Powered by Deep Web Technologies
Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

CHIMNEY FOR BOILING WATER REACTOR  

DOE Patents (OSTI)

A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

Petrick, M.

1961-08-01T23:59:59.000Z

2

SUPERHEATING IN A BOILING WATER REACTOR  

DOE Patents (OSTI)

A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

Treshow, M.

1960-05-31T23:59:59.000Z

3

Boiling Water Reactor Sampling Summary: 2012 Update  

Science Conference Proceedings (OSTI)

This report documents boiling water reactor (BWR) sampling practices for key reactor water and feedwater parameters. It includes information on analysis methods, sampling frequencies, and compliance with the recommended sampling frequencies in BWRVIP-190: BWR Vessels and Internals Project, BWR Water Chemistry Guidelines – 2008 Revision (EPRI report 1016579).

2013-03-28T23:59:59.000Z

4

Boiling Water Reactor Zinc Addition Sourcebook  

Science Conference Proceedings (OSTI)

Boiling water reactors (BWRs) have been injecting zinc into the primary coolant via the feedwater system for over 25 years to control primary system radiation fields. The zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. This evolution included transition from natural zinc oxide to depleted zinc oxide and from active zinc injection skids (pumped systems) to passive injection systems (zinc pellet beds).  Also occurring were various ...

2013-11-15T23:59:59.000Z

5

SWR 1000: The Innovative Boiling Water Reactor  

SciTech Connect

Framatome ANP has developed the boiling water reactor SWR 1000 in close cooperation with German nuclear utilities and with support from various European partners. This advanced reactor design marks a new era in the successful tradition of boiling water reactor technology and, with a gross electric output of between 1290 and 1330 MW, is aimed at assuring competitive power generating costs compared to gas- and coal-fired stations. At the same time, the SWR 1000 meets the highest safety standards, including control of a core melt accident these objectives are met by supplementing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. The plant is also protected against airplane crash loads. A short construction period, flexible fuel cycle lengths of between 12 and 24 months and a high fuel discharge burn-up all contribute towards meeting economic goals. The SWR 1000 fulfills international nuclear regulatory requirements and has been offered to TVO for the fifth nuclear unit in Finland. (authors)

Brettschuh, Werner [Framatome ANP GmbH, Berlinerstrasse 295, 63067 Offenbach (Germany); Hudson, Greg [Framatome ANP Inc., 400 South Tyron Street, Charlotte, NC 28285 (United States)

2004-07-01T23:59:59.000Z

6

SELF-REGULATING BOILING-WATER NUCLEAR REACTORS  

DOE Patents (OSTI)

A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

Ransohoff, J.A.; Plawchan, J.D.

1960-08-16T23:59:59.000Z

7

Survey of Optimization of Reactor Coolant Cleanup Systems: For Boiling Water Reactors and Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

Optimization of the reactor coolant cleanup systems in the boiling water reactor (BWR) and pressurized water reactor (PWR) environment is important for controlling the transport of corrosion products (metals and activated metals), fission products, and coolant impurities (soluble and insoluble) throughout the reactor coolant loop, and this optimization contributes to reducing primary system radiation fields. The removal of radionuclides and corrosion products is just one of many functions (both ...

2013-09-27T23:59:59.000Z

8

BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES  

DOE Patents (OSTI)

This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

Treshow, M.

1963-04-30T23:59:59.000Z

9

Boiling water neutronic reactor incorporating a process inherent safety design  

DOE Patents (OSTI)

A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

Forsberg, C.W.

1985-02-19T23:59:59.000Z

10

Boiling water neutronic reactor incorporating a process inherent safety design  

DOE Patents (OSTI)

A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

Forsberg, Charles W. (Kingston, TN)

1987-01-01T23:59:59.000Z

11

Water inventory management in condenser pool of boiling water reactor  

DOE Patents (OSTI)

An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

Gluntz, Douglas M. (San Jose, CA)

1996-01-01T23:59:59.000Z

12

Water inventory management in condenser pool of boiling water reactor  

DOE Patents (OSTI)

An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

Gluntz, D.M.

1996-03-12T23:59:59.000Z

13

Boiling Water Reactor Shutdown Chemistry and Dose Summary: September 2010  

Science Conference Proceedings (OSTI)

This 2010 update provides an annual report of shutdown radiation dose rates at 46 boiling water reactors (BWRs) that participate in the Electric Power Research Institute's (EPRI's) BWR Chemistry Monitoring and Assessment program and supersedes the BWR Radiation Assessment and Control (BRAC) Summary that was issued twice a year. In addition to BRAC dose rates, the report also includes information on operating and shutdown water chemistry and worker outage dose and contamination.

2010-09-23T23:59:59.000Z

14

Corrosion Product Transport during Boiling Water Reactor and Pressurized Water Reactor Startups  

Science Conference Proceedings (OSTI)

Corrosion product transport to Pressurized Water Reactor (PWR) steam generators and to the Boiling Water Reactor (BWR) reactor vessel during startups is of increased interest due to reductions in feedwater transport rates during normal operation and the recent emphasis on minimizing total transport during the cycle. Reductions in transport will reduce deposition on the fuel and the tendency for hot spot formation in BWRs and reduce surface fouling and the tendency for formation of aggressive chemical sol...

2010-12-17T23:59:59.000Z

15

Boiling Water Reactor (BWR) Zinc Injection Strategy Evaluation  

Science Conference Proceedings (OSTI)

All U.S. boiling water reactors (BWRs) inject depleted zinc oxide (DZO) into the reactor feedwater for the purpose of suppressing drywell shutdown radiation dose rates. Current guidance in BWRVIP-190: BWR Vessel and Internals Project, BWR Water Chemistry Guidelines2008 Revision (EPRI report 1016579) is to inject sufficient zinc to achieve a Co-60(s)/Zn(s) ratio of Utility-specific goals may encourage even lower Co-60(s)/Zn(s) levels. This may be in part because BWR e...

2010-11-24T23:59:59.000Z

16

Advanced Light Water Reactor - Boiling Water Reactor Degradation Matrix (ALWR BWR DM), Revision 0  

Science Conference Proceedings (OSTI)

The advanced light water reactor–boiling water reactor degradation matrix (ALWR BWR DM) is an essential piece of the Electric Power Research Institute’s (EPRI’s) Advanced Nuclear Technology (ANT) materials management matrix initiative for advanced LWR designs. The materials management matrix provides a tool to assist the industry in proactive identification and consideration of materials issues as well as mitigation and management opportunities from the design phase, through component fabrication and pla...

2009-08-25T23:59:59.000Z

17

Condensate Polishing Guidelines for Pressurized Water Reactor and Boiling Water Reactor Plants - 2004 Revision  

Science Conference Proceedings (OSTI)

Successful condensate polishing allows more reliable operation of nuclear units by maintaining control of ionic and particulate impurity transport to the pressurized water reactor (PWR) steam generators and the boiling water reactor (BWR) and recirculation system. This report presents revisions of EPRI's 1997 nuclear industry consensus guidelines for the design and operation of deep bed and filter demineralizer condensate polishers. These guidelines are consistent with the 2000 revisions of EPRI's "BWR W...

2004-03-16T23:59:59.000Z

18

EPRI Boiling Water Reactor Mitigation Performance Summary  

Science Conference Proceedings (OSTI)

This report summarizes the intergranular stress corrosion cracking (IGSCC) mitigation performance of 44 BWRs with or without noble metal chemical addition or On-Line NobleChem. Results are categorized by chemistry regime and include data from the most recently completed and current operating cycles. BWRs continue to strive for high hydrogen water chemistry (HWC) availability for IGSCC mitigation, and most plants achieve an overall mitigation performance indicator in the green (excellent) or white (satisf...

2010-03-23T23:59:59.000Z

19

DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR  

DOE Patents (OSTI)

A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)

Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.

1962-08-14T23:59:59.000Z

20

Evaluation of the economic simplified boiling water reactor human reliability analysis using the SHARP framework  

E-Print Network (OSTI)

General Electric plans to complete a design certification document for the Economic Simplified Boiling Water Reactor to have the new reactor design certified by the United States Nuclear Regulatory Commission. As part of ...

Dawson, Phillip Eng

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Boiling-Water Reactor internals aging degradation study. Phase 1  

SciTech Connect

This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.

Luk, K.H. [Oak Ridge National Lab., TN (United States)

1993-09-01T23:59:59.000Z

22

THE DETECTION OF BOILING IN A WATER-COOLED NUCLEAR REACTOR  

SciTech Connect

Measurements made at ORNL to study the feasibility of boiling detection in a water-cooled nuclear reactor are described. The methods selected for the detection of boiling include measurement of the acoustical noise produced by the generation of bubbles and measurement of changes in the reactor-power spectral density produced by bubbles. Preliminary results indicating that both methods could detect boiling are shown. (auth)

Colomb, A.L.; Binford, F.T.

1962-08-17T23:59:59.000Z

23

HORIZONTAL BOILING REACTOR SYSTEM  

DOE Patents (OSTI)

Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

Treshow, M.

1958-11-18T23:59:59.000Z

24

Stability analysis of the boiling water reactor : methods and advanced designs  

E-Print Network (OSTI)

Density Wave Oscillations (DWOs) are known to be possible when a coolant undergoes considerable density reduction while passing through a heated channel. In the development of boiling water reactors (BWRs), there has been ...

Hu, Rui, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

25

Conceptual design of an annular-fueled superheat boiling water reactor  

E-Print Network (OSTI)

The conceptual design of an annular-fueled superheat boiling water reactor (ASBWR) is outlined. The proposed design, ASBWR, combines the boiler and superheater regions into one fuel assembly. This ensures good neutron ...

Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

26

Impact of Chemical Injections on Boiling Water Reactor Dose Rates: Interim Report  

Science Conference Proceedings (OSTI)

This report investigates the effects of Boiling Water Reactor (BWR) chemistry parameters on radiation field generation, with a focus on the higher reactor water Co-60 activity levels observed at plants using On-line NobleChem™ (OLNC) injections. Correlation and response curves were developed to relate reactor water and feedwater chemistry to dose rates, with the goal of improving reactor recirculation system (RRS) piping shutdown dose rate ...

2012-12-21T23:59:59.000Z

27

Life of Plant Activity Estimates for a Nominal 1000 MWe Pressurized Water Reactor and Boiling Water Reactor  

Science Conference Proceedings (OSTI)

Decommissioning nuclear power plant and disposal site managers must understand the radioactive source term of a nuclear power plant to effectively manage disposition of these materials. This study estimates the radioactive source term from nominal 1000 MWe pressurized water and boiling water reactors to support decisions related to radioactive waste storage, processing, and disposal through decommissioning.BackgroundThis study examines the radionuclide ...

2012-12-05T23:59:59.000Z

28

Early Hydrogen Water Chemistry Injection in Boiling Water Reactors: Impact on Fuel Performance and Reliability  

Science Conference Proceedings (OSTI)

Early injection of hydrogen during plant startup has been proposed to further mitigate intergranular stress corrosion cracking (IGSCC) in boiling water reactors (BWRs). To assess the effectiveness of early hydrogen water chemistry (EHWC), laboratory tests were performed under simulated BWR startup conditions at 200-400°F in the absence of radiation with pre-oxidized stainless steel specimens treated with noble metals to simulate plant surfaces. The ...

2012-12-13T23:59:59.000Z

29

REFLECTOR CONTROL OF A BOILING-WATER REACTOR  

DOE Patents (OSTI)

A line connecting the reactor with a spent steam condenser contains a valve set to open when the pressure in the reactor exceeds a predetermined value and an orifice on the upstream side of the valve. Another line connects the reflector with this line between the orifice and the valve. An excess steam pressure causes the valve to open and the flow of steam through the line draws water out of the reflector. Provision is also made for adding water to the reflector when the steam pressure drops. (AEC)

Treshow, M.

1962-05-22T23:59:59.000Z

30

Design and Testing of Vacuum Breaker Check Valve for Simplified Boiling Water Reactor  

Science Conference Proceedings (OSTI)

A new design of the vacuum breaker check valve was developed to replace the mechanical valve in a simplified boiling water reactor. Scaling and design calculations were performed to obtain the geometry of new passive hydraulic vacuum breaker check valve. In order to check the valve performance, a RELAP5 model of the simplified boiling water reactor system with the new valve was developed. The valve was implemented in an integral facility, PUMA and was tested for large break loss of coolant accident. (authors)

Ishii, M.; Xu, Y.; Revankar, S.T. [Purdue University, West Lafayette, IN 47907 (United States)

2002-07-01T23:59:59.000Z

31

Boiling Water Reactor Chemistry Performance Monitoring Update--2007 Edition  

Science Conference Proceedings (OSTI)

Successful operation of a nuclear plant demands careful monitoring of water chemistry, particularly in BWRs, where control of iron and copper in the reactor coolant is essential. Since the advent of hydrogen water chemistry (HWC), plant operators have successfully applied other chemistry regimes such as noble metal chemical addition (NMCA) and zinc injection to control radiation fields and provide additional mitigation for intergranular stress corrosion cracking (IGSCC). This report compiles recent BWR p...

2007-12-12T23:59:59.000Z

32

COST STUDY OF A 100-Mw(e) DIRECT-CYCLE BOILING WATER REACTOR PLANT  

SciTech Connect

A technical and economic evaluation is presented of a direct-cycle light- water boiling reactor designed for natural circulation and internal steam-water separation. The reference lOO-Mw(e) reactor power plant design evolved from the study should have the best chance (compared to similar plants) of approaching the 8 to 9 mill/kwh total power-cost level. (W.D.M.)

Bullinger, C.F.; Harrer, J.M.

1960-07-01T23:59:59.000Z

33

Scoping Study of Moisture Carryover in Boiling Water Reactors  

Science Conference Proceedings (OSTI)

Several BWRs have recently experienced higher than expected shutdown dose rates in steam-affected components/areas. The dose rate increases appear to be associated with increases in reactor water Co-60 activity and moisture carryover (MCO), particularly in the latter portions of the operating cycle. In addition to mechanical carryover, it has been suggested that volatile impurities such as hydrochloric acid may be transported with the BWR steam and concentrate in condensate on surfaces, such as the low p...

2010-12-21T23:59:59.000Z

34

Performance Evaluation of Advanced LLW Liquid Processing Technology: Boiling Water Reactor Liquid Processing  

Science Conference Proceedings (OSTI)

This report provides condensed information on boiling water reactor (BWR) membrane based liquid radwaste processing systems. The report presents specific details of the technology, including design, configuration, and performance. This information provides nuclear plant personnel with data useful in evaluating the merits of applying advanced processes at their plant.

2001-11-26T23:59:59.000Z

35

Nondestructive Evaluation: Boiling Water Reactor Bottom Head Drain Line Examination - Field Trial  

Science Conference Proceedings (OSTI)

This report describes newly developed technology for the examination of the boiling water reactor (BWR) vessel drain line. The technology targets the examination of the elbow and piping section deemed most susceptible to flow-accelerated corrosion (FAC) attack. The technology developed includes a remotely operated sensor manipulator and an ultrasound data acquisition system to perform thickness measurements throughout the affected components.

2007-12-12T23:59:59.000Z

36

BWRVIP-167: BWR Vessel and Internals Project, Boiling Water Reactor Issue Management Tables  

Science Conference Proceedings (OSTI)

Ongoing issues related to degradation of boiling water reactor (BWR) pressure vessels, reactor internals, and American Society of Mechanical Engineers (ASME) Class 1 piping components have resulted in the need for a summary tool to assist in prioritizing and addressing research and development (R&D) issues. This BWR Vessel and Internals Project (BWRVIP) report provides BWR Issue Management Tables that identify, rank, and describe R&D gaps.

2007-03-20T23:59:59.000Z

37

BWRVIP-167NP, Rev. 3: Boiling Water Reactor Issue Management Tables  

Science Conference Proceedings (OSTI)

Nuclear utilities continue to face a number of ongoing issues related to degradation of boiling water reactor (BWR) pressure vessels, reactor internals, and American Society of Mechanical Engineers (ASME) Class 1 piping components. These issues have resulted in the need for a summary tool to assist in prioritizing and addressing research and development (R&D) gaps and BWR Vessel and Internals Project (BWRVIP) requirements. The BWR Issue Management Tables in the report are living documents that ...

2013-08-23T23:59:59.000Z

38

BWRVIP-167NP, Revision 2: BWR Vessel and Internals Project, Boiling Water Reactor Issue Management Tables  

Science Conference Proceedings (OSTI)

Nuclear utilities face numerous ongoing issues related to degradation of boiling water reactor (BWR) pressure vessels, reactor internals, and American Society of Mechanical Engineers (ASME) Class 1 piping components. These issues have resulted in the need for a summary tool to assist in prioritizing and addressing research and development (R&D) issues and BWR Vessel and Internals Project (BWRVIP) requirements. The BWR Issue Management Tables (IMTs) in the report are living documents that summarize the st...

2010-08-24T23:59:59.000Z

39

Project plan for the decontamination and decommissioning of the Argonne National Laboratory Experimental Boiling Water Reactor  

SciTech Connect

In 1956, the Experimental Boiling Water Reactor (EBWR) Facility was first operated at Argonne National Laboratory (ANL) as a test reactor to demonstrate the feasibility of operating an integrated power plant using a direct cycle boiling water reactor as a heat source. In 1967, ANL permanently shut down the EBWR and placed it in dry lay-up. This project plan presents the schedule and organization for the decontamination and decommissioning of the EBWR Facility which will allow it to be reused by other ANL scientific research programs. The project total estimated cost is $14.3M and is projected to generate 22,000 cubic feet of low-level radioactive waste which will be disposed of at an approved DOE burial ground. 18 figs., 3 tabs.

Boing, L.E.

1989-12-01T23:59:59.000Z

40

An Improved Model for Assessing the Effectiveness of Hydrogen Water Chemistry in Boiling Water Reactors  

Science Conference Proceedings (OSTI)

For nearly two decades, hydrogen water chemistry (HWC) has been used as a remedial measure to protect boiling water reactor (BWR) structural components against intergranular stress corrosion cracking (IGSCC). In this paper, computer modeling is used to evaluate the effectiveness of HWC for BWRs. The DEMACE computer code, equipped with an updated chemical reaction set, G values, and a Sherwood number, is adopted to predict the chemical species concentration and electrochemical corrosion potential (ECP) responses to HWC in the primary heat transport circuit of a typical BWR. In addition, plant-specific neutron and gamma dose rate profiles are reported. DEMACE is calibrated against the data of oxygen concentration variation as a function of feedwater hydrogen concentration in the recirculation system of the Chinshan Unit 2 BWR.The determinant result for assessing the effectiveness of HWC is the ECP. For a typical BWR/4-type reactor such as Chinshan Unit 2, it is found that protecting the core channel and the lower plenum outlet is quite difficult even though the feedwater hydrogen concentration is as high as 2 ppm, based on the predicted species concentration and ECP data. However, for regions other than those mentioned earlier, a moderate amount of hydrogen added to the feedwater (0.9 ppm) is enough to achieve the desired protection against IGSCC.

Yeh, T.-K. [National Tsing-Hua University, Taiwan (China); Chu Fang [Taiwan Power Company (China)

2001-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants  

SciTech Connect

Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

Not Available

1993-05-13T23:59:59.000Z

42

An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory  

SciTech Connect

Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

1989-12-01T23:59:59.000Z

43

Oxygen suppression in boiling water reactors. Quarterly report 2, January 1--March 31, 1978  

DOE Green Energy (OSTI)

Boiling water reactors (BWR's) generally use high purity, no-additive feedwater. Primary recirculating coolant is neutral pH, and contains 100 to 300 ppB oxygen and stoichiometrically related dissolved hydrogen. However, oxygenated water increases austenitic stainless steel susceptibility to intergranular stress-corrosion cracking (IGSCC) when other requisite factors such as stress and sensitization are present. Thus, reduction or elimination of the oxygen in BWR water may preclude cracking incidents. One approach to reduction of the BWR coolant oxygen concentration is to adopt alternate water chemistry (AWC) conditions using an additive(s) to suppress or reverse radiolytic oxygen formation. Several additives are available to do this but they have seen only limited and specialized application in BWR's. The objective of this program is to perform an in-depth engineering evaluation of the potential suppression additives supported by critical experiments where required to resolve substantive uncertainties.

Burley, E.L.

1978-10-01T23:59:59.000Z

44

Operating experience of natural circulation core cooling in boiling water reactors  

SciTech Connect

General Electric (GE) has proposed an advanced boiling water reactor, the Simplified Boiling Water Reactor (SBWR), which will utilize passive, gravity-driven safety systems for emergency core coolant injection. The SBWR design includes no recirculation loops or recirculation pumps. Therefore the SBWR will operate in a natural circulation (NC) mode at full power conditions. This design poses some concerns relative to stability during startup, shutdown, and at power conditions. As a consequence, the NRC has directed personnel at several national labs to help investigate SBWR stability issues. This paper will focus on some of the preliminary findings made at the INEL. Because of the broad range of stability issues this paper will mainly focus on potential geysering instabilities during startup. The two NC designs examined in detail are the US Humboldt Bay Unit 3 BWR-1 plant and Dodewaard plant in the Netherlands. The objective of this paper will be to review operating experience of these two plants and evaluate their relevance to planned SBWR operational procedures. For completeness, experimental work with early natural circulation GE test facilities will also be briefly discussed.

Kullberg, C.; Jones, K.; Heath, C.

1993-08-01T23:59:59.000Z

45

Passive containment cooling system with drywell pressure regulation for boiling water reactor  

DOE Patents (OSTI)

A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

Hill, P.R.

1994-12-27T23:59:59.000Z

46

Assembly fixture for cross-shaped control rods of boiling water nuclear reactors  

Science Conference Proceedings (OSTI)

An assembly fixture is disclosed for cross-shaped control rods of boiling-water nuclear reactors with an upper core grid mesh for holding a core cell formed of four fuel assemblies having a gap therebetween and means disposed beneath the reactor core for driving the control rods in the gap, including a frame having corners formed therein, the frame being substantially the size of a core cell and being disposable on the core grid, templates diagonally oppositely disposed on the frame and extending into the core cell for lateral guidance of the control rods, stops for the control rods disposed on the templates, and a carrying handle having a first portion thereof being pivotable at one of the corners of the frame and a second portion thereof being locked to an opposite corner of the frame in a disassembled condition and swung out of the locked condition in an assembled condition.

Lippert, H.J.

1983-10-18T23:59:59.000Z

47

Passive containment cooling system with drywell pressure regulation for boiling water reactor  

DOE Patents (OSTI)

A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

Hill, Paul R. (Tucson, AZ)

1994-01-01T23:59:59.000Z

48

Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports  

SciTech Connect

This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

NONE

1993-09-15T23:59:59.000Z

49

Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1  

SciTech Connect

The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

NONE

1995-08-01T23:59:59.000Z

50

FEASIBILITY STUDY FOR THE CONCEPTUAL DESIGN OF ADUAL-CORE BOILING SUPERHEAT REACTOR.  

E-Print Network (OSTI)

??For research concerning economical applications of high temperature reactortechnology, a novel approach for creating a Boiling Superheat Reactor (BSR) byaugmenting an Advanced Boiling Water Reactor… (more)

Ross, Jacob

2009-01-01T23:59:59.000Z

51

Results of the DF-4 BWR (boiling water reactor) control blade-channel box test  

DOE Green Energy (OSTI)

The DF-4 in-pile fuel damage experiment investigated the behavior of boiling water reactor (BWR) fuel canisters and control blades in the high temperature environment of an unrecovered reactor accident. This experiment, which was carried out in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories, was performed under the USNRC's internationally sponsored severe fuel damage (SFD) program. The DF-4 test is described herein and results from the experiment are presented. Important findings from the DF-4 test include the low temperature melting of the stainless steel control blade caused by reaction with the B{sub 4}C, and the subsequent low temperature attack of the Zr-4 channel box by the relocating molten blade components. Hydrogen generation was found to continue throughout the experiment, diminishing slightly following the relocation of molten oxidizing zircaloy to the lower extreme of the test bundle. A large blockage which was formed from this material continued to oxidize while steam was being fed into the the test bundle. The results of this test have provided information on the initial stages of core melt progression in BWR geometry involving the heatup and cladding oxidation stages of a severe accident and terminating at the point of melting and relocation of the metallic core components. The information is useful in modeling melt progression in BWR core geometry, and provides engineering insight into the key phenomena controlling these processes. 12 refs., 12 figs.

Gauntt, R.O.; Gasser, R.D.

1990-10-01T23:59:59.000Z

52

BWRVIP-270, Revision 1: BWR Vessel and Internals Project, Compilation of Fluence Estimates for Boiling Water Reactor Materials  

Science Conference Proceedings (OSTI)

The Boiling Water Reactor Vessel and Internals Project (BWRVIP) is an association of utilities focused on BWR vessel and internals issues. Many of the BWR internal components receive high exposure to neutron flux due to their proximity to the fuel in the Reactor Pressure Vessel (RPV). Identifying how predicted fluence values will impact the materials at these locations is a focus of the BWRVIP proactive materials strategy. As part of this approach, this report provides visual and tabular summaries ...

2013-12-09T23:59:59.000Z

53

Study of plutonium disposition using existing GE advanced Boiling Water Reactors  

SciTech Connect

The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

Not Available

1994-06-01T23:59:59.000Z

54

Analysis of the Simplified Boiling Water Reactor using the code Ramona-4B  

E-Print Network (OSTI)

The analysis of the Simplified Boiling Water Reactor (SBVVR) is carried out through the use of the reactor analysis code RAMONA-4B in a scenario of an operational transient, a turbine trip with failure of all the bypass valves. This study is divided in three parts. As an introduction, a brief description of the code RAMONA-4B. Later, the implemented SBWR model, based on the General Electric Standard Safety Analysis Report (SSAR), is described and discussed. Finally, the reactor behavior during a turbine trip transient is numerically simulated through the description of nuclear and thermal hydraulic parameters and under the scenario conditions suggested by General Electric. The SBWR model consists of the representation of the vessel internal components through parameters such as areas, diameters and volumes, and the one-quarter-core neutron parameters which were obtained using the transport theory lattice physics code CASMO-3. The thermohydraulic equations are solved by RAMONA-4B in a closed-contour inside the vessel and in a hundred eighty four parallel channels (including bypass) in the core. The tridimensional representation of the reactor core is accomplished through a proposed fuel load which was obtained from a selection of out of three fuel loads and using some standard fuel design parameters. The cross sections are represented using a polynomial as a function of the bumup, void fraction, fuel and moderator temperatures. The six-group delayed neutron equation and the one-and-a-half neutron diffusion equation are solved and the power distribution in the reactor core is obtained.Also, RAMONA-4B has implemented a (adiabatic) steam line model to represent the acoustic effects of the turbine stop valve closure during the transient. Finally, the two-phase coolant and neutronic parameters are calculated in steady state and during the turbine trip transient. The results are discussed and compared against the ones shown in the chapter XV of the SSAR.

Cuevas Vivas, Gabriel Francisco

1995-01-01T23:59:59.000Z

55

Boiling Water in Microwave  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiling Water in Microwave A 26-year old man decided to have a cup of coffee. He took a cup of water and put it in the microwave to heat it up (something that he had done numerous...

56

A Numerical Model for Evaluating the Impact of Noble Metal Chemical Addition in Boiling Water Reactors  

SciTech Connect

The technique of noble metal chemical addition (NMCA), accompanied by a low-level hydrogen water chemistry (HWC), is being employed by several U.S. nuclear power plants for mitigating intergranular stress corrosion cracking in the vessel internals of their boiling water reactors (BWRs). An improved computer model by the name of DEMACE was employed to evaluate the performance of NMCA throughout the primary coolant circuit (PCC) of a commercial BWR. The molar ratios of hydrogen to oxidizing species in the PCC under normal water chemistry and HWC are analyzed. The effectiveness of NMCA is justified by calculated electrochemical corrosion potential (ECP) around the PCC and in a local power range monitoring (LPRM) housing tube, in which practical in-vessel ECP measurements are normally taken.Prior to the modeling work for the BWR, the Mixed Potential Model, which is embedded in DEMACE and responsible for ECP calculation, was calibrated against both laboratory and plant ECP data. After modeling for various HWC conditions, it is found that the effectiveness of NMCA in the PCC of the selected BWR varies from region to region. In particular, the predicted ECP in the LPRM housing tube is notably different from that in the nearby bulk environment under NMCA, indicating that cautions must be given to a possible, undesirable outcome due to a distinct ECP difference between a locally confined area and the actual bulk environment.

Yeh, T.-K. [National Tsing-Hua University, Taiwan (China)

2002-10-15T23:59:59.000Z

57

BOILING WATER REACTOR TRANSIENT INSTABILITY STUDIES OF RINGHALS 1 REACTOR USING TRACE COUPLED WITH PARCS.  

E-Print Network (OSTI)

??Reactor plant design often incorporates data and insight ascertained from computer code simulations of plant dynamics and reactor core behavior. Increasing utilization of data gathered… (more)

Walls, Robert

2009-01-01T23:59:59.000Z

58

Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)  

SciTech Connect

The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

NONE

1994-04-30T23:59:59.000Z

59

Interfacing systems LOCAs (Loss of Coolant Accidents) at boiling water reactors  

Science Conference Proceedings (OSTI)

The work presented in this paper was performed by Brookhaven National Laboratory (BNL) in support of Nuclear Regulatory Commission's (NRC) effort towards the resolution of Generic Issue 105 ''Interfacing System Loss of Coolant Accidents (LOCAs) at Boiling Water Reactors (BWRs).'' For BWRs, intersystem LOCA have typically either not been considered in probabilistic risk analyses, or if considered, were judged to contribute little to the risk estimates because of their perceived low frequency of occurrence. However, recent operating experience indicates that the pressure isolation valves (PIVs) in BWRs may not adequately protect against overpressurization of low pressure systems. The objective of this paper is to present the results of a study which analyzed interfacing system LOCA at several BWRs. The BWRs were selected to best represent a spectrum of BWRs in service using industry operating event experience and plant-specific information/configurations. The results presented here include some possible changes in test requirements/practices as well as an evaluation of their reduction potential in terms of core damage frequency (CDF).

Chu, Tsong-Lun; Fitzpatrick, R.; Stoyanov, S.

1987-01-01T23:59:59.000Z

60

Multivent effects in a large scale boiling water reactor pressure suppression system  

Science Conference Proceedings (OSTI)

The steam-driven GKSS pressure suppression test facility, which contains 3 full scale vent pipes, has been used for 5 years to investigate the postulated loss-of-coolant accident in a Mark II and Type 69 boiling water reactor. Using the results from several of these tests, wetwell boundary load data (peak pressures and spectral power) during the chugging stage, have been evaluated for sparse pool response (one and two vents in the three vent pool) and for full pool response (one, two, or three vent operation in pools of constant wetwell pool area per vent). The sparse pool results indicate the pool-system, chug event boundary loads are strongly dependent on wetwell pool area per vent, with the load increasing with decreasing area. The full pool results show a substantial increase in the pool-system, chug event boundary loads upon a change from single cell to double cell operation; only minor change occurs in going from double to triple cell operation.

McCauley, E.W.; Aust, E.; Schwan, H.

1984-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR): Project final report, Argonne National Laboratory  

SciTech Connect

The Final Report for the Decontamination and Decommissioning (D&D) of the Argonne National Laboratory - East (ANL-E) Experimental Boiling Water Reactor (EBWR) facility contains the descriptions and evaluations of the activities and the results of the EBWR D&D project. It provides the following information: (1) An overall description of the ANL-E site and EBWR facility. (2) The history of the EBWR facility. (3) A description of the D&D activities conducted during the EBWR project. (4) A summary of the final status of the facility, including the final and confirmation surveys. (5) A summary of the final cost, schedule, and personnel exposure associated with the project, including a summary of the total waste generated. This project report covers the entire EBWR D&D project, from the initiation of Phase I activities to final project closeout. After the confirmation survey, the EBWR facility was released as a {open_quotes}Radiologically Controlled Area,{close_quotes} noting residual elevated activity remains in inaccessible areas. However, exposure levels in accessible areas are at background levels. Personnel working in accessible areas do not need Radiation Work Permits, radiation monitors, or other radiological controls. Planned use for the containment structure is as an interim transuranic waste storage facility (after conversion).

Fellhauer, C.R.; Boing, L.E. [Argonne National Lab., IL (United States); Aldana, J. [NES, Inc., Danbury, CT (United States)

1997-03-01T23:59:59.000Z

62

Design of a boiling water reactor equilibrium core using thorium-uranium fuel  

SciTech Connect

In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam isolation valves closure and loss of feed water. The results of these transients are similar to those obtained with the traditional UO2 nuclear fuel.

Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G.; Martin-del-Campo, C.

2004-10-06T23:59:59.000Z

63

MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS  

SciTech Connect

OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral system scaling analysis, design parameters were obtained and designs of the compact modular 200 MWe SBWR and the full size 1200 MWe SBWR were developed. These reactors are provided with passive safety systems. A new passive vacuum breaker check valve was designed to replace the mechanical vacuum beaker check valve. The new vacuum breaker check valve was based on a hydrostatic head, and was fail safe. The performance of this new valve was evaluated both by the thermal-hydraulic code RELAP5 and by the experiments in a scaled SBWR facility, PUMA. In the core neutronic design a core depletion model was implemented to PARCS code. A lattice design for the SBWR fuel assemblies was performed. Design improvements were made to the neutronics/thermal-hydraulics models of SBWR-200 and SBWR-1200, and design analyses of these reactors were performed. The design base accident analysis and evaluation of all the passive safety systems were completed as scheduled in tasks 4 and 5. Initial conditions for the small break loss of coolant accidents (LOCA) and large break LOCA using REALP5 code were obtained. Small and large break LOCA tests were performed and the data was analyzed. An anticipated transient with scram was simulated using the RELAP5 code for SBWR-200. The transient considered was an accidental closure of the main steam isolation valve (MSIV), which was considered to be the most significant transient. The evaluation of the RELAP5 code against experimental data for SBWR-1200 was completed. In task 6, the instability analysis for the three SBWR designs (SBWR-1200, SBWR-600 and SBWR-200) were simulated for start-up transients and the results were similar. Neither the geysering instability, nor the loop type instability was predicted by RAMONA-4B in the startup simulation following the recommended procedure by GE. The density wave oscillation was not observed at all because the power level used in the simulation was not high enough. A study was made of the potential instabilities by imposing an unrealistically high power ramp in a short time period, as suggested by GE. RAMON

M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

2003-06-16T23:59:59.000Z

64

FUEL CYCLE PROGRAM, A BOILING WATER REACTOR RESEARCH DEVELOPMENT PROGRAM. First Summary Report for March 1959-July 1960  

SciTech Connect

The Fuel Cycle Development Program is a basic development program for boiling and other water technology. It covers the areas of oxide fuel fabrication. irradiation. and examination; the physics of water-moderated reactore; and boiling-water heat transfer and stability. Schedules for the fuel- cycle program were examined. and it was concluded that portions of the Task A program should be conducted during the period May to Dec. 1959 in order to keep costs of the work as low as possible and to allow initiation of the fuel-cycle program at the earliest possible date after the Vallecitos BWR was returned to service. The basis for the scheduling of the work is discussed. and a chronological summary describing the content of the work is given. Technical progress is outlined and details are summarized. Subsequent reports issued monthly and quarterly will summarize the progress of the prognam. (W.D.M.)

Cook, W.H.

1961-10-31T23:59:59.000Z

65

Development of a fully-consistent reduced order model to study instabilities in boiling water reactors  

SciTech Connect

A simple nonlinear Reduced Order Model to study global, regional and local instabilities in Boiling Water Reactors is described. The ROM consists of three submodels: neutron-kinetic, thermal-hydraulic and heat-transfer models. The neutron-kinetic model allows representing the time evolution of the three first neutron kinetic modes: the fundamental, the first and the second azimuthal modes. The thermal-hydraulic model describes four heated channels in order to correctly simulate out-of-phase behavior. The coupling between the different submodels is performed via both void and Doppler feedback mechanisms. After proper spatial homogenization, the governing equations are discretized in the time-domain. Several modifications, compared to other existing ROMs, have been implemented, and are reported in this paper. One novelty of the ROM is the inclusion of both azimuthal modes, which allows to study combined instabilities (in-phase and out-of-phase), as well as to investigate the corresponding interference effects between them. The second modification concerns the precise estimation of so-called reactivity coefficients or C{sub mn}{sup *V,D} - coefficients by using direct cross-section data from SIMULATE-3 combined with the CORE SIM core simulator in order to calculate Eigenmodes. Furthermore, a non-uniform two-step axial power profile is introduced to simulate the separate heat production in the single and two-phase regions, respectively. An iterative procedure was developed to calculate the solution to the coupled neutron-kinetic/thermal-hydraulic static problem prior to solving the time-dependent problem. Besides, the possibility of taking into account the effect of local instabilities is demonstrated in a simplified manner. The present ROM is applied to the investigation of an actual instability that occurred at the Swedish Forsmark-1 BWR in 1996/1997. The results generated by the ROM are compared with real power plant measurements performed during stability tests and show a good qualitative agreement. The present study provides some insight in a deeper understanding of the physical principles which drive both core-wide and local instabilities. (authors)

Dykin, V.; Demaziere, C. [Chalmers Univ. of Technology, Div. of Nuclear Engineering, Dept. of Applied Physics, SE-412 96 Gothenburg (Sweden)

2012-07-01T23:59:59.000Z

66

Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios  

Science Conference Proceedings (OSTI)

For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs.

Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

1998-04-01T23:59:59.000Z

67

Feasibility of breeding in hard spectrum boiling water reactors with oxide and nitride fuels  

E-Print Network (OSTI)

This study assesses the neutronic, thermal-hydraulic, and fuel performance aspects of using nitride fuel in place of oxides in Pu-based high conversion light water reactor designs. Using the higher density nitride fuel ...

Feng, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

68

BWRVIP-241: BWR Vessel and Internals Project, Probabilistic Fracture Mechanics Evaluation for the Boiling Water Reactor Nozzle-to-Ve ssel Shell Welds and Nozzle Blend Radii  

Science Conference Proceedings (OSTI)

This report documents supplemental analyses for boiling water reactor (BWR) reactor pressure vessel (RPV) recirculation inlet and outlet nozzle-to-shell welds and nozzle inner radii to address limitations imposed by the U.S. Nuclear Regulatory Commission (NRC) regarding the reduction of inspections specified in Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code.

2010-10-26T23:59:59.000Z

69

Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices  

Science Conference Proceedings (OSTI)

This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

Not Available

1994-07-01T23:59:59.000Z

70

Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report  

SciTech Connect

This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

Not Available

1994-07-01T23:59:59.000Z

71

Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor  

Science Conference Proceedings (OSTI)

The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

S.T. Revankar; W. Zhou; Gavin Henderson

2008-07-08T23:59:59.000Z

72

Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor  

DOE Patents (OSTI)

An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

Gluntz, Douglas M. (San Jose, CA)

1996-01-01T23:59:59.000Z

73

Source term attenuation by water in the Mark I boiling water reactor drywell  

Science Conference Proceedings (OSTI)

Mechanistic models of aerosol decontamination by an overlying water pool during core debris/concrete interactions and spray removal of aerosols from a Mark I drywell atmosphere are developed. Eighteen uncertain features of the pool decontamination model and 19 uncertain features of the model for the rate coefficient of spray removal of aerosols are identified. Ranges for values of parameters that characterize these uncertain features of the models are established. Probability density functions for values within these ranges are assigned according to a set of rules. A Monte Carlo uncertainty analysis of the decontamination factor produced by water pools 30 and 50 cm deep and subcooled 0--70 K is performed. An uncertainty analysis for the rate constant of spray removal of aerosols is done for water fluxes of 0.25, 0.01, and 0.001 cm{sup 3} H{sub 2}O/cm{sup 2}-s and decontamination factors of 1.1, 2, 3.3, 10, 100, and 1000.

Powers, D.A. [Sandia National Labs., Albuquerque, NM (United States)

1993-09-01T23:59:59.000Z

74

Executive Director for Operations CONSIDERATION OF ADDITIONAL REQUIREMENTS FOR CONTAINMENT VENTING SYSTEMS FOR BOILING WATER REACTORS WITH MARK I AND MARK II CONTAINMENTS  

E-Print Network (OSTI)

information, options, and a recommendation from the NRC staff to impose new requirements for containment venting systems for boiling-water reactors (BWRs) with Mark I and Mark II containments. This paper is provided in response to the Commission’s staff requirements memorandum (SRM) for SECY-11-0137, “Prioritization of Recommended Actions To Be

R. W. Borchardt

2012-01-01T23:59:59.000Z

75

BWR (boiling-water reactor) radiation control: In-plant demonstration at Vermont Yankee: Final report  

Science Conference Proceedings (OSTI)

Results of the RP1934 program, which was established by EPRI in 1981 to demonstrate the adequacy of BRAC program (RP819) principles for BWR radiation control at Vermont Yankee, are presented. Evaluations were performed of the effectiveness of optimization of purification system performance, control of feedwater dissolved oxygen concentrations, minimization of corrosion product and ionic transport, and improved startup, shutdown, and layup practices. The impact on shutdown radiation levels of these corrective actions was assessed based on extensive primary system radiation survey and component gamma scan data. Implementation of the BRAC recommendations was found to be insufficient to reduce the rate of activity buildup on out-of-core surfaces at Vermont Yankee, and additional corrective actions were found necessary. Specifically, replacement of cobalt-bearing materials in the control rod drive pins and rollers and feedwater regulating valves was pursued as was installation of electropolished 316 stainless steel during a recirculation piping replacement program. Aggressive programs to further reduce copper concentrations in the reactor water by improving condensate demineralizer efficiency and to minimize organic ingress to the power cycle by reducing organic concentrations in recycled radwaste also were undertaken. Evaluations of the impact on activity buildup of several pretreatment processes including prefilming in moist air, preexposure to high temperature water containing zinc, and electropolishing also were performed in a test loop installed in the reactor water cleanup system. A significant beneficial impact of electropolishing was shown to be present for periods up to 6000 hours.

Palino, G.F.; Hobart, R.L.; Sawochka, S.G.

1987-10-01T23:59:59.000Z

76

Development of a Scatter Search Optimization Algorithm for Boiling Water Reactor Fuel Lattice Design  

Science Conference Proceedings (OSTI)

Technical Paper / Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications

Juan-Luis François; Cecilia Martín-del-Campo; Luis B. Morales; Miguel-Angel Palomera

77

Feasibility of underwater welding of highly irradiated in-vessel components of boiling-water reactors: A literature review  

SciTech Connect

In February 1997, the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), initiated a literature review to assess the state of underwater welding technology. In particular, the objective of this literature review was to evaluate the viability of underwater welding in-vessel components of boiling water reactor (BWR) in-vessel components, especially those components fabricated from stainless steels that are subjected to high neutron fluences. This assessment was requested because of the recent increased level of activity in the commercial nuclear industry to address generic issues concerning the reactor vessel and internals, especially those issues related to repair options. This literature review revealed a preponderance of general information about underwater welding technology, as a result of the active research in this field sponsored by the U.S. Navy and offshore oil and gas industry concerns. However, the literature search yielded only a limited amount of information about underwater welding of components in low-fluence areas of BWR in-vessel environments, and no information at all concerning underwater welding experiences in high-fluence environments. Research reported by the staff of the U.S. Department of Energy (DOE) Savannah River Site and researchers from the DOE fusion reactor program proved more fruitful. This research documented relevant experience concerning welding of stainless steel materials in air environments exposed to high neutron fluences. It also addressed problems with welding highly irradiated materials, and primarily attributed those problems to helium-induced cracking in the material. (Helium is produced from the neutron irradiation of boron, an impurity, and nickel.) The researchers found that the amount of helium-induced cracking could be controlled, or even eliminated, by reducing the heat input into the weld and applying a compressive stress perpendicular to the weld path.

Lund, A.L.

1997-11-01T23:59:59.000Z

78

Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1  

SciTech Connect

This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff`s review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff`s review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE`s application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design.

NONE

1997-05-01T23:59:59.000Z

79

Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

Douglas M. Gerstner

2009-05-01T23:59:59.000Z

80

Bottom head to shell junction assembly for a boiling water nuclear reactor  

DOE Patents (OSTI)

A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening. 5 figs.

Fife, A.B.; Ballas, G.J.

1998-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Bottom head to shell junction assembly for a boiling water nuclear reactor  

DOE Patents (OSTI)

A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening.

Fife, Alex Blair (San Jose, CA); Ballas, Gary J. (San Jose, CA)

1998-01-01T23:59:59.000Z

82

Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station  

SciTech Connect

This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs.

Konzek, G.J.; Smith, R.I. (Pacific Northwest Lab., Richland, WA (USA))

1990-12-01T23:59:59.000Z

83

A high converter concept for fuel management with blanket fuel assemblies in boiling water reactors  

SciTech Connect

Studies on the natural Uranium saving and waste reduction potential of a multiple-plant BWR system were performed. The BWR High Converter system should enable a multiple recycling of MOX fuel in current BWR plants by introducing blanket fuel assemblies and burning Uranium and MOX fuel separately. The feasibility of Uranium cores with blankets and full-MOX cores with Plutonium qualities as low as 40% were studied. The power concentration due to blanket insertion is manageable with modern fuel and acceptable values for the thermal limits and reactivity coefficients were obtained. While challenges remain, full-MOX cores also complied with the main design criteria. The combination of Uranium and Plutonium burners in appropriate proportions could enable obtaining as much as 40% more energy out of Uranium ore. Moreover, a proper adjustment of blanket average stay and Plutonium qualities could lead to a system with nearly no Plutonium left for final disposal. The achievement of such goals with current light water technology makes the BWR HC concept an attractive option to improve the fuel cycle until Gen-IV designs are mature. (authors)

Martinez-Frances, N.; Timm, W.; Rossbach, D. [AREVA, AREVA NP, Erlangen (Germany)

2012-07-01T23:59:59.000Z

84

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979  

SciTech Connect

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

85

Neutronic evaluation of a non-fertile fuel for the disposition of weapons-grade plutonium in a boiling water reactor  

Science Conference Proceedings (OSTI)

A new non-fertile, weapons-grade plutonium oxide fuel concept is developed and evaluated for deep burn applications in a boiling water reactor environment using the General Electric 8x8 Advanced Boiling Water Reactor (ABWR) fuel assembly dimensions and pitch. Detailed infinite lattice fuel burnup results and neutronic performance characteristics are given and although preliminary in nature, clearly demonstrate the fuel`s potential as an effective means to expedite the disposition of plutonium in existing light water reactors. The new non-fertile fuel concept is an all oxide composition containing plutonia, zirconia, calcia, and erbia having the following design weight percentages: 8.3; 80.4; 9.7; and 1.6. This fuel composition in an infinite fuel lattice operating at linear heat generation rates of 6.0 or 12.0 kW/ft per rod can remain critical for up to 1,200 and 600 Effective Full Power Days (EFPD), respectively, and achieve a burnup of 7.45 {times} 10{sup 20} f/cc. These burnups correspond to a 71--73% total plutonium isotope destruction and a 91--94% destruction of the {sup 239}Pu isotope for the 0--40% moderator steam void condition. Total plutonium destruction greater than 73% is possible with a fuel management scheme that allows subcritical fuel assemblies to be driven by adjacent high reactivity assemblies. The fuel exhibits very favorable neutron characteristics from beginning-of-life (BOL) to end-of-life (EOL). Prompt fuel Doppler coefficient of reactivity are negative, with values ranging between {minus}0.4 to {minus}2.0 pcm/K over the temperature range of 900 to 2,200 K. The ABWR fuel lattice remains in an undermoderated condition for both hot operational and cold startup conditions over the entire fuel burnup lifetime.

Sterbentz, J.W.

1994-10-01T23:59:59.000Z

86

Control of nitrogen-16 in BWR (boiling water reactor) main steam lines under hydrogen water chemistry conditions: Final report  

Science Conference Proceedings (OSTI)

The primary aim of this work was to attempt to identify methods to limit or control the N-16 main steam increases which occur as a result of plant operation under hydrogen water chemistry. The hydrogen water chemistry test data for 8 plants, N-13 chemistry measurements performed at three plants and N-16 main steam concentration measurements made at five plants were analyzed and correlations established. As a result of this study, potential chemical and physical control methods were identified. The test data compilations for the eight plants are included in this report. 6 figs.

Ruiz, C.P.; Lin, C.C.; Wong, T.L.

1989-07-01T23:59:59.000Z

87

Program on Technology Innovation: Technical Support for GE Economic Simplified Boiling Water Reactor (ESBWR)-Radwaste System Design  

Science Conference Proceedings (OSTI)

EPRI has undertaken a review of advanced nuclear plant (ANP) radioactive waste system designs. This work updates EPRI's Utility Requirements Document (URD) for the design of Advanced Light Water Reactor plants. The goal is to capture the radwaste elements that have led to the dramatic improvement in radioactive waste processing in terms of technology advances and improved operating strategy seen in today's operating U.S. plants. This work will form the basis for radioactive waste processing systems in th...

2006-11-21T23:59:59.000Z

88

PRELIMINARY HAZARD SUMMARY REPORT ON THE BOILING EXPERIMENTAL REACTOR (BER)  

SciTech Connect

A preliminary evaluation of the hazards associated with a 20-Mw boiling reactor for the purpose of determining site requirements is presented. The Boiling Experimental Reactor design, safety features, and performance are given and the surroundings of the site at Argonne National Laboratory are described. (T.R.H.)

West, J.M.; Anderson, C.A.; Dietrich, J.R.; Harrer, J.M.; Jameson, A.S.; Untermyer, S.

1954-05-01T23:59:59.000Z

89

Optimization of Boiling Water Reactor Fuel Crud Characteristics for Reducing Radiation Fields: Evaluation of BWR Fuel Crud Properties  

Science Conference Proceedings (OSTI)

Fuel crud formation and its properties are the combined result of many factors, including corrosion product input, zinc addition rates, reactor coolant chemistry, and fuel and core design. Crud deposition may impact fuel performance as well as radiation field generation. Many projects have evaluated changes in fuel crud properties resulting from changing reactor coolant chemistry. However, the desired crud properties for both good fuel performance and mitigation of radiation field source term are ...

2013-11-26T23:59:59.000Z

90

Study of Pu consumption in light water reactors: Evaluation of GE advanced boiling water reactor plants, compilation of Phase 1C task reports  

Science Conference Proceedings (OSTI)

This report summarizes the evaluations conducted during Phase 1C of the Pu Disposition Study have provided further results which reinforce the conclusions reached during Phase 1A & 1B: These conclusions clearly establish the benefits of the fission option and the use of the ABWR as a reliable, proven, well-defined and cost-effective means available to disposition the weapons Pu. This project could be implemented in the near-term at a cost and on a schedule being validated by reactor plants currently under construction in Japan and by cost and schedule history and validated plans for MOX plants in Europe. Evaluations conducted during this phase have established that (1) the MOX fuel is licensable based on existing criteria for new fuel with limited lead fuel rod testing, (2) that the applicable requirements for transport, handling and repository storage can be met, and (3) that all the applicable safeguards criteria can be met.

Not Available

1994-01-15T23:59:59.000Z

91

Fuel Reliability Project: Boiling Water Fuel Performance at Kernkraftwerk Leibstadt  

Science Conference Proceedings (OSTI)

The Kernkraftwerk Leibstadt (KKL) boiling water reactor (BWR), a General Electric BWR/6, performed a lead use assembly (LUA) program with fuel from three fuel suppliers. This program presented a unique opportunity to evaluate fuel performance on advanced 10x10 designs of AREVA, Global Nuclear Fuel (GNF), and Westinghouse Electric Company (Westinghouse). Fuel assemblies from each supplier (vendor) were loaded into the KKL core in 1997 and 1998. A number of fuel inspections have been performed during annua...

2007-05-16T23:59:59.000Z

92

An assessment of BWR (boiling water reactor) Mark-II containment challenges, failure modes, and potential improvements in performance  

SciTech Connect

This report assesses challenges to BWR Mark II containment integrity that could potentially arise from severe accidents. Also assessed are some potential improvements that could prevent core damage or containment failure, or could mitigate the consequences of such failure by reducing the release of fission products to the environment. These challenges and improvements are analyzed via a limited quantitative risk/benefit analysis of a generic BWR/4 reactor with Mark II containment. Point estimate frequencies of the dominant core damage sequences are obtained and simple containment event trees are constructed to evaluate the response of the containment to these severe accident sequences. The resulting containment release modes are then binned into source term release categories, which provide inputs to the consequence analysis. The output of the consequences analysis is used to construct an overall base case risk profile. Potential improvements and sensitivities are evaluated by modifying the event tree spilt fractions, thus generating a revised risk profile. Several important sensitivity cases are examined to evaluate the impact of phenomenological uncertainties on the final results. 75 refs., 25 figs., 65 tabs.

Kelly, D.L.; Jones, K.R.; Dallman, R.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Wagner, K.C. (Science Applications International Corp., Albuquerque, NM (USA))

1990-07-01T23:59:59.000Z

93

FUEL CYCLE PROGRAM. A BOILING WATER REACTOR RESEARCH AND DEVELOPMENT PROGRAM. Eleventh Quarterly Progress Report, January-March 1963  

SciTech Connect

Even though VBWR shutdowns were required for location and removal of five failed fuel assemblies (HPD Program), the increase in fuel exposure was good. Fuel exposures wili pass the values at which cold worked stainless steel cladding was failing under the HPD Program. Failure of the 0.005-inch cold worked stainless steel clad fuel rods in assembly 8L was traced to strain cycling fatigue. A study of tapered fuel rods indicates a potential advantage for us of a variable water/fuel ratio along the flow channel. Natural circulation tests in the hydraulic stability loop were conducted over a range of conditions from stable, to oscillatory with exponential decay, to self-sustaining oscillation of constant amplitude, to unstable oscillations with divergent amplitude. The response to impulses in power input shows the effect of the time delay for transporting steam voids up through the riser. The data permit calculation of oscillation frequency, damping coefficient, time lags, and show the magnitude and character of pressure and velocity changes. The data, which have an experimental scatter of plus or minus 10% maximum, show that burnout heat fiux: decreases with increasing flow up to 2 x 10/sup 8/ lb/hr-ft/sup 2/; has a maximum for hydraulic diameter between 0.25 and 0.5 inch; and decreases for pressure increases between 600 to 1400 psi. A correlating equation for the data is given. The data are compared to results of others. Tests of special geometries show that the burnout heat flux: decreases 22 to 50% when the heated rod is within 0.033 inch of the channel wall; is unchanged upstream of a plate-type spacer; decreases 35 to 50% when the rod surface is roughened by sandblasting; is increased 20 to 40% by use of a rough liner. The four-rod test section is operating satisfactorily and 17 critical heat fiux data points are obtained at 1000 psia and flows of 0.5, 1.0, and 1.5 x 10/sup 6/ lb/hr-ft/sup 2/. In each case the critical heat flux occurred at the exit end and on the side of the rod facing the corner of the channel. The evaluation of film trippers (rough liner) on the unheated channel walls indicates considerable promise for increasing the burnout heat flux limit. The theory of operation is that the liquid film on the unheated wail is sheared off and dispersed, thus adding to the liquid film on the heated rod. Measurements with a heater rod bowed so that it is in contact with the channel wall show that the critical heat flux is decreased by a factor of two or more from values with normal clearance. Temperature measurements on the rod, when operating past the critical heat flux, were in the order of magnitude of 1000 deg F for heat fluxes of about 500,000--600,000 Btu/hr-ft/sup 2/. Chemical analyses for radial variations in isotopic composition within a fuel pellet are nearly completed and are compiled for interpretation. (N.W.R.)

Howard, C.L. comp.

1963-04-01T23:59:59.000Z

94

Cross section generation strategy for high conversion light water reactors  

E-Print Network (OSTI)

High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

Herman, Bryan R. (Bryan Robert)

2011-01-01T23:59:59.000Z

95

A comparison of factors impacting on radiation buildup at the Vermont Yankee and Monticello BWRs (boiling-water reactors): Interim report  

SciTech Connect

Design and operating features of the Monticello and Vermont Yankee BWRs were compared in an attempt to explain why shutdown radiation levels at Vermont Yankee were significantly higher than at Monticello. The plants were shown to be similar in many respects, for example, condenser and feedwater system design and materials, condensate treatment system design, feedwater iron and copper concentrations, reactor water piping materials and fabrication techniques, reactor water cleanup system flowrates and equipment type, fuel cycle lengths, and fuel failure history. Differences were noted in core power density, jet pump design, reactor water conductivity, volume of radwaste recycle, and the amount of Stellite bearing materials in the feedwater system. Corrosion films on reactor system decontamination flanges from the two plants also were very different. At Monticello, the film was typical of that observed at other BWRs. The Vermont Yankee film contained significantly higher levels of zinc, chromium, and cobalt. Since reactor water Co-60 concentrations at Monticello were about twice those at Vermont Yankee, the Vermont Yankee corrosion film must exhibit a greater tendency to incorporate Co-60.

Palino, G.F.; Hobart, R.L.; Sawochka, S.G.

1987-03-01T23:59:59.000Z

96

Advanced nuclear reactor safety analysis: the simulation of a small break loss of coolant accident in the simplified boiling water reactor using RELAP5/MOD3.1.1  

E-Print Network (OSTI)

The thermal hydraulic simulation code RELAP5/MOD3.1.1 was utilized to model General Electric's Simplified Boiling Water Reactor plant. The model of the plant was subjected to a small break loss of coolant accident occurring from a guillotine shear of the vessel's 2 inch bottom drain line while operating at full power. The accident was compounded by disabling the plant's isolation condenser system and as an initial condition, the loss of site power. The ability of the plant's passive safety systems to respond to this type of accident, and the code's ability to accurately predict the accidents phenomena was investigated. The overall conclusion was that the modeled plant maintained all relevant safety parameters within specifications supplied by General Electric (GE) in their Standard Safety Analysis Report (SAR) for the term of investigation (I 5,500 real time seconds). While no safety related parameters were exceeded, certain trends appearing near the end of the calculation suggest the need for further investigation. Both containment temperature and pressure were increasing when the transient was terminated. The RELAP5 code was able to simulate a representative model of the plant. Calculated steady state parameters for power, flow rates, recirculation ratio, and mass balance were within I% of those specified in the SAR. However the ability of the code to accurately model low flow, condensation heat transfer, in the presence of noncondensable gases should be verified. It is concluded that the simulation's results seem to pass an intuitive engineering inspection. That is to say, flow and heat transfer data calculated by the RELAP5 code reflect expected values and relational interactions are maintained, but that no quantitative significance could be justified. The uniqueness of the plant's design and the interactive nature of the transient, suggest Additional experimental data from test facilities is needed to validate the calculations.

Faust, Christophor Randall

1995-01-01T23:59:59.000Z

97

Advanced Power Plant Modeling with Applications to an Advanced Boiling Water  

E-Print Network (OSTI)

wave fronts. However, in most power plant transient performance models, there are few heat exchangersAdvanced Power Plant Modeling with Applications to an Advanced Boiling Water Reactor and a Heat Introduction This paper presents two advanced modeling methods, and two applications, for power plant

Mitchell, John E.

98

Review and evaluation of the RELAP5YA computer code and the Vermont Yankee LOCA (Loss-of-Coolant Accident) licensing analysis model for use in small and large break BWR (Boiling Water Reactor) LOCAS  

SciTech Connect

A review has been completed of the RELAP5YA computer code to determine its acceptability for performing licensing analyses. The review was limited to Boiling Water Reactor (BWR) reactor applications. In addition, a Loss-Of-Coolant Accident (LOCA) licensing analysis method, using the RELAP5YA computer code, has been reviewed. This method is applicable to the Vermont Yankee Nuclear Power Station to perform full break spectra LOCA and fuel cycle independent analyses. The review of the RELAP5YA code consisted of an evaluation of all Yankee Atomic Electric Company (YAEC) incorporated modifications to the RELAP5/MOD1 Cycle 18 computer code from which the licensing version of the code originated. Qualifying separate and integral effects assessment calculations were reviewed to evaluate the validity and proper implementation of the various added models. The LOCA licensing method was assessed by reviewing two RELAP5YA system input models and evaluating several small and large break qualifying transient calculations. A review of the RELAP5YA code modifications and their assessments, as well as the submitted LOCA licensing method, is given and the results of the review are provided.

Jones, J.L.

1987-01-01T23:59:59.000Z

99

Technical Basis for Water Chemistry Control of IGSCC in Boiling ...  

Science Conference Proceedings (OSTI)

... Degradation of Materials in Nuclear Power Systems – Water Reactors ... However, even the utilization of near theoretical conductivity water cannot prevent ...

100

Confined boiling rates of liquefied petroleum gas on water  

SciTech Connect

Results of a program to measure the rate of boiling of liquefied petroleum gas (LPG) on water surface and to develop an analytical model to describe the phenomena involved are reported. Primary emphasis was placed on liquid propane or LPG mixtures containing small quantities of ethane or butane or both. A few exploratory tests were, however, made with pure liquid ethane, ethylene, and n-butane. The investigation was conducted to provide quantitative data and analytical models to delineate the rate of vaporization, the spread rate and the degree of fractionation, should an LPG tanker suffer an accident leading to a major spill on water. For propane or LPG spills on water, immediately following the contact, violent boiling commenced. Ice quickly formed; in most cases, ice was even thrown onto the sidewalls of the vessel. In some instances sprays of water/ice and propane were ejected from the calorimeter. Within a few seconds, however, the interaction quieted and the surface was covered by a rough ice sheet. The LPG boiled on the surface of this ice, but large gas bubbles occasionally appeared under the ice shield and were trapped. The boiling rate decreased with time with a concomitant increase in the thickness of the ice shield. In the first second or two, very high boiling heat fluxes were experienced. The mass of LPG lost was approximately half that spilled originally. It is estimated that only 5 to 15% could have been ejected as liquid if the water loss is used as a reference. However, since the water surface is very agitated during this period, it is not possible to obtain reliable quantitative values of the boiling flux. Also, as noted, the mass lost in the very early time period was approximately proportional to the original mass of LPG used. It may be inferred that larger spills lead to more mixing and boiling before the ice shield prevents a direct contact between the LPG and the water.

Reid, R.C.; Smith, K.A.

1978-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - main report. Final report  

SciTech Connect

The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2), which is a boiling water reactor (BWR), located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low- level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

1996-07-01T23:59:59.000Z

102

A DESIGN STUDY OF A LOW POWER AQUEOUS HOMOGENEOUS BOILING REACTOR POWER PLANT  

SciTech Connect

This design study describes a reactor and associated power plant that has been designed to produce 100 kv of net electric power and 400 kv of hot water space heating at a total thermal output of 1300 kw. The fuel consists of a solution of UO/sub 2/SO/sub 4/ in light water. Power is removed from the core by boiling the fuel solution and transferring the heat to the secondary steam system by condensing primary water on the external surface of a bayonet type boiler and boiling secondary water within the tubes. Saturated steam, produced in the boiler at 225 psia (Full Power) is used to drive a turbo generator, Extraction steam from the turbine is used, at a reduced pressure, for space heating. The initial loading of the reactor is approximately 4.8 kg of U/sub 235/ and operation based on an average load factor of 80% will require fuel addition at the rate of about 580 grams per year. It may be desirable to replace the fuel in the core after a period of 5 years operation due to the accumulation of corrosion products. The reactor control is affected automatically by power demand. The major objective has been to design a reactor that is reliable and simple, requiring little if any operating personnel and routine maintenance only which can be performed by one man. The design should stress simplicity of the system, ease of erection at the site, initial transportability, reliability and ease of operation; these characteristics are then expected to result in greatly reduced effort and manpower support over a conventional system. (auth)

Mong, B.A.; Colgan, J.E.; D' Elia, R.A.; Mooradian, J.S.; Rhode, G.K.; Wood, P.M.

1955-06-01T23:59:59.000Z

103

Stress corrosion cracking and crack tip characterization of Alloy X-750 in light water reactor environments  

E-Print Network (OSTI)

Stress corrosion cracking (SCC) susceptibility of Inconel Alloy X-750 in the HTH condition has been evaluated in high purity water at 93 and 288°C under Boiling Water Reactor Normal Water Chemistry (NWC) and Hydrogen Water ...

Gibbs, Jonathan Paul

2011-01-01T23:59:59.000Z

104

Stress Corrosion Cracking and Crack Tip Characterization of Alloy X-750 in Light Water Reactor Environments  

E-Print Network (OSTI)

Stress corrosion cracking (SCC) susceptibility of Inconel Alloy X-750 in the HTH condition has been evaluated in high purity water at 93 and 288°C under Boiling Water Reactor Normal Water Chemistry (NWC) and Hydrogen Water ...

Gibbs, Jonathan Paul

105

HEAVY WATER MODERATED NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

Szilard, L.

1958-04-29T23:59:59.000Z

106

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

107

Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 1. Investigation and evaluation of stress corrosion cracking in piping of boiling water reactor plants  

Science Conference Proceedings (OSTI)

IGSCC in BWR piping is occurring owing to a combination of material, environment, and stress factors, each of which can affect both the initiation of a stress-corrosion crack and the rate of its subsequent propagation. In evaluating long-term solutions to the problem, one needs to consider the effects of each of the proposed remedial actions. Mitigating actions to control IGSCC in BWR piping must be designed to alleviate one or more of the three synergistic factors: sensitized material, the convention BWR environment, and high tensile stresses. Because mitigating actions addressing each of these factors may not be fully effective under all anticipated operating conditions, mitigating actions should address two and preferably all three of the causative factors; e.g., material plus some control of water chemistry, or stress reversal plus controlled water chemistry.

Not Available

1984-08-01T23:59:59.000Z

108

Boiling water reactor uranium utilization improvement potential  

Science Conference Proceedings (OSTI)

This report documents the results of design and operational simulation studies to assess the potential for reduction of BWR uranium requirements. The impact of the improvements on separative work requirements and other fuel cycle requirements also were evaluated. The emphasis was on analysis of the improvement potential for once-through cycles, although plutonium recycle also was evaluated. The improvement potential was analyzed for several design alternatives including axial and radial natural uranium blankets, low-leakage refueling patterns, initial core enrichment distribution optimization, reinsert of initial core discharge fuel, preplanned end-of-cycle power coastdown and feedwater temperature reduction, increased discharge burnup, high enrichment discharge fuel rod reassembly and reinsert, lattice and fuel bundle design optimization, coolant density spectral shift with flow control, reduced burnable absorber residual, boric acid for cold shutdown, six-month subcycle refueling, and applications of a once-through thorium cycle design and plutonium recycle.

Wei, P.; Crowther, R.L.; Fennern, L.E.; Savoia, P.J.; Specker, S.R.; Tilley, R.M.; Townsend, D.B.; Wolters, R.A.

1980-06-01T23:59:59.000Z

109

Sources of Radioiodine at Boiling Water Reactors  

Science Conference Proceedings (OSTI)

This report determines specific components in operating BWRs that have a potential for being emission sources of radioactive iodine. Conclusions of this study indicate the following: most radioiodine emanating from plants is from a few major areas; in most cases these releases are locally treatable; the interaction with surfaces is an important phenomenon in the behavior of the iodine; and the chemical form in the plant varies according to the circumstances of release. The models developed provide an imp...

1977-12-01T23:59:59.000Z

110

Verification of physics parameters for BWR (boiling water reaction) one-dimensional transient analysis  

SciTech Connect

A data-processing method was developed to generate physics parameters for use with the one-dimensional kinetics model of the RETRAN-02/MOD3 code. The physics parameters were verified to assure the consistency in collapsing procedures and to identify the need for further improvements. In the present study, calculations were performed during the boiling water reactor-4 Chinshan-1 cycle-7 (CS1CY7) end-of-cycle (EOC) Hailing condition, CS2CY6 middle-of-cycle (MOC), and CS1CY1 beginning-of-cycle (BOC) rated conditions. This paper describes the results of verification and their implications for plant transient analyses.

Chou, H.P. (National Tsing-Hua Univ., Hsinchu (Taiwan)); Chen, Y.J. (Institute of Nuclear Energy Research, Lung-Tan (Taiwan))

1989-11-01T23:59:59.000Z

111

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

112

Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions  

SciTech Connect

Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm lithium metaborate solution respectively at the saturation temperature for 1000 psi (68.9 bar) coolant pressure. Boiling tests also revealed the formation of fine deposits of boron and lithium on the cladding surface which degraded the heat transfer rates. The boron and lithium metaborate precipitates after a 5 day test at 5000 ppm concentration and 1000 psi (68.9 bar) operating pressure reduced the heat transfer rate 21% and 30%, respectively for the two solutions.

Schultis, J., Kenneth; Fenton, Donald, L.

2006-10-20T23:59:59.000Z

113

WATER BOILER REACTOR  

DOE Patents (OSTI)

As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

King, L.D.P.

1960-11-22T23:59:59.000Z

114

Electrochemistry of Water-Cooled Nuclear Reactors  

DOE Green Energy (OSTI)

This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

Dgiby Macdonald; Mirna Urquidi-Macdonald; John Mahaffy, Amit Jain, Han Sang Kim, Vishisht Gupta; Jonathan Pitt

2006-08-08T23:59:59.000Z

115

Reactor Pressure Vessel Task of Light Water Reactor Sustainability...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Reactor Pressure...

116

DESIGN STUDY OF SMALL BOILING REACTORS FOR POWER AND HEAT PRODUCTION  

SciTech Connect

A design study has been made of a small "Package" nuclear power plant for the production of electric power and heat in remotely located, inaccessible areas devoid of natural fuels. The design utilizes a horizontal boiling reactor as a steam generator consistent with safe and simple equipment and a minimum building height. A reactor design of 51/2 Mw capacity, with a combined net electric power output of 750 kw and a heat plant output of 4500 kw, was studied in detail. Tertative cost estimates are presented on the basis of this combination. General comparisons have been made between different systems designed for either independent or combined production of 425 kw net electric power and 2500 kw available heat. (auth)

Treshow, M.

1954-11-01T23:59:59.000Z

117

Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980  

SciTech Connect

This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

McCormack, K.E.; Gallaher, R.B.

1982-03-01T23:59:59.000Z

118

Microsoft Word - power_reactors_briggs.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Most common - Boiling Water and Pressurized Most common - Boiling Water and Pressurized Water Reactors About 80% of the world's nuclear reactors used for generating electricity are either boiling water reactors or pressurized water reactors. Of these, about 30% are boiling water reactors and 70% are pressurized water reactors. All power reactors currently in use in the United States are of these two types. Both types of reactors have been very successfully used for reliable, on-demand, emissions-free electricity generation for decades. How does a boiling water reactor work? Water flows from the bottom of the fuel to the top of the fuel, and as it moves past the fuel, it carries away the heat produced by the

119

Light Water Reactor Sustainability Program: Integrated Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability Program: Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and...

120

Effect of High Reactor Water Zinc on Fuel Performance in Quad Cities 2  

Science Conference Proceedings (OSTI)

Due to reduction in feedwater Fe, reactor water Zn concentrations have been increasing in U.S. boiling water reactors (BWRs). The fuel performance experience base is limited to 8 to 10 ppb, and no fuel surveillance was performed in a plant operated with greater than 12 ppb reactor water Zn. The impact of high reactor water Zn on fuel performance is unknown. However, the change in the trends is large enough to raise a concern, and it requires a confirmation of the fuel performance with fuel ...

2013-07-02T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

APPARATUS FOR CONTROL OF A BOILING REACTOR RESPONSIVE TO STEAM DEMAND  

DOE Patents (OSTI)

A method of controlling a fuel-rod-in-tube-type boilingwater reactor having nozzles at the point of water entry into the tube is described. Water is pumped into the nozzles by an auxiliary pump operated by steam from an interstage position of the associated turbine, so that the pumping speed is responsive to turbine demand. (AEC)

Treshow, M.

1963-07-23T23:59:59.000Z

122

DEUTERIUM-HYDROGEN EXCHANGE IN BOEHMITE CORROSION PRODUCT FORMED ON PURE ALUMINUM IN BOILING WATER  

SciTech Connect

Proton-deuteron exchange is rapid in boehmite corrosion product formed on pure aluminum in boiling water. In addition, deuterated boehmite films undergo rapid exchange with the humidity of the atmosphere. This explains the previously reported anomaly in the H-D exchange rate for the growing corrosion product on 1100 aluminum. (auh)

Mori, S.; Draley, J.E.; Bernstein, R.B.

1961-10-31T23:59:59.000Z

123

Water simulation of sodium reactors  

Science Conference Proceedings (OSTI)

The thermal hydraulic simulation of a large sodium reactor by a scaled water model is examined. The Richardson Number, friction coefficient and the Peclet Number can be closely matched with the water system at full power and the similarity is retained for buoyancy driven flows. The simulation of thermal-hydraulic conditions in a reactor vessel provided by a scaled water experiment is better than that by a scaled sodium test. Results from a correctly scaled water test can be tentatively extrapolated to a full size sodium system.

Grewal, S.S.; Gluekler, E.L.

1981-06-28T23:59:59.000Z

124

Use of Thorium in Light Water Reactors  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Use of Alternate Fuels in Light Water Reactors

Michael Todosow; A. Galperin; S. Herring; M. Kazimi; T. Downar; A. Morozov

125

HEAVY-WATER-MODERATED POWER REACTORS ENGINEERING AND ECONOMIC EVALUATIONS. VOLUME I. SUMMARY REPORT  

SciTech Connect

Capital investments and the cost of power were estimated for 21 heavy- water-moderated, natural-uraniumfueled power-reactor plants, ranging in capacity from 100 to 460 Mw(e). Comparisons were made of hot- and coldmoderator reactors and of the relative merits of pressuretube and pressure-vessel designs. Reactors cooled with liquid D/sub 2/O, boiling D/sub 2/O, /sub 2/O steam, and helium were evalunted. A cold-moderator pressure-tube reactor cooled with boiling D/sub 2/O shows the most economic promise of the D/sub 2/Omoderated reactor systems studied to date. Reactors of this type have sufficient reactivity to permit satisfactory fuel exposures, but the development of additional technology is a prerequisite for optimum designs. At capacities of 300 and 400 Mw(e), the estimated power costs from the current designs of boiling-D/sub 2/O pressure-tabe reactor plants are 11.3 and 9.8 mills/kwh, respectively. From liquid-D/sub 2/-cooled concepts of comparable capacities the indicated power costs are 7 to 20% higher. With an active development program, a power cost of 8.0 to 8.5 mills/kwh may be attained in a 300 Mw(e) boiling-D/sub 2/O reactor plant within the next decade. (auth)

1960-06-01T23:59:59.000Z

126

ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING  

E-Print Network (OSTI)

The components of a modern Advanced Boiling Water Reactor (ABWR) nuclear power plant are modeled in this thesis) is a single-cycle, forced circulation, light-water nuclear reactor designed by the General Electric Company better control of the nuclear reaction in the fuel core. 2.1 Modifications to the BWR [1] · The reactor

Mitchell, John E.

127

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report  

SciTech Connect

The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

1996-07-01T23:59:59.000Z

128

HEAVY WATER MODERATED POWER REACTORS PROGRESS REPORT, SEPTEMBER 1961  

DOE Green Energy (OSTI)

At the end of September l961, construction of the Heavy Water Components Test Reactor was about 90% complete. Thirty-two compacted tubes of crushed, fused uranium oxide in Zircaloy sheaths were fabricated for irradiation tests and destructive evaluation. lrradiation tests of the tubes were started in the Vallecitos Boiling Water Reactor and at Savannah River. The fabrication process for the tubes included steps designed to exclude hydrogenous material from the oxide cores, thereby eliminating the probable cause of sheath failures in previous irradiations. Additional experimental data on heat transfer burnout of tubes in subcooled water at pressures of about 100 to 1000 psi showed that the burnout heat flux is not affected significantiy by pressure in this range. The data were correlated in terms of water velocity and subcooling. (auth)

Hood, R.R. comp.

1961-11-01T23:59:59.000Z

129

Water reactor fuel cladding  

Science Conference Proceedings (OSTI)

This patent describes a nuclear reactor fuel element cladding tube. It comprises: an outer cylindrical layer of a first zirconium alloy selected from the group consisting of Zircaloy-2 and Zircaloy-4; an inner cylindrical layer of a second zirconium alloy consisting essentially of about 0.19 to 0.6 wt.% tin, about 0.19 to less than 0.5 wt.% iron, about 100 to 700 ppm oxygen, less than 2000 ppm total impurities, and the remainder essentially zirconium; the inner layer characterized by aqueous corrosion resistance substantially the same as the first zirconium alloy; the inner layer characterized by improved resistance to PCI crack propagation under reactor operating conditions compared to the first zirconium alloy and substantially the same PCI crack propagation resistance compared to unalloyed zirconium; and the inner cylindrical layer is metallurgically bonded to the outer layer.

Foster, J.P.; McDonald, S.G.

1990-06-12T23:59:59.000Z

130

CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR  

Science Conference Proceedings (OSTI)

The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

Vinson, Dennis

2010-06-01T23:59:59.000Z

131

Materials Degradation Issues in Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

CASL: The Consortium for Advanced Simulation of Light Water Reactors: A U.S. ... Strategies for Studying High Dose Irradiation Effects in Reactor Components.

132

Experimental Boiling Water Reactor decontamination and decommissioning project  

SciTech Connect

The author begins by discussing the problems encountered during decontamination and decommissioning. Next, he discusses waste packaging and recycling. His last topic of lessons learned is subdivided into prevention and early detection, recovery issues, management issues, and noteworthy practices.

Fellhauer, C. [Argonne National Lab., IL (United States). Technology Development Div.

1995-08-01T23:59:59.000Z

133

Experience with non-fuel-bearing components in LWR (light-water reactor) fuel systems  

SciTech Connect

Many non-fuel-bearing components are so closely associated with the spent fuel assemblies that their integrity and behavior must be taken into consideration with the fuel assemblies, when handling spent fuel of planning waste management activities. Presented herein is some of the experience that has been gained over the past two decades from non-fuel-bearing components in light-water reactors (LWRs), both pressurized-water reactors (PWRs) and boiling-water reactors (BWRs). Among the most important of these components are the control rod systems, the absorber and burnable poison rods, and the fuel assembly channels. 15 refs., 5 figs., 2 tabs.

Bailey, W.J.; Berting, F.M.

1990-12-01T23:59:59.000Z

134

Simultaneous boiling and spreading of liquefied petroleum gas on water. Final report, December 12, 1978-March 31, 1981  

SciTech Connect

An experimental and theoretical investigation was carried out to study the boiling and spreading of liquid nitrogen, liquid methane and liquefied petroleum gas (LPG) on water in a one-dimensional configuration. Primary emphasis was placed on the LPG studies. Experimental work involved the design and construction of a spill/spread/boil apparatus which permitted the measurement of spreading and local boil-off rates. With the equations of continuity and momentum transfer, a mathematical model was developed to describe the boiling-spreading phenomena of cryogens spilled on water. The model accounted for a decrease in the density of the cryogenic liquid due to bubble formation. The boiling and spreading rates of LPG were found to be the same as those of pure propane. An LPG spill was characterized by the very rapid and violent boiling initially and highly irregular ice formation on the water surface. The measured local boil-off rates of LPG agreed reasonably well with theoretical predictions from a moving boundary heat transfer model. The spreading velocity of an LPG spill was found to be constant and determined by the size of the distributor opening. The maximum spreading distance was found to be unaffected by the spilling rate. These observations can be explained by assuming that the ice formation on the water surface controls the spreading of LPG spills. While the mathematical model did not predict the spreading front adequately, it predicted the maximum spreading distance reasonably well.

Chang, H.R.; Reid, R.C.

1981-04-01T23:59:59.000Z

135

Subcooled flow boiling heat transfer and critical heat flux in water-based nanofluids at low pressure  

E-Print Network (OSTI)

A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In this ...

Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

136

Water chemistry of breeder reactor steam generators. [LMFBR  

Science Conference Proceedings (OSTI)

The water quality requirements will be described for breeder reactor steam generators, as well as specifications for balance of plant protection. Water chemistry details will be discussed for the following power plant conditions: feedwater and recirculation water at above and below 5% plant power, refueling or standby, makeup water, and wet layup. Experimental data will be presented from tests which included a departure from nucleate boiling experiment, the Few Tube Test, with a seven tube evaporator and three tube superheater, and a verification of control and on-line measurement of sodium ion in the ppB range. Sampling and instrumentation requirements to insure adherence to the specified water quality will be described. Evaporator cleaning criteria and data from laboratory testing of chemical cleaning solutions with emphasis on flow, chemical composition, and temperature will be discussed.

Simpson, J.L.; Robles, M.N.; Spalaris, C.N.; Moss, S.A.

1980-08-01T23:59:59.000Z

137

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from

138

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations, which govern the operation of commercial nuclear power plants, require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including

139

Subcooled and saturated water flow boiling pressure drop in small diameter helical coils at low pressure  

SciTech Connect

Experimental pressure drop results on boiling water flow through three helical coils of tube inner diameter of 4.03 mm and 4.98 mm and coil diameter to tube diameter ratio of 26.1, 64.1 and 93.3 are presented. Both subcooled and saturated flow boiling are investigated, covering operating pressures from 120 to 660 kPa, mass fluxes from 290 to 690 kg m{sup -2} s{sup -1} and heat fluxes from 50 to 440 kW m{sup -2}. Existing correlations for subcooled flow pressure drop are found not capable to fit the present subcooled database, while the measurements in saturated flow conditions are successfully reproduced by existing correlations for both straight and coiled pipe two-phase flow. The experimental database is included in tabular form. (author)

Cioncolini, Andrea; Santini, Lorenzo; Ricotti, Marco E. [Department of Nuclear Engineering, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy)

2008-05-15T23:59:59.000Z

140

NUCLEAR REACTOR  

DOE Patents (OSTI)

A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

Treshow, M.

1961-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."  

SciTech Connect

Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

2011-01-19T23:59:59.000Z

142

Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water  

Science Conference Proceedings (OSTI)

An experimental study is performed to investigate the natural convection heat transfer characteristics and the solidification of the molten metal pool concurrently with forced convective boiling of the overlying coolant to simulate a severe accident in a nuclear power plant. The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the molten metal pool region is determined and compared with the correlations in the literature and experimental data with subcooled water. Given the same Ra condition, the present experimental results for Nu of the liquid metal pool with coolant boiling are found to be higher than those predicted by the existing correlations or measured from the experiment with subcooled boiling. To quantify the observed effect of the external cooling on the natural convection heat transfer rate from the molten pool, it is proposed to include an additional dimensionless group characterizing the temperature gradients in the molten pool and in the external coolant region. Starting from the Globe and Dropkin correlation, engineering correlations are developed for the enhancement of heat transfer in the molten metal pool when cooled by an overlying coolant. The new correlations for predicting natural convection heat transfer are applicable to low-Prandtl-number (Pr) materials that are heated from below and solidified by the external coolant above. Results from this study may be used to modify the current model in severe accident analysis codes.

Cho, Jae-Seon [Seoul National University (Korea, Republic of); Suh, Kune Y. [Seoul National University (Korea, Republic of); Chung, Chang-Hyun [Seoul National University (Korea, Republic of); Park, Rae-Joon [Korea Atomic Energy Research Institute (Korea, Republic of); Kim, Sang-Baik [Korea Atomic Energy Research Institute (Korea, Republic of)

2004-12-15T23:59:59.000Z

143

LIGHT WATER MODERATED NEUTRONIC REACTOR  

DOE Patents (OSTI)

A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

Christy, R.F.; Weinberg, A.M.

1957-09-17T23:59:59.000Z

144

CIVILIAN POWER REACTOR PROGRAM. PART II. ECONOMIC POTENTIAL AND DEVELOPMENT PROGRAM. HEAVY WATER-MODERATED POWER REACTOR  

SciTech Connect

The reactor design which forms the base for the current economic status of D/sub 2/O-moderated reactors was estimated from developments in several reactor programs. However, since a heavy water-moderated reactor was not operated on natural U fuel at power reactor conditions, considerable improvement from this current status can be foreseen. A summary of improvements is presented concerning the concept which would result solely from operation of succeeding generation plants without a parallel development program, and improvements which would result from the successful completion of the development program as presented. One plant size was used in the evaluation of plant potential, with a 300 Mw/sub e/ nominal rating. The boiling D/sub 2/O-cooled, pressure tube direct cycle plant design was used. The current development program is outlined; this work includes several items leading to the long-range development of the concept. (auth)

Hutton, J.H.; Davis, S.A.; Graves, C.C.; Duffy, J.G. comps.

1960-08-19T23:59:59.000Z

145

Nuclear Desalination Complex with VK-300 Boiling-Type Reactor Facility  

E-Print Network (OSTI)

With regard to the global-scale development of desalination technologies and the stable growth demand for them, Russia also takes an active part in the development of these technologies. Two major aspects play a special role here: they are providing the desalination process with power and introducing new materials capable of making the production of fresh water cheaper and of raising the technical reliability of desalination units. In achieving these tasks, the focus is on the most knowledge-intensive issues, to which Russia is capable of making its contribution based both on the experience of developing national nuclear power and the experience of developing, manufacturing and operating desalination units, including the use of nuclear power (the experience of BN-350 in Aktau (formerly Shevchenko), Kazakhstan). In terms of design, the Nuclear Desalination Complex (NDC) with a VK-300 reactor facility is a modification of a nuclear power unit with a VK-300 reactor developed for application at Russian nuclear cogeneration plants. A power unit

B. A. Gabaraev; Yu. N. Kuznetzov; A. A. Romenkov; Yu. A. Mishanina

2004-01-01T23:59:59.000Z

146

Stability analysis of supercritical water cooled reactors  

E-Print Network (OSTI)

The Supercritical Water-Cooled Reactor (SCWR) is a concept for an advanced reactor that will operate at high pressure (25MPa) and high temperature (500°C average core exit). The high coolant temperature as it leaves the ...

Zhao, Jiyun, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

147

Pressurized Water Reactor Secondary Water Chemistry Guidelines – Revision 6  

Science Conference Proceedings (OSTI)

State-of-the-art water chemistry programs reduce equipment corrosion and enhance steam generator reliability. A committee of industry experts prepared these revised "Pressurized Water Reactor Secondary Water Chemistry Guidelines" to incorporate the latest field and laboratory data on secondary system corrosion and performance issues. Pressurized water reactor (PWR) operators can use these guidelines to update their secondary water chemistry programs.

2004-12-13T23:59:59.000Z

148

Environmentally assisted cracking of light-water reactor materials  

SciTech Connect

Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used.

Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

1996-02-01T23:59:59.000Z

149

Accident Tolerant Fuels for Light Water Reactors  

Science Conference Proceedings (OSTI)

Presentation Title, Accident Tolerant Fuels for Light Water Reactors. Author(s), Steven J. Zinkle, Kurt A. Terrani, Lance L. Snead. On-Site Speaker (Planned) ...

150

Analytical and experimental simulation of boiling oscillations in sodium with a low-pressure water system. [LMFBR  

SciTech Connect

An experimental and analytical program designed to simulate sodium boiling under low-power, low-flow conditions has been completed. Experiments were performed using atmospheric- pressure water as a simulant fluid and a simple one-dimensional model was developed for the system. Results indicate that water is a suitable simulant for liquid sodium under certain conditions and that the model does a fair job of modeling the system. In addition, oscillations that occur during the boiling process appear to augment substantially the heat transfer between liquid and vapor in condensation.

Levin, A.E.; Griffith, P.

1981-01-01T23:59:59.000Z

151

Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test  

Science Conference Proceedings (OSTI)

In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified form of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.

Booker, Kayje; Han, Tae Won; Granderson, Jessica; Jones, Jennifer; Lsk, Kathleen; Yang, Nina; Gadgil, Ashok

2011-06-01T23:59:59.000Z

152

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of High Value Surveillance Materials Assessment of High Value Surveillance Materials Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely

153

Gas processing/The boiling behavior of LPG and liquid ethane, ethylene, propane, and n-butane spilled on water  

SciTech Connect

Boiling-rate calorimeter studies showed that unlike liquid nitrogen, methane, and LNG, LPG (84.7% propane, 6.0% ethane, and 9.3% n-butane; 442/sup 0/C bp), or pure propane, when rapidly spilled on water, reacted violently, ejecting water and ice into the vapor space; but in 1-2 sec, a coherent ice layer was formed and further boiloff was quiet and well predicted by a simple one-dimensional, moving-boundary-value, heat transfer model with a growing ice shield. Increasing the content of ethane and butane in LPG to 20% and 10%, respectively, had almost no effect on the LPG boiling, indicating that boiling may be modeled by using pure propane. Ethane, ethylene, and n-butane behaved quite differently from LPG. In spills of pure liquid propane on solid ice, the boiloff rate was almost identical to that predicted by the moving-boundary model.

Reid, R.C.; Smith, K.A.

1978-04-01T23:59:59.000Z

154

PRESSURIZED WATER REACTOR CORE WITH PLUTONIUM BURNUP  

DOE Patents (OSTI)

A pressurized water reactor is described having a core containing Pu/sup 240/ in which the effective microscopic neutronabsorption cross section of Pu/sup 240/ in unconverted condition decreases as the time of operation of the reactor increases, in order to compensate for loss of reactivity resulting from fission product buildup during reactor operation. This means serves to improve the efficiency of the reactor operation by reducing power losses resulting from control rods and burnable poisons. (AEC)

Puechl, K.H.

1963-09-24T23:59:59.000Z

155

DESIGN AND HAZARDS SUMMARY REPORT, BOILING REACTOR EXPERIMENT V (BORAX V)  

SciTech Connect

Design data for BORAX V are presented along with results of hazards evaluation studies. Considcration of the hazards associated with the operation of BORAX V was based on the following conditions: For normal steady-state power and experimental operation, the reactor and plant are adequately shielded and ventilated to allow personnel to be safely stationed in the turbine building and on the main floor of the reactor building. The control building is located one- half mile distant from the reactor building. For special, hazardous experiments, personnel are withdrawn from the reactor area. (M.C.G.)

1961-05-01T23:59:59.000Z

156

Critical heat flux and boiling heat transfer to water in a 3-mm-diameter horizontal tube.  

DOE Green Energy (OSTI)

Boiling of the coolant in an engine, by design or by circumstance, is limited by the critical heat flux phenomenon. As a first step in providing relevant engine design information, this study experimentally addressed both rate of boiling heat transfer and conditions at the critical point of water in a horizontal tube of 2.98 mm inside diameter and 0.9144 m heated length. Experiments were performed at system pressure of 203 kPa, mass fluxes in range of 50 to 200 kg/m{sup z}s, and inlet temperatures in range of ambient to 80 C. Experimental results and comparisons with predictive correlations are presented.

Yu, W.; Wambsganss, M. W.; Hull, J. R.; France, D. M.

2000-12-04T23:59:59.000Z

157

TA-2 Water Boiler Reactor Decommissioning Project  

Science Conference Proceedings (OSTI)

This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

Durbin, M.E. (ed.); Montoya, G.M.

1991-06-01T23:59:59.000Z

158

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initial Assessment of Thermal Annealing Needs and Challenges Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from 40y to 80y implies a doubling of the neutron exposure for the RPV. Thus,

159

Development of Mechanistic Modeling Capabilities for Local Neutronically-Coupled Flow-Induced Instabilities in Advanced Water-Cooled Reactors  

SciTech Connect

The major research objectives of this project included the formulation of flow and heat transfer modeling framework for the analysis of flow-induced instabilities in advanced light water nuclear reactors such as boiling water reactors. General multifield model of two-phase flow, including the necessary closure laws. Development of neurton kinetics models compatible with the proposed models of heated channel dynamics. Formulation and encoding of complete coupled neutronics/thermal-hydraulics models for the analysis of spatially-dependent local core instabilities. Computer simulations aimed at testing and validating the new models of reactor dynamics.

Michael Podowski

2009-11-30T23:59:59.000Z

160

HEAVY-WATER-MODERATED POWER REACTORS ENGINEERING AND ECONOMIC EVALUATIONS. VOLUME II. ENGINEERING STUDIES AND TECHNICAL DATA  

SciTech Connect

The results of preliminary design and evaluation studies of various concepts of a power reactor that is moderated by heavy water and fueled with natural uranium are presented. Twenty-nine conceptal designs were developed for reactors ranging in capacity from 100 Mwe to 460 Mwe. Resigns were prepared for hot- and cold-moderator reac tors of the pressure vessel type, with liquid D/sub 2/O, boiling D/sub 2/O, E/sub 2/O steam, and helium as coolants. Also studied were cold-moderator pressure tube reactors cooled with liquid D/sub 2/O and boiling D/sub 2/O. The repont includes the results of engineering studies of the reactor systems, electrical generation facilities, and auxiliary equipment. (auth)

1960-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pressurized Water Reactor Secondary Water Chemistry Guidelines - Revision 7  

Science Conference Proceedings (OSTI)

State-of-the-art water chemistry programs reduce equipment corrosion and enhance steam generator reliability. A committee of industry experts prepared these revised PWR Secondary Water Chemistry Guidelines to incorporate the latest field and laboratory data on secondary system corrosion and performance issues. Pressurized water reactor (PWR) operators can use these guidelines to update their secondary water chemistry programs.

2009-02-17T23:59:59.000Z

162

Impact of aspect ratio on flow boiling of water in rectangular microchannels  

SciTech Connect

In this paper we focus on the impact of varying the aspect ratio of rectangular microchannels, on the overall pressure drop involving water boiling. An integrated system comprising micro-heaters, sensors and microchannels has been realized on (110) silicon wafers, following CMOS compatible process steps. Rectangular microchannels were fabricated with varying aspect ratios (width [W] to depth [H]) but constant hydraulic diameter of 142{+-}2{mu}m and length of 20 mm. The invariant nature of the hydraulic diameter is confirmed through two independent means: physical measurements using profilometer and by measuring the pressure drop in single-phase fluid flow. The experimental results show that the pressure drop for two-phase flow in rectangular microchannels experiences minima at an aspect ratio of about 1.6. The minimum is possibly due to opposing trends of frictional and acceleration pressure drops, with respect to aspect ratio. In a certain heat flux and mass flux range, it is observed that the two-phase pressure drop is lower than the corresponding single-phase value. This is the first study to investigate the effect of aspect ratio in two-phase flow in microchannels, to the best of our knowledge. The results are in qualitative agreement with annular flow model predictions. These results improve the possibility of designing effective heat-sinks based on two-phase fluid flow in microchannels. (author)

Singh, S.G.; Kulkarni, A.; Duttagupta, S.P. [Nanoelectronics Center, Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Puranik, B.P.; Agrawal, A. [Suman Mashruwala Lab, Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

2008-10-15T23:59:59.000Z

163

METHOD AND APPARATUS FOR CONTROLLING DIRECT-CYCLE NEUTRONIC REACTORS  

DOE Patents (OSTI)

A control arrangement is offered for a boiling-water reactor. Boric acid is maintained in the water in the reactor and the amount in the reactor is controlled by continuously removing a portion of the water from the reactor, concentrating the boric acid by evaporating the water therefrom, returning a controlled amount of the acid to the reactor, and simultaneously controlling the water level by varying the rate of spent steam return to the reactor.

Reed, G.A.

1961-01-10T23:59:59.000Z

164

Environmental Assessment for Authorizing the Puerto Rico Electric Power Authority (PREPA) to allow Public Access to the Boiling Nuclear Superheat (BONUS) Reactor Building, Rincon, Puerto Rico  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) proposes to consent to a proposal by the Puerto Rico Electric Power Authority (PREPA) to allow public access to the Boiling Nuclear Superheat (BONUS) reactor building located near Rincon, Puerto Rico for use as a museum. PREPA, the owner of the BONUS facility, has determined that the historical significance of this facility, as one of only two reactors of this design ever constructed in the world, warrants preservation in a museum, and that this museum would provide economic benefits to the local community through increased tourism. Therefore, PREPA is proposing development of the BONUS facility as a museum.

N /A

2003-02-24T23:59:59.000Z

165

Light Water Reactor Sustainability Technical Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Light Water Reactor Initiatives » Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents September 30, 2011 Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement

166

Developmental Light-Water Reactor Program  

SciTech Connect

This report summarizes the progress of the Developmental Light-Water Reactor (DLWR) Program at Oak Ridge National Laboratory in FY 1989. It also includes (1) a brief description of the program, (2) definition of goals, (3) earlier achievements, and (4) proposed future activities.

Forsberg, C.W.

1989-12-01T23:59:59.000Z

167

Hydrogen and water reactor safety: proceedings  

DOE Green Energy (OSTI)

Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

Not Available

1982-01-01T23:59:59.000Z

168

HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING  

Science Conference Proceedings (OSTI)

The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment including the dome was removed, a concrete cover was to be placed over the remaining footprint and the groundwater monitored for an indefinite period to ensure compliance with environmental regulations.

Austin, W.; Brinkley, D.

2011-10-13T23:59:59.000Z

169

Light Water Reactor Sustainability Technical Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Light Water Reactor Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents April 30, 2013 LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water Reactor Sustainability (LWRS) Program and EPRI's Long-Term Operations (LTO) Program. April 30, 2013 Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and

170

Flow instabilities in the core and the coolant circuit of advances low-boiling light water reacto: classification of causes and development of simulator for the future analysis  

E-Print Network (OSTI)

The coolant flow instability, apparent in the coolant mass flow fluctuations in the separate parallel heating channels and also in a closed loop of the primary circuit under some operating conditions, is observed in the core fuel assemblies of light water reactors. In some ways this phenomenon is identical with the fluctuations in the once-through steam generators pipes, and changes of the coolant mass flows and length of flow patterns are initiating this phenomenon. The parameters at the core output and the secondary circuit parameters have influence on each other. These parameter changes have significant influences on the operating processes, operating and control algorithms, operating and control system design, and reliability of the operating power plant's machines and equipment. Changes of heating surface temperatures, displacement borders of the flow patterns, and critical heat flux entail changes of the coolant flow parameters, finally causing changes of the initial primary system parameters due to closed loop system feedback. In turn, these cause over-circuit instability in the reactor. Core power generation changes are carried out by means of influencing the nuclear fission process through changing the multiplication factor. Additionally, these local side-to-side power irregularities in sub-zones may appear due to the influence of various hydrodynamic instabilities. The local side-to-side power in these sub-zones may differ significantly from each other. The aforesaid arguments are correct for the both light water reactor types. But, as is shown by our investigations and operational practice of low-boiling reactors, behavior of the core-circuit hydrodynamic system is significantly different from its behavior in the boiling or pressurized reactors with pumping circulation. The coolant flow regimes in typical reactors are defined through pump operating regimes and are not adjustable inside a certain power range. The objective of this thesis is to understand more precisely the influence and the nature of these phenomena. After analyzing the problem from different points of view and showing the necessity of its comprehensive understanding, we present recommendations for engineering solutions and plans for further investigations. We will try to determine limits of their reliable practical application with modern low-to-medium power reactor design and investigate this dynamic system behavior. Finally, it is necessary to take into consideration not separate phenomena, but their complex influence on the whole primary system (i.e. a kind of macro-system is examined without being separated into its individual elements). But, the analysis of every phenomenon is fulfilled separately and a process of formation of a block-scheme, consisting of several sub-systems, is given in this thesis. The final block-scheme is presented as a simulator model, taking into consideration design components chosen for the analysis of system dynamics as the first step of model development.

Rezvyi, Aleksey

2002-01-01T23:59:59.000Z

171

Risk contribution from low power and shutdown of a pressurized water reactor  

Science Conference Proceedings (OSTI)

During 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (a pressurized water reactor) and Grand Gulf (a boiling water reactor), were selected for study by Brookhaven National Laboratory and Sandia National Laboratories, respectively. The program objectives included assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing estimated core damage frequencies, important accident sequences, and other qualitative and quantitative results with full power accidents as assessed in NUREG-1150. The scope included a Level 3 PRA for traditional internal events and a Level 1 PRA on fire, flooding, and seismically induced core damage sequences. 12 refs., 7 tabs.

Chu, T.L.; Pratt, W.T.

1997-04-01T23:59:59.000Z

172

Containment system for supercritical water oxidation reactor  

DOE Patents (OSTI)

A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

Chastagner, Philippe (3134 Natalie Cir., Augusta, GA 30909-2748)

1994-01-01T23:59:59.000Z

173

Containment system for supercritical water oxidation reactor  

DOE Patents (OSTI)

This invention is comprised of a system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

Chastagner, P.

1991-12-31T23:59:59.000Z

174

Advanced Light Water Reactor utility requirements document  

SciTech Connect

The ALWR Requirements Document is a primary work product of the EPRI Program. This document is an extensive compilation of the utility requirements for design, construction and performance of advanced light water reactor power plants for the 1990s and beyond. The Requirements Document's primary emphasis is on resolution of significant problems experienced at existing nuclear power plants. It is intended to be used with companion documents, such as utility procurement specifications, which would cover the remaining detailed technical requirements applicable to new plant projects. The ALWR Requirements Document consists of several major parts. This volume is Part I, The Executive Summary. It is intended to serve as a concise, management level synopsis of advanced light water reactors including design objectives and philosophy, overall configuration and features and the steps necessary to proceed from the conceptual design stage to a completed, functioning power plant.

1986-06-01T23:59:59.000Z

175

Light Water Reactor Sustainability (LWRS) Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program The Light Water Reactor Sustainability (LWRS) Program is developing the scientific basis to extend existing nuclear power plant operating life beyond the current 60-year licensing period and ensure long-term reliability, productivity, safety, and security. The program is conducted in collaboration with national laboratories, universities, industry, and international partners. Idaho National Laboratory serves as the Technical Integration Office and coordinates the research and development (R&D) projects in the following pathways: Materials Aging and Degradation Assessment, Advanced Instrumentation, Information, and Control Systems

176

Environmental Assessment for Authorizing the Puerto Rico Electric Power Authority (PREPA) to allow Public Access to the Boiling Nuclear Superheat (BONUS) Reactor Building, Ricon, Puerto Rico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

394: Public Access to the BONUS Facility January 2003 394: Public Access to the BONUS Facility January 2003 i DOE/EA-1394 ENVIRONMENTAL ASSESSMENT FOR AUTHORIZING THE PUERTO RICO ELECTRIC POWER AUTHORITY (PREPA) TO ALLOW PUBLIC ACCESS TO THE BOILING NUCLEAR SUPERHEAT (BONUS) REACTOR BUILDING, RINCÓN, PUERTO RICO January 2003 U.S. Department of Energy Oak Ridge Operations Office Oak Ridge, Tennessee DOE/EA-1394: Public Access to the BONUS Facility January 2003 ii TABLE OF CONTENTS LIST OF FIGURES V LIST OF TABLES V ACRONYMS VI UNIT ABBREVIATIONS VII SUMMARY VIII 1. INTRODUCTION 10 1.1 Purpose and Need for Action 10 1.2 Operational and Decommissioning History 15 1.3 Summary of Radiological Conditions at the BONUS Facility 19 2. DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES 25

177

REVIEW OF THE STATUS OF SUPERCRITICAL WATER REACTOR TECHNOLOGY  

SciTech Connect

Supercritical water-reactor design studies are reviewed. The status of supercritical water technology relative to heat transfer and fluid flow, water chemistry, internal deposition on heated surfaces, plant power cycles, and reactor construction materials is reviewed. The direct cycle was found to offer the highest probability for achieving economic power. (C.J.G.)

Marchaterre, J.F.; Petrick, M.

1960-08-01T23:59:59.000Z

178

Materials Degradation in Light Water Reactors: Life After 60 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the

179

Materials Degradation in Light Water Reactors: Life After 60 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the

180

Candidate Materials Evaluation for Supercritical Water-Cooled Reactor  

SciTech Connect

Final technical report on the corrosion, stress corrosion cracking, and radiation response of candidate materials for the supercritical water-cooled reactor concept.

T. R. Allen and G. S. Was

2008-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Light Water Reactor Sustainability Program - Non-Destructive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remaining Useful Life of Aging Cables in Nuclear Power Plants Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for Determining Remaining Useful...

182

Exploration of supercritical water gasification of biomass using batch reactor .  

E-Print Network (OSTI)

??The focus of this study is on gasification of a biomass in supercritical water. Vapor mass yield in a batch reactor after 20 minutes in… (more)

Venkitasamy, Chandrasekar

2011-01-01T23:59:59.000Z

183

The use of dispersants in pressurised water reactor steam generators.  

E-Print Network (OSTI)

??Environmental degradation promoted by the presence of sludge piles in the steam generators of Pressurised Water Reactors (PWR) can pose a threat to their safe… (more)

Tulloch, Sam

2011-01-01T23:59:59.000Z

184

Light Water Reactor Materials for Commercial Nuclear Power ...  

Science Conference Proceedings (OSTI)

Presentation Title, Light Water Reactor Materials for Commercial Nuclear ... First- Principles Theory of Magnetism, Crystal Field and Phonon Spectrum of UO2.

185

STUDY OF REMOTE MILITARY POWER APPLICATIONS. REPORT NO. 12. EVALUATION AND SELECTION OF APPLICABLE REACTOR CONCEPTS  

SciTech Connect

An evaluation of the reactor concepts under consideration for remote military power plants is presented. The concepts include water-cooled and - moderated reactors, both direct and indirect cycle. organic-cooled and -moderated reactors, heavy-water-cooled and -moderated reactors. gas-cooled reactors, sodium- cooled graphite-moderated reactors, fast reactors, and fluid-fuel reactors. The limitations and advantages, technological status, economics, and future potential of each reactor are reviewed. From the reviews it is concluded that direct-cycle boiling-water and pressurized-water reactors are most suitable for applications requiring power before 1965. (C.J.G.)

1960-01-01T23:59:59.000Z

186

Heavy Water and Graphite Reactors - Reactors designed/built by...  

NLE Websites -- All DOE Office Websites (Extended Search)

experiments, necessary to achieve higher precision for the determination of reactor power distribution patterns, effect of non-uniform void distributions, kinetic behavior,...

187

Nuclide Composition Benchmark Data Set for Verifying Burnup Codes on Spent Light Water Reactor Fuels  

SciTech Connect

To establish a nuclide composition benchmark data set for the verification of burnup codes, destructive analyses of light water reactor spent-fuel samples, which were cut out from several heights of spent-fuel rods, were carried out at the analytical laboratory at the Japan Atomic Energy Research Institute. The 16 samples from three kinds of pressurized water reactor (PWR) fuel rods and the 18 samples from two boiling water reactor (BWR) fuel rods were examined. Their initial {sup 235}U enrichments and burnups were from 2.6 to 4.1% and from 4 to 50 GWd/t, respectively. One PWR fuel rod and one BWR fuel rod contained gadolinia as a burnable poison. The measurements for more than 40 nuclides of uranium, transuranium, and fission product elements were performed by destructive analysis using mass spectrometry, and alpha-ray and gamma-ray spectrometry. Burnup for each sample was determined by the {sup 148}Nd method. The analytical methods and the results as well as the related irradiation condition data are compiled as a complete benchmark data set.

Nakahara, Yoshinori; Suyama, Kenya; Inagawa, Jun; Nagaishi, Ryuji; Kurosawa, Setsumi; Kohno, Nobuaki; Onuki, Mamoru; Mochizuki, Hiroki [Japan Atomic Energy Research Institute (Japan)

2002-02-15T23:59:59.000Z

188

Identification of Boiling Two-phase Flow Patterns in Water Wall Tube Based on BP Neural Network  

Science Conference Proceedings (OSTI)

In this paper, the boiling phenomena of steam boiler under atmospheric pressure are simulated by using the UDF program of CFD software. Characteristics including pressure, temperature and vapor fraction respectively for bubble, slug and annular flow ... Keywords: Boiling heat transfer, BP neural network, flow pattern, coefficient of heat transfer

Lei Guo; Shusheng Zhang; Yaqun Chen; Lin Cheng

2010-06-01T23:59:59.000Z

189

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Main report, draft report for comment. Volume 1  

Science Conference Proceedings (OSTI)

On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

1994-09-01T23:59:59.000Z

190

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, draft report for comment. Volume 2  

SciTech Connect

On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s WNP-2, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, materials, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

1994-09-01T23:59:59.000Z

191

Light water reactor lower head failure analysis  

SciTech Connect

This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

1993-10-01T23:59:59.000Z

192

Storage of LWR (light-water-reactor) spent fuel in air  

Science Conference Proceedings (OSTI)

An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to determine the oxidation response of light-water-reactor (LWR) spent fuels under conditions appropriate to fuel storage in air. The program is designed to investigate several independent variables that might affect the oxidation behavior of spent fuel. Included are temperature (135 to 230{degree}C), fuel burnup (to about 34 MWd/kgM), reactor type (pressurized and boiling water reactors), moisture level in the air, and the presence of a high gamma field. In continuing tests with declad spent fuel and nonirradiated UO{sub 2} specimens, oxidation rates were monitored by weight-gain measurements and the microstructures of subsamples taken during the weighing intervals were characterized by several analytical methods. The oxidation behavior indicated by weight gain and time to form powder will be reported in Volume III of this series. The characterization results obtained from x-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and Auger electron spectrometry of oxidized fuel samples are presented in this report. 28 refs., 21 figs., 3 tabs.

Thomas, L.E.; Charlot, L.A.; Coleman, J.E. (Pacific Northwest Lab., Richland, WA (USA)); Knoll, R.W. (Johnson Controls, Inc., Madison, WI (USA))

1989-12-01T23:59:59.000Z

193

Fission reactors and materials  

SciTech Connect

The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions.

Frost, B.R.T.

1981-12-01T23:59:59.000Z

194

Environmentally assisted cracking in light water reactors.  

DOE Green Energy (OSTI)

This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002. Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon and low-alloy steels and austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted cracking of austenitic SS in PWRs, and (d) cracking in Ni-alloys and welds. A critical review of the ASME Code fatigue design margins and an assessment of the conservation in the current choice of design margins are presented. The existing fatigue {var_epsilon}-N data have been evaluated to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Experimental data are presented on the effects of surface roughness on fatigue crack initiation in these materials in air and LWR environments. Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 2.0 x 10{sup 21} n x cm{sup -2}. The crack growth rates (CGRs) of the irradiated steels are a factor of {approx}5 higher than the disposition curve proposed in NUREG-0313 for thermally sensitized materials. The CGRs decreased by an order of magnitude in low-dissolved oxygen (DO) environments. Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289 C water on steels irradiated to {approx}3 dpa. The bulk S content correlated well with the susceptibility to intergranular SCC in 289 C water. The IASCC susceptibility of SSs that contain >0.003 wt. % S increased drastically. bend tests in inert environments at 23 C were conducted on broken pieces of SSRT specimens and on unirradiated specimens of the same materials after hydrogen charging. The results of the tests and a review of other data in the literature indicate that IASCC in 289 C water is dominated by a crack-tip grain-boundary process that involves S. An initial IASCC model has been proposed. A crack growth test was completed on mill annealed Alloy 600 in high-purity water at 289 C and 320 C under various environmental and loading conditions. The results from this test are compared with data obtained earlier on several other heats of Alloy 600.

Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.

2007-11-06T23:59:59.000Z

195

Light Water Reactors [Corrosion and Mechanics of Materials] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share To continue safe operation of current LWRs, the aging degradation of the

196

Development of Materials for Supercritical-Water-Cooled Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of Materials for Supercritical-Water-Cooled Reactor Development of Materials for Supercritical-Water-Cooled Reactor Development of Materials for Supercritical-Water-Cooled Reactor Supercritical-Water-Cooled Reactor (SCWR) was selected as one of the promising candidates in Generation IV reactors for its prominent advantages; those are the high thermal efficiency, the system simplification, the R&D cost minimization and the flexibility for core design. As the demand for advanced nuclear system increases, Japanese R&D project started in 1999 aiming to provide technical information essential to demonstration of SCPR technologies through three sub-themes of 1. Plant conceptual design, 2. Thermal-hydraulics, and 3. Material. Although the material development is critical issue of SCWR development, previous studies were limited for the screening tests on commercial alloys

197

Light Water Reactor Sustainability Nondestructive Evaluation for Concrete  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nondestructive Evaluation for Nondestructive Evaluation for Concrete Research and Development Roadmap Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap Materials issues are a key concern for the existing nuclear reactor fleet as material degradation can lead to increased maintenance, increased downtown, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. Additionally, new mechanisms of materials degradation are also possible. The purpose of the US Department of Energy Office of Nuclear Energy's Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend

198

ENGINEERING STUDY ON UNDERGROUND CONSTRUCTION OF NUCLEAR POWER REACTORS  

SciTech Connect

The advantages, disadvantages, and cost of constructing a auclear power reactor underground are outlinedData on underground construction of hydroelectric plants, other structures, and underground reactor projects in Norway and Sweden are reviewed. A hypothetical underground Experimental Boiling Water Reactor design and sketch are given with cost estimates(T.R.H.)

Beck, C.

1958-04-15T23:59:59.000Z

199

Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR  

DOE Patents (OSTI)

This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

Tokarz, R.D.

1981-10-27T23:59:59.000Z

200

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2  

SciTech Connect

Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Comparison of thorium-based fuels with different fissile components in existing boiling water reactors  

E-Print Network (OSTI)

the effects of depleted (DU) or enriched uranium (EU) and of 137 Cs on vitamin D3 biosynthetic pathway, Paquet F, Voisin P, Aigueperse J and Souidi M. Effects of acute administration of depleted uranium, Dublineau I, Paquet F, Voisin P, Aigueperse J, Gourmelon P and Souidi M. In vivo effects of depleted uranium

Demazière, Christophe

202

Accident source terms for boiling water reactors with high burnup cores.  

Science Conference Proceedings (OSTI)

The primary objective of this report is to provide the technical basis for development of recommendations for updates to the NUREG-1465 Source Term for BWRs that will extend its applicability to accidents involving high burnup (HBU) cores. However, a secondary objective is to re-examine the fundamental characteristics of the prescription for fission product release to containment described by NUREG-1465. This secondary objective is motivated by an interest to understand the extent to which research into the release and behaviors of radionuclides under accident conditions has altered best-estimate calculations of the integral response of BWRs to severe core damage sequences and the resulting radiological source terms to containment. This report, therefore, documents specific results of fission product source term analyses that will form the basis for the HBU supplement to NUREG-1465. However, commentary is also provided on observed differences between the composite results of the source term calculations performed here and those reflected NUREG-1465 itself.

Gauntt, Randall O.; Powers, Dana Auburn; Leonard, Mark Thomas

2007-11-01T23:59:59.000Z

203

Technology for Examination of Boiling Water Reactor Bottom Head Drain Lines  

Science Conference Proceedings (OSTI)

This report describes newly developed technology for the examination of the BWR vessel drain line. The technology targets the examination of the elbow and piping section deemed most susceptible to flow-accelerated corrosion (FAC) attack and includes a remotely operated sensor manipulator and ultrasound data acquisition system to perform thickness measurements throughout the affected components.

2006-11-29T23:59:59.000Z

204

Transpiring wall supercritical water oxidation test reactor design report  

Science Conference Proceedings (OSTI)

Sandia National Laboratories is working with GenCorp, Aerojet and Foster Wheeler Development Corporation to develop a transpiring wall supercritical water oxidation reactor. The transpiring wall reactor promises to mitigate problems of salt deposition and corrosion by forming a protective boundary layer of pure supercritical water. A laboratory scale test reactor has been assembled to demonstrate the concept. A 1/4 scale transpiring wall reactor was designed and fabricated by Aerojet using their platelet technology. Sandia`s Engineering Evaluation Reactor serves as a test bed to supply, pressurize and heat the waste; collect, measure and analyze the effluent; and control operation of the system. This report describes the design, test capabilities, and operation of this versatile and unique test system with the transpiring wall reactor.

Haroldsen, B.L.; Ariizumi, D.Y.; Mills, B.E.; Brown, B.G. [Sandia National Labs., Livermore, CA (United States). Engineering for Transportation and Environment Dept.; Rousar, D.C. [GenCorp Aerojet, Sacramento, CA (United States)

1996-02-01T23:59:59.000Z

205

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report  

SciTech Connect

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

Philip E. MacDonald

2003-09-01T23:59:59.000Z

206

Gravity Scaling of a Power Reactor Water Shield  

Science Conference Proceedings (OSTI)

Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson

Robert S. Reid; J. Boise Pearson

2008-01-01T23:59:59.000Z

207

Pressure drop and heat transfer characteristics of boiling water in sub-hundred micron channel  

SciTech Connect

The current work focuses on the pressure drop, heat transfer and stability in two phase flow in microchannels with hydraulic diameter of less than one hundred microns. Experiments were conducted in smooth microchannels of hydraulic diameter of 45, 65 {mu}m, and a rough microchannel of hydraulic diameter of 70 {mu}m, with deionised water as the working fluid. The local saturation pressure and temperature vary substantially over the length of the channel. In order to correctly predict the local saturation temperature and subsequently the heat transfer characteristics, numerical techniques have been used in conjunction with the conventional two phase pressure drop models. The Lockhart-Martinelli (liquid-laminar, vapour-laminar) model is found to predict the two phase pressure drop data within 20%. The instability in two phase flow is quantified; it is found that microchannels of smaller hydraulic diameter have lesser instabilities as compared to their larger counterparts. The experiments also suggest that surface characteristics strongly affect flow stability in the two phase flow regime. The effect of hydraulic diameter and surface characteristics on the flow characteristics and stability in two phase flow is seldom reported, and is of considerable practical relevance. (author)

Bhide, R.R.; Singh, S.G.; Sridharan, Arunkumar; Duttagupta, S.P.; Agrawal, Amit [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

2009-09-15T23:59:59.000Z

208

Light Water Reactor Sustainability Program - Integrated Program Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability Program - Integrated Program Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. The LWRS Program provides technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants, utilizing the unique capabilities of the national laboratory system. Sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer than-initially-licensed lifetime. It has two facets

209

Optimization of hydride fueled pressurized water reactor cores  

E-Print Network (OSTI)

This thesis contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT aimed at investigating the potential benefits of hydride fuel use in light water reactors (LWRs). This pursuit involves ...

Shuffler, Carter Alexander

2004-01-01T23:59:59.000Z

210

Corrosion-Product Release in Light Water Reactors  

Science Conference Proceedings (OSTI)

Colbalt released through corrosion is the primary source of radiation fields on out-of-core surfaces in pressurized water reactors. Lowering colbalt impurity levels in Inconel 600, a generator tubing material, could reduce radiation fields.

1984-03-01T23:59:59.000Z

211

Process for treating effluent from a supercritical water oxidation reactor  

DOE Patents (OSTI)

A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

Barnes, Charles M. (Idaho Falls, ID); Shapiro, Carolyn (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

212

Process for treating effluent from a supercritical water oxidation reactor  

DOE Patents (OSTI)

A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

Barnes, C.M.; Shapiro, C.

1997-11-25T23:59:59.000Z

213

Overcoming Solubility Limitations to Zinc Addition in Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

Zinc addition to the reactor coolant system (RCS) of a pressurized water reactor (PWR) is being used for dose rate reduction and primary water stress corrosion cracking (PWSCC) mitigation. This report summarizes results of aqueous zinc oxide solubility experiments from 150 to 350 degrees Celsius (302 to 662 degrees Fahrenheit). These experiments were performed to develop quantitative models of solubility and aqueous-phase solute speciation behavior as functions of temperature, pH, and solution compositio...

2001-11-29T23:59:59.000Z

214

Nuclear Maintenance Applications Center: Reactor Recirculation Pump Seal Maintenance Guide  

Science Conference Proceedings (OSTI)

In 1993, the Electric Power Research Institute (EPRI) published Main Coolant Pump Seal Maintenance Guide (report TR-100855). That report provides guidance on maintenance and troubleshooting of main coolant pump seals but was generic in naturethe information was relevant to pressurized water reactors (PWRs) and boiling water reactors (BWRs).

2008-12-18T23:59:59.000Z

215

An analysis of radionuclide behavior in water pools during accidents at the Annular Core Research Reactor  

SciTech Connect

Physical and chemical phenomena that will affect the behavior of radionuclides released from fuel in the Annular Core Research Reactor during a hypothetical, core disruptive accident are described. The phenomena include boiling of water on heated clad, metal-water reactions, vapor nucleation to form aerosol particles, coagulation of aerosol particles, aerosol deposition within bubbles rising through the shield pool, vapor dissolution in the shield pool, and revaporization of radionuclides from the shield pool. A model of these phenomena is developed and applied to predict the release of radionuclides to the confinement building of the Annular Core Research Reactor. It is found that the shield pool provides overall decontamination factors for particulate of about 2.8 {times} 10{sup 5} and decontamination factors for noble gases of about 2.5--3.7. These results are found to be sensitive to the predicted clad temperature and bubble behavior in the shield pool. Slow revalorization of krypton, xenon and iodine from the shield pool is shown to create a prolonged, low-intensity source term of radioactive material to the confinement atmosphere.

Powers, D.A.

1992-08-01T23:59:59.000Z

216

Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design  

DOE Green Energy (OSTI)

The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal tube film evaporation design used successfully with the BN-350 nuclear plant in Aktau, Kazakhstan. Parametric studies have been performed to optimize the balance of plant design. Also, an economic analysis has been performed, which shows that IRIS-D should be able to provide electricity and clean water at highly competitive costs.

Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

2004-10-06T23:59:59.000Z

217

Actinide minimization using pressurized water reactors  

E-Print Network (OSTI)

Transuranic actinides dominate the long-term radiotoxity in spent LWR fuel. In an open fuel cycle, they impose a long-term burden on geologic repositories. Transmuting these materials in reactor systems is one way to ease ...

Visosky, Mark Michael

2006-01-01T23:59:59.000Z

218

Rethinking the light water reactor fuel cycle  

E-Print Network (OSTI)

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01T23:59:59.000Z

219

CHEMICAL ASPECTS OF PELLET-CLADDING INTERACTION IN LIGHT WATER REACTOR FUEL ELEMENTS  

E-Print Network (OSTI)

ANS/ENS Topical Meeting on Reactor Safety Aspects of FuelINTERACTION IN LiaiT-WATER-REACTOR FUEL ELEMENTS by D. R.PCI) in light water reactor fuel elements, the chemical

Olander, D.R.

2010-01-01T23:59:59.000Z

220

A model for calculation of RCS pressure during reflux boiling under reduced inventory conditions and its assessment against PKL data. [Reactor Cooling Systems (RCS)  

Science Conference Proceedings (OSTI)

There has been recent interest in the United States concerning the loss of residual heat removal system (RHRS) under reduced coolant inventory conditions for pressurized water reactors. This issue is also of interest in the Federal Republic of Germany and an experiment was performed in the integral PKL-HI experimental facility at Siemens-KWU to supply applicable data. Recently, an NRC-sponsored effort has been undertaken at the Idaho-National Engineering Laboratory to identify and analyze the important thermal-hydraulic phenomena in pressurized water reactors following the long term loss-of-RHRS during reduced inventory operation. The thermal-hydraulic response of a closed reactor coolant system during such a transient is investigated in this report. Some of the specific processes investigated include: reflux condensation in the steam generators, the corresponding pressure increase in the reactor coolant system, and void fraction distributions on the primary side of the system. Mathematical models of these and other physical processes Experiment B4.5.

Palmrose, D.E. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Mandl, R.M. (Siemens AG, Berlin (Germany))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EPRI Materials Management Matrix Project: Advanced Light-Water Reactor - Pressurized Water Reactor Degradation Matrix - Revision 1  

Science Conference Proceedings (OSTI)

The Advanced Light Water Reactor - Pressurized Water Reactor Degradation Matrix (ALWR PWR DM) is an integral piece of the Electric Power Research Institutes (EPRIs) Materials Management Matrix (MMM) initiative for ALWR designs. The MMM provides a tool to assist the industry in proactive identification and consideration of materials issues and mitigation/management opportunities from the design phase through component fabrication and plant construction to operations and maintenance.

2010-09-22T23:59:59.000Z

222

Detection and characterization of flaws in segments of light water reactor pressure vessels  

Science Conference Proceedings (OSTI)

Studies have been conducted to determine flaw density in segments cut from light water reactor (LWR) pressure vessels as part of the Oak Ridge National Laboratory's Heavy-Section Steel Technology (HSST) Program. Segments from the Hope Creek Unit 2 vessil and the Pilgrim Unit 2 Vessel were purchased from salvage dealers. Hope Creek was a boiling water reactor (BWR) design and Pilgrim was a pressurized water reactor (PWR) design. Neither were ever placed in service. Objectives were to evaluate these LWR segments for flaws with ultrasonic and liquid penetrant techniques. Both objectives were successfully completed. One significant indication was detected in a Hope Creek seam weld by ultrasonic techniques and characterized by further analyses terminating with destructive correlation. This indication (with a through-wall dimension of approx.6 mm (approx.0.24 in.)) was detected in only 3 m (10 ft) of weldment and offers extremely limited data when compared to the extent of welding even in a single pressure vessel. However, the detection and confirmation of the flaw in the arbitrarily selected sections implies the Marshall report estimates (and others) are nonconservative for such small flaws. No significant indications were detected in the Pilgrim material by ultrasonic techniques. Unfortunately, the Pilgrim segments contained relatively little weldment; thus, we limited our ultrasonic examinations to the cladding and subcladding regions. Fluorescent liquid penetrant inspection of the cladding surfaces for both LWR segments detected no significant indications (i.e., for a total of approximately 6.8 m/sup 2/ (72 ft/sup 2/) of cladding surface).

Cook, K.V.; Cunningham, R.A. Jr.; McClung, R.W.

1987-01-01T23:59:59.000Z

223

Plutonium Recycling in Light Water Reactors at Framatome ANP: Status and Trends  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Use of Alternate Fuels in Light Water Reactors

Dieter Porsch; Walter Stach; Pascal Charmensat; Michel Pasquet

224

2013 Interim Review of the Pressurized Water Reactor Secondary Water Chemistry Guideline Revision 7  

Science Conference Proceedings (OSTI)

As required by Nuclear Energy Institute (NEI) 97-06 (Steam Generator Program Guidelines) and NEI 03-08 (Guideline for the Management of Materials Issues), the Electric Power Research Institute (EPRI) periodically updates its Pressurized Water Reactor (PWR) water chemistry guidelines when new information becomes available. An industry review committee meeting in June 2013 determined that a revision of the 2009 version of EPRI’s Pressurized Water Reactor Secondary Water ...

2013-10-18T23:59:59.000Z

225

AN EVALUATION OF HEAVY WATER REACTORS FOR POWER  

DOE Green Energy (OSTI)

Reference designs for pressurized and direct-boiling D/sub 2/O reactors were prepared for electrical outputs of 20, 100, and 250 electrical Mw. A number of possible core designs were considered and those utilized which seemed most appropriate to give low-cost power. The technology and costs available today were employed in the preparation of the over-all plant designs. The Consolidated Western Steel Division of U. S. Steel Corporation assisted by preparing a comprehensive report on the design of large pressure vessels and containment vessels. Zr-clad U fuel elements were used as the study basis, but the effect of using UO/sub 2/ and stainless steel cladding was also considered. The principal results found were: (1) Over a wide range of operating conditions snd economic situations, enriched U (up to perhaps 1.4% U/sup 235/) is presently more economic to employ in D/sub 2/O reactors than is natural U. (2) In the longer range, the use of natural U may become more economic as Zr fabrication costs decrease, continuous charge-discharge devices are developed to permit longer exposure levels, and pressure-vessel technology advances so that the large critical masses and core diameters required are not such sn economic penalty on the natural U. The results agree quite well with the data and discussions of the Canadians. (auth)

Herron, D.P.; Newkirk, W.H.; Puishes, A.

1957-10-01T23:59:59.000Z

226

Heavy Water Components Test Reactor Decommissioning - Major Component Removal  

SciTech Connect

The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

Austin, W.; Brinkley, D.

2010-05-05T23:59:59.000Z

227

Heavy Water Components Test Reactor Decommissioning - Major Component Removal  

SciTech Connect

The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

Austin, W.; Brinkley, D.

2010-05-05T23:59:59.000Z

228

Sampling Considerations for Monitoring Corrosion Products in the Reactor Coolant System in Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

Chemistry sampling of the reactor coolant system (RCS) of pressurized water reactors (PWRs) can provide significant information regarding the health of the primary system. Timely detection of increased corrosion product concentrations will aid in evaluating any risks associated with the onset of an axial offset anomaly, increased shutdown releases, increased out-of-core dose rates, or increased personnel doses. This report provides recommendations for improved RCS sampling.

2006-06-19T23:59:59.000Z

229

Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors  

SciTech Connect

Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

2005-10-01T23:59:59.000Z

230

2012 Interim Review of the Pressurized Water Reactor Secondary Water Chemistry Guideline Revision 7  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) periodically updates its Pressurized Water Reactor (PWR) water chemistry guidelines as new information becomes available and as required by Nuclear Energy Institute (NEI) 97-06 (Steam Generator Program Guidelines) and NEI 03-08 (Guideline for the Management of Materials Issues). An industry review committee meeting in September 2012 determined that a revision of the 2009 version of EPRI’s Pressurized Water Reactor Secondary ...

2012-12-21T23:59:59.000Z

231

EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF ULTRASONIC VIBRATION ON BURNOUT HEAT FLUX WITH BOILING WATER. Final Summary Report, October 3, 1960-July 31, 1961  

SciTech Connect

Experimental results were obtained on the effect of an ultrasonic field on the burnout heat flux for water flowing at atmospheric pressure, through an annular flow channel formed by a 1/4-in.-diameter electrically heated tube and a concentric glass tube of 3/4-in. ID. The active length of the central heating element was 5 1/2 in. The ultrasonic transducer, which was operated at 25,000 cps and a maximum electrical input of 300 watts, was located at the inlet end of the flow channel. The ultrasonic waves were propagated in the water in the direction of flow and thus parallel to the surface of the heating element. Burnout conditions covered channel inlet flows from 1.61 to 6.25 ft/sec and subcooling from 16 to 28 deg F. No effect of the ultrasonic field on the burnout heat flux or on the visible boiling phenomena at burnout conditions was detectable. During boiling at heat fluxes well below burnout, the effect of the ultrasonic field was a reduction in the diameter of the envelope of bubble activity surrounding the heating element. Visual inspectibn appeared to show that this reduction was associated with a smaller average bubble size and a greater frequency of bubble formation. However, all evidence of the presence of the ultrasonic field vanished as the flow velocity increased or as the heat flux increased to the burnout level. (auth)

Romie, F.E.; Aronson, C.A.

1961-07-31T23:59:59.000Z

232

Conceptual Design of a Large, Passive Pressure-Tube Light Water Reactor  

E-Print Network (OSTI)

A design for a large, passive, light water reactor has been developed. The proposed concept is a pressure tube reactor of similar design to CANDU reactors, but differing in three key aspects. First, a solid SiC-coated ...

Hejzlar, P.

233

METHOD OF OPERATING A HEAVY WATER MODERATED REACTOR  

DOE Patents (OSTI)

A method of removing fission products from the heavy water used in a slurry type nuclear reactor is described. According to the process the slurry is steam distilled with carbon tetrachloride so that at least a part of the heavy water and carbon tetrachloride are vaporized; the heavy water and carbon tetrachloride are separated; the carbon tetrachloride is returned to the steam distillation column at different points in the column to aid in depositing the slurry particles at the bottom of the column; and the heavy water portion of the condensate is purified. (AEC)

Vernon, H.C.

1962-08-14T23:59:59.000Z

234

Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors  

Science Conference Proceedings (OSTI)

The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.

Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

1981-09-01T23:59:59.000Z

235

Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2  

Science Conference Proceedings (OSTI)

The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

2002-09-01T23:59:59.000Z

236

Turbine Technologies for High Performance Light Water Reactors  

SciTech Connect

Available turbine technologies for a High Performance Light Water Reactor (HPLWR) have been analysed. For the envisaged steam pressures and temperatures of 25 MPa and 500 deg. C, no further challenges in turbine technologies have to be expected. The results from a steam cycle analysis indicate a net plant efficiency of 43.9% for the current HPLWR design. (authors)

Bitterman, D. [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Starflinger, J.; Schulenberg, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)

2004-07-01T23:59:59.000Z

237

Gravity Scaling of a Power Reactor Water Shield  

SciTech Connect

Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2006). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa{sup n}. These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

Reid, Robert S.; Pearson, J. Boise [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2008-01-21T23:59:59.000Z

238

Materials Reliability Program: Pressurized Water Reactor Internals Inspection and Evaluation Guidelines (MRP-227-A)  

Science Conference Proceedings (OSTI)

The Materials Reliability Program (MRP) developed inspection and evaluation (I&E) guidelines for managing long-term aging reactor vessel internal components of pressurized water reactors (PWRs) reactor internals. Specifically, the guidelines are applicable to reactor vessel internal structural components; they do not address fuel assemblies, reactivity control assemblies, or welded attachments to the reactor vessel.

2011-12-23T23:59:59.000Z

239

Mechanical design of a light water breeder reactor  

DOE Patents (OSTI)

In a light water reactor system using the thorium-232 -- uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements.

Fauth, Jr., William L. (Germantown, MD); Jones, Daniel S. (Pittsburgh, PA); Kolsun, George J. (Pittsburgh, PA); Erbes, John G. (San Jose, CA); Brennan, John J. (Bethel Park, PA); Weissburg, James A. (Pittsburgh, PA); Sharbaugh, John E. (Acme, PA)

1976-01-01T23:59:59.000Z

240

Fuel Summary Report: Shippingport Light Water Breeder Reactor  

SciTech Connect

The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

Illum, D.B.; Olson, G.L.; McCardell, R.K.

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Consortium for Advanced Simulation of Light Water Reactors  

SciTech Connect

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

2011-10-01T23:59:59.000Z

242

Pool boiling heat transfer characteristics of nanofluids  

E-Print Network (OSTI)

Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by ...

Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

243

Nucleate boiling bubble growth and departure  

E-Print Network (OSTI)

The vapor bubble formation on the heating surface during pool boiling has been studied experimentally. Experiments were made at the atmospheric pressure 28 psi and 40 psi, using degassed distilled water and ethanol. The ...

Staniszewski, Bogumil E.

1959-01-01T23:59:59.000Z

244

Assessment of innovative fuel designs for high performance light water reactors  

E-Print Network (OSTI)

To increase the power density and maximum allowable fuel burnup in light water reactors, new fuel rod designs are investigated. Such fuel is desirable for improving the economic performance light water reactors loaded with ...

Carpenter, David Michael

2006-01-01T23:59:59.000Z

245

Cold-water injection reanalysis for N Reactor  

Science Conference Proceedings (OSTI)

A re-analysis of the cold water injection transient, with a space- dependent, two-dimensional reactor kinetics code TWIGL has been completed. The analyses considered the impact of flux flattening on the consequences of this accident. Separate categories of cold water source were evaluated. Introduction of a sixth steam generator cell, postulated as a significant cold water transient in previous studies, was re-analyzed in greater depth. Activation of the emergency core cooling system (ECCS) and the main steam line break on the secondary side were also evaluated for worst-case condition. In all instances, the results of the analyses confirmed that N Reactor is well protected against the consequences of cold water reactivity transients by appropriate trip settings and by fast acting control systems. Accidents were analyzed for the possibilities that the control rods failed to insert, and safe shutdown was accomplished with the ball backup safety system. All calculations were performed for the flattened core. The flux flattened core did not alter the timing or the severity of the transient. The results of the re-analyses compare favorably with the analysis discussed in N Reactor Updated Safety Analysis Report (NUSAR) (UNI 1978). Total control aspects of cold water injection, a steady-state analysis, are unaffected by the conclusions of this report. The document contains detailed discussion of the computer analyses including the preparation of input, underlying assumptions, code validation discussion, and comparisons to past work. 10 refs., 27 figs.

Toffer, H.; Crowe, R.D.; Fortner, R.L.; Mohr, C.L.

1988-02-01T23:59:59.000Z

246

CIVILIAN POWER REACTOR PROGRAM. PART I. SUMMARY OF TECHNICAL AND ECONOMIC STATUS AS OF 1960. HEAVY WATER-MODERATED POWER REACTORS  

SciTech Connect

A revision of section 8 of TID-8516, Part I, is presented. The reactor concept which is presented is a change from the former design, a pressurized- pressure vessel-indirect cycle plant to a boiling-pressure tubedirect cycle plant. A description of the plant and a summary of characteristics for the 110- and 325- Mwe systems are given. (J.R.D.)

Hutton, J.H.; Davis, S.A.; Graves, C.C.; Duffy, J.G. comps.

1960-08-19T23:59:59.000Z

247

Film boiling on spheres in single- and two-phase flows.  

SciTech Connect

Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.

Liu, C.; Theofanous, T. G.

2000-08-29T23:59:59.000Z

248

An Assessment of PWR Water Chemistry Control in Advanced Light Water Reactors: U.S. EPR™  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) developed the Water Chemistry Guidelines to support improved industry water chemistry operations. This report reviews the AREVA US EPR design to assess the applicability of the EPRI Pressurized Water Reactor (PWR) Primary and Secondary Water Chemistry Guidelines to that design. It is anticipated that the timely identification of any inconsistencies will allow EPRI and its member utilities to resolve them before the first US EPR plant begins operation.

2011-12-15T23:59:59.000Z

249

An Assessment of PWR Water Chemistry in Advanced Light Water Reactors: US-APWR  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) developed the Water Chemistry Guidelines to support improved industry water chemistry operations. This report reviews the Mitsubishi US-APWR design to assess the applicability of the EPRI Pressurized Water Reactor (PWR) Primary and Secondary Water Chemistry Guidelines to that design. It is anticipated that the timely identification of any inconsistencies will allow EPRI and its member utilities to resolve them before the first Mitsubishi Nuclear Energy Systems...

2012-01-31T23:59:59.000Z

250

An Assessment of PWR Water Chemistry Control in Advanced Light Water Reactors: APR1400  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) developed the Water Chemistry Guidelines to support improved industry water chemistry operations. This report reviews the Korea Hydro & Nuclear Power (KHNP) APR1400 design to assess the applicability of the EPRI Pressurized Water Reactor (PWR) Primary (Volume 1) and Secondary (Volume 2) Water Chemistry Guidelines to that design. The timely identification of any inconsistencies and technical gaps will allow EPRI and its member utilities to resolve them ...

2012-12-13T23:59:59.000Z

251

Light Water Reactor Sustainability Program: Materials Aging and Degradation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Aging and Materials Aging and Degradation Technical Program Plan Light Water Reactor Sustainability Program: Materials Aging and Degradation Technical Program Plan Components serving in a nuclear reactor plant must withstand a very harsh environment including extended time at temperature, neutron irradiation, stress, and/or corrosive media. The many modes of degradation are complex and vary depending on location and material. However, understanding and managing materials degradation is a key for the continued safe and reliable operation of nuclear power plants. Extending reactor service to beyond 60 years will increase the demands on materials and components. Therefore, an early evaluation of the possible effects of extended lifetime is critical. The recent NUREG/CR-6923 gives a

252

Upper internals arrangement for a pressurized water reactor  

DOE Patents (OSTI)

In a pressurized water reactor with all of the in-core instrumentation gaining access to the core through the reactor head, each fuel assembly in which the instrumentation is introduced is aligned with an upper internals instrumentation guide-way. In the elevations above the upper internals upper support assembly, the instrumentation is protected and aligned by upper mounted instrumentation columns that are part of the instrumentation guide-way and extend from the upper support assembly towards the reactor head in hue with a corresponding head penetration. The upper mounted instrumentation columns are supported laterally at one end by an upper guide tube and at the other end by the upper support plate.

Singleton, Norman R; Altman, David A; Yu, Ching; Rex, James A; Forsyth, David R

2013-07-09T23:59:59.000Z

253

Accident Performance of Light Water Reactor Cladding Materials  

DOE Green Energy (OSTI)

During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-07-24T23:59:59.000Z

254

Metal-fueled HWR (heavy water reactors) severe accident issues: Differences and similarities to commercial LWRs (light water reactors)  

DOE Green Energy (OSTI)

Differences and similarities in severe accident progression and phenomena between commercial Light Water Reactors (LWR) and metal-fueled isotopic production Heavy Water Reactors (HWR) are described. It is very important to distinguish between accident progression in the two systems because each reactor type behaves in a unique manner to a fuel melting accident. Some of the lessons learned as a result of the extensive commercial severe accident research are not applicable to metal-fueled heavy water reactors. A direct application of severe accident phenomena developed from oxide-fueled LWRs to metal-fueled HWRs may lead to large errors or substantial uncertainties. In general, the application of severe accident LWR concepts to HWRs should be done with the intent to define the relevant issues, define differences, and determine areas of overlap. This paper describes the relevant differences between LWR and metal-fueled HWR severe accident phenomena. Also included in the paper is a description of the phenomena that govern the source term in HWRs, the areas where research is needed to resolve major uncertainties, and areas in which LWR technology can be directly applied with few modifications.

Ellison, P.G.; Hyder, M.L.; Monson, P.R. (Westinghouse Savannah River Co., Aiken, SC (USA)); Coryell, E.W. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

255

Program on Technology Innovation: Review of EPRI Advanced Light Water Reactor Utility Requirement Document to Include Small Modular Light Water Reactors  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) conducted a limited scope assessment to better understand what areas of the current EPRI advanced light water reactor (ALWR) Utility Requirement Document (URD) should be modified to ensure that the document is applicable to light water small modular reactors (LWSMRs). The LWSMRs differ from current light water reactors in that LWSMRs are significantly smaller than existing plants and utilize revolutionary design and construction strategies.

2011-04-25T23:59:59.000Z

256

Advanced Water-Gas Shift Membrane Reactor  

DOE Green Energy (OSTI)

The overall objectives for this project were: (1) to identify a suitable PdCu tri-metallic alloy membrane with high stability and commercially relevant hydrogen permeation in the presence of trace amounts of carbon monoxide and sulfur; and (2) to identify and synthesize a water gas shift catalyst with a high operating life that is sulfur and chlorine tolerant at low concentrations of these impurities. This work successfully achieved the first project objective to identify a suitable PdCu tri-metallic alloy membrane composition, Pd{sub 0.47}Cu{sub 0.52}G5{sub 0.01}, that was selected based on atomistic and thermodynamic modeling alone. The second objective was partially successful in that catalysts were identified and evaluated that can withstand sulfur in high concentrations and at high pressures, but a long operating life was not achieved at the end of the project. From the limited durability testing it appears that the best catalyst, Pt-Re/Ce{sub 0.333}Zr{sub 0.333}E4{sub 0.333}O{sub 2}, is unable to maintain a long operating life at space velocities of 200,000 h{sup -1}. The reasons for the low durability do not appear to be related to the high concentrations of H{sub 2}S, but rather due to the high operating pressure and the influence the pressure has on the WGS reaction at this space velocity.

Sean Emerson; Thomas Vanderspurt; Susanne Opalka; Rakesh Radhakrishnan; Rhonda Willigan

2009-01-07T23:59:59.000Z

257

Multi-Applications Small Light Water Reactor - NERI Final Report  

Science Conference Proceedings (OSTI)

The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle.

S. Michale Modro; James E. Fisher; Kevan D. Weaver; Jose N. Reyes, Jr.; John T. Groome; Pierre Babka; Thomas M. Carlson

2003-12-01T23:59:59.000Z

258

Process for treating effluent from a supercritical water oxidation reactor  

DOE Patents (OSTI)

The present invention relates generally to a method for treating and recycling the effluent from a supercritical water oxidation reactor and more specifically to a method for treating and recycling the effluent by expanding the effluent without extensive cooling. Supercritical water oxidation is the oxidation of fuel, generally waste material, in a body of water under conditions above the thermodynamic critical point of water. The current state of the art in supercritical water oxidation plant effluent treatment is to cool the reactor effluent through heat exchangers or direct quench, separate the cooled liquid into a gas/vapor stream and a liquid/solid stream, expand the separated effluent, and perform additional purification on gaseous, liquid, brine and solid effluent. If acid gases are present, corrosion is likely to occur in the coolers. During expansion, part of the condensed water will revaporize. Vaporization can damage the valves due to cavitation and erosion. The present invention expands the effluent stream without condensing the stream. Radionuclides and suspended solids are more efficiently separated in the vapor phase. By preventing condensation, the acids are kept in the much less corrosive gaseous phase thereby limiting the damage to treatment equipment. The present invention also reduces the external energy consumption, by utilizing the expansion step to also cool the effluent.

Barnes, C.M.; Shapiro, C.

1995-12-31T23:59:59.000Z

259

Nuclear reactor with low-level core coolant intake  

DOE Patents (OSTI)

A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.

Challberg, Roy C. (Livermore, CA); Townsend, Harold E. (Campbell, CA)

1993-01-01T23:59:59.000Z

260

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES  

Science Conference Proceedings (OSTI)

In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP) Conferences. This work is also relevant to the ongoing efforts of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, Section XI, Working Group on Operating Plant Criteria (WGOPC) efforts to incorporate nozzle fracture mechanics solutions into a revision to ASME B&PV Code, Section XI, Nonmandatory Appendix G.

Walter, Matthew [Structural Integrity Associates, Inc.; Yin, Shengjun [ORNL; Stevens, Gary [U.S. Nuclear Regulatory Commission; Sommerville, Daniel [Structural Integrity Associates, Inc.; Palm, Nathan [Westinghouse Electric Company, Cranberry Township, PA; Heinecke, Carol [Westinghouse Electric Company, Cranberry Township, PA

2012-01-01T23:59:59.000Z

262

2011 Interim Review of the Pressurized Water Reactor Secondary Water Chemistry Guidelines -- Revision 7  

Science Conference Proceedings (OSTI)

EPRI periodically updates its PWR water chemistry guidelines as new information becomes available and as required by NEI 97-06 (Steam Generator Program Guidelines) and NEI 03-08 (Guideline for the Management of Materials Issues). An industry review committee meeting in September 2011 determined that a revision of the 2009 version of EPRI's Pressurized Water Reactor Secondary Water Chemistry Guidelines is not warranted at this time, nor is interim guidance required.

2011-12-15T23:59:59.000Z

263

Program on Technology Innovation: Cooling Water Review of the Advanced Light Water Reactor Utility Requirements Document  

Science Conference Proceedings (OSTI)

The EPRI Utility Requirements Document (URD) was developed and last revised in 1999 to provide a list of requirements for the design and construction of new nuclear power plants. The objective of this project was to review URD Vol. III. This volume covers passive advanced light water reactors (ALWRs) for plant design requirements with respect to operations and maintenance (O&M) practices of the plant's cooling water systems (not including the circulating water system used for condenser cooling). The revi...

2007-07-26T23:59:59.000Z

264

Recycle of LWR (Light Water Reactor) actinides to an IFR (Integral Fast Reactor)  

SciTech Connect

A large quantity of actinide elements is present in irradiated Light Water Reactor (LWR) fuel that is stored throughout the world. Because of the high fission-to-capture ratio for the transuranium (TRU) elements with the high-energy neutrons in the metal-fueled Integral Fast Reactor (IFR), that reactor can consume these elements effectively. The stored fuel represents a valuable resource for an expanding application of fast power reactors. In addition, removal of the TRU elements from the spent LWR fuel has the potential for increasing the capacity of a high-level waste facility by reducing the heat loads and increasing the margin of safety in meeting licensing requirements. Argonne National Laboratory (ANL) is developing a pyrochemical process, which is compatible with the IFR fuel cycle, for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. The major objective of the LWR fuel recovery process is high TRU element recovery, with decontamination a secondary issue, because fission product removal is accomplished in the IFR process. The extensive pyrochemical processing studies of the 1960s and 1970s provide a basis for the design of possible processes. Two processes were selected for laboratory-scale investigation. One is based on the Salt Transport Process studied at ANL for mixed-oxide fast reactor fuel, and the other is based on the blanket processing studies done for ANL's second Experimental Breeder Reactor (EBR-2). This paper discusses the two processes and is a status report on the experimental studies. 5 refs., 2 figs., 2 tabs.

Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

1991-01-01T23:59:59.000Z

265

NEUTRONIC REACTOR SYSTEM  

DOE Patents (OSTI)

A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

Treshow, M.

1959-02-10T23:59:59.000Z

266

Transpiring wall supercritical water oxidation reactor salt deposition studies  

Science Conference Proceedings (OSTI)

Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G. [and others

1996-09-01T23:59:59.000Z

267

Transactions of the nineteenth water reactor safety information meeting  

DOE Green Energy (OSTI)

This report contains summaries of papers on reactor safety research to be presented at the 19th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 28--30, 1991. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from the governments and industry in Europe and Japan are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting, and are given in the order of their presentation in each session. The individual summaries have been cataloged separately.

Weiss, A.J. (comp.)

1991-10-01T23:59:59.000Z

268

Mechanism of nucleate pool boiling heat transfer to sodium and the criterion for stable boiling  

E-Print Network (OSTI)

A comparison between liquid metals and other common fluids, like water, is made as regards to the various stages of nucleate pool boiling. It is suggested that for liquid metals the stage of building the thermal layer plays ...

Shai, Isaac

1967-01-01T23:59:59.000Z

269

Materials Inventory Database for the Light Water Reactor Sustainability Program  

Science Conference Proceedings (OSTI)

Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

Kazi Ahmed; Shannon M. Bragg-Sitton

2013-08-01T23:59:59.000Z

270

The impact of passive safety systems on desirability of advanced light water reactors  

E-Print Network (OSTI)

This work investigates whether the advanced light water reactor designs with passive safety systems are more desirable than advanced reactor designs with active safety systems from the point of view of uncertainty in the ...

Eul, Ryan C

2006-01-01T23:59:59.000Z

271

Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems  

Science Conference Proceedings (OSTI)

The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

D. E. Shropshire

2009-01-01T23:59:59.000Z

272

CIVILIAN POWER REACTOR PROGRAM. PART II. ECONOMIC POTENTIAL AND DEVELOPMENT PROGRAM AS OF 1959  

SciTech Connect

The status of technology of nuclear power reactors in 1959 is reviewed. General research and engineering development activities are discussed. The reactors considered include the pressurized water, boiling water, light water moderated superheat, organic cooled, sodium graphite, gas cooled enriched fuel, gas cooled natural uranium, fast breeder, aqueous homogeneous, and heavy water. Power costs are compared with the cost of power from conventional plants. (C.H.)

1960-01-01T23:59:59.000Z

273

HEAVY WATER MODERATED POWER REACTORS. Progress Report for October 1959  

SciTech Connect

Continued progress is reported on the design and construction of the Heavy Water Components Test Reactor; 78% of the firm design and 17% of the construction were complete at the end of October 1959. Approximateiy 15% of the firm design for the isolated coolant loops of the HWCTR was also complete. The results of further fabrication tests and irradiation tests of fuel tubes of natural uranium metal are reported. One of the metal tubes failed under irradiation, while other irradiations of metal fuels progressed satisfactorily. (auth)

Hood, R.R.; Isakoff, L. comps.

1959-11-01T23:59:59.000Z

274

High Performance Fuel Desing for Next Generation Pressurized Water Reactors  

SciTech Connect

The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

Mujid S. Kazimi; Pavel Hejzlar

2006-01-31T23:59:59.000Z

275

REACTOR  

DOE Patents (OSTI)

A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

Roman, W.G.

1961-06-27T23:59:59.000Z

276

Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report  

SciTech Connect

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

R. Johansen

2012-09-01T23:59:59.000Z

277

ANL/NE-12/43 Light Water Reactor Sustainability (LWRS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ANLNE-1243 Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping ...

278

Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report  

SciTech Connect

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

R. Johansen

2013-09-01T23:59:59.000Z

279

Transmutation rates in the annulus gas of pressure tube water reactors.  

E-Print Network (OSTI)

??CANDU (CANada Deuterium Uranium) reactor utilizes Pressure Tube (PT) fuel channel design and heavy water as a coolant. Fuel channel annulus gas acts as an… (more)

Ahmad, Mohammad Mateen

2011-01-01T23:59:59.000Z

280

Three-dimensional modeling and simulation of vapor explosions in Light Water Reactors.  

E-Print Network (OSTI)

??Steam explosions can occur during a severe accident in light water nuclear reactors with the core melting as the consequence of interaction of molten core… (more)

Schröder, Maxim

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sustained Recycle in Light Water and Sodium-Cooled Reactors  

Science Conference Proceedings (OSTI)

From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

2010-11-01T23:59:59.000Z

282

Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report  

Science Conference Proceedings (OSTI)

Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

R. Johansen

2011-09-01T23:59:59.000Z

283

DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond  

SciTech Connect

An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

Pan, Paul Y [Los Alamos National Laboratory

2010-12-10T23:59:59.000Z

284

Light Water Reactor Sustainability Program Integrated Program Plan  

SciTech Connect

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

2013-04-01T23:59:59.000Z

285

Light Water Reactor Sustainability Program Integrated Program Plan  

Science Conference Proceedings (OSTI)

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

2012-01-01T23:59:59.000Z

286

The effect of thermal aging and boiling water reactor environment on Type 316L stainless steel welds  

E-Print Network (OSTI)

The thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels and duplex stainless steels. Spinodal decomposition is largely responsible for the well known "475°C" embrittlement ...

Lucas, Timothy R

2011-01-01T23:59:59.000Z

287

An assessment of BWR (boiling water reactor) Mark III containment challenges, failure modes, and potential improvements in performance  

Science Conference Proceedings (OSTI)

This report describes risk-significant challenges posed to Mark III containment systems by severe accidents as identified for Grand Gulf. Design similarities and differences between the Mark III plants that are important to containment performance are summarized. The accident sequences responsible for the challenges and the postulated containment failure modes associated with each challenge are identified and described. Improvements are discussed that have the potential either to prevent or delay containment failure, or to mitigate the offsite consequences of a fission product release. For each of these potential improvements, a qualitative analysis is provided. A limited quantitative risk analysis is provided for selected potential improvements. 21 refs., 5 figs., 46 tabs.

Schroeder, J.A.; Pafford, D.J.; Kelly, D.L.; Jones, K.R.; Dallman, F.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1991-01-01T23:59:59.000Z

288

Technologies for Upgrading Light Water Reactor Outlet Temperature  

SciTech Connect

Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

2013-07-01T23:59:59.000Z

289

High-Fidelity Light Water Reactor Analysis with the Numerical Nuclear Reactor  

Science Conference Proceedings (OSTI)

Technical Paper / Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications

David P. Weber; Tanju Sofu; Won Sik Yang; Thomas J. Downar; Justin W. Thomas; Zhaopeng Zhong; Jin Young Cho; Kang Seog Kim; Tae Hyun Chun; Han Gyu Joo; Chang Hyo Kim

290

Reactor physics behavior of transuranic-bearing TRISO-particle fuel in a pressurized water reactor  

SciTech Connect

Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU) - only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is retained. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint. (authors)

Pope, M. A.; Sen, R. S.; Ougouag, A. M.; Youinou, G. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Boer, B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); SCK-CEN, Boertang 200, BE-2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

291

Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor  

SciTech Connect

Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.

Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag; Gilles Youinou; Brian Boer

2012-04-01T23:59:59.000Z

292

Light Water Reactor Sustainability Program - Non-Destructive Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program - Non-Destructive Program - Non-Destructive Evaluation R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters.

293

Light Water Reactor Sustainability Program: Integrated Program Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Program Plan Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas- emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by more than 30% from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power

294

Light-water breeder reactor (LWBR Development Program)  

DOE Patents (OSTI)

Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

Beaudoin, B.R.; Cohen, J.D.; Jones, D.H.; Marier, L.J. Jr.; Raab, H.F.

1972-06-20T23:59:59.000Z

295

SAFETY EVALUATION OF LIGHT-WATER-MODERATED POWER REACTOR  

SciTech Connect

Important problems associated with safety evaluation are reviewed. In contrast to absolute safety,'' the concept of social safety'' is explained and factors to compose social safety'' are evaluated. Some comments are made on the philosophy of safety evaluation. A core spray and enclosure spray systems, which are essential with respect to safety evaluation of the maximum credible accident of light-water-moderated power reactors, are analyzed in detail. In evaluation of a core spray system, detailed analysis is made on loss-of- coolant accident, and effects of core spray system design (spray initiation time, spray flow rate, spray distribution, etc.) on fission release are quantitatively clarified. In evaluation of an enclosure spray system, various product release reduction factors are calculated and relative importance of an enclosure spray system is discussed. A hypothetical accident is analyzed. (auth)

Togo, Y.

1963-03-01T23:59:59.000Z

296

Initial Modeling of a Pressurized Water Reactor Completed Using RELAP-7 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initial Modeling of a Pressurized Water Reactor Completed Using Initial Modeling of a Pressurized Water Reactor Completed Using RELAP-7 Initial Modeling of a Pressurized Water Reactor Completed Using RELAP-7 January 29, 2013 - 12:06pm Addthis Schematic of the OECD PWR benchmark used in the initial RELAP-7 demonstration Schematic of the OECD PWR benchmark used in the initial RELAP-7 demonstration RELAP-7 is a nuclear reactor system safety analysis code. Development started in October 2011, and during the past quarter the initial capabilities of RELAP-7 were demonstrated by simulating a steady-state single-phase pressurized water reactor (PWR) with two parallel loops and multiple reactor core flow channels (Fig. 1). The PWR configuration matched that of the Three Mile Island 1 LWR, which is a benchmark problem from the

297

Development of Novel Water-Gas Shift Membrane Reactor  

DOE Green Energy (OSTI)

This report summarizes the objectives, technical barrier, approach, and accomplishments for the development of a novel water-gas-shift (WGS) membrane reactor for hydrogen enhancement and CO reduction. We have synthesized novel CO{sub 2}-selective membranes with high CO{sub 2} permeabilities and high CO{sub 2}/H{sub 2} and CO{sub 2}/CO selectivities by incorporating amino groups in polymer networks. We have also developed a one-dimensional non-isothermal model for the countercurrent WGS membrane reactor. The modeling results have shown that H{sub 2} enhancement (>99.6% H{sub 2} for the steam reforming of methane and >54% H{sub 2} for the autothermal reforming of gasoline with air on a dry basis) via CO{sub 2} removal and CO reduction to 10 ppm or lower are achievable for synthesis gases. With this model, we have elucidated the effects of system parameters, including CO{sub 2}/H{sub 2} selectivity, CO{sub 2} permeability, sweep/feed flow rate ratio, feed temperature, sweep temperature, feed pressure, catalyst activity, and feed CO concentration, on the membrane reactor performance. Based on the modeling study using the membrane data obtained, we showed the feasibility of achieving H{sub 2} enhancement via CO{sub 2} removal, CO reduction to {le} 10 ppm, and high H{sub 2} recovery. Using the membrane synthesized, we have obtained <10 ppm CO in the H{sub 2} product in WGS membrane reactor experiments. From the experiments, we verified the model developed. In addition, we removed CO{sub 2} from a syngas containing 17% CO{sub 2} to about 30 ppm. The CO{sub 2} removal data agreed well with the model developed. The syngas with about 0.1% CO{sub 2} and 1% CO was processed to convert the carbon oxides to methane via methanation to obtain <5 ppm CO in the H{sub 2} product.

Ho, W. S. Winston

2004-12-29T23:59:59.000Z

298

Materials Reliability Program: Pressurized Water Reactor Internals Aging Management Program Development Template (MRP-342)  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) has completed and published guidance for managing the effects of aging degradation in pressurized water reactor (PWR) internals. The initial version of this report, Materials Reliability Program: Pressurized Water Reactor Internals Inspection and Evaluation Guidelines (MRP-227, Revision 0), was submitted to the staff of the U. S. Nuclear Regulatory Commission (NRC) ...

2012-10-23T23:59:59.000Z

299

Pollution prevention opportunity assessment for the supercritical water oxidation flow reactor  

SciTech Connect

This pollution prevention opportunity assessment was conducted to evaluate the operation of the supercritical water oxidation flow reactor, which is located in Building 906, Room 107. This assessment documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of the supercritical water oxidation reactor process.

Phillips, N.M.

1995-06-01T23:59:59.000Z

300

Engineering activities at the MIT research reactor in support of power reactor technology  

SciTech Connect

The Massachusetts Institute of Technology (MIT) research reactor (MITR-II) is a 5-MW(thermal) light-water-cooled and-moderated reactor (LWR) with in-core neutron and gamma dose rates that closely approximate those in current LWRs. Compact in-pile loops that simulate pressurized water reactor (PWR) and boiling water reactor (BWR) thermal hydraulics and coolant chemistry have been designed for installation in the MITR-II. A PWR loop has been completed and is currently operating in the reactor. A BWR loop is under construction, and an in-pile facility for irradiation-assisted stress corrosion crack (IASCC) testing is being designed. Another major area of research and on-line testing is the closed-loop, nonlinear, digital control of various reactor parameters, including the power level, temperature, and net energy production.

Harling, O.K.; Bernard, J.A.; Driscoll, M.J.; Kohse, G.E.; Ballinger, R.G.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Final Report on Isotope Ratio Techniques for Light Water Reactors  

SciTech Connect

The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

2009-07-01T23:59:59.000Z

302

MIXED-OXIDE FUEL USE IN COMMERCIAL LIGHT WATER REACTORS  

E-Print Network (OSTI)

In a Commission briefing on high-bumup fuel on March 25, 1997, the staff said that they would prepare a white paper on mixed-oxide (MOX) fuel in anticipation of a DOE program to bum excess weapons plutonium in commercial reactors. This memorandum and its attachment comprise that paper and are provided to inform the Commissioners of technical issues associated with such a program. More recently, on February 5, 1999, I was contacted by the Nuclear Control Institute regarding a paper they have written on this subject. They presented that paper to the staff in a public meeting on April 7, 1999. The Nuclear Control Institute's written paper had been provided to the staff earlier, and we have taken the paper into consideration in preparing this memorandum. Back-ground In January 1997, the U.S. Department of Energy released a record of decision for the storage and disposition of weapons-usable fissile materials. In this record, DOE recommended that excess weapons-grade plutonium be disposed of by two methods: (1) reconstituting the plutonium into mixed-oxide (MOX) fuel rods and burning it in current light water reactors, and (2) immobilizing the plutonium in glass logs with appropriate radioactive isotopes to deter theft prior to geologic disposal. Based on current information, it now appears that, if the MOX fuel method is utilized, fuel fabrication will take place at the Savannah River site in South Carolina with burning in nearby Westinghouse-type PWRs. Although DOE will probably not receive funding in FY 2000 for developing a license application, Congress has already given its approval for NRC licensing authority over a MOX fuel fabrication facility operated under

United States; William D. Travers

1999-01-01T23:59:59.000Z

303

Accident management for indian pressurized heavy water reactors  

Science Conference Proceedings (OSTI)

Indian nuclear power program as of now is mainly based on Pressurized Heavy Water Reactors (PHWRs). Operating Procedures for normal power operation and Emergency Operating Procedures for operational transients and accidents within design basis exist for all Indian PHWRs. In addition, on-site and off-site emergency response procedures are also available for these NPPs. The guidelines needed for severe accidents mitigation are now formally being documented for Indian PHWRs. Also, in line with International trend of having symptom based emergency handling, the work is in advanced stage for preparation of symptom-based emergency operating procedures. Following a plant upset condition; a number of alarms distributed in different information systems appear in the control room to aid operator to identify the nature of the event. After identifying the event, appropriate intervention in the form of event based emergency operating procedure is put into use by the operating staff. However, if the initiating event cannot be unambiguously identified or after the initial event some other failures take place, then the selected event based emergency operating procedure will not be optimal. In such a case, reactor safety is ensured by monitoring safety functions (depicted by selected plant parameters grouped together) throughout the event handling so that the barriers to radioactivity release namely, fuel and fuel cladding, primary heat transport system integrity and containment remain intact. Simultaneous monitoring of all these safety functions is proposed through status trees and this concept will be implemented through a computer-based system. For beyond design basis accidents, event sequences are identified which may lead to severe core damage. As part of this project, severe accident mitigation guidelines are being finalized for the selected event sequences. The paper brings out the details of work being carried out for Indian PHWRs for symptom based event handling and severe accident management. (authors)

Hajela, S.; Grover, R.; Ghadge, S.G.; Bajaj, S.S. [Directorate of Safety, Nuclear Power Corporation of India Limited Nabhikiya Urja Bhawan, Anushakti Nagar, Mumbai-400 094 (India)

2006-07-01T23:59:59.000Z

304

Passive decay heat removal system for water-cooled nuclear reactors  

DOE Patents (OSTI)

A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

Forsberg, Charles W. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

305

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability (LWRS) nondestructive evaluation (NDE) Workshops were held at Oak Ridge National Laboratory (ORNL) during July 30th to August 2nd, 2012. This activity was conducted to help develop the content of the NDE R&D roadmap for the materials aging and degradation (MAaD) pathway of the LWRS program. The workshops focused on identifying NDE R&D needs in four areas: cables, concrete, reactor pressure vessel, and piping. A selected group of subject matter experts (SMEs) from DOE national

306

Multi-Application Small Light Water Reactor Final Report  

Science Conference Proceedings (OSTI)

The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO{sub 2}, 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept. Applications such as cogeneration, water desalination or district heating were not addressed directly in the economic analyses since these depend more on local conditions, demand and economy and can not be easily generalized. Current economic performance experience and available cost data were used. The preliminary cost estimate, based on a concept that could be deployed in less than a decade, is: (1) Net Electrical Output--1050 MWe; (2) Net Station Efficiency--23%; (3) Number of Power Units--30; (4) Nominal Plant Capacity Factor--95%; (5) Total capital cost--$1241/kWe; and (6) Total busbar cost--3.4 cents/kWh. The project includes a testing program that has been conducted at Oregon State University (OSU). The test facility is a 1/3-height and 1/254.7 volume scaled design that will operate at full system pressure and temperature, and will be capable of operation at 600 kW. The design and construction of the facility have been completed. Testing is scheduled to begin in October 2002. The MASLWR conceptual design is simple, safe, and economical. It operates at NSSS parameters much lower than for a typical PWR plant, and has a much simplified power generation system. The individual reactor modules can be operated as on/off units, thereby limiting operational transients to startup and shutdown. In addition, a plant can be built in increments that match demand increases. The ''pull and replace'' concept offers automation of refueling and maintenance activities. Performing refueling in a single location improves proliferation resistance and eliminates the threat of diversion. Design certification based on testing is simplified because of the relatively low cost of a full-scale prototype facility. The overall conclusion is that while the efficiency of the power generation unit is much lower (23% versus 30%), the reduction in capital cost due to simplification of design more than makes up for the increased cost of nuclear fuel. The design concept complies with the safety requirements and criteria. It also satisfies the goals for modularity, standard plant design, certification before construction, c

Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

2003-12-01T23:59:59.000Z

307

Hard boiling eggs  

NLE Websites -- All DOE Office Websites (Extended Search)

Hard boiling eggs Hard boiling eggs Name: Sandburg J High Age: N/A Location: N/A Country: N/A Date: N/A Question: We have been studying chemical and physical changes in 6th grade science class and we were wondering whether hard boiling an egg would be a chemical or a physical change? Thanks for a reply! Replies: You decide. Here's what's going on: the proteins in the fresh egg are in the shape of tight little balls. When you boil the egg, these proteins unravel ("denature"), like balls of yarn unraveling into loose skeins. The strands of protein then get all tangled up with one another, so much so that they are locked in place and can no longer move. They also lock into place the other liquid components of the egg, forming all together what's called a "gel" instead of the liquid you started off with. The gel acts like a soft, rubbery solid because of the network of protein strands holding it all together. It's certainly true that when the protein denatures some chemical bonds are broken, but the most important effect is the tangling up process.

308

Effects of light water reactor coolant environment on the fatigue lives of  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of light water reactor coolant environment on the fatigue lives of Effects of light water reactor coolant environment on the fatigue lives of reactor materials July 8, 2013 A metal component can become progressively degraded, and its structural integrity can be adversely impacted when it is subjected to repeated fluctuating loads, or fatigue loading. Fatigue loadings on nuclear reactor pressure vessel components can occur because of changes in pressure and temperature caused by transients during operation, such as reactor startup or shutdown and turbine trip events. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code recognizes fatigue as a possible cause of failure of reactor materials and provides rules for designing nuclear power plant components to avoid fatigue failures. For various materials, the ASME Code defines the

309

Multilayer ALD Coating of Light Water Reactor Zirconium Alloy ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The accident at Fukushima Daiichi nuclear power plant raised concerns about nuclear reactors safety. The plant experienced an accident in ...

310

Mitigation of IASCC in Light Water Reactor Core Internals  

Science Conference Proceedings (OSTI)

Environmentally Assisted Cracking Susceptibility Assessment of AP 1000 Reactor Coolant Pump Flywheel Retainer Ring A289 18Cr-18Mn Steel by Slow Strain ...

311

Recovery and Packaging of Tritium from Canadian Heavy Water Reactors  

Science Conference Proceedings (OSTI)

Fission Reactor / Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985)

W.J. Holtslander; T.E. Harrison; V. Goyette; J.M. Miller

312

A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Review of Stress Corrosion Cracking/Fatigue Modeling for Light A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components In the United States currently there are approximately 104 operating light water reactors. Of these, 69 are pressurized water reactors (PWRs) and 35 are boiling water reactors (BWRs). In 2007, the 104 light-water reactors (LWRs) in the United States generated approximately 100 GWe, equivalent to 20% of total US electricity production. Most of the US reactors were built before 1970 and the initial design lives of most of the reactors are 40 years. It is expected that by 2030, even those reactors that have received 20-year life extension license from the US Nuclear Regulatory Commission

313

Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System  

DOE Green Energy (OSTI)

GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described.

Brown, L.C.

1983-04-01T23:59:59.000Z

314

CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling  

SciTech Connect

In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding of the reactor cavity during a severe accident. As part of a joint Korean – United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boiling experiments were performed in the SBLB (Subscale Boundary Layer Boiling) facility at Penn State using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging.

Fan-Bill Cheung; Joy L. Rempe

2004-06-01T23:59:59.000Z

315

Corrosion-product release in light water reactors  

SciTech Connect

This research project is aimed at studying corrosion-product release from a range of reactor alloys under both PWR and BWR coolant chemistry conditions. The results of such a study will be ued to recommend ways by which corrosion-product release, and subsequent radiation fields, can be minimized in reactors. The investigation of corrosion-product release has so far employed three main techniques: in-reactor loop experiments to provide data on the effects of coolant chemistry and reactor irradiation; out-reactor loop experiments to provide kinetics data on release; and a combined radiotracer-surface analytical study of oxide films to provide mechanistic information on release. The results of the first year of the program are presented and discussed.

Lister, D.H.

1984-03-01T23:59:59.000Z

316

Assessment of light water reactor power plant cost and ultra-acceleration depreciation financing  

E-Print Network (OSTI)

Although in many regions of the U.S. the least expensive electricity is generated from light-water reactor (LWR) plants, the fixed (capital plus operation and maintenance) cost has increased to the level where the cost ...

El-Magboub, Sadek Abdulhafid.

317

EIS-0288: Production of Tritium in a Commercial Light Water Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

288: Production of Tritium in a Commercial Light Water Reactor 288: Production of Tritium in a Commercial Light Water Reactor EIS-0288: Production of Tritium in a Commercial Light Water Reactor SUMMARY This Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS) evaluates the environmental impacts associated with producing tritium at one or more of the following five CLWRs: (1) Watts Bar Nuclear Plant Unit 1 (Spring City, Tennessee); (2) Sequoyah Nuclear Plant Unit 1 (Soddy Daisy, Tennessee); (3) Sequoyah Nuclear Plant Unit 2 (Soddy Daisy, Tennessee); (4) Bellefonte Nuclear Plant Unit 1 (Hollywood, Alabama); and (5) Bellefonte Nuclear Plant Unit 2 (Hollywood, Alabama). Specifically, this EIS analyzes the potential environmental impacts associated with fabricating tritium-producing

318

EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-S1: Production of Tritium in a Commercial Light Water 8-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium Readiness Supplemental Environmental Impact Statement EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium Readiness Supplemental Environmental Impact Statement Summary This Supplemental EIS updates the environmental analyses in DOE's 1999 EIS for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS). The CLWR EIS addressed the production of tritium in Tennessee Valley Authority reactors in Tennessee using tritium-producing burnable absorber rods. Public Comment Opportunities No public comment opportunities at this time. Documents Available for Download September 28, 2011 EIS-0288-S1: Notice of Intent to Prepare a Supplemental Environmental

319

The selective use of thorium and heterogeneity in uranium-efficient pressurized water reactors  

E-Print Network (OSTI)

Systematic procedures have been developed and applied to assess the uranium utilization potential of a broad range of options involving the selective use of thorium in Pressurized Water Reactors (PWRs) operating on the ...

Kamal, Altamash

1982-01-01T23:59:59.000Z

320

Design strategies for optimizing high burnup fuel in pressurized water reactors  

E-Print Network (OSTI)

This work is focused on the strategy for utilizing high-burnup fuel in pressurized water reactors (PWR) with special emphasis on the full array of neutronic considerations. The historical increase in batch-averaged discharge ...

Xu, Zhiwen, 1975-

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems  

DOE Patents (OSTI)

The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

McDermott, Daniel J. (Export, PA); Schrader, Kenneth J. (Penn Hills, PA); Schulz, Terry L. (Murrysville Boro, PA)

1994-01-01T23:59:59.000Z

322

Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems  

DOE Patents (OSTI)

The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

1994-05-03T23:59:59.000Z

323

Analysis of strategies for improving uranium utilization in pressurized water reactors  

E-Print Network (OSTI)

Systematic procedures have been devised and applied to evaluate core design and fuel management strategies for improving uranium utilization in Pressurized Water Reactors operated on a once-through fuel cycle. A principal ...

Sefcik, Joseph A.

1981-01-01T23:59:59.000Z

324

Distribution of characteristics of LWR [light water reactor] spent fuel  

SciTech Connect

The purpose of this report is to develop a collective description of the entire spent fuel inventory in terms of various fuel properties relevant to Approved Testing Materials (ATMs) using information available from the Characteristics Data Base (CBD), which is sponsored by the US Department of Energy`s (DOE`s) Office of Civilian Radioactive Waste Management. A number of light-water reactor (LWR) characteristics were analyzed including assembly class representation, fuel burnup, enrichment, fuel fabrication data, defective fuel quantities, and, at PNL`s specific request, linear heat generation rate (LHGR) and the utilization of burnable poisons. A quantitative relationships was developed between burnup and enrichment for BWRs and PWRs. The relationship shows that the existing BWR ATM is near the center of the burnup-enrichment distribution, while the four PWR ATMs bracket the center of the burnup range but are on the low side of the enrichment range. Fuel fabrication data are based on vendor specifications for new fuel. Defective fuel distributions were analyzed in terms of assembly class and vendor design. LHGR values were calculated from utility data on burnup and effective full-power days; these calculations incorporate some unavoidable assumptions which may compromise the value of the results. Only a limited amount of data are available on burnable poisons at this time. Based on this distribution study, suggestions for additional ATMs are made. These are based on the class and design concepts and include BWR/2,3 barrier fuel, and the WE 17 {times} 17 class with integral burnable poison. Both should be at relatively high burnups. 16 refs., 5 figs., 15 tabs.

Reich, W.J.; Notz, K.J. [Oak Ridge National Lab., TN (USA); Moore, R.S. [Automated Sciences Group, Inc., Oak Ridge, TN (USA)

1991-01-01T23:59:59.000Z

325

Pool boiling on nano-finned surfaces  

E-Print Network (OSTI)

The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm - 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: "microlayer" disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.

Sriraman, Sharan Ram

2007-12-01T23:59:59.000Z

326

Pool boiling on nano-finned surfaces  

E-Print Network (OSTI)

The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm – 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: “microlayer” disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.

Sriraman, Sharan Ram

2007-12-01T23:59:59.000Z

327

Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)  

SciTech Connect

The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum of the individual components equaling the measured values.

Shaver, Mark W.; Lanning, Donald D.

2010-02-01T23:59:59.000Z

328

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production  

Science Conference Proceedings (OSTI)

The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

2005-02-13T23:59:59.000Z

329

Innovative fuel designs for high power density pressurized water reactor  

E-Print Network (OSTI)

One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

Feng, Dandong, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

330

BWR Vessel and Internals Project: Quantitative Safety Assessment of BWR Reactor Internals (BWRVIP-09)  

Science Conference Proceedings (OSTI)

The Boiling Water Reactor Vessel and Internals Project (BWRVIP), formed in June, 1994, is an association of utilities focused exclusively on BWR vessel and internals issues. This BWRVIP report documents the results of a quantitative safety assessment conducted to evaluate the safety significance of failures of certain BWR internal components.

1997-02-20T23:59:59.000Z

331

An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors  

Science Conference Proceedings (OSTI)

This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

Menlove, Howard O [Los Alamos National Laboratory; Lee, Sang - Yoon [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

332

BOILING NUCLEAR SUPERHEATER (BONUS) POWER STATION. Final Summary Design Report  

SciTech Connect

The design and construction of the Boiling Nuclear Superheater (BONUS) Power Station at Punta Higuera on the seacoast at the westernmost tip of Puerto Rico are described. The reactor has an output of 17.5 Mw(e). This report will serve as a source of information for personnel engaged in management, evaluation, and training. (N.W.R.)

1962-05-01T23:59:59.000Z

333

Comparison of Effect of Filter Demineralizer and Deep Bed Demineralizer Condensate Polishing on Water Quality  

Science Conference Proceedings (OSTI)

There have been several boiling water reactor (BWR) fuel cladding corrosion failures; in almost all cases, water chemistry was identified as a contributing factor. All corrosion-related fuel failures occurred exclusively at BWRs with condensate filter demineralizers for condensate polishing. This report investigates the way in which plant-specific condensate polishing system configuration and operating differences can affect feedwater and reactor water chemistry and impact the corrosion resistance ...

2012-10-04T23:59:59.000Z

334

Nuclear reactor with makeup water assist from residual heat removal system  

DOE Patents (OSTI)

A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

Corletti, M.M.; Schulz, T.L.

1993-12-07T23:59:59.000Z

335

Nuclear reactor with makeup water assist from residual heat removal system  

DOE Patents (OSTI)

A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

Corletti, Michael M. (New Kensington, PA); Schulz, Terry L. (Murrysville, PA)

1993-01-01T23:59:59.000Z

336

IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region  

SciTech Connect

The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity. The IRIS reactor offers a very suitable source of energy given its modular size of 300 MWe and it can be coupled with a desalination plant to provide the potable water for human consumption, agriculture and industry. The present paper assess the water and energy requirements for the Northwest region of Mexico and how the deployment of the IRIS reactor can satisfy those necessities. The possible sites for deployment of Nuclear Reactors are considered given the seismic constraints and the closeness of the sea for external cooling. And in the other hand, the size of the desalination plant and the type of desalination process are assessed accordingly with the water deficit of the region.

Alonso, G.; Ramirez, R.; Gomez, C.; Viais, J.

2004-10-03T23:59:59.000Z

337

Corrosion-product release in light water reactors  

SciTech Connect

This is the final report of a research program aimed at measuring and studying the release of corrosion products from typical PWR and BWR materials to reactor coolant. The program has provided measurements of release from stainless steel, steam generator alloys and hard-facing material (Stellite) to PWR coolant under several chemistry conditions. Kinetic expressions for cumulative release as a function of time have been developed. Corrosion measurements in- and out-reactor have indicated little effect of reactor radiation on corrosion of these materials. Detailed surface analysis has characterized the formation of oxide films in PWR coolant, and has led to suggestions of mechanisms of release. The mechanisms have been made the basis of a system model which has been used to evaluate the effects of various system parameters on the concentration of dissolved cobalt in the coolant--i.e., on the source term for activity transport. The understanding of film formation and release have led to a proposed method of preconditioning PWRs to reduce substantially radiation fields during subsequent operation. Correlations for elemental release from stainless steel and Stellite under BWR conditions have also been derived. They indicate that cobalt-based alloys in BWR reactor circuits are the major source of corrosion-released cobalt. The effects of zinc on the growth of oxide films on carbon steel, Inconel-600 and Stellite-6 are also described. 39 refs., 38 figs., 12 tabs.

Lister, D.; Davidson, R.D. (Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.)

1989-09-01T23:59:59.000Z

338

Development of Novel Water-Gas-Shift Membrane Reactor  

E-Print Network (OSTI)

(cm) COMoleFraction 9.50 ppm Syngas from Autothermal Reforming 1% CO, 9.5% H2O, 41% H2, 15% CO2, 33.006 0.008 0.01 0.012 0 10 20 30 40 50 60 70 Reactor Length (cm) COMoleFraction 9.77 ppm Syngas from

339

The development of code inservice inspection (ISI) requirements for Low Temperature Heavy Water Reactors (LTHWR)  

SciTech Connect

DOE Savannah River Field office requested that the American Society of Mechanical Engineers (ASME) develop rules for inservice inspection (ISI) of Savannah River Site (SRS) Low Temperature Heavy Water Reactors (LTHWR's) in January 1990. The request is part of the SRS Reactor Safety Improvement Program (RSIP). RSIP will implement an ASME B PV Code Section XI based ISI program after restart of K Reactor. The establishment of a Code based ISI program at SRS will affect a transition from a standing log which scheduled inspections to a program structured to commercial reactor standards. The SRS standing log for periodic inspection of equipment was initiated in the early 1970's, approximately the same time Section XI ISI programs were initiated at commercial reactors. The information contained in this article was developed during the course of work under Contract Number AC09-89SR18035 with the US Department of Energy.

Cowfer, C.D.

1992-01-01T23:59:59.000Z

340

Neutronic Study of Slightly Modified Water Reactors and Application to Transition Scenarios  

SciTech Connect

In this paper we have studied slightly modified water reactors and their applications to transition scenarios. The PWR and CANDU reactors have been considered. New fuels based on Thorium have been tested: Thorium/Plutonium and Thorium/Uranium- 233, with different fissile isotope contents. Changes in the geometry of the assemblies were also explored to modify the moderation ratio, and consequently the neutron flux spectrum. A core equivalent assembly methodology was introduced as an exploratory approach and to reduce the computation time. Several basic safety analyses were also performed. We have finally developed a new scenario code, named OSCAR (Optimized Scenario Code for Advanced Reactors), to study the efficiency of these modified reactors in transition to Gen IV reactors or in symbiotic fleet. (authors)

Chambon, Richard; Guillemin, Perrine; Nuttin, Alexis; Bidaud, A. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble 53 Av. Des Martyrs, 38000 Grenoble (France); Capellan, N.; David, S.; Meplan, O.; Wilson, J. [Institut de Physique Nucleaire - IPN, 15 rue Georges Clemenceau 91406 Orsay (France)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FMDP Reactor Alternative Summary Report: Volume 2 - CANDU heavy water reactor alternative  

SciTech Connect

The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 2 of a four volume report, summarizes the results of these analyses for the CANDU reactor based plutonium disposition alternative.

Greene, S.R.; Spellman, D.J.; Bevard, B.B. [and others

1996-09-01T23:59:59.000Z

342

A SCOPING STUDY: Development of Probabilistic Risk Assessment Models for Reactivity Insertion Accidents During Shutdown In U.S. Commercial Light Water Reactors  

SciTech Connect

This report documents the scoping study of developing generic simplified fuel damage risk models for quantitative analysis from inadvertent reactivity insertion events during shutdown (SD) in light water pressurized and boiling water reactors. In the past, nuclear fuel reactivity accidents have been analyzed both mainly deterministically and probabilistically for at-power and SD operations of nuclear power plants (NPPs). Since then, many NPPs had power up-rates and longer refueling intervals, which resulted in fuel configurations that may potentially respond differently (in an undesirable way) to reactivity accidents. Also, as shown in a recent event, several inadvertent operator actions caused potential nuclear fuel reactivity insertion accident during SD operations. The set inadvertent operator actions are likely to be plant- and operation-state specific and could lead to accident sequences. This study is an outcome of the concern which arose after the inadvertent withdrawal of control rods at Dresden Unit 3 in 2008 due to operator actions in the plant inadvertently three control rods were withdrawn from the reactor without knowledge of the main control room operator. The purpose of this Standardized Plant Analysis Risk (SPAR) Model development project is to develop simplified SPAR Models that can be used by staff analysts to perform risk analyses of operating events and/or conditions occurring during SD operation. These types of accident scenarios are dominated by the operator actions, (e.g., misalignment of valves, failure to follow procedures and errors of commissions). Human error probabilities specific to this model were assessed using the methodology developed for SPAR model human error evaluations. The event trees, fault trees, basic event data and data sources for the model are provided in the report. The end state is defined as the reactor becomes critical. The scoping study includes a brief literature search/review of historical events, developments of a small set of comprehensive event trees and fault trees and recommendation for future work.

S. Khericha

2011-06-01T23:59:59.000Z

343

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program  

SciTech Connect

The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

2012-09-01T23:59:59.000Z

344

A study of electrowetting-assisted boiling  

E-Print Network (OSTI)

The classical theory of boiling heat transfer based on bubble dynamics is explained and includes a full derivation of the Rohsenow boiling correlation. An alternative, more accurate correlation for determining boiling heat ...

Bralower, Harrison L. (Harrison Louis)

2011-01-01T23:59:59.000Z

345

Investigation of Browns Ferry 2 Reactor Cycle 12 Fuel Corrosion Failures, Volume 3: Assessment of Results  

Science Conference Proceedings (OSTI)

Boiling water reactor (BWR) fuel rods from 63 bundles of the Reload 10 GE13 (9x9) design developed leaks during Cycle 12 of the Browns Ferry 2 reactor. Root cause evaluations, including poolside and hot cell examinations were performed. The details of the investigation are documented in a series of reports and presentations. This report compiles significant findings of the overall investigation and assesses these results with respect to the cause of failure. In addition, new laboratory data to support th...

2007-12-05T23:59:59.000Z

346

Rethinking the Offer: The Impact on Nuclear Non-Proliferation of Providing North Korea or Iran with Light Water Reactors.  

E-Print Network (OSTI)

??This paper examines the impact on nuclear non-proliferation efforts of providing the DPRK and Iran with light water reactors (LWRs). I argue that LWRs in… (more)

Lee, Eun Joo

2009-01-01T23:59:59.000Z

347

DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-NE Light Water Reactor Sustainability Program and EPRI DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation's

348

DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-NE Light Water Reactor Sustainability Program and EPRI DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation's

349

Light Water Reactor Fuel Cladding Research and Testing | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactor Fuel Cladding Research Light Water Reactor Fuel Cladding Research June 01, 2013 Severe Accident Test Station ORNL is the focus point for Light Water Reactor (LWR) fuel cladding research and testing. The purpose of this research is to furnish U.S. industry (EPRI, Areva, Westinghouse), and regulators (NRC) with much-needed data supporting safe and economical nuclear power generation and used fuel management. LWR fuel cladding work is tightly integrated with ORNL accident tolerant fuel development and used fuel disposition programs thereby providing a powerful capability that couples basic materials science research with the nuclear applications research and development. The ORNL LWR fuel cladding program consists of five complementary areas of research: Accident tolerant fuel and cladding material testing under design

350

The Application of Structural Materials Data From the BN-350 Fast Reactor to Life Extension of Light Water Reactors  

SciTech Connect

This paper describes the results of investigations of 08Cr16Ni11Mo3 (AISI 316 steel analogue) austenitic stainless steel irradiated in BN-350 breeder reactor at irradiation conditions close to that for Light Water Reactor (LWR) Internals. The pores were found in 08Cr16Ni11Mo3 steel irradiated at temperature 280 deg. C up to rather low damage 1.3 dpa and with dose rate 3.9 x 10{sup -9} dpa/s. There were obtained dose rate dependencies of yield strength, ultimate strength and ductility for 08Cr16Ni11Mo3 steel irradiated up to 7-13 dpa at 302-311 deg. C. These dependencies show a decrease in both yield strength and ultimate strength when dose rate decreases. There was observed an apparent decrease in total elongation when dose rate decreases, which was presumably connected with the pores formation in the steel at low dose rates. (authors)

Romanenko, O.G. [Nuclear Technology Safety Center, Liza Chaikina 4, Almaty 050020 (Kazakhstan); Kislitsin, S.B.; Maksimkin, O.P. [Institute of Nuclear Physics, 1 Ibragimova St., Almaty, 050032 (Kazakhstan); Shiganakov, Sh.B.; Chumakov, Ye.V. [Kazakhstan Atomic Energy Committee, Liza Chaikina 4, Almaty (Kazakhstan); Dumchev, I.V. [MAEC Kazatomprom, Aktau, 130000 (Kazakhstan)

2006-07-01T23:59:59.000Z

351

Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - III: Spent DUPIC Fuel Disposal Cost  

Science Conference Proceedings (OSTI)

The disposal costs of spent pressurized water reactor (PWR), Canada deuterium uranium (CANDU) reactor, and DUPIC fuels have been estimated based on available literature data and the engineering design of a spent CANDU fuel disposal facility by the Atomic Energy of Canada Limited. The cost estimation was carried out by the normalization concept of total electricity generation. Therefore, the future electricity generation scale was analyzed to evaluate the appropriate capacity of the high-level waste disposal facility in Korea, which is a key parameter of the disposal cost estimation. Based on the total electricity generation scale, it is concluded that the disposal unit costs for spent CANDU natural uranium, CANDU-DUPIC, and PWR fuels are 192.3, 388.5, and 696.5 $/kg heavy element, respectively.

Ko, Won Il; Choi, Hangbok; Roh, Gyuhong; Yang, Myung Seung [Korea Atomic Energy Research Institute (Korea, Republic of)

2001-05-15T23:59:59.000Z

352

Passive decay heat removal system for water-cooled nuclear reactors  

DOE Patents (OSTI)

This document describes passive decay-heat removal system for a water-cooled nuclear reactor which employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated evaporator located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

Forseberg, C.W.

1990-01-01T23:59:59.000Z

353

Passive decay heat removal system for water-cooled nuclear reactors  

DOE Patents (OSTI)

This document describes passive decay-heat removal system for a water-cooled nuclear reactor which employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated evaporator located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

Forseberg, C.W.

1990-12-31T23:59:59.000Z

354

Validation of IVA Computer Code for Flow Boiling Stability Analysis  

SciTech Connect

IVA is a computer code for modeling of transient multiphase, multi-component, non-equilibrium flows in arbitrary geometry including flow boiling in 3D nuclear reactors. This work presents part of the verification procedure of the code. We analyze the stability of flow boiling in natural circulation loop. Experimental results collected on the AREVA/FANP KATHY loop regarding frequencies, mass flows and decay ratio of the oscillations are used for comparison. The comparison demonstrates the capability of the code to successfully simulate such class of processes. (author)

Ivanov Kolev, Nikolay [Framatome-ANP, PO Box 3220, D-91058, Erlangen (Germany)

2006-07-01T23:59:59.000Z

355

TR-105696-R16 (BWRVIP-03) Revision 16: BWR Vessel and Internals Project, Reactor Pressure Vessel and Internals Examination Guidelines  

Science Conference Proceedings (OSTI)

This report provides the boiling water reactor (BWR) fleet with inspection options for all of the safety-related vessel internal components, and provides a stable mechanism for documenting the capability of the evolving inspection technology. It is the sole resource for internals inspection information for BWR ...

2013-12-14T23:59:59.000Z

356

Materials Reliability Program: Technical Basis for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement (MRP-267, Revision 1)  

Science Conference Proceedings (OSTI)

During the past two decades, stress corrosion cracking (SCC) has become the most relevant phenomenon affecting nuclear plant availability and plant lifetime management. SCC can lead to increased costs for operation, maintenance, assessment, repair, and replacement of boiling water reactor (BWR) and pressurized water reactor (PWR) components. Alloy 600 and 82/182 materials, which are widely used in PWR systems, are susceptible to primary water stress corrosion cracking (PWSCC). PWSCC has been reported in ...

2012-07-31T23:59:59.000Z

357

RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors  

SciTech Connect

The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.

Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael

2003-04-01T23:59:59.000Z

358

Flow-induced vibration for light-water reactors. Progress report, April 1978-December 1979  

SciTech Connect

Flow-Induced vibration for Light Water Reactors (FIV for LWRs) is a four-year program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, general scaling laws to improve the accuracy of reduced-scale tests, and the identification of high FIV risk areas. The program commenced December 1, 1976, but was suspended on September 30, 1978, due to a shift in Department of Energy (DOE) priorities away from LWR productivity/availability. It was reinitiated as of August 1, 1979. This progress report summarizes the accomplishments achieved during the period from April 1978 to December 1979.

Schardt, J. F.

1980-03-01T23:59:59.000Z

359

EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR  

SciTech Connect

Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

2007-01-16T23:59:59.000Z

360

Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor  

SciTech Connect

Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

Pearson, J. Boise; Stewart, Eric T. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Reid, Robert S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

2007-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Light water reactor mixed-oxide fuel irradiation experiment  

SciTech Connect

The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding.

Hodge, S.A.; Cowell, B.S. [Oak Ridge National Lab., TN (United States); Chang, G.S.; Ryskamp, J.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-06-01T23:59:59.000Z

362

A phenomenological model of the thermal hydraulics of convective boiling during the quenching of hot rod bundles  

SciTech Connect

In this paper, a phenomenological model of the thermal hydraulics of convective boiling in the post-critical-heat-flux (post-CHF) regime is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code (an advanced best-estimate computer program written for the analysis of pressurized water reactor systems). The model was built around the determination of flow regimes downstream of the quench front. The regimes were determined from the flow-regime map suggested by Ishii and his coworkers. Heat transfer in the transition boiling region was formulated as a position-dependent model. The propagation of the CHF point was strongly dependent on the length of the transition boiling region. Wall-to-fluid film boiling heat transfer was considered to consist of two components: first, a wall-to-vapor convective heat-transfer portion and, second, a wall-to-liquid heat transfer representing near-wall effects. Each contribution was considered separately in each of the inverted annular flow (IAF) regimes. The interfacial heat transfer was also formulated as flow-regime dependent. The interfacial drag coefficient model upstream of the CHF point was considered to be similar to flow through a roughened pipe. A free-stream contribution was calculated using Ishii's bubbly flow model for either fully developed subcooled or saturated nucleate boiling. For the drag in the smooth IAF region, a simple smooth-tube correlation for the interfacial friction factor was used. The drag coefficient for the rough-wavy IAF was formulated in the same way as for the smooth IAF model except that the roughness parameter was assumed to be proportional to liquid droplet diameter entrained from the wavy interface. The drag coefficient in the highly dispersed flow regime considered the combined effects of the liquid droplets within the channel and a liquid film on wet unheated walls. 431 refs., 6 figs., 4 tabs.

Nelson, R.A.; Unal, C.

1991-01-01T23:59:59.000Z

363

Effect of H2 on Stress Corrosion Cracking of Nickel Alloys in BWR Water in Relation to Moderate Hydrogen Water Chemistry and NobleCh em  

Science Conference Proceedings (OSTI)

This work confirms that there is a peak in the crack growth rate (CGR) of Alloy 182 (and Ni-based alloys) in the boiling water reactor (BWR) environment and temperatures that are associated with the Ni/NiO phase boundary as there is in the pressurized water reactor (PWR) environment and temperatures. To optimize intergranular stress corrosion cracking (IGSCC) mitigation, plants should maintain their hydrogen concentration to avoid the peak in CGR associated with the Ni/NiO phase ...

2012-09-28T23:59:59.000Z

364

Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors  

Science Conference Proceedings (OSTI)

Laboratory experiments performed at BNL have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of several tenths of an inch per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant/lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H/sub 2/S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. 13 refs.

Czajkowski, C.J.

1985-01-01T23:59:59.000Z

365

Generic Assessment for Optimized Reactor Coolant System Hydrogen of a Four-loop Westinghouse Pressurized Water Reactor  

Science Conference Proceedings (OSTI)

The Chemistry, Fuel Reliability, and Material Reliability Programs at the Electric Power Research Institute (EPRI) have developed a comprehensive elevated reactor coolant system (RCS) hydrogen program that is focused on qualification of plant operation with dissolved hydrogen concentration in the RCS greater than 50 standard cubic centimeters per kilogram (scc/kg) (1.38 in.3/lbm), up to 60 scc/kg (1.66 in.3/lbm), to mitigate primary water stress corrosion cracking (PWSCC) in nickel-based alloys. Currentl...

2011-12-23T23:59:59.000Z

366

EXPERIMENTAL STUDIES ON THE KINETIC BEHAVIOR OF WATER BOILER TYPE REACTORS  

SciTech Connect

The KEWB Program is devoted to the study of the dynamic behavior of homogeneous type research reactors. The objectives of this program include studies to develop better and more complete understanding of phenomena which contribute to the kinetic behavior and the inherent safety of the water boiler reactor. The approach to the objectives has heen to construct a prototype 50 kw homogeneous reactor with the necessary auxiliary apparatus and to study the transient behavior of the system as a function of the more significant parameters which affect this behavior. These include the amount of reactivity release, rate of reactivity release, initial core pressure, initial core temperature, initial reactor power, and void volume above the core. Data are plotted. (auth)

Remley, M.E.; Flora, J.W.; Hetrick, D.L.; Muller, D.R.; Gardner, E.L.; Wimmer, R.E.; Stitt, R.K.; Gamble, D.P.

1958-10-31T23:59:59.000Z

367

Characteristics of Spent Fuel from Plutonium Disposition Reactors. Vol. 3: A Westinghouse Pressurized-Water Reactor Design  

Science Conference Proceedings (OSTI)

This report discusses the results of a simulation study involving the burnup of mixed-oxide (MOX) fuel in a Westinghouse pressurized-water reactor (PWR). The MOX was composed of uranium and plutonium oxides, where the plutonium was of weapons-grade composition. The study was part of the Fissile Materials Disposition Program and considered the possibility of fueling commercial reactors with weapons plutonium. The isotopic composition, the activities, and the decay heat, together with the gamma and neutron dose rates are discussed for the spent fuel. For the steady-state situation involving this PWR burning MOX fuel, two burn histories are reported. In one case, an assembly is burned in the reactor for two cycles, and in the second case and assembly is burned for three cycles. Furthermore, assemblies containing wet annular burnable absorbers (WABAs) and assemblies that do not contain WABAs are considered in all cases. The two-cycle cases have a burnup of 35 GWd/t, and the three-cycle cases have a burnup of 52.5 GWd/t.

Murphy, B.D.

1997-07-01T23:59:59.000Z

368

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(LWRS) Program - R&D Roadmap (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability (LWRS) nondestructive evaluation (NDE) Workshops were held at Oak Ridge National Laboratory (ORNL) during July 30th to August 2nd, 2012. This activity was conducted to help develop the content of the NDE R&D roadmap for the materials aging and degradation (MAaD) pathway of the LWRS program. The workshops focused on identifying NDE R&D needs in four areas: cables, concrete, reactor pressure vessel, and piping. A selected group of subject matter experts (SMEs) from DOE national laboratories, academia, vendors, EPRI, and NRC were invited to each

369

Technical specification: Mixed-oxide pellets for the light-water reactor irradiation demonstration test  

Science Conference Proceedings (OSTI)

This technical specification is a Level 2 Document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-oxide Fuel Irradiation Test Project Plan. It is patterned after the pellet specification that was prepared by Atomic Energy of Canada, Limited, for use by Los Alamos National Laboratory in fabrication of the test fuel for the Parallex Project, adjusted as necessary to reflect the differences between the Canadian uranium-deuterium reactor and light-water reactor fuels. This specification and the associated engineering drawing are to be utilized only for preparation of test fuel as outlined in the accompanying Request for Quotation and for additional testing as directed by Oak Ridge National Laboratory or the Department of Energy.

Cowell, B.S.

1997-06-01T23:59:59.000Z

370

CIVILIAN POWER REACTOR PROGRAM. PART III. STATUS REPORT ON LARGE (100 AND 300 MWe) HEAVY WATER-MODERATED POWER REACTORS--AS OF 1960  

SciTech Connect

An evaluation of 300- and 100-Mwe power plants was conducted using ground rules prescribed by the USAEC for this study. Costs corresponding to two average discharged fuel burnups are: 8.6 mills/kwh (8500 Mwd/ metric ton) and 8.8 mills/kwh (7500 Mwd/metric ton) for the 300-Mw plant. Costs for the 100 Mw plant are 14.7 mills/kwh for an average discharged fuel burnup of 6010 Mwd/metric ton. Estimates of future potential indicate that the 300 Mw/sub 3/ (8500 Mwd/metric ton) plant could produce power for 7.3 mills/kwh in a second generation, full scale plant of the same type. A further reduction to 6.4 mills/kwh should be possible as the result of the recommended ten-year development program. The current development program is adequate for providing the data needed to design and construct a prototype reactor. However, there is no natural U-fueled prototype and no prototype of the chosen reference design scheduled in the U.S. Current technology is sufficiently developed to initiate the design and construction of a pressure tube, boiling D/sub 2/Ocooled, natural UO/sub 2/- fueled reactor prototype plant in the immediate future. This plant would demonstrate the main features of a full scale plant and, in addition. would provide design data which could only be obtained by operation of a natural U- fueled reactor. (auth)

Hutton, J.H.; Davis, S.A.; Graves, C.C.; Duffy, J.G. comps.

1960-08-19T23:59:59.000Z

371

PWR Primary-Side Gas Management in Advanced Light Water Reactors  

Science Conference Proceedings (OSTI)

The designs for advanced light water reactors (ALWRs) have incorporated new water chemistry controls that have been developed over the past few decades to improve material and equipment reliability and fuel performance and to minimize radionuclide production and transport. It is important to ensure that the new designs operate within ranges that are considered safe based on current knowledge and that industry guidance for normal operation, startup, and shutdown are updated to account for expanding ...

2013-07-17T23:59:59.000Z

372

Pressurized Water Reactor Zinc Application: Data Analysis and Evaluation of Primary Chemistry Responses  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Pressurized Water Reactor Zinc Application Users Group (PWR ZUG) facilitates and improves the use of zinc injection in PWR primary coolant systems by assisting in the evaluation of zinc injection performance; documentation of lessons learned; communication of information on zinc injection qualification, monitoring, and operating experience; and review of zinc application effectiveness regarding primary water stress corrosion cracking (PWSCC) and radiation fiel...

2010-08-15T23:59:59.000Z

373

Materials Reliability Program: Pressurized Water Reactor Issue Management Tables—Revision 2 (MRP-205)  

Science Conference Proceedings (OSTI)

Ongoing issues related to the degradation of pressurized water reactor (PWR) nuclear steam supply system (NSSS) components have resulted in the need for a summary tool to assist in prioritizing and addressing research and development (R&D) issues and associated Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) and Steam Generator Management Program (SGMP) requirements.

2010-10-27T23:59:59.000Z

374

An Assessment of Reactor Types for Thermochemical Hydrogen Production  

DOE Green Energy (OSTI)

Nuclear energy has been proposed as a heat source for producing hydrogen from water using a sulfur-iodine thermochemical cycle. This document presents an assessment of the suitability of various reactor types for this application. The basic requirement for the reactor is the delivery of 900 C heat to a process interface heat exchanger. Ideally, the reactor heat source should not in itself present any significant design, safety, operational, or economic issues. This study found that Pressurized and Boiling Water Reactors, Organic-Cooled Reactors, and Gas-Core Reactors were unsuitable for the intended application. Although Alkali Metal-Cooled and Liquid-Core Reactors are possible candidates, they present significant development risks for the required conditions. Heavy Metal-Cooled Reactors and Molten Salt-Cooled Reactors have the potential to meet requirements, however, the cost and time required for their development may be appreciable. Gas-Cooled Reactors (GCRs) have been successfully operated in the required 900 C coolant temperature range, and do not present any obvious design, safety, operational, or economic issues. Altogether, the GCRs approach appears to be very well suited as a heat source for the intended application, and no major development work is identified. This study recommends using the Gas-Cooled Reactor as the baseline reactor concept for a sulfur-iodine cycle for hydrogen generation.

MARSHALL, ALBERT C.

2002-02-01T23:59:59.000Z

375

Subcooled flow boiling of fluorocarbons  

E-Print Network (OSTI)

A study was conducted of heat transfer and hydrodynamic behavior for subcooled flow boiling of Freon-113, one of a group of fluorocarbons suitable for use in cooling of high-power-density electronic components. Problems ...

Murphy, Richard Walter

1971-01-01T23:59:59.000Z

376

Approaches to Enhancing Mitigation with Early Hydrogen Water Chemistry  

Science Conference Proceedings (OSTI)

Boiling Water Reactors (BWRs) have been injecting hydrogen into the reactor coolant via the feedwater system to control primary system intergranular stress corrosion cracking (IGSCC) for over 30 years. This report investigates options for achieving BWR IGSCC mitigation at plants using noble metal catalysts at all temperatures above 200 °F (93.3 °C).BackgroundPlants currently do not initiate hydrogen injection until there is sufficient steam flow to ...

2013-11-27T23:59:59.000Z

377

Collecting and recirculating condensate in a nuclear reactor containment  

DOE Patents (OSTI)

An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

Schultz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

378

Collecting and recirculating condensate in a nuclear reactor containment  

DOE Patents (OSTI)

An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.

Schultz, T.L.

1993-10-19T23:59:59.000Z

379

Pressurized Water Reactor Fuel Cleaning Using Advanced Ultrasonics  

Science Conference Proceedings (OSTI)

EPRI Ultrasonic Fuel Cleaning Technology (patent pending) was successfully qualified and demonstrated in the field at AmerenUE Callaway Plant under joint sponsorship of the EPRI Robust Fuel Program, Working Group 1 Fuel/Water Chemistry, and an AmerenUE Tailored Collaboration. In October 1999, the project team cleaned sixteen reload assemblies, which are currently undergoing re-irradiation in Cycle 11 at Callaway Plant. The assemblies show no evidence to date of any adverse fuel performance as a consequen...

2000-11-17T23:59:59.000Z

380

Pressurized Water Reactor Primary Zinc Application Sourcebook, Revision 1  

Science Conference Proceedings (OSTI)

Utilities continually strive to optimize core design, address primary system material issues, and minimize dose impact on plant personnel. To meet these challenges, the Electric Power Research Institute (EPRI), Westinghouse, and Southern Nuclear-Plant Farley began zinc injection in 1994 for mitigation of primary water stress corrosion cracking (PWSCC) and radiation field reductions. Additional information from industry research continues to show the beneficial impact of zinc injection on radiation fields...

2012-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Radiation Shielding Analysis for Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors (DUPIC)  

Science Conference Proceedings (OSTI)

As a part of the compatibility analysis of DUPIC fuel in Canada deuterium uranium (CANDU) reactors, the radiation physics calculations have been performed for the CANDU primary shielding system, which was originally designed for natural uranium core. At first, the conventional CANDU primary shield analysis method was validated using the Monte Carlo code MCNP-4B in order to assess the current analysis code system and the cross-section data. The computational benchmark calculation was performed for the CANDU end shield system, which has shown that the conventional method produces results consistent with the reference calculations as far as the total dose rate and total heat deposition rate are concerned. Second, the primary shield system analysis was performed for the DUPIC fuel core based on the power distribution obtained from the time-average core model, and the results have shown that the dose rates and heat deposition rates through the primary shield of the DUPIC fuel core are not much different from those of the natural uranium core because the power levels on the core periphery are similar for both cores. This study has shown that the current primary shield system is adaptable for the DUPIC fuel CANDU core without design modification.

Roh, Gyuhong; Choi, Hangbok [Korea Atomic Energy Research Institute (Korea, Republic of)

2004-06-15T23:59:59.000Z

382

Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Developmental Pre-Developmental INL EBR-II Wash Water Treatment Technologies (PBS # ADSHQTD0100 (0003199)) EBR-II Wash Water Workshop - The majority of the sodium has been removed, remaining material is mostly passivated. Similar closure projects have been successfully completed. Engineering needs to be developed to apply the OBA path. Page 1 of 2 Idaho National Laboratory Idaho Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop Challenge In 1994 Congress ordered the shutdown of the Experimental Breeder Reactor-II (EBR-II) and a closure project was initiated. The facility was placed in cold shutdown, engineering began on sodium removal, the sodium was drained in 2001 and the residual sodium chemically passivated to render it less reactive in 2005. Since that time, approximately 700 kg of metallic sodium and 3500 kg of sodium bicarbonate remain in the facility. The

383

Overview of the US Department of Energy Light Water Reactor Sustainability Program  

Science Conference Proceedings (OSTI)

The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

K. A. McCarthy; D. L. Williams; R. Reister

2012-05-01T23:59:59.000Z

384

Light-water-reactor coupled neutronic and thermal-hydraulic codes  

Science Conference Proceedings (OSTI)

An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented.

Diamond, D.J.

1982-01-01T23:59:59.000Z

385

Passive and inherent safety technologies for light-water nuclear reactors  

SciTech Connect

Passive/inherent safety implies a technical revolution in our approach to nuclear power safety. This direction is discussed herein for light-water reactors (LWRs) -- the predominant type of power reactor used in the world today. At Oak Ridge National Laboratory (ORNL) the approach to the development of passive/inherent safety for LWRs consists of four steps: identify and quantify safety requirements and goals; identify and quantify the technical functional requirements needed for safety; identify, invent, develop, and quantify technical options that meet both of the above requirements; and integrate safety systems into designs of economic and reliable nuclear power plants. Significant progress has been achieved in the first three steps of this program. The last step involves primarily the reactor vendors. These activities, as well as related activities worldwide, are described here. 27 refs., 7 tabs.

Forsberg, C.W.

1990-07-01T23:59:59.000Z

386

Numerical study of high heat ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b  

E-Print Network (OSTI)

in saturated pool boiling. In this model the analysis of heat conduction within the heater is added on the heater surface itself [10]. Bhat et al. [11] put forward a theoretical model of macrolayer formation to their model and ob- tained the simulated boiling curve of water. In addition, they compared Haramura and Katto

Maruyama, Shigeo

387

Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests  

Science Conference Proceedings (OSTI)

Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-15T23:59:59.000Z

388

Plutonium Recycling in Light Water Reactors at Framatome ANP: Status and Trends  

SciTech Connect

The civil and military utilization of nuclear power results in continuously increasing stockpiles of spent fuel and separated plutonium. Since fast breeder reactors are at present not available, the majority of spent fuel discharged from commercial nuclear reactors is intended for direct final disposal or designated for interim storage. An effective form of intermediate plutonium storage is recycling in thermal reactors. Recycling of the recovered plutonium in commercial light water reactors (LWRs) is currently practiced in Belgium, France, Germany, and Switzerland. The number of mixed-oxide (MOX) assemblies reloaded each year in a large variety of reactors demonstrates that plutonium recycling in LWRs has reached industrial maturity. The status of experience gained today at Framatome ANP confirms the reliability of the design codes and the suitability of fuel assembly and core designs. The validation database for increasing exposures of MOX fuel is being continuously expanded. This provides the basis for further extending the discharge exposures of MOX assemblies and for licensing the use of higher plutonium concentrations. Options to support the weapons plutonium reduction programs and for the development of advanced MOX assembly designs are investigated.

Porsch, Dieter [Framatome ANP GmbH (France); Stach, Walter [Framatome ANP GmbH (France); Charmensat, Pascal [Framatome ANP S.A.S. (France); Pasquet, Michel [Framatome ANP S.A.S. (France)

2005-08-15T23:59:59.000Z

389

Assessments of Water Ingress Accidents in a Modular High-Temperature Gas-Cooled Reactor  

Science Conference Proceedings (OSTI)

Severe water ingress accidents in the 200-MW HTR-module were assessed to determine the safety margins of modular pebble-bed high-temperature gas-cooled reactors (HTR-module). The 200-MW HTR-module was designed by Siemens under the criteria that no active safety protection systems were necessary because of its inherent safe nature. For simulating the behavior of the HTR-module during severe water ingress accidents, a water, steam, and helium multiphase cavity model was developed and implemented in the dynamic simulator for nuclear power plants (DSNP) simulation system. Comparisons of the DSNP simulations incorporating these models with experiments and with calculations using the time-dependent neutronics and temperature dynamics code were made to validate the simulation. The analysis of the primary circuit showed that the maximum water concentration increase in the reactor core was deaerator to the steam generator. A comprehensive simulation of the HTR-module power plant showed that the water inventory in the primary circuit was limited to {approx}3000 kg. The nuclear reactivity increase caused by the water ingress would lead to a fast power excursion, which would be inherently counterbalanced by negative feedback effects. The integrity of the fuel elements, because the safety-relevant temperature limit of 1600 deg. C is not reached in any case, is not challenged.

Zhang Zuoyi [Tsinghua University (China); Dong Yujie [Tsinghua University (China); Scherer, Winfried [Forschungszentrum Juelich (Germany)

2005-03-15T23:59:59.000Z

390

Core Designs and Economic Analyses of Homogeneous Thoria-Urania Fuel in Light Water Reactors  

SciTech Connect

The objective is to develop equilibrium fuel cycle designs for a typical pressurized water reactor (PWR) loaded with homogeneously mixed uranium-thorium dioxide (ThO{sub 2}-UO{sub 2}) fuel and compare those designs with more conventional UO{sub 2} designs.The fuel cycle analyses indicate that ThO{sub 2}-UO{sub 2} fuel cycles are technically feasible in modern PWRs. Both power peaking and soluble boron concentrations tend to be lower than in conventional UO{sub 2} fuel cycles, and the burnable poison requirements are less.However, the additional costs associated with the use of homogeneous ThO{sub 2}-UO{sub 2} fuel in a PWR are significant, and extrapolation of the results gives no indication that further increases in burnup will make thoria-urania fuel economically competitive with the current UO{sub 2} fuel used in light water reactors.

Saglam, Mehmet; Sapyta, Joe J.; Spetz, Stewart W.; Hassler, Lawrence A. [Framatome ANP, Inc. (France)

2004-07-15T23:59:59.000Z

391

Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011  

SciTech Connect

The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

Not Listed

2011-11-01T23:59:59.000Z

392

Advanced Light Water Reactor utility requirements document. Part 1, Executive summary  

SciTech Connect

The ALWR Requirements Document is a primary work product of the EPRI Program. This document is an extensive compilation of the utility requirements for design, construction and performance of advanced light water reactor power plants for the 1990s and beyond. The Requirements Document`s primary emphasis is on resolution of significant problems experienced at existing nuclear power plants. It is intended to be used with companion documents, such as utility procurement specifications, which would cover the remaining detailed technical requirements applicable to new plant projects. The ALWR Requirements Document consists of several major parts. This volume is Part I, The Executive Summary. It is intended to serve as a concise, management level synopsis of advanced light water reactors including design objectives and philosophy, overall configuration and features and the steps necessary to proceed from the conceptual design stage to a completed, functioning power plant.

1986-06-01T23:59:59.000Z

393

Flow-induced vibration for light water reactors. Progress report, October 1980-December 1980  

Science Conference Proceedings (OSTI)

Flow-Induced Vibration for Light Water Reactors (FIV for LWRs) is a four-year program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, general scaling laws to improve the accuracy of reduced-scale tests, and the identification of high FIV risk areas. The program is managed by the General Electric Nuclear Power Systems Engineering Department and has three major contributors: General Electric Nuclear Power Systems Engineering Department (NPSED), General Electric Corporate Research and Development (CR and D) and Argonne National Laboratory (ANL). The program commenced December 1, 1976. This progress report summarizes the accomplishments achieved during the period from October 1980 to December 1980.

Torres, M.R.

1981-09-01T23:59:59.000Z

394

Thermal-Structural Design of a Water Shield For Surface Reactor Missions  

SciTech Connect

Water shielding is an attractive option for an affordable lunar surface fission reactor program. The attractiveness of the water shielding option arises from the relative ease of proto-typing and ground testing, the relatively low development effort needed, as well as the fabrication and operating experience with stainless steel and water. The most significant limitation in using a water shield is temperature: to prevent the formation of voids and the consequent loss of cooling, the water temperature has to be maintained below the saturation temperature corresponding to the shield pressure. This paper examines natural convection for a prototypic water shield design using the computational fluid dynamics (CFD) code CFX-5 as well as analytical modeling. The results show that natural convection is adequate to keep the water well-mixed. The results also show that for the above-ground configuration, shield surface and water temperatures during lunar day conditions are high enough to require shield pressures up to 2.5 atm to prevent void formation. For the buried configuration, a set of ammonia heat pipes attached to the shield outer wall can be used to maintain water temperatures within acceptable limits. Overall the results show that water shielding is feasible for lunar surface applications. The results of the CFD analyses can also be used to guide development of testing plans for shield thermal testing. (authors)

Sadasivan, Pratap; Kapernick, Richard J.; Poston, David I. [D-5 Nuclear Systems Design Group MS K575, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 (United States)

2006-07-01T23:59:59.000Z

395

POWER COST NORMALIZATION STUDIES CIVILIAN POWER REACTOR PROGRAM--Sept. 1, 1959  

SciTech Connect

In connection with the development of a comprehensive plan for a ten- year civilian power reactor program, the AEC has had a series of status reports prepared to present a comprehensive review of the technical and economic status of various nuclear power reactor concepts. In as much as the economic data reported by the various contractors reflected different design philosophies, different estimating policies, and in some cases a technology not verified by the AEC definition of current status, Sargent and Lundy was requested to review the aforementioned status reports and to prepare normalized cost estimates of each of eight reactor concepts. The reactors were studied in three plant sizes: 75, 200, and 300 Mw(e). The reactor concepts considered were pressurized water, boiling water, organic cooled, sodium graphite, liquid metal cooled, fluid fuel (aqueous homogeneous), heavy water moderated, and gas cooled. (W.D.M.)

1960-10-31T23:59:59.000Z

396

Advanced Nuclear Technology Advanced Light Water Reactor Utility Requirements Document, Revision 12  

Science Conference Proceedings (OSTI)

The utility requirement document (URD) is an industry-developed technical foundation for the design of advanced light water reactors (ALWRs). It was created with the objective of providing a comprehensive set of plant functional requirements that are considered important to utilities considering the construction of a nuclear plant and in ensuring successful deployment and operation of the plant. The scope of the URD is broad, addressing the entire plant (including the nuclear steam supply system, ...

2013-12-16T23:59:59.000Z

397

Fuel assembly for the production of tritium in light water reactors  

DOE Patents (OSTI)

A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

Cawley, W.E.; Trapp, T.J.

1983-06-10T23:59:59.000Z

398

Fuel assembly for the production of tritium in light water reactors  

DOE Patents (OSTI)

A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

Cawley, William E. (Richland, WA); Trapp, Turner J. (Richland, WA)

1985-01-01T23:59:59.000Z

399

Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community  

Science Conference Proceedings (OSTI)

Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham

2011-08-01T23:59:59.000Z

400

Evaluation of Fuel Clad Corrosion Product Deposits and Circulating Corrosion Products in Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

Many pressurized water reactors (PWRs) have experienced negative consequences resulting from build-up of corrosion product deposits (crud) on fuel cladding. The negative consequences include unplanned shifts in core power (axial offset anomaly, or AOA), fuel cladding failure, anomalous shutdown chemistry, and elevated ex-core radiation fields. These problems have grown more common as PWRs have moved toward higher 235U enrichments and higher duty cores needed for extended cycle operation. This report expl...

2004-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Below Core Plate Inspections for Foreign Material in Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

During the period 2000–2011, 24 U.S. pressurized water reactors (PWRs) experienced fuel cladding failures by debris-induced fretting over 38 cycles (source: EPRI Fuel Reliability Database). In 2006, U.S. chief nuclear officers endorsed the “Zero-by- Ten” initiative with the stated goal of reducing all fuel failures to zero by 2010. This effort was very successful, but some failure mechanisms continue to occur. Currently, the mechanism most prominent in PWRs is grid to rod fretting. ...

2012-11-07T23:59:59.000Z

402

Advanced Light Water Reactor Utility Requirements Document, Volume 2, Revision 8: ALWR Evolutionary Plant  

Science Conference Proceedings (OSTI)

EPRI's ALWR Program has been an industry-wide effort to establish the technical foundation for design of the advanced light water reactor (ALWR). This program included participation and sponsorship of several international utility companies and close cooperation with the U.S. Department of Energy. The cornerstone of the ALWR Program is a set of utility design requirements, which are contained in the ALWR Utility Requirements Document. The purpose of this document is to present a clear, complete statement...

1999-03-30T23:59:59.000Z

403

Advanced Light Water Reactor Utility Requirements Document, Volume 3, Revision 8: ALWR Passive Plant  

Science Conference Proceedings (OSTI)

EPRI's ALWR Program has been an industry-wide effort to establish the technical foundation for design of the advanced light water reactor (ALWR). This program included participation and sponsorship of several international utility companies and close cooperation with the U.S. Department of Energy. The cornerstone of the ALWR Program is a set of utility design requirements, which are contained in the ALWR Utility Requirements Document. The purpose of this document is to present a clear, complete statement...

1999-03-30T23:59:59.000Z

404

Effect of Light Water Reactor Environments on Fracture Resistance in Irradiated Stainless Steel  

Science Conference Proceedings (OSTI)

Austenitic stainless steels are used extensively for the fabrication of reactor internal components due to their high strength and fracture toughness. However, the fracture properties of these materials degrade with exposure to neutron irradiation. The effects on the reduction of fracture properties may depend on neutron fluence, cold work, corrosion potential, water purity, temperature, and loading. The exact role of these environmental parameters remains unclear.Fracture toughness ...

2012-09-20T23:59:59.000Z

405

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

DOE Green Energy (OSTI)

The kinetics of water-gas shift were studied over ferrochrome catalysts under conditions with high carbon dioxide partial pressures, such as would be expected in a membrane reactor. The catalyst activity is inhibited by increasing carbon dioxide partial pressure. A microkinetic model of the reaction kinetics was developed. The model indicated that catalyst performance could be improved by decreasing the strength of surface oxygen bonds. Literature data indicated that adding either ceria or copper to the catalyst as a promoter might impart this desired effect. Ceria-promoted ferrochrome catalysts did not perform any better than unpromoted catalyst at the conditions tested, but copper-promoted ferrochrome catalysts did offer an improvement over the base ferrochrome material. A different class of water-gas shift catalyst, sulfided CoMo/Al{sub 2}O{sub 3} is not affected by carbon dioxide and may be a good alternative to the ferrochrome system, provided other constraints, notably the requisite sulfur level and maximum temperature, are not too limiting. A model was developed for an adiabatic, high-temperature water-gas shift membrane reactor. Simulation results indicate that an excess of steam in the feed (three moles of water per mole of CO) is beneficial even in a membrane reactor as it reduces the rate of adiabatic temperature rise. The simulations also indicate that much greater improvement can be attained by improving the catalyst as opposed to improving the membrane. Further, eliminating the inhibition by carbon dioxide will have a greater impact than will increasing the catalyst activity (assuming inhibition is still operative). Follow-up research into the use of sulfide catalysts with continued kinetic and reactor modeling is suggested.

Carl R.F. Lund

2002-08-02T23:59:59.000Z

406

Materials Reliability Program: Pressurized Water Reactor Issue Management Tables - Revision 3 (MRP-205)  

Science Conference Proceedings (OSTI)

Nuclear utilities continue to face a number of ongoing issues related to degradation of pressurized water reactor (PWR) nuclear steam supply system (NSSS) components. These issues have resulted in the need for a summary tool to assist in prioritizing and addressing research and development (R&D) issues and associated EPRI Materials Reliability Program (MRP) and Steam Generator Management Program (SGMP) requirements.BackgroundA comprehensive, integrated ...

2013-12-03T23:59:59.000Z

407

Minimization of Pressurized Water Reactor Radiation Fields through Fuel Deposit Engineering: Deposit Property Evaluation and Optimization  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide an initial assessment of the options for modification of pressurized water reactor (PWR) primary side corrosion product deposits (crud) to minimize the incorporation of activated crud into out-of-core surfaces, thus reducing the intensity of out-of-core radiation fields. This report summarizes the current knowledge of PWR fuel crud characteristics, including crystallographic structure (crystal habits), and buildup mechanisms. The report also reviews the ...

2013-11-11T23:59:59.000Z

408

A Water Hypsometer Utilizing High-Precision Thermocouples  

Science Conference Proceedings (OSTI)

A boiling-point barometer—commonly called hypsometer—has been developed for use on meteorological radiosondes. In this hypsometer, water is heated electrically, and its boiling temperature is measured with a thermocouple. Once the boiling ...

Hans Richner; Jürg Joss; Paul Ruppert

1996-02-01T23:59:59.000Z

409

Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability  

SciTech Connect

Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment. • Reactor pressure vessel • Pumps and piping

Philip E. MacDonald

2003-09-01T23:59:59.000Z

410

Conceptual design of a pressure tube light water reactor with variable moderator control  

SciTech Connect

This paper presents the development of innovative pressure tube light water reactor with variable moderator control. The core layout is derived from a CANDU line of reactors in general, and advanced ACR-1000 design in particular. It should be stressed however, that while some of the ACR-1000 mechanical design features are adopted, the core design basics of the reactor proposed here are completely different. First, the inter fuel channels spacing, surrounded by the calandria tank, contains a low pressure gas instead of heavy water moderator. Second, the fuel channel design features an additional/external tube (designated as moderator tube) connected to a separate moderator management system. The moderator management system is design to vary the moderator tube content from 'dry' (gas) to 'flooded' (light water filled). The dynamic variation of the moderator is a unique and very important feature of the proposed design. The moderator variation allows an implementation of the 'breed and burn' mode of operation. The 'breed and burn' mode of operation is implemented by keeping the moderator tube empty ('dry' filled with gas) during the breed part of the fuel depletion and subsequently introducing the moderator by 'flooding' the moderator tube for the 'burn' part. This paper assesses the conceptual feasibility of the proposed concept from a neutronics point of view. (authors)

Rachamin, R.; Fridman, E. [Reactor Safety Div., Inst. of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, POB 51 01 19, 01314 Dresden (Germany); Galperin, A. [Dept. of Nuclear Engineering, Ben-Gurion Univ. of the Negev, POB 653, Beer Sheva 84105 (Israel)

2012-07-01T23:59:59.000Z

411

EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium Readiness Supplemental Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

This Supplemental EIS updates the environmental analyses in DOE’s 1999 EIS for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS). The CLWR EIS addressed the production of tritium in Tennessee Valley Authority reactors in Tennessee using tritium-producing burnable absorber rods.

412

RADIATION RESEARCH 153, 220238 (2000) 0033-7587/00 $5.00  

E-Print Network (OSTI)

): the light water reactor [(LWR) in both pressurized and boil- ing versions]; heavy water (CANDU) reactor

413

Nucleate boiling pressure drop in an annulus: Book 5  

Science Conference Proceedings (OSTI)

The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux. This document consists solely of the plato file index from 11/87 to 11/90.

Not Available

1992-11-01T23:59:59.000Z

414

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network (OSTI)

Water Reactors (PWRs) CANDU Boiling Water Reactors (BWRs)Reactors (EPRs) Advanced CANDU Reactors (ACRs) AP1000

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

415

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report  

SciTech Connect

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.

Philip E. MacDonald

2005-01-01T23:59:59.000Z

416

Quarterly technical report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, April--June 1975  

SciTech Connect

The current water reactor safety activities of ANC are accomplished in four programs. The Semiscale Program consists of small-scale nonnuclear thermal- hydraulic experiments for the generation of experimental data that can be applied to analytical models describing loss-of-coolant accident (LOCA) phenomena in water-cooled nuclear power plants. Emphasis is placed on acquiring system effects data from integral tests that characterize the most significant thermal- hydraulic phenomena during the depressurization (blowdown) and emergency cooling phase of a LOCA. The LOFT Program provides test data to support: (a) assessment and improvement of the analytical methods utilized for predicting the behavior of pressurized water reactors (PWR) under LOCA conditions; (b) evaluation of the performance of PWR engineered safety features (ESF), particularly the emergency core cooling system (ECCS); and (c) assessment of the quantitative margins of safety inherent in the performance of these safety features. The Thermal Fuels Behavior Program is a program designed to provide information on the behavior of reactor fuels under normal, off-normal, and accident conditions. The experimental portion is concentrated on testing of single fuel rods and fuel rod clusters under power-cooling-mismatch (PCM), loss-of-coolant, and reactivity initiated accident conditions. The Reactor Behavior Program encompasses the analytical aspects of predicting the response of nuclear power reactors under normal, abnormal, and accident conditions. The status of each program is reported. (auth)

1975-11-01T23:59:59.000Z

417

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

A Review of Light-Water Reactor Safety Studies," by A.V.due to a break in the reactor cooling cooling water the therecirculation - Failure of the reactor protection system.

Nero, A.V.

2010-01-01T23:59:59.000Z

418

Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water  

Science Conference Proceedings (OSTI)

An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

Chan, Wai Kit, E-mail: kekyeung@ust.hk [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Joueet, Justine; Heng, Samuel; Yeung, King Lun [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Schrotter, Jean-Christophe [Water Research Center of Veolia, Anjou Recherche, Chemin de la Digue, BP 76. 78603, Maisons Laffitte, Cedex (France)

2012-05-15T23:59:59.000Z

419

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

DOE Green Energy (OSTI)

This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO{sub 2}. During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO{sub 2} partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO{sub 2} partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO{sub 2}. Finally, the performance of sulfided CoMo/Al{sub 2}O{sub 3} catalysts under conditions of high CO{sub 2} partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H{sub 2}S that is required in the feed.

Carl R.F. Lund

2001-08-10T23:59:59.000Z

420

Reactor for exothermic reactions  

DOE Patents (OSTI)

A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

1993-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "boiling water reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

BWRVIP-190: BWR Vessel and Internals Project, BWR Water Chemistry Guidelines--2008 Revision  

Science Conference Proceedings (OSTI)

The 2008 revision of the BWR Water Chemistry Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components in boiling water reactor (BWR) water environments. The guidelines also place increased emphasis on fuel performance concerns toward meeting the industry goal of zero fuel failures by 2010. Many plants have adopted noble metal chemical application (NMCA), and recently On-line NobleChem (OLNC) is being demonst...

2008-10-31T23:59:59.000Z

422

Transactions of the twenty-fifth water reactor safety information meeting  

SciTech Connect

This report contains summaries of papers on reactor safety research to be presented at the 25th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 20--22, 1997. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion of information exchanged during the course of the meeting, and are given in order of their presentation in each session.

Monteleone, S. [comp.

1997-09-01T23:59:59.000Z

423

Progress in understanding of direct containment heating phenomena in pressurized light water reactors  

DOE Green Energy (OSTI)

Progress is described in development of a mechanistic understanding of direct containment heating phemonena arising during high-pressure melt ejection accidents in pressurized water reactor systems. The experimental data base is discussed which forms the basis for current assessments of containment pressure response using current lumped-parameter containment analysis methods. The deficiencies in available methods and supporting data base required to describe major phenomena occurring in the reactor cavity, intermediate subcompartments and containment dome are highlighted. Code calculation results presented in the literature are cited which demonstrate that the progress in understanding of DCH phenomena has also resulted in current predictions of containment pressure loadings which are significantly lower than are predicted by idealized, thermodynamic equilibrium calculations. Current methods are, nonetheless, still predicting containment-threatening loadings for large participating melt masses under high-pressure ejection conditions. Recommendations for future research are discussed. 36 refs., 5 figs., 1 tab.

Ginsberg, T.; Tutu, N.K.

1988-01-01T23:59:59.000Z

424

Transactions of the Twenty-First Water Reactor Safety Information Meeting  

SciTech Connect

This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

Monteleone, S. [comp.

1993-10-01T23:59:59.000Z

425

Modeling acid-gas generation from boiling chloride brines  

Science Conference Proceedings (OSTI)

This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 C).

Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

2009-11-16T23:59:59.000Z

426

ESBWR... An Evolutionary Reactor Design  

Science Conference Proceedings (OSTI)

GE's latest evolution of the Boiling Water Reactor, the ESBWR, combines improvements in safety with design simplification and component standardization to produce a safer, more reliable nuclear power plant, with lower projected construction costs than plants in operation today. The ESBWR program started in the early 1990's when GE was developing the Simplified Boiling Water Reactor (SBWR). GE stopped this program because the power output of the SBWR was too small to generate the right economics for a new build project. The program was a success however, because the design proved many of the passive safety technology developments that are being utilized in the ESBWR. By harnessing these design concepts and testing results from the original SBWR and construction and operating experience from the Ad