Sample records for boilers gas turbines

  1. Consider Installing High-Pressure Boilers with BackpressureTurbine...

    Broader source: Energy.gov (indexed) [DOE]

    High-Pressure Boilers with Backpressure Turbine-Generators Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators This tip sheet outlines the benefits of...

  2. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  3. Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1

    E-Print Network [OSTI]

    Marquez, Horacio J.

    Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1 , Horacio J. Marquez b, and the concept is applied to a boiler-turbine unit to analyze its dynamics. It is shown that the unit shows. Keywords: Boiler-turbine unit; Nonlinearity measure; Gap metric; Anti-windup bumpless transfer techniques

  4. Gain-scheduled `1 -optimal control for boiler-turbine dynamics

    E-Print Network [OSTI]

    Shamma, Jeff S.

    , into the mechanical energy acting on the turbine and generator. The steam generated in the boiler system servesGain-scheduled `1 -optimal control for boiler-turbine dynamics with actuator saturation Pang; accepted 2 June 2003 Abstract This paper presents a gain-scheduled approach for boiler-turbine controller

  5. Split stream boilers for high-temperature/high-pressure topping steam turbine combined cycles

    SciTech Connect (OSTI)

    Rice, I.G. [Rice (I.G.), Spring, TX (United States)

    1997-04-01T23:59:59.000Z

    Research and development work on high-temperature and high-pressure (up to 1,500 F TIT and 4,500 psia) topping steam turbines and associated steam generators for steam power plants as well as combined cycle plants is being carried forward by DOE, EPRI, and independent companies. Aeroderivative gas turbines and heavy-duty gas turbines both will require exhaust gas supplementary firing to achieve high throttle temperatures. This paper presents an analysis and examples of a split stream boiler arrangement for high-temperature and high-pressure topping steam turbine combined cycles. A portion of the gas turbine exhaust flow is run in parallel with a conventional heat recovery steam generator (HRSG). This side stream is supplementary fired opposed to the current practice of full exhaust flow firing. Chemical fuel gas recuperation can be incorporated in the side stream as an option. A significant combined cycle efficiency gain of 2 to 4 percentage points can be realized using this split stream approach. Calculations and graphs show how the DOE goal of 60 percent combined cycle efficiency burning natural gas fuel can be exceeded. The boiler concept is equally applicable to the integrated coal gas fuel combined cycle (IGCC).

  6. Gas turbine diagnostic system

    E-Print Network [OSTI]

    Talgat, Shuvatov

    2011-01-01T23:59:59.000Z

    In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

  7. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25T23:59:59.000Z

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  8. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

    1999-01-01T23:59:59.000Z

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  9. Damage Modeling and Life Extending Control of a Boiler-Turbine System1

    E-Print Network [OSTI]

    Marquez, Horacio J.

    Damage Modeling and Life Extending Control of a Boiler-Turbine System1 Donglin Li Tongwen Chen2 hierarchical LEC structure and apply it to a typ- ical boiler system. There are two damage models

  10. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19T23:59:59.000Z

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  11. Ceramic stationary gas turbine

    SciTech Connect (OSTI)

    Roode, M. van

    1995-12-31T23:59:59.000Z

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  12. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01T23:59:59.000Z

    R. Krutenat, Gas Turbine Materials Conference Proceedings,Conference on Gas Turbine Materials in a Marine Environment,in developing new turbine materials, coatings and processes,

  13. Ceramic gas turbine shroud

    DOE Patents [OSTI]

    Shi, Jun; Green, Kevin E.

    2014-07-22T23:59:59.000Z

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  14. Black liquor gasifier/gas turbine cogeneration

    SciTech Connect (OSTI)

    Consonni, S. [Politecnico di Milano (Italy). Dept. di Energetica; Larson, E.D.; Keutz, T.G. [Princeton Univ., NJ (United States); Berglin, N. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Heat and Power Technology

    1998-07-01T23:59:59.000Z

    The kraft process dominates pulp and paper production worldwide. Black liquor, a mixture of lignin and inorganic chemicals, is generated in this process as fiber is extracted from wood. At most kraft mills today, black liquor is burned in Tomlinson boilers to produce steam for on-site heat and power and to recover the inorganic chemicals for reuse in the process. Globally, the black liquor generation rate is about 85,000 MW{sub fuel} (or 0.5 million tonnes of dry solids per day), with nearly 50% of this in North America. The majority of presently installed Tomlinson boilers will reach the end of their useful lives during the next 5 to 20 years. As a replacement for Tomlinson-based cogeneration, black liquor-gasifier/gas turbine cogeneration promises higher electrical efficiency, with prospective environmental, safety, and capital cost benefits for kraft mills. Several companies are pursuing commercialization of black liquor gasification for gas turbine applications. This paper presents results of detailed performance modeling of gasifier/gas turbine cogeneration systems using different black liquor gasifiers modeled on proposed commercial designs.

  15. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Marra, John Joseph; Wessell, Brian J.; Liang, George

    2013-03-05T23:59:59.000Z

    A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

  16. Gas turbine premixing systems

    DOE Patents [OSTI]

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31T23:59:59.000Z

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  17. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  18. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01T23:59:59.000Z

    of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,OVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone1970, p. 545. R. Krutenat, Gas Turbine Materials Conference

  19. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30T23:59:59.000Z

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  20. AIAA 20033698 Aircraft Gas Turbine Engine

    E-Print Network [OSTI]

    Stanford University

    AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

  1. Development of a low swirl injector concept for gas turbines

    E-Print Network [OSTI]

    Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

    2000-01-01T23:59:59.000Z

    Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

  2. Why Condensing Steam Turbines are More Efficient than Gas Turbines

    E-Print Network [OSTI]

    Nelson, K. E.

    WHY CONDENSING STEAM TURBINES ARE MORE EFFICIENT THAN GAS TURBINES KENNETH E. NELSON Associate Energy Consultant Dow Chemical U.S.A. Plaquemine. Louisiana INTRODUCTION AND ABSTRACT Consider the following questions: 1. Which is bigger... statement. however, is relevant to value. GAS TURBINE CYCLE Figure :> shows the enthalpy analysis for a gas turbine cycle employing a heat recovery unit for steam generation. Air enters the compressor where it's boosted to about 190 psi and mixed...

  3. Fuel option for gas turbine

    SciTech Connect (OSTI)

    Tantayakom, S. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand). Chemical and Analysis Dept.

    1995-12-31T23:59:59.000Z

    Growth in electricity demand is an average of 10% per year. Energy, emission, and economy are importance of critical concerns for generating systems. Therefore, combined cycle power plant is preferred to Electricity Generating Authority of Thailand (EGAT) new power generating capacity. The various option of available fuel for gas turbine are natural gas, liquid fuel and coal fuel. Particularly with the tremendous price increases in imported and domestic fuel supplies, natural gas is an attractive low cost alternative for power generation. EGAT has researched using heavy fuel instead of natural gas since the year 1991. The problems of various corrosion characteristics have been found. In addition, fuel treatment for gas turbine are needed, and along with it, the environmental consideration are options that provide the limitation of environmental regulation.

  4. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-04-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  5. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2000-01-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  6. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-02-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  7. 202 IEEE TRANS.4CTIONS Oh'AUTOMATIC CONTROL, VOL. AC-18,NO. 3, J U K E 1973 Design and Analysis of Boiler-Turbine-Generator

    E-Print Network [OSTI]

    Kwatny, Harry G.

    of Boiler-Turbine-Generator Controls Using Optimal Linear Regulator Theory JOHN P. McDOKALD AND HARRY G of a nonlinear mathematical model of a drum-type, twin furnace, reheat boiler-turbine-generator (RBTG) system- tiveoperatingandcontrolstrategies for boiler-t.urbine- generator systems to meet different, system operating ob- jectives. Among

  8. Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA

    E-Print Network [OSTI]

    Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA Submitted to Dr. Bi By Bernard Chan Pellets for UBC Boilers Replacing Natural Gas" By Bernard Chan, Brian Chan, and Christopher Young Abstract This report studies the feasibility of replacing natural gas with wood pellets for UBC boilers. A gasification

  9. NOx reduction in gas turbine combustors

    E-Print Network [OSTI]

    Sung, Nak Won

    1976-01-01T23:59:59.000Z

    NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Submitted to the Graduate College of Texas A&M University in partial fullfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Mechanical... Engineering NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Approved as to style and content by: (Chairman of Committe (Head of Department) (Member) August 1976 "40308 (Member) 1 1. 1 ABSTRACT NOx Reduction in Gas Turbine...

  10. Gas turbine topping combustor

    DOE Patents [OSTI]

    Beer, Janos (Winchester, MA); Dowdy, Thomas E. (Orlando, FL); Bachovchin, Dennis M. (Delmont, PA)

    1997-01-01T23:59:59.000Z

    A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

  11. Gas turbine vane platform element

    DOE Patents [OSTI]

    Campbell, Christian X. (Oviedo, FL); Schiavo, Anthony L. (Oviedo, FL); Morrison, Jay A. (Oviedo, FL)

    2012-08-28T23:59:59.000Z

    A gas turbine CMC shroud plate (48A) with a vane-receiving opening (79) that matches a cross-section profile of a turbine vane airfoil (22). The shroud plate (48A) has first and second curved circumferential sides (73A, 74A) that generally follow the curves of respective first and second curved sides (81, 82) of the vane-receiving opening. Walls (75A, 76A, 77A, 78A, 80, 88) extend perpendicularly from the shroud plate forming a cross-bracing structure for the shroud plate. A vane (22) may be attached to the shroud plate by pins (83) or by hoop-tension rings (106) that clamp tabs (103) of the shroud plate against bosses (105) of the vane. A circular array (20) of shroud plates (48A) may be assembled to form a vane shroud ring in which adjacent shroud plates are separated by compressible ceramic seals (93).

  12. Satoshi Hada Department of Gas Turbine Engineering,

    E-Print Network [OSTI]

    Thole, Karen A.

    Satoshi Hada Department of Gas Turbine Engineering, Mitsubishi Heavy Industries, Ltd., Takasago on Vane Endwall Film-Cooling Turbines are designed to operate with high inlet temperatures to improve. The endwall design considers both an upstream slot, representing the combustor--turbine junction

  13. Gas turbine topping combustor

    DOE Patents [OSTI]

    Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

    1997-06-10T23:59:59.000Z

    A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

  14. Gas fired Advanced Turbine System

    SciTech Connect (OSTI)

    LeCren, R.T.; White, D.J.

    1993-01-01T23:59:59.000Z

    The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

  15. Blade for a gas turbine

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2010-10-26T23:59:59.000Z

    A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.

  16. Method for detecting gas turbine engine flashback

    DOE Patents [OSTI]

    Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

    2012-09-04T23:59:59.000Z

    A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.

  17. A new coordinated control strategy for boiler-turbine system of coal-fired power plant

    SciTech Connect (OSTI)

    Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H. [Shanghai Jiao Tong University, Shanghai (China)

    2005-11-01T23:59:59.000Z

    This paper presents the new development of the boiler-turbine coordinated control strategy using fuzzy reasoning and autotuning techniques. The boiler-turbine system is a very complex process that is a multivariable, nonlinear, slowly time-varying plant with large settling time and a lot of uncertainties. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. Proportional-integral derivative (PID) type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. A special subclass of fuzzy inference systems, called the Gaussian partition with evenly (GPE) spaced midpoints systems, is used to self-tune the main steam pressure PID controller's parameters online based on the error signal and its first difference, aimed at overcoming the uncertainties due to changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors. For the large variation of operating condition, a supervisory control level has been developed by autotuning technique. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process. Indeed, better control performance and economic benefit have been achieved.

  18. Airfoil for a gas turbine

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2011-01-18T23:59:59.000Z

    An airfoil is provided for a gas turbine comprising an outer structure comprising a first wall, an inner structure comprising a second wall spaced relative to the first wall such that a cooling gap is defined between at least portions of the first and second walls, and seal structure provided within the cooling gap between the first and second walls for separating the cooling gap into first and second cooling fluid impingement gaps. An inner surface of the second wall may define an inner cavity. The inner structure may further comprise a separating member for separating the inner cavity of the inner structure into a cooling fluid supply cavity and a cooling fluid collector cavity. The second wall may comprise at least one first impingement passage, at least one second impingement passage, and at least one bleed passage.

  19. Life assessment product catalog for boilers, steam pipes, and steam turbines

    SciTech Connect (OSTI)

    Hoffman, S. (Hoffman (S.), Santa Clara, CA (United States))

    1992-07-01T23:59:59.000Z

    Aging fossil power plants, escalating costs of new plant construction, and load growth rate uncertainties are motivating utilities to make the most effective use of critical components in existing power plants. To help meet this need, EPRI has refined existing methods and developed new methods of predicting the remaining life of key fossil plant components with greater accuracy and confidence. This report describes 16 EPRI products (guidelines, computer programs, and other tools) that apply these techniques to boiler tubes, boiler headers, steam lines, and turbine rotors, blades, and casings. Utility personnel, including plant engineers, maintenance supervisor, engineering department staff, plant operating staff, and performance engineers, can use these products to assess remaining component life, as well as to set cost-effective maintenance procedures, inspection schedules, and operating procedures.

  20. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-01-01T23:59:59.000Z

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  1. Combustion modeling in advanced gas turbine systems

    SciTech Connect (OSTI)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

    1995-12-31T23:59:59.000Z

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  2. Gas Turbines Increase the Energy Efficiency of Industrial Processes

    E-Print Network [OSTI]

    Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

    1981-01-01T23:59:59.000Z

    clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

  3. Development and Application of Gas Sensing Technologies to Enable Boiler Balancing

    E-Print Network [OSTI]

    Dutta, Prabir K.

    01/2004 Development and Application of Gas Sensing Technologies to Enable Boiler Balancing to monitor total NOx (0-1000 ppm), CO (0-1000 ppm) and O2 (1-15%) within the convective pass of the boiler of such sensor systems will dramatically alter how boilers are operated, since much of the emissions creation

  4. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect (OSTI)

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01T23:59:59.000Z

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  5. A Wood-Fired Gas Turbine Plant

    E-Print Network [OSTI]

    Powell, S. H.; Hamrick, J. T.

    A WOOD-FIRED GAS TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood...-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 50l-k). A...

  6. Second law analysis of a natural gas-fired steam boiler and cogeneration plant.

    E-Print Network [OSTI]

    Conklin, Eric D

    2010-01-01T23:59:59.000Z

    ??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of (more)

  7. Gas turbine engines with particle traps

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

    1992-01-01T23:59:59.000Z

    A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

  8. Energy Saving in Ammonia Plant by Using Gas Turbine

    E-Print Network [OSTI]

    Uji, S.; Ikeda, M.

    1981-01-01T23:59:59.000Z

    An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore...

  9. An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines

    E-Print Network [OSTI]

    Ibrahim, Zuhair M. A.

    2007-01-01T23:59:59.000Z

    of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:in Lean Premixed Gas Turbine Combustors," Journal of

  10. Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001

    E-Print Network [OSTI]

    Ishii, Jun

    2004-01-01T23:59:59.000Z

    Scheibel (1997) Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines, October 2000. Available onlineNext Evolution of the F Gas Turbine, April 2001. Available

  11. A Portable Expert System for Gas Turbine Maintenance

    E-Print Network [OSTI]

    Quentin, G. H.

    Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet...

  12. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect (OSTI)

    Ferguson, D.H.

    2007-10-01T23:59:59.000Z

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  13. Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones

    E-Print Network [OSTI]

    Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01T23:59:59.000Z

    In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones...

  14. Reliable Gas Turbine Output: Attaining Temperature Independent Performance

    E-Print Network [OSTI]

    Neeley, J. E.; Patton, S.; Holder, F.

    RELIABLE GAS TURBINE OUTPUT; ATTAINING TEMPERATURE INDEPENDENT PERFORMANCE James E. Neeley, P.E. Power Plant Engineer Public Utility Commission of Texas Austin, Texas ABSTRACT Improvements in gas turbine efficiency, coupled... with dropping gas prices, has made gas turbines a popular choice of utilities to supply peaking as well as base load power in the form of combined cycle power plants. Today, because of the gas turbine's compactness, low maintenance, and high levels...

  15. Topping of a combined gas- and steam-turbine powerplant using a TAM combustor

    SciTech Connect (OSTI)

    Miskolczy, G.; Wang, C.C.; Lovell, B.T.; McCrank, J.

    1981-03-01T23:59:59.000Z

    The objective of this program is to evaluate the engineering and economic feasibility of a thermionic array module (TAM) topped combustor for a gas turbine. A combined gas- and steam-turbine system was chosen for this study. The nominal output of the gas and steam turbines were 70 MW and 30 MW, respectively. The gas-turbine fuel was a coal-derived medium-Btu gas assumed to be from an oxygen blown Texaco coal-gasification process which produces pressurized gas with an approximate composition of 52% CO and 36% H/sub 2/. Thermionic converters are assumed to line the walls of the gas-turbine combustor, so that the high-temperature gases heat the thermionic converter emitter. The thermionic converters produce electricity while the rejected heat is used to preheat the combustion air. To maximize the production of power from the thermionic converter, the highest practical flame temperature is obtained by preheating the combustor air with the thermionic collectors and rich combustion. A portion of the air, which bypassed the combustor, is reintroduced to complete the combustion at a lower temperature and the mixed gases flow to the turbine. The exhaust gases from the turbine flow to the heat recovery boilers to the bottoming steam cycle. The gas and steam turbine system performance calculation was based on data from Brown Boveri Turbomachinery, Inc. The performance of the thermionic converters (TAM) for the reference case was based on actual measurements of converters fired with a natural gas flame. These converters have been operated in a test furnace for approximately 15,000 device hours.

  16. Gas mixing in the wall layer of a CFB boiler

    SciTech Connect (OSTI)

    Sterneus, J.; Johnsson, F. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-12-31T23:59:59.000Z

    Tracer-gas measurements were carried out in the transport zone of a 12 MW CFB boiler with special emphasis on the wall-layer flow. Helium (He) was used as tracer gas and a mass spectrometer was used to determine the He-concentrations. The primary gas velocity, U{sub 0}, was 1.2, 2.6 and 4.3 m/s (no secondary air) and the bed material was silica sand with an average particle diameter of 0.32 mm. Tracer gas was injected at different distances from one of the furnace walls and sampled above and below the injection level. In the wall layer, tracer-gas concentrations were detected above (C{sub above}) as well as below (C{sub below}) the injection height for all operating conditions, i.e., the gas flows both up and down from the injection point. The data show that the net flow of tracer gas in the wall layer depends on the operating conditions, and the concentration ratio of the down- and up-flowing gas, {psi} = C{sub below}/C{sub above}, decreases with increased gas velocity ({psi} > 1 for U{sub 0} = 1.2 m/s, {psi} {approx} 1 for U{sub 0} = 2.6 m/s and {psi} < 1 for U{sub 0} = 4.3 m/s). There exists a gas exchange between the core region and the wall-layer. A plug flow model applied to the core region gives a radial dispersion coefficient, D{sub r}, in the range of 0.015--0.025 m{sup 2}/s which is higher than the D{sub r} values reported in literature which are below 0.01 m{sup 2}/x. However, the latter values were obtained in tall and narrow risers.

  17. Gasification Evaluation of Gas Turbine Combustion

    SciTech Connect (OSTI)

    Battelle

    2003-12-30T23:59:59.000Z

    This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

  18. Advanced Coal-Fueled Gas Turbine Program

    SciTech Connect (OSTI)

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01T23:59:59.000Z

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  19. advanced gas turbines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan) 2003-01-01 63 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  20. aviation gas turbines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan) 2003-01-01 55 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  1. advanced gas turbine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan) 2003-01-01 63 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  2. aircraft gas turbines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan) 2003-01-01 62 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  3. aircraft gas turbine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan) 2003-01-01 62 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  4. aviation gas turbine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan) 2003-01-01 55 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  5. automotive gas turbine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan) 2003-01-01 56 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  6. Gas Turbine Technology, Part A: Overview, Cycles, and Thermodynamic Performance

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    The growth of cogeneration technology has accelerated in recent years, and it is estimated that fifty percent of the cogeneration market will involve gas turbines. To several energy engineers, gas turbine engines present a new and somewhat...

  7. Gas Turbine Technology, Part B: Components, Operations and Maintenance

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    This paper builds on Part A and discusses the hardware involved in gas turbines as well as operations and maintenance aspects pertinent to cogeneration plants. Different categories of gas turbines are reviewed such as heavy duty aeroderivative...

  8. SPINTHIR: An ignition model for gas turbines

    E-Print Network [OSTI]

    Neophytou, A; Mastorakos, E

    2012-08-28T23:59:59.000Z

    MCS 7 Chia Laguna, Cagliari, Sardinia, Italy, September 11-15, 2011 A PRACTICAL MODEL FOR THE HIGH-ALTITUDE RELIGHT OF A GAS TURBINE COMBUSTOR A. Neophytou*,1, E. Mastorakos*, E.S. Richardson**, S. Stow*** and M. Zedda*** em257@eng... geometries is given. In this section, the main concepts of the model are repeated for clarity and the CFD solution of the gas turbine combustor is briefly presented. 2.1 Model description: main idea The model aims at representing the possible...

  9. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

    2008-07-15T23:59:59.000Z

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  10. Gas Turbine Fired Heater Integration: Achieve Significant Energy Savings

    E-Print Network [OSTI]

    Iaquaniello, G.; Pietrogrande, P.

    GAS TURBINE FIRED HEATER INTEGRATION: ACHIEVE SIGNIFICANT ENERGY SAVINGS G. Iaquaniello**, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI SpA, Rome, Italy ABSTRAer Faster payout will result if gas... as in steam turbines. A specific example of how cogeneration can work in this way is in the integration of a gas turbine with a fired heater as shown in Figure 2. Electrical or mechanical power is delivered by the gas turbine while the exhaust combustion...

  11. Sea trials for Eurodyn gas turbine

    SciTech Connect (OSTI)

    Kunberger, K.

    1995-04-01T23:59:59.000Z

    The Eurodyn gas turbine concept is a collaboration between Ulstein Turbine, Turbomeca and Volvo Aero. It is also supported by the European Community under its high-technology Eureka program (EU 159). A full-size Eurodyn prototype has been running on a test bed in France since October 1992. A complete engine, including a power output gear-box, began parallel test bed trials in Norway in March 1993. Results to date indicate that these test engines have achieved efficiencies of 32.8%. The corresponding output is recorded as being 2.6 MW (ISO) with NO{sub x} emissions stated as being as low as 24 ppm (15% O{sub 2}) running on marine diesel fuel. The Eurodyn gas turbine is designed to provide some 9000 hours of operation between overhauls, effectively giving a typical fast ferry application something like three years of operation. The TBO for power generation applications is 20000 hours, which also means about three years of operation. Of particular significance in this gas turbine package is the incorporation of a dedicated output gearbox. For marine applications the gearbox developed by Ulstein Propeller is a compact and light two-stage epicyclic unit reducing the power turbine output speed of 13000 r/min down to 1000 r/min. 3 figs.

  12. Statistical estimation of multiple faults in aircraft gas turbine engines

    E-Print Network [OSTI]

    Ray, Asok

    415 Statistical estimation of multiple faults in aircraft gas turbine engines S Sarkar, C Rao of multiple faults in aircraft gas-turbine engines, based on a statistical pattern recognition tool called commercial aircraft engine. Keywords: aircraft propulsion, gas turbine engines, multiple fault estimation

  13. Symbolic identification for fault detection in aircraft gas turbine engines

    E-Print Network [OSTI]

    Ray, Asok

    Symbolic identification for fault detection in aircraft gas turbine engines S Chakraborty, S Sarkar and computationally inexpensive technique of component-level fault detection in aircraft gas-turbine engines identification, gas turbine engines, language-theoretic analysis 1 INTRODUCTION The propulsion system of modern

  14. A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY

    E-Print Network [OSTI]

    A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY AND POWER REPORT (FAR) A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY://www.energy.ca.gov/research/index.html. #12;Page 1 A New Gas Turbine Engine Concept For Electricity Generation With Increased

  15. Airfoil for a turbine of a gas turbine engine

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2010-12-21T23:59:59.000Z

    An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

  16. Micro-combustor for gas turbine engine

    DOE Patents [OSTI]

    Martin, Scott M. (Oviedo, FL)

    2010-11-30T23:59:59.000Z

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  17. Stack Gas Heat Recovery from 100 to 1200 HP Boilers

    E-Print Network [OSTI]

    Judson, T. H.

    1980-01-01T23:59:59.000Z

    in reduced production and caused personnel layoffs. U.S. Government reports indicate that roughly 20% of all fuel is consumed in boilers. A savings in boiler fuel consumption can have a positive impact on energy conservation, and become an important component...

  18. Parametric Study of Gas Turbine Film-Cooling

    E-Print Network [OSTI]

    Liu, Kevin

    2012-10-19T23:59:59.000Z

    In this study, the film-cooling effectiveness in different regions of gas turbine blades was investigated with various film hole/slot configurations and mainstream flow conditions. The study consisted of three parts: 1) turbine blade span film...

  19. Forecasting and strategic inventory placement for gas turbine aftermarket spares

    E-Print Network [OSTI]

    Simmons, Joshua T. (Joshua Thomas)

    2007-01-01T23:59:59.000Z

    This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

  20. Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Mani, G.

    1983-01-01T23:59:59.000Z

    Combustion gas turbines have gained widespread acceptance for mechanical drive and power generation applications. One key drawback of a combustion turbine is that its specific output and thermal efficiency vary quite significantly with variations...

  1. Low Temperature Heat Recovery for Boiler Systems

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    be economically heated to within 50 0 F of the entering flue gas temperature. Other less common, but practical, uses for energy include driving a low-temperature electric turbine cycle or an absorption chilling cycle. An improvement in boiler efficiency of 3...% to 8% can normally be realized by cooling boiler flue gasses down to llO o F_200 0 F. This recovers a large quantity of the available sensible heat in most boiler flue gas streams. Efficiency can be improv ed by up to 10% if flue gas is cooled down...

  2. An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines

    E-Print Network [OSTI]

    Ibrahim, Zuhair M. A.

    2007-01-01T23:59:59.000Z

    During Premix Gas Turbine Combustion," Journal ofApplication to Gas-Turbine Combustion Instability Analysis,"Clavin, P. , " Premixed Combustion and Gas Dynamics," Annual

  3. Gas turbine alternative fuels combustion characteristics

    SciTech Connect (OSTI)

    Rollbuhler, R.J.

    1989-02-01T23:59:59.000Z

    An experimental investigation was conducted to obtain combustion performance and exhaust pollutant concentrations for specific synthetic hydrocarbon fuels. Baseline comparison fuels used were gasoline and diesel fuel number two. Testing was done over a range of fuel to air mass ratios, total mass flow rates, and input combustion air temperatures in a flame-tube-type gas turbine combustor. Test results were obtained in terms of released heat and combustion gas emission values. The results were comparable to those obtained with the base fuels with variations being obtained with changing operating conditions. The release of carbon particles during the tests was minimal. 22 refs., 12 figs., 2 tabs.

  4. Radial Inflow Gas Turbine Flow Path Design

    E-Print Network [OSTI]

    Samip Shah; Gaurang Chaudhri; Digvijay Kulshreshtha; S. A. Channiwalla

    Abstract:- A new method for radial inflow gas turbine flow paths design based on a unique integrated conceptual design environment AxSTREAM is presented in this paper. This integrated environment is a seamless and swift processing scheme that incorporates stages aerodynamic analysis and preliminary design/sizing based on the one dimensional method. The environment makes possible to find number of different designs with inverse task solver, basing on initially specified boundary conditions, closing conditions and design variables. Design space explorer provides easy and visual comparison for range of obtained design in customizable coordinate axes. Solution filtering on different parameters, such as meridional and axial dimensions, maximal blades weight, saving the time to choose from thousands obtained solutions the only one right design. Flexibility of presented approach allows to built-up complete gas turbine flow path from consequence of individual elements: stationary and rotating elements, ducts, heat exchangers, and analyze it in common environment. Complete control of all aspects of aerodynamic flow path quality, structural reliability, and integral performances on design and offdesign conditions is performing throughout all design process. This gives full interaction between user and system for immediate correction and enhancement of current design data using various optimization capabilities to feel the impact of changes on each design step. Integrated system AxSTREAM significantly shortening the design cycle time from initial machine concept to finalized design with all offdesign performances details. The design process is demonstrated for a 25kW radial inflow gas turbine. Keywords:- Radial Inflow Turbine, Performance Maps, AxSTREAM I.

  5. Design, modelling and control of a gas turbine air compressor .

    E-Print Network [OSTI]

    WIESE, ASHLEY PETER

    2014-01-01T23:59:59.000Z

    ??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine (more)

  6. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    of Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MITin the 1890s and the gas turbine invented by Frank Whittle

  7. Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines

    E-Print Network [OSTI]

    Littlejohn, David

    2008-01-01T23:59:59.000Z

    of Engineering for Gas Turbines and Power-Transactions ofInjector for Lean Premixed Gas Turbines D. Littlejohn and R.11. IC ENGINE AND GAS TURBINE COMBUSTION SHORT TITLE: Fuel

  8. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    SciTech Connect (OSTI)

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17T23:59:59.000Z

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  9. Combined biomass and black liquor gasifier/gas turbine cogeneration at pulp and paper mills

    SciTech Connect (OSTI)

    Larson, E.D.; Kreutz, T.G. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies; Consonni, S. [Politecnico di Milano, Milan (Italy). Dipt. di Energetica

    1999-07-01T23:59:59.000Z

    Kraft pulp and paper mills generate large quantities of black liquor and byproduct biomass suitable for gasification. These fuels are used today for onsite cogeneration of heat and power in boiler/steam turbine systems. Gasification technologies under development would enable these fuels to be used in gas turbines. This paper reports results of detailed full-load performance modeling of pulp-mill cogeneration systems based on gasifier/gas turbine technologies. Pressurized, oxygen-blown black liquor gasification, the most advanced of proposed commercial black liquor gasifier designs, is considered, together with three alternative biomass gasifier designs under commercial development (high-pressure air-blown, low-pressure air-blown, and low-pressure indirectly-heated). Heavy-duty industrial gas turbines of the 70-MW{sub e} and 25-MW {sub e} class are included in the analysis. Results indicate that gasification-based cogeneration with biomass-derived fuels would transform a typical pulp mill into significant power exporter and would also offer possibilities for net reductions in emissions of carbon dioxide relative to present practice.

  10. External combustor for gas turbine engine

    DOE Patents [OSTI]

    Santanam, Chandran B. (Indianapolis, IN); Thomas, William H. (Indianapolis, IN); DeJulio, Emil R. (Columbus, IN)

    1991-01-01T23:59:59.000Z

    An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.

  11. Gas Turbine Considerations in the Pulp and Paper Industry

    E-Print Network [OSTI]

    Anderson, J. S.; Kovacik, J. M.

    GAS TURBINE CONSIDERATIONS IN THlI: PULP AND PAPER INDUSTRY J. Steven Anderson, Ph.D. Director-Energy International Paper Company Purchase, NY INTRODUCTION The pulp and paper industry is one of the largest users of energy... for the coming century. The industry has also become aware that gas turbine-based cogeneration systems can frequently be highly desirable relative to their tra ditional steam turbine approach. BACKGROUND The pulp and paper industry ranks as the fourth...

  12. Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions

    E-Print Network [OSTI]

    Cheng, R. K.

    2009-01-01T23:59:59.000Z

    to verify this model at gas turbine conditions so that itmodel is consistent with the trends observed at gas turbine

  13. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011 Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011...

  14. An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines

    E-Print Network [OSTI]

    Ibrahim, Zuhair M. A.

    2007-01-01T23:59:59.000Z

    Instabilities in A Model Gas Turbine Combustor," Journal ofModel of Acoustic Response of Turbulent Premixed Flame and Its Application to Gas-Turbine

  15. Working on new gas turbine cycle for heat pump drive

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

  16. SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data

    E-Print Network [OSTI]

    Reiter, Ehud

    SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data Jin Yu of Aberdeen Aberdeen, AB24 3UE, UK {jyu, ereiter, jhunter, ssripada}@csd.abdn.ac.uk Abstract: SumTime-Turbine produces textual summaries of archived time- series data from gas turbines. These summaries should help

  17. Upgrade of Multiple Boiler/Turbine Plant to Microprocessor Control- A Case History

    E-Print Network [OSTI]

    Schenk, J. R.; Sommer, A. C.

    'lis is done by first calculating the sum of the losses efficiency 0 line and using that and auxiliaries costs to determine the cost I curve function for each boiler. The incremental co~ts for each are CjPared 231 I 1 I ESL-IE-85-05-44 Proceedings from... into equipment maintenance. Boiler efficiency degradation can be monitored and actions taken before an unexpected outage occurs. A -loose- boiler really didn't matter before, now the maintenance staff is able to keep the system operat.ing at peak...

  18. Full operating range robust hybrid control of a coal-fired boiler/turbine unit - article no. 041011

    SciTech Connect (OSTI)

    Zheng, K.; Bentsman, J.; Taft, C.W. [University of Illinois, Urbana, IL (United States). Dept. for Engineering Science & Mechanics

    2008-07-15T23:59:59.000Z

    Multi-input-multi-output robust controllers recently designed for the megawatt output/throttle pressure control in a coal-fired power plant boiler/turbine unit have demonstrated performance robustness noticeably superior to that of the currently employed nonlinear PID-based controller. These controllers, however, have been designed only for the range of 150-185 MW around the 185 MW nominal operating point, exhibiting a significant loss of performance in the lower range of 120-150 MW. Through system identification, the reason for this performance loss is demonstrated in the current work to be a pronounced dependence of the boiler/turbine unit steady state gains on the operating point. This problem is addressed via a hybrid control law consisting of two robust controllers and a robust switch between them activated by the set point change. The controllers are designed to cover the corresponding half-ranges of the full operating range. This permits attainment of the desired overall performance as well as reduction of modeling uncertainty induced by the operating point change to approximately 25% of that associated with the previous designs. Robust switching is accomplished through a novel hybrid mode of behavior-robustly controlled discrete transition.

  19. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on installing high-pressure boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  20. Airfoil for a gas turbine engine

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2011-05-24T23:59:59.000Z

    An airfoil is provided for a turbine of a gas turbine engine. The airfoil comprises: an outer structure comprising a first wall including a leading edge, a trailing edge, a pressure side, and a suction side; an inner structure comprising a second wall spaced from the first wall and at least one intermediate wall; and structure extending between the first and second walls so as to define first and second gaps between the first and second walls. The second wall and the at least one intermediate wall define at least one pressure side supply cavity and at least one suction side supply cavity. The second wall may include at least one first opening near the leading edge of the first wall. The first opening may extend from the at least one pressure side supply cavity to the first gap. The second wall may further comprise at least one second opening near the trailing edge of the outer structure. The second opening may extend from the at least one suction side supply cavity to the second gap. The first wall may comprise at least one first exit opening extending from the first gap through the pressure side of the first wall and at least one second exit opening extending from the second gap through the suction side of the second wall.

  1. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

    1995-01-01T23:59:59.000Z

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  2. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11T23:59:59.000Z

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  3. Experimental Study of Gas Turbine Blade Film Cooling and Heat Transfer

    E-Print Network [OSTI]

    Narzary, Diganta P.

    2010-10-12T23:59:59.000Z

    Modern gas turbine engines require higher turbine-entry gas temperature to improve their thermal efficiency and thereby their performance. A major accompanying concern is the heat-up of the turbine components which are already subject to high...

  4. High temperature coatings for gas turbines

    DOE Patents [OSTI]

    Zheng, Xiaoci Maggie

    2003-10-21T23:59:59.000Z

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  5. Combustor assembly in a gas turbine engine

    DOE Patents [OSTI]

    Wiebe, David J; Fox, Timothy A

    2013-02-19T23:59:59.000Z

    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  6. High Efficiency Gas Turbines Overcome Cogeneration Project Feasibility Hurdles

    E-Print Network [OSTI]

    King, J.

    HIGH EFFICIENCY GAS TlJR1HNES OVERCOME COGENFRATION PROJECT FEASIBILITY HURDLES JIM KING Gas Turbine Perfonumce Engineer STEVART &: STEVENSON SERVICES. INC. Houston. TelUlS ABSTRACT Cogeneration project feasibility sometimes fails... during early planning stages due to an electrical cycle efficiency which could be improved through the use of aeroderivative gas turbine engines. The aeroderivative engine offers greater degrees of freedom in terms of power augmentation through...

  7. On optimization of sensor selection for aircraft gas turbine engines Ramgopal Mushini

    E-Print Network [OSTI]

    Simon, Dan

    On optimization of sensor selection for aircraft gas turbine engines Ramgopal Mushini Cleveland sets for the problem of aircraft gas turbine engine health parameter estimation. The performance metric for generating an optimal sensor set [3]. 3. Aircraft gas turbine engines An aircraft gas turbine engine

  8. MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE

    E-Print Network [OSTI]

    Foss, Bjarne A.

    MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

  9. Ceramic stationary gas turbine development. Final report, Phase 1

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

  10. Technical and economic analysis: Gas cofiring in industrial boilers. Final report, November 1995-September 1996

    SciTech Connect (OSTI)

    Potter, F.J.

    1996-09-01T23:59:59.000Z

    This report presents an analysis of the technical and marketing issues associated with the deployment of natural gas cofiring technology in stoker boilers. As part of the work effort, a composite database of stoker boilers was developed using state and federal emission inventories over the years 1985 - 1995. Information sources included the most recent AIRS Facility Subsystem database, the Ozone Transport Region 1990 database, the 1990 Ohio Permit database and the 1985 NAPAP database--all are electronic databases of facilities with air emission permits. The initial data set included almost 3,000 stokers at about 1,500 locations. Stoker facilities were contacted to verify the operating status, capacity, fuel capability, efficiency and other stoker-specific data. The report presents the current stoker boiler distribution by SIC, industrial groups, primary solid fuel (coal, wood, waste, refuse), operating status, and state. Maps are included.

  11. Gas reburning in tangentially-fired, wall-fired and cyclone-fired boilers

    SciTech Connect (OSTI)

    May, T.J. [Illinois Power Co., Decatur, IL (United States); Rindahl, E.G. [Public Service Co. of Colorado, Denver, CO (United States); Booker, T. [City Water Light and Power, Springfield, IL (United States)] [and others

    1994-12-31T23:59:59.000Z

    Gas Reburning has been successfully demonstrated for over 4,428 hours on three coal fired utility boilers as of March 31, 1994. Typically, NO{sub x} reductions have been above 60% in long-term, load-following operation. The thermal performance of the boilers has been virtually unaffected by Gas Reburning. At Illinois Power`s Hennepin Station, Gas Reburning in a 71 MWe tangentially-fired boiler achieved an average NO{sub x} reduction of 67% from the original baseline NO{sub x} level of 0.75 lb NO{sub x}/10{sup 6} Btu over a one year period. The nominal natural gas input was 18% of total heat input. Even at 10% gas heat input, NO{sub x} reduction of 55% was achieved. At Public Service Company of Colorado`s Cherokee Station, a Gas Reburning-Low NO{sub x} Burner system on a 172 MWe wall-fired boiler has achieved overall NO{sub x} reductions of 60--73% in parametric and long-term testing, based on the original baseline NO{sub x} level of 0.73 lb/10{sup 6} Btu. NO{sub x} reduction is as high as 60--65% even at relatively low natural gas usage (5--10% of total heat input). The NO{sub x} reduction by Low NO{sub x} Burners alone is typically 30--40%. NO{sub x} reduction has been found to be insensitive to changes in recirculated flue gas (2--7% of total flue gas) injected with natural gas. At City Water, Light and Power Company`s Lakeside Station in Springfield, Illinois, Gas Reburning in a 33 MWe cyclone-fired boiler has achieved an average NO{sub x} reduction of 66% (range 52--77%) at gas heat inputs of 20--26% in long-term testing, based on a baseline NO{sub x} level of 1.0 lb/10{sup 6} Btu (430 mg/MJ). This paper presents a summary of the operating experience at each site and discusses the long term impacts of applying this technology to units with tangential, cyclone and wall-fired (with Low NO{sub x} Burner) configurations.

  12. A recuperative external combustion open cycle gas turbine

    E-Print Network [OSTI]

    Benson, Dan Thomas

    1979-01-01T23:59:59.000Z

    A RECUPERATIVE EXTERNAL COMBUSTION OPEN CYCLE GAS TURBINE A Thesis by Dan Thomas Benson Submitted to the Graduate College of Texas A@M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1979 Major... Subject: Mechanical Engineering A RECUPEPATIVE EXTERNAL OOMBUSZION OPEN CYCLE GAS TURBINE A Thesis by Dan Thomas Benson Approved as to style and content by: (Chairman of Crxxnit ( of De~t) ( er) May 1979 ABSTRACT A Recuperative External...

  13. Reliability, Availability and Maintainability Considerations for Gas Turbine Cogeneration Systems

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    1984-01-01T23:59:59.000Z

    RELIABILITY, AVAILABILITY AND MAINTAINABILITY CONSIDERATIONS FOR GAS TURBINE COGENERATION SYSTEMS Gyrus B. Meher-Homji and Alfred B. Focke Boyce Engineering International, Inc. Houston, Texas ABSTRACT The success of a cogeneration system... the choice of the number of gas turbines and waste heat recovery units to be utilized down to small components, such as pumps, dampers, hea t exchangers and auxiliary systems. . Rand M studies must be initiated in the conceptual phases of the project...

  14. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    None

    1998-09-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

  15. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    SciTech Connect (OSTI)

    Horner, M.W.

    1980-12-01T23:59:59.000Z

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  16. Steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

    2002-01-01T23:59:59.000Z

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  17. Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)

    E-Print Network [OSTI]

    Demirel, Melik C.

    Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

  18. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    None

    1998-07-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

  19. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    The History and Impact of Diesel Engines and Gas Turbines ByThe History and Impact of Diesel Engines and Gas Turbines.engine invented by Rudolf Diesel in the 1890s and the gas

  20. Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy

    E-Print Network [OSTI]

    Leon, Marco E.

    2007-01-01T23:59:59.000Z

    sensor for measurements of gas turbine exhaust temperature."O, CO 2 , and Temperature in Gas Turbine Exhaust through theview of UCSD power plant gas turbine systems 31

  1. Proceedings of the flexible, midsize gas turbine program planning workshop

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The US Department of Energy (DOE) and the California Energy Commission (CEC) held a program planning workshop on March 4--5, 1997 in Sacramento, California on the subject of a flexible, midsize gas turbine (FMGT). The workshop was also co-sponsored by the Electric Power Research Institute (EPRI), the Gas Research Institute (GRI), the Gas Turbine Association (GTA), and the Collaborative Advanced Gas Turbine Program (CAGT). The purpose of the workshop was to bring together a broad cross section of knowledgeable people to discuss the potential benefits, markets, technical attributes, development costs, and development funding approaches associated with making this new technology available in the commercial marketplace. The participants in the workshop included representatives from the sponsoring organizations, electric utilities, gas utilities, independent power producers, gas turbine manufacturers, gas turbine packagers, and consultants knowledgeable in the power generation field. Thirteen presentations were given on the technical and commercial aspects of the subject, followed by informal breakout sessions that dealt with sets of questions on markets, technology requirements, funding sources and cost sharing, and links to other programs.

  2. Development of biomass as an alternative fuel for gas turbines

    SciTech Connect (OSTI)

    Hamrick, J T [Aerospace Research Corp., Roanoke, VA (USA)

    1991-04-01T23:59:59.000Z

    A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

  3. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect (OSTI)

    Norris, Thomas R.

    2009-12-31T23:59:59.000Z

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of strutlets to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  4. A Review of Materials for Gas Turbines Firing Syngas Fuels

    SciTech Connect (OSTI)

    Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

    2009-05-01T23:59:59.000Z

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  5. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

    1996-01-01T23:59:59.000Z

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  6. MONITORING OF GAS TURBINE OPERATING PARAMETERS USING ACOUSTIC EMISSION

    E-Print Network [OSTI]

    R M Douglas; S Beugn; M D Jenkins; A K Frances; J A Steel; R L Reuben; P A Kew

    In this work, Acoustic Emission (AE) sensors were mounted on several parts of a laboratory-scale gas turbine operating under various conditions, the object being to assess the value of AE for inservice condition monitoring. The turbine unit comprised a gas generator (compressor and turbine on a common shaft) and a free-power turbine for power extraction. AE was acquired from several sensor positions on the external surfaces of the equipment over a range of gas generator running speeds. Relationships between parameters derived from the acquired AE signals and the running conditions are discussed. It is shown that the compressor impeller blade passing frequency is discernible in the AE record, allowing shaft speed to be obtained, and presenting a significant blade monitoring opportunity. Further studies permit a trend to be established between the energy contained in the AE signal and the turbine running speed. In order to study the effects of damaged rotor blades a fault was simulated in opposing blades of the free-power turbine and run again under the previous conditions. Also, the effect of an additional AE source, occurring due to abnormal operation in the gas generator area (likely rubbing), is shown to produce deviations from that expected during normal operation. The findings suggest that many aspects of the machine condition can be monitored.

  7. Gas turbine bucket wall thickness control

    DOE Patents [OSTI]

    Stathopoulos, Dimitrios (Glenmont, NY); Xu, Liming (Greenville, SC); Lewis, Doyle C. (Greer, SC)

    2002-01-01T23:59:59.000Z

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  8. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY

    SciTech Connect (OSTI)

    Unknown

    2001-12-05T23:59:59.000Z

    Building upon the 1999 AD Little Study, an expanded market analysis was performed by GE Power Systems in 2001 to quantify the potential demand for an NGGT product. This analysis concluded that improvements to the US energy situation might be best served in the near/mid term (2002-2009) by a ''Technology-Focused'' program rather than a specific ''Product-Focused'' program. Within this new program focus, GEPS performed a parametric screening study of options in the three broad candidate categories of gas turbines: aero-derivative, heavy duty, and a potential hybrid combining components of the other two categories. GEPS's goal was to determine the best candidate systems that could achieve the DOE PRDA expectations and GEPS's internal design criteria in the period specified for initial product introduction, circa 2005. Performance feasibility studies were conducted on candidate systems selected in the screening task, and critical technology areas were identified where further development would be required to meet the program goals. DOE PRDA operating parameters were found to be achievable by 2005 through evolutionary technology. As a result, the study was re-directed toward technology enhancements for interim product introductions and advanced/revolutionary technology for potential NGGT product configurations. Candidate technologies were identified, both evolutionary and revolutionary, with a potential for possible development products via growth step improvements. Benefits were analyzed from two perspectives: (1) What would be the attributes of the top candidate system assuming the relevant technologies were developed and available for an NGGT market opportunity in 2009/2010; and (2) What would be the expected level of public benefit, assuming relevant technologies were incorporated into existing new and current field products as they became available. Candidate systems incorporating these technologies were assessed as to how they could serve multiple applications, both in terms of incorporation of technology into current products, as well as to an NGGT product. In summary, potential program costs are shown for development of the candidate systems along with the importance of future DOE enabling participation. Three main conclusions have been established via this study: (1) Rapid recent changes within the power generation regulatory environment and the resulting ''bubble'' of gas turbine orders has altered the timing and relative significance associated with the conclusions of the ADL study upon which the original DOE NGGT solicitation was based. (2) Assuming that the relevant technologies were developed and available for an NGGT market opportunity circa 2010, the top candidate system that meets or exceeds the DOE PRDA requirements was determined to be a hybrid aero-derivative/heavy duty concept. (3) An investment by DOE of approximately $23MM/year to develop NGGT technologies near/mid term for validation and migration into a reasonable fraction of the installed base of GE F-class products could be leveraged into $1.2B Public Benefit, with greatest benefits resulting from RAM improvements. In addition to the monetary Public Benefit, there is also significant benefit in terms of reduced energy consumption, and reduced power plant land usage.

  9. Airfoil seal system for gas turbine engine

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2013-06-25T23:59:59.000Z

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  10. Low-pressure-ratio regenerative exhaust-heated gas turbine

    SciTech Connect (OSTI)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01T23:59:59.000Z

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  11. Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler

    SciTech Connect (OSTI)

    Not Available

    1991-04-26T23:59:59.000Z

    This clean coal technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and (to some extent) SO{sub x} emissions: Gas reburning and low NO{sub x} burners. The demonstrations will be conducted on a pre-NSPS utility boiler representative of US boilers that contribute significantly to the inventory of acid rain precursor emissions: a wall fired unit. Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is burned. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 75 percent or more as a result of combining LNB and GR to a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

  12. High temperature gas-cooled reactor: gas turbine application study

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  13. CONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES

    E-Print Network [OSTI]

    Foss, Bjarne A.

    . The exhaust gas from a gas turbine with CO2 as working fluid, is used as heating medium for a steam cycleCONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES Dagfinn Snarheim Lars Imsland. of Science and Technology, 7491 Trondheim Abstract: The semi-closed oxy-fuel gas turbine cycle has been

  14. Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using a Broad Range of Alternative Fuels Luke Cowell. Solar Turbines Abstract: Solar Turbines Incorporated is a leading manufacturer of industrial gas turbine packages for the power generation

  15. Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions

    E-Print Network [OSTI]

    Cheng, R. K.

    2009-01-01T23:59:59.000Z

    Journal of Engineering for Gas Turbines and Power, 130 C. K.Journal of Engineering for Gas Turbines and Power, 130 (2) (of Engineering for Gas Turbines and Power-Transactions of

  16. Natural Gas as a Boiler Fuel of Choice in Texas

    E-Print Network [OSTI]

    Kmetz, W. J.

    for Completed Gas WellsI II 8 Cc, ChJngc In Proven Rc.~t'~_, _ ~> i (Right Sc3lt.-) -5 -5 \\I \\ I I' -10 --+-- Cosl/fool ...-......_ Ft'd!W... 1I Sourcl". OOEIEIA Annual Energy Review 1990 (pp 67. 99-101) ? Proven reserve increases and decreases...

  17. Cost analysis of NOx control alternatives for stationary gas turbines

    SciTech Connect (OSTI)

    Bill Major

    1999-11-05T23:59:59.000Z

    The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

  18. Gas turbine power plant with supersonic shock compression ramps

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2008-10-14T23:59:59.000Z

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  19. Indirect-fired gas turbine bottomed with fuel cell

    DOE Patents [OSTI]

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12T23:59:59.000Z

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  20. Indirect-fired gas turbine bottomed with fuel cell

    DOE Patents [OSTI]

    Micheli, Paul L. (Morgantown, WV); Williams, Mark C. (Morgantown, WV); Parsons, Edward L. (Morgantown, WV)

    1995-01-01T23:59:59.000Z

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

  1. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01T23:59:59.000Z

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  2. Advanced Coal-Fueled Gas Turbine Program. Final report

    SciTech Connect (OSTI)

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01T23:59:59.000Z

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  3. Gas-Fired Boilers and Furnaces | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergy Issues Related-GammaGas

  4. air-cooled gas turbine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan) 2003-01-01 57 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  5. American Institute of Aeronautics and Astronautics Numerical Simulation of a Gas Turbine Combustor Using

    E-Print Network [OSTI]

    Roy, Subrata

    1 American Institute of Aeronautics and Astronautics Numerical Simulation of a Gas Turbine of combustion by using nanosecond pulsed plasma actuators for a gas turbine combustor. Moreau [2] and Corke et

  6. Optimization of Combustion Efficiency for Supplementally Fired Gas Turbine Cogenerator Exhaust Heat Receptors

    E-Print Network [OSTI]

    Waterland, A. F.

    1984-01-01T23:59:59.000Z

    A broad range of unique cogeneration schemes are being installed or considered for application in the process industries involving gas turbines with heat recovery from the exhaust gas. Depending on the turbine design, exhaust gases will range from...

  7. Integrating Gas Turbines with Cracking Heaters - Impact on Emissions and Energy Efficiency

    E-Print Network [OSTI]

    Platvoet, E.

    2011-01-01T23:59:59.000Z

    Turbine Exhaust Gas (TEG) contains high levels of oxygen, typically 15 vol. percent, due to gas turbine blade material temperature limits. As such it can be used as an oxidant for combustion in cracking furnaces and reformers. Its high temperature...

  8. A physics-based emissions model for aircraft gas turbine combustors

    E-Print Network [OSTI]

    Allaire, Douglas L

    2006-01-01T23:59:59.000Z

    In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine ...

  9. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

  10. Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines

    E-Print Network [OSTI]

    Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines the EL method well suited for gas turbine computations, but RANS with the EE approach may also be found

  11. Slag processing system for direct coal-fired gas turbines

    DOE Patents [OSTI]

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01T23:59:59.000Z

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  12. Gas turbine premixer with internal cooling

    DOE Patents [OSTI]

    York, William David; Johnson, Thomas Edward; Lacy, Benjamin Paul; Stevenson, Christian Xavier

    2012-12-18T23:59:59.000Z

    A system that includes a turbine fuel nozzle comprising an air-fuel premixer. The air-fuel premixed includes a swirl vane configured to swirl fuel and air in a downstream direction, wherein the swirl vane comprises an internal coolant path from a downstream end portion in an upstream direction through a substantial length of the swirl vane.

  13. Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001

    E-Print Network [OSTI]

    Ishii, Jun

    2004-01-01T23:59:59.000Z

    Clean Air Amendments helped lower the cost of natural gas turbines vis-a-vis coal based technologies.

  14. Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions

    E-Print Network [OSTI]

    from the heat recovery steam generator powers an additional steam turbine, providing extra electricBiennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk

  15. A comparison between the performance of different silencer designs for gas turbine exhaust systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A comparison between the performance of different silencer designs for gas turbine exhaust systems in more specialist applications, such as the exhaust systems of gas turbines, different silencer experiments are carried out with the aim of investigating performance of silencers used on gas turbines

  16. Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept

    E-Print Network [OSTI]

    Ray, Asok

    307 Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept: aircraft propulsion, gas turbine engines, fault detection and isolation, statistical pattern recognition 1 INTRODUCTION Performance and reliability of aircraft gas turbine engines gradually deteriorate over the service

  17. Recognising Visual Patterns to Communicate Gas Turbine Time-Series Data

    E-Print Network [OSTI]

    Reiter, Ehud

    Recognising Visual Patterns to Communicate Gas Turbine Time-Series Data Jin Yu, Jim Hunter, Ehud analogue channels are sampled once per second and archived by the Tiger system for monitoring gas turbines that it is very important to identify such patterns in any attempt at summarisation. In the gas turbine domain

  18. CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE

    E-Print Network [OSTI]

    Foss, Bjarne A.

    CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Query Sheet Q1: AU: short title OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland, Dagfinn Snarheim, and Bjarne A. Foss Department-closed / gas turbine cycle for capture. Some control strategies and their interaction with the process design

  19. Thermionic combustor application to combined gas and steam turbine power plants

    SciTech Connect (OSTI)

    Miskolczy, G.; Wang, C.C.; Lieb, D.P.; Margulies, A.E.; Fusegni, L.J.; Lovell, B.J.

    1981-01-01T23:59:59.000Z

    The engineering and economic feasibility of a thermionic converter topped combustor for a gas turbine is evaluated in this paper. A combined gas and steam turbine system was chosen for this study with nominal outputs of the gas and steam turbines of 70 MW and 30 MW, respectively. 7 refs.

  20. Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade Architecture

    E-Print Network [OSTI]

    Cooper, Doug

    Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade control, cogeneration, gas turbine, model based control, feed forward, cascade ABSTRACT Presented is a model based strategy for controlling the NOX concentration of natural gas turbine emissions

  1. Lean Blow-Out Prediction in Gas Turbine Combustors Using Symbolic Time Series Analysis

    E-Print Network [OSTI]

    Ray, Asok

    Lean Blow-Out Prediction in Gas Turbine Combustors Using Symbolic Time Series Analysis Achintya of lean blowout in gas turbine combustors based on symbolic analysis of time series data from optical. For the purpose of detecting lean blowout in gas turbine combustors, the state probability vector obtained

  2. BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS

    E-Print Network [OSTI]

    BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS ERIC D. LARSON modeling of gasifier/gas turbine pulp-mill cogeneration systemsusing gasifier designs under commercial gasification. The use of biomass fuels with gas turbines could transform a typical pulp mill from a net

  3. Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles

    E-Print Network [OSTI]

    Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles John Pye, Keith of the technical feasibility a solarised combined-cycle gas turbines with a dish concentrator, with several, optimised for the new SG4 collector. This study aims to determine whether a combined-cycle gas turbine (CCGT

  4. A review of biomass integrated-gasifier/gas turbine combined cycle technology and its

    E-Print Network [OSTI]

    A review of biomass integrated-gasifier/gas turbine combined cycle technology and its application Copersucar, CP 162, Piracicaba, SP ­ Brazil ­ 13400-970 Biomass integrated-gasifier/gas turbine combined-from-sugarcane program. 1. Introduction The biomass integrated-gasifier/gas turbine combined cy- cle (BIG

  5. Integrated Simulations for Multi-Component Analysis of Gas Turbines : RANS Boundary Conditions

    E-Print Network [OSTI]

    Kim, Sangho

    More recently the coupling method has also been applied to a Pratt & Whitney gas turbine.7 The RANSIntegrated Simulations for Multi-Component Analysis of Gas Turbines : RANS Boundary Conditions 94305, U.S.A The aero-thermal computation of the flow path of an entire gas turbine engine can

  6. Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines

    E-Print Network [OSTI]

    Horvitz, Eric

    Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno- sis of efficiency problems for large gas turbines the ultimate goal of applying the system in the day-to-day maintenance of gas- turbine power plants. A Overview

  7. Automated DecisionAnalytic Diagnosis of Thermal Performance in Gas Turbines

    E-Print Network [OSTI]

    Horvitz, Eric

    Automated Decision­Analytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno­ sis of e#ciency problems for large gas turbines the ultimate goal of applying the system in the day­to­day maintenance of gas­ turbine power plants. A Overview

  8. Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine Design

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Aircraft Gas Turbine, define the thermodynamic cycle implemented in the model, define the key engineDevelopment and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine of software to analyze and design gas turbine systems has been an important part of this course since 1988

  9. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15T23:59:59.000Z

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  10. Slag processing system for direct coal-fired gas turbines

    DOE Patents [OSTI]

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01T23:59:59.000Z

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  11. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect (OSTI)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01T23:59:59.000Z

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

  12. Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler; a DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-02-28T23:59:59.000Z

    The results from the GR-LNB technology demonstrated by EER at Cherokee Station approached, but did not meet, the CCT project's performance objectives. Acceptable unit operability was achieved with both the GR and the LNB components. The gas reburning component of the process appears to be broadly applicable for retrofit NO{sub x} control to most utility boilers and, in particular, to wet-bottom cyclone boilers, which are high NO{sub x} emitters and are difficult to control (LNB technology is not applicable to cyclone boilers). GR-LNB can reduce NO{sub x} to mandated emissions levels under Title IV of the CAAA without significant, adverse boiler impacts. The GR-LNB process may be applicable to boilers significantly larger than the demonstration unit, provided there is adequate dispersion and mixing of injected natural gas. Major results of the demonstration project are summarized as follows: NO{sub x}-emissions reductions averaging 64% were achieved with 12.5% gas heat input in long-term tests on a 158-MWe (net) wall-fired unit. The target reduction level of 70% was achieved only on a short-term basis with higher gas consumption. The thermal performance of coal-fired boilers is not significantly affected by GR-LNB. Convective section steam temperatures can be controlled within acceptable limits. Thermal efficiency is decreased by a small amount (about 0.8%), because of increased dry gas loss and higher moisture in the flue gas as a result of the GR process. Furnace slagging and convective section fouling can be adequately controlled. Because of the higher hydrogen/carbon (H/C) ratio of natural gas compared with coal, use of the GR process results in a modest reduction in CO{sub 2} emissions. SO{sub 2} and particulate emissions are reduced in direct proportion to the fraction of heat supplied by natural gas.

  13. Measurement and analysis of gas turbine blade endwall heat transfer

    E-Print Network [OSTI]

    Lee, Joon Ho

    2001-01-01T23:59:59.000Z

    the aerodynamic flow and external heat transfer distribution around the airfoils and end-wall surfaces. A stationary 5 vane linear cascade is designed and developed to investigate gas turbine blade endwall heat transfer and flow. The test cascade is instrumented...

  14. Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit Abstract Recent interest in fuel cell fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical performance with experimental data is presented to demonstrate model validity. Introduction Fuel cell

  15. Firing Excess Refinery Butane in Peaking Gas Turbines

    E-Print Network [OSTI]

    Pavone, A.; Schreiber, H.; Zwillenberg, M.

    normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

  16. DOE Research Grant Leads to Gas Turbine Manufacturing Improvements

    Broader source: Energy.gov [DOE]

    Research sponsored by the U.S. Department of Energy's Office of Fossil Energy has led to a new licensing agreement that will improve the performance of state-of-the-art gas turbines, resulting in cleaner, more reliable and affordable energy.

  17. GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE NOX INDICES OF FAME, GASOIL greenhouse gases emissions and the dependence on oil resources. Biodiesels are Fatty Acid Methyl Esters: rapeseed ("RME"), soybean ("SME"), sunflower, palm etc. A fraction of biodiesel has also an animal origin

  18. Serial cooling of a combustor for a gas turbine engine

    DOE Patents [OSTI]

    Abreu, Mario E. (Poway, CA); Kielczyk, Janusz J. (Escondido, CA)

    2001-01-01T23:59:59.000Z

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  19. High temperature, low expansion, corrosion resistant ceramic and gas turbine

    DOE Patents [OSTI]

    Rauch, Sr., Harry W. (Lionville, PA)

    1981-01-01T23:59:59.000Z

    The present invention relates to ZrO.sub.2 -MgO-Al.sub.2 O.sub.3 -SiO.sub.2 ceramic materials having improved thermal stability and corrosion resistant properties. The utilization of these ceramic materials as heat exchangers for gas turbine engines is also disclosed.

  20. Solid fuel combustion system for gas turbine engine

    DOE Patents [OSTI]

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

    1993-01-01T23:59:59.000Z

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  1. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  2. Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler

    SciTech Connect (OSTI)

    Not Available

    1992-01-15T23:59:59.000Z

    Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

  3. Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines

    SciTech Connect (OSTI)

    Holcomb, G.R. [US DOE, Albany, OR (United States)

    2009-07-01T23:59:59.000Z

    The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  4. Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines

    SciTech Connect (OSTI)

    Gordon H. Holcomb

    2009-01-01T23:59:59.000Z

    U.S. Department of Energys goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  5. American Institute of Aeronautics and Astronautics PERFORMANCE INVESTIGATION OF SMALL GAS TURBINE ENGINES

    E-Print Network [OSTI]

    Müller, Norbert

    American Institute of Aeronautics and Astronautics 1 PERFORMANCE INVESTIGATION OF SMALL GAS TURBINE into the given baseline engine are studied. The compressor and turbine pressure ratios, and the turbine inlet operates with the same turbine pressure ratio, inlet temperature and the same physical compressor like

  6. Proceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference

    E-Print Network [OSTI]

    Liu, Feng

    - istic of steam turbine blading in low pressure turbines. The re- sults demonstrate that the designProceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference June 8-12, 2009, Orlando,FL, USA GT2009-60115 THREE-DIMENSIONAL AERODYNAMIC DESIGN OPTIMIZATION OF A TURBINE BLADE BY USING

  7. Compressor and Hot Section Fouling in Gas Turbines- Causes and Effects

    E-Print Network [OSTI]

    Meher-Homji, C. B.

    COMPRESSOR AND BOT SECTION FOOLING IN GAS TURBINES - CAUSES AND EPFECTS CYRUS B. MEHER-HOMJI Manager, Advanced Technology Boyce Engineering International, Inc. Houston, Texas ABSTRACT The fouling of axial flow compressors and turbines is a... serious operating problem in gas turbine eng ines. These prime movers are being increasingly used in cogeneration applications and with the large air mass flow rate (e.g. 633 Lbs/Sec for a 80 MWe gas turbine) foulants even in the ppm range can cause...

  8. Aeroderivative Gas Turbines Can Meet Stringent NOx Control Requirements

    E-Print Network [OSTI]

    Keller, S. C.; Studniarz, J. J.

    for controlling NOx emissions will be discussed. Steam injection has a very favorable effect on engine performance raising both the power output and efficiency. As an example, full steam injection in the GE LM5000 gas turbine :tncreases the power output from... methods for reducing the NOx levels of the LM2500 and LM5000 engines. These engines are aircraft-derivative turbine engines, which are used in a variety of industrial applications. Efforts have been concentrated on the use of water or steam injection...

  9. Water augmented indirectly-fired gas turbine systems and method

    DOE Patents [OSTI]

    Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

    1992-01-01T23:59:59.000Z

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  10. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    SciTech Connect (OSTI)

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01T23:59:59.000Z

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  11. Gas-path leakage seal for a turbine

    DOE Patents [OSTI]

    Bagepalli, B.S.; Aksit, M.F.; Farrell, T.R.

    1999-08-10T23:59:59.000Z

    A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a turbine (such as combustor casing segments of a gas turbine). The seal includes a flexible and generally imperforate metal sheet assemblage having opposing first and second surfaces and two opposing raised edges extending a generally identical distance above and below the surfaces. A first cloth layer assemblage has a thickness generally equal to the previously-defined identical distance and is superimposed on the first surface between the raised edges. A second cloth layer assemblage is generally identical to the first cloth layer assemblage and is superimposed on the second surface between the raised edges. 5 figs.

  12. Hot gas path analysis and data evaluation of the performance parameters of a gas turbine

    E-Print Network [OSTI]

    Hanawa, David Allen

    1974-01-01T23:59:59.000Z

    SCIENCE December 1974 Major Subject: Mechanical Engineering HOT GAS PATH ANALYSIS AND DATA EVALUATION OF THE PERFORMANCE PARAMETERS OF A GAS TURBINE A Thesis by DAVID AI, LEN HANAWA Approved as to style and content by: PfnA J 7 EY3 .j (Chairman... of -Committee) zr (Head of Depai'tment) Member) /i ~E" Egg(JQJ a g i (Member) (Member) December l974 ABSTRACT Ho Gas Path Ana'ysis and Data Evaluation o. the Performance Parameters of a Gas Turbine (December 1974) David Allen Hanawa, B. S. , Texas A...

  13. Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components.

    E-Print Network [OSTI]

    Nicoud, Franck

    Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components. Florent Duchaine constraint for GT (gas turbines). Most existing CHT tools are developped for chained, steady phenomena. A film-cooled turbine vane is then studied. Thermal conduction in the blade implies lower wall

  14. Elevated freestream turbulence effects on heat transfer for a gas turbine vane

    E-Print Network [OSTI]

    Thole, Karen A.

    turbine airfoil, particularly for the first stage nozzle guide vane. For this study, augmentations. To incorporate all of the variables affecting boundary layer development on gas turbine airfoils, studies needElevated freestream turbulence effects on heat transfer for a gas turbine vane K.A. Thole a,*, R

  15. Nonlinear Model Predictive Control of an Aircraft Gas Turbine Engine Brent. J. Brunell

    E-Print Network [OSTI]

    Bitmead, Bob

    Nonlinear Model Predictive Control of an Aircraft Gas Turbine Engine Brent. J. Brunell , Robert R the potential to achieve better performance than the production controller. 1 Introduction Gas turbines can turbine model considered is a low bypass, two rotor, turbojet with a variable exhaust area typical

  16. Temperature detection in a gas turbine

    DOE Patents [OSTI]

    Lacy, Benjamin; Kraemer, Gilbert; Stevenson, Christian

    2012-12-18T23:59:59.000Z

    A temperature detector includes a first metal and a second metal different from the first metal. The first metal includes a plurality of wires and the second metal includes a wire. The plurality of wires of the first metal are connected to the wire of the second metal in parallel junctions. Another temperature detector includes a plurality of resistance temperature detectors. The plurality of resistance temperature detectors are connected at a plurality of junctions. A method of detecting a temperature change of a component of a turbine includes providing a temperature detector include ing a first metal and a second metal different from the first metal connected to each other at a plurality of junctions in contact with the component; and detecting any voltage change at any junction.

  17. Evaluation of the Gas Turbine Modular Helium Reactor

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Recent advances in gas-turbine and heat exchanger technology have enhanced the potential for a Modular Helium Reactor (MHR) incorporating a direct gas turbine (Brayton) cycle for power conversion. The resulting Gas Turbine Modular Helium Reactor (GT-MHR) power plant combines the high temperature capabilities of the MHR with the efficiency and reliability of modern gas turbines. While the passive safety features of the steam cycle MHR (SC-MHR) are retained, generation efficiencies are projected to be in the range of 48% and steam power conversion systems, with their attendant complexities, are eliminated. Power costs are projected to be reduced by about 20%, relative to the SC-MHR or coal. This report documents the second, and final, phase of a two-part evaluation that concluded with a unanimous recommendation that the direct cycle (DC) variant of the GT-MHR be established as the commercial objective of the US Gas-Cooled Reactor Program. This recommendation has been endorsed by industrial and utility participants and accepted by the US Department of Energy (DOE). The Phase II effort, documented herein, concluded that the DC GT-MHR offers substantial technical and economic advantages over both the IDC and SC systems. Both the DC and IDC were found to offer safety advantages, relative to the SC, due to elimination of the potential for water ingress during power operations. This is the dominant consequence event for the SC. The IDC was judged to require somewhat less development than the direct cycle, while the SC, which has the greatest technology base, incurs the least development cost and risk. While the technical and licensing requirements for the DC were more demanding, they were judged to be incremental and feasible. Moreover, the DC offers significant performance and cost improvements over the other two concepts. Overall, the latter were found to justify the additional development needs.

  18. Firing microfine coal with a low NOx, RSFC burner in an industrial boiler designed for oil and gas

    SciTech Connect (OSTI)

    Thornhock, D.E.; Patel, R.; Borio, R.W. [Combustion Engineering, Inc., Windsor, CT (United States). ABB Power Plant Labs.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center

    1996-12-31T23:59:59.000Z

    ABB Power Plant Laboratories (ABB-PPL) working under a US Department of Energy-Pittsburgh Energy Technology Center (DOE-PETC) contract has carried out tests with the Radially Stratified Flame Core (RSFC) burner which was licensed from the Massachusetts Institute of Technology who developed and patented the RSFC burner. Tests were carried out in a small industrial boiler, designed for oil and natural gas, located at the Energy and Fuels Research Center of Penn State University who was working as a subcontractor to ABB-PPL. The paper presents results from the long-term testing task in the DOE-PETC program with particular attention being paid to the challenges faced in maintaining high combustion efficiencies while achieving low NOx in a small industrial boiler designed for firing oil or natural gas. The paper will also address the issue of ash management when firing coal in a boiler designed for fuels having essentially no ash.

  19. Cooling circuit for a gas turbine bucket and tip shroud

    DOE Patents [OSTI]

    Willett, Fred Thomas (25 Long Creek Dr., Burnt Hills, NY 12027); Itzel, Gary Michael (12 Cider Mill Dr., Clifton Park, NY 12065); Stathopoulos, Dimitrios (11 Wyngate Rd., Glenmont, NY 12077); Plemmons, Larry Wayne (late of Hamilton, OH); Plemmons, Helen M. (2900 Long Ridge Trails, Hamilton, OH 45014); Lewis, Doyle C. (444 River Way, Greer, SC 29651)

    2002-01-01T23:59:59.000Z

    An open cooling circuit for a gas turbine bucket wherein the bucket has an airfoil portion, and a tip shroud, the cooling circuit including a plurality of radial cooling holes extending through the airfoil portion and communicating with an enlarged internal area within the tip shroud before exiting the tip shroud such that a cooling medium used to cool the airfoil portion is subsequently used to cool the tip shroud.

  20. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra

    2005-09-30T23:59:59.000Z

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  1. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27T23:59:59.000Z

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  2. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

    1999-01-01T23:59:59.000Z

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  3. A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultrasupercritical Steam Turbine and Boiler

    SciTech Connect (OSTI)

    Jablonski, P D; Evens, N; Yamamoto, Y; Maziasz, P

    2011-02-27T23:59:59.000Z

    Cast forms of traditionally wrought Ni-base precipitation-strengthened superalloys are being considered for service in the ultra-supercritical conditions (760C, 35MPa) of next-generation steam boilers and turbines. After casting and homogenization, these alloys were given heat-treatments typical for each in the wrought condition to develop the gamma-prime phase. Specimens machined from castings were creep-rupture tested in air at 800C. In their wrought forms, alloy 282 is expected to precipitate M23C6 within grain boundaries, alloy 740 is expected to precipitate several grain boundary phases including M23C6, G Phase, and ? phase, and alloy 263 has M23C6 and MC within its grain boundaries. This presentation will correlate the observed creep-life of these cast alloys with the microstructures developed during creep-rupture tests, with an emphasis on the phase identification and chemistry of precipitated grain boundary phases. The suitability of these cast forms of traditionally wrought alloys for turbine and boiler components will also be discussed.

  4. Title: A brief history of the Rolls-Royce University Technology Centre in Gas Turbine Noise at the Institute of Sound and Vibration Research

    E-Print Network [OSTI]

    Sóbester, András

    Report Title: A brief history of the Rolls-Royce University Technology Centre in Gas Turbine Noise and systems engineering, gas turbine transmission systems and gas turbine noise. The UTC in gas turbine noise to generation and propagation of noise from gas turbine engines. Aircraft noise is a critical technical issue

  5. Advances of flue gas desulfurization technology for coal-fired boilers and strategies for sulfur dioxide pollution prevention in China

    SciTech Connect (OSTI)

    Yang, C.; Zeng, G.; Li, G.; Qiu, J.

    1999-07-01T23:59:59.000Z

    Coal is one of the most important kinds of energy resources at the present time and in the immediate future in China. Sulfur dioxide resulting from combustion of coal is one of the principle pollutants in the air. Control of SO{sub 2} discharge is still a major challenge for environmental protection in developing China. In this paper, research, development and application of technology of flue gas desulfurization (FGD) for coal-fired boilers in China will be reviewed with emphasis on cost-effective technology, and the development trends of FGD technology, as well as the strategy for SO{sub 2} discharge control in China, will be analyzed. A practical technology for middle-small-sized boilers developed by the primary author and the field investigation results will also be presented. At present, there are four major kinds of FGD technologies that are practical to be applied in China for their cost-effectiveness and efficiency to middle-small-sized boilers. An important development trend of the FGD technology for middle-small-sized boilers for the next decade is improvement of the existing cost-effective wet-type FGD technology, and in the future it will be the development of dry-type FGD technology. For middle-sized generating boilers, the development direction of the FGD technology is the spraying and drying process. For large-sized generating boilers, the wet-type limestone-plaster process will still be applied in the immediate future, and dry-type FGD technologies, such as ammonia with electron beam irradiation, will be developed in the future. State strategies for the control of SO{sub 2} discharge will involve the development and popularization of efficient coal-fired devices, extension of gas coal and liquefied coal, spreading coal washing, and centralized heating systems.

  6. Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines

    E-Print Network [OSTI]

    Wang, T.; Braquet, L.

    2008-01-01T23:59:59.000Z

    An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

  7. LARGE EDDY SIMULATION/EULERIAN PROBABILITY DENSITY FUNCTION APPROACH FOR SIMULATING HYDROGEN-ENRICHED GAS TURBINE

    E-Print Network [OSTI]

    Raman, Venkat

    while the small-scale motions are modeled using sub-filter models. Since gas-turbine relevant combustion providing better input for the combustion models. Developing LES-based combustion models for stationary gas) based approach is used here to deal with the complexities of gas turbine combustion. In the PDF approach

  8. A Channel Model for Wireless Sensor Networks in Gas Turbine Engines

    E-Print Network [OSTI]

    Atkinson, Robert C

    A Channel Model for Wireless Sensor Networks in Gas Turbine Engines K. Sasloglou, I. A. Glover , P.5 GHz) for wireless sensors deployed over the external surfaces of a gas turbine engine is reported. The model is empirical and based on a series of transmission loss measurements over the surface of a gas

  9. Preliminary Design Procedure for Gas TurbineTopping Reverse-Flow Wave Rotors

    E-Print Network [OSTI]

    Müller, Norbert

    1 Preliminary Design Procedure for Gas TurbineTopping Reverse-Flow Wave Rotors Pezhman AKBARI1 for implementation in gas turbine applications. First, a thermodynamic cycle analysis evaluates the performance engine. Then, a one-dimensional analytical gas dynamic model of the high-pressure phase (charging zone

  10. Low NOx burner retrofits and enhancements for a 518 MW oil and gas fired boiler

    SciTech Connect (OSTI)

    King, J.J. [Jacksonville Electric Authority, FL (United States); Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

    1995-12-31T23:59:59.000Z

    Low NOx oil/gas burners originally supplied to Jacksonville Electric Authority, Northside No. 3 .500 MW unit, were based on a duplex air register design with lobed spray oil atomizers providing additional fuel staging. Although the burners could meet the targeted NOx levels of 0.3 and 0.2 lbs/10{sup 6} BTU on oil and gas respectively. There was insufficient margin on these NOx levels to enable continuous low NOx operation to be achieved. Further burner development was undertaken based on improved aerodynamic control within the burner design to give an approximate 25% improvement in NOx emission reduction thus providing an adequate operating margin. This `RoBTAS` (Round Burner with Tilted Air Supply) burner design based on techniques developed successfully for front wall coal firing applications achieved the required NOx reductions in full scale firing demonstrations on both heavy fuel oil and natural gas firing. The paper describes the development work and the subsequent application of the `RoBTAS` burners to the Northside No. 3 boiler. The burner will also be test fired on Orimulsion fuel and thus the comparison between heavy fuel oil firing and Orimulsion firing under ultra low NOx conditions will be made.

  11. Ceramic stationary gas turbine development program -- Fifth annual summary

    SciTech Connect (OSTI)

    Price, J.R.; Jimenez, O.; Faulder, L.; Edwards, B.; Parthasarathy, V.

    1999-10-01T23:59:59.000Z

    A program is being performed under the sponsorship of the US Department of Energy, Office of Industrial Technologies, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of metallic hot section components with ceramic parts. The program focuses on design, fabrication, and testing of ceramic components, generating a materials properties data base, and applying life prediction and nondestructive evaluation (NDE). The development program is being performed by a team led by Solar Turbines Incorporated, and which includes suppliers of ceramic components, US research laboratories, and an industrial cogeneration end user. The Solar Centaur 50S engine was selected for the development program. The program goals included an increase in the turbine rotor inlet temperature (TRIT) from 1,010 C (1,850 F) to 1,121 C (2,050 F), accompanied by increases in thermal efficiency and output power. The performance improvements are attributable to the increase in TRIT and the reduction in cooling air requirements for the ceramic parts. The ceramic liners are also expected to lower the emissions of NOx and CO. Under the program uncooled ceramic blades and nozzles have been inserted for currently cooled metal components in the first stage of the gas producer turbine. The louvre-cooled metal combustor liners have been replaced with uncooled continuous-fiber reinforced ceramic composite (CFCC) liners. Modifications have been made to the engine hot section to accommodate the ceramic parts. To date, all first generation designs have been completed. Ceramic components have been fabricated, and are being tested in rigs and in the Centaur 50S engine. Field testing at an industrial co-generation site was started in May, 1997. This paper will provide an update of the development work and details of engine testing of ceramic components under the program.

  12. Proceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference

    E-Print Network [OSTI]

    Liu, Feng

    of design parameters. Three design cases are performed with a low-aspect-ratio steam turbine blade testedProceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference June 14-18, 2010 (Switzerland) Baden, Switzerland ABSTRACT For low-aspect-ratio turbine blades secondary loss reduc- tion

  13. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20T23:59:59.000Z

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

  14. SHIRTBUTTON-SIZED GAS TURBINES: THE ENGINEERING CHALLENGES OF MICRO HIGH SPEED

    E-Print Network [OSTI]

    Frechette, Luc G.

    those of their more familiar, full-sized breth- ren. The micro-gas turbine is a 2 cm diameter by 3 mm

  15. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-12-01T23:59:59.000Z

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  16. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  17. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. Condensed flue gas water treatment needs and costs. Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. Results of cost-benefit studies of condensing heat exchangers.

  18. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01T23:59:59.000Z

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  19. Gas turbine blade with intra-span snubber

    DOE Patents [OSTI]

    Merrill, Gary B.; Mayer, Clinton

    2014-07-29T23:59:59.000Z

    A gas turbine blade (10) including a hollow mid-span snubber (16). The snubber is affixed to the airfoil portion (14) of the blade by a fastener (20) passing through an opening (24) cast into the surface (22) of the blade. The opening is defined during an investment casting process by a ceramic pedestal (38) which is positioned between a ceramic core (32) and a surrounding ceramic casting shell (48). The pedestal provides mechanical support for the ceramic core during both wax and molten metal injection steps of the investment casting process.

  20. How Gas Turbine Power Plants Work | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory History On7,How Gas Turbine Power

  1. Controlled pilot oxidizer for a gas turbine combustor

    DOE Patents [OSTI]

    Laster, Walter R. (Oviedo, FL); Bandaru, Ramarao V. (Greer, SC)

    2010-07-13T23:59:59.000Z

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  2. Combined catalysts for the combustion of fuel in gas turbines

    DOE Patents [OSTI]

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13T23:59:59.000Z

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  3. A test device for premixed gas turbine combustion oscillations

    SciTech Connect (OSTI)

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-09-01T23:59:59.000Z

    This paper discusses the design and operation of a test combustor suitable for studying combustion oscillations caused by a commercial-scale gas turbine fuel nozzle. Aside from the need to be conducted at elevated pressures and temperatures, it is desirable for the experimental device to be flexible in its geometry so as to provide an acoustic environment representative of the commercial device. The combustor design, capabilities, and relevant instrumentation for such a device are presented, along with initial operating experience and preliminary data that suggests the importance of nozzle reference velocity and air temperature.

  4. Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Power Cycles Advanced Combustion Turbines Advanced Research University Turbine Systems Research SBIR Program Plan Project Portfolio Project Information Publications...

  5. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01T23:59:59.000Z

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  6. Fuel Cell/Gas Turbine System Performance Studies

    Office of Scientific and Technical Information (OSTI)

    as topping combustors for both turbines. A recuperated-heat exchanger recovers waste heat from the power turbine exhaust. This recuperated thermal energy partially heats the...

  7. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect (OSTI)

    Price, Jeffrey

    2008-09-30T23:59:59.000Z

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

  8. Condition Based Monitoring of Gas Turbine Combustion Components

    SciTech Connect (OSTI)

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30T23:59:59.000Z

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  9. Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report

    SciTech Connect (OSTI)

    Wagner, J.H.; Johnson, B.V.

    1993-04-01T23:59:59.000Z

    The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

  10. Ceramic Stationary Gas Turbine Development. Technical progress report, April 1, 1993--October 31, 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This report summarizes work performed by Solar Technologies Inc. and its subcontractors, during the period April 1, 1993 through October 31, 1994 under Phase II of the DOE Ceramic Stationary Gas Turbine Development program. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the implementation of selected ceramic components.

  11. The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling Penyarat Fuel Cells (SOFCs) are of great interest nowadays. The feature of SOFCs makes them suitable for hybrid plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power

  12. M. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    generation. High thermal efficiencies up to 44%. Suitable for combined cycles (with steam power plantM. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle Fig.1: Schematic for an open gas-turbine cycle. Working Principal Fresh air enters the compressor at ambient temperature where its pressure

  13. Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems

    E-Print Network [OSTI]

    Mobasher, Barzin

    Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems J. Sharda1 ; C of multilayer composite fabrics used in a gas turbine engine containment system is developed. Specifically: Tensile strength; Stress analysis; Stress strain relations; Fabrics; Composite materials; Finite element

  14. Large-eddy Simulation of Realistic Gas Turbine Combustors , & Apte, S. V.

    E-Print Network [OSTI]

    Apte, Sourabh V.

    Large-eddy Simulation of Realistic Gas Turbine Combustors Moin, P. , & Apte, S. V. Center models and the numerical scheme is performed in canonical and complex combustor geometries. Finally, a multi-scale, multi-physics, turbulent reacting flow simulation in a real gas-turbine combustor

  15. Fuel burner and combustor assembly for a gas turbine engine

    DOE Patents [OSTI]

    Leto, Anthony (Franklin Lakes, NJ)

    1983-01-01T23:59:59.000Z

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  16. High-speed gears for gas turbine drive

    SciTech Connect (OSTI)

    Kane, J.

    1995-06-01T23:59:59.000Z

    Recently, Lufkin Industries, Power Transmission Div., full-load tested a high-speed gear designed to couple a 50 Hz electric power generator to a GE LM6000 gas turbine for a power generation project in Australia. The gear is rated 52.2 MW to match the output of the LM6000 gas turbine believed to be one of the largest gear testing operations for this type and size of gear. Each gear drive manufactured by Lufkin is full-speed tested to verify its performance. Tests performed on high-speed units duplicate field conditions, as closely as possible, in order to verify critical speed analysis results and new bearing designs, if used. Lufkin also tests design techniques used in the development of new products. The finite element analysis performed to predict housing deflection in the thrust bearing area of a new extruder driveline was verified by testing of a prototype unit housing. Recently, housing structure stiffness and natural frequencies were predicted and verified on the test stand for some 50 MW vertically offset gear units. A complete data acquisition system is used to gather data from bearing, inlet and drain temperature monitoring points. The temperature monitoring system will accommodate type T,K,J, and E thermocouples and platinum and nickel RTDs.

  17. Partially turbulated trailing edge cooling passages for gas turbine nozzles

    DOE Patents [OSTI]

    Thatcher, Jonathan Carl (Schenectady, NY); Burdgick, Steven Sebastian (Schenectady, NY)

    2001-01-01T23:59:59.000Z

    A plurality of passages are spaced one from the other along the length of a trailing edge of a nozzle vane in a gas turbine. The passages lie in communication with a cavity in the vane for flowing cooling air from the cavity through the passages through the tip of the trailing edge into the hot gas path. Each passage is partially turbulated and includes ribs in an aft portion thereof to provide enhanced cooling effects adjacent the tip of the trailing edge. The major portions of the passages are smooth bore. By this arrangement, reduced temperature gradients across the trailing edge metal are provided. Additionally, the inlets to each of the passages have a restriction whereby a reduced magnitude of compressor bleed discharge air is utilized for trailing edge cooling purposes.

  18. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels

    Broader source: Energy.gov [DOE]

    Gas turbines are commonly used in industry for onsite power and heating needs because of their high efficiency and clean environmental performance. Natural gas is the fuel most frequently used to...

  19. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01T23:59:59.000Z

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  20. Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines

    Broader source: Energy.gov [DOE]

    Gas turbinesheat engines that use high-temperature and high-pressure gas as the combustible fuelare used extensively throughout U.S. industry to power industrial processes. The majority of...

  1. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  2. Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION X. C. Our research aims to develop a micro power generation systems based on micro gas turbine engine and a piezoelectric converter, as illustrated in Fig. 1 [6]. The micro gas turbine engine is composed of a centrifugal

  3. PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP

    E-Print Network [OSTI]

    PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP high-temperature gasifiers for gas turbine applications. ABB and MTCr/Stonechem are developing low-load performance of gasifier/gas turbine systemsincorporating the four above-noted gasifier designs are reported

  4. Abstract--Modelling and control of gas turbines (GTs) have always been a controversial issue because of the complex

    E-Print Network [OSTI]

    Sainudiin, Raazesh

    Abstract--Modelling and control of gas turbines (GTs) have always been a controversial issue that there is no end to the efforts for performance optimization of gas turbines. A variety of analytical and experimental models as well as control systems has been built so far for gas turbines. However, the need

  5. Fault detection and isolation in aircraft gas turbine engines. Part 2: validation on a simulation test bed

    E-Print Network [OSTI]

    Ray, Asok

    and model-based information. As aircraft gas turbine engines consist of multiple interconnected compo- nents319 Fault detection and isolation in aircraft gas turbine engines. Part 2: validation of fault detection and isolation (FDI) in aircraft gas turbine engines. The FDI algorithms are built upon

  6. An activity-based-parametric hybrid cost model to estimate the unit cost of a novel gas turbine component

    E-Print Network [OSTI]

    Sóbester, András

    An activity-based-parametric hybrid cost model to estimate the unit cost of a novel gas turbine in gas turbine compressors. However, the model disc (blisk) designs which are used by the aerospace industry in gas turbine compressors. The tool

  7. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOE Patents [OSTI]

    Eldrid, Sacheverel Q. (Saratoga Springs, NY); Salamah, Samir A. (Niskayuna, NY); DeStefano, Thomas Daniel (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  8. [Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report

    SciTech Connect (OSTI)

    NONE

    1998-09-30T23:59:59.000Z

    Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the IRB: and two interested partners involved in ATS; AGTSR submitted information on its RFP's, workshops, and educational activities for the 1999 ASMWIGTI technology report for worldwide distribution; AGTSR coordinated university poster session titles and format with Conference Management Associates (CMA) for the 98 ATS Annual; and AGTSR submitted 2-page abstract to CMA for the 98 ATS Review titled: ''AGTSR: A Virtual National Lab''.

  9. Method of attaching ceramics to gas-turbine metal components

    SciTech Connect (OSTI)

    Legchilin, P.F.

    1985-01-01T23:59:59.000Z

    When attaching ceramics to metal gas-turbine parts, an interlayer of lowmodulus fiber metal is recommended as a buffer layer to compensate for the different coefficients of thermal expansion. This elastic interlayer, made of matted and sintered metallic fibers, is actually a woven mat with 90% of the volume taken up by porosity. Nickel alloys, Hastelloy-X, Inconel-600, FeCrAlSi, and FeCrAlY can be used for the interlayer. However, the last two alloys provide optimum oxidation and high-temperature-corrosion resistance. The interlayers are attached to the component metal by normal brazing, while the ceramic is attached by plasma spraying. The bond between the ceramic and the interlayer is formed by the penetration and condensation of the sprayed powder in the interlayer pores. This joining method can be most efficiently used in high-pressure-turbine seals; combustion-chamber facings; facings of slag hoppers and boosted steamboiler combustion chambers; coal gasification equipment, including valves, cyclones, transport main pipelines and exhaust valves; cylinder heads; and diesel engine pistons.

  10. Gas turbine nozzle vane insert and methods of installation

    DOE Patents [OSTI]

    Miller, William John (Simpsonville, SC); Predmore, Daniel Ross (Clifton Park, NY); Placko, James Michael (West Chester, OH)

    2002-01-01T23:59:59.000Z

    A pair of hollow elongated insert bodies are disposed in one or more of the nozzle vane cavities of a nozzle stage of a gas turbine. Each insert body has an outer wall portion with apertures for impingement-cooling of nozzle wall portions in registration with the outer wall portion. The insert bodies are installed into the cavity separately and spreaders flex the bodies toward and to engage standoffs against wall portions of the nozzle whereby the designed impingement gap between the outer wall portions of the insert bodies and the nozzle wall portions is achieved. The spreaders are secured to the inner wall portions of the insert bodies and the bodies are secured to one another and to the nozzle vane by welding or brazing.

  11. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne

    2010-05-04T23:59:59.000Z

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  12. Safety philosophy of gas turbine high temperature reactor (GTHTR300)

    SciTech Connect (OSTI)

    Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa [Department of Advanced Nuclear Heat Technology, Oarai Research Institute, Japan Atomic Energy Research Institute, Oarai-machi, Ibaraki-ken, 311-1394 (Japan)

    2002-07-01T23:59:59.000Z

    Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Major features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)

  13. Fuel injector for use in a gas turbine engine

    DOE Patents [OSTI]

    Wiebe, David J.

    2012-10-09T23:59:59.000Z

    A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

  14. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2009-09-30T23:59:59.000Z

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  15. Gas turbine engine combustor can with trapped vortex cavity

    DOE Patents [OSTI]

    Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.

    2005-10-04T23:59:59.000Z

    A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.

  16. Axially staged combustion system for a gas turbine engine

    DOE Patents [OSTI]

    Bland, Robert J. (Oviedo, FL)

    2009-12-15T23:59:59.000Z

    An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

  17. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne (Pittsburgh, PA)

    2010-08-24T23:59:59.000Z

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  18. Combustor for a low-emissions gas turbine engine

    DOE Patents [OSTI]

    Glezer, Boris (Del Mar, CA); Greenwood, Stuart A. (San Diego, CA); Dutta, Partha (San Diego, CA); Moon, Hee-Koo (San Diego, CA)

    2000-01-01T23:59:59.000Z

    Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

  19. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect (OSTI)

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13T23:59:59.000Z

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for todays engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  20. BioCoComb -- Gasification of biomass and co-combustion of the gas in a pulverized-coal-boiler

    SciTech Connect (OSTI)

    Anderl, H.; Zotter, T.; Mory, A.

    1999-07-01T23:59:59.000Z

    In a demonstration project supported by an European Community Thermie Fund a biomass gasifier for bark, wood chips, saw dust, etc. has been installed by Austrian Energy and Environment at the 137 MW{sub el} pulverized-coal fired power station in Zeltweg, Austria. The project title BioCoComb is an abbreviation for Preparation of Biofuel for Co-Combustion, where co-combustion means combustion together with coal in existing power plants. According to the thermal capacity of 10 MW the produced gas substitutes approx. 3% of the coal fired in the boiler. Only the coarse fraction of the biomass has to pass a shredder and is then fed together with the fine fraction without any further pretreatment into the gasifier. In the gasification process the biomass will combust in a substoichiometric atmosphere, create the necessary temperature of 820 C and partly gasify due to the lack of oxygen in the combustion chamber (autothermal operation). The gasifier uses circulating fluidized bed technology, which guarantees even relatively low temperatures in all parts of the gasifier to prevent slagging. The intense motion of the bed material also favors attrition of the biomass particles. Via a hot gas duct the produced low calorific value (LCV) gas is directly led into the furnace of the existing pulverized coal fired boiler for combustion. The gas also contains fine wood char particles, that can pass the retention cyclone and burn out in the furnace of the coal boiler. The main advantages of the BioCoComb concept are: low gas quality sufficient for co-firing; no gas cleaning or cooling; no predrying of the biomass; relatively low temperatures in the gasifier to prevent slagging; favorable effects on power plant emissions (CO{sub 2}, NO{sub x}); no severe modifications of the existing coal fired boiler; and high flexibility in arranging and integrating the main components into existing plants. The plant started its trial run in November 1997 and has been in successful commercial operation since January 1998.

  1. Int. Symp. on Heat Transfer in Gas Turbine Systems 9 14 August, 2009, Antalya, Turkey

    E-Print Network [OSTI]

    Camci, Cengiz

    Int. Symp. on Heat Transfer in Gas Turbine Systems 9 ­ 14 August, 2009, Antalya, Turkey EXPERIMENTAL TURBINE AERO-HEAT TRANSFER STUDIES IN ROTATING RESEARCH FACILITIES Cengiz Camci Turbomachinery Aero-Heat Transfer Laboratory Department of Aerospace Engineering The Pennsylvania State University 233

  2. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect (OSTI)

    David Liscinsky

    2002-10-20T23:59:59.000Z

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

  3. A market and engineering study of a 3-kilowatt class gas turbine generator

    E-Print Network [OSTI]

    Monroe, Mark A. (Mark Alan)

    2003-01-01T23:59:59.000Z

    Market and engineering studies were performed for the world's only commercially available 3 kW class gas turbine generator, the IHI Aerospace Dynajet. The objectives of the market study were to determine the competitive ...

  4. Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine

    E-Print Network [OSTI]

    Peck, Jhongwoo, 1976-

    2003-01-01T23:59:59.000Z

    As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

  5. Acoustic and thermal packaging of small gas turbines for portable power

    E-Print Network [OSTI]

    Tanaka, Shinji, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    To meet the increasing demand for advanced portable power units, for example for use in personal electronics and robotics, a number of studies have focused on portable small gas turbines. This research is concerned with ...

  6. A RAM (Reliability Availability Maintainability) analysis of Consolidated Edison's Gowanus and Narrows gas turbine power plants

    SciTech Connect (OSTI)

    Johnson, B.W.; Whitehead, T.J.; Derenthal, P.J. (Science Applications International Corp., Los Altos, CA (USA))

    1990-12-01T23:59:59.000Z

    A methodology is presented which accurately assesses the ability of gas turbine generating stations to perform their intended function (reliability) while operating in a peaking duty mode. The developed methodology alloys the RAM modeler to calculate the probability that a peaking unit will produce the energy demanded and in turn calculate the total energy lost during a given time period due to unavailability of individual components. The methodology was applied to Consolidated Edison's Narrows site which has 16 barge-mounted General Electric Frame 5 gas turbines operating under a peaking duty mode. The resulting RAM model was quantified using the Narrows site power demand and failure rate data. The model was also quantified using generic failure data from the Operational Reliability Analysis Program (ORAP) for General Electric Frame 5 peaking gas turbines. A problem description list and counter measures are offered for components contributing more than one percent to gas turbine energy loss. 3 refs., 18 figs., 12 tabs.

  7. Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants

    E-Print Network [OSTI]

    Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

    1984-01-01T23:59:59.000Z

    Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

  8. Development and assessment of a soot emissions model for aircraft gas turbine engines

    E-Print Network [OSTI]

    Martini, Bastien

    2008-01-01T23:59:59.000Z

    Assessing candidate policies designed to address the impact of aviation on the environment requires a simplified method to estimate pollutant emissions for current and future aircraft gas turbine engines under different ...

  9. Local heat transfer and film effectiveness of a film cooled gas turbine blade tip

    E-Print Network [OSTI]

    Adewusi, Adedapo Oluyomi

    1999-01-01T23:59:59.000Z

    Gas turbine engines due to high operating temperatures undergo severe thermal stress and fatigue during operation. Cooling of these components is a very important issue during the lifetime of the engine. Cooling is achieved through the use...

  10. Numerical Investigation of Temperature Distribution on a High Pressure Gas Turbine Blade

    E-Print Network [OSTI]

    Zirakzadeh, Hootan

    2014-08-10T23:59:59.000Z

    A numerical code is developed to calculate the temperature distributions on the surface of a gas turbine blade. This code is a tool for quick prediction of the temperatures by knowing the boundary conditions and the flow conditions, and doesn...

  11. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2003-01-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

  12. Off-design performance characteristics of a twin shaft gas turbine engine with regeneration

    E-Print Network [OSTI]

    Leckie, Todd Stewart

    1984-01-01T23:59:59.000Z

    OFF-DESIGN PERFORMANCE CHARACTERISTICS OF A TWIN SHAFT GAS TURBINE ENGINE WITH RECTION A 'Ihesis TODD STEWART LECKIE Submitted to the Graduate College Texas ABM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1984 Major Subject: Mechanical Engineering OFF-DESIGN PERFORMANCE CHARACTERISTICS OF A TWIN SHAFT GAS TURBINE ENGINE WITH REGENERATION A Thesis by Approved as to style and content by: er E. J 'ns rrman of Corrmittee) Je- 'n Han...

  13. Economic Rationale for Safety Investment in Integrated Gasification Combined-Cycle Gas Turbine Membrane Reactor Modules

    E-Print Network [OSTI]

    Koc, Reyyan; Kazantzis, Nikolaos K.; Nuttall, William J.; Ma, Yi Hua

    2012-05-09T23:59:59.000Z

    Economic Rationale for Safety Investment in Integrated Gasification Combined-Cycle Gas Turbine Membrane Reactor Modules Reyyan Koc, Nikolaos K. Kazantzis, William J. Nuttall and Yi Hua Ma May 2012 CWPE 1226... & EPRG 1211 www.eprg.group.cam.ac.uk EP RG W OR KI NG P AP ER Abstract Economic Rationale for Safety Investment in Integrated Gasification Combined-Cycle Gas Turbine Membrane Reactor Modules EPRG Working Paper 1211 Cambridge...

  14. Experimental investigations into high-altitude relight of a gas turbine

    E-Print Network [OSTI]

    Read, Robert William

    2008-11-18T23:59:59.000Z

    Experimental Investigations into High-Altitude Relight of a Gas Turbine Robert William Read Homerton College University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy 2008 To my mother and father Declaration I... of many ignition events has revealed several distinct modes of ignition failure. Keywords: altitude relight, planar laser-induced fluorescence (PLIF), gas turbine, lean direct injection, spark ignition. Acknowledgements I would like to thank my supervisor...

  15. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    REFINERY FURNACES RETROFIT WITH GAS TURBINES ACHIEVE BOTH ENERGY SAVINGS AND EMISSION REDUCTIONS F. Giacobbe*, G. Iaquaniello**, R. G. Minet*, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI Sp...A., Rome, Italy ABSTRACT Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented...

  16. A method of evaluating the performance deterioration of aircraft gas-turbines

    E-Print Network [OSTI]

    Subramanian, V

    1978-01-01T23:59:59.000Z

    A METHOD OF EVALUATING THE PERFORMANCE DETERIORATION OF AIRCRAFT GAS-TURBINES A Thesis by V. SUBRAMANIAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1978 Major Subject: Mechanical Engineering A METHOD OF EVALUATING THE PERFORMANCE DETERIORATION OF AIRCRAFT GAS-TURBINES A Thesis by V. SUBRAMANIAN Approved as to style and content by: Charrman o Commztt (Head o D pa ment Sg D~ Member...

  17. An investigation into the feasibility of an external combustion, steam injected gas turbine

    E-Print Network [OSTI]

    Ford, David Bruce

    1981-01-01T23:59:59.000Z

    AN INVESTIGATION INTO THE FEASIBILITY OF AN EXTERNAL COMBUSTION, STEAM INJECTED GAS TURBINE A Thesis by DAVID BRUCE FORD Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May, 19SI Major Subject: Mechanical Engineering AN INVESTIGATION INTO THE FEASIBILITY OF AN EXTERNAL COMBUSTION i STEAM INJECTED GAS TURBINE A Thesis DAVID BRUCE FORD Approved as to style and content by: & cene 'u Co...

  18. System definition and analysis gas-fired industrial advanced turbine systems

    SciTech Connect (OSTI)

    Holloway, G.M.

    1997-05-01T23:59:59.000Z

    The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

  19. A Silicon-Based Micro Gas Turbine Engine for Power Generation

    E-Print Network [OSTI]

    Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

    2007-01-01T23:59:59.000Z

    This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

  20. Mechanical support of a ceramic gas turbine vane ring

    DOE Patents [OSTI]

    Shi, Jun (Glastonbury, CT); Green, Kevin E. (Broad Brook, CT); Mosher, Daniel A. (Glastonbury, CT); Holowczak, John E. (South Windsor, CT); Reinhardt, Gregory E. (South Glastonbury, CT)

    2010-07-27T23:59:59.000Z

    An assembly for mounting a ceramic turbine vane ring onto a turbine support casing comprises a first metal clamping ring and a second metal clamping ring. The first metal clamping ring is configured to engage with a first side of a tab member of the ceramic turbine vane ring. The second metal clamping ring is configured to engage with a second side of the tab member such that the tab member is disposed between the first and second metal clamping rings.

  1. Fuel control for gas turbine with continuous pilot flame

    DOE Patents [OSTI]

    Swick, Robert M. (Indianapolis, IN)

    1983-01-01T23:59:59.000Z

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  2. A test device for premixed gas turbine combustion oscillations

    SciTech Connect (OSTI)

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-03-01T23:59:59.000Z

    This report discusses design and operation of a single-nozzle test combustor for studying lean, premixed combustion oscillations from gas turbine fuel nozzles. It was used to study oscillations from a prototype fuel nozzle that produced oscillations during testing in a commercial engine. Similar, but not identical, oscillations were recorded in the test device. Basic requirements of the device design were that the flame geometry be maintained and acoustic losses be minimized; this was achieved by using a Helmholtz resonator as the combustor geometry. Surprisingly, the combustor oscillated strongly at several frequencies, without modification of the resonator. Brief survey of operating conditions suggests that it may be helpful to characterize oscillating behavior in terms of reference velocity and inlet air temperature with the rig backpressure playing a smaller role. The preliminary results do not guarantee that the single-nozzle test device will reproduce arbitrary oscillations that occur on a complete engine test. Nozzle/nozzle interactions may complicate the response, and oscillations controlled by acoustic velocities transverse to the nozzle axis may not be reproduced in a test device that relies on a bulk Helmholtz mode. Nevertheless, some oscillations can be reproduced, and the single-nozzle test device allows both active and passive control strategies to be tested relatively inexpensively.

  3. Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant

    E-Print Network [OSTI]

    unknown authors

    AbstractThe gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbine exhaust temperature, stack temperature and ambient temperature, the most dominating factor of increasing the overall efficiency of the combine cycle power plant is the stack temperature.

  4. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30T23:59:59.000Z

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

  5. Air bottoming cycle: Use of gas turbine waste heat for power generation

    SciTech Connect (OSTI)

    Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

    1996-04-01T23:59:59.000Z

    This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

  6. Turbine bucket for use in gas turbine engines and methods for fabricating the same

    SciTech Connect (OSTI)

    Garcia-Crespo, Andres

    2014-06-03T23:59:59.000Z

    A turbine bucket for use with a turbine engine. The turbine bucket includes an airfoil that extends between a root end and a tip end. The airfoil includes an outer wall that defines a cavity that extends from the root end to the tip end. The outer wall includes a first ceramic matrix composite (CMC) substrate that extends a first distance from the root end to the tip end. An inner wall is positioned within the cavity. The inner wall includes a second CMC substrate that extends a second distance from the root end towards the tip end that is different than the first distance.

  7. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01T23:59:59.000Z

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  8. Development and demonstration of a wood-fired gas turbine system

    SciTech Connect (OSTI)

    Smith, V.; Selzer, B.; Sethi, V.

    1993-08-01T23:59:59.000Z

    The objectives of the test program were to obtain some preliminary information regarding the nature of particulate and vapor phase alkali compounds produced and to assess any deleterious impact they might have on materials of construction. Power Generating Incorporated (PGI) is developing a wood-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are fuel receiving, preparation, storage and feeding system, gas clean-up equipment, and a gas turbine generator.

  9. Low pressure cooling seal system for a gas turbine engine

    DOE Patents [OSTI]

    Marra, John J

    2014-04-01T23:59:59.000Z

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  10. The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration

    E-Print Network [OSTI]

    Boyce, M. P.; Meher-Homji, C.; Ford, D.

    1981-01-01T23:59:59.000Z

    This paper describes the theoretical background and the design and development of a prototype externally fired steam injected (ECSI) gas turbine which has a potential to utilize lower grade fuels. The system is designed around a 2 shaft 360 HP gas...

  11. Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report

    SciTech Connect (OSTI)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01T23:59:59.000Z

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  12. Advanced Gas Turbine (AGT) technology development project. Annual report, July 1984-June 1985

    SciTech Connect (OSTI)

    Not Available

    1986-07-01T23:59:59.000Z

    This report is the tenth in a series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Carborundum Company, and AiResearch Casting Company.

  13. A centurial history of technological change and learning curves or pulverized coal-fired utility boilers

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.

    2007-01-01T23:59:59.000Z

    change; Steam plant; Steam turbine; Electricity 1.housed ?ve 10,000 kW steam turbines and typically requiredAdvances in boiler and steam turbine technology, materials

  14. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-05-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

  15. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2003-12-01T23:59:59.000Z

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  16. Investigation of the part-load performance of two 1. 12 MW regenerative marine gas turbines

    SciTech Connect (OSTI)

    Korakianitis, T.; Beier, K.J. (Washington Univ., St. Louis, MO (United States). Dept. of Mechanical Engineering)

    1994-04-01T23:59:59.000Z

    Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performance of two 1.12 MW (1,500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.

  17. Investigations of swirl flames in a gas turbine model combustor

    SciTech Connect (OSTI)

    Weigand, P.; Meier, W.; Duan, X.R.; Stricker, W.; Aigner, M. [Institut fuer Verbrennungstechnik, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Pfaffenwaldring 38, D-70569 Stuttgart (Germany)

    2006-01-01T23:59:59.000Z

    A gas turbine model combustor for swirling CH{sub 4}/air diffusion flames at atmospheric pressure with good optical access for detailed laser measurements is discussed. Three flames with thermal powers between 7.6 and 34.9 kW and overall equivalence ratios between 0.55 and 0.75 were investigated. These behave differently with respect to combustion instabilities: Flame A burned stably, flame B exhibited pronounced thermoacoustic oscillations, and flame C, operated near the lean extinction limit, was subject to sudden liftoff with partial extinction and reanchoring. One aim of the studies was a detailed experimental characterization of flame behavior to better understand the underlying physical and chemical processes leading to instabilities. The second goal of the work was the establishment of a comprehensive database that can be used for validation and improvement of numerical combustion models. The flow field was measured by laser Doppler velocimetry, the flame structures were visualized by planar laser-induced fluorescence (PLIF) of OH and CH radicals, and the major species concentrations, temperature, and mixture fraction were determined by laser Raman scattering. The flow fields of the three flames were quite similar, with high velocities in the region of the injected gases, a pronounced inner recirculation zone, and an outer recirculation zone with low velocities. The flames were not attached to the fuel nozzle and thus were partially premixed before ignition. The near field of the flames was characterized by fast mixing and considerable finite-rate chemistry effects. CH PLIF images revealed that the reaction zones were thin (=<0.5 mm) and strongly corrugated and that the flame zones were short (h=<50 mm). Despite the similar flow fields of the three flames, the oscillating flame B was flatter and opened more widely than the others. In the current article, the flow field, structures, and mean and rms values of the temperature, mixture fraction, and species concentrations are discussed. Turbulence intensities, mixing, heat release, and reaction progress are addressed. In a second article, the turbulence-chemistry interactions in the three flames are treated.

  18. Traction drive automatic transmission for gas turbine engine driveline

    DOE Patents [OSTI]

    Carriere, Donald L. (Livonia, MI)

    1984-01-01T23:59:59.000Z

    A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

  19. Thermal and Economic Analyses of Energy Saving by Enclosing Gas Turbine Combustor Section

    E-Print Network [OSTI]

    Li, X.; Wang, T.; Day, B.

    2006-01-01T23:59:59.000Z

    ) thermography inspection indicated a high-temperature area (500~560F) at the combustor section of the GE Frame 5 gas turbine of Dynegy Gas Processing Plant at Venice, Louisiana. To improve the thermal efficiency and reduce energy cost, thermal... within the natural gas industry, the Venice plant is seeking various means to reduce cost. As part of the project to improve the energy efficiency of the plant and thus reduce energy costs, Dynegy contracted the Energy Conversion & Conservation...

  20. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure

    SciTech Connect (OSTI)

    Tsuijikawa, Y.; Nagaoka, M. (Dept. of Aeronautical Engineering, Univ. of Osaka Prefecture, Mozu-umemachi, Sakai 591 (JP))

    1991-01-01T23:59:59.000Z

    This paper is devoted to the analyses and optimization of simple and sophisticated cycles, particularly for various gas turbine engines and aero-engines (including the scramjet engine) to achieve maximum performance. The optimization of such criteria as thermal efficiency, specific output, and total performance for gas turbine engines, and overall efficiency, nondimensional thrust, and specific impulse for aero-engines has been performed by the optimization procedure with the multiplier method. Comparison of results with analytical solutions establishes the validity of the optimization procedure.

  1. Systems and methods for detecting a flame in a fuel nozzle of a gas turbine

    DOE Patents [OSTI]

    Kraemer, Gilbert Otto; Storey, James Michael; Lipinski, John; Mestroni, Julio Enrique; Williamson, David Lee; Marshall, Jason Randolph; Krull, Anthony

    2013-05-07T23:59:59.000Z

    A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.

  2. Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat Transfer

    E-Print Network [OSTI]

    Meador, Charles Michael

    2011-02-22T23:59:59.000Z

    MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements... for the degree of MASTER OF SCIENCE December 2010 Major Subject: Mechanical Engineering MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate...

  3. Advanced Gas Turbine (AGT) technology development. Eighth semiannual progress report, July-December 1983

    SciTech Connect (OSTI)

    Not Available

    1984-06-01T23:59:59.000Z

    Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System Program. This program is oriented at providing the United States automotive industry the high-risk long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. It is intended that technology resulting from this program reach the marketplace by the early 1990s. This report reviews the power section (metal and ceramic engine) effort conducted to date, followed by a review of the component/ceramic technology development. Appendices include reports of progress from Ford, AiResearch Casting Company, and the Carborundum Company.

  4. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-01-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

  5. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2003-07-30T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

  6. Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application

    SciTech Connect (OSTI)

    Ashok K. Anand

    2005-12-16T23:59:59.000Z

    This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

  7. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2002-01-01T23:59:59.000Z

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  8. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2003-04-08T23:59:59.000Z

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  9. Sealing apparatus for airfoils of gas turbine engines

    DOE Patents [OSTI]

    Jones, R.B.

    1998-05-19T23:59:59.000Z

    An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed. 17 figs.

  10. Sealing apparatus for airfoils of gas turbine engines

    DOE Patents [OSTI]

    Jones, Russell B. (San Diego, CA)

    1998-01-01T23:59:59.000Z

    An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed.

  11. Sweeney LUBRICATION OF STEAM, GAS AND WATER TURBINES IN POWER GENERATION- A CHEVRONTEXACO EXPERIENCE

    E-Print Network [OSTI]

    Peter James Sweeney

    On 9 October 2001 two US oil companies Chevron and Texaco merged. Their long-term joint venture operation, known as Caltex (formed in 1936 and operating in East and Southern Africa, Middle East, Asia and Australasia), was incorporated into the one global energy company. This global enterprise will be highly competitive across all energy sectors, as the new company brings together a wealth of talents, shared values and a strong commitment to developing vital energy resources around the globe. Worldwide, ChevronTexaco is the third largest publicly traded company in terms of oil and gas reserves, with some 11.8 billion barrels of oil and gas equivalent. It is the fourth largest producer, with daily production of 2.7 million barrels. The company also has 22 refineries and more than 21,000 branded service stations worldwide. This paper will review the fundamentals of lubrication as they apply to the components of turbines. It will then look at three turbine types, steam, gas and water, to address the different needs of lubricating oils and the appropriate specifications for each. The significance of oil testing both for product development and in-service oil monitoring will be reviewed, together with the supporting field experience of ChevronTexaco. The environmental emissions controls on turbines and any impact on the lubricants will be discussed. Finally, the trends in specifications for lubricating oils to address the modern turbines designs will be reviewed. Key Words: geothermal, lubrication, turbines, in-service testing 1.

  12. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-07-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

  13. An Approach to Generating Summaries of Time Series Data in the Gas Turbine Domain Jin Yu and Jim Hunter and Ehud Reiter and Somayajulu Sripada

    E-Print Network [OSTI]

    Sripada, Yaji

    An Approach to Generating Summaries of Time Series Data in the Gas Turbine Domain Jin Yu and Jim an approach to generating summaries of time series data in the gas turbine domain using AI techniques. Through), both domain knowledge from experts about how to solve problems in the gas turbine and information about

  14. Published in `AI Communications 9 journal', pp1-17. Published by IOS Press (1996) TIGERTM: Knowledge Based Gas Turbine Condition Monitoring

    E-Print Network [OSTI]

    Travé-Massuyès, Louise

    : Knowledge Based Gas Turbine Condition Monitoring Dr. Robert Milne and Dr. Charlie Nicol Intelligent, 11 Colon, Barcelona, 08222 Terrassa. Spain 1. INTRODUCTION Given the critical nature of gas turbines and increasing the availability of the gas turbine. Routine preventative maintenance techniques have been used

  15. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect (OSTI)

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

    2007-01-15T23:59:59.000Z

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  16. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13T23:59:59.000Z

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  17. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2004-09-30T23:59:59.000Z

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

  18. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2001-09-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

  19. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2003-02-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

  20. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    SciTech Connect (OSTI)

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

    2013-07-03T23:59:59.000Z

    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  1. Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity for the California desert and in other appro- priate regions worldwide. Current technology relies on steam Rankine

  2. Proceedings of IGTI 2011 ASME 2011 International Gas Turbine Institute Conference

    E-Print Network [OSTI]

    Liu, Feng

    Proceedings of IGTI 2011 ASME 2011 International Gas Turbine Institute Conference June 6-10, 2011 of California, Irvine, CA92697-3975 Ivan McBean Alstom Power (Switzerland) Baden, Switzerland ABSTRACT is viscosity 1 Copyright c 2011 by ASME Proceedings of ASME Turbo Expo 2011 GT2011 June 6-10, 2011, Vancouver

  3. Advanced gas turbine systems research. Technical quarterly progress report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    Major accomplishments by AGTSR during this reporting period are highlighted and then amplified in later sections of this report. Main areas of research are combustion, heat transfer, and materials. Gas turbines are used for power generation by utilities and industry and for propulsion.

  4. Massively-Parallel Spectral Element Large Eddy Simulation of a Ring-Type Gas Turbine Combustor

    E-Print Network [OSTI]

    Camp, Joshua Lane

    2012-07-16T23:59:59.000Z

    The average and fluctuating components in a model ring-type gas turbine combustor are characterized using a Large Eddy Simulation at a Reynolds number of 11,000, based on the bulk velocity and the mean channel height. A spatial filter is applied...

  5. Performance Characteristics of an Electrochemically Powered Turboprop: A Comparison with State of the Art Gas Turbines

    E-Print Network [OSTI]

    Johnson, M. C.; Swan, D. H.

    /fuel cell power system be superior to a state of the art hydrogen/gas turbine power system? The systems are compared on a fuel consumption basis, a cost basis, and a reliability/ maintainability basis. The analysis show that both specific power...

  6. Advanced gas turbine systems research. Quarterly technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    A cooperative development of gas turbines for electric power generation in USA is underway. Since the first AGTSR program manager has retired, a search for a new manager has begun. Reports during this period include membership, combustion instability white paper, and a summary paper for the ASME IGTI conference.

  7. Analytical and experimental investigations of gas turbine model combustor acoustics operated at atmospheric pressure

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Analytical and experimental investigations of gas turbine model combustor acoustics operated the eigenmodes of the combustor results from the resonant coupling between pressure disturbances in the flame distribution within the combustor, except when these frequencies match. When the frequencies are close to each

  8. Cooling air recycling for gas turbine transition duct end frame and related method

    DOE Patents [OSTI]

    Cromer, Robert Harold (Johnstown, NY); Bechtel, William Theodore (Scotia, NY); Sutcu, Maz (Niskayuna, NY)

    2002-01-01T23:59:59.000Z

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  9. Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 Page 1 of 17Turbines Hydrogen

  10. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect (OSTI)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31T23:59:59.000Z

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  11. Gas turbine bucket cooling circuit and related process

    DOE Patents [OSTI]

    Lewis, Doyle C. (Greer, SC); Barb, Kevin Joseph (Halfmoon, NY)

    2002-01-01T23:59:59.000Z

    A turbine bucket includes an airfoil portion having leading and trailing edges; at least one radially extending cooling passage within the airfoil portion, the airfoil portion joined to a platform at a radially inner end of the airfoil portion; a dovetail mounting portion enclosing a cooling medium supply passage; and, a crossover passage in fluid communication with the cooling medium supply passage and with at least one radially extending cooling passage, the crossover passage having a portion extending along and substantially parallel to an underside surface of the platform.

  12. Cooling system for a gas turbine using a cylindrical insert having V-shaped notch weirs

    DOE Patents [OSTI]

    Grondahl, Clayton M. (Clifton Park, NY); Germain, Malcolm R. (Ballston Lake, NY)

    1981-01-01T23:59:59.000Z

    An improved cooling system for a gas turbine is disclosed. A plurality of V-shaped notch weirs are utilized to meter a coolant liquid from a pool of coolant into a plurality of platform and airfoil coolant channels formed in the buckets of the turbine. The V-shaped notch weirs are formed in a separately machined cylindrical insert and serve to desensitize the flow of coolant into the individual platform and airfoil coolant channels to design tolerances and non-uniform flow distribution.

  13. 13- 2 RTO-EN-AVT-131Micro Gas Turbine and Fuel Cell

    E-Print Network [OSTI]

    Dieter Bohn

    This paper reports an assessment of coupling micro gas turbine and high temperature fuel cell (SOFC) as a possibility to realize power plant with an efficiency of 75%. The application of such a technology will be in the decentralized feed-in of housing estates and buildings with electricity, heat and cooling energy. Nowadays the first implemented prototypes reach efficiencies among 57- 58 % /1/. The paper shows the necessity of further developments to be able to reach an efficiency of 75%. The developments include improvements in all components of the system like compressor, turbine, bearing and the increasing of the operating temperature.

  14. Cooling system having reduced mass pin fins for components in a gas turbine engine

    DOE Patents [OSTI]

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11T23:59:59.000Z

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  15. Cooling supply system for stage 3 bucket of a gas turbine

    DOE Patents [OSTI]

    Eldrid, Sacheverel Quentin (Saratoga Springs, NY); Burns, James Lee (Schenectady, NY); Palmer, Gene David (Clifton Park, NY); Leone, Sal Albert (Scotia, NY); Drlik, Gary Joseph (Fairfield, OH); Gibler, Edward Eugene (Cincinnati, OH)

    2002-01-01T23:59:59.000Z

    In a land based gas turbine including a compressor, a combustor and turbine section including at least three stages, an improvement comprising an inlet into a third stage nozzle from the compressor for feeding cooling air from the compressor to the third stage nozzle; at least one passageway running substantially radially through each airfoil of the third stage nozzle and an associated diaphragm, into an annular space between the rotor and the diaphragm; and passageways communicating between the annular space and individual buckets of the third stage.

  16. System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134

    SciTech Connect (OSTI)

    Annen, K.D.

    1981-08-01T23:59:59.000Z

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

  17. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, C.L.; Foote, J.P.

    1995-07-04T23:59:59.000Z

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

  18. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

    1995-01-01T23:59:59.000Z

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

  19. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07T23:59:59.000Z

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  20. Use of high temperature insulation for ceramic matrix composites in gas turbines

    DOE Patents [OSTI]

    Morrison, Jay Alan (Orlando, FL); Merrill, Gary Brian (Pittsburgh, PA); Ludeman, Evan McNeil (New Boston, NH); Lane, Jay Edgar (Murrysville, PA)

    2001-01-01T23:59:59.000Z

    A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

  1. Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Progress report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    NONE

    1996-04-15T23:59:59.000Z

    The primary objective of this Clean Coal Technology project is to evaluate the use of Gas Reburning and Low NO{sub x} Burners (GR-LNB) for NO{sub x} emission control from a wall fired boiler. This project is being conducted in three phases at the host site, a 172 MW{sub e} wall fired boiler of Public Service Company of Colorado, Cherokee Unit 3 in Denver, Colorado: Phase I, design and permitting has been completed on June 30, 1992; Phase II, construction and start-up has been completed on September 1991; and Phase III, operation, data collection, reporting and disposition. Phase III activities during this reporting period involved the following: compilation, analysis and assembly of the final report and initiation of restoration activities; restoration of the gas reburning system involving removal of the flue gas recirculation system (permanent Second Generation Gas Reburning); and participants meeting and reburning workshop. Long term testing of the equipment demonstrated an average NO{sub x} reduction of 65% using 18% gas heat input. After removing the flue gas recirculation system, (Second Generation GR), an average NO{sub x} of 64% was achieved using 13% gas heat input. The project goal of 70% reduction was achieved, but no on an average basis due to the load requirements of the utility.

  2. Steam driven centrifugal pump for low cost boiler feed service

    SciTech Connect (OSTI)

    Not Available

    1982-11-01T23:59:59.000Z

    This article describes a steam driven centrifugal pump for boiler feed-water and other high pressure water applications, which was awarded Top Honors in the special pumps category of the 1982 Chemical processing Vaaler competition, because the simple design with turbine, pump and controls combined in an integral unit provides high operating efficiency and reliable performance with minimal maintenance. Single source responsibility for all components when the pump may have to be serviced is another advantage. These features meet the requirements for boiler feed pumps that are critical to maintaining a consistent steam supply in a process plant where downtime can be extremely expensive. The annual cost to operate the pump for 8000 hours is about $100,000, if electricity costs 5 cents/kwh. These pumps can be run for about $30,000 on steam, if natural gas costs $4.00/mcf. Cost savings are $70,000 annually.

  3. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2005-12-01T23:59:59.000Z

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

  4. High freestream turbulence levels have been shown to greatly augment the heat transfer along a gas turbine airfoil, particularly for the first stage

    E-Print Network [OSTI]

    Thole, Karen A.

    along a gas turbine airfoil, particularly for the first stage nozzle guide vane. For this study of the variables affecting boundary layer development on gas turbine airfoils, studies need to be performed, augmentations in convective heat transfer have been measured for a first stage turbine vane in the stagna- tion

  5. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    SciTech Connect (OSTI)

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2009-07-15T23:59:59.000Z

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  6. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect (OSTI)

    Unknown

    2002-03-31T23:59:59.000Z

    The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

  7. Coaxial fuel and air premixer for a gas turbine combustor

    DOE Patents [OSTI]

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21T23:59:59.000Z

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  8. Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired

    E-Print Network [OSTI]

    Li, Mo

    higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

  9. Development and Application of Gas Sensing Technologies to Enable Boiler Balancing

    SciTech Connect (OSTI)

    Dutta, Prabir

    2008-12-31T23:59:59.000Z

    Identifying gas species and their quantification is important for optimization of many industrial applications involving high temperatures, including combustion processes. CISM (Center for Industrial Sensors and Measurements) at the Ohio State University has developed CO, O{sub 2}, NO{sub x}, and CO{sub 2} sensors based on TiO{sub 2} semiconducting oxides, zirconia and lithium phosphate based electrochemical sensors and sensor arrays for high-temperature emission control. The underlying theme in our sensor development has been the use of materials science and chemistry to promote high-temperature performance with selectivity. A review article presenting key results of our studies on CO, NO{sub x}, CO{sub 2} and O{sub 2} sensors is described in: Akbar, Sheikh A.; Dutta, Prabir K. Development and Application of Gas Sensing Technologies for Combustion Processes, PowerPlant Chemistry, 9(1) 2006, 28-33.

  10. MODELING, IDENTIFICATION AND CONTROL, 2006, VOL. 00, NO. 0, 000000 Control Design for a Gas Turbine Cycle with CO2 Capture

    E-Print Network [OSTI]

    Foss, Bjarne A.

    MODELING, IDENTIFICATION AND CONTROL, 2006, VOL. 00, NO. 0, 000­000 Control Design for a Gas capture The semi-closed oxy-fuel gas turbine cycle has been suggested in (Ulizar and Pilidis, 1997 in Section 2), is based on concept (c) above. The exhaust gas from a gas turbine with CO2 as working fluid

  11. Assessment of existing H2/O2 chemical reaction mechanisms at reheat gas turbine conditions

    E-Print Network [OSTI]

    Weydahl, Torleif; Seljeskog, Morten; Haugen, Nils Erland L

    2011-01-01T23:59:59.000Z

    This paper provides detailed comparisons of chemical reaction mechanisms of H2 applicable at high preheat temperatures and pressures relevant to gas turbine and particularly Alstom's reheat gas turbine conditions. It is shown that the available reaction mechanisms exhibit large differences in several important elementary reaction coefficients. The reaction mechanisms are assessed by comparing ignition delay and laminar flame speed results obtained from CHEMKIN with available data, however, the amount of data at these conditions is scarce and a recommended candidate among the mechanisms can presently not be selected. Generally, the results with the GRI-Mech and Leeds mechanisms deviate from the Davis, Li, O'Conaire, Konnov and San Diego mechanisms, but there are also significant deviations between the latter five mechanisms that altogether are better adapted to hydrogen. The differences in ignition delay times between the dedicated hydrogen mechanisms (O'Conaire, Li and Konnov) range from approximately a maxim...

  12. Support pedestals for interconnecting a cover and nozzle band wall in a gas turbine nozzle segment

    DOE Patents [OSTI]

    Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC); Webbon, Waylon Willard (Greenville, SC); Bagepalli, Radhakrishna (Schenectady, NY); Burdgick, Steven Sebastian (Schenectady, NY); Kellock, Iain Robertson (Simpsonville, SC)

    2002-01-01T23:59:59.000Z

    A gas turbine nozzle segment has outer and inner band portions. Each band portion includes a nozzle wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through the apertures of the impingement plate to cool the nozzle wall. Structural pedestals interconnect the cover and nozzle wall and pass through holes in the impingement plate to reduce localized stress otherwise resulting from a difference in pressure within the chamber of the nozzle segment and the hot gas path and the fixed turbine casing surrounding the nozzle stage. The pedestals may be cast or welded to the cover and nozzle wall.

  13. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    E-Print Network [OSTI]

    Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

    2004-01-01T23:59:59.000Z

    9 Hot-Water Oil Boiler LCC Analysis-Efficiency Levels and10 Hot-Water Gas Boiler LCC Analysis-Efficiency Levels andfurnace and boiler energy-efficiency standards. Determining

  14. Advanced gas turbine systems research. Quarterly report, January--March, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Department of Energy is sponsoring a series of studies related to advanced gas turbine systems. Ten universities participated in the first round studies, and an additional 13 studies have been funded this year. The five areas being covered are heat transfer, aerodynamics, materials, combustion, and dynamics. Summaries are given for the 6-month progress on the 1993 subcontract studies and on the planned research for the new subcontract studies.

  15. Method of joining a vane cavity insert to a nozzle segment of a gas turbine

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY)

    2002-01-01T23:59:59.000Z

    An insert containing apertures for impingement cooling a nozzle vane of a nozzle segment in a gas turbine is inserted into one end of the vane. The leading end of the insert is positioned slightly past a rib adjacent the opposite end of the vane through which the insert is inserted. The end of the insert is formed or swaged into conformance with the inner margin of the rib. The insert is then brazed or welded to the rib.

  16. Development of gas turbine combustor fed with bio-fuel oil

    SciTech Connect (OSTI)

    Ardy, P.L.; Barbucci, P.; Benelli, G. [ENEL SpA R& D Dept., Pisa (Italy)] [and others

    1995-11-01T23:59:59.000Z

    Considering the increasing interest in the utilization of biofuels derived from biomass pyrolysis, ENEL/CRT carried out some experimental investigations on feasibility of biofuels utilization in the electricity production systems. The paper considers the experimental activity for the development and the design optimization of a gas turbine combustor suitable to be fed with biofuel oil, on the basis of the pressurized combustion performance obtained in a small gas turbine combustor fed with bio-fuel oil and ethanol/bio-fuel oil mixtures. Combustion tests were performed using the combustion chamber of a 40 kWe gas turbine. A small pressurized rig has been constructed including a nozzle for pressurization and a heat recovering combustion air preheating system, together with a proper injection system consisting of two dual fuel atomizers. Compressed air allowed a good spray quality and a satisfactory flame instability, without the need of a pilot frame, also when firing crude bio-fuel only. A parametric investigation on the combustion performance has been performed in order to evaluate the effect of fuel properties, operating conditions and injection system geometry, especially as regards CO and NO{sub x} emissions and smoke index.

  17. DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES

    SciTech Connect (OSTI)

    NEIL K. MCDOUGALD

    2005-04-30T23:59:59.000Z

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

  18. LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Vivek Khanna

    2002-09-30T23:59:59.000Z

    Historically, the development of new industrial gas turbines has been primarily driven by the intent to achieve higher efficiency, lower operating costs and lower emissions. Higher efficiency and lower cost is obtained through higher turbine operating temperatures, while reduction in emissions is obtained by extending the lean operating limit of the combustor. However reduction in the lean stability limit of operation is limited greatly by the chemistry of the combustion process and by the occurrence of thermo-acoustic instabilities. Solar Turbines, CFD Research Corporation, and Los Alamos National Laboratory have teamed to advance the technology associated with laser-assisted ignition and flame stabilization, to a level where it could be incorporated onto a gas turbine combustor. The system being developed is expected to enhance the lean stability limit of the swirl stabilized combustion process and assist in reducing combustion oscillations. Such a system has the potential to allow operation at the ultra-lean conditions needed to achieve NO{sub x} emissions below 5 ppm without the need of exhaust treatment or catalytic technologies. The research effort was focused on analytically modeling laser-assisted flame stabilization using advanced CFD techniques, and experimentally demonstrating the technology, using a solid-state laser and low-cost durable optics. A pulsed laser beam was used to generate a plasma pool at strategic locations within the combustor flow field such that the energy from the plasma became an ignition source and helped maintain a flame at ultra lean operating conditions. The periodic plasma generation and decay was used to nullify the fluctuations in the heat release from the flame itself, thus decoupling the heat release from the combustor acoustics and effectively reducing the combustion oscillations. The program was built on an existing technology base and includes: extending LANL's existing laser stabilization experience to a sub-scale combustor rig, performing and validating CFD predictions, and ultimately conducting a full system demonstration in a multi-injector combustion system at Solar Turbines.

  19. Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines

    SciTech Connect (OSTI)

    Yiguang Ju; Frederick Dryer

    2009-02-07T23:59:59.000Z

    Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

  20. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M. (Richmond, CA)

    1982-01-01T23:59:59.000Z

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  1. Advanced combustion technologies for gas turbine power plants

    SciTech Connect (OSTI)

    Vandsburger, U. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering; Roe, L.A. [Arkansas Univ., Fayetteville, AR (United States). Dept. of Mechanical Engineering; Desu, S.B. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1995-12-31T23:59:59.000Z

    Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

  2. Combustion of ultrafine coal/water mixtures and their application in gas turbines: Final report

    SciTech Connect (OSTI)

    Toqan, M.A.; Srinivasachar, S.; Staudt, J.; Varela, F.; Beer, J.M.

    1987-10-01T23:59:59.000Z

    The feasibility of using coal-water fuels (CWF) in gas turbine combustors has been demonstrated in recent pilot plant experiments. The demands of burning coal-water fuels with high flame stability, complete combustion, low NO/sub x/ emission and a resulting fly ash particle size that will not erode turbine blades represent a significant challenge to combustion scientists and engineers. The satisfactory solution of these problems requires that the variation of the structure of CWF flames, i.e., the fields of flow, temperature and chemical species concentration in the flame, with operating conditions is known. Detailed in-flame measurements are difficult at elevated pressures and it has been proposed to carry out such experiments at atmospheric pressure and interpret the data by means of models for gas turbine combustor conditions. The research was carried out in five sequential tasks: cold flow studies; studies of conventional fine-grind CWF; combustion studies with ultrafine CWF fuel; reduction of NO/sub x/ emission by staged combustion; and data interpretation-ignition and radiation aspects. 37 refs., 61 figs., 9 tabs.

  3. FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect (OSTI)

    Eugene Baxter; Roger E. Anderson; Stephen E. Doyle

    2003-06-01T23:59:59.000Z

    In September 2000 the Department of Energy's National Energy Technology Laboratory (DOE/NETL) contracted with Clean Energy Systems, Inc. (CES) of Sacramento, California to design, fabricate, and test a 20 MW{sub t} (10 MW{sub e}) gas generator. Program goals were to demonstrate a non-polluting gas generator at temperatures up to 3000 F at 1500 psi, and to demonstrate resulting drive gas composition, comprising steam and carbon dioxide substantially free of pollutants. Following hardware design and fabrication, testing, originally planned to begin in the summer of 2001, was delayed by unavailability of the contracted test facility. CES designed, fabricated, and tested the proposed gas generator as originally agreed. The CES process for producing near-zero-emissions power from fossil fuels is based on the near-stoichiometric combustion of a clean gaseous fuel with oxygen in the presence of recycled water, to produce a high-temperature, high-pressure turbine drive fluid comprising steam and carbon dioxide. Tests demonstrated igniter operation over the prescribed ranges of pressure and mixture ratios. Ignition was repeatable and reliable through more than 100 ignitions. Injector design ''A'' was operated successfully at both low power ({approx}20% of rated power) and at rated power ({approx}20 MW{sub t}) in more than 95 tests. The uncooled gas generator configuration (no diluent injectors or cooldown chambers installed) produced drive gases at temperatures approaching 3000 F and at pressures greater than 1550 psia. The fully cooled gas generator configuration, with cooldown chambers and injector ''A'', operated consistently at pressures from 1100 to 1540 psia and produced high pressure, steam-rich turbine drive gases at temperatures ranging from {approx}3000 to as low as 600 F. This report includes description of the intended next steps in the gas generator technology demonstration and traces the anticipated pathway to commercialization for the gas generator technology developed in this program.

  4. Summary of research and development effort on air and water cooling of gas turbine blades

    SciTech Connect (OSTI)

    Fraas, A.P.

    1980-03-01T23:59:59.000Z

    The review on air- and water-cooled gas turbines from the 1904 Lemale-Armengaud water-cooled gas turbine, the 1948 to 1952 NACA work, and the program at GE indicates that the potential of air cooling has been largely exploited in reaching temperatures of 1100/sup 0/C (approx. 2000/sup 0/F) in utility service and that further increases in turbine inlet temperature may be obtained with water cooling. The local heat flux in the first-stage turbine rotor with water cooling is very high, yielding high-temperature gradients and severe thermal stresses. Analyses and tests indicate that by employing a blade with an outer cladding of an approx. 1-mm-thick oxidation-resistant high-nickel alloy, a sublayer of a high-thermal-conductivity, high-strength, copper alloy containing closely spaced cooling passages approx. 2 mm in ID to minimize thermal gradients, and a central high-strength alloy structural spar, it appears possible to operate a water-cooled gas turbine with an inlet gas temperature of 1370/sup 0/C. The cooling-water passages must be lined with an iron-chrome-nickel alloy must be bent 90/sup 0/ to extend in a neatly spaced array through the platform at the base of the blade. The complex geometry of the blade design presents truly formidable fabrication problems. The water flow rate to each of many thousands of coolant passages must be metered and held to within rather close limits because the heat flux is so high that a local flow interruption of only a few seconds would lead to a serious failure.Heat losses to the cooling water will run approx. 10% of the heat from the fuel. By recoverying this waste heat for feedwater heating in a command cycle, these heat losses will give a degradation in the power plant output of approx. 5% relative to what might be obtained if no cooling were required. However, the associated power loss is less than half that to be expected with an elegant air cooling system.

  5. Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Technical progress report number 17, October 1--December 31, 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-13T23:59:59.000Z

    The primary objective of this CCT project is to evaluate the use of Gas Reburning and Low NO{sub x} Burners (GR-LNB) for NO{sub x} emission control from a wall fired boiler. Low NO{sub x} burners are designed to delay the mixing of the coal fuel with combustion air to minimize the NO{sub x} formation. With GR, about 80--85% of the coal fuel is fired in the main combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by over fire air addition. SO{sub x} emissions are reduced to the extent that natural gas replaces sulfur-containing coal. The level of NO{sub x} reduction achievable with 15--20% natural gas is on the order of 50--60%. Thus the emission reduction target of the combination of these two developed technologies is about 70%. This project is being conducted in three phases at the host site, a 172 MW wall fired boiler of Public Service Company of Colorado (PSCo), Cherokee Unit 3 in Denver, Colorado: Phase 1--Design and Permitting; Phase 2--Construction and Start-up; and Phase 3--Operation, Data Collection, Reporting and Disposition. Phase 3 activities during this reporting period involved initiation of the second generation gas reburning parametric testing. This technology utilizes enhanced natural gas and overfire air injectors with elimination of the flue gas recirculation system. The objective is to demonstrate NO{sub x} reductions similar to that of long term testing but with a reduced capital cost requirement through elimination of the FGR system.

  6. Topping Turbines: Adding New Life to Older Plants

    E-Print Network [OSTI]

    Cadrecha, M.

    1984-01-01T23:59:59.000Z

    An existing power plant can be repowered at a modest investment cost through a topping turbine installation. Essentially, this consists of replacing the existing old, low pressure boilers with new, high pressure boilers and adding a new, high...

  7. Operating experience of Pyroflow boilers in a 250 MWe unit

    SciTech Connect (OSTI)

    Chelian, P.K.; Hyvarinen, K. [Pyropower Corp., San Diego, CA (United States)

    1995-12-31T23:59:59.000Z

    The Cedar Bay Cogeneration project is a 250 MWe unit owned and operated by US Generating Company. This plant has one turbine rated at 250 MWe net which is supplied by three Pyroflow CFB boilers that operate in parallel while supplying a paper mill with steam on an uninterruptible basis. Compared to similar size CFB boilers the Cedar Bay boilers have certain unique features. First, these are reheat boilers which must continue to supply process steam even when the steam turbine is down. Second, the SO{sub 2} control operates at a very low Ca/S molar ratio by optimizing the process conditions and flyash reinjection. Third, the NO{sub x} reduction process utilizes aqueous ammonia injection. This paper presents the operating data at full load in terms of boiler efficiency, and the ability to limit gaseous emissions with minimum limestone and ammonia usage. Unique features relating to the multiple boiler installation are also discussed.

  8. Lubricating system for thermal medium delivery parts in a gas turbine

    DOE Patents [OSTI]

    Mashey, Thomas Charles (Coxsackie, NY)

    2002-01-01T23:59:59.000Z

    Cooling steam delivery tubes extend axially along the outer rim of a gas turbine rotor for supplying cooling steam to and returning spent cooling steam from the turbine buckets. Because of the high friction forces at the interface of the tubes and supporting elements due to rotor rotation, a low coefficient of friction coating is provided at the interface of the tubes and support elements. On each surface, a first coating of a cobalt-based alloy is sprayed onto the surface at high temperature. A portion of the first coating is machined off to provide a smooth, hard surface. A second ceramic-based solid film lubricant is sprayed onto the first coating. By reducing the resistance to axial displacement of the tubes relative to the supporting elements due to thermal expansion, the service life of the tubes is substantially extended.

  9. Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Technical progress report No. 5, October 1--December 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-01-15T23:59:59.000Z

    Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

  10. Comprehensive report to Congress: Clean Coal Technology program: Evaluation of gas reburning and low-NO sub x burners on a wall-fired boiler

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    This report briefly describes the Gas Reburning and Low-NO{sub x} Burners technology which is a low-cost technology that can be applied in both retrofit and new applications. This demonstration will be conducted on a utility boiler in Colorado at Cherokee Station {number sign}3; however, the technology is applicable to industrial boilers and other combustion systems. Although this technology is primarily a NO{sub x} reduction technology, some reductions in other emissions will take place. Since 15--20% of the coal is replaced with natural gas, SO{sub 2} and particulate emissions are reduced commensurately. Also the lower carbon-to-hydrogen ratio of natural gas compared to coal reduces CO{sub 2} emissions. The formation of NO{sub x} is controlled by several factors: (1) the amount of nitrogen that is chemically bound in the fuel; (2) the flame temperature; (3) the residence time that combustion products remain at very high temperatures; and (4) the amount of excess oxygen available, especially at the hottest parts of the flame. Decreasing any of these parameters, tends to reduce NO{sub x} formation. 6 figs., 1 tab.

  11. A Carbon Dioxide Gas Turbine Direct Cycle with Partial Condensation for Nuclear Reactors

    SciTech Connect (OSTI)

    Yasuyoshi Kato; Takeshi Nitawaki; Yoshio Yoshizawa [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550 (Japan)

    2002-07-01T23:59:59.000Z

    A carbon dioxide gas turbine power generation system with a partial condensation cycle has been proposed for thermal and fast nuclear reactors, in which compression is done partly in the liquid phase and partly in the gas phase. This cycle achieves higher cycle efficiency than a He direct cycle mainly due to reduced compressor work of the liquid phase and of the carbon dioxide real gas effect, especially in the vicinity of the critical point. If this cycle is applied to a thermal reactor, efficiency of this cycle is about 55% at a reactor outlet temperature of 900 deg. C and pressure of 12.5 MPa, which is higher by about 10% than a typical helium direct gas turbine cycle plant (PBMR) at 900 deg. C and 8.4 MPa; this cycle also provides comparable cycle efficiency at the moderate core outlet temperature of 600 deg. C with that of the helium cycle at 900 deg. C. If this cycle is applied to a fast reactor, it is anticipated to be an alternative to liquid metal cooled fast reactors that can provide slightly higher cycle efficiency at the same core outlet temperature; it would eliminate safety problems, simplify the heat transport system and simplify plant maintenance. A passive decay heat removal system is realized by connecting a liquid carbon dioxide storage tank with the reactor vessel and by supplying carbon dioxide gasified from the tank to the core in case of depressurization event. (authors)

  12. Integrated operation of a pressurized gasifier, hot gas desulfurization system and turbine simulator

    SciTech Connect (OSTI)

    Bevan, S.; Najewicz, D.; Gal, E.; Furman, A.H.; Ayala, R.; Feitelberg, A.

    1994-10-01T23:59:59.000Z

    The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. This technology will ultimately be incorporated into advanced Integrated Gasification Combined Cycle (IGCC) power generation systems. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at F conditions (2,350 F rotor inlet temperature) and (2) to quantify the combustion characteristics and emissions of such a combustor. Testing of the GE HGCU system has been underway since December 1990. The two most recent tests, Test 5 and Test 6, represent the latest advancements in regenerator configuration, type of sorbent, and chloride control systems. Test 5 was based on the use of zinc titanate sorbent and included a revised regenerator configuration and a sodium bicarbonate injection system for chloride control. Test 6 incorporated the use of Z-Sorb, a chloride guard in the regenerator recycle loop, and further modifications to the regenerator internal configuration. This report describes the test conditions in detail and discusses the test results.

  13. A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    . Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus patient's effort. On average, turbine-based ventilators performed better than conventional ventilators

  14. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    None

    1998-07-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

  15. Quantifying Energy Savings by Improving Boiler Operation

    E-Print Network [OSTI]

    Carpenter, K.; Kissock, J. K.

    2005-01-01T23:59:59.000Z

    Dayton, OH ABSTRACT On/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify energy savings from switching to modulation control mode and reducing excess air in natural gas fired boilers... the accuracy of the methods. INTRODUCTION In our experience, common opportunities for improving boiler efficiency include switching from on/off to modulation control and reducing excess air. The decision about whether to pursue these opportunities...

  16. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOE Patents [OSTI]

    Orosa, John

    2014-03-11T23:59:59.000Z

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  17. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOE Patents [OSTI]

    Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

    1982-01-01T23:59:59.000Z

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  18. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect (OSTI)

    Unknown

    2002-01-31T23:59:59.000Z

    The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

  19. MODELLING OF A NONLINEAR MULTIVARIABLE BOILER PLANT USING HAMMERSTEIN MODEL, A NONPARAMETRIC APPROACH

    E-Print Network [OSTI]

    Al-Duwaish, Hussain N.

    MODELLING OF A NONLINEAR MULTIVARIABLE BOILER PLANT USING HAMMERSTEIN MODEL, A NONPARAMETRIC mathematically and prac- tically tractable. Boilers are industrial units, which are used for gener- ating steam of fuel. Boiler operation is a complex operation in which hot water must be delivered to a turbine

  20. Secondary atomization of coal-water fuels for gas turbine applications: Final report

    SciTech Connect (OSTI)

    Yu, T.U.; Kang, S.W.; Beer, J.M.

    1988-12-01T23:59:59.000Z

    The main research objective was to determine the effectiveness of the CWF treatments on atomization quality when applied to an ultrafine coal-water fuel (solids loading reduced to 50%) and to gas turbine operating conditions (atomization at elevated pressures). Three fuel treatment techniques were studied: (1) heating of CWF under pressure to produce steam as the pressure drops during passage of the CWF through the atomizer nozzle, (2) absorption of CO/sub 2/ gas in the CWF to produce a similar effect, and (3) a combination of the two treatments above. These techniques were expected to produce secondary atomization, that is, disruptive shattering of CWF droplets subsequent to their leaving the atomizing nozzle, and to lead to better burnout and finer fly ash size distribution. A parallel objective was to present quantitative information on the spray characteristics (mean droplet size, radial distribution of droplet size, and spray shape) of CWF with and without fuel treatment, applicable to the design of CWF-burning gas turbine combustors. The experiments included laser diffraction droplet size measurements and high-speed photographic studies in the MIT Spray Test Facility to determine mean droplet size (mass median diameter), droplet size distribution, and spray shape and angle. Three systems of atomized sprays were studied: (1) water sprays heated to a range of temperatures at atmospheric pressure; (2) CWF sprays heated at atmospheric pressure to different temperatures; and (3) sprays at elevated pressure. 31 refs., 47 figs., 1 tab.

  1. The gas turbine-modular helium reactor (GT-MHR), high efficiency, cost competitive, nuclear energy for the next century

    SciTech Connect (OSTI)

    Zgliczynski, J.B.; Silady, F.A.; Neylan, A.J.

    1994-04-01T23:59:59.000Z

    The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a small passively safe reactor with key technology developments in the US during the last decade: large industrial gas turbines, large active magnetic bearings, and compact, highly effective plate-fin heat exchangers. The GT-MHR is the only reactor concept which provides a step increase in economic performance combined with increased safety. This is accomplished through its unique utilization of the Brayton cycle to produce electricity directly with the high temperature helium primary coolant from the reactor directly driving the gas turbine electrical generator. This cannot be accomplished with another reactor concept. It retains the high levels of passive safety and the standardized modular design of the steam cycle MHTGR, while showing promise for a significant reduction in power generating costs by increasing plant net efficiency to a remarkable 47%.

  2. Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines

    SciTech Connect (OSTI)

    Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

    2007-03-01T23:59:59.000Z

    Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGLs) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical LNG like fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

  3. E-Print Network 3.0 - automobile gas turbine Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michigan State University Collection: Engineering 14 Infrasound, the Ear and Wind Turbines Alec N. Salt, Ph.D. Summary: Infrasound, the Ear and Wind Turbines Alec N. Salt,...

  4. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    DOE Patents [OSTI]

    Bland, Robert J. (Oviedo, FL); Horazak, Dennis A. (Orlando, FL)

    2012-03-06T23:59:59.000Z

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  5. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, D.A.; Gemmen, R.S.

    2008-06-01T23:59:59.000Z

    This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in Transfer Function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-Infinity robust control algorithm. The controllers main objective is to track and maintain hybrid operational constraints in the fuel cells cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence.

  6. Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020

    E-Print Network [OSTI]

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

    2007-01-01T23:59:59.000Z

    MW Reciprocating Engine 3 MW Gas Turbine 1 MW ReciprocatingEngine 5 MW Gas Turbine 3MW Gas Turbine 40 MW Gas Turbine 1 MW Reciprocating Engine

  7. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  8. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOE Patents [OSTI]

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16T23:59:59.000Z

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  9. Near-Zero NOx Combustion Technology for ATS Mercury 50 Gas Turbine

    SciTech Connect (OSTI)

    Kenneth Smith

    2004-12-31T23:59:59.000Z

    A project to demonstrate a near-zero NOx, catalytic combustion technology for natural gas-fired, industrial gas turbines is described. In a cooperative effort between Solar Turbines Incorporated and Precision Combustion Incorporated (PCI), proof-of-concept rig testing of PCI's fuel-rich catalytic combustion technology has been completed successfully. The primary technical goal of the project was to demonstrate NOx and CO emissions below 5ppm and 10 ppm, respectively, (corrected to 15% O{sub 2}) at realistic gas turbine operating conditions. The program consisted of two tasks. In the first task, a single prototype RCL{trademark} (Rich Catalytic Lean Burn) module was demonstrated at Taurus 70 (7.5 Mw) operating conditions (1.6 MPa, 16 atm) in a test rig. For a Taurus 70 engine, eight to twelve RCL modules will be required, depending on the final system design. In the second task, four modules of a similar design were adapted to a Saturn engine (1 Mw) test rig (600 kPa, 6 atm) to demonstrate gas turbine light-off and operation with an RCL combustion system. This project was initially focused on combustion technology for the Mercury 50 engine. However, early in the program, the Taurus 70 replaced the Mercury. This substitution was motivated by the larger commercial market for an ultra-low NOx Taurus 70 in the near-term. Rig tests using a single prototype RCL module at Taurus 70 conditions achieved NOx emissions as low as 0.75 ppm. A combustor turndown of approximately 110C (200F) was achieved with NOx and CO emissions below 3 ppm and 10 ppm, respectively. Catalyst light-off occurred at an inlet temperature of 310C (590F). Once lit the module remained active at inlet air temperatures as low as 204C (400F). Combustor pressure oscillations were acceptably low during module testing. Single module rig tests were also conducted with the Taurus 70 module reconfigured with a central pilot fuel injector. Such a pilot will be required in a commercial RCL system for turbine light-off and transient operation. At and near simulated full load engine conditions, the pilot operated at low pilot fueling rates without degrading overall system emissions. In the second project task, a set of four Taurus 70 modules was tested in an existing Saturn engine rig. The combustion system allowed smooth engine startup and load variation. At steady state conditions (between 82% and 89.7% engine speed; 32% and 61% load), NOx and CO emissions were below 3ppm and 10ppm, respectively. Rig limitations unrelated to the RCL technology prevented low emissions operation outside of this speed range. Combustor pressure oscillations were low, below 0.25 % (peak-to-peak) of the mean combustor pressure.

  10. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbines

    SciTech Connect (OSTI)

    Alman, David; Marcio, Duffles

    2014-02-05T23:59:59.000Z

    The objective of this Stage Gate IV project was to test and substantiate the viability of an erosion?resistant nanocoating for application on compressor airfoils for gas turbines in both industrial power generation and commercial aviation applications. To effectively complete this project, the National Energy Technology Laboratorys Office of Research & Development teamed with MDS Coating Technologies Inc. (MCT), Delta Air Lines ? Technical Operations Division (Delta Tech Ops), and Calpine Corporation. The coating targeted for this application was MCTs Next Generation Coating, version 4 (NGC?v4 ? with the new registered trademark name of BlackGold). The coating is an erosion and corrosion resistant composite nanostructured coating. This coating is comprised of a proprietary ceramic?metallic nano?composite construction which provides enhanced erosion resistance and also retains the aerodynamic geometry of the airfoils. The objective of the commercial aviation portion of the project was to substantiate the coating properties to allow certification from the FAA to apply an erosion?resistant coating in a commercial aviation engine. The goal of the series of tests was to demonstrate that the durability of the airfoils is not affected negatively with the application of the NGC v4 coating. Tests included erosion, corrosion, vibration and fatigue. The results of the testing demonstrated that the application of the coating did not negatively impact the properties of the blades, especially fatigue performance which is of importance in acceptance for commercial aviation applications. The objective of the industrial gas turbine element of the project was to evaluate the coating as an enabling technology for inlet fogging during the operation of industrial gas turbines. Fluid erosion laboratory scale tests were conducted to simulate inlet fogging conditions. Results of these tests indicated that the application of the erosion resistant NGC?v4 nanocoating improved the resistance to simulated inlet fogging conditions by a factor of 10 times. These results gave confidence for a field trial at Calpines power plant in Corpus Christi, TX, which commenced in April 2012. This test is still on?going as of November 2013, and the nanocoated blades have accumulated over 13,000 operational hours on this specific power plant in approximately 19 months of operation.

  11. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    of incinerator.whether fixed bed.rotary kiln or fluid bed.Sla9ging constituents present in the gas can result in bridging of tubes by molten salts if tube spacing is not wide,particularly at the boiler inlet.Ash hoppers ,soot blowers and cleaning lanes... take various configurations as seen in Fig 1 to ~.Consultants and engineers who specify and evaluate HRSGs should be aware that several factors influence the final configuration of HRSGs.Some of these factors are discussed below. SYSTEM...

  12. Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian D. (Mauldin, SC); Wesorick, Ronald R. (Albany, NY)

    2002-01-01T23:59:59.000Z

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

  13. Air/fuel supply system for use in a gas turbine engine

    SciTech Connect (OSTI)

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17T23:59:59.000Z

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  14. Electrochemical machining process for forming surface roughness elements on a gas turbine shroud

    DOE Patents [OSTI]

    Lee, Ching-Pang (Cincinnati, OH); Johnson, Robert Alan (Simpsonville, SC); Wei, Bin (Mechanicville, NY); Wang, Hsin-Pang (Rexford, NY)

    2002-01-01T23:59:59.000Z

    The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.

  15. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOE Patents [OSTI]

    Orosa, John; Montgomery, Matthew

    2014-02-11T23:59:59.000Z

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  16. Advanced Gas Turbine Systems Research, Technical Quarterly Progress Report. October 1, 1998--December 31, 1998

    SciTech Connect (OSTI)

    NONE

    1999-01-19T23:59:59.000Z

    Major accomplishments during this reporting period by the Advanced Gas Turbine Systems Research (AGTSR) are: AGTSR submitted FY99 program continuation request to DOE-FETC for $4M; AGTSR submitted program and workshop Formation to the Collaborative Advanced Gas Turbine (CAGT) initiative; AGTSR distributed research accomplishment summaries to DOE-FETC in the areas of combustion, aero-heat transfer, and materials; AGTSR reviewed and cleared research papers with the IRB from Arizona State, Cornell, Wisconsin, Minnesota, Pittsburgh, Clemson, Texas and Georgia Tech; AGTSR prepared background material for DOE-FETC on three technology workshops for distribution at the DOE-ATS conference in Washington, DC; AGTSR coordinated two recommendations for reputable firms to conduct an economic impact analysis in support of new DOE gas turbine initiatives; AGTSR released letters announcing the short-list winners/non-winners from the 98RFP solicitation AGTSR updated fact sheet for 1999 and announced four upcoming workshops via the SCIES web page AGTSR distributed formation to EPRI on research successes, active university projects, and workshop offerings in 1999 AGTSR continued to conduct telephone debriefings to non-winning PI's born the 98RFP solicitation AGTSR distributed completed quarterly progress report assessments to the IRB experts in the various technology areas AGTSR provided Formation to GE-Evandale on the active combustion control research at Georgia Tech AGTSR provided information to AlliedSignal and Wright-Pat Air Force Base on Connecticut's latest short-listed proposal pertaining to NDE of thermal barrier coatings AGTSR submitted final technical reports from Georgia Tech - one on coatings and the other on active combustion control - to the HU3 for review and evaluation AGTSR coordinated the format, presentation and review of 28 university research posters for the ATS Annual Review Meeting in November, 1998 AGTSR published a research summary paper at the ATS Annual Review pertaining to the university consortium's activities AGTSR published and presented a paper on the status of ATS catalytic combustion R&D at the RTA/NATO Gas Turbine Combustion Symposium, October 12-16,1998 in Lisbon, Portugal IRE approved a 12-month add-on request from Penn State University to conduct an added research task in their multistage unsteady aerodynamics project AGTSR reviewed a research extension white paper from Clemson University with the IRB to conduct an added task pertaining to their mist/steam cooling research project AGTSR coordinated new research topics with the IR.Band select universities to facilitate R&D roadmapping needs at the Aero-Heat Transfer III workshop in Austin, TX AGTSR distributed FY97 research progress reports to DOE and the XRB; and AGTSR solicited new R&D topics from the IRB experts for the 1999 RFP.

  17. Cooling circuit for and method of cooling a gas turbine bucket

    DOE Patents [OSTI]

    Jacala, Ariel C. P. (Simpsonville, SC)

    2002-01-01T23:59:59.000Z

    A closed internal cooling circuit for a gas turbine bucket includes axial supply and return passages in the dovetail of the bucket. A first radial outward supply passage provides cooling medium to and along a passageway adjacent the leading edge and then through serpentine arranged passageways within the airfoil to a chamber adjacent the airfoil tip. A second radial passage crosses over the radial return passage for supplying cooling medium to and along a pair of passageways along the trailing edge of the airfoil section. The last passageway of the serpentine passageways and the pair of passageways communicate one with the other in the chamber for returning spent cooling medium radially inwardly along divided return passageways to the return passage. In this manner, both the leading and trailing edges are cooled using the highest pressure, lowest temperature cooling medium.

  18. Characterization of the reactive flow field dynamics in a gas turbine injector using high frequency PIV

    E-Print Network [OSTI]

    Barbosa, Sverine; Ducruix, Sbastien

    2008-01-01T23:59:59.000Z

    The present work details the analysis of the aerodynamics of an experimental swirl stabilized burner representative of gas turbine combustors. This analysis is carried out using High Frequency PIV (HFPIV) measurements in a reactive situation. While this information is usually available at a rather low rate, temporally resolved PIV measurements are necessary to better understand highly turbulent swirled flows, which are unsteady by nature. Thanks to recent technical improvements, a PIV system working at 12 kHz has been developed to study this experimental combustor flow field. Statistical quantities of the burner are first obtained and analyzed, and the measurement quality is checked, then a temporal analysis of the velocity field is carried out, indicating that large coherent structures periodically appear in the combustion chamber. The frequency of these structures is very close to the quarter wave mode of the chamber, giving a possible explanation for combustion instability coupling.

  19. Method for forming a liquid cooled airfoil for a gas turbine

    DOE Patents [OSTI]

    Grondahl, Clayton M. (Clifton Park, NY); Willmott, Leo C. (Ballston Spa, NY); Muth, Myron C. (Amsterdam, NY)

    1981-01-01T23:59:59.000Z

    A method for forming a liquid cooled airfoil for a gas turbine is disclosed. A plurality of holes are formed at spaced locations in an oversized airfoil blank. A pre-formed composite liquid coolant tube is bonded into each of the holes. The composite tube includes an inner member formed of an anti-corrosive material and an outer member formed of a material exhibiting a high degree of thermal conductivity. After the coolant tubes have been bonded to the airfoil blank, the airfoil blank is machined to a desired shape, such that a portion of the outer member of each of the composite tubes is contiguous with the outer surface of the machined airfoil blank. Finally, an external skin is bonded to the exposed outer surface of both the machined airfoil blank and the composite tubes.

  20. Axial seal system for a gas turbine steam-cooled rotor

    DOE Patents [OSTI]

    Mashey, Thomas Charles (Anderson, SC)

    2002-01-01T23:59:59.000Z

    An axial seal assembly is provided at the interface between adjacent wheels and spacers of a gas turbine rotor and disposed about tubes passing through openings in the rotor adjacent the rotor rim and carrying a thermal medium. Each seal assembly includes a support bushing for supporting a land of the thermal medium carrying tube, an axially registering seat bushing disposed in the opposed opening and a frustoconical seal between the seal bushing and seat. The seal bushing includes a radial flange having an annular recess for retaining the outer diameter edge of the seal, while the seat bushing has an axially facing annular surface forming a seat for engagement by the inner diameter edge of the seal.

  1. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai A, Banta L, Tucker D

    2010-08-01T23:59:59.000Z

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controllers main objective is to track and maintain hybrid operational constraints in the fuel cells cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  2. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOE Patents [OSTI]

    Provol, Steve J. (Carlsbad, CA); Russell, David B. (San Diego, CA); Isaksson, Matti J. (Karhula, FI)

    1994-01-01T23:59:59.000Z

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  3. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    SciTech Connect (OSTI)

    Sharp, William (Sandy) [SharpConsultant

    2011-12-01T23:59:59.000Z

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superh

  4. Predictive modelling of boiler fouling

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    In this reporting period, efforts were initiated to supplement the comprehensive flow field description obtained from the RNG-Spectral Element Simulations by incorporating, in a general framework, appropriate modules to model particle and condensable species transport to the surface. Specifically, a brief survey of the literature revealed the following possible mechanisms for transporting different ash constituents from the host gas to boiler tubes as deserving prominence in building the overall comprehensive model: (1) Flame-volatilized species, chiefly sulfates, are deposited on cooled boiler tubes via the mechanism of classical vapor diffusion. This mechanism is more efficient than the particulate ash deposition, and as a result there is usually an enrichment of condensable salts, chiefly sulfates, in boiler deposits; (2) Particle diffusion (Brownian motion) may account for deposition of some fine particles below 0. 1 mm in diameter in comparison with the mechanism of vapor diffusion and particle depositions, however, the amount of material transported to the tubes via this route is probably small. (3) Eddy diffusion, thermophoretic and electrophoretic deposition mechanisms are likely to have a marked influence in transporting 0.1 to 5[mu]m particles from the host gas to cooled boiler tubes; (4) Inertial impaction is the dominant mechanism in transporting particles above 5[mu]m in diameter to water and steam tubes in pulverized coal fired boiler, where the typical flue gas velocity is between 10 to 25 m/s. Particles above 10[mu]m usually have kinetic energies in excess of what can be dissipated at impact (in the absence of molten sulfate or viscous slag deposit), resulting in their entrainment in the host gas.

  5. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01T23:59:59.000Z

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  6. Transport and deposition of particles in gas turbines: Effects of convection, diffusion, thermophoresis, inertial impaction and coagulation

    SciTech Connect (OSTI)

    Brown, D.P.; Biswas, P.; Rubin, S.G. [Univ. of Cincinnati, OH (United States)

    1994-12-31T23:59:59.000Z

    Aerosols are produced in a large number of industrial processes over a wide range of sizes. Of particular importance is deposition of coal and oil combustion aerosols in turbines. A model coupling the transport and the dynamics of aerosols to flow characteristics in gas turbines is presented. An order of magnitude analysis is carried out based on typical operational conditions for coal and oil combustion (neglecting coagulation) to determine the relative importance of various mechanisms on particle behavior. A scheme is then developed to incorporate a moment model of a log normally distributed aerosol to predict aerosol transport and dynamics in turbine flows. The proposed moment model reflects the contributions from convection, inertia, diffusion and thermophoresis. Aerosol behavior in various laminar 2-D and axisymmetric flows is considered in this study. Results are compared to published work in 1-D and 2-D planar and axisymmetric.

  7. Combined Cycle Combustion Turbines

    E-Print Network [OSTI]

    Combined Cycle Combustion Turbines Steven Simmons February 27 2014 1 #12;CCCT Today's Discussion 1 Meeting Pricing of 4 advanced units using information from Gas Turbine World Other cost estimates from E E3 EIA Gas Turbine World California Energy Commission Date 2010 Oct 2012, Dec 2013 Apr 2013 2013 Apr

  8. Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design

    E-Print Network [OSTI]

    Huang, F. F.; Naumowicz, T.

    It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only...

  9. 2.1E Supplement

    E-Print Network [OSTI]

    Winkelmann, F.C.

    2010-01-01T23:59:59.000Z

    GENERATOR Introduction Gas Turbine Steam Turbine SIMULATIONSModes 1: Chillers, Gas Turbine, and Boiler 2: Chillers,O R SIMULATIONS Introduction Gas Turbine Steam Turbine PLANT

  10. Evaluation of an Integrated Gas-Cooled Reactor Simulator and Brayton Turbine-Generator

    SciTech Connect (OSTI)

    Hissam, D. Andy; Stewart, Eric [National Aeronautics and Space Administration, Marshall Space Flight Center, ER34, Huntsville, AL 35812 (United States)

    2006-07-01T23:59:59.000Z

    A closed-loop Brayton cycle, powered by a fission reactor, offers an attractive option for generating both planetary and in-space electric power. Non-nuclear testing of this type of system provides the opportunity to safely work out integration and system control challenges for a modest investment. Recognizing this potential, a team at Marshall Space Flight Center has evaluated the viability of integrating and testing an existing gas-cooled reactor simulator and a modified, commercially available, Brayton turbine-generator. Since these two systems were developed independently of one another, this evaluation sought to determine if they could be operated together at acceptable power levels, temperatures, and pressures. Thermal, fluid, and structural analyses show that this combined system can operate at acceptable power levels and temperatures. In addition, pressure drops across the reactor simulator, although higher than desired, are also viewed as acceptable. Three potential working fluids for the system were evaluated: N{sub 2}, He/Ar, and He/Xe. Other technical issues, such as electrical breakdown in the generator and the operation of the Brayton foil bearings using various gas mixtures, were also investigated. (authors)

  11. Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions

    SciTech Connect (OSTI)

    Cheng, R. K.; Littlejohn, D.; Strakey, P.A.; Sidwell, T.

    2008-03-05T23:59:59.000Z

    Laboratory experiments were conducted at gas turbine and atmospheric conditions (0.101 < P{sub 0} < 0.810 MPa, 298 < T{sub 0} < 580K, 18 < U{sub 0} < 60 m/s) to characterize the overall behaviors and emissions of the turbulent premixed flames produced by a low-swirl injector (LSI) for gas turbines. The objective was to investigate the effects of hydrogen on the combustion processes for the adaptation to gas turbines in an IGCC power plant. The experiments at high pressures and temperatures showed that the LSI can operate with 100% H{sub 2} at up to {phi} = 0.5 and has a slightly higher flashback tolerance than an idealized high-swirl design. With increasing H{sub 2} fuel concentration, the lifted LSI flame begins to shift closer to the exit and eventually attaches to the nozzle rim and assumes a different shape at 100% H{sub 2}. The STP experiments show the same phenomena. The analysis of velocity data from PIV shows that the stabilization mechanism of the LSI remains unchanged up to 60% H{sub 2}. The change in the flame position with increasing H{sub 2} concentration is attributed to the increase in the turbulent flame speed. The NO{sub x} emissions show a log linear dependency on the adiabatic flame temperature and the concentrations are similar to those obtained previously in a LSI prototype developed for natural gas. These results show that the LSI exhibits the same overall behaviors at STP and at gas turbine conditions. Such insight will be useful for scaling the LSI to operate at IGCC conditions.

  12. Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

  13. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30T23:59:59.000Z

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  14. Parametric study of a firetube boiler performance

    SciTech Connect (OSTI)

    Park, H. [Marquette Univ., Milwaukee, WI (United States). Dept. of Mechanical and Industrial Engineering; Valentino, M.W. [Cleaver-Brooks, Milwaukee, WI (United States)

    1995-12-31T23:59:59.000Z

    Critical areas in the design of commercial and industrial firetube boilers are burner and furnace configuration, as is the resultant heat transfer from the furnace wall to the water under the various conditions. Furthermore, performance of industrial and commercial boilers is mainly dependent upon their material and geometrical dimensions. In order to investigate boiler performance globally, a relatively simple model which can be processed in a personal computer (PC) is proposed. In this paper, the effects of thermo-physical parameters on the energy and exergy performance of a firetube boiler are studied by using a simple model for the combustion product gas behavior through the boiler passes. For each steady-state condition, the boiler performance is investigated by parametrically changing the degree of inception of nucleate boiling, the tube wall emissivity, the saturation steam pressure, and the fraction of flue gas recirculation (FGR, utilized for NO{sub x} emissions reduction). Results for a set of parameters such as those considered in this work may be used in future firetube boiler design to improve performance and reduce manufacturing costs.

  15. CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS

    SciTech Connect (OSTI)

    Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

    2009-11-30T23:59:59.000Z

    This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

  16. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    DOE Patents [OSTI]

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13T23:59:59.000Z

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  17. Advanced coal-fueled gas turbine systems reference system definition update

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

  18. Recovery Boiler Corrosion Chemistry

    E-Print Network [OSTI]

    Das, Suman

    11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

  19. Angel wing seals for blades of a gas turbine and methods for determining angel wing seal profiles

    DOE Patents [OSTI]

    Wang, John Zhiqiang (Greenville, SC)

    2003-01-01T23:59:59.000Z

    A gas turbine has buckets rotatable about an axis, the buckets having angel wing seals. The seals have outer and inner surfaces, at least one of which, and preferably both, extend non-linearly between root radii and the tip of the seal body. The profiles are determined in a manner to minimize the weight of the seal bodies, while maintaining the stresses below predetermined maximum or allowable stresses.

  20. E-Print Network 3.0 - aero gas turbine Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling... tool combines the computational methodologies used to analyze...

  1. Passive control features of a small pebble-bed HTR for a gas turbine cycle

    SciTech Connect (OSTI)

    Teuchert, E.; Gerwin, H.; Haas, K.A.; Sun, Y. (Kernforschungsanlage Juelich (Germany))

    1992-01-01T23:59:59.000Z

    A recent study outlines possible variants of the pebble-bed high-temperature reactor characterized by simplifications in design and operation. Common to them all is the passive response of the reactor to a loss-of-coolant accident (LOCA) in which the decay power is transmitted to the environment by thermal conduction and radiation without the danger of overheating the fuel elements. The simplest way of fueling a pebble-bed reactor is the Peu a Peu modus: Reactor operation starts with the core cavity partially filled with fuel elements, and little by little, new elements are loaded to compensate for burnup. At the end, they are unloaded in one step. This fueling modus avoids the handling of irradiated elements over the whole loading period, and devices for the onload unloading are superflouous. A small 20-MW(thermal) Peu a Peu-fueled reactor operating with a gas turbine cycle is introduced in this paper. Beyond the properties mentioned, it is characterized by additional simplifying features: (1) A single loading period is extended over the whole lifetime, i.e., [approximately]20 yr of full-power operation. (2) Passive response to transients is extended to the control of a regular load follow.

  2. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    DOE Patents [OSTI]

    Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

    1983-01-01T23:59:59.000Z

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  3. Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines

    SciTech Connect (OSTI)

    Littlejohn, David; Littlejohn, David; Cheng, R.K.

    2007-12-03T23:59:59.000Z

    Laboratory experiments have been conducted to investigate the fuel effects on the turbulent premixed flames produced by a gas turbine low-swirl injector (LSI). The lean-blow off limits and flame emissions for seven diluted and undiluted hydrocarbon and hydrogen fuels show that the LSI is capable of supporting stable flames that emit < 5 ppm NO{sub x} ({at} 15% O{sub 2}). Analysis of the velocity statistics shows that the non-reacting and reacting flowfields of the LSI exhibit similarity features. The turbulent flame speeds, S{sub T}, for the hydrocarbon fuels are consistent with those of methane/air flames and correlate linearly with turbulence intensity. The similarity feature and linear S{sub T} correlation provide further support of an analytical model that explains why the LSI flame position does not change with flow velocity. The results also show that the LSI does not need to undergo significant alteration to operate with the hydrocarbon fuels but needs further studies for adaptation to burn diluted H{sub 2} fuels.

  4. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)

    SciTech Connect (OSTI)

    John L. Marion; Nsakala ya Nsakala

    2003-11-09T23:59:59.000Z

    The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

  5. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  6. Boiler MACT 35000FT: Maximum Achievable Control Technology

    E-Print Network [OSTI]

    Robinson, J.

    2013-01-01T23:59:59.000Z

    fossil fuel is coal, petroleum coke, tire derived fuel, etc. ESL-IE-13-05-29 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 Classification-Boiler Subcategory Boiler Classification Pulverized... Heaters Affected ? Large affected units burning coal, oil, biomass, natural gas, other solid, liquid, gaseous non-waste materials ? Boilers or Process Heaters Not Affected ? Electric Utility Generating Unit (EGU) ?Waste Heat, hot water heaters...

  7. A hypothetical profile of ordinary steam turbines with reduced cost and enhanced reliability for contemporary conditions

    SciTech Connect (OSTI)

    Leyzerovich, A.S. [Actinium Corp., St. Louis, MO (United States)

    1998-12-31T23:59:59.000Z

    Power steam turbines should be characterized with the reduced cost and enhanced reliability and designed on the basis of experience in steam turbine design and operation accumulated in the world`s practice for the latest years. Currently, such turbines have to be particularly matched with requirements of operation for deregulated power systems; so they should be capable of operating in both base-load and cycling modes. It seems reasonable to have such turbines with the single capacity about 250--400 MW, supercritical main steam pressure, and single steam reheat. This makes it possible to design such turbines with the minimum specific metal amount and length, with the integrated HP-IP and one two-flow LP cylinders. With existing ferritic and martensitic-class steels, the main and reheat steam temperatures can be chosen at the level of 565--580 C (1050--1075 F) without remarkable supplemental expenditures and a sacrifice of reliability. To reduce the capital cost and simplify operation and maintenance, the turbine`s regenerative system can be designed deaeratorless with motor-driven boiler-feed pumps. Such turbines could be used to replace existing old turbines with minimum expenditures. They can also be combined with large high-temperature gas-turbine sets to shape highly efficient combined-cycle units. There exist various design and technological decisions to enhance the turbine reliability and efficiency; they are well worked up and verified in long-term operation practice of different countries. For reliable and efficient operation, the turbine should be furnished with advanced automatic and automated control, diagnostic monitoring, and informative support for the operational personnel.

  8. Nicor Gas- Commercial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Nicor Gas offers a variety of rebates to commercial customers for the purchase and installation of energy efficient products. Rebates are available on water heaters, furnaces, boilers, boiler...

  9. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    SciTech Connect (OSTI)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01T23:59:59.000Z

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  10. Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine

    E-Print Network [OSTI]

    Suryanarayanan, Arun

    2010-07-14T23:59:59.000Z

    turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the flow along the first stage rotor exit, second...

  11. COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES

    E-Print Network [OSTI]

    Matthews, Ronald D.

    2013-01-01T23:59:59.000Z

    Nitrogeneous Species in Gas Turbine Exhaust, from Conkle, et82) Percent of Organic Gas Turbine Emissions which containnitrogen dioxide from gas turbines (from the data presented

  12. Scale-up of commercial PCFB boiler plant technology

    SciTech Connect (OSTI)

    Lamar, T.W.

    1993-10-01T23:59:59.000Z

    The DMEC-1 Demonstration Project will provide an 80 MWe commercial-scale demonstration of the Pressurized Circulating Fluidized Bed (PCFB) technology. Following confirmation of the PCFB design in the 80 MWe scale, the technology with be scaled to even larger commercial units. It is anticipated that the market for commercial scale PCFB plants will exist most predominantly in the utility and independent power producer (IPP) sectors. These customers will require the best possible plant efficiency and the lowest achievable emissions at competitive cost. This paper will describe the PCFB technology and the expected performance of a nominal 400 MWe PCFB power plant Illinois No. 6 coal was used as a representative fuel for the analysis. The description of the plant performance will be followed by a discussion of the scale-up of the major PCFB components such as the PCFB boiler, the pressure vessel, the ceramic filter, the coal/sorbent handling steam, the gas turbine, the heat recovery unit and the steam turbine, demonstrating the reasonableness of scale-up from demonstration plant to a nominal 400 MWe unit.

  13. 2 Global Gas Turbine News August 2008 There is an old saying that the only constant in life is change. Our

    E-Print Network [OSTI]

    Daraio, Chiara

    at the Turbomachinery Symposium. SEPTEMBER 8, 2008 Combustion Dynamics in Gas Turbine Power Plants Pre, are in high demand. As the largest gathering of research, design and development turbomachinery engineers Europe, Asia and the US to present the current state-of-art and market trends and direction in gas

  14. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    SciTech Connect (OSTI)

    Liss, William E; Cygan, David F

    2013-04-17T23:59:59.000Z

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system???¢????????the Super Boiler???¢????????for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today???¢????????s typical firetube boilers.

  15. Recovery Boiler Modeling

    E-Print Network [OSTI]

    Abdullah, Z.; Salcudean, M.; Nowak, P.

    , east, e, west, w, bot tom, b, and top, t, neighbors. The neighboring cou pling coefficients (an, a., .. , etc) express the magnitudes of the convection and diffusion which occur across the control volume boundaries. The variable b p represents... represents a model of one half of the recovery boiler. The boiler has three air levels. The North, South and East boundaries of the computational domain represent the water walls of the boiler. The West boundary represents a symmetry plane. It should...

  16. Economic Analysis for Conceptual Design of Supercritical O2-Based PC Boiler

    SciTech Connect (OSTI)

    Andrew Seltzer; Archie Robertson

    2006-09-01T23:59:59.000Z

    This report determines the capital and operating costs of two different oxygen-based, pulverized coal-fired (PC) power plants and compares their economics to that of a comparable, air-based PC plant. Rather than combust their coal with air, the oxygen-based plants use oxygen to facilitate capture/removal of the plant CO{sub 2} for transport by pipeline to a sequestering site. To provide a consistent comparison of technologies, all three plants analyzed herein operate with the same coal (Illinois No 6), the same site conditions, and the same supercritical pressure steam turbine (459 MWe). In the first oxygen-based plant, the pulverized coal-fired boiler operates with oxygen supplied by a conventional, cryogenic air separation unit, whereas, in the second oxygen-based plant, the oxygen is supplied by an oxygen ion transport membrane. In both oxygen-based plants a portion of the boiler exhaust gas, which is primarily CO{sub 2}, is recirculated back to the boiler to control the combustion temperature, and the balance of the flue gas undergoes drying and compression to pipeline pressure; for consistency, both plants operate with similar combustion temperatures and utilize the same CO{sub 2} processing technologies. The capital and operating costs of the pulverized coal-fired boilers required by the three different plants were estimated by Foster Wheeler and the balance of plant costs were budget priced using published data together with vendor supplied quotations. The cost of electricity produced by each of the plants was determined and oxygen-based plant CO{sub 2} mitigation costs were calculated and compared to each other as well as to values published for some alternative CO{sub 2} capture technologies.

  17. Minimize Boiler Blowdown

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  18. Evaluation of gas reburning and low NO{sub x} burners on a wall-fired boiler

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    An evaluation of Gas Reburning (GR) and Low NO{sub x} Burners (LNB) has been completed at Public Service Company of Colorado`s Cherokee Station Unit 3. The goal of the demonstration was to reduce NO{sub x} emissions by 70%. The reduction was to be achieved from the pre-project level prior to LNB retrofit. The GR system was supplied by Energy and Environmental Research Corporation (EER) and the LNBs were supplied by the Foster Wheeler Energy Corporation. The project was carried out in three phases in which EER designed the GR system and obtained necessary permits (Phase 1), constructed the system and completed start-up tasks (Phase 2), and evaluated its performance with both Optimization Tests and a Long-Term Demonstration (Phase 3). As directed by the Cooperative Agreement, environmental monitoring was conducted in each phase. Measurements were taken by plant personnel and an EER Field Testing Team and were divided into two types. ``Compliance Monitoring`` was conducted by plant personnel to satisfy requirements of regulatory agencies, while ``Supplemental Monitoring`` was conducted by EER personnel to develop a database of environmental impacts of the technology and to ensure environmental acceptability of the project. This document presents environmental monitoring data obtained during the Optimization Testing period, November 11, 1992 to April 23, 1993. Compliance Monitoring was conducted primarily in two areas, air emissions and aqueous discharges. The unit is required to meet an SO{sub 2} limit of 1.2 lb/MBtu and an opacity limit of 20 percent (6 minute average). Therefore, the plant monitors flue gas SO{sub 2} and opacity continuously and submits Excess Emissions Reports to the Colorado Air Pollution Control Division on a quarterly basis. Discharge limits for the aqueous effluent from the plant and monitoring requirements are specified by a permit issued by the Colorado Water Quality Control Division.

  19. Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test

    SciTech Connect (OSTI)

    Schweitzer, J. K.; Smith, J. D.

    1981-03-01T23:59:59.000Z

    The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

  20. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31T23:59:59.000Z

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  1. Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

  2. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30T23:59:59.000Z

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  3. Evaluation of gas reburning and low NO{sub x} burners on a wall-fired boiler

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    An evaluation of Gas Reburning (GR) and Low NO{sub x}, Burners (LNB) has been completed at Public Service Company of Colorado`s Cherokee Station Unit 3. The goal of the demonstration, which was carried out in a US DOE Clean Coal Technology Round 3 Program, was to reduce NO{sub x} emissions by 70%. The reduction was to be achieved from the pre-project level, prior to LNB retrofit. The GR system was supplied by Energy and Environmental Research Corporation (EER) and the LNBs were supplied by the Foster Wheeler Energy Corporation. The project was carried out in three phases in which EER designed the GR system and obtained necessary permits (Phase 1), constructed the system and completed start-up tasks (Phase 2), and evaluated its performance with both Optimization Tests and a Long-Term Demonstration (Phase 3). As directed by the cooperative agreement, environmental monitoring was conducted in each phase. Measurements were taken by plant personnel and an EER Field Testing Team and were divided into two types. ``Compliance Monitoring`` was conducted by plant personnel to satisfy requirements of regulatory agencies, while ``Supplemental Monitoring`` was conducted by EER personnel to develop a database of environmental impacts of the technology and to ensure environmental acceptability of the project. This document presents environmental monitoring data obtained during the Long-Term Testing period, April 27, 1993 to January 27, 1995. During this period, ten months of testing of the GR-LNB system was followed by a modification into a ``second-generation`` GR-LNB system, which was evaluated for six months. Compliance Monitoring was conducted primarily in two areas, air emissions and aqueous discharges.

  4. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    SciTech Connect (OSTI)

    Ahsan Choudhuri

    2011-03-31T23:59:59.000Z

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

  5. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27T23:59:59.000Z

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

  6. HTGR Gas Turbine Program. Semiannual progress report for the period ending September 30, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    Information on the HTGR-GT program is presented concerning systems design methods; systems dynamics methods; alternate design; miscellaneous controls and auxiliary systems; structural mechanics; shielding analysis; licensing; safety; availability; reactor turbine system integration with plant; PCRV liners, penetrations, and closures; PCRV structures; thermal barrier; reactor internals; turbomachinery; turbomachine remote maintenance; control valve; heat exchangers; plant protection system; and plant control system.

  7. Application of Multivariable Control to Oil and Coal Fired Boilers

    E-Print Network [OSTI]

    Swanson, K.

    1981-01-01T23:59:59.000Z

    Increased visibility provided by advanced measurement and control techniques has shown that control of oil and coal fired boilers is a complex problem involving simultaneous determination of flue gas carbon monoxide, hydrocarbon, opacity...

  8. Cost-Effective Industrial Boiler Plant Efficiency Advancements

    E-Print Network [OSTI]

    Fiorino, D. P.

    Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were...

  9. Continuous Measurement of Carbon Monoxide Improves Combustion Efficiency of CO Boilers

    E-Print Network [OSTI]

    Gilmour, W. A.; Pregler, D. N.; Branham, R. L.; Prichard, J. J.

    1981-01-01T23:59:59.000Z

    The paper describes the application of in-situ flue gas CO measurement in the operation of CO Boilers and details the steps needed to optimize combustion efficiency....

  10. Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01T23:59:59.000Z

    A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

  11. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  12. Orange and Rockland Utilities (Gas)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities provides rebates for residential customers purchasing energy efficient natural gas equipment. Rebates exist for furnaces, water boilers and controls, steam boilers,...

  13. Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines

    SciTech Connect (OSTI)

    Barthelemy, N.M.; Lynn, S.

    1991-07-01T23:59:59.000Z

    This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently to the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.

  14. Baseline data on utilization of low-grade fuels in gas turbine applications. Volume 3. Emissions evaluation. Final report

    SciTech Connect (OSTI)

    Sonnichsen, T.

    1981-06-01T23:59:59.000Z

    A series of field tests was conducted on two residual-oil-fired gas turbine/heat recovery steam generators (HRSG) comprising a Westinghouse PACE 260-MW combined-cycle unit. The objective of these tests was to determine base load emission levels (1) with and without afterburners in service, (2) with and without water injection, and (3) following a turbine wash. A brief series of tests was also made at reduced operating loads. Emission measurements included (1) gaseous constituents measured by continuous monitoring instrumentation (O/sub 2/, CO/sub 2/, NO, NO/sub x/, and SO/sub 2/) and by wet chemistry methods (SO/sub 3/, aldehydes, and chlorides) and (2) particulate characteristics (mass loading, smoke spot number, submicron particle size, and particle morphology). Corrected NO/sub x/ emissions at base load were 170 ppM (690 lb/h) and 200 ppM (625 lb/h) with and without HRSG afterburners in service, respectively. NO/sub x/ emissions decreased with water injection by 50% and were unchanged with the turbine wash. NO/sub x/ increased with load. Particulate mass loading at the HRSG stack (EPA Method 5) increased from 0.05 lb/10/sup 6/ Btu to 0.08 lb/10/sup 6/ Btu with the use of supplemental firing during non-sootblowing periods. Operation with sootblowing significantly increased these levels. CO emissions and smoke spot numbers were low for all test conditions, increasing slightly with afterburner firing, water injection, and reduced load. SO/sub 3/ and aldehyde emissions were less than 1 ppM for all tests.

  15. Automotive teamwork to develop an advanced automotive gas-turbine engine

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    A $56.6 million cost-sharing contract has been signed by the U.S. Department of Energy and an industrial group headed by AiResearch Manufacturing Co. and including Ford Motor Co., AiResearch Casting Co., and Carborundum Co. A second contractual arrangement for an advanced turbine engine is being negotiated with an industry team headed by General Motors Corp.

  16. DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2012-01-01T23:59:59.000Z

    for powering a gas turbine or to supply industrial processin conjunetion with a gas turbine system providing severalincluding heating a gas to operate a turbine (4), providing

  17. Boiler Corrosion and Monitoring

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    G. R. Holcomb; B. F. McGhee; A. T. Fry; N. J. Simms; K. Davis; Shim, H S; S. J. Bullard

    2013-11-19T23:59:59.000Z

    Results of a collaborative effort to investigate and develop solutions for key material issues affecting the performance of large-scale coal-fired boilers operating at advanced conditions is presented. Advanced conditions include advanced steam temperatures, oxyfuel firing, and co-firing biomass materials. A series of laboratory experimental results are presented on fireside corrosion in environments representing air-, and oxy-fired conditions, and with coal and/or biomass as the fuel. The effects of fluctuating reducing atmospheres and heat flux effects were examined. A variety of boiler corrosion probes and sensors were developed and tested. The probes measured corrosion by section loss and the sensors by electrochemical techniques including electrochemical noise. The probes were tested in coal and waste-to-energy boilers. Correlations between section loss probes and electrochemical noise sensors allow for real-time corrosion rate measurements to be made that allow for changes in boiler operations to be tracked in terms of corrosion effects.

  18. Combustion characteristics in a pre-vaporizing pre-mixing lean combustor for an automotive ceramic gas turbine

    SciTech Connect (OSTI)

    Yoshida, Yusaku; Oguchi, Makoto

    1999-07-01T23:59:59.000Z

    A pre-vaporizing pre-mixing lean combustor (PPL) was developed for an automotive ceramic gas turbine which had high thermal efficiency and clean exhaust emissions. This study has been performed to obtain design data by investigating the basic characteristics of this combustor. Experiments were conducted under a high combustor inlet air temperature of 973K since the combustor inlet air was heated by regenerators to achieve high thermal efficiency. At first, the following measurements were conducted to survey the phenomena in the PPL combustion system; the required distance of vaporizing tube for complete evaporation and uniform mixture formation, and the flow pattern and velocity distribution and flame behaviors in the combustion chamber. Then it has clarified how the emission characteristics were influenced by non-uniformity of the mixture that flew into the combustion chamber. And also the possibility of reducing NOx emission by introducing dilution air into the post flame region has been shown.

  19. Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions

    E-Print Network [OSTI]

    Cheng, R. K.

    2009-01-01T23:59:59.000Z

    D. Littlejohn, ASME Turbo Expo 2006: Power for Land, SeanTurbines and Power-Transactions of the Asme, 126 (2) (2004)Turbines and Power- Transactions of the Asme, 116 (3) (1994)

  20. Proceedings: EPRI Workshop on Condition and Remaining Life Assessment of Hot Gas Path Components of Combustion Turbines

    SciTech Connect (OSTI)

    None

    2000-05-01T23:59:59.000Z

    The severity of modern combustion turbine operation is a reflection of industry competition to achieve higher thermal efficiency. This competitive stance has resulted in new turbine designs and material systems that have at times outpaced condition and remaining life assessment (CARLA) technology. These proceedings summarize a two-day workshop on CARLA technology for hot section components of large combustion turbines.

  1. Mitsubishi FGD plants for lignite fired boilers

    SciTech Connect (OSTI)

    Kotake, Shinichiro; Okazoe, Kiyoshi; Iwashita, Koichiro; Yajima, Satoru

    1998-07-01T23:59:59.000Z

    In order to respond to the increasing electric energy demand for sustaining economic growth, construction of coal-fired thermal power plants worldwide is indispensable. As a countermeasure for environmental pollution which otherwise may reach a serious proportion from the operation of these plants, construction of flue gas desulfurization (FGD) plants is being promoted. Among these power stations where lignite fuel is burnt, the FGD plants concerned have to be designed to cope with high gas volume and SO{sub x} concentration as well as violent fluctuations in their values caused by such features of lignite as high sulfur content, low calorific volume, and unstable properties. Mitsubishi Heavy Industries (MHI) has received construction awards for a total of seven (7) FGD plants for lignite-fired boilers in succession starting from that for CEZ as, Czech Republic followed by those for EGAT, Thailand in 1993. All these plants are presently operating satisfactorily since successful completion of their performance tests in 1996. Further, a construction award of three (3) more FGD plants for lignite-fired boilers was received from ENDESA (Spain) in 1995 which are now being outfitted and scheduled to start commercial operation in 1998. In this paper, the authors discuss the outline design of FGD plants for lignite-fired boilers based on experience of FGD plants constructed since 1970 for heavy oil--as well as black coal-fired boilers, together with items confirmed from the operation and design guideline hereafter.

  2. Turbine disc sealing assembly

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2013-03-05T23:59:59.000Z

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  3. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 5, Appendix D: Cost support information: Final report

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01T23:59:59.000Z

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro`s estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  4. Nickel-Based Superalloy Welding Practices for Industrial Gas Turbine Applications M.B. Henderson

    E-Print Network [OSTI]

    Cambridge, University of

    alloy components. These include gas tungsten arc (GTA) and electron beam (EB) welding, laser powder components using methods, such as gas tungsten arc (GTA), electron beam (EB) and laser welding, and methods and post-weld heat treatment procedures, if necessary. Increasingly to achieve through-life cost reduction

  5. Pyrometer mount for a closed-circuit thermal medium cooled gas turbine

    DOE Patents [OSTI]

    Jones, Raymond Joseph (Duanesburg, NY); Kirkpatrick, Francis Lawrence (late of Galway, NY); Burns, James Lee (Schenectady, NY); Fulton, John Robert (Clifton Park, NY)

    2002-01-01T23:59:59.000Z

    A steam-cooled second-stage nozzle segment has an outer band and an outer cover defining a plenum therebetween for receiving cooling steam for flow through the nozzles to the inner band and cover therefor and return flow through the nozzles. To measure the temperature of the buckets of the stage forwardly of the nozzle stage, a pyrometer boss is electron beam-welded in an opening through the outer band and TIG-welded to the outer cover plate. By machining a hole through the boss and seating a linearly extending tube in the boss, a line of sight between a pyrometer mounted on the turbine frame and the buckets is provided whereby the temperature of the buckets can be ascertained. The welding of the boss to the outer band and outer cover enables steam flow through the plenum without leakage, while providing a line of sight through the outer cover and outer band to measure bucket temperature.

  6. Development of Low-Cost Austenitic Stainless Gas-Turbine and Diesel Engine Components with Enhanced High-Temperature Reliability

    SciTech Connect (OSTI)

    Maziasz, P.J.; Swindeman, R.W.; Browning, P.F. (Solar Turbines, Inc.); Frary, M.E. (Caterpillar, Inc.); Pollard, M.J.; Siebenaler, C.W.; McGreevy, T.E.

    2004-06-01T23:59:59.000Z

    In July of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Solar Turbines, Inc. and Caterpillar, Inc. (Caterpillar Technical Center) to evaluate commercial cast stainless steels for gas turbine engine and diesel engine exhaust component applications relative to the materials currently being used. If appropriate, the goal was to develop cast stainless steels with improved performance and reliability rather than switch to more costly cast Ni-based superalloys for upgraded performance. The gas-turbine components considered for the Mercury-50 engine were the combustor housing and end-cover, and the center-frame hot-plate, both made from commercial CF8C cast austenitic stainless steel (Fe-l9Cr-12Ni-Nb,C), which is generally limited to use at below 650 C. The advanced diesel engine components considered for truck applications (C10, C12, 3300 and 3400) were the exhaust manifold and turbocharger housing made from commercial high SiMo ductile cast iron with uses limited to 700-750 C or below. Shortly after the start of the CRADA, the turbine materials emphasis changed to wrought 347H stainless steel (hot-plate) and after some initial baseline tensile and creep testing, it was confirmed that this material was typical of those comprising the abundant database; and by 2000, the emphasis of the CRADA was primarily on diesel engine materials. For the diesel applications, commercial SiMo cast iron and standard cast CN12 austenitic stainless steel (Fe-25Cr-13Ni-Nb,C,N,S) baseline materials were obtained commercially. Tensile and creep testing from room temperature to 900 C showed the CN12 austenitic stainless steel to have far superior strength compared to SiMo cast iron above 550 C, together with outstanding oxidation resistance. However, aging at 850 C reduced room-temperature ductility of the standard CN12, and creep-rupture resistance at 850 C was less than expected, which triggered a focused laboratory-scale alloy development effort on modified cast austenitic stainless steels at ORNL. Isothermal fatigue testing at 700 C also showed that standard CN12 was far superior to SiMo cast iron, but somewhat less than the desired behavior. During the first year, 3 new modified CF8C heats and 8 new modified CN12 heats were made, based on compositional changes specifically designed to change the nature, dispersion and stability of the as-cast and high-temperature aging-induced microstructures that consisted of carbides and other precipitate phases. Screening of the alloys at room-temperature and at 850 C (tensile and creep-rupture) showed -a ten-fold increase in rupture life of the best modified CN12 relative to the baseline material, better room-temperature ductility after aging, caused by less precipitation in the as-cast material and much less aging-induced precipitation. The best new modified CF8C steel showed strength at tensile and creep-rupture strength comparable to standard CN12 steel at 850 C, due to a unique and very stable microstructure. The CRADA was scheduled to end in July 2001, but was extended twice until July 2002. Based on the very positive results on the newly developed modified CF8C and CN12 cast austenitic stainless steels, a new CRADA with Caterpillar has been set up to commercially scale-up, test and evaluate, and make trial components from the new steels.

  7. Characterization of a Solid Oxide Fuel Cell Gas Turbine Hybrid System Based on a Factorial Design of Experiments Using Hardware Simulation

    SciTech Connect (OSTI)

    Restrepo, Bernardo; Banta, Larry E.; Tucker, David

    2012-10-01T23:59:59.000Z

    A full factorial experimental design and a replicated fractional factorial design were carried out using the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to simulate gasifer/fuel cell/turbine hybrid power systems. The HyPer facility uses hardware in the loop (HIL) technology that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. A 34 full factorial design (FFD) was selected to study the effects of four factors: cold-air, hot-air, bleed-air bypass valves, and the electric load on different parameters such as cathode and turbine inlet temperatures, pressure and mass flow. The results obtained, compared with former results where the experiments were made using one-factor-at-a-time (OFAT), show that no strong interactions between the factors are present in the different parameters of the system. This work also presents a fractional factorial design (ffd) 34-2 in order to analyze replication of the experiments. In addition, a new envelope is described based on the results of the design of experiments (DoE), compared with OFAT experiments, and analyzed in an off-design integrated fuel cell/gas turbine framework. This paper describes the methodology, strategy, and results of these experiments that bring new knowledge concerning the operating state space for this kind of power generation system.

  8. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

    1996-01-30T23:59:59.000Z

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  9. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1996-01-30T23:59:59.000Z

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  10. Measuring Conventional and Alternative Exhaust Emissions from a Gas Turbine Engine

    E-Print Network [OSTI]

    Johnson, Jeremiah Andrew

    2012-12-31T23:59:59.000Z

    with food production, should not use fresh water supplies, and should have neutral greenhouse gas emissions after a life cycle analysis (LCA) [7,8]. Biofuels derived from algal biomass feedstocks are generating considerable interest around the world...

  11. Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

    E-Print Network [OSTI]

    1994-01-01T23:59:59.000Z

    Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

  12. Thermionic-combustor combined-cycle system. Volume III. A thermionic converter design for gas-turbine combined-cycle systems

    SciTech Connect (OSTI)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S. Jr.

    1981-05-01T23:59:59.000Z

    Thermionic converter design is strongly influenced by the configuration of the heat source and heat sink. These two externally imposed conditions are of major importance in arriving at a viable converter design. In addition to these two factors, the economical and reliable transfer of energy internally within the converter is another major item in the design. The effects of the engineering trade-offs made in arriving at the design chosen for the Gas Turbine Combined Cycle combustor are reviewed.

  13. Postcombustion and its influences in 135 MWe CFB boilers

    SciTech Connect (OSTI)

    Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

    2009-09-15T23:59:59.000Z

    In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

  14. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14T23:59:59.000Z

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittals Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  15. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24T23:59:59.000Z

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable, the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.

  16. Exit chimney joint and method of forming the joint for closed circuit steam cooled gas turbine nozzles

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY); Burns, James Lee (Schenectady, NY)

    2002-01-01T23:59:59.000Z

    A nozzle segment for a gas turbine includes inner and outer band portions and a vane extending between the band portions. The inner and outer band portions are each divided into first and second plenums separated by an impingement plate. Cooling steam is supplied to the first cavity for flow through the apertures to cool the outer nozzle wall. The steam flows through a leading edge cavity in the vane into the first cavity of the inner band portion for flow through apertures of the impingement plate to cool the inner nozzle wall. Spent cooling steam flows through a plurality of cavities in the vane, exiting through an exit chimney in the outer band. The exit chimney is secured at its inner end directly to the nozzle vane wall surrounding the exit cavities, to the margin of the impingement plate at a location intermediate the ends of the exit chimney and to margins of an opening through the cover whereby each joint is externally accessible for joint formation and for subsequent inspection.

  17. Oxy-Combustion Boiler Material Development

    SciTech Connect (OSTI)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31T23:59:59.000Z

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

  18. Oxy-Combustion Boiler Material Development

    SciTech Connect (OSTI)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31T23:59:59.000Z

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

  19. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOE Patents [OSTI]

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20T23:59:59.000Z

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  20. DOE Technology Successes - "Breakthrough" Gas Turbines | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S.D.C. - EnergyEnergy For years, gas

  1. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01T23:59:59.000Z

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  2. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01T23:59:59.000Z

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  3. Theory and Performance of Tesla Turbines

    E-Print Network [OSTI]

    Romanin, Vincent D.

    2012-01-01T23:59:59.000Z

    gas turbines for combined heat and power. In: Ap- plied10.1115/1.4001356. [3] Combined Heat and Power. Tech. rep.of Tesla Turbines for Combined Heat and Power Applications.

  4. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

    1996-01-01T23:59:59.000Z

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  5. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, J.E.; Norton, P.F.

    1996-12-17T23:59:59.000Z

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  6. Ceramic Cerami Turbine Nozzle

    DOE Patents [OSTI]

    Boyd, Gary L. (Alpine, CA)

    1997-04-01T23:59:59.000Z

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  7. Improve Your Boiler's Combustion Efficiency

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  8. Return Condensate to the Boiler

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  9. RENEWABLES RESEARCH Boiler Burner Energy System Technology

    E-Print Network [OSTI]

    RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER Renewables Research September 2010 The Issue Researchers at Altex Technologies Corporation in Sunnyvale, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research

  10. Toughened Silcomp composites for gas turbine engine applications. Continuous fiber ceramic composites program: Phase I final report, April 1992--June 1994

    SciTech Connect (OSTI)

    Corman, G.S.; Luthra, K.L.; Brun, M.K.; Meschter, P.J.

    1994-07-01T23:59:59.000Z

    The two main factors driving the development of new industrial gas turbine engine systems are fuel efficiency and reduced emissions. One method of providing improvements in both areas is to reduce the cooling air requirements of the hot gas path components. For this reason ceramic components are becoming increasingly attractive for gas turbine applications because of their greater refractoriness and oxidation resistance. Among the ceramics being considered, continuous fiber ceramic composites (CFCCs) are leading candidates because they combine the high temperature stability of ceramics with the toughness and damage tolerance of composites. The purpose of this program, which is part of DOE`s CFCC initiative, is to evaluate the use of CFCC materials as gas turbine engine components, and to demonstrate the feasibility of producing such components from Toughened Silcomp composites. Toughened silcomp is a CFCC material made by a reactive melt infiltration process, and consists of continuous SiC reinforcing fibers, with an appropriate fiber coating, in a fully dense matrix of SiC and Si. Based on the material physical properties, the material/process improvements realized in Phase 1, and the preliminary design analyses from Task 1, they feel the feasibility of fabricating Toughened Silcomp with the requisite physical and mechanical properties for the intended applications has been demonstrated. Remaining work for Phase 2 is to further improve the system for enhanced oxidation resistance, incorporate additional process controls to enhance the reproducibility of the material, transition the fabrication process to the selected vendors for scale-up, develop a more complete material property data base, including long-term mechanical behavior, and fabricate and test preliminary ``representative part`` specimens.

  11. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  12. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-04-27T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  13. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

    2003-04-21T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  14. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

  15. Boiler Materials For Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-09-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

  16. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-07-17T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

  17. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-04-20T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

  18. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  19. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  20. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-01-23T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.