National Library of Energy BETA

Sample records for boiling point material

  1. 2007-No54-BoilingPoint Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel

    E-Print Network [OSTI]

    Kammen, Daniel M.

    2007-No54-BoilingPoint Theme Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel Energy, but both the human health and envi- ronmental impacts associated with reliance on this fuel structure of fossil-fuel energy systems. These scenarios are analysed for various environmental and health impacts

  2. Material for Point Design (final summary of DIME material)

    SciTech Connect (OSTI)

    Bradley, Paul A.

    2014-02-25

    These slides summarize the motivation of the Defect Induced Mix Experiment (DIME) project, the “point design” of the Polar Direct Drive (PDD) version of the NIF separated reactant capsule, the experimental requirements, technical achievements, and some useful backup material. These slides are intended to provide much basic material in one convenient location and will hopefully be of some use for subsequent experimental projects.

  3. 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources

    SciTech Connect (OSTI)

    Sturgeon, Richard W.

    2012-06-27

    This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

  4. Microsoft PowerPoint - Dirac Materials QDM Mar 2015 short

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Dirac Materials? *Similarities and differences between d-wave superconductors, Graphene and Topological Insulators: All are Dirac materials with some common features...

  5. Microsoft PowerPoint - Nuclear Material Import Export License...

    National Nuclear Security Administration (NNSA)

    Material ImportExport License - Uses & Reporting processes Gary Langlie - Nuclear Regulatory Commission Karen Antizzo - Link Technologies Overview What is a Nuclear Regulatory...

  6. Material Point Method Simulations of Transverse Fracture in Wood with Realistic Morphologies

    E-Print Network [OSTI]

    Nairn, John A.

    Material Point Method Simulations of Transverse Fracture in Wood with Realistic Morphologies By J Material point method Numerical modeling RT fracture TR fracture; Transverse fracture Summary A new used to simulate transverse fracture in solid wood. The simulations were run on the scale of growth

  7. A study of electrowetting-assisted boiling

    E-Print Network [OSTI]

    Bralower, Harrison L. (Harrison Louis)

    2011-01-01

    The classical theory of boiling heat transfer based on bubble dynamics is explained and includes a full derivation of the Rohsenow boiling correlation. An alternative, more accurate correlation for determining boiling heat ...

  8. Bubble growth rates in boiling

    E-Print Network [OSTI]

    Griffith, P.

    1956-01-01

    The conditions determining the growth rate of a bubble on a surface in boiling are considered and a mathematical model framed in the light of these conditions. The growth rate is then calculated for bubbles growing under ...

  9. Subcooled flow boiling of fluorocarbons

    E-Print Network [OSTI]

    Murphy, Richard Walter

    1971-01-01

    A study was conducted of heat transfer and hydrodynamic behavior for subcooled flow boiling of Freon-113, one of a group of fluorocarbons suitable for use in cooling of high-power-density electronic components. Problems ...

  10. PHYSICAL REVIEW E 89, 013011 (2014) Unorthodox bubbles when boiling in cold water

    E-Print Network [OSTI]

    Granick, Steve

    2014-01-01

    -infrared laser beam heating water below the boiling point (60­70 °C) with heating powers spanning the range from the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away produced by boiling [4,14,18­21] but while important, such studies show only by inference the life cycles

  11. Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding

    SciTech Connect (OSTI)

    Orlov, Andrey; Degueldre, Claude; Kaufmann, Wilfried

    2013-01-15

    The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

  12. MATERIAL POINT METHOD CALCULATIONS WITH EXPLICIT CRACKS, FRACTURE PARAMETERS, AND CRACK

    E-Print Network [OSTI]

    Nairn, John A.

    MATERIAL POINT METHOD CALCULATIONS WITH EXPLICIT CRACKS, FRACTURE PARAMETERS, AND CRACK PROPAGATION." This new method has several advantages for numerical work on fracture. Compared to finite element analysis works well for calculating key fracture parameters such as J integral, stress intensity factors

  13. Comput. Methods Appl. Mech. Engrg, 191, 20952109 (2002) Hierarchical, Adaptive, Material Point Method for Dynamic Energy Release

    E-Print Network [OSTI]

    Nairn, John A.

    2002-01-01

    Method for Dynamic Energy Release Rate Calculations Honglai Tan and John A. Nairn Material ScienceComput. Methods Appl. Mech. Engrg, 191, 2095­2109 (2002) Hierarchical, Adaptive, Material Point-closure method was developed for use in Material Point Method (MPM) calculations. The method can be used

  14. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    SciTech Connect (OSTI)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ? A model for a size dependent mean bonding length is derived. ? The size dependent melting point of nanoparticles is modified. ? The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 ?{sup 3} for bulk to 57 ?{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup ?6} K{sup ?1} for a bulk crystal down to a minimum value of 0.1 × 10{sup ?6} K{sup ?1} for a 6 nm diameter nanoparticle.

  15. Pool boiling on nano-finned surfaces 

    E-Print Network [OSTI]

    Sriraman, Sharan Ram

    2008-10-10

    The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling...

  16. Development of modifications to the material point method for the simulation of thin membranes, compressible fluids, and their interactions

    SciTech Connect (OSTI)

    York, A.R. II [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.] [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.

    1997-07-01

    The material point method (MPM) is an evolution of the particle in cell method where Lagrangian particles or material points are used to discretize the volume of a material. The particles carry properties such as mass, velocity, stress, and strain and move through a Eulerian or spatial mesh. The momentum equation is solved on the Eulerian mesh. Modifications to the material point method are developed that allow the simulation of thin membranes, compressible fluids, and their dynamic interactions. A single layer of material points through the thickness is used to represent a membrane. The constitutive equation for the membrane is applied in the local coordinate system of each material point. Validation problems are presented and numerical convergence is demonstrated. Fluid simulation is achieved by implementing a constitutive equation for a compressible, viscous, Newtonian fluid and by solution of the energy equation. The fluid formulation is validated by simulating a traveling shock wave in a compressible fluid. Interactions of the fluid and membrane are handled naturally with the method. The fluid and membrane communicate through the Eulerian grid on which forces are calculated due to the fluid and membrane stress states. Validation problems include simulating a projectile impacting an inflated airbag. In some impact simulations with the MPM, bodies may tend to stick together when separating. Several algorithms are proposed and tested that allow bodies to separate from each other after impact. In addition, several methods are investigated to determine the local coordinate system of a membrane material point without relying upon connectivity data.

  17. Efficient Cooling in Engines with Nucleate Boiling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Nucleate Boiling Principal Investigator: Wenhua Yu Coworkers: D. France and R. Smith Energy Systems Division Argonne National Laboratory OVT Merit Review February 28, 2008...

  18. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. ); Irvine, T.F., Jr. . Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  19. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A.; Irvine, T.F., Jr.

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  20. ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING

    E-Print Network [OSTI]

    Mitchell, John E.

    ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING WATER REACTOR AND THE HEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Advanced Boiling Water Reactor - General Description . . . . . . . . . . . 3 2.1 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ii #12;4. Advanced Boiling Water Reactor . . . . . . . . . . . . . . . . . . . . . . . 46 4

  1. Enhancement of Pool Boiling Heat Transfer in Confined Space 

    E-Print Network [OSTI]

    Hsu, Chia-Hsiang

    2014-05-05

    Pool boiling is an effective method used in many technical applications for a long time. Its highly efficient heat transfer performance results from not only the convection effect but also the phase change process in pool boiling. Pool boiling...

  2. Boiling Water CanningProject Manual

    E-Print Network [OSTI]

    O'Laughlin, Jay

    Boiling Water CanningProject Manual pnW 652 a pacific northwest extension publication University preservation series contains four manuals: Freezing for ages 8­18 Drying for ages 8­18 Boiling water canning199/pnw199.pdf canning tomatoes and tomato products, pnW 300 http://extension.oregonstate.edu/catalog

  3. Cooling Boiling in Head Region - PACCAR Integrated Underhood...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and External Aerodynamics- Cummins Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and...

  4. Acoustically Enhanced Boiling Heat Transfer

    E-Print Network [OSTI]

    Z. W. Douglas; M. K. Smith; A. Glezer

    2008-01-07

    An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

  5. Microsoft PowerPoint - Returns of DOE Loan Lease Material and...

    National Nuclear Security Administration (NNSA)

    Considerations - Value of material to DOE - Characteristics of material: physicalchemical form, radiation - Nature of loanlease agreement Often a one-off process 3 Office...

  6. Numerical Simulations of Boiling Jet Impingement Cooling in Power Electronics

    SciTech Connect (OSTI)

    Narumanchi, S.; Troshko, A.; Hassani, V.; Bharathan, D.

    2006-12-01

    This paper explores turbulent boiling jet impingement for cooling power electronic components in hybrid electric vehicles.

  7. Void volumes in subcooled boiling systems

    E-Print Network [OSTI]

    Griffith, P.

    1958-01-01

    Introduction: Knowledge of the pressure drop in a channel and the resulting flow redistribution is essential in predicting the performance of a nuclear reactor. The pressure drop in a channel which is experiencing boiling ...

  8. Pool boiling heat transfer characteristics of nanofluids

    E-Print Network [OSTI]

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2007-01-01

    Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by ...

  9. Pool boiling on nano-finned surfaces 

    E-Print Network [OSTI]

    Sriraman, Sharan Ram

    2009-05-15

    The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working ...

  10. Apparatus for pumping liquids at or below the boiling point

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID)

    2002-01-01

    A pump comprises a housing having an inlet and an outlet. An impeller assembly mounted for rotation within the housing includes a first impeller piece having a first mating surface thereon and a second impeller piece having a second mating surface therein. The second mating surface of the second impeller piece includes at least one groove therein so that at least one flow channel is defined between the groove and the first mating surface of the first impeller piece. A drive system operatively associated with the impeller assembly rotates the impeller assembly within the housing.

  11. Testing for characterization of the materials from radiological point of view

    SciTech Connect (OSTI)

    Bercea, Sorin; Iliescu, Elena; Dudu, Dorin; Iancso, Georgeta [National Institute of R and D for Physics and Nuclear Engineering-Horia Hulubei , Reactorului 30 St, P.O.BOX MG-6,Magurele, cod 077125 (Romania)

    2013-12-16

    The nuclear techniques and materials are now used in a large number of applications, both in medicine and industry. Due to this fact, new materials are needed in order to assure the radiological protection of the personnel involved in these activities. But, finally, all these materials have to be tested for some specific parameters, in order to prove that they are adequate for the purposed for which they were created. One of the important parameters of the materials used for the radiological protection is the attenuation coefficient. The attenuation coefficient of the ionizing radiation composed by particles without electrical charge (X,?-ray and neutron) is the most important parameter for the materials used for the shielding of these ionizing radiation. This paper deals with the experimental methods developed for the determination of the attenuation of fast and thermal neutrons. These experimental methods, involved the use of Am-Be source and U-120 Cyclotron of IFIN-HH. For the tests which were done at the U-120 Cyclotron, a number of experiments had to be performed, in order to establish the irradiation geometry and the dose equivalent rates in front of and behind the material samples. The experimental results obtained for samples of several materials, confirmed the methods as adequate for the aim of the test.

  12. Numerical Simulation of Orthogonal Cutting using the Material Point John A. Nairn

    E-Print Network [OSTI]

    Nairn, John A.

    properties, simple yielding models (such as elastic-plastic), and simple frictional contact. This paper material properties (such as large-strain constitutive laws), arbitrary plasticity and contact laws -- crack-tip touching, where the tool reaches the crack tip, and plastic bending, where the tool

  13. Boiling and condensation in a liquid-filled enclosure

    E-Print Network [OSTI]

    Bar-Cohen Avram

    1971-01-01

    A combined experimental and analytical investigation of boiling and condensation in a liquid-filled enclosure, with water and Freon- 113 as the working fluids, is described. The operating characteristics of a boiling system, ...

  14. The role of surface conditions in nucleate boiling

    E-Print Network [OSTI]

    Griffith, P.

    1958-01-01

    Nucleation from a single cavity has been stuied indicating that cavity gemtry is aportant in two ways. The mouth diameter determines the superheat nmeded to initiate boiling and its shape determines its stability one boiling ...

  15. Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel

    E-Print Network [OSTI]

    Aussillous, Pascale

    Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel July 2008 Keywords: Boiling Microchannels Visualisation Flow boiling instabilities Heat transfer a b intensification heat removal. Flow boiling heat transfer in microchannel geometry and the associated flow

  16. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces

    E-Print Network [OSTI]

    Attinger, Daniel

    transport [1,2], prevents dropwise condensation or fogging [3,4], and facilitates boiling [5]. A surface

  17. Mechanism of nucleate pool boiling heat transfer to sodium and the criterion for stable boiling

    E-Print Network [OSTI]

    Shai, Isaac

    1967-01-01

    A comparison between liquid metals and other common fluids, like water, is made as regards to the various stages of nucleate pool boiling. It is suggested that for liquid metals the stage of building the thermal layer plays ...

  18. Transition from film boiling to nucleate boiling in forced convection vertical flow

    E-Print Network [OSTI]

    Iloeje, Onwuamaeze C.

    1972-01-01

    The mechanism of collapse of forced cnnvection annular vertical flow film boiling, with liquid core, is investigated using liquid nitrogen at low pressures. The report includes the effect of heat flux from the buss bar. ...

  19. Film boiling on spheres in single- and two-phase flows.

    SciTech Connect (OSTI)

    Liu, C.; Theofanous, T. G.

    2000-08-29

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.

  20. Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non intrusive method

    E-Print Network [OSTI]

    Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non the results of experimental and numerical studies concerning boiling heat transfer inside vertical in minichannels for several gravity levels (µg, 1g, 2g). To fully understand the high heat transfer potential

  1. POOL BOILING OF HIGH-FREQUENCY CONDUCTORS

    SciTech Connect (OSTI)

    Wright, S. E. (Spencer E.); Konecni, S. (Snezana); Ammerman, C. N. (Curtt N.); Sims, J. R. (James R.)

    2001-01-01

    This study presents development of a unique, powerful method for cooling high-frequency, AC conductors that can benefit end users of transformer windings, electrical machine windings, and magnet coils. This method of heat removal involves boiling a dielectric, fluorinert refrigerant that is in direct contact with litz wire conductors. A pool boiling test vessel is constructed, which provides for temperature control of the pool of fluorinert liquid. The test vessel is fitted with viewing ports so that the experiments are observed and studied with the aid of high-speed photography. Tests are performed on a variety of litz wire conductors. The boiling heat transfer coefficient is dependent on the conductor surface roughness. The size of the features on the conductor surface depends on the single-strand wire gage from which the conductor is constructed. All tests are performed with the conductors mounted horizontally. These tests are performed using a DC power supply. The results of these experiments will aid in the design of future cooling systems.

  2. ACM Reference Format Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A. 2013. A Material Point Method for Snow Simula-

    E-Print Network [OSTI]

    Varadarajan, Veeravalli S.

    Point Method for Snow Simula- tion. ACM Trans. Graph. 32, 4, Article 102 (July 2013), 12 pages. DOI = 10.00. DOI: http://dx.doi.org/10.1145/2461912.2461948 A material point method for snow simulation Alexey Walt Disney Animation Studios Abstract Snow is a challenging natural phenomenon to visually simulate

  3. Theoretical Electron Density Distributions for Fe-and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities,

    E-Print Network [OSTI]

    Downs, Robert T.

    between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions G. V; In Final Form: December 6, 2006 Bond critical point and local energy density properties together with netTheoretical Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection

  4. Heat transport in boiling turbulent Rayleigh-B\\'{e}nard convection

    E-Print Network [OSTI]

    Lakkaraju, Rajaram; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to several mechanisms many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubbles compounds with that of the liquid to give rise to a much enhanced natural convection. In this paper we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-B\\'enard convection process. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. We consider a cylindrical cell with a diameter equal to its height. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping the temperature difference constant and changing the liquid pressure we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between $2\\times10^6$ and $5\\times10^9$. We find a...

  5. Nucleate boiling pressure drop in an annulus: Book 6

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of a summary of temperature measurements to include recorded minima, maxima, averages and standard deviations.

  6. Nucleate boiling pressure drop in an annulus: Book 7

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists solely of tables of temperature measurements; minima, maxima, averages and standard deviations being measured.

  7. Material Point Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter By Sarah Schlieder * JulyUsing VASP at NERSC June

  8. Metallurgical failure analysis of a propane tank boiling liquid...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE). Citation Details In-Document Search Title: Metallurgical failure...

  9. A method of correlating heat transfer data for surface boiling of liquids

    E-Print Network [OSTI]

    Rohsenow, Warren M.

    1951-01-01

    A method based an a logical uxplanation of the meani of beat transfer associated with the boiling process is presented for correlating heat transfer data for nucleate boiling of liquids for the case of pool boiling. Tbe ...

  10. Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures

    E-Print Network [OSTI]

    Lu, Ming-Chang

    2010-01-01

    transfer coefficient models in pool boiling In summary, highlength effect on nucleate pool boiling heat transfer AnnalsTheory of The Peak and Minimum Pool Boiling Heat Fluxes, CR-

  11. Experimental investigation of micro-scale temperature transients in sub-cooled flow boiling on a horizontal heater

    E-Print Network [OSTI]

    Banerjee, Debjyoti

    systems and energy storage, materials processing and futuristic applications (e.g. ablation cooling on a silicon wafer during flow boiling on the silicon wafer which is heated from below. The silicon wafer") are fabricated on the surface of the silicon wafer. High speed data acquisition appa- ratus is used to record

  12. Conversion of direct process high-boiling residue to monosilanes

    DOE Patents [OSTI]

    Brinson, Jonathan Ashley (Vale of Glamorgan, GB); Crum, Bruce Robert (Madison, IN); Jarvis, Jr., Robert Frank (Midland, MI)

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  13. 6. Atomic and nuclear properties of materials 1 6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

    E-Print Network [OSTI]

    at STP. Boiling points are at 1 atm. Refractive indices n are evaluated at the sodium D line blend (589.2 nm); values 1 in brackets are for (n - 1) × 106 (gases). Material Z A Z/A Nucl.coll. length T {g cm-2.59497 55.5 77.1 45.23 (2.278) (2.489) 134.9 272.6 Octane (C8H18) 0.57778 55.8 77.8 45.00 2.123 0.703 214

  14. Please cite as: P. W. Dondl, K. Hormann, and J. Zimmer. Modeling transformation paths of multiphase materials: The triple point of zirconia. Physical Review B, 79(10):104114, March 2009.

    E-Print Network [OSTI]

    Hormann, Kai

    materials: The triple point of zirconia. Physical Review B, 79(10):104114, March 2009. Modelling transformation paths of multiphase materials: The triple point of zirconia Patrick W. Dondl Max. The method is applied to the triple point of zirconia, where tetragonal, orthorhombic (ortho

  15. Pebble Bed Boiling Water Reactor Concept With Superheated Steam

    SciTech Connect (OSTI)

    Tsiklauri, G.; Newman, D.; Meriwether, G.; Korolev, V. [Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352 (United States)

    2002-07-01

    An Advanced Nuclear Reactor concept is presented which extends Boiling Water Reactor technology with micro-fuel elements (MFE) and produces superheated steam. A nuclear plant with MFE is highly efficient and safe, due to ceramic-clad nuclear fuel. Water is used as both moderator and coolant. The fuel consists of spheres of about 1.5 mm diameter of UO{sub 2} with several external coatings of different carbonaceous materials. The outer coating of the particles is SiC, manufactured with chemical vapor disposition (CVD) technology. Endurance of the integrity of the SiC coating in water, air and steam has been demonstrated experimentally in Germany, Russia and Japan. This paper describes a result of a preliminary design and analysis of 3750 MWt (1500 MWe) plant with standard pressure of 16 MPa, which is widely achieved in the vessel of pressurized-water type reactors. The superheated steam outlet temperature of 550 deg. C elevates the steam cycle to high thermal efficiency of 42%. (authors)

  16. The correlation of nucleate boiling burn-out data

    E-Print Network [OSTI]

    Griffith, P.

    1957-01-01

    A dimensionless correlation is developed for nucleate boiling buzrnout data including the following ranges of variables. Fluids - Water Bensene n - Heptane n - Pentane Ethanol Pressure - 0.0045 to 0.96 of critical pressure ...

  17. A study of boiling water flow regimes at low pressures

    E-Print Network [OSTI]

    Fiori, Mario P.

    1966-01-01

    "A comprehensive experimental program to examine flow regimes at pressures below 100 psia for boiling of water in tubes was carried out. An electrical probe, which measures the resistance of the fluid between the centerline ...

  18. Burnout in forced convection nucleate boiling of water

    E-Print Network [OSTI]

    Reynolds John Mitchell

    1957-01-01

    Data are presented for burnout in forced coivection nucleate boiling of water at pressures above 500 psia. A dimensionless correlation is devised for. the M.I.T. data which is found to be valid for certain recent data ...

  19. Pressure drop with surface boiling in small-diameter tubes

    E-Print Network [OSTI]

    Dr?mer, Thomas

    1964-01-01

    Pressure drop for water flowing in small-diameter tubes under isothermal, nonboiling, and surface-boiling conditions was investigated. Experimental results for local pressure gradient and heattransfer coefficients are ...

  20. Model of critical heat flux in subcooled flow boiling

    E-Print Network [OSTI]

    Fiori, Mario P.

    1968-01-01

    The physical phenomenon occurring before and at the critical heat flux (CHF) for subcooled flow boiling has been investigated. The first phase of this study established the basic nature of the flow structure at CHF. A ...

  1. Pool boiling studies on nanotextured surfaces under highly subcooled conditions 

    E-Print Network [OSTI]

    Sathyamurthi, Vijaykumar

    2009-05-15

    Subcooled pool boiling on nanotextured surfaces is explored in this study. The experiments are performed in an enclosed viewing chamber. Two silicon wafers are coated with Multiwalled Carbon Nanotubes (MWCNT), 9 microns (Type-A) ...

  2. AECU-4439 PHYSICS AND MATHEMATICS HYDRODYNAMIC ASPECTS OF BOILING...

    Office of Scientific and Technical Information (OSTI)

    of Bubble Formation in Heat Transfer to Subcoaled Liquids , ( ( Heat Trm sf er and Fluid Mechanics Inet. , Berkeley, 1949, 113, of Boiling Heat Phys Z e i tsch, 36 , 1935, 267 I ,...

  3. Infrared thermometry study of nanofluid pool boiling phenomena

    E-Print Network [OSTI]

    Gerardi, Craig

    Abstract Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). ...

  4. Film Boiling on Downward Quenching Hemisphere of Varying Sizes

    SciTech Connect (OSTI)

    Chan S. Kim; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-04-01

    Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Laminar Transition Apparatus). Two test sections are made of copper to maintain low Biot numbers. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of all the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the test sections. The measured data are compared with the numerical predictions from laminar film boiling analysis. The measured heat transfer coefficients are found to be greater than those predicted by the conventional laminar flow theory on account of the interfacial wavy motion incurred by the Helmholtz instability. Incorporation of the wavy motion model considerably improves the agreement between the experimental and numerical results in terms of heat transfer coefficient. In addition, the interfacial wavy motion and the quenching process are visualized through a digital camera.

  5. Thermal boundary layer development in dispersed flow film boiling

    E-Print Network [OSTI]

    Hull, Lawrence M.

    1982-01-01

    Dispersed flow film boiling consists of a dispersion of droplets which are carried over a very hot surface by their vapor. This process occurs in cryogenic equipment and wet steam turbines. It is also of interest in the ...

  6. Determination of pool boiling Critical Heat Flux enhancement in nanofluids

    E-Print Network [OSTI]

    Truong, Bao H. (Bao Hoai)

    2007-01-01

    Nanofluids are engineered colloids composed of nano-size particles dispersed in common fluids such as water or refrigerants. Using an electrically controlled wire heater, pool boiling Critical Heat Flux (CHF) of Alumina ...

  7. Effects of surface parameters on boiling heat transfer phenomena

    E-Print Network [OSTI]

    Truong, Bao H. (Bao Hoai)

    2011-01-01

    Nanofluids, engineered colloidal dispersions of nanoparticles in fluid, have been shown to enhance pool and flow boiling CHF. The CHF enhancement was due to nanoparticle deposited on the heater surface, which was verified ...

  8. Forced-convection, dispersed-flow film boiling

    E-Print Network [OSTI]

    Hynek, Scott Josef

    1969-01-01

    This report presents the latest results of an investigation of the characteristics of dispersed flow film boiling. Heat transfer data are presented for vertical upflow of nitrogen in an electrically heated tube, 0.4 in. ...

  9. Hydrodynamics, heat transfer and flow boiling instabilities in microchannels 

    E-Print Network [OSTI]

    Barber, Jacqueline Claire

    2010-01-01

    Boiling in microchannels is a very efficient mode of heat transfer with high heat and mass transfer coefficients achieved. Less pumping power is required for two-phase flows than for single-phase liquid flows to achieve ...

  10. Film boiling of R-11 on liquid metal surfaces

    SciTech Connect (OSTI)

    Greene, G.A.; Irvine, T.F. Jr.

    1986-01-01

    An interesting problem is the effect of an immiscible liquid heating surface on the process of film boiling. Such surfaces raise questions concerning interface stability to disturbances, effects of gas bubbling, and vapor explosions in layered systems. The specific motivation for this study was to investigate film boiling from a liquid surface with application to cooling of molten reactor core debris by an overlying pool of reactor coolant. To investigate this phenomenon, and apparatus consisting of a nominal six-inch diameter steel vessel to hold the liquid metal and boiling fluid was constructed; coolant reservoirs, heaters, controllers, and allied instrumentation were attached. A transient energy balance was performed on the liquid metal pool by a submerged assembly of microthermocouples in the liquid metal and an array of thermocouples on the wall of the test vessel. The thermocouple data were used to determine the boiling heat flux as well as the boiling superheat. On an average basis, the deviation between the prediction of the Berenson model and the experimental data was less than one percent when Berenson was corrected for thermal radiation effects. Evidence from visualization tests of R-11 in film boiling over molten metal pools to superheats in excess of 600 K supports this conclusion. 13 refs.

  11. Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Boiling--Including the Effects of Conjugate Conduction, Level of Gravity, and Noncondensable Gas Dissolved in the Liquid

    E-Print Network [OSTI]

    Aktinol, Eduardo

    2014-01-01

    Numerical Simulation of Pool Boiling: A Review. ” Journal ofBooth, W. (2012). “Nucleate Pool Boiling Experiments (NPBX)and Booth, W. , “ ,Nucleate Pool Boiling Experiments (NPBX)

  12. Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: Experimental results

    E-Print Network [OSTI]

    Kandlikar, Satish

    Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure online 4 May 2013 Keywords: Pool boiling Heat transfer enhancement Open microchannels Cylindrical tube boiling heat transfer over enhanced cylindrical microchannel test surfaces with water at atmospheric

  13. On Boiling of Crude Oil under Elevated Pressure

    E-Print Network [OSTI]

    Pimenova, Anastasiya V

    2015-01-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  14. On Boiling of Crude Oil under Elevated Pressure

    E-Print Network [OSTI]

    Anastasiya V. Pimenova; Denis S. Goldobin

    2015-10-08

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  15. Simulation of subcooled boiling at low pressure conditions with RELAP5-3D computer program 

    E-Print Network [OSTI]

    Reza, S.M. Mohsin

    2002-01-01

    at low-pressure conditions were underestimated. The same model was used to simulate high pressure subcooled boiling data. High pressure subcooled boiling experiments of Bartolomey and Sabotinov were simulated. The axial void fraction distribution results...

  16. Forced-convection surface-boiling heat transfer and burnout in tubes of small diameters

    E-Print Network [OSTI]

    Bergles A. E.

    1962-01-01

    A basic heat-transfer apparatus was designed and constructed for the study of forced-convection boiling in small channels. The various regions of forced-convection surface boiling were studied experimentally and analytically. ...

  17. Measurement of Nucleate Pool Boiling with Synchronized Particle Imaging Velocimetry and Infrared Thermometry

    E-Print Network [OSTI]

    Duan, X.

    Nucleate boiling is important in many energy systems including light water reactors. Currently significant efforts are underway to develop mechanisticmodels for nucleate boiling based on computational fluid dynamics (CFD). ...

  18. Alumina Nanoparticle Pre-coated Tubing Ehancing Subcooled Flow Boiling Cricital Heat Flux

    E-Print Network [OSTI]

    Truong, Bao H.

    Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and ...

  19. Mechanism and behavior of nucleate boiling heat transfer to the alkalai liquid metals

    E-Print Network [OSTI]

    Deane, Charles William

    1969-01-01

    A model of boiling heat transfer to the alkali liquid metals is postulated from an examination of the events and phases of the nucleate boiling cycle. The model includes the important effect of microlayer evaporation which ...

  20. Hydrophobic coatings for film boiling based drag reduction on a torpedo model

    E-Print Network [OSTI]

    Campbell, Ian J. (Ian James Kenneth)

    2015-01-01

    Previous research has shown that porous, hydrophobic surfaces exhibit a dramatic reduction in critical heat flux (CHF), the amount of heat over a surface area required to initiate film boiling. Film boiling is characterized ...

  1. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials Access to

  2. Jet Flows Around Microbubbles In Subcooled Boiling , Xiaofeng Pengb

    E-Print Network [OSTI]

    Kihm, IconKenneth David

    Jet Flows Around Microbubbles In Subcooled Boiling Hao Wanga , Xiaofeng Pengb , David M Strong jet flows were observed emanating from micro bubbles on a 100 µm diameter wire during subcooled analysis. The bubble-top jet flows were characterized by a single jet at the bubble top. Both experiments

  3. Noise Decomposition in Boiling Water Reactors with Application to Stability Monitoring

    E-Print Network [OSTI]

    Pázsit, Imre

    Noise Decomposition in Boiling Water Reactors with Application to Stability Monitoring J. Karlsson in boiling water reactor (BWR) noise measure- ments, based on flux factorization techniques (i.e., using reactors4 or flux oscillations in boiling water reactors5,6 ~BWRs!. In these cases the different modes have

  4. Advanced Power Plant Modeling with Applications to an Advanced Boiling Water

    E-Print Network [OSTI]

    Mitchell, John E.

    Advanced Power Plant Modeling with Applications to an Advanced Boiling Water Reactor and a Heat and an Advanced Boiling Water Reactor (ABWR). The continuity wave equa- tions for single and two-phase flow advanced method, are shown. These both are applied to a simplified model of the Advanced Boil- ing Water

  5. Flow Boiling Heat Transfer Coefficient In Minichannels Correlation and Trends Satish G. Kandlikar

    E-Print Network [OSTI]

    Kandlikar, Satish

    Flow Boiling Heat Transfer Coefficient In Minichannels ­ Correlation and Trends Satish G. Kandlikar York 14623, USA The flow boiling heat transfer in small diameter passages is being applied in many boiling heat transfer coefficient with the correlations developed for conventional channels. It is found

  6. Numerical study of high heat ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Numerical study of high heat ¯ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b , Shigeo simulation model of boiling heat transfer is proposed based on a numerical macrolayer model [S. Maruyama, M. Shoji, S. Shimizu, A numerical simulation of transition boiling heat transfer, in: Proceedings

  7. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect (OSTI)

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 C).

  8. Solar prominences: 'double, double ... boil and bubble'

    E-Print Network [OSTI]

    Keppens, Rony

    2015-01-01

    Observations revealed rich dynamics within prominences, the cool 10,000 K, macroscopic (sizes of order 100 Mm) "clouds" in the million degree solar corona. Even quiescent prominences are continuously perturbed by hot, rising bubbles. Since prominence matter is hundredfold denser than coronal plasma, this bubbling is related to Rayleigh-Taylor instabilities. Here we report on true macroscopic simulations well into this bubbling phase, adopting a magnetohydrodynamic description from chromospheric layers up to 30 Mm height. Our virtual prominences rapidly establish fully non-linear (magneto)convective motions where hot bubbles interplay with falling pillars, with dynamical details including upwelling pillars forming within bubbles. Our simulations show impacting Rayleigh-Taylor fingers reflecting on transition region plasma, ensuring that cool, dense chromospheric material gets mixed with prominence matter up to very large heights. This offers an explanation for the return mass cycle mystery for prominence mater...

  9. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial

  10. Efficiency of a solar collector with internal boiling

    SciTech Connect (OSTI)

    Neeper, D.A.

    1986-01-01

    The behavior of a solar collector with a boiling fluid is analyzed to provide a simple algebraic model for future systems simulations, and to provide guidance for testing. The efficiency equation is developed in a form linear in the difference between inlet and saturation (boiling) temperatures, whereas the expression upon which ASHRAE Standard 109P is based utilizes the difference between inlet and ambient temperatures. The coefficient of the revised linear term is a weak function of collector parameters, weather, and subcooling of the working fluid. For a glazed flat-plate collector with metal absorber, the coefficient is effectively constant. Therefore, testing at multiple values of insolation and subcooling, as specified by ASHRAE 109P, should not be necessary for most collectors. The influences of collector properties and operating conditions on efficiency are examined.

  11. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  12. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

  13. Perfluorooctanoic acid Melting point ~55 C, boiling point ~190 C, pKa ~ 2.5, sparingly

    E-Print Network [OSTI]

    Cohen, Robert E.

    #12;Perfluorooctanoic acid · It concentrates on water surfaces as it is a fluoro-surfactant · Used in water and polar organic solvents · Stable at normal temperatures and pressures but avoid contact developmental and other adverse effects in laboratory animals. · Flammable and forms hazardous products like HF

  14. Union job fight boiling at DOE cleanup sites

    SciTech Connect (OSTI)

    Setzer, S.W.

    1993-11-15

    The US DOE is facing a growing jurisdictional dispute over which unions will perform the majority of clean-up work at its facilities. Unions affiliated with the AFL-CIO Metal Trades Council representing operations employees at the sites believe they have a fundamental right to work. Unions in the AFL-CIO's Building and Construction Trades Dept. insist that they have a clear mandate under federal labor law and the Davis-Bacon Act. The issue has heated up in recent weeks at the policy level and is boiling in a contentious dispute at DOE's Fernald site in Ohio.

  15. COMPOSITION OF VAPORS FROM BOILING NITRIC ACID SOLUTIONS B A

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: Achievements ofCOMPOSITION OF VAPORS FROM BOILING NITRIC ACID SOLUTIONS B A

  16. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA)

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  17. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, Charles W. (Kingston, TN)

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  18. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  19. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  20. A Review Of Recent Progress On Nano/micro Scale Nucleate Boiling Fundamentals

    E-Print Network [OSTI]

    Chung, J. N.

    2011-01-01

    Recent research progress in the area of nano/micro scale nucleate boiling is reviewed and an up-to-date summary is provided with a focus on the advances of fundamental boiling physics. This review examines nano/micro scale ...

  1. Hypothetical Thermodynamic Properties: The Boiling and Critical Temperatures of Polyethylene and Polytetrafluoroethylene

    E-Print Network [OSTI]

    Chickos, James S.

    Hypothetical Thermodynamic Properties: The Boiling and Critical Temperatures of Polyethylene value asymptotically approaches TB() ) (1217 ( 246) K for series related to polyethylene by the melting temperature of polyethylene.4,5 In this article, the question of whether the normal boiling tem

  2. Effects of Carbon Nanotube Coating on Bubble Departure Diameter and Frequency in Pool Boiling on a Flat, Horizontal Heater 

    E-Print Network [OSTI]

    Glenn, Stephen T.

    2011-08-08

    The effects of a carbon nanotube (CNT) coating on bubble departure diameter and frequency in pool boiling experiments was investigated and compared to those on a bare silicon wafer. The pool boiling experiments were performed at liquid subcooling...

  3. Experimental investigation of nucleate boiling heat transfer mechanisms for cylinders in water and FC-72

    SciTech Connect (OSTI)

    Ammerman, C.N.; You, S.M.; Hong, Y.S. [Univ. of Texas, Arlington, TX (United States). Dept. of Mechanical and Aerospace Engineering

    1995-12-31

    A recently developed photographic method is used to quantify vapor volumetric flow rate above a boiling wire. The volumetric flow rate is combined with additional analyses to determine the overall contributions to the total heat flux from four nucleate boiling heat transfer mechanisms (latent heat, natural convection, Marangoni flow, and micro-convection). This technique is used to quantify the boiling heat transfer mechanisms versus heat flux for a 510-{micro}m wire immersed in saturated water and in water with a small amount of liquid soap added. These data are compared with similar data taken for a 75-{micro}m wire boiling in saturated FC-72. For all cases, latent heat is the dominant heat transfer mechanism in the fully developed nucleate boiling regime. In addition, the latent heat component is significantly increased by the addition of small amounts of soap (surfactant).

  4. Determination of the boiling enhancement mechanism caused by surfactant addition to water

    SciTech Connect (OSTI)

    Ammerman, C.N.; You, S.M. [Univ. of Texas, Arlington, TX (United States). Dept. of Mechanical and Aerospace Engineering

    1995-12-31

    In the present investigation, boiling heat transfer coefficients are measured for an electrically heated 390-{micro}m, platinum wire immersed in saturated water, and in water mixed with three different concentrations of sodium dodecyl sulfate (an anionic surfactant). The addition of a surfactant to water is known to enhance boiling heat transfer. A recently developed photographic/laser Doppler anemometry measurement technique is used to quantify the vapor volumetric flowrate departing from the wire during the boiling process. The volumetric flowrate data are combined with results from additional analyses to determine the overall contributions to the total heat flux from three nucleate boiling heat transfer mechanisms. Comparisons are made to determine which heat transfer mechanisms are affected by the surfactant addition, and thus, which mechanisms promote boiling enhancement.

  5. Feasibility study on the thorium fueled boiling water breeder reactor

    SciTech Connect (OSTI)

    PetrusTakaki, N.

    2012-07-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  6. Statistical nature of boiling flows: an experimental approach

    SciTech Connect (OSTI)

    Jain, P.K.

    1981-01-01

    Two vertical, concentric annular test sections were used. Two flow-field variables, viz. static pressure fluctuations at the test section outer wall and instantaneous chordal-average vapor fraction, were studied. Matched piezo-electric pressure transducers were used for the pressure fluctuation measurements, and a linearized dual-beam x-ray system was used for the vapor fraction measurements. Steady state (mean) thermal-hydraulic condition in the last section was determined by an analytical model and verified to a certain extent by capacitance probe vapor volume fraction measurements. A wide range of local (measurement station) vapor fraction conditions with prevalent flow regimes ranging from subcooled bubbly to saturated churn turbulent-slug-annular was investigated. It is suggested that diagnosis of boiling flow regimes on the basis of the statistical properties of wall static pressure fluctuations and vapor fraction fluctuations may be possible.

  7. Analysis of scrams and forced outages at boiling water reactors

    SciTech Connect (OSTI)

    Earle, R. T.; Sullivan, W. P.; Miller, K. R.; Schwegman, W. J.

    1980-07-01

    This report documents the results of a study of scrams and forced outages at General Electric Boiling Water Reactors (BWRs) operating in the United States. This study was conducted for Sandia Laboratories under a Light Water Reactor Safety Program which it manages for the United States Department of Energy. Operating plant data were used to identify the causes of scrams and forced outages. Causes of scrams and forced outages have been summarized as a function of operating plant and plant age and also ranked according to the number of events per year, outage time per year, and outage time per event. From this ranking, identified potential improvement opportunities were evaluated to determine the associated benefits and impact on plant availability.

  8. Identification of pool boiling heat transfer mechanisms in FC-72 using a single-photo method

    SciTech Connect (OSTI)

    Ammerman, C.N.; You, S.M.; Hong, Y.S. [Univ. of Texas, Arlington, TX (United States). Dept. of Mechanical and Aerospace Engineering

    1995-10-01

    A unique method to determine the vapor flow rate above a boiling cylinder utilizing a single photograph is developed and discussed. This method is applied to a 75-{micro}m wire immersed in a saturated, highly wetting liquid (FC-72) to determine bubble departure diameter, frequency, and nucleation site density. Using the experimental results, an analysis is performed to evaluate individual heat flux contributions of the four pool boiling mechanisms: latent heat, natural convection, Marangoni flow, and micro-convection. Latent heat is identified as the dominant mechanism throughout most of the nucleate boiling regime.

  9. Critical heat flux for free convection boiling in thin rectangular channels

    SciTech Connect (OSTI)

    Cheng, Lap Y.; Tichler, P.R.

    1991-01-01

    A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the three mechanisms of burnout. 17 refs., 7 figs.

  10. Effect of surface roughness and polymeric additive on nucleate pool boiling at subatmospheric pressures

    SciTech Connect (OSTI)

    Tewari, P.K.; Verma, R.K.; Ramani, M.P.S.; Mahajan, S.P.

    1986-09-01

    This investigation pertains to boiling heat transfer from a submerged flat surface at subatmospheric and atmospheric pressures in the presence of hydroxy ethyl cellulose (HEC) as a polymeric additive in small doses. Boiling was carried out in presence of the additive on smooth and rough aluminium surfaces having effective cavity size within the range as predicted by Hsu model and the pressure was kept in the range of 8 - 100 KN/sq.m (abs). Effects of surface roughness, saturation pressure and polymer concentration on boiling heat transfer were studied and the results were compared with Rohsenow's correlation.

  11. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect (OSTI)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  12. Improvements of fuel failure detection in boiling water reactors using helium measurements

    SciTech Connect (OSTI)

    Larsson, I.; Sihver, L.; Grundin, A.; Helmersson, J. O.

    2012-07-01

    To certify a continuous and safe operation of a boiling water reactor, careful surveillance of fuel integrity is of high importance. The detection of fuel failures can be performed by off-line gamma spectroscopy of off-gas samples and/or by on-line nuclide specific monitoring of gamma emitting noble gases. To establish the location of a leaking fuel rod, power suppression testing can be used. The accuracy of power suppression testing is dependent on the information of the delay time and the spreading of the released fission gases through the systems before reaching the sampling point. This paper presents a method to improve the accuracy of power suppression testing by determining the delay time and gas spreading profile. To estimate the delay time and examine the spreading of the gas in case of a fuel failure, helium was injected in the feed water system at Forsmark 3 nuclear power plant. The measurements were performed by using a helium detector system based on a mass spectrometer installed in the off-gas system. The helium detection system and the results of the experiment are presented in this paper. (authors)

  13. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  14. Evaluation of the economic simplified boiling water reactor human reliability analysis using the SHARP framework

    E-Print Network [OSTI]

    Dawson, Phillip Eng

    2007-01-01

    General Electric plans to complete a design certification document for the Economic Simplified Boiling Water Reactor to have the new reactor design certified by the United States Nuclear Regulatory Commission. As part of ...

  15. Flow boiling and two-phase flow instabilities in silicon microchannel heat sinks for microsystems cooling 

    E-Print Network [OSTI]

    Bogojevi?, Dario

    2010-01-01

    Flow boiling in microchannels, while very promising as a cooling technology in electronics thermal management, is still a subject being explored that requires further investigation. Before applying this technology for ...

  16. Bubble behavior in subcooled flow boiling on surfaces of variable wettability

    E-Print Network [OSTI]

    Tow, Emily W

    2012-01-01

    Flow boiling is important in energy conversion and thermal management due to its potential for very high heat fluxes. By improving understanding of the conditions leading to bubble departure, surfaces can be designed that ...

  17. A study of system-induced instabilities in forced-convection flows with subcooled boiling

    E-Print Network [OSTI]

    Maulbetsch, John S.

    1965-01-01

    A combined analytical and experimental program was carried out to investigate the problem of hydrodynamic stability of forcedconvection flows with boiling. The study was restricted to the flow of water in small channels ...

  18. Nano-engineering the boiling surface for optimal heat transfer rate and critical heat flux

    E-Print Network [OSTI]

    Phillips, Bren Andrew

    2011-01-01

    The effects on pool boiling characteristics such as critical heat flux and the heat transfer coefficient of different surface characteristics such as surface wettability, roughness, morphology, and porosity are not well ...

  19. Development of a model to predict flow oscillations in low-flow sodium boiling

    E-Print Network [OSTI]

    Levin, Alan Edward

    1980-01-01

    An experimental and analytical program has been carried out in order to better understand the cause and effect of flow oscillations in boiling sodium systems. These oscillations have been noted in previous experiments with ...

  20. Prediction of departure from nucleate boiling in PWR fast power transients

    E-Print Network [OSTI]

    Lenci, Giancarlo

    2013-01-01

    An assessment is conducted of the differences in predicted results between use of steady state versus transient Departure from Nucleate Boiling (DNB) models, for fast power transients under forced convective heat exchange ...

  1. Enhanced flow boiling heat transfer in microchannels with structured surfaces at varied mass flow rates

    E-Print Network [OSTI]

    Bian, David (David Wei)

    2015-01-01

    This thesis investigates the role of mass flux on flow boiling heat transfer in microchannels with surface micropillar arrays. The motivation for this investigation was to determine the general trends of the optimal ...

  2. Visualization of flow boiling in an annular heat exchanger under reduced gravity conditions 

    E-Print Network [OSTI]

    Westheimer, David Thomas

    2000-01-01

    poorly with an Earth based flow regime map; (ii) predicting that the maximum two-phase heat transfer coefficient would occur near the location the boiling fluid reached a saturated state, which also corresponded with the location of maximum nucleate...

  3. Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test

    E-Print Network [OSTI]

    Booker, Kayje

    2012-01-01

    is brought to a boil. 3. Simmer (low power): Immediatelywater is maintained at a simmer for 45 minutes. In this60% open during the low power (simmer phase) test. The same

  4. Experimental Observation and Measurements of Pool Boiling Heat Transfer using PIV, Shadowgraphy, RICM Techniques 

    E-Print Network [OSTI]

    Di, Yuan 1988-

    2012-12-05

    This present study seeks to contribute detailed visualization data on a pool boiling experiments using HFE-7000. Particle Image Velocimetry (PIV) was used to measure the time resolved whole field liquid velocity. Bubble dynamic parameters...

  5. Experimental & Numerical Investigation of Pool Boiling on Engineered Surfaces with Integrated Thin-flim Temperature Sensors 

    E-Print Network [OSTI]

    Sathyamurthi, Vijaykumar

    2011-02-22

    The objective of this investigation is to measure and analyze surface temperature fluctuations in pool boiling. The surface temperature fluctuations were recorded on silicon surfaces with and without multi-walled carbon ...

  6. Investigation of the effects of surfactant concentration on the boiling curve of water

    E-Print Network [OSTI]

    Reed, Darci Janelle

    2015-01-01

    Boiling is a widely used heat transfer process in industry that allows for high heat transfer with a small temperature gradient. In this study the effects of two homologous series of surfactants (trimethylammonium bromide ...

  7. Conceptual design of an annular-fueled superheat boiling water reactor

    E-Print Network [OSTI]

    Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    The conceptual design of an annular-fueled superheat boiling water reactor (ASBWR) is outlined. The proposed design, ASBWR, combines the boiler and superheater regions into one fuel assembly. This ensures good neutron ...

  8. Experimental Two-Phase Flow Characterization of Subcooled Boiling in a Rectangular Channel 

    E-Print Network [OSTI]

    Estrada Perez, Carlos E.

    2010-01-16

    On the efforts to provide a reliable source of experimental information on turbulent subcooled boiling ow, time resolved Particle Tracking Velocimetry (PTV) experiments were carried out using HFE-301 refrigerant ow through a vertical rectangular...

  9. Stability analysis of the boiling water reactor : methods and advanced designs

    E-Print Network [OSTI]

    Hu, Rui, Ph. D. Massachusetts Institute of Technology

    2010-01-01

    Density Wave Oscillations (DWOs) are known to be possible when a coolant undergoes considerable density reduction while passing through a heated channel. In the development of boiling water reactors (BWRs), there has been ...

  10. Thermal non-equilibrium in dispersed flow film boiling in a vertical tube

    E-Print Network [OSTI]

    Forslund, Robert Paul

    1966-01-01

    The departure from thermal equilibrium between a dispersed liquid phase and its vapor at high quality during film boiling is investigated, The departure from equilibruim is manifested by the high resistance to heat transfer ...

  11. Film boiling of saturated liquid flowing upward through a heated tube : high vapor quality range

    E-Print Network [OSTI]

    Laverty, W. F.

    1964-01-01

    Film boiling of saturated liquid flowing upward through a uniformly heated tube has been studied for the case in which pure saturated liquid enters the tube and nearly saturated vapor is discharged. Since a previous study ...

  12. Development of 1000 MWe Advanced Boiling Water Reactor

    SciTech Connect (OSTI)

    Kazuo Hisajima; Ken Uchida; Keiji Matsumoto; Koichi Kondo; Shigeki Yokoyama; Takuya Miyagawa [Toshiba Corporation (Japan)

    2006-07-01

    1000 MWe Advanced Boiling Water Reactor has only two main steam lines and six reactor internal pumps, whereas 1350 MWe ABWR has four main steam lines and ten reactor internal pumps. In order to confirm how the differences affect hydrodynamic conditions in the dome and lower plenum of the reactor pressure vessel, fluid analyses have been performed. The results indicate that there is not substantial difference between 1000 MWe ABWR and 1350 MWe ABWR. The primary containment vessel of the ABWR consists of the drywell and suppression chamber. The suppression chamber stores water to suppress pressure increase in the primary containment vessel and to be used as the source of water for the emergency core cooling system following a loss-of-coolant accident. Because the reactor pressure vessel of 1000 MWe ABWR is smaller than that of 1350 MWe ABWR, there is room to reduce the size of the primary containment vessel. It has been confirmed feasible to reduce inner diameter of the primary containment vessel from 29 m of 1350 MWe ABWR to 26.5 m. From an economic viewpoint, a shorter outage that results in higher availability of the plant is preferable. In order to achieve 20-day outage that results in 97% of availability, improvement of the systems for removal of decay heat is introduced that enables to stop all the safety-related decay heat removal systems except at the beginning of an outage. (authors)

  13. Camera Inspection Arm for Boiling Water Reactors - 13330

    SciTech Connect (OSTI)

    Martin, Scott; Rood, Marc

    2013-07-01

    Boiling Water Reactor (BWR) outage maintenance tasks can be time-consuming and hazardous. Reactor facilities are continuously looking for quicker, safer, and more effective methods of performing routine inspection during these outages. In 2011, S.A. Technology (SAT) was approached by Energy Northwest to provide a remote system capable of increasing efficiencies related to Reactor Pressure Vessel (RPV) internal inspection activities. The specific intent of the system discussed was to inspect recirculation jet pumps in a manner that did not require manual tooling, and could be performed independently of other ongoing inspection activities. In 2012, SAT developed a compact, remote, camera inspection arm to create a safer, more efficient outage environment. This arm incorporates a compact and lightweight design along with the innovative use of bi-stable composite tubes to provide a six-degree of freedom inspection tool capable of reducing dose uptake, reducing crew size, and reducing the overall critical path for jet pump inspections. The prototype camera inspection arm unit is scheduled for final testing in early 2013 in preparation for the Columbia Generating Station refueling outage in the spring of 2013. (authors)

  14. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  15. VHTR Materials Overview

    SciTech Connect (OSTI)

    Wright, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-07-30

    The PowerPoint presentation was given at the DOE-NE Materials Crosscut Coordination Meeting, Tuesday, 30 July 2013.

  16. Microsoft PowerPoint - Nuclear Material Import Export License Â… Uses & Reporting processes_Gary Langlie_Karen Antizzo [Compatib

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA.MOX Adventure Tamara Reavis May 2015Material

  17. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    SciTech Connect (OSTI)

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  18. Saturated nucleate pool boiling of oxygen under magnetically-enhanced effective gravity

    E-Print Network [OSTI]

    T. A. Corcovilos; M. E. Turk; D. M. Strayer; N. N. Asplund; N. -C. Yeh

    2007-02-01

    We investigate the effect of enhancing gravity on saturated nucleate pool boiling of oxygen for effective gravities of 1g, 6.0g, and 16g (g=9.8 m/s^2) at a saturation pressure of 760 torr and for heat fluxes of 10 ~ 3000 W/m^2. The effective gravity on the oxygen is increased by applying a magnetic body force generated by a superconducting solenoid. We measure the heater temperature (expressed as a reduced superheat) as a function of heat flux and fit this data to a piecewise power-law/linear boiling curve. At low heat flux (<400 W/m^2) the superheat is proportional to the cube root of the heat flux. At higher heat fluxes, the superheat is a linear function of the heat flux. To within statistical uncertainties, which are limited by variations among experimental runs, we find no variation of the boiling curve over our applied gravity range.

  19. Design and Testing of Vacuum Breaker Check Valve for Simplified Boiling Water Reactor

    SciTech Connect (OSTI)

    Ishii, M.; Xu, Y.; Revankar, S.T.

    2002-07-01

    A new design of the vacuum breaker check valve was developed to replace the mechanical valve in a simplified boiling water reactor. Scaling and design calculations were performed to obtain the geometry of new passive hydraulic vacuum breaker check valve. In order to check the valve performance, a RELAP5 model of the simplified boiling water reactor system with the new valve was developed. The valve was implemented in an integral facility, PUMA and was tested for large break loss of coolant accident. (authors)

  20. Multifractal Analysis of Chaotic Flashing-Induced Instabilities in Boiling Channels in the Natural-Circulation CIRCUS Facility

    E-Print Network [OSTI]

    Demazière, Christophe

    . INTRODUCTION Instability of forced-circulation boiling water reac- tors ~BWRs!, which is manifested by selfMultifractal Analysis of Chaotic Flashing-Induced Instabilities in Boiling Channels in the Natural University of Technology, Department of Physics of Nuclear Reactors, Delft, 2629 BJ, The Netherlands Received

  1. Microjet array single-phase and flow boiling heat transfer with R134a Eric A. Browne a

    E-Print Network [OSTI]

    Peles, Yoav

    :6 6 Nud 6 128. Boiling experiments were conducted with liquid subcoolings of 10, 20, and 30 °C at jet effective than forced air convection will be required. Single-phase flow and flow boiling in microchannels have been studied [4­10] with a variety of fluids and flow schemes and have been used to cool turbine

  2. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    Douglas M. Gerstner

    2009-05-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

  3. Nanoscale modification of key surface parameters to augment pool boiling heat transfer and critical heat flux in water and dielectric fluids

    E-Print Network [OSTI]

    Forrest, Eric Christopher

    2009-01-01

    Surface effects on pool boiling heat transfer and the critical heat flux are well documented but poorly understood. This study investigates the pool boiling characteristics of various fluids, and demonstrates that surface ...

  4. Development of a small-channel nucleate-boiling heat transfer correlation

    SciTech Connect (OSTI)

    Kasza, K.E.; Wambsganss, M.W.

    1994-06-01

    Development of an improved semimechanistic-based set of correlation parameters for nucleation-dominant flow-boiling heat transfer in small channels is described. Formulation of these parameters is on the basis of a recently published open-literature model for vapor bubble growth at a heated surface. This work is part of a program directed at obtaining an understanding of the physical mechanisms that influence boiling in compact heat exchangers through the use of high-speed video and microscope optics to characterize bubble nucleation, growth, and interaction with the confining walls of small heat transfer passages. The correlation parameters presented here represent the first step in the development of an improved boiling correlation for geometrically confined small-channel flows. In such flows, the nucleating bubbles can become nominally the same size as the channel cross section, thereby invalidating existing correlations that are based on large-channel data. Initial efforts to correlate small-channel-boiling data obtained at Argonne National Laboratory from nontransparent electrically heated metal tube tests appear promising.

  5. Analysis of the Simplified Boiling Water Reactor using the code Ramona-4B 

    E-Print Network [OSTI]

    Cuevas Vivas, Gabriel Francisco

    1995-01-01

    The analysis of the Simplified Boiling Water Reactor (SBVVR) is carried out through the use of the reactor analysis code RAMONA-4B in a scenario of an operational transient, a turbine trip with failure of all the bypass valves. This study is divided...

  6. Enhancement of pool boiling heat transfer with electrohydrodynamics and its fundamental study 

    E-Print Network [OSTI]

    Raghupathi, Sri Laxmi Priya

    1998-01-01

    The enhancement of heat transfer in the realm of pool boiling refrigerants, using the concepts of electrohydrodynamics(EHD), has been actively researched in the past decade. This research aims at studying the effect of EHD on new refrigerants (R-123...

  7. INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER

    E-Print Network [OSTI]

    Kandlikar, Satish

    INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER Satish G. Kandlikar surfaces in laboratories to obtain the heat transfer coefficient data. In many process applications however, a fluid stream is employed as the heating medium. The heat transfer data generated with the electrically

  8. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink

    E-Print Network [OSTI]

    Peles, Yoav

    Boiling heat transfer in a hydrofoil-based micro pin fin heat sink Ali Kosßar, Yoav Peles-based micro pin fin heat sink was investigated. Average two-phase heat transfer coefficients were obtained intermittent and spray-annular flows. Heat transfer coefficient trends and flow morphologies were used to infer

  9. Numerical Simulation of Boiling Heat Transfer by Transient Heating *@--i"OE`H@j@@@"`@Zi@Oi"OE`Hj@@@"`@SZR@vi"OE`Hj

    E-Print Network [OSTI]

    Maruyama, Shigeo

    with macrolayer model of Maruyama, we simulated the transient boiling curve for water and fluorinert FC-72(C6F14 boiling processes are very important in steel production and safety evaluations in nuclear reactors conduction within the heater. The transient boiling curves for water and FC-72 were predicted. The transient

  10. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    SciTech Connect (OSTI)

    Not Available

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  11. Minimizing corrosion in coal liquid distillation

    DOE Patents [OSTI]

    Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY)

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  12. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, Richard W. (Hinsdale, IL); Nieman, G. William (Evanston, IL); Weertman, Julia R. (Evanston, IL)

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  13. Simultaneous boiling and spreading of liquefied petroleum gas on water. Final report, December 12, 1978-March 31, 1981

    SciTech Connect (OSTI)

    Chang, H.R.; Reid, R.C.

    1981-04-01

    An experimental and theoretical investigation was carried out to study the boiling and spreading of liquid nitrogen, liquid methane and liquefied petroleum gas (LPG) on water in a one-dimensional configuration. Primary emphasis was placed on the LPG studies. Experimental work involved the design and construction of a spill/spread/boil apparatus which permitted the measurement of spreading and local boil-off rates. With the equations of continuity and momentum transfer, a mathematical model was developed to describe the boiling-spreading phenomena of cryogens spilled on water. The model accounted for a decrease in the density of the cryogenic liquid due to bubble formation. The boiling and spreading rates of LPG were found to be the same as those of pure propane. An LPG spill was characterized by the very rapid and violent boiling initially and highly irregular ice formation on the water surface. The measured local boil-off rates of LPG agreed reasonably well with theoretical predictions from a moving boundary heat transfer model. The spreading velocity of an LPG spill was found to be constant and determined by the size of the distributor opening. The maximum spreading distance was found to be unaffected by the spilling rate. These observations can be explained by assuming that the ice formation on the water surface controls the spreading of LPG spills. While the mathematical model did not predict the spreading front adequately, it predicted the maximum spreading distance reasonably well.

  14. Application of the Isotope Ratio Method to a Boiling Water Reactor

    SciTech Connect (OSTI)

    Frank, Douglas P.; Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Meriwether, George H.; Mitchell, Mark R.; Reid, Bruce D.

    2010-08-11

    The isotope ratio method is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods. All reactor materials contain trace elemental impurities at parts per million levels, and the isotopes of these elements are transmuted by neutron irradiation in a predictable manner. While measuring the change in a particular isotope’s concentration is possible, it is difficult to correlate to energy production because the initial concentration of that element may not be accurately known. However, if the ratio of two isotopes of the same element can be measured, the energy production can then be determined without knowing the absolute concentration of that impurity since the initial natural ratio is known. This is the fundamental principle underlying the isotope ratio method. Extremely sensitive mass-spectrometric methods are currently available that allow accurate measurements of the impurity isotope ratios in samples. Additionally, “indicator” elements with stable activation products have been identified so that their post-irradiation isotope ratios remain constant. This method has been successfully demonstrated on graphite-moderated reactors. Graphite reactors are particularly well-suited to such analyses since the graphite moderator is resident in the fueled region of the core for the entire period of operation. Applying this method to other reactor types is more difficult since the resident portions of the reactor available for sampling are either outside the fueled region of the core or structural components of individual fuel assemblies. The goal of this research is to show that the isotope ratio method can produce meaningful results for light water-moderated power reactors. In this work, we use the isotope ratio method to estimate the energy production in a boiling water reactor fuel bundle based on measurements taken from the corresponding fuel assembly channel. Our preliminary results are in good agreement with the actual operating history of the reactor during the cycle that the fuel bundle was resident in the core.

  15. Pressure suppression containment system for boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA); Nesbitt, Loyd B. (San Jose, CA)

    1997-01-01

    A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.

  16. Pressure suppression containment system for boiling water reactor

    DOE Patents [OSTI]

    Gluntz, D.M.; Nesbitt, L.B.

    1997-01-21

    A system is disclosed for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs. 3 figs.

  17. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    SciTech Connect (OSTI)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

  18. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  19. Development of a general purpose subgrid wall boiling model from improved physical understanding for use in computational fluid dynamics

    E-Print Network [OSTI]

    Gilman, Lindsey Anne

    2014-01-01

    Advanced modeling capabilities were developed for application to subcooled flow boiling through this work. The target was to introduce, and demonstrate, all necessary mechanisms required to accurately predict the temperature ...

  20. Experimental investigation of subcooled flow boiling using synchronized high speed video, infrared thermography, and particle image velocimetry

    E-Print Network [OSTI]

    Phillips, Bren Andrew

    2014-01-01

    Subcooled flow boiling of water was experimentally investigated using high-speed video (HSV), infrared (IR) thermography, and particle image velocimetry (PIV) to generate a unique database of synchronized data. HSV allowed ...

  1. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vessel that is Cooled by Liquid Hydrogen in Film Boiling

    E-Print Network [OSTI]

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-01-01

    VESSEL THAT IS COOLED BY LIQUID HYDROGEN IN FILM BOILING S.window that is part of a 20-liter liquid hydrogen vessel.This rupture will spill liquid hydrogen onto the walls and

  2. A four-equation two-phase flow model for sodium boiling simulation of LMFBR fuel assemblies

    E-Print Network [OSTI]

    Schor, Andrei L.

    1982-01-01

    A three-dimensional numerical model for the simulation of sodium boiling transients has been developed. The model uses mixture mass and energy equations, while employing a separate momentum equation for each phase. Thermal ...

  3. Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D

    E-Print Network [OSTI]

    Zielinski, R. G.

    1981-01-01

    Several features were incorporated into NATOF-2D, a twodimensional, two fluid code developed at M.I.T. for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, ...

  4. Subcooled flow boiling heat transfer and critical heat flux in water-based nanofluids at low pressure

    E-Print Network [OSTI]

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In this ...

  5. Effect of combined nanoparticle and polymeric dispersions on critical heat flux, nucleate boiling heat transfer coefficient, and coating adhesion

    E-Print Network [OSTI]

    Edwards, Bronwyn K

    2009-01-01

    An experimental study was performed to determine thermal performance and adhesion effects of a combined nanoparticle and polymeric dispersion coating. The critical heat flux (CHF) values and nucleate boiling heat transfer ...

  6. Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles

    SciTech Connect (OSTI)

    Manglik, R M; Athavale, A; Kalaikadal, D S; Deodhar, A; Verma, U

    2011-09-02

    The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.

  7. Critical Heat Flux for Downward-Facing Boiling on a Coated Hemispherical Vessel Surrounded by an Insulation Structure

    SciTech Connect (OSTI)

    J. Yang; F. B. Cheung; J. L. Rempe; K. Y. Suh; S. B. Kim

    2005-05-01

    An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This nonmonotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.

  8. Microsoft PowerPoint - Interface_Levin

    Office of Environmental Management (EM)

    Adam H. Levin AHL Consulting May 14, 2014 BWR - Boiling Water Reactor DOE - Department of Energy DSC - Dry Storage Canister ISF - Interim Storage Facility ISFSI - Independent Spent...

  9. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  10. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?

    E-Print Network [OSTI]

    Betz, Amy; Qiu, Huihe; Attinger, Daniel

    2010-01-01

    We demonstrate that smooth and flat surfaces combining hydrophilic and hydrophobic patterns improve pool boiling performance. Compared to a hydrophilic surface with 7^\\circ wetting angle, the measured critical heat flux and heat transfer coefficients of the enhanced surfaces are up to respectively 65 and 100% higher. Different networks combining hydrophilic and hydrophobic regions are characterized. While all tested networks enhance the heat transfer coefficient, large enhancements of critical heat flux are typically found for hydrophilic networks featuring hydrophobic islands. Hydrophilic networks indeed are shown to prevent the formation of an insulating vapor layer.

  11. The use of the probability distribution function to analyze surface temperature fluctuations in pool boiling 

    E-Print Network [OSTI]

    Tu, Chau Qui

    1976-01-01

    par t of his t ime and labor to assist in the welding of thermocoupl-. junctions to the copper disk. And to all of those directly connected and to many others who helped by givino words of suggestion, there will always remain a debt o.... DEDICATION. AC (QU OWL EDGI"IENT S. TABLE OF CONTENTS. L1ST OF TABLES. LIST OF F IGUR ES. vi vii 1x CHAPTER I INTRODUCTION. CHAPTER II MECHANISMS OF NUCLEATE POOL BOILING. . . . . Bubble agitation model. Vapor-liquid exchange model. 3. M...

  12. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    SciTech Connect (OSTI)

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  13. A study of out-of-phase power instabilities in boiling water reactors

    SciTech Connect (OSTI)

    March-Leuba, J.; Blakeman, E.D.

    1988-06-20

    This paper presents a study of the stability of subcritical neutronic modes in boiling water reactors that can result in out-of-phase power oscillations. A mechanism has been identified for this type of oscillation, and LAPUR code has been modified to account for it. Numerical results show that there is a region in the power-flow operating map where an out-or-phase stability mode is likely even if the core-wide mode is stable. 4 refs., 7 figs.

  14. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, A.J.; Spates, J.J.; Martin, S.J.

    1998-10-27

    Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.

  15. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, Arthur J. (Albuquerque, NM); Spates, James J. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM)

    1998-01-01

    Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.

  16. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  17. Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling

    SciTech Connect (OSTI)

    J. Yang; F. B. Cheung; J. L. Rempe; K. Y. Suh; S. B. Kim

    2005-07-01

    Four types of steady-state boiling experiments were conducted to investigate the efficacy of two distinctly different heat transfer enhancement methods for external reactor vessel cooling under severe accident conditions. One method involved the use of a thin vessel coating and the other involved the use of an enhanced insulation structure. By comparing the results obtained in the four types of experiments, the separate and integral effect of vessel coating and insulation structure were determined. Correlation equations were obtained for the nucleate boiling heat transfer and the critical heat flux. It was found that both enhancement methods were quite effective. Depending on the angular location, the local critical heat flux could be enhanced by 1.4 to 2.5 times using vessel coating alone whereas it could be enhanced by 1.8 to 3.0 times using an enhanced insulation structure alone. When both vessel coating and insulation structure were used simultaneously, the integral effect on the enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.

  18. Magnetic thaw-down and boil-off due to magneto acceptors in 2DEG

    SciTech Connect (OSTI)

    Chaubet, C.; Raymond, A. [L2C UMR 5221, CNRS-Université Montpellier 2, Place E. Bataillon, 34090 Montpellier cedex 05 (France); Bisotto, I. [LNCMI, UPR 3228, CNRS-INSA-UJF-UPS, BP166, 38042 Grenoble, Cedex 9 (France); Harmand, J. C. [LPN, CNRS, route de Nozay, 91460 Marcoussis (France); Kubisa, M. [Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Zawadzki, W. [Institute of Physics, Polish Academy of Sciences, 02668 Warsaw (Poland)

    2013-12-04

    The Quantum Hall Effect (QHE) and Shubnikov-de Haas effect are investigated experimentally using n type modulation-doped GaAs/GaAlAs quantum wells (QWs) additionally doped in the well with beryllium acceptor atoms. It is presently shown that the localized magneto-acceptor (MA) states which possess discrete energies above the corresponding Landau levels (LLs) lead to two observable effects in magneto-transport: magnetic thaw-down and magnetic boil-off of 2D electrons. Both effects are related to the fact that electrons occupying the localized MA states cannot conduct. Thus in the thaw-down effect the electrons fall down from the MA states to the free Landau states. This leads to a shift of the Hall plateau towards higher magnetic fields as a consequence of an increase of the 2D electron density N{sub S}. In the boil-off effect the electrons are pushed from the free Landau states to the empty MA states under high enough Hall electric field. This process has an avalanche character leading to a dramatic increase of magneto-resistance, consequence of a decrease of N{sub S}.

  19. SUPPORTING INFORMATION Comparison of non-precious metal cathode materials for methane

    E-Print Network [OSTI]

    ® membranes were pre- treated by boiling them successively for 1 h each in a 4% H2O2 in de-ionized water, 1 M, MO, USA) in the highest available purity. Additional Details of Reactor Materials Preparation. Nafion H2SO4, and again in de-ionized water. Butyl rubber stoppers were used to prevent loss of gas from

  20. BOILING CRISIS:THEORY,SIMULATION,AND EXPERIMENTSBOILING CRISIS: THEORY, SIMULATION, AND EXPERIMENTS Boiling is a very efficient way to transfer heat from a heater to the liquid heat carrier. We discuss the

    E-Print Network [OSTI]

    Nikolayev, Vadim S.

    , e.g. nuclear power plant steam generators. Two main boiling regimes can be dis- tinguished: nucleate causes a recoil force anal- ogous to that created by the gas emitted by a rocket engine. It pushes expands while transforming from liquid to gas phase. Obviously, the stronger the evap- oration rate

  1. Development of a portable neutron coincidence counter for field measurements of nuclear materials using the advanced multiplicity capabilities of MCNPX 2.5.F and the neutron coincidence point model 

    E-Print Network [OSTI]

    Thornton, Angela Lynn

    2009-05-15

    given material. In an effort to identify unknown nuclear samples in field inspections, the Portable Neutron Coincidence Counter (PNCC) has been developed. This detector makes use of the coincident neutrons being emitted from a bulk sample. An in...

  2. Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    E-Print Network [OSTI]

    Torgersen, Christian

    Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley. Because of this danger, the U.S. Forest Service has had to close parts of the Hot Creek Geologic Site the region. The attractions of Hot Creek, however, also harbor danger. The locations, dis- charge rates

  3. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-20, NO. 6, DECEMBER 1975 127 Acoustics, Stability, and Compensation in Boiling

    E-Print Network [OSTI]

    Kwatny, Harry G.

    , and Compensation in Boiling Water Reactor Pressure Control Systems Abstract-An analysisis provided of the effeds THECONTROL of steam pressure inboiling water reactor(BWR)nuclear power stations is one of the critical plantIEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-20, NO. 6, DECEMBER 1975 127 Acoustics, Stability

  4. Replacement of outboard main steam isolation valves in a boiling water reactor plant

    SciTech Connect (OSTI)

    Schlereth, J.R.; Pennington, D.

    1996-12-01

    Most Boiling Water Reactor plants utilize wye pattern globe valves for main steam isolation valves for both inboard and outboard isolation. These valves have required a high degree of maintenance attention in order to pass the plant local leakage rate testing (LLRT) requirements at each outage. Northern States Power made a decision in 1993 to replace the outboard valves at it`s Monticello plant with double disc gate valves. The replacement of the outboard valves was completed during the fall outage in 1994. During the spring outage in April of 1996 the first LLRT testing was performed with excellent results. This presentation will address the decision process, time requirements and planning necessary to accomplish the task as well as the performance results and cost effectiveness of replacing these components.

  5. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS

    SciTech Connect (OSTI)

    PACE, M.E.

    2004-01-13

    The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

  6. Effect of nonuniformity of subcooled boiling flow on the onset of thermoacoustic vibrations

    SciTech Connect (OSTI)

    Gerliga, V.A.; Skalozubov, V.I.; Lesin, V.Y. )

    1991-01-01

    This paper develops the hypothesis that the factor responsible for the onset of thermoacoustic vibrations in two-phase bubble flow is positive work by bubbles condensing in the flow core. It is shown that the predicted threshold of generation of these vibrations depends strongly on the accuracy of description of the steady-state distribution of parameters of bubbles and the liquid. The results predicted on the basis of a two-zone nonequilibrium polydisperse model are compared with those given by the uniform-flow model and an equation representing the condition of applicability of one-dimensional models for predicting the steady-state parameters of nonequilibrium boiling flows is derived.

  7. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, Paul R. (Tucson, AZ)

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  8. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  9. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences, and Biosciences Phil Britt Materials Science and Engineering James Morris CNMS User Programs Hans Christen Center for Nanophase Materials Sciences Hans...

  10. PowerPoint-Präsentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Workshop, Santa Fe, 2021.07.2015 Materials of interest for AM In Switzerland, there is a specific need for AM of the following materials Advanced...

  11. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    SciTech Connect (OSTI)

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  12. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised.

  13. singularities, swallowtails and dirac points. an analysis for families

    E-Print Network [OSTI]

    2012-07-05

    Jul 5, 2012 ... in graphene). Of particular interest are Dirac points in triply periodic materials, such as the Gyroid network: they can be viewed as mag-.

  14. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Global Material Supply Chains, K. Cafferty, INL (4.3.2) National Technology Roadmap for Critical Materials, J. Collins, INL (4.3.3) Focus Area 4 Crosscutting Research...

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for medical point of care diagnostics and drug delivery Ronen Polsky Department of Biosensors and Nanomaterials February 25, 2015 Sandia MedTech Showcase Sandia National...

  16. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System (RapiDx) * Portable microfluidic in vitro diagnostic instrument for cancer and infectious disease biomarkers in human biological samples * Point-of-Care...

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optic links will replace many hardwire connections - Remotely programmable set-points and monitoring for each klystron cart - Klystron collector over-temperature protection will...

  18. Web points of interest

    E-Print Network [OSTI]

    Web points of interest ... JUGGLING CLUB; The Lafayette Citizens Band Home Page; Harold Boas' incredible list of math and life resources on the WEB.

  19. Design of a boiling water reactor equilibrium core using thorium-uranium fuel

    SciTech Connect (OSTI)

    Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G.; Martin-del-Campo, C.

    2004-10-06

    In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam isolation valves closure and loss of feed water. The results of these transients are similar to those obtained with the traditional UO2 nuclear fuel.

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    against scattering Locked spin-k relationship Majorana Fermions Spintronics, optoelectronics Real materials are not ideal - dopantsdefects result in...

  1. Nanotexturing of surfaces to reduce melting point.

    SciTech Connect (OSTI)

    Garcia, Ernest J.; Zubia, David; Mireles, Jose; Marquez, Noel; Quinones, Stella

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  2. The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling

    E-Print Network [OSTI]

    Sugrue, Rosemary M

    2012-01-01

    The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling were studied using a high-speed video camera in conjunction with a two-phase flow ...

  3. Investigation of the pool boiling heat transfer enhancement of nano-engineered fluids by means of high-speed infrared thermography

    E-Print Network [OSTI]

    Gerardi, Craig Douglas

    2009-01-01

    A high-speed video and infrared thermography based technique has been used to obtain detailed and fundamental time- and space-resolved information on pool boiling heat transfer. The work is enabled by recent advances in ...

  4. An investigation of the physical and numerical foundations of two-fluid representation of sodium boiling with applications to LMFBR experiments

    E-Print Network [OSTI]

    No, Hee Cheon

    1983-01-01

    This work involves the development of physical models for the constitutive relations of a two-fuid, three-dimensional sodium boiling code, THERMIT-6S. The code is equipped with a fluid conduction model, a fuel pin model, ...

  5. Experimental investigation on the flow instability behavior of a multi-channel boiling natural circulation loop at low-pressures

    SciTech Connect (OSTI)

    Jain, Vikas; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-09-15

    Natural circulation as a mode of heat removal is being considered as a prominent passive feature in the innovative nuclear reactor designs, particularly in boiling-water-reactors, due to its simplicity and economy. However, boiling natural circulation system poses many challenges to designer due to occurrence of various kinds of instabilities such as excursive instability, density wave oscillations, flow pattern transition instability, geysering and metastable states in parallel channels. This problem assumes greater significance particularly at low-pressures i.e. during startup, where there is great difference in the properties of two phases. In light of this, a parallel channel loop has been designed and installed that has a geometrical resemblance to the pressure-tube-type boiling-water-reactor, to investigate into the behavior of boiling natural circulation. The loop comprises of four identical parallel channels connected between two common plenums i.e. steam drum and header. The recirculation path is provided by a single downcomer connected between steam drum and header. Experiments have been conducted over a wide range of power and pressures (1-10 bar). Two distinct unstable zones are observed with respect to power i.e. corresponding to low power (Type-I) and high power (Type-II) with a stable zone at intermediate powers. The nature of oscillations in terms of their amplitude and frequency and their evolution for Type-I and Type-II instabilities are studied with respect to the effect of heater power and pressure. This paper discusses the evolution of unstable and stable behavior along with the nature of flow oscillation in the channels and the effect of pressure on it. (author)

  6. Many-Group Cross-Section Adjustment Techniques for Boiling Water Reactor Adaptive Simulation

    SciTech Connect (OSTI)

    Jessee, Matthew Anderson

    2011-01-01

    Computational capability has been developed to adjust multigroup neutron cross sections, including self-shielding correction factors, to improve the fidelity of boiling water reactor (BWR) core modeling and simulation. The method involves propagating multigroup neutron cross-section uncertainties through various BWR computational models to evaluate uncertainties in key core attributes such as core k{sub eff}, nodal power distributions, thermal margins, and in-core detector readings. Uncertainty-based inverse theory methods are then employed to adjust multigroup cross sections to minimize the disagreement between BWR core modeling predictions and observed (i.e., measured) plant data. For this paper, observed plant data are virtually simulated in the form of perturbed three-dimensional nodal power distributions with the perturbations sized to represent actual discrepancies between predictions and real plant data. The major focus of this work is to efficiently propagate multigroup neutron cross-section uncertainty through BWR lattice physics and core simulator calculations. The data adjustment equations are developed using a subspace approach that exploits the ill-conditioning of the multigroup cross-section covariance matrix to minimize computation and storage burden. Tikhonov regularization is also employed to improve the conditioning of the data adjustment equations. Expressions are also provided for posterior covariance matrices of both the multigroup cross-section and core attributes uncertainties.

  7. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect (OSTI)

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  8. Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).

    SciTech Connect (OSTI)

    Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

    2005-01-01

    A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

  9. Evaluation of a severe accident management strategy for boiling water reactors -- Drywell flooding

    SciTech Connect (OSTI)

    Yu, D.; Xing, L.; Kastenberg, W.E.; Okrent, D. (Univ. of California, Los Angeles, CA (United States). Mechanical, Aerospace, and Nuclear Engineering Dept.)

    1994-05-01

    Flooding of the drywell has been suggested as a strategy to prevent reactor vessel and containment failure in boiling water reactors. To evaluate the candidate strategy, this study considers accident management as a decision problem ( drywell flooding'' versus do nothing'') and develops a decision-oriented framework, namely, the influence diagram approach. This analysis chooses the long-term station blackout sequence for a Mark 1 nuclear power plant (Peach Bottom), and an influence diagram with a single decision node is constructed. The node probabilities in the influence diagram are obtained from US Nuclear Regulatory Commission reports or estimated by probabilistic risk assessment methodology. In assessing potential benefits compared with adverse effects, this analysis uses two consequence measures, i.e., early and late fatalities, as decision criteria. The analysis concludes that even though potential adverse effects exist, such as ex-vessel steam explosions and containment isolation failure, the drywell flooding strategy is preferred to do nothing'' when evaluated in terms of these consequence measures.

  10. Enhancement of Heat Transfer with Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings

    SciTech Connect (OSTI)

    Thiagarajan, S. J.; Wang, W.; Yang, R.; Narumanchi, S.; King, C.

    2010-09-01

    The DOE National Renewable Energy Laboratory (NREL) is leading a national effort to develop next-generation cooling technologies for hybrid vehicle electronics. The goal is to reduce the size, weight, and cost of power electronic modules that convert direct current from batteries to alternating current for the motor, and vice versa. Aggressive thermal management techniques help to increase power density and reduce weight and volume, while keeping chip temperatures within acceptable limits. The viability of aggressive cooling schemes such as spray and jet impingement in conjunction with enhanced surfaces is being explored. Here, we present results from a series of experiments with pool and spray boiling on enhanced surfaces, such as a microporous layer of copper and copper nanowires, using HFE-7100 as the working fluid. Spray impingement on the microporous coated surface showed an enhancement of 100%-300% in the heat transfer coefficient at a given wall superheat with respect to spray impingement on a plain surface under similar operating conditions. Critical heat flux also increased by 7%-20%, depending on flow rates.

  11. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  12. Heat removal characteristics of volume heated boiling pools with inclined boundaries

    SciTech Connect (OSTI)

    Greene, G.A.; Jones, O.C. Jr.; Schwarz, C.E.; Abuaf, N.

    1980-04-01

    The state-of-the-art of heat transfer from boiling liquids having internal heat generation is reviewed. Considerable scatter is found in the existing data. Attempts to correlate these data have relied on both natural and forced convection concepts. This report describes a new series of experiments wherein the data scatter appears to have been improved by a factor of four to six from previous experiments when compared on the basis of standard deviation in correlation coefficients. Local heat transfer data to both vertical and inclined surfaces (up to 30/sup 0/ from vertical) are reported having maximum to minimum heat transfer ratios of up to 5:1. It is shown that with surface vapor fluxes up to twice the free bubble rise velocities given by Harmathy there are two distinct flow regimes: bubbly and churn-turbulent. In bubble flows, the pool is generally quiescent and surface temperature fluctuations negligible. In churn-turbulent flows, the pool is generally chaotic and three dimensional. The surface temperatures showed large fluctuations up to the maximum pool-to-wall difference indicating intermittent destruction and renewal of boundary layer. Heat transfer coefficients were more uniform, and the maximum was observed to be in the range .25-.30 cal/cm/sup 2/ s /sup 0/C. 26 refs., 18 figs., 9 tabs.

  13. Application of the base catalyzed decomposition process to treatment of PCB-contaminated insulation and other materials associated with US Navy vessels. Final report

    SciTech Connect (OSTI)

    Schmidt, A.J.; Zacher, A.H.; Gano, S.R.

    1996-09-01

    The BCD process was applied to dechlorination of two types of PCB-contaminated materials generated from Navy vessel decommissioning activities at Puget Sound Naval Shipyard: insulation of wool felt impregnated with PCB, and PCB-containing paint chips/debris from removal of paint from metal surfaces. The BCD process is a two-stage, low-temperature chemical dehalogenation process. In Stage 1, the materials are mixed with sodium bicarbonate and heated to 350 C. The volatilized halogenated contaminants (eg, PCBs, dioxins, furans), which are collected in a small volume of particulates and granular activated carbon, are decomposed by the liquid-phase reaction (Stage 2) in a stirred-tank reactor, using a high-boiling-point hydrocarbon oil as the reaction medium, with addition of a hydrogen donor, a base (NaOH), and a catalyst. The tests showed that treating wool felt insulation and paint chip wastes with Stage 2 on a large scale is feasible, but compared with current disposal costs for PCB-contaminated materials, using Stage 2 would not be economical at this time. For paint chips generated from shot/sand blasting, the solid-phase BCD process (Stage 1) should be considered, if paint removal activities are accelerated in the future.

  14. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diversifying Supply Bruce Moyer (ORNL), Lead Scott Herbst (INL), Deputy Transformational Processing New Uses for Co-Products New Sources of Critical Materials Developing...

  15. PowerPoint Presentation

    Office of Environmental Management (EM)

    use of material - Mitigate consequences * Orders were issued to licensees that transport: - Spent Nuclear Fuel - IAEA Code of Conduct Category 1 and 2 quantities of...

  16. PowerPoint Presentation

    Office of Environmental Management (EM)

    eliminating the need for HEU in civilian applications - each reactor converted or shut down eliminates a source of bomb material. Convert Defense Nuclear Nonproliferation...

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials for Nuclear Systems Division Phil Ferguson, Director Light Water Reactor Sustainability Jeremy Busby, Research Lead Research Support David Drake 1 Mike Harper 1 1...

  18. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Materials and Used Nuclear Fuel** 971M 17% Transuranic & Solid Waste 758M 13% Soil and Groundwater 466M 8% Site Services* 392M 7% *Includes Program Direction,...

  19. PowerPoint Presentation

    National Nuclear Security Administration (NNSA)

    - report the inventory to NMMSS * Enrichment, MOX fuel fabrication or downblending uranium >10% enriched, - report ALL source material shipments, receipts, inventory...

  20. PowerPoint Presentation

    Office of Environmental Management (EM)

    catalyst for tritium recovery) * Other Nuclear Material: Deuterium (commercial), lithium-6 (virgin tritium production), tritium (War Reserve (WR) and Non-War Reserve (NWR)...

  1. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Associate Laboratory Director Alan Icenhour Roberta Grafton, Executive Assistant Fusion and Materials for Nuclear Systems Phil Ferguson Reactor and Nuclear Systems John...

  2. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  3. Stress and Fracture Mechanics Analyses of Boiling Water Reactor and Pressurized Water Reactor Pressure Vessel Nozzles

    SciTech Connect (OSTI)

    Yin, Shengjun; Bass, Bennett Richard; Stevens, Gary; Kirk, Mark

    2011-01-01

    This paper describes stress analysis and fracture mechanics work performed to assess boiling water reactor (BWR) and pressurized water reactor (PWR) nozzles located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Various RPV nozzle geometries were investigated: 1. BWR recirculation outlet nozzle; 2. BWR core spray nozzle3 3. PWR inlet nozzle; ; 4. PWR outlet nozzle; and 5. BWR partial penetration instrument nozzle. The above nozzle designs were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-license (EOL) to require evaluation as part of establishing the allowed limits on heatup, cooldown, and hydrotest (leak test) conditions. These nozzles analyzed represent one each of the nozzle types potentially requiring evaluation. The purpose of the analyses performed on these nozzle designs was as follows: To model and understand differences in pressure and thermal stress results using a two-dimensional (2-D) axi-symmetric finite element model (FEM) versus a three-dimensional (3-D) FEM for all nozzle types. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated; To verify the accuracy of a selected linear elastic fracture mechanics (LEFM) hand solution for stress intensity factor for a postulated nozzle corner crack for both thermal and pressure loading for all nozzle types; To assess the significance of attached piping loads on the stresses in the nozzle corner region; and To assess the significance of applying pressure on the crack face with respect to the stress intensity factor for a postulated nozzle corner crack.

  4. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect (OSTI)

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C.

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  5. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    SciTech Connect (OSTI)

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral system scaling analysis, design parameters were obtained and designs of the compact modular 200 MWe SBWR and the full size 1200 MWe SBWR were developed. These reactors are provided with passive safety systems. A new passive vacuum breaker check valve was designed to replace the mechanical vacuum beaker check valve. The new vacuum breaker check valve was based on a hydrostatic head, and was fail safe. The performance of this new valve was evaluated both by the thermal-hydraulic code RELAP5 and by the experiments in a scaled SBWR facility, PUMA. In the core neutronic design a core depletion model was implemented to PARCS code. A lattice design for the SBWR fuel assemblies was performed. Design improvements were made to the neutronics/thermal-hydraulics models of SBWR-200 and SBWR-1200, and design analyses of these reactors were performed. The design base accident analysis and evaluation of all the passive safety systems were completed as scheduled in tasks 4 and 5. Initial conditions for the small break loss of coolant accidents (LOCA) and large break LOCA using REALP5 code were obtained. Small and large break LOCA tests were performed and the data was analyzed. An anticipated transient with scram was simulated using the RELAP5 code for SBWR-200. The transient considered was an accidental closure of the main steam isolation valve (MSIV), which was considered to be the most significant transient. The evaluation of the RELAP5 code against experimental data for SBWR-1200 was completed. In task 6, the instability analysis for the three SBWR designs (SBWR-1200, SBWR-600 and SBWR-200) were simulated for start-up transients and the results were similar. Neither the geysering instability, nor the loop type instability was predicted by RAMONA-4B in the startup simulation following the recommended procedure by GE. The density wave oscillation was not observed at all because the power level used in the simulation was not high enough. A study was made of the potential instabilities by imposing an unrealistically high power ramp in a short time period, as suggested by GE. RAMON

  6. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermo-Magnetic Processing of Rare Earth Magnets; facility, story, M. McGuire, ORNL (2.1.4) Lighting S. Payne, LLNL New Efficient Phosphors Without Critical Material Content for...

  7. PowerPoint Presentation

    Energy Savers [EERE]

    to revolutionize the energy efficiency of electric power control and conversion 27 50% Lower Cost Using 75% Less Energy And reuse or recycle >95% of the material Objective Develop...

  8. ADVANCES IN CHARACTERIZATION OF MATERIALS: ALLOYS AND CERAMICS

    E-Print Network [OSTI]

    Thomas, Gareth

    2011-01-01

    OF MATERIALS: ALLOYS AND CERAMICS Gareth Thomas May 1978OF MATERIALS : ALLOYS AND CERAMICS Gareth Thomas Departmentand alloys and many ceramics, point resolutions better than

  9. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    SciTech Connect (OSTI)

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm lithium metaborate solution respectively at the saturation temperature for 1000 psi (68.9 bar) coolant pressure. Boiling tests also revealed the formation of fine deposits of boron and lithium on the cladding surface which degraded the heat transfer rates. The boron and lithium metaborate precipitates after a 5 day test at 5000 ppm concentration and 1000 psi (68.9 bar) operating pressure reduced the heat transfer rate 21% and 30%, respectively for the two solutions.

  10. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect (OSTI)

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.

  11. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    SciTech Connect (OSTI)

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: “W” process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four top events and eighteen SBO sequences (versus fifty-four SBO sequences in the original SBO model). The estimated SBO sequence conditional probabilities from the original SBO model were integrated to the corresponding sequences in the simplified SBO event tree. These results were then compared with the simulation run results.

  12. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, Norman B. (Schenectady, NY)

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  13. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  14. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    SciTech Connect (OSTI)

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  15. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  16. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  17. Covetic Materials

    Broader source: Energy.gov (indexed) [DOE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  18. Dispersed-flow film boiling in rod-bundle geometry: steady-state heat-transfer data and correlation comparisons. [PWR; BWR

    SciTech Connect (OSTI)

    Yoder, G. L.; Morris, D. G.; Mullins, C. B.; Ott, L. J.; Reed, D. A.

    1982-03-01

    Assessment of six film boiling correlations and one single-phase vapor correlation has been made using data from 22 steady state upflow rod bundle tests (series 3.07.9). Bundle fluid conditions were calculated using energy and mass conservation considerations. Results of the steady state film boiling tests support the conclusions reached in the analysis of prior transient tests 3.03.6AR, 3.06.6B, and 3.08.6C. Comparisons between experimentally determined and correlation-predicted heat transfer coefficients, are presented.

  19. Microsoft PowerPoint - Programmatic Update Nuclear Material...

    National Nuclear Security Administration (NNSA)

    in support of Navy's mission Defense Nuclear Security Compliment NMC&A Nuclear Regulatory Commission Commercial Inventories Transaction Processing Department of State...

  20. Microsoft PowerPoint - Dirac Materials QDM Mar 2015 short

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms toPalladium wavyfamily March

  1. 0-7803-XXXX-X/06/$20.00 2009 IEEE 25th IEEE SEMI-THERM Symposium Sub-Atmospheric Pressure Pool Boiling of Water on a Screen-Laminate Enhanced Surface

    E-Print Network [OSTI]

    Wirtz, Richard A.

    structures having wide ranging porosity and pore size. When deployed as a surface enhancement in a boiling pool-boiling experiments at one atmosphere and sub-atmospheric pressure assess the utility of fine factor of lamination [dimensionless] CHF = critical heat flux [W/cm2 ] Dh = pore hydraulic diameter [µm

  2. ARM - Point Reyes News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSAProductsMergedProductsVaisala CL51CaliforniaPoint

  3. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  4. Critical Materials:

    Office of Environmental Management (EM)

    Extraction Separation Processes for Critical Materials in 30- 21 Stage Test Facility (Bruce Moyer) ......

  5. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  6. Creating Wave-Focusing Materials

    E-Print Network [OSTI]

    A. G. Ramm

    2008-05-16

    Basic ideas for creating wave-focusing materials by injecting small particles in a given material are described. The number of small particles to be injected around any point is calculated. Inverse scattering problem with fixed wavenumber and fixed incident direction of the plane acoustic wave is formulated and solved.

  7. Modeling and Thermal Performance Evaluation of Porous Curd Layers in Sub-Cooled Boiling Region of PWRs and Effects of Sub-Cooled Nucleate Boiling on Anomalous Porous Crud Deposition on Fuel Pin Surfaces

    SciTech Connect (OSTI)

    Barclay Jones

    2005-06-27

    A significant number of current PWRs around the world are experiencing anomalous crud deposition in the sub-cooled region of the core, resulting in an axial power shift or Axial Offset Anomaly (AOA), a condition that continues to elude prediction of occurrence and thermal/neutronic performance. This creates an operational difficulty of not being able to accurately determine power safety margin. In some cases this condition has required power ''down rating'' by as much as thirty percent and the concomitant considerable loss of revenue for the utility. This study examines two aspects of the issue: thermal performance of crud layer and effect of sub-cooled nucleate boiling on the solute concentration and its influence on initiation of crud deposition/formation on fuel pin surface.

  8. Flow boiling enhancement on a horizontal heater using carbon nanotube coatings N. Singh, V. Sathyamurthy, W. Peterson, J. Arendt, D. Banerjee *

    E-Print Network [OSTI]

    Banerjee, Debjyoti

    , College Station, TX 77843, United States a r t i c l e i n f o Article history: Received 2 August 2008) Chemical vapor deposition Multi phase flows a b s t r a c t In this study we measure the flow boiling heat). In addition, reducing the hydraulic diameter (Dh) can enhance the heat transfer coefficient (h) in single

  9. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    SciTech Connect (OSTI)

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  10. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  11. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    SciTech Connect (OSTI)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  12. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    SciTech Connect (OSTI)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

  13. Study on release and transport of aerial radioactive materials in reprocessing plants

    SciTech Connect (OSTI)

    Amano, Y.; Tashiro, S.; Uchiyama, G.; Abe, H.; Yamane, Y.; Yoshida, K.; Kodama, T.

    2013-07-01

    The release and transport characteristics of radioactive materials at a boiling accident of the high active liquid waste (HALW) in a reprocessing plant have been studied for improving experimental data of source terms of the boiling accident. In the study, a heating test and a thermogravimetry and differential thermal analysis (TG-DTA) test were conducted. In the heating test using a simulated HALW, it was found that ruthenium was mainly released into the air in the form of gas and that non-volatile elements were released into the air in the form of mist. In the TG-DTA test, the rate constants and reaction heat of thermal decomposition of ruthenium nitrosyl nitrate were obtained from TG and DTA curves. (authors)

  14. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys...

  15. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  16. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  17. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  18. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  19. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  20. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  1. Optimized nanoporous materials.

    SciTech Connect (OSTI)

    Braun, Paul V.; Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J.; Pierson, Bonnie E.; Gittard, Shaun D.; Robinson, David B.; Ham, Sung-Kyoung; Chae, Weon-Sik; Gough, Dara V.; Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  2. Steam Line Break and Station Blackout Transients for Proliferation-Resistant Hexagonal Tight Lattice Boiling Water Reactor

    SciTech Connect (OSTI)

    Rohatgi, Upendra S. [Brookhaven National Laboratory (United States); Jo, Jae H. [Brookhaven National Laboratory (United States); Chung, Bub Dong [Brookhaven National Laboratory (United States); Takahashi, Hiroshi [Brookhaven National Laboratory (United States); Downar, Thomas J. [Purdue University (United States)

    2004-01-15

    Safety analyses of a proliferation-resistant, economically competitive, high-conversion boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems, are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core that therefore operates with a fast reactor neutron spectrum and a considerably improved neutron economy compared to the current generation of light water reactors. The tight lattice core has a very narrow flow channel with a hydraulic diameter less than half of the regular boiling water reactor (BWR) core and, thus, presents a special challenge to core cooling because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator-to-fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios.In the preliminary HCBWR design, the core is placed in a vessel with a large chimney section, and the vessel is connected to the isolation condenser system (ICS). The vessel is placed in containment with the gravity driven cooling system (GDCS) and passive containment cooling system (PCCS) in a configuration similar to General Electric's simplified BWR (SBWR). The safety systems are similar to those of the SBWR; the ICS and PCCS are scaled with power. An internal recirculation pump is placed in the downcomer to augment the buoyancy head provided by the chimney since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration results in much larger friction in the core than with the SBWR.The constitutive relationships for RELAP5 are assessed for narrow channels, and as a result the heat transfer package is modified. The modified RELAP5 is used to simulate and analyze two of the most limiting events for a tight pitch lattice core: the station blackout and the main-steam-line-break events. The results of the analyses indicate that the HCBWR system will be safely brought to the shutdown condition for these transients.

  3. Florida Nuclear Profile - Turkey Point

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  4. Explosive boiling of Ge{sub 35}Sb{sub 10}S{sub 55} glass induced by a CW laser

    SciTech Connect (OSTI)

    Knotek, P.; Tichy, L.

    2013-09-01

    Graphical abstract: - Highlights: • Interaction of the CW 785 nm laser with chalcogenide GeSbS glass. • First demonstration of the explosive boiling induced by CW laser in glass. • Different processes as photo-induced oxidation, expansion, and viscosity-flow observed. • Applied diagnostics SEM, DHM, AFM, force spectroscopy, and micro-Raman spectroscopy. • Damage threshold determined at 1.2 × 10{sup 24}s{sup ?1} cm{sup ?3} of absorbed photons. - Abstract: The response of bulk Ge{sub 35}Sb{sub 10}S{sub 55} glass to illumination by a continuous wave (CW) laser, sub-band-gap photons, was studied specifically with an atomic force microscopy including a force spectroscopy, with a digital holographic microscopy and with a scanning electron microscopy. Depending on the number of photons absorbed, photo-expansion, photo-oxidation and explosive boiling were observed.

  5. Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA)

    1996-01-01

    An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

  6. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  7. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  8. Star cell type core configuration for structural sandwich materials

    DOE Patents [OSTI]

    Christensen, Richard M. (Danville, CA)

    1995-01-01

    A new pattern for cellular core material used in sandwich type structural materials. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes.

  9. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  10. Tone and point of view in Thackeray's Henry Esmond 

    E-Print Network [OSTI]

    Ellison, Gerald Vance

    1966-01-01

    attitudes with those of Henry Esmond can be made. Second, ~Henr Esmond, like many of Thackeray's other works, contains some autobiographical material. Ray points out that Esmond is the most melancholy of Thackeray's novels, a point of which he was quite... aware while he wrote his book and which filled him with the gloomiest forebodings con- cerning its chances of popular success. The atmosphere of melancholy that pervades Esmond is explained if we examine its "secret history, " if we note down...

  11. Simulation of in-core neutron noise measurements for axial void profile reconstruction in boiling water reactors

    SciTech Connect (OSTI)

    Dykin, V.; Pazsit, I.

    2012-07-01

    A possibility to reconstruct the axial void profile from the simulated in-core neutron noise which is caused by density fluctuations in a Boiling Water Reactor (BWR) heated channel is considered. For this purpose, a self-contained model of the two-phase flow regime is constructed which has quantitatively and qualitatively similar properties to those observed in real BWRs. The model is subsequently used to simulate the signals of neutron detectors induced by the corresponding perturbations in the flow density. The bubbles are generated randomly in both space and time using Monte-Carlo techniques. The axial distribution of the bubble production is chosen such that the mean axial void fraction and void velocity follow the actual values of BWRs. The induced neutron noise signals are calculated and then processed by the standard signal analysis methods such as Auto-Power Spectral Density (APSD) and Cross-Power Spectral Density (CPSD). Two methods for axial void and velocity profiles reconstruction are discussed: the first one is based on the change of the break frequency of the neutron auto-power spectrum with axial core elevation, while the second refers to the estimation of transit times of propagating steam fluctuations between different axial detector positions. This paper summarizes the principles of the model and presents a numerical testing of the qualitative applicability to estimate the required parameters for the reconstruction of the void fraction profile from the neutron noise measurements. (authors)

  12. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    SciTech Connect (OSTI)

    Trianti, Nuri E-mail: szaki@fi.itba.c.id; Su'ud, Zaki E-mail: szaki@fi.itba.c.id; Arif, Idam E-mail: szaki@fi.itba.c.id; Riyana, EkaSapta

    2014-09-30

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tight concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.

  13. Boiling water reactor fuel behavior at burnup of 26 GWd/tonne U under reactivity-initiated accident conditions

    SciTech Connect (OSTI)

    Nakamura, Takehiko; Yoshinaga, Makio . Dept. of Reactor Safety Research); Sobajima, Makoto ); Ishijima, Kiyomi; Fujishiro, Toshio . Dept. of Reactor Safety Research)

    1994-10-01

    Irradiated boiling water reactor (BWR) fuel behavior under reactivity-initiated accident (RIA) conditions was investigated in the Nuclear Safety Research Reactor (NSRR) of the Japan Atomic Energy Research Institute. Short test fuel rods, refabricated from a commercial 7 x 7 type BWR fuel rod at a burnup of 26 GWd/ tonne U, were pulse irradiated in the NSRR under simulated cooled startup RIA conditions of the BWRs. Thermal energy from 230 J/g fuel (55 cal/g fuel) to 410 J/g fuel (98 cal/g fuel) was promptly subjected to the test fuel rods by pulse irradiation within [approximately] 10 ms. The peak fuel enthalpies are believed to be the same as the prompt energy depositions. The test fuel rods demonstrated characteristic behavior of the irradiated fuel rods under the accident conditions, such as enhanced pellet cladding mechanical interaction (PCMI) and fission gas release. However, all the fuel rods survived the accident conditions with considerable margins. Simulations by the FRAP-T6 code and fresh fuel rod tests under the same RIA conditions highlighted the burnup effects on the accident fuel performance. The tests and the simulation suggested that the BWR fuel would possibly fail by a cladding burst due to fission gas release during the cladding temperature escalation rather than the PCMI under the cold startup RIA conditions of a severe power burst.

  14. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part I: Experimental study

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    Two-phase flow pattern and heat transfer characteristics of refrigerant-oil mixture flow boiling inside small tubes with inside diameters of 6.34 mm and 2.50 mm are investigated experimentally. The test condition of nominal oil concentration is from 0% to 5%, mass flux from 200 to 400 kg m{sup -2} s{sup -1}, heat flux from 3.2 to 14 kW m{sup -2}, evaporation temperature of 5 C, inlet quality from 0.1 to 0.8, and quality change from 0.1 to 0.2. Wavy, wavy-annular, annular and mist-annular flow pattern in 6.34 mm tube are observed, while only slug-annular and annular flow pattern are observed in 2.50 mm tube. Oil presence can make annular flow to form early and to retard to diminish in quality direction at nominal oil concentration {>=}3%. Augmentation effect of oil on heat transfer coefficient becomes weakened or even diminishes for small diameter tube while detrimental effect of oil on small tube performance becomes more significant than large tube. For both test tubes, variation of heat transfer coefficient and enhanced factor with oil concentration is irregular. Two-phase heat transfer multiplier with refrigerant-oil mixture properties increases consistently and monotonically with local oil concentration at different vapor quality. (author)

  15. Nondestructive ultrasonic testing of materials

    DOE Patents [OSTI]

    Hildebrand, Bernard P. (Richland, WA)

    1994-01-01

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.

  16. Nondestructive ultrasonic testing of materials

    DOE Patents [OSTI]

    Hildebrand, B.P.

    1994-08-02

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.

  17. Complex Materials

    SciTech Connect (OSTI)

    Cooper, Valentino

    2014-04-17

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  18. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  19. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  20. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  1. Points

    Broader source: Energy.gov (indexed) [DOE]

    (Fluidic Energy, Inc.) 5,133,150 Tempe, AZ Energy Storage A new class of metal-air batteries using ionic liquids, with many times the energy density of today's lithium-ion...

  2. Take Home Points Horticultural Prospective

    E-Print Network [OSTI]

    Ma, Lena

    HLB Take Home Points Horticultural Prospective Stephen H. Futch Extension Agent, Multi County Co plants, ACP adults preferentially light on infected within first 48 hour but on uninfected after 7 days

  3. Join Point Encapsulation David Larochelle

    E-Print Network [OSTI]

    Huang, Wei

    , behavior observation and modification are possible. We believe that it is undesirable to make all join points nec- essarily subject to behavioral observation and modification by aspects. To do so

  4. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  5. Materials compatibility.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-04-01

    Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

  6. Correlating Radioactive Material to Sea Surface Temperature off the Coast of Japan: The Fukushima Daiichi Nuclear Disaster

    E-Print Network [OSTI]

    Gilbes, Fernando

    nuclear reactions to constantly boil water; the resulting steam is used to drive turbines and generate

  7. Polymer / Elastomer and Composite Material Science

    E-Print Network [OSTI]

    Polymer / Elastomer and Composite Material Science KEVIN L. SIMMONS Pacific Northwest National in the hydrogen system Automotive vs infrastructure Hydrogen use conditions Polymer/elastomer and composites and piping Material issues Polymers/Elastomers Composites Questions 2 #12;Main Points to Remember 1

  8. Dispersed flow film boiling

    E-Print Network [OSTI]

    Yoder, Graydon L.

    1980-01-01

    Dispersed flow consists of small liquid droplets entrained in a flowing vapor. This flow regime can occur in cryogenic equipment, in steam generators, and during nuclear reactor loss of coolant accidents. A theoretical ...

  9. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  10. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  11. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReference Materials Reference

  12. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReference Materials

  13. Femtosecond photoelectron point projection microscope

    SciTech Connect (OSTI)

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-10-15

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect.

  14. Dense gas dispersion modeling for aqueous releases 

    E-Print Network [OSTI]

    Lara, Armando

    1999-01-01

    concern since they disperse at ground level. Toxic or combustible materials with boiling points below ambient temperature, such as chlorine and ammonia, are usually stored or transported as a saturated liquid. A release from such a system is likely...

  15. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  16. Starting Points | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    (M&O) Contract Competition Starting Points Starting Points Kansas City Plant Related Web Pages Summary Kansas City Plant Home Page Kansas City Plant Contracts DOE Directives...

  17. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering The development of new high-performance materials for energy Use of Advanced Characterization Techniques for Materials Development in Energy and Transportation and composition of materials at higher spatial resolution, with greater efficiency, and on real materials

  18. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  19. 2013 Macmillan Publishers Limited. All rights reserved. Weyl points and line nodes in gyroid

    E-Print Network [OSTI]

    unidirectional 1D edge states are pro- tected against disorder9­12 . Similarly, it is expected that if a material dispersions robust against any per- turbation. In three dimensions, Weyl point dispersions are governed

  20. The effect of thermal aging and boiling water reactor environment on Type 316L stainless steel welds

    E-Print Network [OSTI]

    Lucas, Timothy R

    2011-01-01

    The thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels and duplex stainless steels. Spinodal decomposition is largely responsible for the well known "475°C" embrittlement ...

  1. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  2. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  3. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  4. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  5. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  6. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  7. Breaking Points in Quartic Maps

    E-Print Network [OSTI]

    M. Romera; G. Pastor; M. -F. Danca; A. Martin; A. B. Orue; F. Montoya

    2014-12-18

    Dynamical systems, whether continuous or discrete, are used by physicists in order to study non-linear phenomena. In the case of discrete dynamical systems, one of the most used is the quadratic map depending on a parameter. However, some phenomena can depend alternatively of two values of the same parameter. We use the quadratic map $x_{n+1} =1-ax_{n}^{2} $ when the parameter alternates between two values during the iteration process. In this case, the orbit of the alternate system is the sum of the orbits of two quartic maps. The bifurcation diagrams of these maps present breaking points where abruptly change their evolution.

  8. Capital Point | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: EnergyCounty,NewHatteras ElecPoint Jump to:

  9. Points of Contact - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformancePi Day Pi Day Pi DayPlasmaandAbout UsPoints of

  10. Star cell type core configuration for structural sandwich materials

    DOE Patents [OSTI]

    Christensen, R.M.

    1995-08-01

    A new pattern for cellular core material used in sandwich type structural materials is disclosed. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes. 3 figs.

  11. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  12. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  13. Materials Science & Tech Division | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory,...

  14. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    SciTech Connect (OSTI)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  15. Engineering to Control Noise, Loading, and Optimal Operating Points

    SciTech Connect (OSTI)

    Mitchell R. Swartz

    2000-11-12

    Successful engineering of low-energy nuclear systems requires control of noise, loading, and optimum operating point (OOP) manifolds. The latter result from the biphasic system response of low-energy nuclear reaction (LENR)/cold fusion systems, and their ash production rate, to input electrical power. Knowledge of the optimal operating point manifold can improve the reproducibility and efficacy of these systems in several ways. Improved control of noise, loading, and peak production rates is available through the study, and use, of OOP manifolds. Engineering of systems toward the OOP-manifold drive-point peak may, with inclusion of geometric factors, permit more accurate uniform determinations of the calibrated activity of these materials/systems.

  16. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Manufacturing New materials drive the development of innovative products. Building upon a rich history in materials science, ORNL is discovering and developing...

  17. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  18. Advanced nuclear reactor safety analysis: the simulation of a small break loss of coolant accident in the simplified boiling water reactor using RELAP5/MOD3.1.1 

    E-Print Network [OSTI]

    Faust, Christophor Randall

    1995-01-01

    The thermal hydraulic simulation code RELAP5/MOD3.1.1 was utilized to model General Electric's Simplified Boiling Water Reactor plant. The model of the plant was subjected to a small break loss of coolant accident occurring from a guillotine shear...

  19. Reactor and method for hydrocracking carbonaceous material

    DOE Patents [OSTI]

    Duncan, Dennis A. (Downers Grove, IL); Beeson, Justin L. (Clarendon Hills, IL); Oberle, R. Donald (Hammond, IN); Dirksen, Henry A. (Harvey, IL)

    1980-01-01

    Solid, carbonaceous material is cracked in the presence of hydrogen or other reducing gas to provide aliphatic and aromatic hydrocarbons of lower molecular weight for gaseous and liquid fuels. The carbonaceous material, such as coal, is entrained as finely divided particles in a flow of reducing gas and preheated to near the decomposition temperature of the high molecular weight polymers. Within the reactor, small quantities of oxygen containing gas are injected at a plurality of discrete points to burn corresponding amounts of the hydrogen or other fuel and elevate the mixture to high temperatures sufficient to decompose the high molecular weight, carbonaceous solids. Turbulent mixing at each injection point rapidly quenches the material to a more moderate bulk temperature. Additional quenching after the final injection point can be performed by direct contact with quench gas or oil. The reactions are carried out in the presence of a hydrogen-containing reducing gas at moderate to high pressure which stabilizes the products.

  20. Boiling Water Reactor Fuel Behavior Under Reactivity-Initiated-Accident Conditions at Burnup of 41 to 45 GWd/tonne U

    SciTech Connect (OSTI)

    Nakamura, Takehiko; Yoshinaga, Makio; Takahashi, Masato; Okonogi, Kazunari; Ishijima, Kiyomi

    2000-02-15

    Boiling water reactor (BWR) fuel at burnup of 41 to 45 GWd/tonne U was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity-initiated-accident conditions. Current Japanese BWR fuel, 8 x 8BJ type (Step I), from Fukushima-Daiichi Unit 3 was refabricated into short segments, and the test rods were promptly subjected to thermal energy from 293 to 607 J/g (70 to 145 cal/g) within {approx}20 ms. The fuel cladding was ductile enough to survive the prompt deformation due to pellet cladding mechanical interaction, while the plastic hoop strain reached 1.5% at the peak location. Transient fission gas release by the pulse irradiation varied from 3.1 to 8.2%, depending on the peak fuel enthalpy and the steady-state operation conditions.

  1. Neutronic evaluation of a non-fertile fuel for the disposition of weapons-grade plutonium in a boiling water reactor

    SciTech Connect (OSTI)

    Sterbentz, J.W.

    1994-10-01

    A new non-fertile, weapons-grade plutonium oxide fuel concept is developed and evaluated for deep burn applications in a boiling water reactor environment using the General Electric 8x8 Advanced Boiling Water Reactor (ABWR) fuel assembly dimensions and pitch. Detailed infinite lattice fuel burnup results and neutronic performance characteristics are given and although preliminary in nature, clearly demonstrate the fuel`s potential as an effective means to expedite the disposition of plutonium in existing light water reactors. The new non-fertile fuel concept is an all oxide composition containing plutonia, zirconia, calcia, and erbia having the following design weight percentages: 8.3; 80.4; 9.7; and 1.6. This fuel composition in an infinite fuel lattice operating at linear heat generation rates of 6.0 or 12.0 kW/ft per rod can remain critical for up to 1,200 and 600 Effective Full Power Days (EFPD), respectively, and achieve a burnup of 7.45 {times} 10{sup 20} f/cc. These burnups correspond to a 71--73% total plutonium isotope destruction and a 91--94% destruction of the {sup 239}Pu isotope for the 0--40% moderator steam void condition. Total plutonium destruction greater than 73% is possible with a fuel management scheme that allows subcritical fuel assemblies to be driven by adjacent high reactivity assemblies. The fuel exhibits very favorable neutron characteristics from beginning-of-life (BOL) to end-of-life (EOL). Prompt fuel Doppler coefficient of reactivity are negative, with values ranging between {minus}0.4 to {minus}2.0 pcm/K over the temperature range of 900 to 2,200 K. The ABWR fuel lattice remains in an undermoderated condition for both hot operational and cold startup conditions over the entire fuel burnup lifetime.

  2. Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific Binding ORNL discovery holds potential for separations, sensors, batteries, biotech and more Home | Science & Discovery | Advanced Materials Advanced Materials |...

  3. Composite material dosimeters

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  4. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  5. Dithering Strategies and Point-Source Photometry

    E-Print Network [OSTI]

    Samsing, Johan

    2011-01-01

    Strategies and Point-Source Photometry Johan Samsing DARK-The accuracy in the photometry of a point source depends onobjects in a single source photometry (Lauer 1999a) and the

  6. VOLUMETRIC SNAPPING: WATERTIGHT TRIANGULATION OF POINT CLOUDS

    E-Print Network [OSTI]

    Floater, Michael S.

    VOLUMETRIC SNAPPING: WATERTIGHT TRIANGULATION OF POINT CLOUDS Tim Volodine KULeuven, Department: meshing, surface reconstruction, volumetric grid, contouring, point clouds. Abstract: We propose, a volumetric method that does not rely on a signed distance function was proposed recently by Hornung

  7. Other Purdue Web points of Interest

    E-Print Network [OSTI]

    Other Purdue Web points of interest. Purdue University Home Page --- Schedule of Classes · Graduate School · Agronomy · Computer Science --- CS & E ...

  8. CenterPoint Energy New Homes Program

    Broader source: Energy.gov [DOE]

    Note: This program is only available to electric Customers in CenterPoint Energy's service territory (greater Houston area, Texas).

  9. Wave Propagation in Multiferroic Materials

    E-Print Network [OSTI]

    Keller, Scott Macklin

    2013-01-01

    Waves in Magnetoelectric Materials . . . Need forApplication of Multiferroic Materials to Receive AntennaMaterials . . . . . . . . . . . . . . . . . . . . . . . . .

  10. A study of magnetically annealed ferromagnetic materials 

    E-Print Network [OSTI]

    Ramos, Domingo

    1961-01-01

    some magnetic effects and therefore, the term "magnetic materials" may be said to include all substances. In those ?14 known as "diamagnetics" or "paramagnetics, " the effects are very 15 feeble and they are regarded as non... electron spins break away until the Curie point is reached, the alignment is lost completely and the material behaves like a paramagnetic. The Domain Structure One of the experimental methods that show the existence of domains 14 in ferromagnetics...

  11. Critical point analysis of phase envelope diagram

    SciTech Connect (OSTI)

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy Puspita, Dila Sidarto, Kuntjoro A. Soewono, Edy; Gunawan, Agus Y.

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  12. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  13. Ulm University MSc "Advanced Materials" WS 2015/16 How to apply

    E-Print Network [OSTI]

    Ulm, Universität

    , Biology/Biochemistry, Materials Science, Engineering Science (comprising classical engineering, biotechnology ,medical engineering): Course title, number of credit points/credit hours earned, grade achieved

  14. Highly Selective Membranes For The Separation Of Organic Vapors Using Super-Glassy Polymers

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Lokhandwala, Kaaeid (Menlo Park, CA); Nguyen, Phuong (Fremont, CA); Segelke, Scott (Mountain View, CA)

    1997-11-18

    A process for separating hydrocarbon gases of low boiling point, particularly methane, ethane and ethylene, from nitrogen. The process is performed using a membrane made from a super-glassy material. The gases to be separated are mixed with a condensable gas, such as a C.sub.3+ hydrocarbon. In the presence of the condensable gas, improved selectivity for the low-boiling-point hydrocarbon gas over nitrogen is achieved.

  15. Page 1 of 14 SUPPLEMENTARY MATERIAL

    E-Print Network [OSTI]

    Cheng, Ji-Xin

    -mail:jcheng@purdue.edu Methods and Material VPA imaging system. The setup employs a Nd:YAG (Quantaray) pumped optical parametric raster scanning in the XY plane generates volumetric data on which an imaging reconstruction is grounded. Each volumetric data point was acquired at the repetition rate of the laser. With the 10 Hz repetition

  16. Cellular CSK resembles natural and synthetic materials

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    Theory Pinned-pinned, three-point bending Es is modulus of elasticity for beam (F-actin GPa) d 3 48 s F l E ISession 15 #12;2 Cellular CSK resembles natural and synthetic materials Felt Paper Cotton NASA r r #12;6 (a/k/a Second Moment of Area) Geometric resistance of a beam to bending 2 2

  17. PURE STRATEGY NASH EQUILIBRIUM POINTS AND THE LEFSCHETZ FIXED POINT THEOREM

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    PURE STRATEGY NASH EQUILIBRIUM POINTS AND THE LEFSCHETZ FIXED POINT THEOREM by Leigh Tesfatsion of Minnesota Minneapolis, Minnesota 55455 #12;ABSTRAcr A pure strategy Nash equilibrium point existence theorem cases of the existence theorem are also discussed. #12;PURE STRATEGY NASH EQUILIBRIUM POINTS

  18. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  19. Department of Materials Science &

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Developing Leaders of Innovation Department of Materials Science & Engineering #12;At the University of Virginia, students in materials science, engineering physics and engineering science choose to tackle compelling issues in materials science and engineering or engineering science

  20. Sandia Energy - Materials Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Chemistry Home Transportation Energy Predictive Simulation of Engines Clean FuelsPower Materials Chemistry Materials ChemistryAshley Otero2015-10-28T02:42:21+00:00...

  1. Play and tolerance : notions of looseness in social and material assemblages

    E-Print Network [OSTI]

    Voorhees, Jeremy, 1978-

    2004-01-01

    The material scenario provides the most illustrative of entry points into this collection of evidence embodying the difference between play and tolerance. In a material assemblage, the looseness in a joint (expansion, pin, ...

  2. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  3. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Education Center About Us Conferences and Workshops Advanced Qualification of Additive Manufacturing Materials Workshop Quantum and Dirac Materials for Energy...

  4. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPA Materials Physics and Applications We develop new technologies that solve pressing national energy and security challenges by exploring and exploiting materials and their...

  5. Use of an influence diagram and fuzzy probability for evaluating accident management in a boiling water reactor

    SciTech Connect (OSTI)

    Yu, D.; Kastenberg, W.E.; Okrent, D. (Univ. of California, Los Angeles, CA (United States). Mechanical, Aerospace, and Nuclear Engineering Dept.)

    1994-06-01

    A new approach is presented for evaluating the uncertainties inherent in severe accident management strategies. At first, this analysis considers accident management as a decision problem (i.e., applying a strategy compared with do nothing) and uses an influence diagram. To evaluate imprecise node probabilities in the influence diagram, the analysis introduces the concept of a fuzzy probability. When fuzzy logic is applied, fuzzy probabilities are easily propagated to obtain results. In addition, the results obtained provide not only information similar to the classical approach, which uses point-estimate values, but also additional information regarding the impact of using imprecise input data. As an illustrative example, the proposed methodology is applied to the evaluation of the drywell flooding strategy for a long-term station blackout sequence at the Peach Bottom nuclear power plant. The results show that the drywell flooding strategy is beneficial for preventing reactor vessel breach. It is also effective for reducing the probability of containment failure for both liner melt-through and late overpressurization. Even though uncertainty exists in the results, flooding is preferred to do nothing when evaluated in terms of two risk measures: early and late fatalities.

  6. Building Green in Greensburg: Prairie Pointe Townhomes

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Prairie Pointe Townhomes in Greensburg, Kansas.

  7. VPP Points of Contact web version 07092015

    Office of Environmental Management (EM)

    Updated 792015 VPP POINTS OF CONTACT Organization DOE POC Contractor DOE Federal POC Advanced Technologies and Laboratories International, Inc. (ATL)222-S Laboratory Analytical...

  8. SIMPLE EXPLICIT FORMULA FOR COUNTING LATTICE POINTS ...

    E-Print Network [OSTI]

    2007-02-14

    by a simple formula involving the evaluation of ? zx over the integral points of those ... different) formula from a decomposition of the generating function into.

  9. HOLOMORPHIC ONE FORMS, INTEGRAL AND RATIONAL POINTS ...

    E-Print Network [OSTI]

    2014-09-23

    Abstract The first goal of this paper is to study the question of finiteness of integral points on a cofinite non-compact complex two dimensional ball quotient ...

  10. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  11. New York Nuclear Profile - Indian Point

    U.S. Energy Information Administration (EIA) Indexed Site

    Indian Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Wolf Point Substation, Roosevelt County, Montana

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    The Western Area Power Administration (Western), an agency of the United States Department of Energy, is proposing to construct the 115-kV Wolf Point Substation near Wolf Point in Roosevelt County, Montana (Figure 1). As part of the construction project, Western's existing Wolf Point Substation would be taken out of service. The existing 115-kV Wolf Point Substation is located approximately 3 miles west of Wolf Point, Montana (Figure 2). The substation was constructed in 1949. The existing Wolf Point Substation serves as a Switching Station'' for the 115-kV transmission in the region. The need for substation improvements is based on operational and reliability issues. For this environmental assessment (EA), the environmental review of the proposed project took into account the removal of the old Wolf Point Substation, rerouting of the five Western lines and four lines from the Cooperatives and Montana-Dakota Utilities Company, and the new road into the proposed substation. Reference to the new proposed Wolf Point Substation in the EA includes these facilities as well as the old substation site. The environmental review looked at the impacts to all resource areas in the Wolf Point area. 7 refs., 6 figs.

  13. Microsoft PowerPoint - Rail_Massaro

    Office of Environmental Management (EM)

    Radioactive Awareness Training * Route Infrastructure Integrity Track Geometry, Bridge Inspection, etc. Hazardous Materials 2 Safety Compliance Oversight Plan "SCOP" Tasks *...

  14. Point de Contact National Action climatique,

    E-Print Network [OSTI]

    Bordenave, Charles

    Climate action, environment, resource efficiency and raw materials 3 081 Europe in a changing world resources and ecosystems, and a sustainable supply and use of raw materials, in order to meet the needs écosystèmes · Sustainable supply of non-energy and non-agricultural raw materials Assurer l

  15. Light propagation in local and linear media: Fresnel-Kummer wave surfaces with 16 singular points

    E-Print Network [OSTI]

    Favaro, Alberto

    2015-01-01

    It is known that the Fresnel wave surfaces of transparent biaxial media have 4 singular points, located on two special directions. We show that, in more general media, the number of singularities can exceed 4. In fact, a highly symmetric linear material is proposed whose Fresnel surface exhibits 16 singular points. Because, for every linear material, the dispersion equation is quartic, we conclude that 16 is the maximum number of singularities. The identity of Fresnel and Kummer surfaces, which holds true for media with a certain symmetry (zero skewon piece), provides an elegant interpretation of the results. We describe a metamaterial realization for our linear medium with 16 singular points. It is found that an appropriate combination of metal bars, split-ring resonators, and magnetized particles can generate the correct permittivity, permeability, and magnetoelectric moduli. Lastly, we discuss the arrangement of the singularities in terms of Kummer's (16,6)-configuration of points and planes. An investigat...

  16. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    SciTech Connect (OSTI)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  17. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  18. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering In this presentation the role of materials in power generation sector is about 20%, opportunities for materials-based technologies to improve energy efficiency (e Ridge National Laboratory (ORNL). He is also the Director of the High Temperature Materials Laboratory

  19. Tritium breeding materials

    SciTech Connect (OSTI)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved.

  20. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  1. On Robust Regression in Photogrammetric Point Clouds

    E-Print Network [OSTI]

    Schindler, Konrad

    On Robust Regression in Photogrammetric Point Clouds Konrad Schindler and Horst Bischof Institute,bischof}@icg.tu-graz.ac.at Abstract. Many applications in computer vision require robust linear regression on photogrammetrically for robust regression are based on distance measures from the regression surface to the points

  2. Traveling water waves with point vortices

    E-Print Network [OSTI]

    Kristoffer Varholm

    2015-03-20

    We construct small-amplitude solitary traveling gravity-capillary water waves with a finite number of point vortices along a vertical line, on finite depth. This is done using a local bifurcation argument. The properties of the resulting waves are also examined: We find that they depend significantly on the position of the point vortices in the water column.

  3. Three-point spherical mirror mount

    DOE Patents [OSTI]

    Cutburth, R.W.

    1984-01-23

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  4. Interaction between Injection Points during Hydraulic Fracturing

    E-Print Network [OSTI]

    Hals, Kjetil M D

    2012-01-01

    We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

  5. RELAP5 Model of a Two-phase ThermoSyphon Experimental Facility for Fuels and Materials Irradiation

    SciTech Connect (OSTI)

    Carbajo, Juan J; McDuffee, Joel Lee

    2013-01-01

    The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) does not have a separate materials-irradiation flow loop and requires most materials and all fuel experiments to be placed inside a containment. This is necessary to ensure that internal contaminants such as fission products cannot be released into the primary coolant. As part of the safety basis justification, HFIR also requires that all experiments be able to withstand various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. As with any parallel flow system, HFIR is vulnerable to flow excursion events when vapor is generated in one of those flow paths. The effects of these requirements are to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant and to reduce experiment heat loads to ensure boiling doesn t occur. A new experimental facility for materials irradiation and testing in the HFIR is currently being developed to overcome these limitations. The new facility is unique in that it will have its own internal cooling flow totally independent of the reactor primary coolant and boiling is permitted. The reactor primary coolant will cool the outside of this facility without contacting the materials inside. The ThermoSyphon Test Loop (TSTL), a full scale prototype of the proposed irradiation facility to be tested outside the reactor, is being designed and fabricated (Ref. 1). The TSTL is a closed system working as a two-phase thermosyphon. A schematic is shown in Fig. 1. The bottom central part is the boiler/evaporator and contains three electric heaters. The vapor generated by the heaters will rise and be condensed in the upper condenser, the condensate will drain down the side walls and be circulated via a downcomer back into the bottom of the boiler. An external flow system provides coolant that simulates the HFIR primary coolant. The two-phase flow code RELAP5-3D (Ref. 2) is the main tool employed in this design. The model has multiple challenges: boiling, condensation and natural convection flows need to be modeled accurately.

  6. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  7. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  8. Microsoft PowerPoint - Returns of DOE Loan Lease Material and Other Materials_James Crabtree [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA.MOX Adventure Tamara ReavisSmall

  9. Journal of Materials Education Vol. 32 (3-4): 125 -138 (2010) WOOD AND WOOD DERIVED MATERIALS

    E-Print Network [OSTI]

    North Texas, University of

    2010-01-01

    Witold Brostow, Tea Datashvili and Harrison Miller Laboratory of Advanced Polymers and Optimized point out the role of wood in the development of 'green' technologies. To provide a perspective, we. Keywords: wood, green materials, cellulosics, paper, polymer composites, art material 1. INTRODUCTION Wood

  10. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  11. Photovoltaics R&D: At the Tipping Point

    SciTech Connect (OSTI)

    Kazmerski, L. L.

    2005-01-01

    '' . . . with robust investments in research and market development, the picture changes dramatically.'' Thus, the realigned U.S. Photovoltaic Industry Roadmap highlights R&D as critical to the tipping point that will make solar photovoltaics (PV) significant in the U.S. energy portfolio--part of a well-designed plan that would bring ''2034 expectations'' to reality by 2020. Technology improvement and introduction depend on key, focused, and pertinent research contributions that range from the most fundamental through the applied. In this paper, we underscore the successes and relevance of our current systems-driven PV R&D programs, which are built on integrated capabilities. These capabilities span atomic-level characterization, nanotechnology, new materials design, interface and device engineering, theoretical guidance and modeling, processing, measurements and analysis, and process integration. This presentation identifies and provides examples of critical research tipping points needed to foster now and near technologies (primarily crystalline silicon and thin films) and to introduce coming generations of solar PV that provide options to push us to the next performance levels (devices with ultra-high efficiencies and with ultra-low cost). The serious importance of science and creativity to U.S. PV technology ownership--and the increased focus to accelerate the time from laboratory discovery to industry adoption--are emphasized at this ''tipping point'' for solar PV.

  12. A recipe for making materials with negative refraction in acoustics

    E-Print Network [OSTI]

    A. G. Ramm

    2007-10-27

    A recipe is given for making materials with negative refraction in acoustics, i.e., materials in which the group velocity is directed opposite to the phase velocity. The recipe consists of injecting many small particles into a bounded domain, filled with a material whose refraction coefficient is known. The number of small particles to be injected per unit volume around any point $x$ is calculated as well as the boundary impedances of the embedded particles.

  13. Nondestructive material characterization

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  14. Microsoft PowerPoint - Advances_Taylor

    Office of Environmental Management (EM)

    MSP Airport Mall of America Bloomington, Minnesota WHAT is TRANSCOM? * Unclassified web-based tracking and communication system * Monitor radioactive material shipments at...

  15. Analytical models to evaluate system performance measures for vehicle based material-handling systems under various dispatching policies 

    E-Print Network [OSTI]

    Lee, Moonsu

    2005-08-29

    -route material-handling systems from two different perspectives: the workcenters?? point of view and the transporters?? point of view. The state-dependent nature of the transportation time is considered here for more accurate analytical approximation models...

  16. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  17. POLYNOMIAL PARTITIONING ON VARIETIES AND POINT ...

    E-Print Network [OSTI]

    2014-06-09

    Jun 9, 2014 ... breakthrough in a long-standing problem of Erd?os on the number of distinct dis- tances between a n points in the plane, by nearly proving the ...

  18. CenterPoint Energy Sustainable Schools Program

    Broader source: Energy.gov [DOE]

    The Sustainable Schools Program focuses on energy savings through behavioral and operational improvements, and may be used along with CenterPoint Energy’s SCORES and Load Management programs. It...

  19. Critical-Point Structure in Finite Nuclei

    E-Print Network [OSTI]

    A. Leviatan

    2006-12-04

    Properties of quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Special emphasis is paid to the dynamics at the critical-point of a general first-order phase transition.

  20. CenterPoint Energy's Energy Wise Program

    Broader source: Energy.gov [DOE]

    CenterPoint Energy's Energy Wise program provides take-home kits containing efficiency devices with classroom and in-home education techniques with the aim to inspire families to adopt new resource...

  1. Earth-Abundant Materials

    Broader source: Energy.gov [DOE]

    DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. The sections below...

  2. Factors of material consumption

    E-Print Network [OSTI]

    Silva Díaz, Pamela Cristina

    2012-01-01

    Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

  3. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  4. CRITICAL MATERIALS INSTITUTE PROJECTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INL National Technology Roadmap for Critical Materials 4 4-3 4.3.3 McCall, Scott LLNL Additive Manufacturing of Permanent Magnets 2 2-1 2.1.2 Turchi, Patrice LLNL Materials...

  5. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  6. Nanocomposites as thermoelectric materials

    E-Print Network [OSTI]

    Hao, Qing

    2010-01-01

    Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

  7. Karankawa linguistic Materials

    E-Print Network [OSTI]

    Grant, Anthony P.

    1994-01-01

    In this paper I present the available materials on the diverse dialectal forms of the extinct Karankawa language of coastal Texas in the form of an English-Karankawa vocabulary, together with the attested sentence and text material, a transcription...

  8. Radioactive Materials Product Stewardship

    E-Print Network [OSTI]

    Radioactive Materials Product Stewardship ABackground Report for the National Dialogue...................................................................................................26 Low Level Waste (LLW) Disposal Regulations on Radioactive Materials Product Stewardship Prepared by the: Product Stewardship Institute University

  9. Geopolymer Sealing Materials

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  10. THE FERNALD DOSIMETRY RECONSTRUCTION Task 1: Identification of Release Points

    E-Print Network [OSTI]

    fires, spills, and UF6 leaks and releases. The Stack Release Points and Other Release Points are located

  11. Hot Springs Point Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Point Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Springs Point Geothermal Project Project Location Information...

  12. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Garritt Tucker Drexel University, Philadelphia, Pennsylvania Atomistic Methods to Quantify Nanoscale Strain and Deformation Mechanisms in Nanostructured Materials Thursday, August...

  13. HIGH PERFORMANCE MACROMOLECULAR MATERIALS

    E-Print Network [OSTI]

    M. Gregory Forest. Department of Mathematics. Institute for Advanced Materials, Nanoscience & Technology. University of North Carolina at Chapel Hill.

  14. Instructions and Materials

    Broader source: Energy.gov [DOE]

    The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

  15. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering New paradigms in the R&D of novel multifunctional oxide and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry Laboratory (ANL) during the past fifteen years. Also, the applications of these materials for a new

  16. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  17. Esselen Linguistic Materials

    E-Print Network [OSTI]

    Shaul, David L.; Turner, Katherine; Collins, James D.

    1984-01-01

    The primary purpose of this paper is to make a complete list of materials known on the Esselen language available in a single place. The existing lexical material has been organized into a lexicon which is followed by phrasal and sentence materials...

  18. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines, including chemistry, physics and engineering. It is the one discipline within the College of Engineering

  19. The stress assisted evolution of point and extended defects in silicon Samir Chaudhrya)

    E-Print Network [OSTI]

    Florida, University of

    The stress assisted evolution of point and extended defects in silicon Samir Chaudhrya) and Mark E to sub-micron dimensions, they are becoming more complex in geometry and materials. Stress related of stress can cause severe degradation of device characteristics by generating and propagating dislocations

  20. Tailored Porous Materials

    SciTech Connect (OSTI)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  1. Microsoft PowerPoint - 2013_NEET_Rad_Materials_Webinar_ORNL_Rev2

    Broader source: Energy.gov (indexed) [DOE]

    of XLPE films observed with nanoparticle additions Jul-2007 - LRB 14 Sample (kVmm) (-) XLPE 3wt.% SiO 2 74.6 6.25 XLPE 1wt.% SiO 2 146.0 6.85 PE 1wt.% SiO 2 113.7 9.25...

  2. Microsoft PowerPoint - Programmatic Update Nuclear Material Landscape_Richard Meehan [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA.MOX Adventure Tamara Reavis MayProgrammatic

  3. Microsoft PowerPoint - Meeting Materials rev 7 (final)[1].ppt

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Methane HydrateUpdateBudgeting Rebecca Kujawaat

  4. Microsoft PowerPoint - CNMS_highlight_LPSP_cathode_materials_v2-BRS.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms toPalladium wavyfamily of new lithium

  5. Cellular CSK resembles natural and synthetic materials

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    -pinned, three-point bending 7 Es is modulus of elasticity for beam (F-actin GPa) 3 48 s F l E I = #12;StressSession 15 #12;Cellular CSK resembles natural and synthetic materials Felt Paper Cotton 2 Cotton = #12;(a/k/a Second Moment of Area) Geometric resistance of a beam to bending 2 x A I y dA= y 6 2 4 4 4

  6. Superconductivity, superfluidity and zero-point oscillations

    E-Print Network [OSTI]

    B. V. Vasiliev

    2013-06-29

    Currently it is thought that in order to explain the phenomenon of superconductivity is necessary to understand the mechanism of formation of electron pairs. However, the paired electrons cannot form a superconducting condensate. They perform disorderly zero-point oscillations and there are no attractive forces in their ensemble. To create a unified ensemble of particles, the pairs must order their zero-point fluctuations so that an attraction between the particles appears. For this reason, the ordering of zero-point oscillations in the electron gas is the cause of superconductivity and the parameters characterizing this order determine the properties of superconductors. The model of condensation of zero-point oscillations creates the possibility to obtain estimates for the critical parameters of elementary superconductors, which are also in the satisfactory agreement with measured data. On the another hand, the phenomenon of superfluidity in He-4 and He-3 can be similarly explained due to the ordering of zero-point fluctuations. Thus it is established that the both related phenomena are based on the same physical mechanism.

  7. Relative localization of point particle interactions

    E-Print Network [OSTI]

    José Ricardo Oliveira

    2011-10-25

    We review the main concepts of the recently introduced principle of relative locality and investigate some aspects of classical interactions between point particles from this new perspective. We start with a physical motivation and basic mathematical description of relative locality and review the treatment of a system of classical point particles in this framework. We then examine one of the unsolved problems of this picture, the apparent ambiguities in the definition of momentum constraints caused by a non-commutative and/or non-associative momentum addition rule. The gamma ray burst experiment is used as an illustration. Finally, we use the formalism of relative locality to reinterpret the well-known multiple point particle system coupled to 2+1 Einstein gravity, analyzing the geometry of its phase space and once again referring to the gamma ray burst problem as an example.

  8. Phase-shifting point diffraction interferometer

    DOE Patents [OSTI]

    Medecki, H.

    1998-11-10

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.

  9. Phase-shifting point diffraction interferometer

    DOE Patents [OSTI]

    Medecki, Hector (Berkeley, CA)

    1998-01-01

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.

  10. Multiple Critical Points in Effective Quark Models

    E-Print Network [OSTI]

    Ferroni, Lorenzo; Pinto, Marcus B

    2010-01-01

    We consider the two flavor version of the Linear Sigma Model as well as of the Nambu Jona-Lasinio model, at finite temperature and quark chemical potential, beyond the Mean Field Approximation. Using parameter values for the pion and quark current masses which weakly break chiral symmetry we show that both models can present more than one critical end point. In particular, we explicitly show that the appearance of a new critical point associated with a first order line at high temperature and low densities could help to conciliate some lattice results with model predictions. Using different techniques, we perform an extensive thermodynamical analysis to understand the physical nature of the different critical points. For both models, our results suggest that the new first order line which starts at vanishing chemical potential has a more chiral character than the usual line which displays a character more reminiscent of a liquid-gas phase transition.

  11. The ROSAT HRI Point Spread Function

    E-Print Network [OSTI]

    Peter Predehl; Almudena Prieto

    2001-09-28

    A sample of the brightest point-like sources observed with the ROSAT-HRI were analysed to asses on the intrinsic shape of the ROSAT-HRI Point Spread Function (PSF). Almost all of the HRI observations collected during the ROSAT lifetime are found to be artificially broadened by factors up two ~2 due to residual errors in the ROSAT aspect solution. After correction by departing pointing positions, the width of the core of the PSF is found to be less than 5 arcsec (half energy width, HEW). On the basis of these results, an improved analytical representation of the ROSAT-HRI PSF is provided. However, for most of the new observations the source countrate is too weak to allow reliable recovering pf the ROSAT-HRI resolution. Therefore, a series of examples (data, correction, and theoretical PSF) are given in order to help the ROSAT user in determining whether "his/her source" is extended or not.

  12. Symmetry and Dirac points in graphene spectrum

    E-Print Network [OSTI]

    Gregory Berkolaiko; Andrew Comech

    2015-04-23

    Existence and stability of Dirac points in the dispersion relation of operators periodic with respect to the hexagonal lattice is investigated for different sets of additional symmetries. The following symmetries are considered: rotation by $2\\pi/3$ and inversion, rotation by $2\\pi/3$ and horizontal reflection, inversion or reflection with weakly broken rotation symmetry, and the case where no Dirac points arise: rotation by $2\\pi/3$ and vertical reflection. All proofs are based on symmetry considerations and are elementary in nature. In particular, existence of degeneracies in the spectrum is proved by a transplantation argument (which is deduced from the (co)representation of the relevant symmetry group). The conical shape of the dispersion relation is obtained from its invariance under rotation by $2\\pi/3$. Persistence of conical points when the rotation symmetry is weakly broken is proved using a geometric phase in one case and parity of the eigenfunctions in the other.

  13. FY 2009 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Lightweighting Materials - 12. Materials Crosscutting Research and Development The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction...

  14. Microsoft PowerPoint - Enhancements_Lee

    Office of Environmental Management (EM)

    73 SNF Update and Part 37 Category 1 and 2 Materials) Willie J. Lee U.S. Nuclear Regulatory Commission May 14, 2014 Overview * Part 73 Spent Nuclear Fuel in Transit (Update) *...

  15. Non-lead hollow point bullet

    DOE Patents [OSTI]

    Vaughn, Norman L. (Knoxville, TN); Lowden, Richard A. (Clinton, TN)

    2003-04-15

    The non-lead hollow point bullet of the instant invention comprises a mixed construction slug further comprising, a monolithic metal insert having a tapered (preferred conical) hollow point tip and a tapered (preferred conical) tail protrusion, and an unsintered powdered metal composite core in tandem alignment with the insert. The core has a hollow tapered (preferred conical) cavity tip portion coupled with the tapered (preferred conical) tail protrusion on the insert. An open tip jacket envelops at least a portion of the insert and the core. The jacket is swaged at the open tip.

  16. Sequential conditions for fixed and periodic points 

    E-Print Network [OSTI]

    Peters, Burnis Charles

    1970-01-01

    ) (Member) ~A (Month) 1970 (Year) ~04SQQ ABSTRACT Sec, uential Conditions fo. Fixed and Periodic Points (August 1970) Burnis C. Peter, Jr. , B. A. , Texas ASM University; M. S. , Texas A&M University Directed by: Jack Bryant and L. F. Guseman, Jr.... Let (X, d) be a metric space and f a selfmap of X. It is shown that a number of known theorems on the existence of fixed and periodic points are related through simple properties of the n sequence (f ) of iterates . ACMOVI. EDGEMENTS I wish...

  17. QCD Critical Point: The Race is On

    E-Print Network [OSTI]

    Gavai, Rajiv V

    2014-01-01

    A critical point in the phase diagram of Quantum Chromodynamics (QCD), if established either theoretically or experimentally, would be as profound a discovery as the good-old gas-liquid critical point. Unlike the latter, however, first-principles based approaches are being employed to locate it theoretically. Due to the short lived nature of the concerned phases, novel experimental techniques are needed to search for it. The Relativistic Heavy Ion Collider (RHIC) in USA has an experimental program to do so. This short review is an attempt to provide a glimpse of the race between the theorists and the experimentalists as well as that of the synergy between them.

  18. Points of Pride | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformancePi Day Pi Day Pi DayPlasmaandAbout UsPointsPoints

  19. Thermodynamic stability of oxygen point defects in cubic Zirconia

    E-Print Network [OSTI]

    Samanta, Amit; Li, Ju

    2010-01-01

    Zirconia (ZrO2) is an important material with technological applications which are affected by point defect physics. Ab-initio calculations are performed to understand the structural and electronic properties of oxygen vacancies and interstitials in different charge states in cubic zirconia. We find oxygen interstitials in cubic ZrO2 can have five different configurations - dumbbell, dumbbell, crowd-ion, octahedral, and distorted dumbbell. For a neutral and singly charged oxygen interstitial, the lowest energy configuration is the dumbbell, while for a doubly charged oxygen interstitial the octahedral site is energetically the most favorable. Both the oxygen interstitial and the oxygen vacancy are negative-U, so that the singly charged defects are unstable at any Fermi level. The thermodynamic stability of these defects are studied in terms of Fermi level, oxygen partial pressure and temperature. A method to determine the chemical potential of the system as a function of temperature and pressure is propo...

  20. Deformation Mechanisms in Nanocrystalline Materials

    E-Print Network [OSTI]

    Mohamed, Farghalli A.; Yang, Heather

    2010-01-01

    2010 METALLURGICAL AND MATERIALS TRANSACTIONS A 47. F.A.12. METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 41A,of Slip: Progress in Materials Science, Pergamon Press,

  1. Vibrational Damping of Composite Materials

    E-Print Network [OSTI]

    Biggerstaff, Janet M.

    2006-01-01

    Smart Structures and Materials, 3989:531- 538. Biggerstaff,2002. “Electroviscoelastic Materials As Active Dampers”,Smart Structures and Materials, 4695:345-350. Biggerstaff,

  2. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsAlyssa...

  3. ANS materials databook

    SciTech Connect (OSTI)

    Marchbanks, M.F.

    1995-08-01

    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  4. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. EXCEPTIONAL COVERS AND BIJECTIONS ON RATIONAL POINTS

    E-Print Network [OSTI]

    Fried, Michael

    EXCEPTIONAL COVERS AND BIJECTIONS ON RATIONAL POINTS ROBERT M. GURALNICK, THOMAS J. TUCKER proved by Davenport and Lewis [DL], Mac- Cluer [Mac], Williams [Wi], Cohen [Co], and Fried [Fr, Fr3, FGS was partially supported by NSF grant DMS-0140578. 1 #12;2 ROBERT M. GURALNICK, THOMAS J. TUCKER, AND MICHAEL E

  7. EXCEPTIONAL COVERS AND BIJECTIONS ON RATIONAL POINTS

    E-Print Network [OSTI]

    Zieve, Michael E.

    EXCEPTIONAL COVERS AND BIJECTIONS ON RATIONAL POINTS ROBERT M. GURALNICK, THOMAS J. TUCKER cases and weaker versions were previously proved by Davenport and Lewis [DL], Mac- Cluer [Mac], Williams was partially supported by NSF grant DMS-0140578. 1 #12;2 ROBERT M. GURALNICK, THOMAS J. TUCKER, AND MICHAEL E

  8. Killam Library Service Point August 20, 2013

    E-Print Network [OSTI]

    Lotze, Heike K.

    , the Library will make special provisions insofar as feasible to permit the patrons to examine sources impression of the Library. Individual assistance to patrons who come to the Library is the primary5 Killam Library Service Point Policy 2013-02-18 August 20, 2013 Head, Killam Memorial Library

  9. Discovering Point Sources in Unknown Environments

    E-Print Network [OSTI]

    Ferguson, Thomas S.

    - ted from the yet-to-be-located source. We will refer to the information from the range sensorDiscovering Point Sources in Unknown Environments Yanina Landa1 , Nicolay M. Tanushev2 , Richard of Texas at Austin, {nicktan,ytsai}@math.utexas.edu 3 Institute for Computational and Appplied Mathematics

  10. Form drag at Three Tree Point

    E-Print Network [OSTI]

    for this study Seattle Tacoma Edwards et al., 2004 Puget Sound, WA Point Three Tree Previous work McCabe et al 24 ­ drag due to tilt = residual drag total form drag #12;Cruise at TTP in Dec. 2009 Seattle Tacoma

  11. Multilinear generalized Radon transforms and point configurations

    E-Print Network [OSTI]

    Grafakos, Loukas; Iosevich, Alex; Palsson, Eyvindur

    2012-01-01

    We study multilinear generalized Radon transforms using a graph-theoretic paradigm that includes the widely studied linear case. These provide a general mechanism to study Falconer-type problems involving $(k+1)$-point configurations in geometric measure theory, with $k \\ge 2$, including the distribution of simplices, volumes and angles determined by the points of fractal subsets $E \\subset {\\Bbb R}^d$, $d \\ge 2$. If $T_k(E)$ denotes the set of noncongruent $(k+1)$-point configurations determined by $E$, we show that if the Hausdorff dimension of $E$ is greater than $d-\\frac{d-1}{2k}$, then the ${k+1 \\choose 2}$-dimensional Lebesgue measure of $T_k(E)$ is positive. This compliments previous work on the Falconer conjecture (\\cite{Erd05} and the references there), as well as work on finite point configurations \\cite{EHI11,GI10}. We also give applications to Erd\\"os-type problems in discrete geometry and a fractal regular value theorem, providing a multilinear framework for the results in \\cite{EIT11}.

  12. Multilinear generalized Radon transforms and point configurations

    E-Print Network [OSTI]

    Grafakos, Loukas

    Multilinear generalized Radon transforms and point configurations Loukas Grafakos, Allan Greenleaf, Alex Iosevich and Eyvindur Palsson Abstract. We study multilinear generalized Radon transforms using for the results in [7]. 1. Introduction Linear generalized Radon transforms are operators of the form (1.1) Rf

  13. Ground Vibration Measurements at LHC Point 4

    SciTech Connect (OSTI)

    Bertsche, Kirk; /SLAC; Gaddi, Andrea; /CERN

    2012-09-17

    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  14. Surveying points in the complex projective plane

    E-Print Network [OSTI]

    Lane Hughston; Simon Salamon

    2014-10-21

    We classify SIC-POVMs of rank one in CP^2, or equivalently sets of nine equally-spaced points in CP^2, without the assumption of group covariance. If two points are fixed, the remaining seven must lie on a pinched torus that a standard moment mapping projects to a circle in R^3. We use this approach to prove that any SIC set in CP^2 is isometric to a known solution, given by nine points lying in triples on the equators of the three 2-spheres each defined by the vanishing of one homogeneous coordinate. We set up a system of equations to describe hexagons in CP^2 with the property that any two vertices are related by a cross ratio (transition probability) of 1/4. We then symmetrize the equations, factor out by the known solutions, and compute a Groebner basis to show that no SIC sets remain. We do find new configurations of nine points in which 27 of the 36 pairs of vertices of the configuration are equally spaced.

  15. A Formula for Inserting Point Masses

    E-Print Network [OSTI]

    Manwah Lilian Wong

    2010-09-08

    Let mu be a probability measure on the unit circle and nu be the measure formed by adding a pure point to mu. We give a formula for the Verblunsky coefficients of the perturbed measure, based on a result of Simon.

  16. ON LYAPUNOV FAMILIES AROUND COLLINEAR LIBRATION POINTS

    SciTech Connect (OSTI)

    Hou, X. Y.; Liu, L. [Astronomy Department, Nanjing University, Nanjing 210093 (China)], E-mail: lliu@nju.edu.cn

    2009-06-15

    Evolution details of the planar and vertical Lyapunov families around the three collinear libration points in the restricted three-body problem were studied. Researches before were generally restricted to be within the colliding orbits with the primaries and for fixed mass parameters {mu}. In this paper, members after colliding orbits were computed. With increasing {mu}, how these families evolve was studied.

  17. Emergency Preparedness Plan Horn Point Laboratory

    E-Print Network [OSTI]

    Boynton, Walter R.

    Emergency Preparedness Plan Horn Point Laboratory March 2015 Introduction This plan summarizes the actions which will be taken in preparation for and in response to emergencies impacting the regular technology security and infrastructure, business functions, and academic and research continuity. Emergencies

  18. Language Production General Points about Speech Production

    E-Print Network [OSTI]

    Coulson, Seana

    Language Production #12;General Points about Speech Production 15 speech sounds per second => 2, shall I say `t' or `d'' (Levelt) Production side has gotten less attention in Psycholinguistics than the comprehension side. Evidence for speech production behaviour has until recently relied heavily on speech errors

  19. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David...

  20. Nanoscale Materials in Medicine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoparticle Technology for Drug Delivery. Gao, X., et al. 2002. Journal of Biomedical Optics 7: 532-537. Ferromagnetic materials become superparamagnetic below 20 nm Size...

  1. Webinar: Materials Genome Initative

    Broader source: Energy.gov [DOE]

    Audio recording and text version of the Fuel Cell Technologies Office webinar titled "Materials Genome Initiative," originally presented on December 2, 2014.

  2. Computational Chemical Materials Engineering

    E-Print Network [OSTI]

    . Thermodynamic and micromechanical analysis #12;Home Polyimide-nanotube composites for electro-active materials · (ß ­ CN)APB/ODPA Polyimide · Piezoelectric polyimide · Exceptional thermal, mechanical

  3. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain, Austin, TX 78731); Dumitru, Earl T. (10116 Aspen St., Austin, TX 78758)

    1986-11-04

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  4. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain, Austin, TX 78731); Dumitru, Earl T. (10116 Aspen St., Austin, TX 78758)

    1990-02-13

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  5. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  6. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  7. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  8. Critical Materials Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and...

  9. Next Generation Materials:

    Office of Environmental Management (EM)

    databases for ICME Surface treatments User facility for remanufactured parts testing; lower-cost coating materials Low-cost laser processing; high accuracy non-planar surface...

  10. Phase Change Material Tower

    Office of Environmental Management (EM)

    transfer of pulverized coal Assortment of available fabrication methods (shrink fit, adhesive, casting) & liner materials (i.e. alumina, SiC, etc.) Pyrotek molten metal transfer...

  11. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  12. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  13. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  14. Point-to-Point Car Racing: an Initial Study of Evolution Versus Temporal Difference Learning

    E-Print Network [OSTI]

    Togelius, Julian

    Point-to-Point Car Racing: an Initial Study of Evolution Versus Temporal Difference Learning Simon, jtogel}@essex.ac.uk Abstract-- This paper considers variations on an extremely simple form of car racing-evaluation neural networks, and these were greatly superior to human drivers. Keywords: Car racing, reinforcement

  15. The Efficiency of Point-to-Point Financial Transmission Rights is Limited by the Network Topology

    E-Print Network [OSTI]

    Blumsack, Seth

    of the restructured electric power industry envisioned replacing the transmission business of a regulated utility of electric-sector restructuring would place transmission under a market regime similar to generationThe Efficiency of Point-to-Point Financial Transmission Rights is Limited by the Network Topology

  16. Integral points on hyperbolas: A special case

    E-Print Network [OSTI]

    Konstantine Zelator

    2009-07-21

    The subject matter of this work is integral points on conics described by the general equation, ax^2+bxy+cy^2+dx+ey+f=0 (1) where the six coefficients are integers satisfying the conditions, b^2-4ac=k^2, with a and c being nonzero and k a positive integer. It is well known the when b^2-4ac>0, equation (1) describes either a hyperbola on the plane or a pair of two straight lines(the degenerate case). The key integer is the number, I=k^2(d^2-4af)-(2ae-bd)^2. In Section 2, we show via a straightforward algebraic method that equation (1) can be put in the form, g(x,y)h(x,y)=I, where g(x,y) and h(x,y) are linear polynomials in x and y with integer coefficients. Thus, when I is not zero, equation (1) has only finitely many integer solutions (x,y). The process of finding these solutions is outlined in Section 3. In Section 4,we give a detailed numerical example. In Section 5, we offer some observations and remarks. In Section 6, we discuss the case b=d=e=0. In Section 7 we discuss the case a=1=k, and we show that when I=2^n, n>or=2, the above hyperbola has exactly 2(n-1) integral points, all explicitly given. In Section 10, we prove that these points are distinct. In Section 8 we discuss the case I=0, the hyperbola in (1) has either infinitely many integral points: or no integral points. Finally in Section 9, we discuss the special case d=e=f=0.

  17. Ionic liquid polyoxometalates as light emitting materials

    SciTech Connect (OSTI)

    Ortiz-acosta, Denisse [Los Alamos National Laboratory; Del Sesto, Rico E [Los Alamos National Laboratory; Scott, Brian [Los Alamos National Laboratory; Bennett, Bryan L [Los Alamos National Laboratory; Purdy, Geraldine M [Los Alamos National Laboratory; Muenchausen, Ross E [Los Alamos National Laboratory; Mc Kigney, Edward [Los Alamos National Laboratory; Gilbertson, Robert [Los Alamos National Laboratory

    2008-01-01

    The low melting point, negligible vapor pressure, good solubility, and thermal and chemical stability make ionic liquids useful materials for a wide variety of applications. Polyoxometalates are early transition metal oxygen clusters that can be synthesized in many different sizes and with a variety of heterometals. The most attractive feature of POMs is that their physical properties, in particular electrical, magnetic, and optical properties, can be easily modified following known procedures. It has been shown that POMs can exhibit cooperative properties, as superconductivity and energy transfer. POM ionic liquids can be obtained by selecting the appropliate cation. Different alkyl ammonium and alkyl phosphonium salts are being used to produce new POM ionic liquids together with organic or inorganic luminescent centers to design light emitting materials. Ammonium and phosphonium cations with activated, polymerizable groups are being used to further polymerize the ionic liquid into transparent, solid materials with high metal density.

  18. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect (OSTI)

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  19. Materials Science & Engineering

    E-Print Network [OSTI]

    Capecchi, Mario R.

    -twines numerous disciplines, including chemistry, physics and engineering. It is the one discipline within an engineering degree. Materials Scientists apply the principles of physics and chemistry to engineering problemsMaterials Science & Engineering 2015-2016 Undergraduate Handbook The University of Utah #12

  20. Hydrocarbonaceous material upgrading method

    DOE Patents [OSTI]

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  1. Nanocrystalline Heterojunction Materials

    DOE Patents [OSTI]

    Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  2. Measurements and material accounting

    SciTech Connect (OSTI)

    Hammond, G.A. )

    1989-11-01

    The DOE role for the NBL in safeguarding nuclear material into the 21st century is discussed. Development of measurement technology and reference materials supporting requirements of SDI, SIS, AVLIS, pyrochemical reprocessing, fusion, waste storage, plant modernization program, and improved tritium accounting are some of the suggested examples.

  3. Redeveloping or preserving public housing : the future of Columbia Point

    E-Print Network [OSTI]

    Lee, Sharon Hsueh-Jen

    1981-01-01

    Columbia Point, Boston's largest and most stigmatized public housing project, has been a focal point for public and private. investment strategies to create a new mixed-income residential community. Columbia Point provided ...

  4. From Point to Pixel: A Genealogy of Digital Aesthetics

    E-Print Network [OSTI]

    Hoy, Meredith Anne

    2010-01-01

    From Point to Pixel: A Genealogy of Digital Aesthetics byFrom Point to Pixel: A Genealogy of Digital Aesthetics byFrom Point to Pixel: A Genealogy of Digital Aesthetics, I

  5. Materials of Gasification

    SciTech Connect (OSTI)

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  6. Quasi-Symmetries of Determinantal Point Processes

    E-Print Network [OSTI]

    Alexander I. Bufetov

    2014-09-06

    The main result of this paper is that determinantal point processes on the real line corresponding to projection operators with integrable kernels are quasi-invariant, in the continuous case, under the group of diffeomorphisms with compact support (Theorem 1.5); in the discrete case, under the group of all finite permutations of the phase space (Theorem 1.7). The Radon-Nikodym derivative is computed explicitly and is given by a regularized multiplicative functional. Theorem 1.5 applies, in particular, to the sine-process and the Bessel point process; Theorem 1.7 to the discrete sine process and the Gamma kernel process. The paper answers a question of Grigori Olshanski.

  7. Big Rock Point severe accident management strategies

    SciTech Connect (OSTI)

    Brogan, B.A. [Consumers Power Co., Charlevoix, MI (United States); Gabor, J.R. [Dames and Moore, Westmont, IL (United States)

    1996-07-01

    December 1994, the Nuclear Energy Institute (NEI) issued guidance relative to the formal industry position on Severe Accident Management (SAM) approved by the NEI Strategic Issues Advisory Committee on November 4, 1994. This paper summarizes how Big Rock Point (BRP) has and continues to address SAM strategies. The historical accounting portion of this presentation includes a description of how the following projects identified and defined the current Big Rock Point SAM strategies: the 1981 Level 3 Probabilistic Risk Assessment performance; the development of the Plant Specific Technical Guidelines from which the symptom oriented Emergency Operating Procedures (EOPs) were developed; the Control Room Design Review; and, the recent completion of the Individual Plant Evaluation (IPE). In addition to the historical presentation deliberation, this paper the present activities that continue to stress SAM strategies.

  8. Remote temperature-set-point controller

    DOE Patents [OSTI]

    Burke, W.F.; Winiecki, A.L.

    1984-10-17

    An instrument is described for carrying out mechanical strain tests on metallic samples with the addition of means for varying the temperature with strain. The instrument includes opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  9. Dynamic trapping near a quantum critical point

    E-Print Network [OSTI]

    Michael Kolodrubetz; Emanuel Katz; Anatoli Polkovnikov

    2015-03-02

    The study of dynamics in closed quantum systems has recently been revitalized by the emergence of experimental systems that are well-isolated from their environment. In this paper, we consider the closed-system dynamics of an archetypal model: spins near a second order quantum critical point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon -- dynamic critical trapping -- in which the system is self-trapped near the critical point due to efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in the context of early universe physics, where the role of the driving field is played by the inflaton or a modulus.

  10. Perforation of domain wall by point mass

    E-Print Network [OSTI]

    D. V. Gal'tsov; E. Yu. Melkumova; P. A. Spirin

    2013-12-30

    We investigate collision of a point particle and an infinitely thin planar domain wall interacting gravitationally within the linearized gravity in Minkowski space-time of arbitrary dimension. In this setting we are able to describe analytically the perforation of the wall by an impinging particle, showing that it is accompanied by excitation of the spherical shock branon wave propagating outwards with the speed of light. Formally, the shock wave is a free solution of the branon wave equation which has to be added to ensure the validity of the retarded solution at the perforation point. Physically, the domain wall gets excited due to the shake caused by an instantaneous change of sign of the repulsive gravitational force. This effect is shown to hold, in particular, in four space-time dimensions, being applicable to the problem of cosmological domain walls.

  11. Perforation of domain wall by point mass

    E-Print Network [OSTI]

    Gal'tsov, D V; Spirin, P A

    2013-01-01

    We investigate collision of a point particle and an infinitely thin planar domain wall interacting gravitationally within the linearized gravity in Minkowski space-time of arbitrary dimension. In this setting we are able to describe analytically the perforation of the wall by an impinging particle, showing that it is accompanied by excitation of the spherical shock branon wave propagating outwards with the speed of light. Formally, the shock wave is a free solution of the branon wave equation which has to be added to ensure the validity of the retarded solution at the perforation point. Physically, the domain wall gets excited due to the shake caused by an instantaneous change of sign of the repulsive gravitational force. This effect is shown to hold, in particular, in four space-time dimensions, being applicable to the problem of cosmological domain walls.

  12. Adaptation of Crack Growth Detection Techniques to US Material Test Reactors

    SciTech Connect (OSTI)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Joy L. Rempe; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter

    2014-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some materials testing reactors (MTRs) outside the U.S., such as the Halden Boiling Water Reactor (HBWR), have deployed a technique to measure crack growth propagation during irradiation. This technique incorporates a compact loading mechanism to stress the specimen during irradiation. A crack in the specimen is monitored using the Direct Current Potential Drop (DCPD) method. A project is underway to develop and demonstrate the performance of a similar type of test rig for use in U.S. MTRs. The first year of this three year project was devoted to designing, analyzing, fabricating, and bench top testing a mechanism capable of applying a controlled stress to specimens while they are irradiated in a pressurized water loop (simulating PWR reactor conditions). During the second year, the mechanism will be tested in autoclaves containing high pressure, high temperature water with representative water chemistries. In addition, necessary documentation and safety reviews for testing in a reactor environment will be completed. In the third year, the assembly will be tested in the Massachusetts Institute of Technology Reactor (MITR) and Post Irradiation Examinations (PIE) will be performed.

  13. EIS-0153: Niagara Import Point Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to assess the environmental impacts of the proposed Niagara Import Point project that would construct an interstate natural gas pipeline to transport gas from Canada and domestic sources to the Northeastern United States market. The U.S. Department of Energy's Office of Fossil Energy was a cooperating agency during statement development and adopted this statement on 6/15/1990.

  14. Focusing: coming to the point in metamaterials

    E-Print Network [OSTI]

    Sebastien Guenneau; Andre Diatta; Ross McPhedran

    2010-09-02

    The point of the paper is to show some limitations of geometrical optics in the analysis of subwavelength focusing. We analyze the resolution of the image of a line source radiating in the Maxwell fisheye and the Veselago-Pendry slab lens. The former optical medium is deduced from the stereographic projection of a virtual sphere and displays a heterogeneous refractive index n(r) which is proportional to the inverse of 1+r^2. The latter is described by a homogeneous, but negative, refractive index. It has been suggested that the fisheye makes a perfect lens without negative refraction [Leonhardt, Philbin arxiv:0805.4778v2]. However, we point out that the definition of super-resolution in such a heterogeneous medium should be computed with respect to the wavelength in a homogenized medium, and it is perhaps more adequate to talk about a conjugate image rather than a perfect image (the former does not necessarily contains the evanescent components of the source). We numerically find that both the Maxwell fisheye and a thick silver slab lens lead to a resolution close to lambda/3 in transverse magnetic polarization (electric field pointing orthogonal to the plane). We note a shift of the image plane in the latter lens. We also observe that two sources lead to multiple secondary images in the former lens, as confirmed from light rays travelling along geodesics of the virtual sphere. We further observe resolutions ranging from lambda/2 to nearly lambda/4 for magnetic dipoles of varying orientations of dipole moments within the fisheye in transverse electric polarization (magnetic field pointing orthogonal to the plane). Finally, we analyse the Eaton lens for which the source and its image are either located within a unit disc of air, or within a corona 1

  15. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph Gabriel (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  16. High speed point derivative microseismic detector

    DOE Patents [OSTI]

    Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.

    1998-06-30

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.

  17. High speed point derivative microseismic detector

    DOE Patents [OSTI]

    Uhl, James Eugene (Albuquerque, NM); Warpinski, Norman Raymond (Albuquerque, NM); Whetten, Ernest Blayne (Albuquerque, NM)

    1998-01-01

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves.

  18. Energy Department Authorizes Dominion Cove Point LNG to Export...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Authorizes Dominion Cove Point LNG to Export Liquefied Natural Gas Energy Department Authorizes Dominion Cove Point LNG to Export Liquefied Natural Gas May 7,...

  19. Fast Change Point Detection for Electricity Market Analysis

    E-Print Network [OSTI]

    Gu, William

    2014-01-01

    The trouble with electricity markets: understandingPoint Detection for Electricity Market Analysis William Gu ?Point Detection for Electricity Market Analysis William Gu,

  20. Spring 2010 | PCI Journal Editor's quick points

    E-Print Network [OSTI]

    and a nonstructural wythe separated by a layer of insulation.1,2 A composite load-bearing SWP is typically fabricated and insulating material. The thickness of the concrete layers varies depending on the structural require- ments of the building. The most common load requirements include wind and seismic loads. Conventional shear connec- tors

  1. NO. IRIEV. NC LSG Single Point Failure

    E-Print Network [OSTI]

    Rathbun, Julie A.

    of high reliability component parts and accepted materials, and by the use of highly reliability design scientific data will be lost (tidal, lunar free oscillation, lunar seismic activity, and the drift 4 DATE 5/18/71 7. Seismic Amplifier and Filter - Failure will result in inability to accept

  2. Measure Your Sew - How: Pressing Points

    E-Print Network [OSTI]

    Odle-Kemp, Marlene

    1979-01-01

    and cuffs. The larger iron works best on large areas, general pressing and seams. Steamers designed for sewing purposes are available (see Figure 1). Keep the iron clean at all times. If finishes or fusible materials are allowed to gum the sole plate...

  3. Gen IV Materials Handbook Implementation Plan

    SciTech Connect (OSTI)

    Rittenhouse, P.; Ren, W.

    2005-03-29

    A Gen IV Materials Handbook is being developed to provide an authoritative single source of highly qualified structural materials information and materials properties data for use in design and analyses of all Generation IV Reactor Systems. The Handbook will be responsive to the needs expressed by all of the principal government, national laboratory, and private company stakeholders of Gen IV Reactor Systems. The Gen IV Materials Handbook Implementation Plan provided here addresses the purpose, rationale, attributes, and benefits of the Handbook and will detail its content, format, quality assurance, applicability, and access. Structural materials, both metallic and ceramic, for all Gen IV reactor types currently supported by the Department of Energy (DOE) will be included in the Gen IV Materials Handbook. However, initial emphasis will be on materials for the Very High Temperature Reactor (VHTR). Descriptive information (e.g., chemical composition and applicable technical specifications and codes) will be provided for each material along with an extensive presentation of mechanical and physical property data including consideration of temperature, irradiation, environment, etc. effects on properties. Access to the Gen IV Materials Handbook will be internet-based with appropriate levels of control. Information and data in the Handbook will be configured to allow search by material classes, specific materials, specific information or property class, specific property, data parameters, and individual data points identified with materials parameters, test conditions, and data source. Details on all of these as well as proposed applicability and consideration of data quality classes are provided in the Implementation Plan. Website development for the Handbook is divided into six phases including (1) detailed product analysis and specification, (2) simulation and design, (3) implementation and testing, (4) product release, (5) project/product evaluation, and (6) product maintenance and enhancement. Contracting of development of the Handbook website is discussed in terms of host server options, cost, technology, developer background and cooperative nature, and company stability. One of the first and most important activities in website development will be the generation of a detailed Handbook product requirements document including case diagrams and functional requirements tables. The Implementation Plan provides a detailed overview of the organizational structure of the Handbook and details of Handbook preparation, publication, and distribution. Finally, the Implementation Plan defines Quality Assurance requirements for the Handbook.

  4. Study of turbulent single-phase heat transfer and onset of nucleate boiling in high aspect ratio mini-channels to support the MITR LEU conversion/

    E-Print Network [OSTI]

    Forrest, Eric Christopher

    2014-01-01

    Heat transfer in high aspect ratio mini-channels has important applications for materials test reactors using plate-type fuel. These fuel plates typically possess coolant channels with hydraulic diameters on the order of ...

  5. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    xi Material CharacterizationThermoelectric Materials . . . . . . . . Graphene-Like5 Nanostructured Materials for Electrochemical Energy

  6. Midwestern Radioactive Materials Transportation Committee Agenda...

    Office of Environmental Management (EM)

    Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

  7. Hydrocarbonaceous material processing methods and apparatus

    DOE Patents [OSTI]

    Brecher, Lee E. (Laramie, WY)

    2011-07-12

    Methods and apparatus are disclosed for possibly producing pipeline-ready heavy oil from substantially non-pumpable oil feeds. The methods and apparatus may be designed to produce such pipeline-ready heavy oils in the production field. Such methods and apparatus may involve thermal soaking of liquid hydrocarbonaceous inputs in thermal environments (2) to generate, though chemical reaction, an increased distillate amount as compared with conventional boiling technologies.

  8. Electrically conductive composite material

    SciTech Connect (OSTI)

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  9. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  10. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  11. Critical Materials Hub

    Broader source: Energy.gov [DOE]

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  12. Fissile material detector

    DOE Patents [OSTI]

    Ivanov, Alexander I. (Dubna, RU); Lushchikov, Vladislav I. (Dubna, RU); Shabalin, Eugeny P. (Dubna, RU); Maznyy, Nikita G. (Dubna, RU); Khvastunov, Michael M. (Dubna, RU); Rowland, Mark (Alamo, CA)

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  13. RADIOACTIVE MATERIALS SENSORS

    SciTech Connect (OSTI)

    Mayo, Robert M.; Stephens, Daniel L.

    2009-09-15

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  14. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  15. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  16. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials

  17. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterialsMST Materials

  18. An Experiment to Tame the Plasma Material Interface

    SciTech Connect (OSTI)

    Goldston, R J; Menard, J E; Allain, J P; Brooks, J N; Canik, J M; Doerner, R; Fu, G; Gates, D A; Gentile, C A; Harris, J H; Hassanein, A; Gorelenkov, N N; Kaita, R; Kaye, S M; Kotschenreuther, M; Kramer, G J; Kugel, H W; Maingi, R; Mahajan, S M; Majeski, R; Neumeyer, C L; Nygren, R E; Ono, M; Owen, L W; Ramakrishnan, S; Rognlien, T D; Ruzic, D N; Ryutov, D D; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A; Stevenson, T N; Ulrickson, M A; Valanju, P M; Woolley, R D

    2009-01-08

    The plasma material interface in Demo will be more challenging than that in ITER, due to requirements for approximately four times higher heat flux from the plasma and approximately five times higher average duty factor. The scientific and technological solutions employed in ITER may not extrapolate to Demo. The key questions to be resolved for Demo and the resulting key requirements for an experiment to 'tame the plasma material interface' are analyzed. A possible design point for such an experiment is outlined.

  19. Method for recovering materials from waste

    DOE Patents [OSTI]

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  20. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J

    2010-01-01

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.