H. Rabin

    2014-04-01

    This paper describes new laser-based capabilities for characterization of fuel-cladding bond strength in nuclear fuels, and presents preliminary results obtained from studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Two complementary experimental methods are employed, laser-shock testing and laser-ultrasonic imaging. Measurements are spatially localized, non-contacting and require minimum specimen preparation, and are therefore ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterization of nuclear fuel plates are described. The ability to measure layer thicknesses, elastic properties of the constituents, and the location and nature of laser-shock induced debonds is demonstrated, and preliminary bond strength measurement results are discussed.

  18. Membrane adhesion via competing receptor/ligand bonds

    E-Print Network [OSTI]

    Mesfin Asfaw; Bartosz Rozycki; Reinhard Lipowsky; Thomas R. Weikl

    2006-10-01

    The adhesion of biological membranes is controlled by various types of receptor and ligand molecules. In this letter, we present a statistical-mechanical model for membranes that interact via receptor/ligand bonds of two different lengths. We show that the equilibrium phase behavior of the membranes is governed by an effective double-well potential. The depths of the two potential wells depend on the concentrations and binding energies of the receptors and ligands. The membranes are unbound for small, and bound for larger potential depths. In the bound state, the length mismatch of the receptor/ligand bonds can lead to lateral phase separation. We derive explicit scaling laws for the critical points of unbinding and phase separation, and determine the prefactors by comparison with Monte Carlo results.

  19. Effect of nuclear ownership on utility bond ratings and yields

    SciTech Connect (OSTI)

    Nesse, R.J.

    1982-02-01

    The major objective of this study was to test the hypothesis that investors have required an additional interest rate premium before purchasing bonds of utilities with large investments in nuclear facilities. The study required several tasks. First, the literature relating to firm bankruptcy and default was reviewed. Second, the failing financial health of the electric utility industry was assessed in terms of construction problems, the impact of federal and state regulations, and the impact of Three Mile Island. Finally, data were collected on 63 electric utilities. This allowed statistical estimation of the magnitude of the risk premium associated with utility involvement in nuclear power. The effect of this involvement on a utility's bond ratings was also examined. Multiple regression was the statistical tool used for the statistical testing and estimation.

  20. Cold bond agglomeration of waste oxides for recycling

    SciTech Connect (OSTI)

    D`Alessio, G.; Lu, W.K. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Materials Science and Engineering

    1996-12-31

    Recycling of waste oxides has been an on-going challenge for integrated steel plants. The majority of these waste oxides are collected from the cleaning systems of ironmaking and steelmaking processes, and are usually in the form of fine particulates and slurries. In most cases, these waste materials are contaminated by oils and heavy metals and often require treatment at a considerable expense prior to landfill disposal. This contamination also limits the re-use or recycling potential of these oxides as secondary resources of reliable quality. However, recycling of some selected wastes in blast furnaces or steelmaking vessels is possible, but first requires agglomeration of the fine particulate by such methods as cold bond briquetting. Cold bond briquetting technology provides both mechanical compacting and bonding (with appropriate binders) of the particulates. This method of recycling has the potential to be economically viable and environmentally sustainable. The nature of the present study is cold bond briquetting of iron ore pellet fines with a molasses-cement-H{sub 2}O binder for recycling in a blast furnace. The inclusion of molasses is for its contribution to the green strength of briquettes. During the curing stage, significant gains in strength may be credited to molasses in the presence of cement. The interactions of cement (and its substitutes), water and molasses and their effects on the properties of the agglomerates during and after various curing conditions were investigated. Tensile strengths of briquettes made in the laboratory and subjected to experimental conditions which simulated the top part of a blast furnace shaft were also examined.

  1. Deconfinement of electric charges in hydrogen-bonded ferroelectrics

    E-Print Network [OSTI]

    Bo-Jie Huang; Chyh-Hong Chern

    2015-04-15

    In addition to the gauge charges, a new charge degree of freedom is found in the deconfined phase in the lattice Ising gauge theory. While applying to the hydrogen-bonded ferroelectrics, the new charge is essentially the electric charge, leading to the divergent dielectric susceptibility. The new degree of freedom paves an experimentally accessible way to identify the deconfined phase in the lattice Ising gauge theory.

  2. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, Gene W. (Los Alamos, NM); Roybal, Herman E. (Santa Fe, NM)

    1985-01-01

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al.sub.2 O.sub.3 yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  3. Oxford Area Community School District (Michigan) Bonds Case Study

    Broader source: Energy.gov [DOE]

    Michigan’s Oxford Area Community School District entered into an energy savings performance contract and issued limited tax general obligation bonds to fund the up-front costs of almost $3 million of energy-related improvements. Case study is excerpted from Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements. Author: Merrian Borgeson and Mark Zimring

  4. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, G.W.; Roybal, H.E.

    1983-11-14

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  5. Quantum Confinement in Hydrogen Bond of DNA and RNA

    E-Print Network [OSTI]

    da Silva dos Santos; Elso Drigo Filho; Regina Maria Ricotta

    2015-02-09

    The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.

  6. Quantum Confinement in Hydrogen Bond of DNA and RNA

    E-Print Network [OSTI]

    Santos, da Silva dos; Ricotta, Regina Maria

    2015-01-01

    The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.

  7. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  8. Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures

    SciTech Connect (OSTI)

    Estacio, Elmer; Pham, Minh Hong; Takatori, Satoru; Cadatal-Raduban, Marilou; Nakazato, Tomoharu; Shimizu, Toshihiko; Sarukura, Nobuhiko; Somintac, Armando; Defensor, Michael; Awitan, Fritz Christian B.; Jaculbia, Rafael B.; Salvador, Arnel; Garcia, Alipio

    2009-06-08

    We report on the intense terahertz emission from InAs/GaAs quantum dot (QD) structures grown by molecular beam epitaxy. Results reveal that the QD sample emission was as high as 70% of that of a p-type InAs wafer, the most intense semiconductor emitter to date. Excitation wavelength studies showed that the emission was due to absorption in strained undoped GaAs, and corresponds to a two order-of-magnitude enhancement. Moreover, it was found that multilayer QDs emit more strongly compared with a single layer QD sample. At present, we ascribe the intense radiation to huge strain fields at the InAs/GaAs interface.

  9. Characteristics of InGaP/InGaAs pseudomorphic high electron mobility transistors with triple delta-doped sheets

    SciTech Connect (OSTI)

    Chu, Kuei-Yi; Chiang, Meng-Hsueh Cheng, Shiou-Ying; Liu, Wen-Chau

    2012-02-15

    Fundamental and insightful characteristics of InGaP/InGaAs double channel pseudomorphic high electron mobility transistors (DCPHEMTs) with graded and uniform triple {delta}-doped sheets are coomprehensively studied and demonstrated. To gain physical insight, band diagrams, carrier densities, and direct current characteristics of devices are compared and investigated based on the 2D semiconductor simulator, Atlas. Due to uniform carrier distribution and high electron density in the double InGaAs channel, the DCPHEMT with graded triple {delta}-doped sheets exhibits better transport properties, higher and linear transconductance, and better drain current capability as compared with the uniformly triple {delta}-doped counterpart. The DCPHEMT with graded triple {delta}-doped structure is fabricated and tested, and the experimental data are found to be in good agreement with simulated results.

  10. Terahertz intersubband absorption in non-polar m-plane AlGaN/GaN quantum wells

    SciTech Connect (OSTI)

    Edmunds, C.; Malis, O.; Shao, J.; Shirazi-HD, M.; Manfra, M. J.

    2014-07-14

    We demonstrate THz intersubband absorption (15.6–26.1?meV) in m-plane AlGaN/GaN quantum wells. We find a trend of decreasing peak energy with increasing quantum well width, in agreement with theoretical expectations. However, a blue-shift of the transition energy of up to 14?meV was observed relative to the calculated values. This blue-shift is shown to decrease with decreasing charge density and is, therefore, attributed to many-body effects. Furthermore, a??40% reduction in the linewidth (from roughly 8 to 5?meV) was obtained by reducing the total sheet density and inserting undoped AlGaN layers that separate the wavefunctions from the ionized impurities in the barriers.

  11. High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration

    SciTech Connect (OSTI)

    Young, N. G. Farrell, R. M.; Iza, M.; Speck, J. S.; Perl, E. E.; Keller, S.; Bowers, J. E.; Nakamura, S.; DenBaars, S. P.

    2014-04-21

    We demonstrate InGaN/GaN multiple quantum well solar cells grown by metalorganic chemical vapor deposition on a bulk (0001) substrate with high-performance broadband optical coatings to improve light absorption. A front-side anti-reflective coating and a back-side dichroic mirror were designed to minimize front surface reflections across a broad spectral range and maximize rear surface reflections only in the spectral range absorbed by the InGaN, making the cells suitable for multijunction solar cell integration. Application of optical coatings increased the peak external quantum efficiency by 56% (relative) and conversion efficiency by 37.5% (relative) under 1 sun AM0 equivalent illumination.

  12. Fragmentation and depolymerization of non-covalently bonded filaments

    E-Print Network [OSTI]

    A. Zaccone; I. Terentjev; L. DiMichele; E. M. Terentjev

    2015-03-22

    Protein molecules often self-assemble by means of non-covalent physical bonds to form extended filaments, such as amyloids, F-actin, intermediate filaments, and many others. The kinetics of filament growth is limited by the disassembly rate, at which inter-protein bonds break due to the thermal motion. Existing models often assume that the thermal dissociation of subunits occurs uniformly along the filament, or even preferentially in the middle, while the well-known propensity of F-actin to depolymerize from one end is mediated by biochemical factors. Here, we show for a very general (and generic) model, using Brownian dynamics simulations and theory, that the breakup location along the filament is strongly controlled by the asymmetry of the binding force about the minimum, as well as by the bending stiffness of the filament. We provide the basic connection between the features of the interaction potential between subunits and the breakup topology. With central-force (that is, fully flexible) bonds, the breakup rate is always maximum in the middle of the chain, whereas for semiflexible or stiff filaments this rate is either a minimum in the middle or flat. The emerging framework provides a unifying understanding of biopolymer fragmentation and depolymerization and recovers earlier results in its different limits.

  13. Effect of hydrogen bond cooperativity on the behavior of water

    E-Print Network [OSTI]

    Kevin Stokely; Marco G. Mazza; H. Eugene Stanley; Giancarlo Franzese

    2009-08-27

    Four scenarios have been proposed for the low--temperature phase behavior of liquid water, each predicting different thermodynamics. The physical mechanism which leads to each is debated. Moreover, it is still unclear which of the scenarios best describes water, as there is no definitive experimental test. Here we address both open issues within the framework of a microscopic cell model by performing a study combining mean field calculations and Monte Carlo simulations. We show that a common physical mechanism underlies each of the four scenarios, and that two key physical quantities determine which of the four scenarios describes water: (i) the strength of the directional component of the hydrogen bond and (ii) the strength of the cooperative component of the hydrogen bond. The four scenarios may be mapped in the space of these two quantities. We argue that our conclusions are model-independent. Using estimates from experimental data for H bond properties the model predicts that the low-temperature phase diagram of water exhibits a liquid--liquid critical point at positive pressure.

  14. Bonding energies and long-range order in the trialuminides

    SciTech Connect (OSTI)

    Sparks, C.J.; Specht, E.D.; Ice, G.E.; Zschack, P.; Schneibel, J.

    1990-01-01

    The degree of long-range order in the trialuminides is determined by X-ray powder diffraction techniques. Long-range order exists to their melting points. For the binary trialuminides Al{sub 3}Ti, Al{sub 73}Ti{sub 27}, and Al{sub 3}Sc, the degree of long-range order is nearly perfect and is a measure of the lack of mixing of the aluminum atoms onto the sublattice occupied by either Ti or Sc. A calculation of the bond energy between neighboring pairs of atoms from the ordering (melting) temperature is made following the Bragg-Williams mean field theory approach. These bond energies compare favorably with more sophisticated calculations. Bond energies are found to be larger than the energy difference between the crystal structure forms DO{sub 22}, Ll{sub 2}, and DO{sub 23}, and therefore, more relevant to understanding the mechanical and chemical behavior of the trialuminides. Ordering or melting temperatures of these intermetallics reflect the strong Al-metal near-neighbor pair potentials and may provide insights to their brittle properties. 11 refs., 2 figs., 2 tabs.

  15. Vacuum fusion bonded glass plates having microstructures thereon

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  16. InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells

    SciTech Connect (OSTI)

    Alonso-Álvarez, D.; Thomas, T.; Führer, M.; Hylton, N. P.; Ekins-Daukes, N. J.; Lackner, D.; Philipps, S. P.; Bett, A. W.; Sodabanlu, H.; Fujii, H.; Watanabe, K.; Sugiyama, M.; Nasi, L.; Campanini, M.

    2014-08-25

    Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6° misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1??s, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.

  17. 1.9 kV AlGaN/GaN Lateral Schottky Barrier Diodes on Silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Mingda [University of Notre Dame, IN (United States); Song, Bo [Cornell University, Ithaca, NY (United States); Qi, Meng [University of Notre Dame, IN (United States); Hu, Zongyang [University of Notre Dame, IN (United States); Nomoto, Kazuki [University of Notre Dame, IN (United States); Yan, Xiaodong [University of Notre Dame, IN (United States); Cao, Yu [IQE, Westborough, MA (United States); Johnson, Wayne [IQE, Westborough, MA (United States); Kohn, Erhard [University of Notre Dame, IN (United States); Jena, Debdeep [Cornell University, Ithaca, NY (United States); Xing, Grace Huili [Cornell University, Ithaca, NY (United States)

    2015-04-01

    In this letter, we present AlGaN/GaN lateral Schottky barrier diodes on silicon with recessed anodes and dual field plates. A low specific on-resistance RON,SP (5.12 m?{center_dot}cm2), a low turn-on voltage (1.9 kV), were simultaneously achieved in devices with a 25 ?m anode/cathode separation, resulting in a power figure-of-merit (FOM) BV2/RON,SP of 727 MW{center_dot}cm2. The record high breakdown voltage of 1.9 kV is attributed to the dual field plate structure.

  18. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot

    SciTech Connect (OSTI)

    Deshpande, Saniya; Frost, Thomas; Hazari, Arnab; Bhattacharya, Pallab, E-mail: pkb@eecs.umich.edu [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109 (United States)

    2014-10-06

    We demonstrate a semiconductor quantum dot based electrically pumped single-photon source operating at room temperature. Single photons emitted in the red spectral range from single In{sub 0.4}Ga{sub 0.6}N/GaN quantum dots exhibit a second-order correlation value g{sup (2)}(0) of 0.29, and fast recombination lifetime ?1.3 ±0.3 ns at room temperature. The single-photon source can be driven at an excitation repetition rate of 200?MHz.

  19. 1.9 kV AlGaN/GaN Lateral Schottky Barrier Diodes on Silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Mingda; Song, Bo; Qi, Meng; Hu, Zongyang; Nomoto, Kazuki; Yan, Xiaodong; Cao, Yu; Johnson, Wayne; Kohn, Erhard; Jena, Debdeep; et al

    2015-02-16

    In this letter, we present AlGaN/GaN lateral Schottky barrier diodes on silicon with recessed anodes and dual field plates. A low specific on-resistance RON,SP (5.12 m? · cm2), a low turn-on voltage (1.9 kV), were simultaneously achieved in devices with a 25 ?m anode/cathode separation, resulting in a power figure-of-merit (FOM) BV2/RON,SP of 727 MW·cm2. The record high breakdown voltage of 1.9 kV is attributed to the dual field plate structure.

  20. Concept of chemical bond and aromaticity based on quantum information theory

    E-Print Network [OSTI]

    Szilvási, T; Legeza, Ö

    2015-01-01

    Quantum information theory (QIT) emerged in physics as standard technique to extract relevant information from quantum systems. It has already contributed to the development of novel fields like quantum computing, quantum cryptography, and quantum complexity. This arises the question what information is stored according to QIT in molecules which are inherently quantum systems as well. Rigorous analysis of the central quantities of QIT on systematic series of molecules offered the introduction of the concept of chemical bond and aromaticity directly from physical principles and notions. We identify covalent bond, donor-acceptor dative bond, multiple bond, charge-shift bond, and aromaticity indicating unified picture of fundamental chemical models from ab initio.

  1. Coexistence of dilute and densely packed domains of ligand-receptor bonds in membrane adhesion

    E-Print Network [OSTI]

    Daniel Schmidt; Timo Bihr; Udo Seifert; Ana-Sun?ana Smith

    2012-07-11

    We analyze the stability of micro-domains of ligand-receptor bonds that mediate the adhesion of biological model membranes. After evaluating the effects of membrane fluctuations on the binding affinity of a single bond, we characterize the organization of bonds within the domains by theoretical means. In a large range of parameters, we find the commonly suggested dense packing to be separated by a free energy barrier from a regime in which bonds are sparsely distributed. If bonds are mobile, a coexistence of the two regimes should emerge, which agrees with recent experimental observations.

  2. Theory of weak localization in ferromagnetic (Ga,Mn)As 

    E-Print Network [OSTI]

    Garate, Ion; Sinova, Jairo; Jungwirth, T.; MacDonald, A. H.

    2009-01-01

    We study quantum interference corrections to the conductivity in (Ga,Mn)As ferromagnetic semiconductors using a model with disordered valence-band holes coupled to localized Mn moments through a p-d kinetic-exchange interaction. We find that at Mn...

  3. Low-temperature magnetization of (Ga,Mn) As semiconductors 

    E-Print Network [OSTI]

    Jungwirth, T.; Masek, J.; Wang, KY; Edmonds, KW; Sawicki, M.; Polini, M.; Sinova, Jairo; MacDonald, AH; Campion, RP; Zhao, LX; Farley, NRS; Johal, TK; van der Laan, G.; Foxon, CT; Gallagher, BL.

    2006-01-01

    the semiphenomenological virtual crystal model the valence band holes experience a mean-field hMF =JpdNMn?S , and the band Hamiltonian can then be written as H? MF=H? KL?B?+hMFs?z, where H? KL?B? is the B-dependent six- band Kohn-Luttinger Hamiltonian of the GaAs host...

  4. Ohmic contacts for high-temperature GaP devices 

    E-Print Network [OSTI]

    Van der Hoeven, Willem Bernard

    1981-01-01

    in Table II, heat treatments have also been made by laser. One of the earliest papers that describe laser annealing to obtain ohmic contacts to GaP appeared in 1974 (20] . In this paper, Pounds, Saifi, and Hahm reported to have obtained ohmic contacts...

  5. High-quality InP on GaAs

    E-Print Network [OSTI]

    Quitoriano, Nathaniel Joseph

    2006-01-01

    In addition to traditional telecommunication applications, devices based on InP have received increased attention for high-performance electronics. InP growth on GaAs is motivated by the fact that InP wafers are smaller, ...

  6. Nanoscale GaAs metalsemiconductormetal photodetectors fabricated using nanoimprint lithography

    E-Print Network [OSTI]

    ­V) characteristics of the contacts are very sensi- tive to the surface states and defects. In this letter, we report mold with interdigited fin- gers was first created on a silicon substrate. Next, a layer of polymethylmethancrylate PMMA was spun on a semi- insulating SI GaAs substrate. Before imprinting, both the mold

  7. Properties of H, O and C in GaN

    SciTech Connect (OSTI)

    Pearton, S.J.; Abernathy, C.R.; Lee, J.W.

    1996-04-01

    The electrical properties of the light ion impurities H, O and C in GaN have been examined in both as-grown and implanted material. H is found to efficiently passivate acceptors such as Mg, Ca and C. Reactivation occurs at {ge} 450 C and is enhanced by minority carrier injection. The hydrogen does not leave the GaN crystal until > 800 C, and its diffusivity is relatively high ({approximately} 10{sup {minus}11} cm{sup 2}/s) even at low temperatures (< 200 C) during injection by wet etching, boiling in water or plasma exposure. Oxygen shows a low donor activation efficiency when implanted into GaN, with an ionization level of 30--40 meV. It is essentially immobile up to 1,100 C. Carbon can produce low p-type levels (3 {times} 10{sup 17} cm{sup {minus}3}) in GaN during MOMBE, although there is some evidence it may also create n-type conduction in other nitrides.

  8. Revisiting anomalous structures in liquid Ga K. H. Tsai,1

    E-Print Network [OSTI]

    Wu, Ten-Ming

    of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Republic of China Received 2 November's simulation at high temperature, dimers with extremely short bond lengths are indeed found in our model just-range order, which is related to the structures beyond the first shell of the radial distribution function

  9. Luminescence properties of defects in GaN

    SciTech Connect (OSTI)

    Reshchikov, Michael A.; Morkoc, Hadis [Department of Electrical Engineering and Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2005-03-15

    Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The point defects include native isolated defects (vacancies, interstitial, and antisites), intentional or unintentional impurities, as well as complexes involving different combinations of the isolated defects. Further improvements in device performance and longevity hinge on an in-depth understanding of point defects and their reduction. In this review a comprehensive and critical analysis of point defects in GaN, particularly their manifestation in luminescence, is presented. In addition to a comprehensive analysis of native point defects, the signatures of intentionally and unintentionally introduced impurities are addressed. The review discusses in detail the characteristics and the origin of the major luminescence bands including the ultraviolet, blue, green, yellow, and red bands in undoped GaN. The effects of important group-II impurities, such as Zn and Mg on the photoluminescence of GaN, are treated in detail. Similarly, but to a lesser extent, the effects of other impurities, such as C, Si, H, O, Be, Mn, Cd, etc., on the luminescence properties of GaN are also reviewed. Further, atypical luminescence lines which are tentatively attributed to the surface and structural defects are discussed. The effect of surfaces and surface preparation, particularly wet and dry etching, exposure to UV light in vacuum or controlled gas ambient, annealing, and ion implantation on the characteristics of the defect-related emissions is described.

  10. Testing a GaAs cathode in SRF gun

    SciTech Connect (OSTI)

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-03-28

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10{sup -12} Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to {approx}10{sup -9} Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high accelerating gradient of the RF guns, potentially offering a long lived cathode with very low emittance. Testing this concept requires preparation of the cathode, transportation to the SRF gun and evaluation of the performance of the cathode and the gun at cryogenic temperatures. In our work at BNL, we successfully activated the bulk GaAs in the preparation chamber. The highest quantum efficient was 10% at 532 nm that fell to 0.5% after 100 hours. We explored three different ways to activate the GaAs. We verified that the GaAs photocathode remains stable for 30 hours in a 10{sup -11} Torr vacuum. Passing the photocathode through the low 10{sup -9} Torr transfer section in several seconds caused the QE to drop to 0.8%. The photocathode with 0.8% QE can be tested for the SRF gun. The gun and beam pipe were prepared and assembled. After baking at 200 C baking, the vacuum of the gun and beam pipe can sustain a low 10{sup -11} Torr at room temperature. The final test to extract electrons from the gun is ongoing. In this paper, we discuss our progress with this SRF gun and the results of the photocathode in preparation chamber and in magnet transfer line.

  11. Quaternary InGaAsSb Thermophotovoltaic Diodes

    SciTech Connect (OSTI)

    MW Dashiell; JF Beausang; H Ehsani; GJ Nichols; DM Depoy; LR Danielson; P Talamo; KD Rahner; EJ Brown; SR Burger; PM Foruspring; WF Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; J Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryi

    2006-03-09

    In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y} thermophotovoltaic (TPV) diodes were grown lattice-matched to GaSb substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) in the bandgap range of E{sub G} = 0.5 to 0.6eV. InGaAsSb TPV diodes, utilizing front-surface spectral control filters, are measured with thermal-to-electric conversion efficiency and power density of {eta}{sub TPV} = 19.7% and PD =0.58 W/cm{sup 2} respectively for a radiator temperature of T{sub radiator} = 950 C, diode temperature of T{sub diode} = 27 C, and diode bandgap of E{sub G} = 0.53eV. Practical limits to TPV energy conversion efficiency are established using measured recombination coefficients and optical properties of front surface spectral control filters, which for 0.53eV InGaAsSb TPV energy conversion is {eta}{sub TPV} = 28% and PD = 0.85W/cm{sup 2} at the above operating temperatures. The most severe performance limits are imposed by (1) diode open-circuit voltage (VOC) limits due to intrinsic Auger recombination and (2) parasitic photon absorption in the inactive regions of the module. Experimentally, the diode V{sub OC} is 15% below the practical limit imposed by intrinsic Auger recombination processes. Analysis of InGaAsSb diode electrical performance vs. diode architecture indicate that the V{sub OC} and thus efficiency is limited by extrinsic recombination processes such as through bulk defects.

  12. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes

    SciTech Connect (OSTI)

    Zhou, Kun; Ikeda, Masao, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn; Liu, Jianping, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn; Zhang, Shuming; Li, Deyao; Zhang, Liqun; Yang, Hui [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou (China); Cai, Jin; Wang, Hui; Wang, H. B. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou (China); Suzhou Nanojoin Photonics Co., Ltd., Suzhou (China)

    2014-10-27

    The efficiency droop of InGaN/GaN(InGaN) multiple quantum well (MQW) light emitting diodes (LEDs) with thin quantum barriers (QB) is studied. With thin GaN QB (3?nm–6?nm thickness), the efficiency droop is not improved, which indicates that hole transport cannot be significantly enhanced by the thin GaN QBs. On the contrary, the efficiency droop was remarkably reduced by using a InGaN staircase QB (InGaN SC-QB) MQWs structure where InGaN SC-QBs lower the transport energy barrier of holes. The efficiency droop ratio was as low as 3.3% up to 200?A/cm{sup 2} for the InGaN SC-QB LED. By using monitoring QW with longer wavelength we observe a much uniform carrier distribution in the InGaN SC-QB LEDs, which reveals the mechanism of improvement in the efficiency droop.

  13. The polygallides: Yb{sub 3}Ga{sub 7}Ge{sub 3} and YbGa{sub 4}Ge{sub2}.

    SciTech Connect (OSTI)

    Peter, S. C.; Malliakas, C. D.; Nakotte, H.; Kothapilli, K.; Rayaprol, S.; Schultz, A. J.; Kanatzidis, M. G. (Materials Science Division); ( XSD); (Northwestern Univ.); (Jawaharlal Nehru Centre for Adv. Sci. Res.); (New Mexico State Univ.); (Los Alamos Nat. Lab.); (UGC-DAE Consortium for Sci. Res.)

    2012-03-01

    Yb{sub 3}Ga{sub 7}Ge{sub 3} and YbGa{sub 4}Ge{sub 2} were obtained from reactions of Yb and Ge in excess liquid gallium. The crystal structure of Yb{sub 3}Ga{sub 7}Ge{sub 3} was refined using X-ray and neutron diffraction data on selected single crystals. Yb{sub 3}Ga{sub 7}Ge{sub 3} crystallizes in the monoclinic space group C2/c with lattice constants a = 12.2261(20) {angstrom}, b = 10.7447(20) {angstrom}, c = 8.4754(17) {angstrom} and {beta} = 110.288(30){sup o} (neutron diffraction data). The crystal structure of Yb{sub 3}Ga{sub 7}Ge{sub 3} is an intergrowth of planar layers of YbGa{sub x}Ge{sub y} and puckered layers of (Ge)n. YbGa{sub 4}Ge{sub 2} crystallizes in a modified PuGa{sub 6} structure type in the tetragonal polar space group I4cm with lattice constants a = b = 5.9874(6) {angstrom} and c = 15.1178(19) {angstrom}. The structure of YbGa{sub 4}Ge{sub 2} is an intergrowth of puckered Ga layers and puckered Ga{sub x}Ge{sub y} layers with Yb atoms residing within the channels formed by the connection of the two layers. Physical properties, resistivity ({rho}), magnetic susceptibility ({chi}) and specific heat (C) were measured for Yb{sub 3}Ga{sub 7}Ge{sub 3}. No magnetic ordering was observed. It was found that at low temperatures, {rho} varied as T{sup 2} and C{alpha}T, indicating Fermi-liquid regime in Yb{sub 3}Ga{sub 7}Ge{sub 3} at low temperatures.

  14. Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs

    E-Print Network [OSTI]

    Fan, Kebin

    We demonstrate nonlinear metamaterial split ring resonators (SRRs) on GaAs at terahertz frequencies. For SRRs on doped GaAs films, incident terahertz radiation with peak fields of ?20–160??kV/cm drives intervalley scattering. ...

  15. Device-level thermal analysis of GaN-based electronics

    E-Print Network [OSTI]

    Bagnall, Kevin Robert

    2013-01-01

    Gallium nitride (GaN)-based microelectronics are one of the most exciting semiconductor technologies for high power density and high frequency electronics. The excellent electrical properties of GaN and its related alloys ...

  16. Light extraction in individual GaN nanowires on Si for LEDs

    E-Print Network [OSTI]

    Zhou, Xiang

    GaN-based nanowires hold great promise for solid state lighting applications because of their waveguiding properties and the ability to grow nonpolar GaN nanowire-based heterostructures, which could lead to increased light ...

  17. Inves&ga&ng the Trade-Off between Luminous Efficacy of Radia&on

    E-Print Network [OSTI]

    California at Davis, University of

    Inves&ga&ng the Trade-Off between Luminous Efficacy of Radia&on and Color, Canada · Lorne Whitehead, Canada #12;Inves&ga&ng the Trade-Off between Luminous

  18. Characterization of NIR InGaAs imager arrays for the JDEM SNAP mission concept

    E-Print Network [OSTI]

    2006-01-01

    Characterization of NIR InGaAs imager arrays for the JDEMapplications. Keywords: NIR, InGaAs, astronomy, low-1.7um band Near Infrared (NIR) focal plane mosaic with high

  19. Atomic structure of postgrowth annealed epitaxial Fe/(001)GaAs interfaces

    E-Print Network [OSTI]

    LeBeau, James; Hu, Qi O.; Palmstrom, Christopher; Stemmer, Susanne

    2008-01-01

    line pro?le across the interface along the line indicated inHAADF images of the GaAs/Fe interface along ?a? ?11 0? GaAsindicates the location of an interface step. Arrows in ?b?

  20. Plasmonic terahertz detectors based on a high-electron mobility GaAs/AlGaAs heterostructure

    SciTech Connect (OSTI)

    Bia?ek, M. Witowski, A. M.; Grynberg, M.; ?usakowski, J.; Orlita, M.; Potemski, M.; Czapkiewicz, M.; Umansky, V.

    2014-06-07

    In order to characterize magnetic field (B) tunable THz plasmonic detectors, spectroscopy experiments were carried out at liquid helium temperatures and high magnetic fields on devices fabricated on a high electron mobility GaAs/AlGaAs heterostructure. The samples were either gated (the gate of a meander shape) or ungated. Spectra of a photovoltage generated by THz radiation were obtained as a function of B at a fixed THz excitation from a THz laser or as a function of THz photon frequency at a fixed B with a Fourier spectrometer. In the first type of measurements, the wave vector of magnetoplasmons excited was defined by geometrical features of samples. It was also found that the magnetoplasmon spectrum depended on the gate geometry which gives an additional parameter to control plasma excitations in THz detectors. Fourier spectra showed a strong dependence of the magnetoplasmon resonance amplitude on the conduction-band electron filling factor which was explained within a model of the electron gas heating with THz radiation. The study allows to define both the advantages and limitations of plasmonic devices based on high-mobility GaAs/AlGaAs heterostructures for THz detection at low temperatures and high magnetic fields.

  1. On the redox origin of surface trapping in AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Gao, Feng; Chen, Di; Tuller, Harry L.; Thompson, Carl V.; Palacios, Tomás

    2014-03-28

    Water-related redox couples in ambient air are identified as an important source of the surface trapping states, dynamic on-resistance, and drain current collapse in AlGaN/GaN high electron mobility transistors (HEMTs). Through in-situ X-ray photoelectron spectroscopy (XPS), direct signature of the water-related species—hydroxyl groups (OH) was found at the AlGaN surface at room temperature. It was also found that these species, as well as the current collapse, can be thermally removed above 200?°C in vacuum conditions. An electron trapping mechanism based on the H{sub 2}O/H{sub 2} and H{sub 2}O/O{sub 2} redox couples is proposed to explain the 0.5?eV energy level commonly attributed to the surface trapping states. Finally, the role of silicon nitride passivation in successfully removing current collapse in these devices is explained by blocking the water molecules away from the AlGaN surface.

  2. High 400?°C operation temperature blue spectrum concentration solar junction in GaInN/GaN

    SciTech Connect (OSTI)

    Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian

    2014-12-15

    Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1?V is achieved. Of the photons absorbed in the limited spectral range of <450?nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49?mW/cm{sup 2} to 0.51?mW/cm{sup 2} at 40?suns and then falls 0.42?mW/cm{sup 2} at 150?suns. Under external heating, a maximum of 0.59?mW/cm{sup 2} is reached at 250?°C. Even at 400?°C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.

  3. Operating Characteristics of GaAs/InGaP Self Aligned Stripe Lasers Benjamin J. Stevens1

    E-Print Network [OSTI]

    quantum wells (QW)s,1) and InAs quantum dots at 1.3 mm2) have brought about the commercialization of Ga differential quantum efficiency, T-zero and far field as a function of stripe width. # 2009 The Japan Society offer a number of advantages over their InP counterparts, namely the use of larger substrates (>3 in

  4. Highly Ordered Ga Nanodroplets on a GaAs Surface Formed by a Focused Ion Beam Qiangmin Wei,1

    E-Print Network [OSTI]

    Lu, Wei

    quantum dots by low-energy ion sputtering on a surface has been reported in several semiconductor sys quantum dots on the surface. The mechanism involves the balance between roughening and smoothing actions], Ge [10], as well as a variety of III­V compounds (GaSb [11], InP [12], and InSb [13]) can form

  5. Comparison of electrostatic and localized plasmon induced light enhancement in hybrid InGaN/GaN quantum wells

    SciTech Connect (OSTI)

    Lin, Jie; Llopis, Antonio; Krokhin, Arkadii; Neogi, Arup, E-mail: arup@unt.edu [Department of Physics, University of North Texas, Denton, Texas 76203 (United States); Pereira, Sergio [CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Watson, Ian M. [SUPA, Institute of Photonics, University of Strathclyde, Glasgow (United Kingdom)

    2014-06-16

    The light enhancement phenomena in InGaN/GaN multi-quantum wells (MQWs) infiltrated with metal nanoparticles (NPs) are studied using resonant and off-resonant localized plasmon interactions. The emission and recombination characteristics of carriers in InGaN/GaN MQW structures with inverted hexagonal pits (IHPs) are modified distinctly depending on the nature of their interaction with the metal NPs and with the pumping and emitted photons. It is observed that the emission intensity of light is significantly enhanced when the emission energy is off-resonant to the localized plasmon frequency of the metal nanoparticles. This results in enhanced emission from MQW due to Au nanoparticles and from IHPs due to Ag nanoparticles. At resonant-plasmon frequency of the Ag NPs, the emission from MQWs is quenched due to the re-absorption of the emitted photons, or due to the drift carriers from c-plane MQWs towards the NPs because of the Coulomb forces induced by the image charge effect.

  6. Molecular Dynamics Simulation of GaAs Molecular Beam Epitaxy D. A. Murdick,1

    E-Print Network [OSTI]

    Wadley, Haydn

    of Virginia, Charlottesville, Virginia 22904, USA 2 Department of Materials, University of Oxford, Oxford OX1 3PH, UK ABSTRACT The vapor deposition of epitaxial GaAs and (Ga,Mn)As thin films during far-temperature growth of Ga0.94Mn0.06As and the Mn clustering trends in as-grown films. INTRODUCTION GaAs is widely used

  7. GaN Initiative for Grid Applications (GIGA)

    SciTech Connect (OSTI)

    Turner, George

    2015-07-03

    For nearly 4 ˝ years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -even for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 ?m, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New “Normally-Off” device architectures were demonstrated – for safe operation of power electronics circuits. The trade-offs between lateral and vertical devices were explored, with the conclusion that lateral devices are superior for fundamental thermal reasons, as well as for the demonstration of future generations of monolithic power circuits. As part of the materials and device investigations breakdown mechanisms in GaN-on-Si structures were fully characterized and effective electric field engineering was recognized as critical for achieving even higher voltage operation. Improved device contact technology was demonstrated, including the first gold-free metallizations (to enable processing in CMOS foundries) while maintaining low specific contact resistance needed for high-power operation and 5-order-of magnitude improvement in device leakage currents (essential for high power operation). In addition, initial GaN-on-Si epitaxial growth was performed on 8”/200 mm Si starting substrates.

  8. DISSERTATION ANTICIPATED PERFORMANCE OF Cu(In,Ga)Se2 SOLAR CELLS IN THE

    E-Print Network [OSTI]

    Sites, James R.

    i DISSERTATION ANTICIPATED PERFORMANCE OF Cu(In,Ga)Se2 SOLAR CELLS IN THE THIN-FILM LIMIT Submitted ENTITLED `ANTICIPATED PERFORMANCE OF Cu(In,Ga)Se2 SOLAR CELLS IN THE THIN-FILM LIMIT' BE ACCEPTED(In,Ga)Se2 SOLAR CELLS IN THE THIN-FILM LIMIT The demand for alternative sources of energy is rapidly

  9. TESLA-FEL 2007-03 Application of low cost GaAs LED as neutron

    E-Print Network [OSTI]

    neutrons in unbiased Gallium Arsenide (GaAs) Light Emitting Diodes (LED) resulted in a reduction Keywords: COTS components, Displacement damage, Electron Linear Accelerator, GaAs Light emitting diode (LED) Gallium Arsenide (GaAs) light emitting diode (LED) for the assessment of integrated neutron fluence

  10. Surface plasmon enhanced InGaN light emitter Koichi Okamoto*a

    E-Print Network [OSTI]

    Okamoto, Koichi

    is a very promising method for developing the super bright light emitting diodes (LEDs). Moreover, we foundGaN/GaN, light emitting diode, quantum well, internal quantum efficiency, solid-state light source 1. INTRODUCTION Since 1993, InGaN quantum wells (QW)-based light emitting diodes (LEDs) have been continuously

  11. Near perfect solar absorption in ultra-thin-film GaAs photonic crystals

    E-Print Network [OSTI]

    John, Sajeev

    Near perfect solar absorption in ultra-thin-film GaAs photonic crystals Sergey Eyderman,*a Alexei voltage of GaAs solar cells. The current world record for high efficiency solar cells is held by thin ultra-thin (GaAs in low-cost solar cells. However, this reduction in the volume

  12. ORIGINAL ARTICLE Highly efficient GaAs solar cells by limiting light emission

    E-Print Network [OSTI]

    Polman, Albert

    a non-concentrating system with limited emission angle in a thin, light trapping GaAs solar cellORIGINAL ARTICLE Highly efficient GaAs solar cells by limiting light emission angle Emily D Kosten1 of a high-quality GaAs solar cell is a feasible route to achieving power conversion efficiencies above 38

  13. Inversion of wurtzite GaN(0001) by exposure to V. Ramachandran and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    in the growth rate of GaN on different crystallographic planes [8], pointing to a surfactant effect of Mg on Ga in these films and the carrier concentration was therefore very low [1,2]; dopant activa- tion can be achieved of Mg at GaN growth temperatures is an issue and dopant in- corporation may be rather inefficient [5

  14. Ultrasensitive detection of Hg{sup 2+} using oligonucleotide-functionalized AlGaN/GaN high electron mobility transistor

    SciTech Connect (OSTI)

    Cheng, Junjie; Li, Jiadong; Miao, Bin; Wu, Dongmin; Wang, Jine; Pei, Renjun; Wu, Zhengyan

    2014-08-25

    An oligonucleotide-functionalized ion sensitive AlGaN/GaN high electron mobility transistor (HEMT) was fabricated to detect trace amounts of Hg{sup 2+}. The advantages of ion sensitive AlGaN/GaN HEMT and highly specific binding interaction between Hg{sup 2+} and thymines were combined. The current response of this Hg{sup 2+} ultrasensitive transistor was characterized. The current increased due to the accumulation of Hg{sup 2+} ions on the surface by the highly specific thymine-Hg{sup 2+}-thymine recognition. The dynamic linear range for Hg{sup 2+} detection has been determined in the concentrations from 10{sup ?14} to 10{sup ?8} M and a detection limit below 10{sup ?14} M level was estimated, which is the best result of AlGaN/GaN HEMT biosensors for Hg{sup 2+} detection till now.

  15. Title 43 CFR 3104 Bonds | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open EnergyTinoxOpen Energy Information 155104 Bonds Jump

  16. Chemical bond and entanglement of electrons in the hydrogen molecule

    E-Print Network [OSTI]

    Nikos Iliopoulos; Andreas F. Terzis

    2014-08-01

    We theoretically investigate the quantum correlations (in terms of concurrence of indistinguishable electrons) in a prototype molecular system (hydrogen molecule). With the assistance of the standard approximations of the linear combination of atomic orbitals and the con?guration interaction methods we describe the electronic wavefunction of the ground state of the H2 molecule. Moreover, we managed to ?find a rather simple analytic expression for the concurrence (the most used measure of quantum entanglement) of the two electrons when the molecule is in its lowest energy. We have found that concurrence does not really show any relation to the construction of the chemical bond.

  17. Fuel cell system with separating structure bonded to electrolyte

    DOE Patents [OSTI]

    Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY); Quek, Shu Ching (Clifton Park, NY); Hasz, Wayne Charles (Pownal, VT); Powers, James Daniel (Santa Monica, CA)

    2010-09-28

    A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.

  18. Carbon-Fluorine Bond Cleavage by Zirconium Metal Hydride Complexes

    E-Print Network [OSTI]

    Jones, William D.

    Carbon-Fluorine Bond Cleavage by Zirconium Metal Hydride Complexes Brian L. Edelbach, A. K. Fazlur, Rochester, New York 14627 Received April 8, 1999 The zirconium hydride dimer [Cp2ZrH2]2 reacts with C6F6. [Cp2ZrH2]2 reacts with C6F5H to give Cp2Zr(p-C6F4H)F, Cp2ZrF2, C6F4H2, and H2. The zirconium hydride

  19. Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 |1 DOE HydrogenDepartmentU.S. Department ofBonds

  20. Bond County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois:Energy Authority Jump to:Bolivia:Vermont:BonBond

  1. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr.Theories (JournalTime-Resolved Study of Bonding in

  2. Nitrogen-tuned bonding mechanism of Li and Ti adatom embedded graphene

    SciTech Connect (OSTI)

    Lee, Sangho; Chung, Yong-Chae, E-mail: yongchae@hanyang.ac.kr

    2013-09-15

    The effects of nitrogen defects on the bonding mechanism and resultant binding energy between the metal and graphene layer were investigated using density functional theory (DFT) calculations. For the graphitic N-doped graphene, Li adatom exhibited ionic bonding character, while Ti adatom showed features of covalent bonding similar to that of pristine graphene. However, in the cases of pyridinic and pyrrolic structures, partially covalent bonding characteristic occurred around N atoms in the process of binding with metals, and this particular bond formation enhanced the bond strength of metal on the graphene layer as much as it exceeded the cohesive energy of the metal bulk. Thus, Li and Ti metals are expected to be dispersed with atomic accuracy on the pyridinic and pyrrolic N-doped graphene layers. These results demonstrate that the bonding mechanism of metal–graphene complex can change according to the type of N defect, and this also affects the binding results. - Graphical abstract: Display Omitted - Highlights: • Nitrogen defects changed the bonding mechanism between metal and graphene. • Bonding character and binding results were investigated using DFT calculations. • Covalent bonding character occurred around pyridinic and pyrrolic N-doped graphene. • Pyridinic and pyrrolic N atoms are effective for metal dispersion on the graphene.

  3. Experimental and Theoretical Investigations of Energy Transfer and Hydrogen-Bond Breaking in Small Water and HCl Clusters

    E-Print Network [OSTI]

    Reisler, Hanna

    Experimental and Theoretical Investigations of Energy Transfer and Hydrogen-Bond Breaking in Small illustrating ubiquitous hydrogen bonding (H-bonding) in the gas phase, liquids, crystals, and amorphous solids and experiment are enlisted to determine bond dissociation energies (D0) of small dimers and cyclic trimers

  4. Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN nanostructure arrays on GaN/sapphire template

    SciTech Connect (OSTI)

    Sundaram, S.; El Gmili, Y.; Bonanno, P. L. [CNRS, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Puybaret, R.; Li, X.; Voss, P. L.; Ougazzaden, A. [Georgia Institute of Technology, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Pantzas, K.; Patriarche, G. [CNRS, UPR LPN, Route de Nozay, 91460 Marcoussis (France); Orsal, G.; Salvestrini, J. P., E-mail: salvestr@metz.supelec.fr [Université de Lorraine, Supélec, LMOPS, EA4423, 57070 Metz (France); Troadec, D. [Université des Sciences et Technologies de Lille, CNRS, UMR 8520 IEMN, 59000 Lille (France); Cai, Z.-H. [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States)

    2014-10-28

    Uniform, dense, single-phase, 150?nm thick indium gallium nitride (InGaN) nanostructure (nanorods and nanostripes) arrays have been obtained on gallium nitride templates, by metal organic chemical vapor deposition and nanoscale selective area growth on silicon dioxide patterned masks. The 150?nm thick InGaN nanorods have a perfect hexagonal pyramid shape with relatively homogenous indium concentration up to 22%, which is almost twice as high as in planar InGaN grown in the same condition, and luminesce at 535?nm. InGaN nanostripes feature c-axis oriented InGaN in the core which is covered by InGaN grown along semi-polar facets with higher In content. Transmission electron microscope and sub micron beam X-rays diffraction investigations confirm that both InGaN nanostructures are mostly defect free and monocrystalline. The ability to grow defect-free thick InGaN nanostructures with reduced polarization and high indium incorporation offers a solution to develop high efficiency InGaN-based solar cells.

  5. Method of plasma etching GA-based compound semiconductors

    DOE Patents [OSTI]

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  6. Method of plasma etching Ga-based compound semiconductors

    DOE Patents [OSTI]

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  7. AlGaAs-On-Insulator Nonlinear Photonics

    E-Print Network [OSTI]

    Pu, Minhao; Semenova, Elizaveta; Yvind, Kresten

    2015-01-01

    The combination of nonlinear and integrated photonics has recently seen a surge with Kerr frequency comb generation in micro-resonators as the most significant achievement. Efficient nonlinear photonic chips have myriad applications including high speed optical signal processing, on-chip multi-wavelength lasers, metrology, molecular spectroscopy, and quantum information science. Aluminium gallium arsenide (AlGaAs) exhibits very high material nonlinearity and low nonlinear loss when operated below half its bandgap energy. However, difficulties in device processing and low device effective nonlinearity made Kerr frequency comb generation elusive. Here, we demonstrate AlGaAs-on-insulator as a nonlinear platform at telecom wavelengths. Using newly developed fabrication processes, we show high-quality-factor (Q>100,000) micro-resonators with integrated bus waveguides in a planar circuit where optical parametric oscillation is achieved with a record low threshold power of 3 mW and a frequency comb spanning 350 nm i...

  8. Formation and properties of porous GaAs

    SciTech Connect (OSTI)

    Schmuki, P.; Lockwood, D.J.; Fraser, J.W.; Graham, M.J.; Isaacs, H.S.

    1996-06-01

    Porous structures on n-type GaAs (100) can be grown electrochemically in chloride-containing solutions. Crystallographic etching of the sample is a precursor stage of the attack. Polarization curves reveal the existanece of a critical onset potential for por formation (PFP). PFP is strongly dependent on the doping level of the sample and presence of surface defects. Good agreement between PFP and breakdown voltage of the space charge layer is found. Surface analysis by EDX, AES, and XPS show that the porous structure consists mainly of GaAs and that anion uptake in the structure can only observed after attackhas been initiated. Photoluminescence measurements reveal (under certain conditions) visible light emission from the porous structure.

  9. IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2002-09-30

    Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

  10. Influence of n-type versus p-type AlGaN electron-blocking layer on InGaN/GaN multiple quantum wells light-emitting diodes

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    to be further improved in order for the high- power LEDs to penetrate into the consumer market of gen- eral to higher optical output power and external quantum efficiency, compared to the devices with p-AlGaN EBLGaN/GaN based light-emitting diodes (LEDs) possess unique advantages including high energy conversion effi

  11. The transputer based GA. SP data acquisition system

    SciTech Connect (OSTI)

    Colombo, D.; Avano, B.; DePoli, M.; Maron, G. ); Negro, A.; Parlati, G. )

    1992-04-01

    In this paper, the new data acquisition for the GA.SP detector is presented. It is a distributed system based on a network of 40 T800 and T222 transputers linked to a VME system used for histogram storage. A 100 MBit/s FDDI ring connects the system to UNIX workstations used for the experiment control, histogram display and second level data analysis.

  12. Minority-carrier properties of GaAs on silicon

    SciTech Connect (OSTI)

    Ahrenkiel, R.K.; Al-Jassim, M.M.; Dunlavy, D.J.; Jones, K.M.; Vernon, S.M.; Tobin, S.P.; Haven, V.E.

    1988-07-18

    The minority-carrier lifetimes of the heteroepitaxial system of GaAs on Si are limited by recombination at mismatch dislocations. Here we show that increasing the thickness of the buffer layer, with an additional annealing step, reduces the dislocation density by about an order of magnitude. At the same time, the minority-carrier lifetime in these double heterostructures increases more than an order of magnitude.

  13. Ohmic contacts to p-type Ga

    E-Print Network [OSTI]

    Jorge Estevez, Humberto Angel

    1996-01-01

    resistivity was achieved by developing the Si(750A)/Pd(400A)/Zn(xA)/Pd(IOOA)/p-GaP scheme. Values of the contact resistivity in the range of 3xlO-5 to 7xlO-' nCM2 were obtained. It was found that the optimum Zn layer thickness is 30 A for the Pd and Si...

  14. Conductivity based on selective etch for GaN devices and applications thereof

    DOE Patents [OSTI]

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  15. Continued development of metallization for GaAs concentrator cells

    SciTech Connect (OSTI)

    Tobin, S.P.

    1988-11-01

    The objective of this work was the integration of thermally stable metallizations with a high-efficiency GaAs concentrator cell process. For p-GaAs we used a Pt-TiN-Au metallization developed under a previous Sandia Contract. For n-GaAs the best results were obtained for AuGe-TiN-Au. Baseline p/n cells with a CrAu metallization achieved efficiencies of 25.4% at 200 suns. Efficiencies were about 22% at one sun. At one sun, p/n cells with high-temperature contacts were 22.2% efficient, showing that there is no efficiency penalty with the high-temperature metallization. Development efforts on n/p cells yielded high short-circuit currents and open-circuit voltages, with both conventional and high-temperature metallizations. Thermal annealing tests showed that cells with the Pt-TiN-Au metallization were more stable than those with the baseline metallization, withstanding a 15-minute anneal at 500/degree/C with negligible efficiency degradation. 22 refs., 64 figs., 54 tabs.

  16. InGaAsSb thermophotovoltaic diode physics evaluation

    SciTech Connect (OSTI)

    Charache, G.W.; Baldasaro, P.F.; Danielson, L.R. [Lockheed-Martin, Inc., Schenectady, NY (United States)] [and others

    1998-06-01

    The hotside operating temperatures for many projected thermophotovoltaic (TPV) conversion system applications are approximately 1,000 C, which sets an upper limit on the TPV diode bandgap of 0.6 eV from efficiency and power density considerations. This bandgap requirement has necessitated the development of new diode material systems, never previously considered for energy generation. To date, InGaAsSb quaternary diodes grown lattice-matched on GaSb substrates have achieved the highest performance. This report relates observed diode performance to electro-optic properties such as minority carrier lifetime, diffusion length and mobility and provides initial links to microstructural properties. This analysis has bounded potential diode performance improvements. For the 0.52 eV InGaAsSb diodes used in this analysis the measured dark current is 2 {times} 10{sup {minus}5} A/cm{sup 2}, versus a potential Auger limit 1 {times} 10{sup {minus}5} A/cm{sup 2}, a radiative limit of 2 {times} 10{sup {minus}6} A/cm{sup 2} (no photon recycling), and an absolute thermodynamic limit of 1.4 {times} 10{sup {minus}7} A/cm{sup 2}. These dark currents are equivalent to open circuit voltage gains of 20 mV (7%), 60 mV (20%) and 140 mV (45%), respectively.

  17. Ga lithography in sputtered niobium for superconductive micro and nanowires

    SciTech Connect (OSTI)

    Henry, M. David; Wolfley, Steve; Monson, Todd; Lewis, Rupert

    2014-08-18

    This work demonstrates the use of focused ion beam (FIB) implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12?nm deep with a 14?nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10??m by 10??m and 100??m by 100??m, demonstrate that doses above than 7.5?×?10{sup 15?}cm{sup ?2} at 30?kV provide adequate mask protection for a 205?nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75?nm wide by 10??m long connected to 50??m wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature (T{sub c})?=?7.7?K was measured using a magnetic properties measurement system. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.

  18. Selective area growth and characterization of GaN nanocolumns, with and without an InGaN insertion, on semi-polar (11–22) GaN templates

    SciTech Connect (OSTI)

    Bengoechea-Encabo, A.; Albert, S.; Barbagini, F.; Sanchez-Garcia, M. A.; Calleja, E. [ISOM and Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n 28040 Madrid (Spain)] [ISOM and Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n 28040 Madrid (Spain); Zuńiga-Perez, J.; Mierry, P. de [CRHEA-CNRS, 06560 Valbonne (France)] [CRHEA-CNRS, 06560 Valbonne (France); Trampert, A. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)] [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2013-12-09

    The aim of this work is the selective area growth (SAG) of GaN nanocolumns, with and without an InGaN insertion, by molecular beam epitaxyon semi-polar (11–22) GaN templates. The high density of stacking faults present in the template is strongly reduced after SAG. A dominant sharp photoluminescence emission at 3.473 eV points to high quality strain-free material. When embedding an InGaN insertion into the ordered GaN nanostructures, very homogeneous optical properties are observed, with two emissions originating from different regions of each nanostructure, most likely related to different In contents on different crystallographic planes.

  19. Fuel Fabrication Capability WBS 01.02.01.05 - HIP Bonding Experiments Final Report

    SciTech Connect (OSTI)

    Dickerson, Patricia O'Donnell; Summa, Deborah Ann; Liu, Cheng; Tucker, Laura Arias; Chen, Ching-Fong; Aikin, Beverly; Aragon, Daniel Adrian; Beard, Timothy Vance; Montalvo, Joel Dwayne; Pena, Maria Isela; Dombrowski, David E.

    2015-06-10

    The goals of this project were to demonstrate reliable, reproducible solid state bonding of aluminum 6061 alloy plates together to encapsulate DU-10 wt% Mo surrogate fuel foils. This was done as part of the CONVERT Fuel Fabrication Capability effort in Process Baseline Development . Bonding was done using Hot Isotatic Pressing (HIP) of evacuated stainless steel cans (a.k.a HIP cans) containing fuel plate components and strongbacks. Gross macroscopic measurements of HIP cans prior to HIP and after HIP were used as part of this demonstration, and were used to determine the accuracy of a finitie element model of the HIP bonding process. The quality of the bonding was measured by controlled miniature bulge testing for Al-Al, Al-Zr, and Zr-DU bonds. A special objective was to determine if the HIP process consistently produces good quality bonding and to determine the best characterization techniques for technology transfer.

  20. Polyurethane spray coating of aluminum wire bonds to prevent corrosion and suppress resonant oscillations

    E-Print Network [OSTI]

    Joseph M. Izen; Matthew Kurth; Rusty Boyd

    2016-01-04

    Unencapsulated aluminum wedge wire bonds are common in particle physics pixel and strip detectors. Industry-favored bulk encapsulation is eschewed due to the range of operating temperatures and radiation. Wire bond failures are a persistent source of tracking-detector failure. Unencapsulated bonds are vulnerable to condensation-induced corrosion, particularly when halides are present. Oscillations from periodic Lorentz forces are documented as another source of wire bond failure. Spray application of polyurethane coatings, performance of polyurethane-coated wire bonds after climate chamber exposure, and resonant properties of polyurethane-coated wire bonds and their resistance to periodic Lorentz forces are under study for use in a future High Luminosity Large Hadron Collider detector such as the ATLAS Inner Tracker upgrade.