National Library of Energy BETA

Sample records for boiling nuclear superheater

  1. 2010 Inspection and Status Report for the Boiling Nuclear Superheater...

    Office of Legacy Management (LM)

    Annual Inspection - Boiling Nuclear Superheat (BONUS) Site, Rincn, Puerto Rico October 2013 Page 1 2013 Inspection and Status Report for the Former Boiling Nuclear Superheater...

  2. DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR

    DOE Patents [OSTI]

    Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.

    1962-08-14

    A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)

  3. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  4. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    SciTech Connect (OSTI)

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.

  5. Microsoft Word - TR07-27.doc

    Office of Legacy Management (LM)

    Boiling Nuclear Superheat (BONUS), Site, Rincn, Puerto Rico July 2010 Page 1 2010 Inspection and Status Report for the Former Boiling Nuclear Superheater (BONUS) Reactor...

  6. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised.

  7. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  8. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect (OSTI)

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this works calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the CIPS Validation Data Plan at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energys Consortium for Advanced Simulation of LWRs programs VUQ Focus Area.

  9. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    SciTech Connect (OSTI)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

  10. Unusual superheater tube wastage associated with carburization

    SciTech Connect (OSTI)

    Lopez-Lopez, D.; Wong-Noreno, A. ); Martinez, L. . Programa de Corrosion del Golfo de Mexico)

    1994-12-01

    The effects of operational power changes on the corrosion of ASTM A 213 type 321H (UNS S32109) stainless steel tubes in a steam superheater were studied. The fuel oil consumed in the plant is high in sulfur, vanadium, and asphalt content. After 107,000 hours of service, the tubes were seriously corroded and developed cracking of the oxide layer. The cracking was associated with frequent temperature changes. Bursts of carbon coke and soot particles deposited on tube surfaces and introduced a carburization process in the steel matrix. Carbon-rich deposits formed in the grain boundaries of the austenitic metal matrix. A carburization-corrosion process caused the intergranular wastage of the steel near the exposed surfaces.

  11. EBR-II Superheater Duplex Tube Examination

    SciTech Connect (OSTI)

    Daniel M. Wachs; Dennis D. Keiser; Douglas L. Porter; Naoyuki Kisohara

    2008-12-01

    After 30 years of operation, the Experimental Breeder Reactor II (EBR-II) Superheater 710 at Argonne National Laboratory-West (now Idaho National Laboratory) was decommissioned. As part of its post-service examination, four duplex tube sections were removed and Charpy impact testing was performed to characterize the crack arresting ability of nickel-bonded tube interfaces. Scanning electron microscopy (SEM) examination was also performed to characterize and identify changes in bond material microstructure. From room temperature to 400 degrees C, all samples demonstrated ductility and crack-stopping ability similar to that exhibited by beginning-of-life samples. However, at low temperature (-5 degrees C), samples removed from the lower region of the superheater (near the sodium inlet) failed while those from the upper region (near the sodium outlet) did not. SEM analysis revealed that all the tube-tube interfaces showed evidence of iron diffusion into the nickel braze, which resulted in the formation of a multiphase diffusion structure. Yet, significant void formation was only observed in the bond layer of the tubes removed from the lower region. This may be due to a change in the crystal microstructure of one of the phases within the bond layer that occurs in the 350 to 450 degrees C temperature range, which results in a lower density and the formation of porosity. Apparently, only the samples from the higher temperature region were exposed to this transition temperature, and the resulting large voids that developed acted as stress concentrators that led to low-temperature embrittlement and failure of the Charpy impact specimens.

  12. Validation Data Plan Implementation: Subcooled Flow Boiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Validation Data Plan," Idaho National Laboratory, Tech. rep. ... in nuclear reactor safety," in NURETH-15, 2013; Also, ... and V.K. Dhir, Eds., Handbook of phase change - Boiling ...

  13. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    SciTech Connect (OSTI)

    Sharp, William

    2011-12-01

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superheater tubes to raise their surface temperature above the dew point temperature of alkali chlorides. These design changes offer advantages but introduce other challenges. For example, operating with superheater temperatures above the dew point of alkali chlorides could require the use of creep-resistant tube alloys and doesn't eliminate chloride corrosion. Improved test methods that can be applied within this project include automated dimensional metrology to make a statistical analysis of depth of penetration and corrosion product thickness, and simultaneous thermal analysis measurements to quantify the melting of complex ashes and avoid the unreliability of the standard ash fusion test. Other important developments in testing include the installation of individually-temperature-controlled superheater loops for corrosion testing in operating boilers and temperature gradient testing.

  14. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOE Patents [OSTI]

    Moore, Robert; Pickard, Paul S.; Parma, Jr., Edward J.; Vernon, Milton E.; Gelbard, Fred; Lenard, Roger X.

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  15. Life assessment of superheater/reheater tubes in fossil boilers

    SciTech Connect (OSTI)

    Viswanathan, R.; Gehl, S.; Paterson, S.R.; Grunloh, H.

    1995-08-01

    Creep rupture failure of superheater(SH)/-reheater(RH) tubes is a major cause of forced outages of power boilers. A methodology developed recently by EPRI researchers has helped utilities make more informed run/replace decisions for tubes by judiciously combining calculational, nondestructive and destructive evaluations. In this methodology, the tubes/tube assemblies at risk are identified by ultrasonically measuring the thickest steamside oxide scale and thinnest wall thickness in the tubes. The remaining life of each tube/tube assemblies is predicted using a computer code known as TUBELIFE, thus achieving a further level of focus on the tubes/assemblies in the highest risk category. Sacrificial tube samples are then removed from the select locations and subjected to laboratory metallurgical evaluation and isostress rupture testing to refine the remaining life estimates. Research has further refined this methodology by validating the ultrasonic technique for scale measurement, identifying the appropriate stress formula and oxide growth laws and evaluating the limitations of creep damage summation rules and isostress rupture test procedures. This paper provides an overview of the research in the field, and establish a road map for assessing the remaining life of SH/RH tubes.

  16. Life assessment of superheater/reheater tubes in fossil boilers

    SciTech Connect (OSTI)

    Viswanathan, R.; Gehl, S. ); Paterson, S.R. ); Grunloh, H. )

    1994-02-01

    Creep rupture failure of superheater (SH)/reheater (RH) tubes is a major cause of forced outages of power boilers. A methodology developed recently by EPRI and its contractors has helped utilities make more informed run/replace decisions for tubes by judiciously combining calculational, nondestructive, and destructive evaluations. In this methodology, the tubes/tube assemblies at risk are identified by ultrasonically measuring the thickest steamside oxide scale and thinnest wall thickness in the tubes. The remaining life of each tube/tube assembly is predicted using a computer code known as TUBELIFE, thus achieving a further level of focus on the tubes/assemblies in the highest risk'' category. Sacrificial tube samples are then removed from the select locations and subjected to laboratory metallurgical evaluation and isostress rupture testing to refine the remaining life estimates. Research has further refined this methodology by validating the ultrasonic technique for scale measurement, identifying the appropriate stress formula and oxide growths laws and evaluating the limitations of creep damage summation rules and isostress rupture test procedures. This paper provides an overview of the research in the field, and establishes a road map for assessing the remaining life of SH/RH tubes.

  17. DOE - Office of Legacy Management -- Bonus

    Office of Legacy Management (LM)

    Puerto Rico Boiling Nuclear Superheater (BONUS), Puerto Rico, Decommissioned Reactor Site Key Documents and Links All documents are Adobe Acrobat files. pdficon Key Documents Fact...

  18. BONUS, Puerto Rico, Decommissioned Reactor Site Fact Sheet

    Office of Legacy Management (LM)

    information about the Defense Decontamination and Decommissioning Program Boiling Nuclear Superheater (BONUS) reactor located northwest of Rincn, Puerto Rico. The site is...

  19. EA-1394: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Authorizing the Puerto Rico Electric Power Authority (PREPA) to allow Public Access to the Boiling Nuclear Superheat (BONUS) Reactor Building, Ricon, Puerto Rico

  20. MEMO TO:

    Office of Legacy Management (LM)

    21 September 2011 To: Madeline Ramos, Puerto Rico Electric Power Authority (PREPA) Copy: Boiling Nuclear Superheat (BONUS) File and Gunseli Shareef, URS (Program Manager) From:...

  1. DOE - Office of Legacy Management -- Bonus

    Office of Legacy Management (LM)

    of the DOE Defense Decontamination and Decommissioning (D&D) Program, the Office of Legacy Management manages the Boiling Nuclear Superheater (BONUS) Decommissioned Reactor Site...

  2. MANAGING OXIDE SCALE EXFOLIATION IN BOILERS WITH TP347H SUPERHEATER TUBES

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wright, Ian G.; Shingledecker, John P.; Tortorelli, Peter F

    2014-01-01

    A model based on a concept of fraction of exfoliated area as a function of oxide scale strain energy was developed to predict the extent of exfoliation of steam-side scale from boiler tube superheater loops. As compared with the Armitt diagram, which can be used to predict when scale damage and exfoliation would be likely to occur, a fraction of exfoliated area approach provides an estimation of mass of scale released and the fraction of tube likely to be blocked by the exfoliation. This paper show results for the extent of blockage expected in a single bend of a superheater loop was predicted as a function of operating time, bend geometry, and outlet steam temperature under realistic service conditions that include outages. The deposits of exfoliated scale were assumed to be distributed horizontally the tubes bends. Three types of bends were considered: regular bends, short bends, and hairpin bends. The progressive increase in steam and tube temperatures along a single loop of superheater tubing and the ensuing variation of oxide scale thickness are considered. Numerical simulation results for a superheater loop made of TP347H austenitic steel indicated that tube blockage fractions larger than 50% are likely to occur within the first two years of boiler operation (with regularly scheduled outages) for outlet tube temperatures of 540-570oC, which is consistent with practical experience. Higher blockage fractions were predicted for tubes with short bends and hairpin bends than for tubes with regular bends, of length that are larger than five internal tube diameters. Finally, the blockage model presented can be used with some confidence to devise operating schedules for managing the consequences of oxide scale exfoliation based on projections of time to some critical blockage fraction for specific boiler operating conditions.

  3. EIA - State Nuclear Profiles

    Gasoline and Diesel Fuel Update (EIA)

    85.5 BWR 1211969 492029 615 4,601 85.5 Data for 2010 BWR Boiling Water Reactor. ... The nuclear generating unit is a General Electric Type 2 boiling water reactor. ...

  4. Superheater corrosion in a boiler fired with refuse-derived fuel

    SciTech Connect (OSTI)

    Blough, J.L.; Stanko, G.J.; Bakker, W.T.; Steinbeck, T.

    1995-12-31

    The environment in the superheater of a boiler firing refuse-derived fuel (RDF) is very aggressive. The high wastage rate for the standard T-22 material necessitated a materials testing program. Simples of Types 304H, HR3C, T-22 chromized, 825 and 625 were assembled into tubular test sections and welded into the superheater tubing. After 1,180 hours the test sections were evaluated and the wastage rates calculated for each material. The chlorides contained in the RDF are believed to be the primary corrodent. The chlorine may be interacting with the metal samples as HCl, a low-melting-point eutectic or a combination of these. Of the six materials tested, Alloy 625 exhibited the best resistance--substantially better than the next-best Type 304. Alloy 825 and HR3C corroded approximately 1.5 times the rate of Type 304. The chromized layer on T-22 showed no resistance to the environment and was consumed in large areas.

  5. Liquid ash corrosion, remaining life estimation and superheater/reheater replacement strategy in coal fired boilers

    SciTech Connect (OSTI)

    Alice, J.A.; Janiszewski, J.A.

    1985-01-01

    The liquid ash corrosion of superheater and reheater tubing in coal fired boilers is commonly accepted to be caused by the action of liquid sodium and potassium iron trisulfates Na/sub 3/Fe(SO/sub 4/) and K/sub 3/Fe(SO/sub 4/)/sub 3/. These species melt at temperatures between 1030/sup 0/F and 1160/sup 0/F (555-625/sup 0/C) depending on the relative amounts of sodium and potassium. Rapid tube wastage begins when the tube metal temperature reaches the trisulfate melting point. The key to improved availability in fossil boilers is to identify and replace, during a planned outage, tubes which are likely to fail before the next planned outage. The authors have developed a computerized method for estimating the remaining life of superheater/reheater tubes based on accelerated liquid ash corrosion. The scheme of analysis employs the following logic: (1) measurement of tube wastage from several removed samples, (2) estimation of tube metal temperature from I.D. scale thickness and thermocouple data, (3) estimation of trisulfate melting point from chemical analysis of the ash deposit and (4) using the computer model to calculate remaining life as a function of tube wastage rate metal temperature. The practical application of this strategy is presented for a coal fired boiler in the GPU system.

  6. A creep damage estimation method for in-service fossil fuel boiler superheater tubes

    SciTech Connect (OSTI)

    Nogata, F. . Dept. of Mechanical Engineering); Takahashi, H. . Research Inst. of Fracture Technology)

    1995-02-01

    Because mechanical properties of structural materials for high-temperature use, such as boiler tubing, degrade during long-term service, it is essential to detect toughness degradation by means of a nondestructive and simple field test technique. A grain boundary etching technique is developed to detect material degradation, and assess creep strength and notch toughness. An etching test using a picric acid solution with a wetting agent or using 20 percent HNO[sub 3] with alcoholic solution was found to have great potential for the nondestructive estimation of grain boundary embrittlement caused by carbide and sigma precipitation in SUS stainless steel. The feasibility of this estimation procedure was determined showing the relationships between Charpy impact energy (CVN) and grooving width (W[sub GS]), and creep damage ratio ([Phi]) and W[sub GS]. Superheater tubes of fossil fuel boiler were tested on site to demonstrate the validity of this technique.

  7. Re-evaluation of superheat conditions postulated in NRC Information Notice 84-90

    SciTech Connect (OSTI)

    Alsammarae, A.; Kruger, D.; Beutel, D.; Spisak, M.

    1994-08-01

    Information Notice 84-90, ''Main Steam Line Break Effect on Environmental Qualification of Equipment,'' describes a potential problem regarding existing plant analyses and Equipment Qualification (EQ) related to a postulated Main Steam Line Break (MSLB) with releases of superheated stream. This notice states that certain methodologies for computing mass and energy releases for a postulated MSLB did not account for heat transfer from the steam generator tube bundles if they were uncovered. Due to this potential change in the original environmental analysis, the EQ of various components may not consider the thermal environment which could result from superheated steam. Subsequent technical assessments may determine that the existing qualification basis for equipment/components does not envelop the postulated superheat condition. Corrective actions need to be taken to demonstrate that the affected equipment is qualified.

  8. Formation of deposits on the surfaces of superheaters and economisers of MSW incinerator plants

    SciTech Connect (OSTI)

    Reichelt, J.; Pfrang-Stotz, G.; Bergfeldt, B.; Seifert, H.; Knapp, P.

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Composition of deposits depends on the temperature profile and boiler geometry. Black-Right-Pointing-Pointer The mineralogy of deposits defines critical and uncritical zones in the boiler. Black-Right-Pointing-Pointer Critical zones in boilers can be characterised by a classification systems. Black-Right-Pointing-Pointer Specific measures to enhance energy efficiency can be defined. - Abstract: Mineralogical and chemical investigations of deposits from superheaters and economisers from a MSWI plant in Mannheim, Germany, lead to a classification system which provides information about the most critical parameters leading to fouling and corrosion. With the help of this classification system parameters like the geometry of boilers and the waste input can be changed in order to prolong run times between revisions and enhance energy efficiency of MSWI plants.

  9. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    SciTech Connect (OSTI)

    Blough, J.L.

    1996-08-01

    In Phase 1 of this project, a variety of developmental and commercial tubing alloys and claddings was exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy are being exposed for 4,000, 12,000, and 16,000 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after approximately 4,400 hours of exposure.

  10. Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report

    SciTech Connect (OSTI)

    Janes, J.

    1984-06-01

    This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

  11. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings. Final report

    SciTech Connect (OSTI)

    Van Weele, S.

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  12. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings - Phase II

    SciTech Connect (OSTI)

    Blough, J.L.; Krawchuk, M.T.; Van Weele, S.F.

    1995-08-01

    A number of developmental and commercial tubing alloys and claddings have previously been exposed in Phase I to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. This program is exposing samples of TP 347, RA-85H, HR-3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF-709, 690 clad, and 671 clad, which showed good corrosion resistance from Phase 1, to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and are being controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The exposure will continue for 4000, 12,000, and 16,000 hours of operation. After the three exposure times, the samples will be metallurgically examined to determine the wastage rates and mode of attack. The probes were commissioned November 16, 1994. The temperatures are being recorded every 15 minutes, and the weighted average temperature calculated for each sample. Each of the alloys is being exposed to a temperature in each of two temperature bands-1150 to 1260{degrees}F and 1260 to 1325{degrees}F. After 2000 hours of exposure, one of the corrosion probes was cleaned and the wall thicknesses were ultrasonically measured. The alloy performance from the field probes will be discussed.

  13. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings

    SciTech Connect (OSTI)

    Van Weele, S. )

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  14. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    SciTech Connect (OSTI)

    Blough, J.L.; Seitz, W.W.; Girshik, A.

    1998-06-01

    In Phase 1 of this project, laboratory experiments were performed on a variety of developmental and commercial tubing alloys and claddings by exposing them to fireside corrosion tests which simulated a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, RA253MA, Fe{sub 3}Al + 5Cr, Ta-modified 310, NF 709, 690 clad, 671 clad, and 800HT for up to approximately 16,000 hours to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy were exposed for 4,483, 11,348, and 15,883 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after the full 15,883 hours of exposure. A previous topical report has been issued for the 4,483 hours of exposure.

  15. Laboratory corrosion tests for simulating fireside wastage of superheater materials in waste incinerators

    SciTech Connect (OSTI)

    Otsuka, N.; Kawahara, Y.; Fukuda, Y.; Hosoda, T.

    1999-11-01

    Laboratory corrosion tests were performed to clarify the effects of relative amounts of fused salts in tube deposits on corrosion rates of superheater materials in WTE plants. All test exposures were at 550 C and of 100 hour duration. The nine synthetic ashes used as corrodents consisted of mixtures of chlorides, sulfates and oxides. The test materials were alloy steel T22, stainless steels TP347H, TP310HCbN, and alloys HR11N and 625. The gas atmosphere consisted of 500 to 3000 ppm HCl-30ppm SO{sub 2}-10%O{sub 2}-10%CO{sub 2}-20%H{sub 2}O-bal.N{sub 2}. Generally, the relative amount of fused salts in non-fused ash constituents at 550 C increased with increasing the chlorine content of the ashes. The corrosion rate of T22 steel did not depend directly on ash chlorine content, but for ashes of 7.7 wt.%Cl, the corrosion rate depended on the calculated amount of fused salt at 500 C. The corrosion rates of TP347H steel and alloy 625 were maximum for ashes of 6--8 wt%Cl. For ashes of 7.7 wt.%Cl, the corrosion rates of T22 steel, stainless steels, and alloys increased with ashes having higher amounts of fused salts. Increased HCl content of the gas caused higher corrosion of the stainless steels and high-nickel alloys, but there was no clear corrosion-exacerbating effect with T22 steel.

  16. CHIMNEY FOR BOILING WATER REACTOR

    DOE Patents [OSTI]

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  17. High-temperature fireside corrosion monitoring in the superheater section of a pulverized-coal-fired boiler. Final report

    SciTech Connect (OSTI)

    Mok, W.Y.; Cox, W.M.

    1992-12-01

    The work described in this report was the first British in-plant application of continuous online electrochemical corrosion monitoring technology in pulverized coal-fired superheater environments. The work was conducted at Drax Power Station, National Power plc, UK. The investigation was to evaluate the relative corrosion performance of stainless steel Alloys 316 and 310. Two electrochemical sensor assemblies fabricated from the test alloys were attached to the end of a coupon exposure probe which was inserted into the superheater section of a 660MW boiler. The probe assemblies were exposed at a nominal temperature of 665{degrees}C (1229{degrees}F) during the trial. two series of short term temperature scanning tests were carried out. Alloy 310 performed comparatively better than Alloy 316. Minimal corrosion loss was sustained by Alloy 310 whilst a characteristic wastage flat was observed on Alloy 316. It was shown that variations in boiler operation could affect the minute-to-minute corrosion behavior of the test materials. The results of the brief temperature scan program indicated a trend of increasing corrosion with exposure temperature. No evidence was observed of the ``bell-shaped`` curve behavior reported in laboratory studies of molten salt corrosion. Metallographic examination of the sensors indicated that only small and discrete areas of internal sulfur enrichment beneath the surface scale. This is untypical of the morphology of sulfur enriched scale found in molten salt corrosion systems. The corrosion processes were predominately in the form of oxidation/sulfidation. The formation of a wastage flat was postulated to have been caused by an electrochemical mechanism similar to that of flow assisted corrosion in aqueous electrolytes. These results confirmed that continuous on-line electrochemical instrumentation could be used to investigate, monitor and characterize high temperature oxidation in power generation boiler superheaters.

  18. High-temperature fireside corrosion monitoring in the superheater section of a pulverized-coal-fired boiler

    SciTech Connect (OSTI)

    Mok, W.Y.; Cox, W.M. )

    1992-12-01

    The work described in this report was the first British in-plant application of continuous online electrochemical corrosion monitoring technology in pulverized coal-fired superheater environments. The work was conducted at Drax Power Station, National Power plc, UK. The investigation was to evaluate the relative corrosion performance of stainless steel Alloys 316 and 310. Two electrochemical sensor assemblies fabricated from the test alloys were attached to the end of a coupon exposure probe which was inserted into the superheater section of a 660MW boiler. The probe assemblies were exposed at a nominal temperature of 665[degrees]C (1229[degrees]F) during the trial. two series of short term temperature scanning tests were carried out. Alloy 310 performed comparatively better than Alloy 316. Minimal corrosion loss was sustained by Alloy 310 whilst a characteristic wastage flat was observed on Alloy 316. It was shown that variations in boiler operation could affect the minute-to-minute corrosion behavior of the test materials. The results of the brief temperature scan program indicated a trend of increasing corrosion with exposure temperature. No evidence was observed of the bell-shaped'' curve behavior reported in laboratory studies of molten salt corrosion. Metallographic examination of the sensors indicated that only small and discrete areas of internal sulfur enrichment beneath the surface scale. This is untypical of the morphology of sulfur enriched scale found in molten salt corrosion systems. The corrosion processes were predominately in the form of oxidation/sulfidation. The formation of a wastage flat was postulated to have been caused by an electrochemical mechanism similar to that of flow assisted corrosion in aqueous electrolytes. These results confirmed that continuous on-line electrochemical instrumentation could be used to investigate, monitor and characterize high temperature oxidation in power generation boiler superheaters.

  19. STEAM-SIDE OXIDE SCALE EXFOLIATION BEHAVIOR IN SUPERHEATERS AND REHEATERS

    SciTech Connect (OSTI)

    Sabau, Adrian S; Shingledecker, John P.; Wright, Ian G

    2011-01-01

    Advances in materials for power plants include not only new materials with higher-temperature capabilities, but also the use of current materials at increasingly higher temperatures. This latter activity builds on extensive experience of the performance of the various alloys, and provides a basis for identifying changes in alloy behavior with increasing temperature as well as understanding the factors that ultimately determine the maximum use temperatures of the different alloy classes. This paper presents results from an effort to model the exfoliation processes of steam-side oxide scales in a manner that describes as accurately as possible the evolution of strains in oxides growing inside small-diameter tubes subjected to large thermal gradients and to thermal transients typical of normal steam boiler operation. One way of portraying the results of such calculations is by plotting the evolving strains in a given oxide scale on an Exfoliation Diagram (of the type pioneered by Manning et al. of the British Central Electricity Research Laboratory) to determine the earliest time at which the trajectory of these strains intersects a criterion for scale failure. Understanding of how such strain trajectories differ among different alloys and are affected by the major variables associated with boiler operation has the potential to suggest boiler operating strategies to manage scale exfoliation, as well as to highlight the mode of scale failure and the limitations of each alloy. Preliminary results are presented of the strain trajectories calculated for alloys T22, T91, and TP347 subjected to the conditions experienced by superheaters under assumed boiler operating scenarios. For all three alloys the earliest predicted scale failures were associated with the increased strains developed during a boiler shut-down event; indeed, in the cases considered it appeared unlikely that scale failure would occur in any practically meaningful time due to strains accumulated during operation in a load-following mode in the absence of a shut down. The accuracy of the algorithms used for the kinetics of oxide growth appeared to be a very important consideration, especially for alloy TP347 for which large effects on oxide growth rate are known to occur with changes in alloy grain size and surface cold work.

  20. Experimental Investigation of Subcooled Flow Boiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Experimental Investigation of Subcooled Flow Boiling Yassin A. Hassan TAMU September 30, 2013 CASL-8-2013-0214-000 TEXAS A&M UNIVERSITY Experimental Investigation of Subcooled Flow Boiling Milestone Report PI: Yassin A. Hassan 9/30/2013 CASL-U-2013-0214-000 Contents Introduction ....................................................................................................................................................... 5 Experimental Setup

  1. Self-Sustaining Thorium Boiling Water Reactors (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Self-Sustaining Thorium Boiling Water Reactors Citation Details In-Document Search Title: Self-Sustaining Thorium Boiling Water Reactors The primary objectives of this project are ...

  2. PACCAR CRADA: Experimental Investigation in Coolant Boiling in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and External Aerodynamics- Cummins

  3. CRADA with PACCAR Experimental Investigation in Coolant Boiling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Circular Tube Efficient Cooling in Engines with Nucleated Boiling Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and External Aerodynamics- Cummins

  4. Modeling acid-gas generation from boiling chloride brines (Journal...

    Office of Scientific and Technical Information (OSTI)

    Modeling acid-gas generation from boiling chloride brines Citation Details In-Document Search Title: Modeling acid-gas generation from boiling chloride brines You are accessing ...

  5. Modeling acid-gas generation from boiling chloride brines (Journal...

    Office of Scientific and Technical Information (OSTI)

    Modeling acid-gas generation from boiling chloride brines Citation Details In-Document Search Title: Modeling acid-gas generation from boiling chloride brines This study ...

  6. Great Boiling Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and...

  7. Preliminary design study of small long life boiling water reactor...

    Office of Scientific and Technical Information (OSTI)

    boiling water reactor (BWR) with tight lattice thorium nitride fuel Citation Details In-Document Search Title: Preliminary design study of small long life boiling water reactor ...

  8. Enhancement of Heat Transfer with Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings

    SciTech Connect (OSTI)

    Thiagarajan, S. J.; Wang, W.; Yang, R.; Narumanchi, S.; King, C.

    2010-09-01

    The DOE National Renewable Energy Laboratory (NREL) is leading a national effort to develop next-generation cooling technologies for hybrid vehicle electronics. The goal is to reduce the size, weight, and cost of power electronic modules that convert direct current from batteries to alternating current for the motor, and vice versa. Aggressive thermal management techniques help to increase power density and reduce weight and volume, while keeping chip temperatures within acceptable limits. The viability of aggressive cooling schemes such as spray and jet impingement in conjunction with enhanced surfaces is being explored. Here, we present results from a series of experiments with pool and spray boiling on enhanced surfaces, such as a microporous layer of copper and copper nanowires, using HFE-7100 as the working fluid. Spray impingement on the microporous coated surface showed an enhancement of 100%-300% in the heat transfer coefficient at a given wall superheat with respect to spray impingement on a plain surface under similar operating conditions. Critical heat flux also increased by 7%-20%, depending on flow rates.

  9. Numerical Simulations of Boiling Jet Impingement Cooling in Power Electronics

    SciTech Connect (OSTI)

    Narumanchi, S.; Troshko, A.; Hassani, V.; Bharathan, D.

    2006-12-01

    This paper explores turbulent boiling jet impingement for cooling power electronic components in hybrid electric vehicles.

  10. SUPERHEATING IN A BOILING WATER REACTOR

    DOE Patents [OSTI]

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  11. Subcooled Flow Boiling Heat Transfer to Water and Ethylene Glycol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subcooled Flow Boiling Heat Transfer to Water and Ethylene GlycolWater Mixtures in a Bottom-Heated Tube Title Subcooled Flow Boiling Heat Transfer to Water and Ethylene Glycol...

  12. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    SciTech Connect (OSTI)

    Huang, Jun-Lin; Zhou, Ke-Yi Xu, Jian-Qun; Wang, Xin-Meng; Tu, Yi-You

    2014-07-28

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  13. PNNL Enhanced Pool-Boiling Heat Transfer Using Nanostructured Surfaces

    ScienceCinema (OSTI)

    None

    2012-12-31

    Close-up video of boiling taking place on a nanostructured surface in a controlled laboratory experiment.

  14. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect (OSTI)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  15. Pebble Bed Boiling Water Reactor Concept With Superheated Steam

    SciTech Connect (OSTI)

    Tsiklauri, G.; Newman, D.; Meriwether, G.; Korolev, V. [Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352 (United States)

    2002-07-01

    An Advanced Nuclear Reactor concept is presented which extends Boiling Water Reactor technology with micro-fuel elements (MFE) and produces superheated steam. A nuclear plant with MFE is highly efficient and safe, due to ceramic-clad nuclear fuel. Water is used as both moderator and coolant. The fuel consists of spheres of about 1.5 mm diameter of UO{sub 2} with several external coatings of different carbonaceous materials. The outer coating of the particles is SiC, manufactured with chemical vapor disposition (CVD) technology. Endurance of the integrity of the SiC coating in water, air and steam has been demonstrated experimentally in Germany, Russia and Japan. This paper describes a result of a preliminary design and analysis of 3750 MWt (1500 MWe) plant with standard pressure of 16 MPa, which is widely achieved in the vessel of pressurized-water type reactors. The superheated steam outlet temperature of 550 deg. C elevates the steam cycle to high thermal efficiency of 42%. (authors)

  16. Nucleate boiling pressure drop in an annulus: Book 7

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists solely of tables of temperature measurements; minima, maxima, averages and standard deviations being measured.

  17. Nucleate boiling pressure drop in an annulus: Book 6

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of a summary of temperature measurements to include recorded minima, maxima, averages and standard deviations.

  18. CRADA with PACCAR Experimental Investigation in Coolant Boiling in a

    Broader source: Energy.gov (indexed) [DOE]

    Half-Heated Circular Tube | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss057_yu_2011_p.pdf More Documents & Publications PACCAR CRADA: Experimental Investigation in Coolant Boiling in a Half-Heated Circular Tube Efficient Cooling in Engines with Nucleated Boiling Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and External Aerodynamics- Cummins

  19. Enhanced Pool-Boiling Heat Transfer Using Nanostructured Surfaces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    creates optimal surface wettability characteristics that allow better capillary flow of water on the liquid boiling surfaces often used to cool electronics. the dense...

  20. Geothermal Technology Breakthrough in Alaska: Harvesting Heat below Boiling Temperatures

    Broader source: Energy.gov [DOE]

    The Energy Department is supporting geothermal exploration at lower temperatures, thanks to a technology breakthrough that allows geothermal energy to be produced at temperatures below the boiling...

  1. Conversion of direct process high-boiling residue to monosilanes

    DOE Patents [OSTI]

    Brinson, Jonathan Ashley (Vale of Glamorgan, GB); Crum, Bruce Robert (Madison, IN); Jarvis, Jr., Robert Frank (Midland, MI)

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  2. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  3. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  4. AECU-4439 PHYSICS AND MATHEMATICS HYDRODYNAMIC ASPECTS OF BOILING...

    Office of Scientific and Technical Information (OSTI)

    ... The change from one regime t o another is accompanied by narked changes i n the ... CHAPTER I A RWIEW OF NUCLIUTE BOILING The first systematic investigation of nucleate ...

  5. Italy Nuclear Security Summit: Fact Sheet | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nuclear Security Summit: Fact Sheet March 26, 2012 Between the 1960s and mid-1980s, Italy had an ambitious nuclear power research program which included heavy water, boiling water, light water, and fast reactors. In 1979, Italy signed the NPT which reaffirmed its commitment to be nuclear weapons free. In 1987, through a referendum, Italy announced the end of its nuclear energy program, and the Società Gestione Impianti Nucleari (SOGIN) was created in 2001 to decommission and

  6. Correlations estimate volume distilled using gravity, boiling point

    SciTech Connect (OSTI)

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  7. Efficient Cooling in Engines with Nucleated Boiling | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_14_yu.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling CRADA with PACCAR Experimental Investigation in Coolant Boiling in a Half-Heated Circular Tube Vehicle Technologies Office Merit Review 2015: Thermal Control of

  8. NUCLEAR POWER PLANT

    DOE Patents [OSTI]

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  9. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    SciTech Connect (OSTI)

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm lithium metaborate solution respectively at the saturation temperature for 1000 psi (68.9 bar) coolant pressure. Boiling tests also revealed the formation of fine deposits of boron and lithium on the cladding surface which degraded the heat transfer rates. The boron and lithium metaborate precipitates after a 5 day test at 5000 ppm concentration and 1000 psi (68.9 bar) operating pressure reduced the heat transfer rate 21% and 30%, respectively for the two solutions.

  10. Progress in the Development of Compressible, Multiphase Flow Modeling Capability for Nuclear Reactor Flow Applications

    SciTech Connect (OSTI)

    R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta

    2008-10-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.

  11. CASL-U-2015-0040-000 Initial Boiling Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    40-000 Initial Boiling Water Reactor (BWR) Input Specifications Scott Palmtag Core Physics February 28, 2015 Initial Boiling Water Reactor (BWR) Input Specification Consortium for Advanced Simulation of LWRs ii CASL-U-2015-0040-000 REVISION LOG Revision Date Affected Pages Revision Description 0 02/28/2015 All Original Report for L3:PHI.VCS.P10.02 Document pages that are: Export Controlled NO IP/Proprietary/NDA Controlled NO Sensitive Controlled NO Requested Distribution: To: Copy: Initial

  12. Critical heat flux for free convection boiling in thin rectangular channels

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Critical heat flux for free convection boiling in thin rectangular channels Citation Details In-Document Search Title: Critical heat flux for free convection boiling in thin rectangular channels A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in

  13. Acoustic emission feedback control for control of boiling in a microwave oven

    DOE Patents [OSTI]

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  14. COMPOSITION OF VAPORS FROM BOILING NITRIC ACID SOLUTIONS B A

    Office of Scientific and Technical Information (OSTI)

    COMPOSITION OF VAPORS FROM BOILING NITRIC ACID SOLUTIONS B A T T E L L E M E M O R I A L I N S T I T U T E DISCLAIMER This report was prepared as an account of work sponsored by an ...

  15. Statistical modeling support for calibration of a multiphysics model of subcooled boiling flows

    SciTech Connect (OSTI)

    Bui, A. V.; Dinh, N. T.; Nourgaliev, R. R.; Williams, B. J.

    2013-07-01

    Nuclear reactor system analyses rely on multiple complex models which describe the physics of reactor neutronics, thermal hydraulics, structural mechanics, coolant physico-chemistry, etc. Such coupled multiphysics models require extensive calibration and validation before they can be used in practical system safety study and/or design/technology optimization. This paper presents an application of statistical modeling and Bayesian inference in calibrating an example multiphysics model of subcooled boiling flows which is widely used in reactor thermal hydraulic analysis. The presence of complex coupling of physics in such a model together with the large number of model inputs, parameters and multidimensional outputs poses significant challenge to the model calibration method. However, the method proposed in this work is shown to be able to overcome these difficulties while allowing data (observation) uncertainty and model inadequacy to be taken into consideration. (authors)

  16. Experimental investigation on the flow instability behavior of a multi-channel boiling natural circulation loop at low-pressures

    SciTech Connect (OSTI)

    Jain, Vikas; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-09-15

    Natural circulation as a mode of heat removal is being considered as a prominent passive feature in the innovative nuclear reactor designs, particularly in boiling-water-reactors, due to its simplicity and economy. However, boiling natural circulation system poses many challenges to designer due to occurrence of various kinds of instabilities such as excursive instability, density wave oscillations, flow pattern transition instability, geysering and metastable states in parallel channels. This problem assumes greater significance particularly at low-pressures i.e. during startup, where there is great difference in the properties of two phases. In light of this, a parallel channel loop has been designed and installed that has a geometrical resemblance to the pressure-tube-type boiling-water-reactor, to investigate into the behavior of boiling natural circulation. The loop comprises of four identical parallel channels connected between two common plenums i.e. steam drum and header. The recirculation path is provided by a single downcomer connected between steam drum and header. Experiments have been conducted over a wide range of power and pressures (1-10 bar). Two distinct unstable zones are observed with respect to power i.e. corresponding to low power (Type-I) and high power (Type-II) with a stable zone at intermediate powers. The nature of oscillations in terms of their amplitude and frequency and their evolution for Type-I and Type-II instabilities are studied with respect to the effect of heater power and pressure. This paper discusses the evolution of unstable and stable behavior along with the nature of flow oscillation in the channels and the effect of pressure on it. (author)

  17. Efficiency of a solar collector with internal boiling

    SciTech Connect (OSTI)

    Neeper, D.A.

    1986-01-01

    The behavior of a solar collector with a boiling fluid is analyzed to provide a simple algebraic model for future systems simulations, and to provide guidance for testing. The efficiency equation is developed in a form linear in the difference between inlet and saturation (boiling) temperatures, whereas the expression upon which ASHRAE Standard 109P is based utilizes the difference between inlet and ambient temperatures. The coefficient of the revised linear term is a weak function of collector parameters, weather, and subcooling of the working fluid. For a glazed flat-plate collector with metal absorber, the coefficient is effectively constant. Therefore, testing at multiple values of insolation and subcooling, as specified by ASHRAE 109P, should not be necessary for most collectors. The influences of collector properties and operating conditions on efficiency are examined.

  18. Erosion enhanced corrosion in superheaters

    SciTech Connect (OSTI)

    Bakker, W.T.; Mitra, S.M.

    1994-12-31

    Abnormal high metal wastage rates were discovered in the reheater of a boiler at the Williams Station on South Carolina Electric and Gas Company, which had been converted from oil to coal firing in 1983. Originally, liquid coal ash corrosion was suspected as the cause of the accelerated corrosion. To confirm this, test spools of austenitic alloys with varying chromium content were installed in the most corrosion prone areas and exposed for 17,431 hrs. It was found that the metal loss rate, ranged from 15--21 mils/yr was independent of the chromium content of the alloy. Microscopic examination indicated that the high corrosion rate was probably due to alternating oxidizing and reducing conditions, which caused the formation of iron and sulfur rich scales, enhanced by fly ash erosion in areas of high gas velocity.

  19. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  20. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  1. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  2. COMPOSITION OF VAPORS FROM BOILING NITRIC ACID SOLUTIONS B A

    Office of Scientific and Technical Information (OSTI)

    COMPOSITION OF VAPORS FROM BOILING NITRIC ACID SOLUTIONS B A T T E L L E M E M O R I A L I N S T I T U T E DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

  3. Union job fight boiling at DOE cleanup sites

    SciTech Connect (OSTI)

    Setzer, S.W.

    1993-11-15

    The US DOE is facing a growing jurisdictional dispute over which unions will perform the majority of clean-up work at its facilities. Unions affiliated with the AFL-CIO Metal Trades Council representing operations employees at the sites believe they have a fundamental right to work. Unions in the AFL-CIO's Building and Construction Trades Dept. insist that they have a clear mandate under federal labor law and the Davis-Bacon Act. The issue has heated up in recent weeks at the policy level and is boiling in a contentious dispute at DOE's Fernald site in Ohio.

  4. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  5. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  6. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  7. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  8. Design of a boiling water reactor equilibrium core using thorium-uranium fuel

    SciTech Connect (OSTI)

    Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G.; Martin-del-Campo, C.

    2004-10-06

    In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam isolation valves closure and loss of feed water. The results of these transients are similar to those obtained with the traditional UO2 nuclear fuel.

  9. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    DOE Patents [OSTI]

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  10. Feasibility study on the thorium fueled boiling water breeder reactor

    SciTech Connect (OSTI)

    PetrusTakaki, N.

    2012-07-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  11. Analysis of scrams and forced outages at boiling water reactors

    SciTech Connect (OSTI)

    Earle, R. T.; Sullivan, W. P.; Miller, K. R.; Schwegman, W. J.

    1980-07-01

    This report documents the results of a study of scrams and forced outages at General Electric Boiling Water Reactors (BWRs) operating in the United States. This study was conducted for Sandia Laboratories under a Light Water Reactor Safety Program which it manages for the United States Department of Energy. Operating plant data were used to identify the causes of scrams and forced outages. Causes of scrams and forced outages have been summarized as a function of operating plant and plant age and also ranked according to the number of events per year, outage time per year, and outage time per event. From this ranking, identified potential improvement opportunities were evaluated to determine the associated benefits and impact on plant availability.

  12. Improvements of fuel failure detection in boiling water reactors using helium measurements

    SciTech Connect (OSTI)

    Larsson, I.; Sihver, L.; Grundin, A.; Helmersson, J. O.

    2012-07-01

    To certify a continuous and safe operation of a boiling water reactor, careful surveillance of fuel integrity is of high importance. The detection of fuel failures can be performed by off-line gamma spectroscopy of off-gas samples and/or by on-line nuclide specific monitoring of gamma emitting noble gases. To establish the location of a leaking fuel rod, power suppression testing can be used. The accuracy of power suppression testing is dependent on the information of the delay time and the spreading of the released fission gases through the systems before reaching the sampling point. This paper presents a method to improve the accuracy of power suppression testing by determining the delay time and gas spreading profile. To estimate the delay time and examine the spreading of the gas in case of a fuel failure, helium was injected in the feed water system at Forsmark 3 nuclear power plant. The measurements were performed by using a helium detector system based on a mass spectrometer installed in the off-gas system. The helium detection system and the results of the experiment are presented in this paper. (authors)

  13. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect (OSTI)

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  14. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    SciTech Connect (OSTI)

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  15. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect (OSTI)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  16. Effect of surface roughness and polymeric additive on nucleate pool boiling at subatmospheric pressures

    SciTech Connect (OSTI)

    Tewari, P.K.; Verma, R.K.; Ramani, M.P.S.; Mahajan, S.P.

    1986-09-01

    This investigation pertains to boiling heat transfer from a submerged flat surface at subatmospheric and atmospheric pressures in the presence of hydroxy ethyl cellulose (HEC) as a polymeric additive in small doses. Boiling was carried out in presence of the additive on smooth and rough aluminium surfaces having effective cavity size within the range as predicted by Hsu model and the pressure was kept in the range of 8 - 100 KN/sq.m (abs). Effects of surface roughness, saturation pressure and polymer concentration on boiling heat transfer were studied and the results were compared with Rohsenow's correlation.

  17. Nucleate Boiling Model Liping C, Y. Sung, and V. Kucukboyaci

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Its major applications as designed originally were nuclear power plant loss of coolant accident and other anticipated operational transients. * In its current form, it solves the ...

  18. An experimental study of pool boiling heat transfer in reduced gravity

    SciTech Connect (OSTI)

    Shatto, D.P.; Renzi, K.I.; Peterson, G.P.; Morris, T.K.; Aaron, J.W.

    1996-12-31

    Experiments were performed in which pool boiling of pure water at reduced pressures was observed for behavior of the critical heatflux (CHF) and nucleate boiling heat transfer coefficients in a reduced gravitational environment. The experiments took place while alternating between microgravity and g/g{sub o} = 1.8 during parabolic flights aboard the NASA 930 (KC-135A). Heat transfer data were also obtained at Martian gravity levels (g/g{sub o} = 1/3). Parts of the test chamber were constructed of transparent materials to allow viewing and recording of the various boiling regimes encountered during the experiments. Results indicate that the onset of nucleate boiling occurred at lower heat fluxes in reduced gravity, resulting in higher two-phase heat transfer coefficients for g/g{sub o} < 1 than for g/g{sub o} = 1.8. In addition, the results indicate a significant reduction in the critical heat flux under reduced gravity conditions.

  19. Camera Inspection Arm for Boiling Water Reactors - 13330

    SciTech Connect (OSTI)

    Martin, Scott; Rood, Marc

    2013-07-01

    Boiling Water Reactor (BWR) outage maintenance tasks can be time-consuming and hazardous. Reactor facilities are continuously looking for quicker, safer, and more effective methods of performing routine inspection during these outages. In 2011, S.A. Technology (SAT) was approached by Energy Northwest to provide a remote system capable of increasing efficiencies related to Reactor Pressure Vessel (RPV) internal inspection activities. The specific intent of the system discussed was to inspect recirculation jet pumps in a manner that did not require manual tooling, and could be performed independently of other ongoing inspection activities. In 2012, SAT developed a compact, remote, camera inspection arm to create a safer, more efficient outage environment. This arm incorporates a compact and lightweight design along with the innovative use of bi-stable composite tubes to provide a six-degree of freedom inspection tool capable of reducing dose uptake, reducing crew size, and reducing the overall critical path for jet pump inspections. The prototype camera inspection arm unit is scheduled for final testing in early 2013 in preparation for the Columbia Generating Station refueling outage in the spring of 2013. (authors)

  20. Boiling-Water Reactor internals aging degradation study. Phase 1

    SciTech Connect (OSTI)

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.

  1. Development of 1000 MWe Advanced Boiling Water Reactor

    SciTech Connect (OSTI)

    Kazuo Hisajima; Ken Uchida; Keiji Matsumoto; Koichi Kondo; Shigeki Yokoyama; Takuya Miyagawa [Toshiba Corporation (Japan)

    2006-07-01

    1000 MWe Advanced Boiling Water Reactor has only two main steam lines and six reactor internal pumps, whereas 1350 MWe ABWR has four main steam lines and ten reactor internal pumps. In order to confirm how the differences affect hydrodynamic conditions in the dome and lower plenum of the reactor pressure vessel, fluid analyses have been performed. The results indicate that there is not substantial difference between 1000 MWe ABWR and 1350 MWe ABWR. The primary containment vessel of the ABWR consists of the drywell and suppression chamber. The suppression chamber stores water to suppress pressure increase in the primary containment vessel and to be used as the source of water for the emergency core cooling system following a loss-of-coolant accident. Because the reactor pressure vessel of 1000 MWe ABWR is smaller than that of 1350 MWe ABWR, there is room to reduce the size of the primary containment vessel. It has been confirmed feasible to reduce inner diameter of the primary containment vessel from 29 m of 1350 MWe ABWR to 26.5 m. From an economic viewpoint, a shorter outage that results in higher availability of the plant is preferable. In order to achieve 20-day outage that results in 97% of availability, improvement of the systems for removal of decay heat is introduced that enables to stop all the safety-related decay heat removal systems except at the beginning of an outage. (authors)

  2. Subcooled Boiling Heat Transfer for Cooling of Power Electronics in Hybrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SubcontractingGuidelines.doc&#0; SubcontractingGuidelines.doc&#0; PDF icon SubcontractingGuidelines.doc&#0; More Documents & Publications Guidance of the Department of Energy Subcontracting Program Acquisition Guide Chapter 19 Update Chapter 19 - Small Business Programs Electric Vehicles | Argonne National Laboratory

    Subcooled Boiling Heat Transfer for Cooling of Power Electronics in Hybrid Electric Vehicles Title Subcooled Boiling Heat Transfer for Cooling of Power

  3. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. ); Irvine, T.F., Jr. . Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  4. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A.; Irvine, T.F., Jr.

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  5. nuclear bombs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear bombs

  6. nuclear fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear fusion

  7. nuclear reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear reactors

  8. Method of controlling crystallite size in nuclear-reactor fuels

    DOE Patents [OSTI]

    Lloyd, Milton H.; Collins, Jack L.; Shell, Sam E.

    1985-01-01

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  9. Method of controlling crystallite size in nuclear-reactor fuels

    DOE Patents [OSTI]

    Lloyd, M.H.; Collins, J.L.; Shell, S.E.

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  10. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    SciTech Connect (OSTI)

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff`s review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff`s review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE`s application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design.

  11. Bottom head to shell junction assembly for a boiling water nuclear reactor

    DOE Patents [OSTI]

    Fife, A.B.; Ballas, G.J.

    1998-02-24

    A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening. 5 figs.

  12. Bottom head to shell junction assembly for a boiling water nuclear reactor

    DOE Patents [OSTI]

    Fife, Alex Blair (San Jose, CA); Ballas, Gary J. (San Jose, CA)

    1998-01-01

    A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening.

  13. Design and Testing of Vacuum Breaker Check Valve for Simplified Boiling Water Reactor

    SciTech Connect (OSTI)

    Ishii, M.; Xu, Y.; Revankar, S.T.

    2002-07-01

    A new design of the vacuum breaker check valve was developed to replace the mechanical valve in a simplified boiling water reactor. Scaling and design calculations were performed to obtain the geometry of new passive hydraulic vacuum breaker check valve. In order to check the valve performance, a RELAP5 model of the simplified boiling water reactor system with the new valve was developed. The valve was implemented in an integral facility, PUMA and was tested for large break loss of coolant accident. (authors)

  14. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    SciTech Connect (OSTI)

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral system scaling analysis, design parameters were obtained and designs of the compact modular 200 MWe SBWR and the full size 1200 MWe SBWR were developed. These reactors are provided with passive safety systems. A new passive vacuum breaker check valve was designed to replace the mechanical vacuum beaker check valve. The new vacuum breaker check valve was based on a hydrostatic head, and was fail safe. The performance of this new valve was evaluated both by the thermal-hydraulic code RELAP5 and by the experiments in a scaled SBWR facility, PUMA. In the core neutronic design a core depletion model was implemented to PARCS code. A lattice design for the SBWR fuel assemblies was performed. Design improvements were made to the neutronics/thermal-hydraulics models of SBWR-200 and SBWR-1200, and design analyses of these reactors were performed. The design base accident analysis and evaluation of all the passive safety systems were completed as scheduled in tasks 4 and 5. Initial conditions for the small break loss of coolant accidents (LOCA) and large break LOCA using REALP5 code were obtained. Small and large break LOCA tests were performed and the data was analyzed. An anticipated transient with scram was simulated using the RELAP5 code for SBWR-200. The transient considered was an accidental closure of the main steam isolation valve (MSIV), which was considered to be the most significant transient. The evaluation of the RELAP5 code against experimental data for SBWR-1200 was completed. In task 6, the instability analysis for the three SBWR designs (SBWR-1200, SBWR-600 and SBWR-200) were simulated for start-up transients and the results were similar. Neither the geysering instability, nor the loop type instability was predicted by RAMONA-4B in the startup simulation following the recommended procedure by GE. The density wave oscillation was not observed at all because the power level used in the simulation was not high enough. A study was made of the potential instabilities by imposing an unrealistically high power ramp in a short time period, as suggested by GE. RAMON

  15. EIA - State Nuclear Profiles

    Gasoline and Diesel Fuel Update (EIA)

    84.9 BWR 7281975 10172034 855 6,361 84.9 Data for 2010 BWR Boiling Water Reactor. ... The 900-acre site is also the location of two other General Electric boiling water ...

  16. EIA - State Nuclear Profiles

    Gasoline and Diesel Fuel Update (EIA)

    99.3 BWR 1131975 12272034 1,858 14,808 91.0 Data for 2010 BWR Boiling Water Reactor. ... Reactor Descriptions: Both units are General Electric Type 4 boiling water reactors. ...

  17. Boiling water reactor fuel behavior at burnup of 26 GWd/tonne U under reactivity-initiated accident conditions

    SciTech Connect (OSTI)

    Nakamura, Takehiko; Yoshinaga, Makio . Dept. of Reactor Safety Research); Sobajima, Makoto ); Ishijima, Kiyomi; Fujishiro, Toshio . Dept. of Reactor Safety Research)

    1994-10-01

    Irradiated boiling water reactor (BWR) fuel behavior under reactivity-initiated accident (RIA) conditions was investigated in the Nuclear Safety Research Reactor (NSRR) of the Japan Atomic Energy Research Institute. Short test fuel rods, refabricated from a commercial 7 x 7 type BWR fuel rod at a burnup of 26 GWd/ tonne U, were pulse irradiated in the NSRR under simulated cooled startup RIA conditions of the BWRs. Thermal energy from 230 J/g fuel (55 cal/g fuel) to 410 J/g fuel (98 cal/g fuel) was promptly subjected to the test fuel rods by pulse irradiation within [approximately] 10 ms. The peak fuel enthalpies are believed to be the same as the prompt energy depositions. The test fuel rods demonstrated characteristic behavior of the irradiated fuel rods under the accident conditions, such as enhanced pellet cladding mechanical interaction (PCMI) and fission gas release. However, all the fuel rods survived the accident conditions with considerable margins. Simulations by the FRAP-T6 code and fresh fuel rod tests under the same RIA conditions highlighted the burnup effects on the accident fuel performance. The tests and the simulation suggested that the BWR fuel would possibly fail by a cladding burst due to fission gas release during the cladding temperature escalation rather than the PCMI under the cold startup RIA conditions of a severe power burst.

  18. Simultaneous boiling and spreading of liquefied petroleum gas on water. Final report, December 12, 1978-March 31, 1981

    SciTech Connect (OSTI)

    Chang, H.R.; Reid, R.C.

    1981-04-01

    An experimental and theoretical investigation was carried out to study the boiling and spreading of liquid nitrogen, liquid methane and liquefied petroleum gas (LPG) on water in a one-dimensional configuration. Primary emphasis was placed on the LPG studies. Experimental work involved the design and construction of a spill/spread/boil apparatus which permitted the measurement of spreading and local boil-off rates. With the equations of continuity and momentum transfer, a mathematical model was developed to describe the boiling-spreading phenomena of cryogens spilled on water. The model accounted for a decrease in the density of the cryogenic liquid due to bubble formation. The boiling and spreading rates of LPG were found to be the same as those of pure propane. An LPG spill was characterized by the very rapid and violent boiling initially and highly irregular ice formation on the water surface. The measured local boil-off rates of LPG agreed reasonably well with theoretical predictions from a moving boundary heat transfer model. The spreading velocity of an LPG spill was found to be constant and determined by the size of the distributor opening. The maximum spreading distance was found to be unaffected by the spilling rate. These observations can be explained by assuming that the ice formation on the water surface controls the spreading of LPG spills. While the mathematical model did not predict the spreading front adequately, it predicted the maximum spreading distance reasonably well.

  19. Boiling Water Reactor Fuel Behavior Under Reactivity-Initiated-Accident Conditions at Burnup of 41 to 45 GWd/tonne U

    SciTech Connect (OSTI)

    Nakamura, Takehiko; Yoshinaga, Makio; Takahashi, Masato; Okonogi, Kazunari; Ishijima, Kiyomi

    2000-02-15

    Boiling water reactor (BWR) fuel at burnup of 41 to 45 GWd/tonne U was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity-initiated-accident conditions. Current Japanese BWR fuel, 8 x 8BJ type (Step I), from Fukushima-Daiichi Unit 3 was refabricated into short segments, and the test rods were promptly subjected to thermal energy from 293 to 607 J/g (70 to 145 cal/g) within {approx}20 ms. The fuel cladding was ductile enough to survive the prompt deformation due to pellet cladding mechanical interaction, while the plastic hoop strain reached 1.5% at the peak location. Transient fission gas release by the pulse irradiation varied from 3.1 to 8.2%, depending on the peak fuel enthalpy and the steady-state operation conditions.

  20. Integrated Boiler, Superheater & Decomposer Bayonet for Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the production of hydrogen but a similar process can be applied to create ammonia and propane production.DescriptionOur technology integrates three main components in the...

  1. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    SciTech Connect (OSTI)

    Durbin, Samuel; Lindgren, Eric R.

    2015-11-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below-ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on allowable heat load and the effect of simulated wind on a simplified below ground vent configuration. While incorporating the best available information, this test plan is subject to changes due to improved understanding from modeling or from as-built deviations to designs. As-built conditions and actual procedures will be documented in the final test report.

  2. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  3. Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles

    SciTech Connect (OSTI)

    Manglik, R M; Athavale, A; Kalaikadal, D S; Deodhar, A; Verma, U

    2011-09-02

    The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.

  4. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOE Patents [OSTI]

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  5. Naval Nuclear Propulsion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion

  6. BWR ATWS simulations for Browns Ferry Nuclear Plant Unit 1

    SciTech Connect (OSTI)

    Dallman, R.J.

    1984-01-01

    Under auspices of the US Nuclear Regulatory Commission, simulations of anticipated transients without scram (ATWS) in a boiling water reactor are being performed. A methodology has been developed to study the ATWS, and deterministic analyses have been conducted. Results are presented for one of the most probable (albeit hypothetical) sequences leading to core and containment damage. Areas presenting calculational uncertainties are identified, and requirements for their resolution are proposed.

  7. Quarterly Nuclear Deployment Scorecard - January 2015 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5 Quarterly Nuclear Deployment Scorecard - January 2015 News Updates  The NRC has scheduled a public Commissioner's hearing for February 4 on DTE Electric's application for a combined license to build and operate a General Electric Hitachi Economic Simplified Boiling Water Reactor (ESBWR) at the Enrico Fermi Generating Station near Newport, Michigan. This is the third time an applicant has reached the "final step" in the part 52 reactor licensing process.  The Vermont

  8. Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding

    SciTech Connect (OSTI)

    Orlov, Andrey; Degueldre, Claude; Kaufmann, Wilfried

    2013-01-15

    The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

  9. CASL-U-2015-0248-000 Modeling Boiling Water Reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8-000 Modeling Boiling Water Reactor Designs using MPACT Andrew P. Fitzgerald Brendan Kochunas Daniel Jabaay Thomas Downar University of Michigan July 7, 2015 CASL-U-2015-0248-000 ATRIUM TM 10: K-inf vs burn-up for the ATRIUM TM 10 lattice from various transport codes. MPACT is shown to have the ability to model some BWR features such as (square) channel boxes, water rods, and water channels with reasonable accuracy. The ATRIUM TM 10 comparison has shown MPACT can predict k-inf with similar

  10. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    SciTech Connect (OSTI)

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  11. A study of out-of-phase power instabilities in boiling water reactors

    SciTech Connect (OSTI)

    March-Leuba, J.; Blakeman, E.D.

    1988-06-20

    This paper presents a study of the stability of subcritical neutronic modes in boiling water reactors that can result in out-of-phase power oscillations. A mechanism has been identified for this type of oscillation, and LAPUR code has been modified to account for it. Numerical results show that there is a region in the power-flow operating map where an out-or-phase stability mode is likely even if the core-wide mode is stable. 4 refs., 7 figs.

  12. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  13. Resistivity During Boiling in the SB-15-D Core from the Geysers Geothermal Field: The Effects of Capillarity

    SciTech Connect (OSTI)

    Roberts, J.; Duba, A.; Bonner, B.; Kasameyer, P.

    1997-01-01

    In a laboratory study of cores from borehole SB-15-D in The Geysers geothermal area, we measured the electrical resistivity of metashale with and without pore-pressure control, with confining pressures up to 100 bars and temperatures between 20 and 150 C, to determine how the pore-size distribution and capillarity affected boiling. We observed a gradual increase in resistivity when the downstream pore pressure or confining pressure decreased below the phase boundary of free water. For the conditions of this experiment, boiling, as indicated by an increase in resistivity, is initiated at pore pressures of approximately 0.5 to 1 bar (0.05 to 0.1 MPa) below the free-water boiling curve, and it continues to increase gradually as pressure is lowered to atmospheric. A simple model of the effects of capillarity suggests that at 145 C, less than 15% of the pore water can boil in these rocks. If subsequent experiments bear out these preliminary observations, then boiling within a geothermal reservoir is controlled not just by pressure and temperature but also by pore-size distribution. Thus, it may be possible to determine reservoir characteristics by monitoring changes in electrical resistivity as reservoir conditions change.

  14. Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test

    SciTech Connect (OSTI)

    Booker, Kayje; Han, Tae Won; Granderson, Jessica; Jones, Jennifer; Lsk, Kathleen; Yang, Nina; Gadgil, Ashok

    2011-06-01

    In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified form of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.

  15. Magnetic thaw-down and boil-off due to magneto acceptors in 2DEG

    SciTech Connect (OSTI)

    Chaubet, C.; Raymond, A.; Bisotto, I.; Harmand, J. C.; Kubisa, M.; Zawadzki, W.

    2013-12-04

    The Quantum Hall Effect (QHE) and Shubnikov-de Haas effect are investigated experimentally using n type modulation-doped GaAs/GaAlAs quantum wells (QWs) additionally doped in the well with beryllium acceptor atoms. It is presently shown that the localized magneto-acceptor (MA) states which possess discrete energies above the corresponding Landau levels (LLs) lead to two observable effects in magneto-transport: magnetic thaw-down and magnetic boil-off of 2D electrons. Both effects are related to the fact that electrons occupying the localized MA states cannot conduct. Thus in the thaw-down effect the electrons fall down from the MA states to the free Landau states. This leads to a shift of the Hall plateau towards higher magnetic fields as a consequence of an increase of the 2D electron density N{sub S}. In the boil-off effect the electrons are pushed from the free Landau states to the empty MA states under high enough Hall electric field. This process has an avalanche character leading to a dramatic increase of magneto-resistance, consequence of a decrease of N{sub S}.

  16. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs Office of Science Nuclear Physics science-innovationassetsimagesicon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that ...

  17. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › Updated EIA survey provides data on spent nuclear fuel in the United

  18. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vesselthat is Cooled by Liquid Hydrogen in Film Boiling

    SciTech Connect (OSTI)

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-05-07

    This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels.

  19. A Study of the Role of Adjoint-Equipped CFD in VUQ Analysis of Channel Boiling Simulations -Slides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Role of Adjoint- Equipped CFD in VUQ Analysis of Channel Boiling Simulations Krzysztof Fidkowski University of Michigan Milestone L3:THM.CFD.P7.08 November 21, 2013 CASL-U-2013-0192-000-b L3-THM-CFD-P7-08 A Study of the Role of Adjoint-Equipped CFD in VUQ Analysis of Channel Boiling Simulations Milestone owner: Krzysztof Fidkowski, U. Michigan Additional personnel: Isaac Asher, U. Michigan 2 CASL-U-2013-0192-000-b Milestone Execution Responsibility & Personnel * Contact:

  20. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the subset of possible

  1. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  2. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, Paul R.

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  3. Effect of nonuniformity of subcooled boiling flow on the onset of thermoacoustic vibrations

    SciTech Connect (OSTI)

    Gerliga, V.A.; Skalozubov, V.I.; Lesin, V.Y. )

    1991-01-01

    This paper develops the hypothesis that the factor responsible for the onset of thermoacoustic vibrations in two-phase bubble flow is positive work by bubbles condensing in the flow core. It is shown that the predicted threshold of generation of these vibrations depends strongly on the accuracy of description of the steady-state distribution of parameters of bubbles and the liquid. The results predicted on the basis of a two-zone nonequilibrium polydisperse model are compared with those given by the uniform-flow model and an equation representing the condition of applicability of one-dimensional models for predicting the steady-state parameters of nonequilibrium boiling flows is derived.

  4. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS

    SciTech Connect (OSTI)

    PACE, M.E.

    2004-01-13

    The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

  5. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    SciTech Connect (OSTI)

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  6. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  7. Nuclear Science

    Energy Savers [EERE]

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  8. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  9. United States Department of Energy`s reactor core protection evaluation methodology for fires at RBMK and VVER nuclear power plants. Revision 1

    SciTech Connect (OSTI)

    1997-06-01

    This document provides operators of Soviet-designed RBMK (graphite moderated light water boiling water reactor) and VVER (pressurized light water reactor) nuclear power plants with a systematic Methodology to qualitatively evaluate plant response to fires and to identify remedies to protect the reactor core from fire-initiated damage.

  10. nuclear | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact report from the 2015 event, detailing the many ways people were educated about all things nuclear as a result of the event. Nuclear Science Week is an international weeklong celebration to focus interest on... U.S-, Japan Exchange Best Practices on Nuclear Emergency Response Washington D.C.--The Department of Energy's

  11. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  12. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  13. Many-Group Cross-Section Adjustment Techniques for Boiling Water Reactor Adaptive Simulation

    SciTech Connect (OSTI)

    Jessee, Matthew Anderson

    2011-01-01

    Computational capability has been developed to adjust multigroup neutron cross sections, including self-shielding correction factors, to improve the fidelity of boiling water reactor (BWR) core modeling and simulation. The method involves propagating multigroup neutron cross-section uncertainties through various BWR computational models to evaluate uncertainties in key core attributes such as core k{sub eff}, nodal power distributions, thermal margins, and in-core detector readings. Uncertainty-based inverse theory methods are then employed to adjust multigroup cross sections to minimize the disagreement between BWR core modeling predictions and observed (i.e., measured) plant data. For this paper, observed plant data are virtually simulated in the form of perturbed three-dimensional nodal power distributions with the perturbations sized to represent actual discrepancies between predictions and real plant data. The major focus of this work is to efficiently propagate multigroup neutron cross-section uncertainty through BWR lattice physics and core simulator calculations. The data adjustment equations are developed using a subspace approach that exploits the ill-conditioning of the multigroup cross-section covariance matrix to minimize computation and storage burden. Tikhonov regularization is also employed to improve the conditioning of the data adjustment equations. Expressions are also provided for posterior covariance matrices of both the multigroup cross-section and core attributes uncertainties.

  14. Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).

    SciTech Connect (OSTI)

    Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

    2005-01-01

    A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

  15. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  16. Nuclear Navy

    SciTech Connect (OSTI)

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  17. Nuclear-Coupled Flow Instabilities and Their Effects on Dryout

    SciTech Connect (OSTI)

    M. Ishii; X. Sunn; S. Kuran

    2004-09-27

    Nuclear-coupled flow/power oscillations in boiling water reactors (BWRs) are investigated experimentally and analytically. A detailed literature survey is performed to identify and classify instabilities in two-phase flow systems. The classification and the identification of the leading physical mechanisms of the two-phase flow instabilities are important to propose appropriate analytical models and scaling criteria for simulation. For the purpose of scaling and the analysis of the nonlinear aspects of the coupled flow/power oscillations, an extensive analytical modeling strategy is developed and used to derive both frequency and time domain analysis tools.

  18. Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  19. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    SciTech Connect (OSTI)

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  20. Stress and Fracture Mechanics Analyses of Boiling Water Reactor and Pressurized Water Reactor Pressure Vessel Nozzles

    SciTech Connect (OSTI)

    Yin, Shengjun; Bass, Bennett Richard; Stevens, Gary; Kirk, Mark

    2011-01-01

    This paper describes stress analysis and fracture mechanics work performed to assess boiling water reactor (BWR) and pressurized water reactor (PWR) nozzles located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Various RPV nozzle geometries were investigated: 1. BWR recirculation outlet nozzle; 2. BWR core spray nozzle3 3. PWR inlet nozzle; ; 4. PWR outlet nozzle; and 5. BWR partial penetration instrument nozzle. The above nozzle designs were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-license (EOL) to require evaluation as part of establishing the allowed limits on heatup, cooldown, and hydrotest (leak test) conditions. These nozzles analyzed represent one each of the nozzle types potentially requiring evaluation. The purpose of the analyses performed on these nozzle designs was as follows: To model and understand differences in pressure and thermal stress results using a two-dimensional (2-D) axi-symmetric finite element model (FEM) versus a three-dimensional (3-D) FEM for all nozzle types. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated; To verify the accuracy of a selected linear elastic fracture mechanics (LEFM) hand solution for stress intensity factor for a postulated nozzle corner crack for both thermal and pressure loading for all nozzle types; To assess the significance of attached piping loads on the stresses in the nozzle corner region; and To assess the significance of applying pressure on the crack face with respect to the stress intensity factor for a postulated nozzle corner crack.

  1. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect (OSTI)

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C.

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  2. Application of the Isotope Ratio Method to a Boiling Water Reactor

    SciTech Connect (OSTI)

    Frank, Douglas P.; Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Meriwether, George H.; Mitchell, Mark R.; Reid, Bruce D.

    2010-08-11

    The isotope ratio method is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods. All reactor materials contain trace elemental impurities at parts per million levels, and the isotopes of these elements are transmuted by neutron irradiation in a predictable manner. While measuring the change in a particular isotopes concentration is possible, it is difficult to correlate to energy production because the initial concentration of that element may not be accurately known. However, if the ratio of two isotopes of the same element can be measured, the energy production can then be determined without knowing the absolute concentration of that impurity since the initial natural ratio is known. This is the fundamental principle underlying the isotope ratio method. Extremely sensitive mass-spectrometric methods are currently available that allow accurate measurements of the impurity isotope ratios in samples. Additionally, indicator elements with stable activation products have been identified so that their post-irradiation isotope ratios remain constant. This method has been successfully demonstrated on graphite-moderated reactors. Graphite reactors are particularly well-suited to such analyses since the graphite moderator is resident in the fueled region of the core for the entire period of operation. Applying this method to other reactor types is more difficult since the resident portions of the reactor available for sampling are either outside the fueled region of the core or structural components of individual fuel assemblies. The goal of this research is to show that the isotope ratio method can produce meaningful results for light water-moderated power reactors. In this work, we use the isotope ratio method to estimate the energy production in a boiling water reactor fuel bundle based on measurements taken from the corresponding fuel assembly channel. Our preliminary results are in good agreement with the actual operating history of the reactor during the cycle that the fuel bundle was resident in the core.

  3. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    SciTech Connect (OSTI)

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: W process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four top events and eighteen SBO sequences (versus fifty-four SBO sequences in the original SBO model). The estimated SBO sequence conditional probabilities from the original SBO model were integrated to the corresponding sequences in the simplified SBO event tree. These results were then compared with the simulation run results.

  4. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics /science-innovation/_assets/images/icon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad

  5. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Supersedes DOE O 457.1 and DOE M 457.1-1.

  6. nuclear smuggling

    National Nuclear Security Administration (NNSA)

    13, 2015

    SHANGHAI, CHINA - Today, the Nuclear Security Administration's (NNSA) Principal Assistant Deputy Administrator for Defense...

  7. nuclear material

    National Nuclear Security Administration (NNSA)

    width"300" >WASHINGTON, D.C. - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA), in partnership with the Defense Threat Reduction...

  8. nuclear weapons

    National Nuclear Security Administration (NNSA)

    09, 2015

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful...

  9. nuclear controls

    National Nuclear Security Administration (NNSA)

    which "international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and...

  10. nuclear forensics

    National Nuclear Security Administration (NNSA)

    serves as the premier technical leader in responding to and successfully resolving nuclear and radiological threats worldwide. When the need arises, NNSA is prepared to...

  11. NUCLEAR ENERGY

    Energy Savers [EERE]

    NUCLEAR ENERGY RESEARCH AND DEVELOPMENT ROADMAP Table of Contents List of Acronyms ................................................................................................... iii Executive Summary ............................................................................................... v 1. Introduction ...................................................................................................... 1 2. Background

  12. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line via prompt gamma ray spectroscopy

  13. Civilian Nuclear Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civilian Nuclear Program Civilian Nuclear Program Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national ...

  14. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1995-01-01

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  15. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1996-01-01

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  16. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System NMMSS ...

  17. Nuclear Structure and Nuclear Reactions | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations were carried out using nuclear density functional theory. The collective ... Nuclear Structure and Nuclear Reactions PI Name: James Vary PI Email: jvary@iastate.edu ...

  18. Nuclear Operations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Operations The SFO Nuclear Operations office is responsible for direction, day-to-day oversight and contract administration activities regarding safe nuclear operations in ...

  19. Nuclear Verification | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Control Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear ...

  20. Chernobyl Nuclear Accident | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Chernobyl Nuclear Accident Chernobyl Nuclear Accident Chernobyl, Ukraine A catastrophic nuclear accident occurs at Chernobyl Reactor 4 in the then Soviet Republic of Ukraine

  1. Nuclear Nonproliferation Program Offices | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... and monitor nuclear weapons production, proliferation, and nuclear explosions worldwide. ...

  2. defense nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear security | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear ...

  3. Nuclear Material Removal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Material Removal Once weapons-usable nuclear material is no longer required, the Office of Nuclear Material Removal works with global partners and facilities to ...

  4. Nuclear Nonproliferation Treaty | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Nuclear Nonproliferation Treaty The Treaty on the Non-Proliferation of Nuclear Weapons off ...

  5. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, ...

  6. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, International ...

  7. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  8. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  9. Dispersed-flow film boiling in rod-bundle geometry: steady-state heat-transfer data and correlation comparisons. [PWR; BWR

    SciTech Connect (OSTI)

    Yoder, G. L.; Morris, D. G.; Mullins, C. B.; Ott, L. J.; Reed, D. A.

    1982-03-01

    Assessment of six film boiling correlations and one single-phase vapor correlation has been made using data from 22 steady state upflow rod bundle tests (series 3.07.9). Bundle fluid conditions were calculated using energy and mass conservation considerations. Results of the steady state film boiling tests support the conclusions reached in the analysis of prior transient tests 3.03.6AR, 3.06.6B, and 3.08.6C. Comparisons between experimentally determined and correlation-predicted heat transfer coefficients, are presented.

  10. Alcohol-free alkoxide process for containing nuclear waste

    DOE Patents [OSTI]

    Pope, James M.; Lahoda, Edward J.

    1984-01-01

    Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

  11. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  12. RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL

    Office of Scientific and Technical Information (OSTI)

    The early days Richards, P. 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL ASPECTS; TECHNETIUM 99; COLLOIDS; MOLYBDENUM...

  13. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  14. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:www.nnsa.energy.govourmissionpoweringnavy

    Page...

  15. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:nnsa.energy.govourmissionpoweringnavy

    Page...

  16. Nuclear option

    SciTech Connect (OSTI)

    Olson, P.S.

    1983-03-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.

  17. Spent Nuclear Fuel

    Gasoline and Diesel Fuel Update (EIA)

    1968 through 2002 1968 through June 30, 2013 Increase Boiling-water reactor 89,843 136,821 46,978 Pressurized-water reactor 69,352 104,647 35,295 Total 159,195 241,468 82,273 ...

  18. Nuclear Data

    SciTech Connect (OSTI)

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  19. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  20. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    SciTech Connect (OSTI)

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  1. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    SciTech Connect (OSTI)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  2. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  3. Nuclear Models

    SciTech Connect (OSTI)

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  4. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Spent Nuclear Fuel Release date: December 7, 2015 Next release date: Late 2018 Spent nuclear fuel data are

  5. nuclear testing | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    controls Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and

  6. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  7. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Impact Topics: Today's & Tomorrow's New Nuclear Energy Construction & the Workforce Outlook Current New Nuclear Energy Construction Projects Small Modular...

  8. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Starr, C.

    1963-01-01

    This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

  9. Supercritical Water Nuclear Steam Supply System: Innovations In Materials, Neutronics & Thermal-Hydraulics

    SciTech Connect (OSTI)

    Mark Anderson; M.L. Corradini; K. Sridharan; P. WIlson; D. Cho; T.K. Kim; S. Lomperski

    2004-09-02

    In the 1990's supercritical light-water reactors were considered in conceptual designs. A nuclear reactor cooled by supercritical waster would have a much higher thermal efficiency with a once-through direct power cycle, and could be based on standardized water reactor components (light water or heavy water). The theoretical efficiency could be improved by more than 33% over that of other water reactors and could be simplified with higher reliability; e.g., a boiling water reactor without steam separators or dryers.

  10. Steam Line Break and Station Blackout Transients for Proliferation-Resistant Hexagonal Tight Lattice Boiling Water Reactor

    SciTech Connect (OSTI)

    Rohatgi, Upendra S. [Brookhaven National Laboratory (United States); Jo, Jae H. [Brookhaven National Laboratory (United States); Chung, Bub Dong [Brookhaven National Laboratory (United States); Takahashi, Hiroshi [Brookhaven National Laboratory (United States); Downar, Thomas J. [Purdue University (United States)

    2004-01-15

    Safety analyses of a proliferation-resistant, economically competitive, high-conversion boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems, are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core that therefore operates with a fast reactor neutron spectrum and a considerably improved neutron economy compared to the current generation of light water reactors. The tight lattice core has a very narrow flow channel with a hydraulic diameter less than half of the regular boiling water reactor (BWR) core and, thus, presents a special challenge to core cooling because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator-to-fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios.In the preliminary HCBWR design, the core is placed in a vessel with a large chimney section, and the vessel is connected to the isolation condenser system (ICS). The vessel is placed in containment with the gravity driven cooling system (GDCS) and passive containment cooling system (PCCS) in a configuration similar to General Electric's simplified BWR (SBWR). The safety systems are similar to those of the SBWR; the ICS and PCCS are scaled with power. An internal recirculation pump is placed in the downcomer to augment the buoyancy head provided by the chimney since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration results in much larger friction in the core than with the SBWR.The constitutive relationships for RELAP5 are assessed for narrow channels, and as a result the heat transfer package is modified. The modified RELAP5 is used to simulate and analyze two of the most limiting events for a tight pitch lattice core: the station blackout and the main-steam-line-break events. The results of the analyses indicate that the HCBWR system will be safely brought to the shutdown condition for these transients.

  11. nuclear forensics | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA chief visits New Mexico laboratories NNSA Hosts International Nuclear Forensics Workshop with Participants from Eight Countries Nuclear Forensics Operations Render Safe ...

  12. Nuclear Security Enterprise | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Our Programs Defense Programs Nuclear Security Enterprise The Nuclear Security Enterprise (NSE) mission is to ensure the Nation sustains a safe, secure, and effective ...

  13. Nuclear / Radiological Advisory Team | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Nuclear Radiological Advisory Team (NRAT) provides an emergency response capability for on-scene scientific and technical advice for both domestic and international nuclear or ...

  14. Nuclear Forensics | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy ...

  15. nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    25M NNSA Grant for Nuclear Science and Security Research Working With PNNL Mentors, Engineering Students Deliver Prototype Safeguards Fixtures Shaping the future of nuclear ...

  16. nuclear science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Consortium Led by University of California, Berkeley Awarded 25M NNSA Grant for Nuclear Science and ...

  17. Nuclear Smuggling Detection and Deterrence | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Smuggling Detection and Deterrence The mission of the Nuclear Smuggling Detection and Deterrence program (NSDD) (formerly Second Line of Defense) is to strengthen the ...

  18. Nuclear Verification | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: ...

  19. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Incident Team NNSA houses the Nuclear Incident Team (NIT), which is responsible for deploying assets at the request of coordinating agencies in response to a nuclear or ...

  20. Nuclear Suppliers Group & Regimes | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency ...

  1. Nuclear Controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Controls | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  2. nuclear safety | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response ...

  3. nuclear material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response ...

  4. nuclear enterprise | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response ...

  5. nuclear technology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response ...

  6. Nuclear Detonation Detection | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    Nuclear Forensics: Conducts R&D to advance analytic forensic capabilities related to nuclear detonations to improve the speed, accuracy, reliability, confidence, and specificity of ...

  7. Nuclear and Radiological Material Security | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This includes NNSA's work to advance physical protection standards for nuclear facilities and to strengthen nuclear safeguards, which are criteria for the physical security and the ...

  8. nuclear emergency | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home nuclear emergency nuclear emergency Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, and ...

  9. Nuclear | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Moving Forward to Address Nuclear Waste Storage and Disposal Three trucks transport nuclear waste

  10. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  11. Explosive boiling of Ge{sub 35}Sb{sub 10}S{sub 55} glass induced by a CW laser

    SciTech Connect (OSTI)

    Knotek, P.; Tichy, L.

    2013-09-01

    Graphical abstract: - Highlights: Interaction of the CW 785 nm laser with chalcogenide GeSbS glass. First demonstration of the explosive boiling induced by CW laser in glass. Different processes as photo-induced oxidation, expansion, and viscosity-flow observed. Applied diagnostics SEM, DHM, AFM, force spectroscopy, and micro-Raman spectroscopy. Damage threshold determined at 1.2 10{sup 24}s{sup ?1} cm{sup ?3} of absorbed photons. - Abstract: The response of bulk Ge{sub 35}Sb{sub 10}S{sub 55} glass to illumination by a continuous wave (CW) laser, sub-band-gap photons, was studied specifically with an atomic force microscopy including a force spectroscopy, with a digital holographic microscopy and with a scanning electron microscopy. Depending on the number of photons absorbed, photo-expansion, photo-oxidation and explosive boiling were observed.

  12. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  13. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  14. Simulation of in-core neutron noise measurements for axial void profile reconstruction in boiling water reactors

    SciTech Connect (OSTI)

    Dykin, V.; Pazsit, I.

    2012-07-01

    A possibility to reconstruct the axial void profile from the simulated in-core neutron noise which is caused by density fluctuations in a Boiling Water Reactor (BWR) heated channel is considered. For this purpose, a self-contained model of the two-phase flow regime is constructed which has quantitatively and qualitatively similar properties to those observed in real BWRs. The model is subsequently used to simulate the signals of neutron detectors induced by the corresponding perturbations in the flow density. The bubbles are generated randomly in both space and time using Monte-Carlo techniques. The axial distribution of the bubble production is chosen such that the mean axial void fraction and void velocity follow the actual values of BWRs. The induced neutron noise signals are calculated and then processed by the standard signal analysis methods such as Auto-Power Spectral Density (APSD) and Cross-Power Spectral Density (CPSD). Two methods for axial void and velocity profiles reconstruction are discussed: the first one is based on the change of the break frequency of the neutron auto-power spectrum with axial core elevation, while the second refers to the estimation of transit times of propagating steam fluctuations between different axial detector positions. This paper summarizes the principles of the model and presents a numerical testing of the qualitative applicability to estimate the required parameters for the reconstruction of the void fraction profile from the neutron noise measurements. (authors)

  15. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    SciTech Connect (OSTI)

    Trianti, Nuri E-mail: szaki@fi.itba.c.id; Su'ud, Zaki E-mail: szaki@fi.itba.c.id; Arif, Idam E-mail: szaki@fi.itba.c.id; Riyana, EkaSapta

    2014-09-30

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tight concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.

  16. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part I: Experimental study

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    Two-phase flow pattern and heat transfer characteristics of refrigerant-oil mixture flow boiling inside small tubes with inside diameters of 6.34 mm and 2.50 mm are investigated experimentally. The test condition of nominal oil concentration is from 0% to 5%, mass flux from 200 to 400 kg m{sup -2} s{sup -1}, heat flux from 3.2 to 14 kW m{sup -2}, evaporation temperature of 5 C, inlet quality from 0.1 to 0.8, and quality change from 0.1 to 0.2. Wavy, wavy-annular, annular and mist-annular flow pattern in 6.34 mm tube are observed, while only slug-annular and annular flow pattern are observed in 2.50 mm tube. Oil presence can make annular flow to form early and to retard to diminish in quality direction at nominal oil concentration {>=}3%. Augmentation effect of oil on heat transfer coefficient becomes weakened or even diminishes for small diameter tube while detrimental effect of oil on small tube performance becomes more significant than large tube. For both test tubes, variation of heat transfer coefficient and enhanced factor with oil concentration is irregular. Two-phase heat transfer multiplier with refrigerant-oil mixture properties increases consistently and monotonically with local oil concentration at different vapor quality. (author)

  17. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    SciTech Connect (OSTI)

    Not Available

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  18. Collecting and recirculating condensate in a nuclear reactor containment

    DOE Patents [OSTI]

    Schultz, Terry L.

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

  19. Collecting and recirculating condensate in a nuclear reactor containment

    DOE Patents [OSTI]

    Schultz, T.L.

    1993-10-19

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.

  20. nuclear science week | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    science week Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact report from the 2015 event, detailing the many ways people were educated about all things nuclear as a result of the event. Nuclear Science Week is an international weeklong celebration to focus interest on

  1. NRC (Nuclear Regulatory Commission) staff evaluation of the General Electric Company Nuclear Reactor Study (''Reed Report'')

    SciTech Connect (OSTI)

    1987-07-01

    In 1975, the General Electric Company (GE) published a Nuclear Reactor Study, also referred to as ''the Reed Report,'' an internal product-improvement study. GE considered the document ''proprietary'' and thus, under the regulations of the Nuclear Regulatory Commission (NRC), exempt from mandatory public disclosure. Nonetheless, members of the NRC staff reviewed the document in 1976 and determined that it did not raise any significant new safety issues. The staff also reached the same conclusion in subsequent reviews. However, in response to recent inquiries about the report, the staff reevaluated the Reed Report from a 1987 perspective. This re-evaluation, documented in this staff report, concluded that: (1) there are no issues raised in the Reed Report that support a need to curtail the operation of any GE boiling water reactor (BWR); (2) there are no new safety issues raised in the Reed Report of which the staff was unaware; and (3) although certain issues addressed by the Reed Report are still being studied by the NRC and the industry, there is no basis for suspending licensing and operation of GE BWR plants while these issues are being resolved.

  2. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect (OSTI)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  3. nuclear threat science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    threat science Counterterrorism Counterterrorism Policy and Cooperation Nuclear Threat Science Office of Nuclear Threat Science The Office of Nuclear Threat Science is responsible for overseeing the Nuclear Counterterrorism Program, an NNSA program that sustains specialized expertise and integrates and executes key activities to advise and enable technical aspects of U.S. Government nuclear counterterrorism and... Office of Counterterrorism Policy and Cooperation The 2011 National Strategy for

  4. Defense Nuclear Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Programs Defense Nuclear Security The Office of Defense Nuclear Security develops and implements NNSA security programs to protect, control, and account for materials, information, and facilities across the nuclear security enterprise. The Office of the Chief, Defense Nuclear Security (CDNS) executes responsibility for the overall direction and management of security programs employed across the nuclear security enterprise comprised of NNSA's operations and facilities. The CDNS is charged with

  5. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  6. Nuclear Weapons Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Policy Act Signed Nuclear Waste Policy Act Signed Washington, DC President Reagan signs the Nuclear Waste Policy Act of 1982, the Nation's first comprehensive nuclear waste legislation

    Nuclear Weapons Journal Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2, 2009 Issue 2, 2009 Issue 1, 2009 Issue 1, 2009 Issue 1, 2008 Issue 1, 2008 Issue 1, 2007 Issue 1, 2007 Issue 2, 2006 Issue 2, 2006

  7. OECD NEA Benchmark Database of Spent Nuclear Fuel Isotopic Compositions for World Reactor Designs

    SciTech Connect (OSTI)

    Gauld, Ian C; Sly, Nicholas C; Michel-Sendis, Franco

    2014-01-01

    Experimental data on the isotopic concentrations in irradiated nuclear fuel represent one of the primary methods for validating computational methods and nuclear data used for reactor and spent fuel depletion simulations that support nuclear fuel cycle safety and safeguards programs. Measurement data have previously not been available to users in a centralized or searchable format, and the majority of accessible information has been, for the most part, limited to light-water-reactor designs. This paper describes a recent initiative to compile spent fuel benchmark data for additional reactor designs used throughout the world that can be used to validate computer model simulations that support nuclear energy and nuclear safeguards missions. Experimental benchmark data have been expanded to include VVER-440, VVER-1000, RBMK, graphite moderated MAGNOX, gas cooled AGR, and several heavy-water moderated CANDU reactor designs. Additional experimental data for pressurized light water and boiling water reactor fuels has also been compiled for modern assembly designs and more extensive isotopic measurements. These data are being compiled and uploaded to a recently revised structured and searchable database, SFCOMPO, to provide the nuclear analysis community with a centrally-accessible resource of spent fuel compositions that can be used to benchmark computer codes, models, and nuclear data. The current version of SFCOMPO contains data for eight reactor designs, 20 fuel assembly designs, more than 550 spent fuel samples, and measured isotopic data for about 80 nuclides.

  8. Fifty years of nuclear fission: Nuclear data and measurements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fifty years of nuclear fission: Nuclear data and measurements series Citation Details In-Document Search Title: Fifty years of nuclear fission: Nuclear data and ...

  9. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Nuclear Controls Challenge: Detect/deter illicit transfers of nuclear/dual-use materials, technology, and commodities. Solution: Build domestic and international capacity to implement and meet export control obligations. Related Topics international security international security policy NIS nuclear controls safeguards safeguards and security verification Related News Nuclear Verification Nonproliferation International Nuclear Safeguards Nonproliferation Policy Nonproliferation and Arms

  10. Nuclear War Against Cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements, implement regimes to reduce nuclear weapons, and detect and dismantle undeclared nuclear programs. Specific subprogram activities include: Implementing current and developing future

  11. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  12. Nuclear reactor

    DOE Patents [OSTI]

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  13. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Nuclear and Materials Science Research at LANSCE Nuclear science...

  14. Nuclear Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Nuclear Safety The Office of Nuclear Safety establishes and maintains nuclear safety policy, requirements, and guidance including policy and requirements relating to ...

  15. SC e-journals, Nuclear

    Office of Scientific and Technical Information (OSTI)

    Nuclear Annals of Nuclear Energy Annual Review of Nuclear and Particle Science Atomic Data & Nuclear Data Tables Atomic Energy BMC Medical Physics - OAJ Cancer Prevention Journals ...

  16. Severe Accident Sequence Analysis Program: Anticipated transient without scram simulations for Browns Ferry Nuclear Plant Unit 1

    SciTech Connect (OSTI)

    Dallman, R J; Gottula, R C; Holcomb, E E; Jouse, W C; Wagoner, S R; Wheatley, P D

    1987-05-01

    An analysis of five anticipated transients without scram (ATWS) was conducted at the Idaho National Engineering Laboratory (INEL). The five detailed deterministic simulations of postulated ATWS sequences were initiated from a main steamline isolation valve (MSIV) closure. The subject of the analysis was the Browns Ferry Nuclear Plant Unit 1, a boiling water reactor (BWR) of the BWR/4 product line with a Mark I containment. The simulations yielded insights to the possible consequences resulting from a MSIV closure ATWS. An evaluation of the effects of plant safety systems and operator actions on accident progression and mitigation is presented.

  17. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Other Useful Sites Online Journals Institutions and Programs Related to Nuclear Physics U.S. Nuclear Data Program: All evaluated nuclear data supported by the U.S. ...

  18. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  19. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  20. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  1. Nuclear Security Enterprise | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Study options for ensuring the safety, security, and reliability of nuclear warheads on a ... required to ensure the long-term safety, security, and reliability of the nuclear arsenal.

  2. Nuclear Incident Team | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Nuclear Incident Team Nuclear Incident Team Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, ...

  3. Sandia's Nuclear Weapons Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Mission Ensuring that the nation's stockpile is safe, secure and effective, and that it meets military requirements America's Nuclear Weapons Systems Engineering Laboratory Sandia is responsible for all non-nuclear components of the nuclear explosive package to create a militarily effective and logistically sustainable U.S. nuclear deterrent. The nation's nuclear weapons meet the highest reliability requirements: they must always work when needed and authorized. They must meet

  4. Nuclear Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services » Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of Nuclear Energy (NE) on complex science and technical issues that arise in the planning, managing, and implementation of DOE's nuclear energy program. NEAC periodically reviews the elements of the NE program and based on these

  5. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  6. Nuclear Controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Our Programs Nonproliferation Nonproliferation and Arms Control Nuclear Controls Challenge: Detectdeter illicit transfers of nucleardual-use materials, technology, ...

  7. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Summit U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... Statement on Signing of the Administrative Arrangement to the Agreement

  8. nuclear navy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    navy Naval Nuclear Propulsion Plants U.S. naval nuclear propulsion plants use a pressurized-water reactor design that has two basic systems: the primary system and the secondary system. The primary system circulates ordinary water in an all-welded, closed loop consisting of the reactor vessel, piping, pumps, and steam... Protection of People The policy of the U.S. Naval Nuclear Propulsion Program is to reduce personnel exposure to ionizing radiation associated with naval nuclear propulsion

  9. Nuclear Materials Information Program | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Information Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  10. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  11. Nuclear Forensics | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy initiative that establishes federal agency missions and institutionalizes roles and responsibilities to enable operational support for materials, pre-detonation device, and post-detonation nuclear or radiological forensics programs with the broader goal of attribution. Technical nuclear forensics utilizes the data from

  12. International Nuclear Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    International Nuclear Security The International Nuclear Security program collaborates with partners world-wide to improve the security of proliferation-sensitive materials, particularly weapons-usable nuclear material in both civilian and non-civilian use in key countries. As part of these efforts, INS works with partner countries to: Upgrade and sustain physical security and material control and accounting systems; Develop national-level nuclear security infrastructure in areas such as

  13. nuclear smuggling | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear smuggling NNSA Deputy Administrator Creedon Travels to China In March, National Nuclear Security Administration (NNSA) Principal Deputy Administrator Madelyn Creedon traveled to China to participate in activities related to NNSA's cooperative engagement with various Chinese ministries on nuclear security. Creedon was accompanied by Principal Assistant... Apex Gold discussion fosters international cooperation in run-up to 2016 Nuclear Security Summit Participants in Apex Gold at Lawrence

  14. Minnesota Nuclear Profile - Monticello

    U.S. Energy Information Administration (EIA) Indexed Site

    Monticello" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,554,"4,695",96.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,554,"4,695",96.7 "Data for 2010" "BWR = Boiling Water Reactor."

  15. Nebraska Nuclear Profile - Cooper

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooper" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,767,"6,793",101.1,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,767,"6,793",101.1 "Data for 2010" "BWR = Boiling

  16. FY13 Summary Report on the Augmentation of the Spent Fuel Composition Dataset for Nuclear Forensics: SFCOMPO/NF

    SciTech Connect (OSTI)

    Brady Raap, Michaele C.; Lyons, Jennifer A.; Collins, Brian A.; Livingston, James V.

    2014-03-31

    This report documents the FY13 efforts to enhance a dataset of spent nuclear fuel isotopic composition data for use in developing intrinsic signatures for nuclear forensics. A review and collection of data from the open literature was performed in FY10. In FY11, the Spent Fuel COMPOsition (SFCOMPO) excel-based dataset for nuclear forensics (NF), SFCOMPO/NF was established and measured data for graphite production reactors, Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs) were added to the dataset and expanded to include a consistent set of data simulated by calculations. A test was performed to determine whether the SFCOMPO/NF dataset will be useful for the analysis and identification of reactor types from isotopic ratios observed in interdicted samples.

  17. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings ...

  18. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Practice in Nuclear Medicine Radiopharmacy Patient Care Medical Imaging & Computers Moderator: Deborah M. Gibbs, MEd, PET, CNMT Lead Nuclear Medicine PET Facility...

  19. Nuclear Energy Advisory Committee

    Broader source: Energy.gov [DOE]

    The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

  20. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Energy, Energy Efficiency, News, News & Events, Nuclear Energy Sandia's Brayton-Cycle Turbine Boosts Small...

  1. Nuclear Energy Systems Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  2. Nuclear and Particle Futures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear and Particle Futures Nuclear and Particle Futures The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar ...

  3. Advancing Global Nuclear Security

    Broader source: Energy.gov [DOE]

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.

  4. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  5. Nuclear | Open Energy Information

    Open Energy Info (EERE)

    High construction costs for nuclear plants, especially relative to natural-gas-fired plants, make other options for new nuclear capacity uneconomical even in the alternative...

  6. Nuclear Security Summit

    National Nuclear Security Administration (NNSA)

    Joint Research Centre and the United States Department of Energy's National Nuclear Security Administration regarding the reduction of excess nuclear material http:...

  7. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... of September 24, 2011 3 The Department of Energy (DOE) National Nuclear Security ...

  8. Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  9. Sandia Energy Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    afety-expert-elected-to-national-academy-of-engineeringfeed 0 Sandia Teaches Nuclear Safety Course http:energy.sandia.govsandia-teaches-nuclear-safety-course http:...

  10. International Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and Member States to implement and meet safeguards obligations. The Office of International Nuclear Safeguards develops and supports the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to meet new

  11. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  12. The Joys of Nuclear Engineering

    ScienceCinema (OSTI)

    Jon Carmack

    2010-01-08

    Nuclear fuels researcher Jon Carmack talks about the satisfactions of a career in nuclear engineering.

  13. Nuclear reactor

    DOE Patents [OSTI]

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  14. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  15. 2016 Nuclear Science Week

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Week October 17 - 21, 2016 Nuclear Science Week is a national, broadly observed week-long celebration that focuses on all aspects of nuclear science. Events during this week will provide many learning opportunities about contributions, innovation and careers that can be found by exploring nuclear science. 4-21-16

  16. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  17. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    Douglas M. Gerstner

    2009-05-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

  18. Advanced Nuclear Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key

  19. Nuclear Deployment Scorecards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives Nuclear Reactor Technologies Nuclear Deployment Scorecards Nuclear Deployment Scorecards April 28, 2016 Quarterly Nuclear Deployment Scorecard - April 2016 News ...

  20. NUCLEAR MATERIALTRANSACTION REPORT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR MATERIALTRANSACTION REPORT NUCLEAR MATERIALTRANSACTION REPORT Form used to support nuclear materials accountability and control. PDF icon NUCLEAR MATERIALTRANSACTION REPORT ...

  1. Nuclear Detonation Detection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Detonation Detection NNSA builds the nation's operational sensors that monitor the entire planet from space to detect and report surface, atmospheric, or space nuclear detonations; produces and updates the regional geophysical datasets enabling operation of the nation's ground-based seismic monitoring networks to detect and report underground detonations; and conducts research and development on nuclear detonation forensics, improvements in satellite operational systems to meet future

  2. National Nuclear Security Administration | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Rights / Workforce Statistics National Nuclear Security Administration FY15 Year End Report Semi Annual Report FY14 Year End Report Semi Annual Report

  3. Nuclear Detonation Detection | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    the entire planet from space to detect and report surface, atmospheric, or space nuclear detonations; produces and updates the regional geophysical datasets enabling...

  4. Nuclear Structure and Nuclear Reactions | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x2 - triaxiality, and x3 - pairing correlations. Calculations were carried out using nuclear density functional theory. The collective action was minimized using the dynamical...

  5. Defense Nuclear Nonproliferation | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    United States and China Continue Partnership for the Peaceful Uses of Nuclear Technology ... NNSA Transfers Responsibility for Radiation Detection System to China Customs US, ...

  6. Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... site link , and the emergence of new proliferation threats from both state and non-state ...

  7. Nuclear Detonation Detection | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    NNSA builds the nation's operational sensors that monitor the entire planet from space to detect and report surface, atmospheric, or space nuclear detonations; produces and updates...

  8. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration ...

  9. Nuclear Energy Systems Laboratory (NESL) / Transient Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient Nuclear Fuels Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary ...

  10. nuclear controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nonproliferation and Arms Control The mission of the Office of Nonproliferation and Arms Control (NPAC) is to prevent proliferation, ensure peaceful nuclear uses, and enable ...

  11. Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the management of used nuclear fuel, also known as spent fuel, and defer the need for additional geologic nuclear waste repositories until the next century. PDF icon Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy

  12. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    January 01, 2009 The National Nuclear Security Administration (NNSA) has more than 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and ...

  13. Nuclear Waste Policy Act Signed | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Waste Policy Act Signed Nuclear Waste Policy Act Signed Washington, DC President Reagan signs the Nuclear Waste Policy Act of 1982, the Nation's first comprehensive nuclear waste ...

  14. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    NNSA NuclearRadiological Incident Response December 01, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to ...

  15. Office of Nuclear Threat Science | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Threat Science The Office of Nuclear Threat Science is responsible for overseeing the Nuclear Counterterrorism Program, an NNSA program that sustains specialized expertise ...

  16. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  17. Towards consistent nuclear models and comprehensive nuclear data...

    Office of Scientific and Technical Information (OSTI)

    Conference: Towards consistent nuclear models and comprehensive nuclear data evaluations Citation Details In-Document Search Title: Towards consistent nuclear models and ...

  18. Thermoacoustic Thermometry for Nuclear Reactor Monitoring

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-06-01

    On Friday, March 11, 2011, at 2:46pm (Japan Standard Trme), the Tohoku region on the east coast of northern Japan experienced what would become known as the largest earthquake in the country's history at magnitude 9.0 on the Richter scale. The Fukushima Daiichi nuclear power plant suffered extensive and irreversible damage. Six operating units were at the site, each with a boiling water reactor. When the earthquake struck, three of the six reactors were operating and the others were in a periodic inspection outage phase. In one reactor, all of the fuel had been relocated to a spent fuel pool in the reactor building. The seismic acceleration caused by the earthquake brought the three operating units to an automatic shutdown. Since there was damage to the power transmission lines, the emergency diesel generators (EDG) were automatically started to ensure continued cooling of the reactors and spent fuel pools. The situation was under control until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 meters, which was three times taller than the sea wall of 5m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to five of the six reactors. The flooding also resulted in the loss of instrumentation that would have other wise been used to monitor and control the emergency. The ugly aftermath included high radiation exposure to operators at the nuclear power plants and early contamination of food supplies and water within several restricted areas in Japan, where high radiation levels have rendered them unsafe for human habitation. While the rest of the story will remain a tragic history, it is this part of the series of unfortunate events that has inspired our research. It has indubitably highlighted the need for a novel sensor and instrumentation system that can withstand similar or worse conditions to avoid future catastrophe and assume damage prevention as quickly as possible. This is the question which we are attempting to answer: Is it possible to implement a self-powered sensor that could transmit data independently of electronic networks while taking advantage of the harsh operating environment of the nuclear reactor?

  19. Nuclear Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel ...

  20. budget | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reflects Commitment to Maintain a Safe, Secure, and Effective Nuclear Deterrent; Prevent, Counter, and Respond to Global Nuclear Dangers; and Effectively Power the Nuclear Navy(...

  1. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Incident Team NNSA houses the Nuclear Incident Team (NIT), which is responsible for deploying assets at the request of coordinating agencies in response to a nuclear or radiological incident. The NIT's mission is to coordinate NNSA assets for deployment, continually monitor deployment activities, and provide situational awareness of activities to NNSA management. The NIT is staffed and fully operational within two hours of notification

  2. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect (OSTI)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  3. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    SciTech Connect (OSTI)

    2000-08-01

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

  4. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  5. Promulgating Nuclear Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15

    Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

  6. State Nuclear Profiles - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary FAQS Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel ...

  7. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O 452.4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security, Safety, Weapon...

  8. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire (acting) Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental science. The evaluations performed by our group are

  9. Nuclear and Radiochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NR Nuclear and Radiochemistry We provide vital radiochemical and radioanalytical capabilities to a wide range of programs. Contact Us Group Leader Felicia Taw Deputy Group Leader Rich Oldenborg Group Office (505) 667-4546 The Nuclear and Radiochemistry (C-NR) Group provides vital radiochemical and radioanalytical capabilities to a wide range of programs. These programs include maintenance and stewardship of the nuclear stockpile, nuclear non-proliferation, environmental management, international

  10. Nuclear Safety Regulatory Framework

    Energy Savers [EERE]

    Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting

  11. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  12. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Over Five Years Computational Modeling & Simulation, Energy, News, News & Events, Nuclear Energy, Partnership, Systems Analysis Consortium for Advanced Simulation of...

  13. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems https://vision.lbl.gov/Software/3DMorphometry/

  14. NUCLEAR REGULATORY COMMISSION

    Office of Environmental Management (EM)

    NUCLEAR MATERIALTRANSACTION REPORT NUCLEAR MATERIALTRANSACTION REPORT Form used to support nuclear materials accountability and control. PDF icon NUCLEAR MATERIALTRANSACTION REPORT More Documents & Publications DOE/NRC F 742 DOE F 749 DOE F 5635.9

    Register: December 21, 1999 (Volume 64, Number 244)] [Proposed Rules] [Page 71331-71333] From the Federal Register Online via GPO Access [wais.access.gpo.gov] [DOCID:fr21de99-21]

  15. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs). Supersedes DOE O 452.2D and DOE M 452.2-1A.

  16. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  17. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  18. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  19. Neutronic evaluation of a non-fertile fuel for the disposition of weapons-grade plutonium in a boiling water reactor

    SciTech Connect (OSTI)

    Sterbentz, J.W.

    1994-10-01

    A new non-fertile, weapons-grade plutonium oxide fuel concept is developed and evaluated for deep burn applications in a boiling water reactor environment using the General Electric 8x8 Advanced Boiling Water Reactor (ABWR) fuel assembly dimensions and pitch. Detailed infinite lattice fuel burnup results and neutronic performance characteristics are given and although preliminary in nature, clearly demonstrate the fuel`s potential as an effective means to expedite the disposition of plutonium in existing light water reactors. The new non-fertile fuel concept is an all oxide composition containing plutonia, zirconia, calcia, and erbia having the following design weight percentages: 8.3; 80.4; 9.7; and 1.6. This fuel composition in an infinite fuel lattice operating at linear heat generation rates of 6.0 or 12.0 kW/ft per rod can remain critical for up to 1,200 and 600 Effective Full Power Days (EFPD), respectively, and achieve a burnup of 7.45 {times} 10{sup 20} f/cc. These burnups correspond to a 71--73% total plutonium isotope destruction and a 91--94% destruction of the {sup 239}Pu isotope for the 0--40% moderator steam void condition. Total plutonium destruction greater than 73% is possible with a fuel management scheme that allows subcritical fuel assemblies to be driven by adjacent high reactivity assemblies. The fuel exhibits very favorable neutron characteristics from beginning-of-life (BOL) to end-of-life (EOL). Prompt fuel Doppler coefficient of reactivity are negative, with values ranging between {minus}0.4 to {minus}2.0 pcm/K over the temperature range of 900 to 2,200 K. The ABWR fuel lattice remains in an undermoderated condition for both hot operational and cold startup conditions over the entire fuel burnup lifetime.

  20. An experimental study on sub-cooled flow boiling CHF of R134a at low pressure condition with atmospheric pressure (AP) plasma assisted surface modification

    SciTech Connect (OSTI)

    Kim, Seung Jun; Zou, Ling; Jones, Barclay G.

    2015-02-01

    In this study, sub-cooled flow boiling critical heat flux tests at low pressure were conducted in a rectangular flow channel with one uniformly heated surface, using simulant fluid R-134a as coolant. The experiments were conducted under the following conditions: (1) inlet pressure (P) of 400-800 kPa, (2) mass flux (G) of 124-248 kg/m2s, (3) inlet sub-cooling enthalpy (ΔHi) of 12~ 26 kJ/kg. Parametric trends of macroscopic system parameters (G, P, Hi) were examined by changing inlet conditions. Those trends were found to be generally consistent with previous understandings of CHF behavior at low pressure condition (i.e. reduced pressure less than 0.2). A fluid-to-fluid scaling model was utilized to convert the test data obtained with the simulant fluid (R-134a) into the prototypical fluid (water). The comparison between the converted CHF of equivalent water and CHF look-up table with same operation conditions were conducted, which showed good agreement. Furthermore, the effect of surface wettability on CHF was also investigated by applying atmospheric pressure plasma (AP-Plasma) treatment to modify the surface characteristic. With AP-Plasma treatment, the change of microscopic surface characteristic was measured in terms of static contact angle. The static contact angle was reduced from 80° on original non-treated surface to 15° on treated surface. An enhancement of 18% on CHF values under flow boiling conditions were observed on AP-Plasma treated surfaces compared to those on non-treated heating surfaces.

  1. President Obama Hosts Global Nuclear Security Summit | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Hosts Global Nuclear Security Summit President Obama Hosts Global Nuclear Security Summit Washington, DC President Obama hosts a Global Nuclear Security Summit to facilitate discussion on the nature of the nuclear threat and develop steps that can be taken together to secure vulnerable materials, combat nuclear smuggling and deter, detect, and disrupt attempts at nuclear terrorism

  2. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics science-innovationassetsimagesicon-science.jpg Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and ...

  3. accountability | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    accountability | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  4. emergencyresponse | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    emergencyresponse | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  5. whistleblower | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    whistleblower | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  6. 2013 Nuclear Workforce Development Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Myths Topics:  Can a Nuclear Reactor Explode Like a Bomb?  Will Nuclear Waste Be Around for Millions of Years?  Is Nuclear Energy Dangerous? Moderator: Suzy Hobbs Baker Founder, PopAtomic Studios & Director of Nuclear Literacy Project Panel Members: TJ Corder - Nuclear Engineer, Vogtle 3 & 4 Southern Company Jana Thames - Communications Specialist Southern Company Brian Dyke - Nuclear Auxiliary Operator Duke Energy Nathan Zohner North American Young Generation in Nuclear

  7. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  8. Nuclear Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Nuclear Safety The Nuclear Safety Program mission is to support the design, construction, operation, and deactivation and decommissioning of the Paducah and Portsmouth nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Major Responsibilities: Establish and implement nuclear safety requirements that utilize national consensus (or other government) standards or applicable external agency regulations (Nuclear Regulatory

  9. Initiating Event Rates at U.S. Nuclear Power Plants. 1988 - 2013

    SciTech Connect (OSTI)

    Schroeder, John A.; Bower, Gordon R.

    2014-02-01

    Analyzing initiating event rates is important because it indicates performance among plants and also provides inputs to several U.S. Nuclear Regulatory Commission (NRC) risk-informed regulatory activities. This report presents an analysis of initiating event frequencies at U.S. commercial nuclear power plants since each plant’s low-power license date. The evaluation is based on the operating experience from fiscal year 1988 through 2013 as reported in licensee event reports. Engineers with nuclear power plant experience staff reviewed each event report since the last update to this report for the presence of valid scrams or reactor trips at power. To be included in the study, an event had to meet all of the following criteria: includes an unplanned reactor trip (not a scheduled reactor trip on the daily operations schedule), sequence of events starts when reactor is critical and at or above the point of adding heat, occurs at a U.S. commercial nuclear power plant (excluding Fort St. Vrain and LaCrosse), and is reported by a licensee event report. This report displays occurrence rates (baseline frequencies) for the categories of initiating events that contribute to the NRC’s Industry Trends Program. Sixteen initiating event groupings are trended and displayed. Initiators are plotted separately for initiating events with different occurrence rates for boiling water reactors and pressurized water reactors. p-values are given for the possible presence of a trend over the most recent 10 years.

  10. Office of Defense Nuclear Nonproliferation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (DOENNSA) and the U.K. Department of Energy and Climate Change concluded a workshop at Wilton Park, About This Site Budget IG Web Policy...

  11. Nuclear / Radiological Advisory Team | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration / Radiological Advisory Team NRAT Logo NNSA's Nuclear / Radiological Advisory Team (NRAT) provides an emergency response capability for on-scene scientific and technical advice for both domestic and international nuclear or radiological incidents. It is led by a Senior Energy Official who runs the NNSA field operation and who coordinates NNSA follow-on assets as needed. The NRAT is composed of scientists and technicians who can provide advice or conduct limited operations.

  12. Abnormal event identification in nuclear power plants using a neural network and knowledge processing

    SciTech Connect (OSTI)

    Ohga, Yukiharu; Seki, Hiroshi (Hitachi, Ltd. Energy Research Lab., Ibarakiken (Japan))

    1993-02-01

    The combination of a neural network and knowledge processing have been used to identify abnormal events that cause a reactor to scram in a nuclear power plant. The neural network recognizes the abnormal event from the change pattern of analog data for state variables, and this result is confirmed from digital data using a knowledge base of plant status when each event occurs. The event identification method is tested using test data based on simulated results of a transient analysis program for boiling water reactors. It is confirmed that a neural network can identify an event in which it has been trained even when the plant conditions, such as fuel burnup, differ from those used in the training and when the analog data contain white noise. The network does not mistakenly identify the nontrained event as a trained one. The method is feasible for event identification, and knowledge processing improves the reliability of the identification.

  13. Aging Management Guideline for commercial nuclear power plants: Motor control centers; Final report

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.; O`Hearn, E.

    1994-02-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  14. British nuclear policymaking

    SciTech Connect (OSTI)

    Bowie, C.J.; Platt, A.

    1984-01-01

    This study analyzes the domestic political, economic, and bureaucratic factors that affect the nuclear policymaking process in Great Britain. Its major conclusion is that, although there have been changes in that process in recent years (notably the current involvement of a segment of the British public in the debate about the deployment of intermediate-range nuclear forces), future British nuclear policymaking will remain much what it has been in the past. Three ideas are central to understanding British thinking on the subject: (1) Britain's long-standing resolve to have her own national nuclear force is largely traceable to her desire to maintain first-rank standing among the nations of the world in spite of loss of empire. (2) Financial considerations have always been important--so much so that they have usually dominated issues of nuclear policy. (3) The executive branch of government dominates the nuclear policymaking process but does not always present a united front. The United States heavily influences British nuclear policy through having supplied Britain since the late 1950s with nuclear data and components of nuclear weapon systems such as Polaris and Trident. The relationship works both ways since the U.S. depends on Britain as a base for deployment of both conventional and nuclear systems.

  15. NNSA Nuclear/Radiological Incident Response | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration NNSA Nuclear/Radiological Incident Response December 01, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and incidents. NNSA provides technical support to the Departments of Homeland Security, Justice, State, and Defense for nuclear terrorism events and domestic nuclear weapon accidents and incidents. The NNSA emergency response assets also provide support to nuclear

  16. Nuclear Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Engineering Advancing the safe and secure use of nuclear energy Argonne's Nuclear Engineering (NE) division works to advance nuclear energy as a proven, abundant and non-emitting energy source through research, technology development, design, analysis and application of our nuclear energy-related expertise to current and emerging programs of national and international significance. Argonne nuclear engineers have been instrumental in developing civilian nuclear power systems for over 65

  17. Nuclear Workforce Initiative - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety » Nuclear Security & Nonproliferation Nuclear Security & Nonproliferation President Truman signed the Atomic Energy Act in 1946, creating the Atomic Energy Commission -- which later became a part of the Department of Energy. Read more about the Department of Energy's role in nuclear security in <a href="/node/1041771/">our interactive timeline.</a> | Energy Department Photo. President Truman signed the Atomic Energy Act in 1946, creating the Atomic Energy

  18. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Nuclear Physics Program Physics Home Seminars & Colloquia Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks

  19. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Privacy and Security Notice Skip over navigation Search the JLab Site Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Nuclear Physics Program Physics Home Events Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics

  20. Nuclear Energy Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  1. Nuclear Proliferation Challenges

    SciTech Connect (OSTI)

    Professor William Potter

    2005-11-28

    William C. Potter, Director of the Center for Non Proliferation Studies and the Center for Russian and Eurasian Studies at the Monterey Institute of International Studies, will present nuclear proliferation challenges following the 2005 Nuclear Non-Proliferation Treaty (NPT) Review Conference. In addition to elucidating reasons for, and implications of, the conferences failure, Dr. Potter will discuss common ground between nuclear proliferation and terrorism issues and whether corrective action can be taken.

  2. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Presentation: DOE Nuclear Nonproliferation

    Broader source: Energy.gov [DOE]

    A briefing to the Secretary's Energy Advisory Board on DOE nuclear nonproliferation activities prepared by: Anne Harrington, US Department of Energy.

  5. Nuclear Energy Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more understanding of safety margins while addressing ... output of existing nuclear reactors by focusing on important ... safety & feasibility 1% power derating translates to ...

  6. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  7. EIA - State Nuclear Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer ...

  8. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The Department of Energy (DOE), the National Nuclear Security Administration (NNSA) and the University of California (UC) have agreed on new management and operations contracts for ...

  9. Nuclear Physics: Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics: Meetings Talks given at the Science & Technology Review 2004 Larry Cardman: Science Overview and the Experimental Program ppt | pdf Tony Thomas: Nuclear Physics ...

  10. Nuclear Physics Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hall A Hall B Hall C Hall D Physics Departments Administrative Office Data Acquisition Group Detector & Imaging Group Electronics Group User Liaison Nuclear Physics Program HALL A ...

  11. Office Of Nuclear Energy

    Office of Environmental Management (EM)

    the Dependability Attributes of Software-Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants) (Carol Smidts) (The Ohio State University) (NEET ...

  12. Nuclear Fuel Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  13. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    the University of California for violations of nuclear safety rules at the Los Alamos National Laboratory (LANL) in New Mexico. The University of California operates LANL for ...

  14. Reference handbook: Nuclear criticality

    SciTech Connect (OSTI)

    Not Available

    1991-12-06

    The purpose for this handbook is to provide Rocky Flats personnel with the information necessary to understand the basic principles underlying a nuclear criticality.

  15. defense nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Defense Nuclear Security http:www.nnsa.energy.govaboutusourprogramsnuclearsecurity

  16. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Power Clicks with Geochemistry Energy, News, News & Events, Nuclear Energy Computer Power Clicks with Geochemistry Sandia is developing computer models that show how...

  17. Nuclear Energy University Programs

    Broader source: Energy.gov (indexed) [DOE]

    * Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of...

  18. Defense Nuclear Nonproliferation

    National Nuclear Security Administration (NNSA)

    span>

    WASHINGTON D.C - The Department of Energy's National Nuclear Security Administration (DOENNSA) announced today the removal of 36 kilograms...

  19. nuclear threat science

    National Nuclear Security Administration (NNSA)

    2011 National Strategy for Counterterrorism states that the danger of nuclear terrorism is the greatest threat to global security, and affirms preventing terrorist...

  20. Nuclear reactor apparatus

    DOE Patents [OSTI]

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  1. Nuclear Spectra from Skyrmions

    SciTech Connect (OSTI)

    Manton, N. S.

    2009-08-26

    The structures of Skyrmions, especially for baryon numbers 4, 8 and 12, are reviewed. The quantized Skyrmion states are compared with nuclear spectra.

  2. Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-25

    To prevent unauthorized dissemination of Unclassified Controlled Nuclear Information (UCNI). Cancels DOE 5635.4 and DOE 5650.3A

  3. Nuclear fuel composition

    DOE Patents [OSTI]

    Feild, Jr., Alexander L.

    1980-02-19

    1. A high temperature graphite-uranium base nuclear fuel composition containing from about 1 to about 5 five weight percent rhenium metal.

  4. Nuclear Speed-Dating

    Broader source: Energy.gov [DOE]

    The future of nuclear energy needs smart, creative thinkers. That's why more than 120 experts met up last week to "speed-date" each other's ideas.

  5. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all describe Suzy Hobbs Baker. Hear and ask questions about her experience traveling Europe as a nuclear tourist. The Babcock & Wilcox Company Suzy Hobbs Baker Founder of...

  6. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (acting) Email Group Office (505) 667-4665 Find Expertise header Search our employee skills database The evaluations performed by our group are essential for the nuclear weapons...

  7. WIPP Nuclear Facilities Transparency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the safety, security, and legitimate management of nuclear materials." Other Links Yucca Mountain Test Data Carlsbad Environmental Monitoring and Research Center Dimitrovograd...

  8. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    preparedness Read More NSC leader recognized as community role model Read More Apex Gold discussion fosters international cooperation in run-up to 2016 Nuclear Security Summit...

  9. Nuclear Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Facilities Nuclear Facilities Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear Facilities List: Argonne National Laboratory East Tennessee Technology Park Hanford Idaho Site Los Alamos National Laboratory Lawrence Livermore National Laboratory Nevada National Security Site New Brunswick Laboratory Oak Ridge National Laboratory cont. Paducah Pantex Pacific Northwest National Laboratory Portsmouth

  10. verification | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    verification Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and

  11. Nuclear Energy Enabling Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting ...

  12. Unclassified Controlled Nuclear Information (UCNI) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unclassified Controlled Nuclear Information (UCNI) Unclassified Controlled Nuclear Information (UCNI) Welcome to the Unclassified Controlled Nuclear Information (UCNI) webpage. ...

  13. Unclassified Controlled Nuclear Information Training | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unclassified Controlled Nuclear Information Training Unclassified Controlled Nuclear Information Training Training Unclassified Controlled Nuclear Information for persons with ...

  14. COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 18, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear Weapons Dr. Alan Robock Rutgers University A nuclear war ...

  15. Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing Washington, DC President Clinton extends the nuclear weapons testing moratorium for at least 15 months

  16. Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Eisenhower Halts Nuclear Weapons Testing Eisenhower Halts Nuclear Weapons Testing Washington, DC President Eisenhower announces a moratorium on nuclear weapons testing to begin on October 31, 1958

  17. Office of Nuclear Energy

    Broader source: Energy.gov [DOE]

    The Department of Energy Office of Nuclear Energy advances nuclear power as a resource capable of meeting the Nation's energy, environmental, and national security needs by resolving technical, cost, safety, proliferation resistance, and security barriers through research, development, and demonstration as appropriate.

  18. SECTION III: NUCLEAR THEORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    III: NUCLEAR THEORY Astrophysical Factor for the Neutron Generator 13C(α16O Reaction in the AGB Stars ................................................................................III-1 A.M. Mukhamedzhanov, V.Z. Goldberg, G. Rogachev, E. Johnson, S. Brown, K. Kemper, A. Momotyuk, and B. Roeder The Trojan Horse Method: an Indirect Technique in Nuclear Astrophysics ......................................................................................................III-3 A.M. Mukhamedzhanov,

  19. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  20. Vented nuclear fuel element

    DOE Patents [OSTI]

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  1. Nuclear Regulatory Commission | Department of Energy

    Office of Environmental Management (EM)

    What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants Gap Analysis to Support Extended Storage of Used Nuclear Fuel Nuclear Fuel...

  2. Civilian Nuclear Programs, SPO-CNP: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civilian Nuclear Programs, SPO-CNP Science Program Office Applied Energy Civilian Nuclear Office of Science Civilian Nuclear Programs Home Advanced Nuclear Energy Programs Yucca ...

  3. Site Information | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    engineering, safety and reliability of the nuclear explosives package in nuclear weapons. ... engineering, safety and reliability of the nuclear explosives package in nuclear weapons. ...

  4. Nuclear Energy Advisory Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), ...

  5. Office of Nuclear Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Office of Nuclear Safety Mission The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of ...

  6. About NNSA | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    of the U.S. nuclear weapons stockpile without nuclear testing; * Preventing the proliferation nuclear weapons and securing dangerous nuclear materials; * Providing the U.S. Navy ...

  7. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear

    Office of Environmental Management (EM)

    Safeguards | Department of Energy Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for nonpeaceful purposes by developing enhanced safeguards programs and technologies. International nuclear safeguards are integral to implementing the GNEP vision of a peaceful expansion of nuclear energy and demonstration of more proliferation-resistant fuel cycle technologies.

  8. World nuclear outlook 1994

    SciTech Connect (OSTI)

    1994-12-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  9. World nuclear outlook 1995

    SciTech Connect (OSTI)

    1995-09-29

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  10. 1,"Braidwood Generation Station","Nuclear","Exelon Nuclear",2330

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Braidwood Generation Station","Nuclear","Exelon Nuclear",2330 2,"Byron Generating ...

  11. Nuclear Safety Information Agreement Between the U.S. Nuclear...

    Energy Savers [EERE]

    Regulatory Commission, Office of Nuclear Material Safety and Safeguards, and the U.S. ... and nuclear material operations (DOE does not own or operate power reactors). ...

  12. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces...

  13. Comprehensive Nuclear Test-Ban Treaty | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Comprehensive Nuclear Test-Ban Treaty Administrator Leads a Strong NNSA Team at CTBT ... 2015, at the fifth Comprehensive Nuclear Test-Ban Treaty (CTBT) Science & Technology ...

  14. Preparing for the 2012 Nuclear Security Summit | National Nuclear...

    National Nuclear Security Administration (NNSA)

    over 10 countries - enough for 16 nuclear bombs. A dozen new countries joining the key international treaties. Over a dozen new nuclear security training and research "centers...

  15. Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory...

    Office of Legacy Management (LM)

    111989 Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia. Pennsylvania 19406 Dear Mr. Kinneman: -;' .-. 'W ...

  16. Nuclear Weapons Testing Resumes | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Weapons Testing Resumes Nuclear Weapons Testing Resumes Washington, DC The Soviet Union breaks the nuclear test moratorium and the United States resumes testing

  17. National Nuclear Science Week Day 2: NNSA Showcases Nuclear Science...

    National Nuclear Security Administration (NNSA)

    2: NNSA Showcases Nuclear Science Careers | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  18. NNSA Celebrates National Nuclear Science Week | National Nuclear...

    National Nuclear Security Administration (NNSA)

    National Nuclear Science Week | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

  19. National Nuclear Science Week - Jan. 24-28 | National Nuclear...

    National Nuclear Security Administration (NNSA)

    - Jan. 24-28 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  20. Last U.S. Underground Nuclear Test Conducted | National Nuclear...

    National Nuclear Security Administration (NNSA)

    U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  1. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. ... nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. ...

  2. Application of PSA to review and define technical specifications for advanced nuclear power plants

    SciTech Connect (OSTI)

    Kim, I.S.; Samanta, P.K.; Reinhart, F.M.; Wohl, M.L.

    1995-11-01

    As part of the design certification process, probabilistic safety assessments (PSAS) are performed at the design stage for each advanced nuclear power plant. Among other usages, these PSAs are important inputs in defining the Technical Specifications (TSs) for these plants. Knowledge gained from their use in improving the TSs for operating nuclear power plants is providing methods and insights for using PSAs at this early stage. Evaluating the safety or the risk significance of the TSs to be defined for an advanced plant encompasses diverse aspects: (a) determining the basic limiting condition for operation (LCO); (b) structuring conditions associated with the LCO; (c) defining completion times (equivalent to allowed outage times in the TS for conventional plants); and, (d) prescribing required actions to be taken within the specified completion times. In this paper, we consider the use of PSA in defining the TSs for an advanced nuclear plant, namely General Electric`s Advanced Boiling Water Reactor (ABWR). Similar approaches are being taken for ABB-CE`s System 80+ and Westinghouse`s AP-600. We discuss the general features of an advanced reactor`s TS, how PSA is being used in reviewing the TSs, and we give an example where the TS submittal was reviewed using a PSA-based analysis to arrive at the requirements for the plant.

  3. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    SciTech Connect (OSTI)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  4. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE

  5. hrp | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    hrp Personnel Security Program NNSA is responsible for managing national nuclear security and supports several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, Infrastructure and Environment, Nuclear Security, Management and Administration and the Office of the Administrator.

  6. Supporting Our Nation's Nuclear Industry

    ScienceCinema (OSTI)

    Lyons, Peter

    2013-05-29

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  7. TUNL Nuclear Data Evaluation Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TUNL Nuclear Data Evaluation Group As a part of the United States Nuclear Data Network and the international Nuclear Structure and Decay Data Evaluators' Network, the Nuclear Data group at the Triangle Universities Nuclear Laboratory (TUNL) is responsible for evaluations of nuclei in the mass range A = 3 - 20. The current status of these evaluations is summarized below: Nuclear Mass: Latest Publication: Evaluated By: A = 3 Nucl. Phys. A848 (2010) 1 TUNL A = 4 Nucl. Phys. A541 (1992) 1 TUNL (#) A

  8. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,974,"8,363",98.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,974,"8,363",98.0 "Data for 2010" "BWR = Boiling

  9. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    Grand Gulf" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,251","9,643",88.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,251","9,643",88.0 "Data for 2010" "BWR = Boiling Water Reactor."

  10. Vermont Nuclear Profile - Vermont Yankee

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Yankee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,620,"4,782",88.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,620,"4,782",88.0 "Data for 2010" "BWR = Boiling

  11. Australia | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Australia | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  12. testmenu | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    testmenu | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  13. Nuclear Structure - Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Structure depiction of giant resonance modes (ref. Xinfeng Chen, "Giant Resonance Study By 6Li Scattering" Nuclear structure studies at the Institute explore a wide range...

  14. Nuclear Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne has contributed to the development of civilian nuclear power for over 50 years. Our ... advances in the performance, safety and economics of nuclear energy systems. ...

  15. NSTec | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  16. Savannah | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  17. green | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  18. fleet | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fleet | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  19. VPP | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    VPP | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  20. ors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  1. emt | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    emt | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  2. cielo | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cielo | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  3. IT | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    IT | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  4. OSIO | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    OSIO | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  5. OCPC | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    OCPC | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  6. performance | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    performance | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  7. oversight | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    oversight | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  8. policy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    policy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  9. sites | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sites | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  10. AMP | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AMP | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  11. fors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  12. airport | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    airport | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  13. Uzbekistan | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Uzbekistan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  14. removal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  15. foal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    foal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  16. Romania | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Romania | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  17. Korea | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Korea | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  18. ap | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ap | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  19. UPF | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    UPF | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  20. exports | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    exports | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  1. eota | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    eota | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  2. dhs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    dhs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  3. governance | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    governance | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  4. CFR | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    CFR | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  5. exportation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    exportation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  6. nr | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nr | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  7. cyber | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    cyber | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  8. NMIP | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NMIP | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  9. forrestal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    forrestal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  10. associates | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    associates | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  11. tajikistan | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    tajikistan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  12. IND | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    IND | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  13. Links | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  14. noc | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    noc | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  15. Accomplishments | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ... In FY 2009, ASC released improved codes to support stockpile stewardship and other nuclear security missions, including secure transportation, NSE infrastructure, and nuclear ...

  16. Nonproliferation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA, through its Office of Defense Nuclear Nonproliferation (DNN), works closely ...

  17. Newsletters | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the nuclear security enterprise. Online archives are available back to 2003. NNSA publishes a monthly newsletter featuring current events and activities across the nuclear ...

  18. Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    focal point for all deployed assets during a nuclear or radiological incident. ... missions: SearchSurge - Detecting nuclear or radiological materials during a ...

  19. SSAC | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    SSAC NNSA and IAEA Hold the 20th International Training Course on Nuclear Material Accounting and Control Washington, D.C. - The National Nuclear Security Administration (NNSA)...

  20. ONAC | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ONAC NNSA and IAEA Hold the 20th International Training Course on Nuclear Material Accounting and Control Washington, D.C. - The National Nuclear Security Administration (NNSA)...

  1. Weapons | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and Russia all with the goal of reducing nuclear weapons in both countries and, ultimately, lowering the global nuclear proliferation risk and increasing international security. ...

  2. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  3. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  4. sliderphotos | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sliderphotos | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  5. ITC | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ITC | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  6. internships | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    internships | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  7. dnn | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (DOENNSA) and the U.K. Department of Energy and Climate Change concluded a workshop at Wilton Park, Shaping the future of nuclear...

  8. Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  9. laos | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    stakeholder organizations attended the event. WASHINGTON - The U.S. Department of Energy's National Nuclear Security Administration (DOENNSA) sponsored the Fundamentals of Nuclear

  10. Defense Nuclear Facility Safety Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 Defense Nuclear Facility Safety Board Defense Nuclear Facility Safety Board (DNSFB) Vice Chairwoman Jesse Roberson visited and toured the WIPP site this week. While...

  11. hydrogen | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    hydrogen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  12. Evaluated Nuclear Data

    SciTech Connect (OSTI)

    Oblozinsky, P.; Oblozinsky,P.; Herman,M.; Mughabghab,S.F.

    2010-10-01

    This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play dominant role in most of the applications, followed by coolants/moderators, structural materials and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterwards, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1 and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.

  13. Nuclear forensics: Soil content

    SciTech Connect (OSTI)

    Beebe, Merilyn Amy

    2015-08-31

    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  14. Virtual nuclear weapons

    SciTech Connect (OSTI)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  15. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) – Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : • Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. • Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. • Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. • Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. • Supporting industry in helping to create a larger qualified nuclear supplier network. • Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. • Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. • Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  16. TUNL Nuclear Data Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Levels of Light Nuclei, A = 3 - 20 Nuclear Data Evaluation Project Triangular Universities Nuclear Laboratory TUNL Nuclear Data Evaluation Home Page Information on mass chains and nuclides 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Group Info Publications HTML General Tables Level Diagrams Tables of EL's NSR Key# Retrieval ENSDF Excitation Functions Thermal N Capt. G.S. Decays TUNL Dissertations NuDat at BNL Useful Links Citation Examples Home Sitemap Directory Email Us Search WWW

  17. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  18. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  19. Monitoring international nuclear activity

    SciTech Connect (OSTI)

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  20. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date" 1,685,"5,918",98.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,685,"5,918",98.7